modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-28 00:48:09
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-28 00:47:12
card
stringlengths
11
1.01M
KingKazma/xsum_gpt2_p_tuning_500_4_50000_6_e0_s6789_v4_l4_v100
KingKazma
2023-09-02T01:26:10Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T01:26:08Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KhalfounMehdi/dermatology_vit
KhalfounMehdi
2023-09-02T01:24:24Z
193
1
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "autotrain", "dataset:KhalfounMehdi/dermatology_anomaly_detection_vit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-02T01:23:50Z
--- tags: - autotrain - image-classification widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace datasets: - KhalfounMehdi/dermatology_anomaly_detection_vit --- # Model Trained Using AutoTrain - Problem type: Image Classification ## Validation Metricsg No validation metrics available
justina/undersampled-review-clf
justina
2023-09-02T01:20:18Z
109
0
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "generated_from_trainer", "dataset:justina/yelp_boba_reviews", "base_model:cardiffnlp/twitter-roberta-base-sentiment-latest", "base_model:finetune:cardiffnlp/twitter-roberta-base-sentiment-latest", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-02T00:44:50Z
--- base_model: cardiffnlp/twitter-roberta-base-sentiment-latest tags: - generated_from_trainer metrics: - accuracy model-index: - name: undersampled-review-clf results: [] datasets: - justina/yelp_boba_reviews --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # undersampled-review-clf This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) on [justina/yelp-boba-reviews](https://huggingface.co/datasets/justina/yelp_boba_reviews) dataset. Undersampling techniques were used to optimize the model for predicting Yelp review ratings. It achieves the following results on the evaluation set: - Loss: 0.4412 - F1 Macro: 0.7799 - Aucpr Macro: 0.8286 - Accuracy: 0.8464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | Aucpr Macro | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:| | 0.9348 | 1.22 | 100 | 0.7286 | 0.6132 | 0.6244 | 0.6962 | | 0.7438 | 2.44 | 200 | 0.7857 | 0.6232 | 0.6215 | 0.6735 | | 0.6275 | 3.66 | 300 | 0.8317 | 0.5976 | 0.6092 | 0.6778 | | 0.5561 | 4.88 | 400 | 0.8176 | 0.6200 | 0.6238 | 0.6868 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
sam2ai/falcon-1b-odia-lora-pt
sam2ai
2023-09-02T01:07:21Z
2
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:57:09Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_4_1000_8_e4_s6789_v4_l4_r4
KingKazma
2023-09-02T00:42:39Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:42:35Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_4_1000_8_e3_s6789_v4_l4_r4
KingKazma
2023-09-02T00:41:55Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:41:52Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_4_1000_8_e1_s6789_v4_l4_r4
KingKazma
2023-09-02T00:40:29Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:40:25Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
ardt-multipart/ardt-multipart-robust_train_walker2d_level-0109_2337-66
ardt-multipart
2023-09-02T00:39:59Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T22:39:37Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_walker2d_level-0109_2337-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_walker2d_level-0109_2337-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
placeholdereet/Lfgc
placeholdereet
2023-09-02T00:39:18Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-08-14T15:23:18Z
--- license: creativeml-openrail-m ---
KingKazma/xsum_t5-small_lora_500_4_150_8_e3_s6789_v4_l4_r4
KingKazma
2023-09-02T00:23:08Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:14:39Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
KingKazma/xsum_t5-small_lora_500_4_150_8_e2_s6789_v4_l4_r4
KingKazma
2023-09-02T00:23:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-02T00:14:32Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
asrulsibaoel/donut-base-stnk-no-address-v3
asrulsibaoel
2023-09-02T00:01:36Z
45
0
transformers
[ "transformers", "pytorch", "tensorboard", "vision-encoder-decoder", "image-text-to-text", "generated_from_trainer", "dataset:imagefolder", "base_model:squantumengine/donut-base-stnk-no-address-v2", "base_model:finetune:squantumengine/donut-base-stnk-no-address-v2", "endpoints_compatible", "region:us" ]
image-text-to-text
2023-09-01T11:34:20Z
--- base_model: squantumengine/donut-base-stnk-no-address-v2 tags: - generated_from_trainer datasets: - imagefolder model-index: - name: donut-base-stnk-no-address-v3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # donut-base-stnk-no-address-v3 This model is a fine-tuned version of [squantumengine/donut-base-stnk-no-address-v2](https://huggingface.co/squantumengine/donut-base-stnk-no-address-v2) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.4954 | 1.0 | 3253 | 0.3898 | | 0.3524 | 2.0 | 6506 | 0.2783 | | 0.2498 | 3.0 | 9759 | 0.2342 | | 0.1684 | 4.0 | 13012 | 0.2177 | | 0.1442 | 5.0 | 16265 | 0.2116 | ### Framework versions - Transformers 4.31.0 - Pytorch 1.13.1+cu117 - Datasets 2.14.0 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_halfcheetah_level-0109_2225-66
ardt-multipart
2023-09-01T23:46:16Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T21:27:13Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_halfcheetah_level-0109_2225-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_halfcheetah_level-0109_2225-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
frankkuete/electra-large-cuad-qa
frankkuete
2023-09-01T23:40:06Z
114
1
transformers
[ "transformers", "pytorch", "electra", "question-answering", "generated_from_trainer", "legal", "en", "dataset:cuad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-06-02T15:09:45Z
--- license: apache-2.0 tags: - generated_from_trainer - legal datasets: - cuad model-index: - name: electra-large results: [] language: - en widget: - text: "Highlight the parts (if any) of this contract related to 'Document Name' that should be reviewed by a lawyer. Details: The name of the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (“Agreement”), effective as of December 28, 2014 (“Effective Date”), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (“Aquarius”), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (“Client”). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (“SOW”), incorporated herein by reference (such services are collectively referred to as “Services”). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (“Out-of-Scope Assignments”). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Client’s or Aquarius’s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (“Subcontractors”) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquarius’s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (“Preferred Suppliers”) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquarius’s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, “Materials”). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Client’s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (“Client Affiliate”), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." - text: "Highlight the parts (if any) of this contract related to 'Agreement Date' that should be reviewed by a lawyer. Details: The date of the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (“Agreement”), effective as of December 28, 2014 (“Effective Date”), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (“Aquarius”), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (“Client”). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (“SOW”), incorporated herein by reference (such services are collectively referred to as “Services”). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (“Out-of-Scope Assignments”). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Client’s or Aquarius’s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (“Subcontractors”) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquarius’s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (“Preferred Suppliers”) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquarius’s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, “Materials”). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Client’s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (“Client Affiliate”), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." - text: "Highlight the parts (if any) of this contract related to 'Parties' that should be reviewed by a lawyer. Details: The two or more parties who signed the contract" context: "AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES \n This AGREEMENT FOR MARKETING AND BRAND DEVELOPMENT SERVICES (“Agreement”), effective as of December 28, 2014 (“Effective Date”), is by and between Aquarius Cannabis Inc, a Nevada C-Corporation, with offices located at 2214 Clarendon Street, Suite 230, Woodland Hills, CA 91367 (“Aquarius”), and Sysco Pancho LLC, a Washington limited liability company, with offices located at 6262 cambell rd peshastin wa 98847 (“Client”). 1.Marketing and Brand Development Services. Aquarius will perform services for Client in connection with the planning, provision, creation and/or placing of branding, research, advertising, marketing, consulting, creative and/or digital services for Client, during the Term, as provided in the attached (Attachment A) Statement of Work (“SOW”), incorporated herein by reference (such services are collectively referred to as “Services”). During the term of this agreement, Client may wish to assign additional projects, products, or services to Aquarius beyond the Services outlined in the SOW (“Out-of-Scope Assignments”). Aquarius agrees to accept such Out-of-Scope Assignments only upon a separate written agreement with Client regarding additional compensation to be paid to Aquarius and other relevant terms and conditions. Nothing in this Agreement will be deemed to require Aquarius to undertake any act or perform any services which in its good faith judgment would be misleading, false, libelous, unlawful, in breach of a contract, or otherwise prejudicial to Client’s or Aquarius’s interests. 2.Subcontractors. Client acknowledges that Aquarius may, in the rendition of the Services hereunder, engage third party suppliers and other vendors and subcontractors (“Subcontractors”) from time to time to provide certain services. Aquarius shall supervise such services and endeavor to guard against any loss to Client as the result of the failure of Subcontractors to properly execute their commitments, but Aquarius shall not be responsible for their failure, acts or omissions, except where such failure, acts or omissions are due to Aquarius’s negligence or willful misconduct. If Client enters into arrangements with third party vendors, subcontractors or suppliers regarding the provision of materials or services (“Preferred Suppliers”) and requests that Aquarius utilize such Preferred Suppliers in the discharge of Aquarius’s obligations hereunder, Client remains solely responsible for such Preferred Suppliers. 3.Client Approval of Materials. Aquarius shall submit to Client for its approval all elements of any materials to be produced or placed hereunder, including, but not limited to, all copy, layouts, slogans, websites artworks, graphic materials, and photography (collectively, “Materials”). Submission for prior approval of Materials will not be required to the extent that they are preliminary only. 4.Services to Client’s Designees. Should Client request Aquarius to make purchases for or render services to any parent, subsidiary, or affiliate of Client (“Client Affiliate”), Client and such Client Affiliate shall be jointly and severally liable to Aquarius even though Aquarius may render invoices to, or in the name of, such Client Affiliate." --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # electra-large This model is a fine-tuned version of [google/electra-large-discriminator](https://huggingface.co/google/electra-large-discriminator) on the cuad dataset for the question-answering task. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data Contract Understanding Atticus Dataset (CUAD) is an extractive question-answering dataset on legal contracts proposed by the Atticus Project, a non-profit organization of legal experts, designed with the help of many experts in the legal field. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6.0 ### Training results ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu117 - Datasets 2.11.0 - Tokenizers 0.13.2
dt-and-vanilla-ardt/ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33
dt-and-vanilla-ardt
2023-09-01T23:31:49Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T21:16:41Z
--- tags: - generated_from_trainer model-index: - name: ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-vanilla-robust_train_halfcheetah_level-0109_2214-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
dgalik/distilbert-finetuning-unhealthyConv-dropout005-epochs-20
dgalik
2023-09-01T23:17:07Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T21:19:14Z
--- base_model: '' tags: - generated_from_trainer model-index: - name: distilbert-finetuning-unhealthyConv-dropout005-epochs-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-finetuning-unhealthyConv-dropout005-epochs-20 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - Mse: 0.3097 - Rmse: 0.5565 - Mae: 0.1938 - R2: 0.9443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:------:| | 1.0552 | 1.0 | 6778 | 1.0304 | 1.0304 | 1.0151 | 0.6908 | 0.8146 | | 0.7775 | 2.0 | 13556 | 0.8393 | 0.8393 | 0.9162 | 0.6069 | 0.8490 | | 0.5806 | 3.0 | 20334 | 0.6831 | 0.6831 | 0.8265 | 0.5382 | 0.8771 | | 0.4068 | 4.0 | 27112 | 0.5803 | 0.5803 | 0.7618 | 0.4616 | 0.8956 | | 0.3122 | 5.0 | 33890 | 0.5134 | 0.5134 | 0.7165 | 0.4256 | 0.9077 | | 0.2188 | 6.0 | 40668 | 0.4231 | 0.4231 | 0.6505 | 0.3486 | 0.9239 | | 0.1637 | 7.0 | 47446 | 0.3956 | 0.3956 | 0.6289 | 0.3185 | 0.9288 | | 0.1379 | 8.0 | 54224 | 0.3792 | 0.3792 | 0.6158 | 0.3185 | 0.9318 | | 0.1052 | 9.0 | 61002 | 0.3598 | 0.3598 | 0.5999 | 0.2821 | 0.9353 | | 0.088 | 10.0 | 67780 | 0.3550 | 0.3550 | 0.5958 | 0.2827 | 0.9361 | | 0.0747 | 11.0 | 74558 | 0.3549 | 0.3549 | 0.5957 | 0.2897 | 0.9362 | | 0.0603 | 12.0 | 81336 | 0.3376 | 0.3376 | 0.5811 | 0.2572 | 0.9393 | | 0.056 | 13.0 | 88114 | 0.3351 | 0.3351 | 0.5789 | 0.2477 | 0.9397 | | 0.043 | 14.0 | 94892 | 0.3277 | 0.3277 | 0.5725 | 0.2304 | 0.9411 | | 0.0386 | 15.0 | 101670 | 0.3201 | 0.3201 | 0.5657 | 0.2277 | 0.9424 | | 0.0354 | 16.0 | 108448 | 0.3167 | 0.3167 | 0.5628 | 0.2084 | 0.9430 | | 0.0346 | 17.0 | 115226 | 0.3158 | 0.3158 | 0.5620 | 0.2069 | 0.9432 | | 0.0284 | 18.0 | 122004 | 0.3109 | 0.3109 | 0.5576 | 0.1976 | 0.9441 | | 0.0271 | 19.0 | 128782 | 0.3098 | 0.3098 | 0.5566 | 0.1937 | 0.9443 | | 0.0245 | 20.0 | 135560 | 0.3097 | 0.3097 | 0.5565 | 0.1938 | 0.9443 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
C57Box/bert-finetuned-squad
C57Box
2023-09-01T23:06:55Z
116
0
transformers
[ "transformers", "pytorch", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-09-01T20:52:03Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - squad model-index: - name: bert-finetuned-squad results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
AltamashAhmed/TTS_speecht5_finetuned_voxpopuli_it
AltamashAhmed
2023-09-01T23:03:49Z
75
0
transformers
[ "transformers", "pytorch", "speecht5", "text-to-audio", "generated_from_trainer", "it", "dataset:facebook/voxpopuli", "endpoints_compatible", "region:us" ]
text-to-audio
2023-08-31T18:27:02Z
--- language: - it base_model: SpeechT5 tags: - generated_from_trainer datasets: - facebook/voxpopuli model-index: - name: microsoft/speecht5_tts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # microsoft/speecht5_tts This model is a fine-tuned version of [SpeechT5](https://huggingface.co/SpeechT5) on the facebook/voxpopuli dataset. It achieves the following results on the evaluation set: - Loss: 0.4873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5472 | 6.13 | 1000 | 0.5091 | | 0.5229 | 12.26 | 2000 | 0.4946 | | 0.5122 | 18.39 | 3000 | 0.4898 | | 0.5159 | 24.52 | 4000 | 0.4889 | | 0.511 | 30.65 | 5000 | 0.4873 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
lsoni/bert-finetuned-ner-word-embedding
lsoni
2023-09-01T23:01:03Z
105
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-31T14:37:06Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-word-embedding results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner-word-embedding This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021) using word embedding technique). It achieves the following results on the evaluation set: - Loss: 0.5502 - Precision: 0.6522 - Recall: 0.4973 - F1: 0.5643 - Accuracy: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7144 | 1.0 | 624 | 0.5837 | 0.7042 | 0.4422 | 0.5433 | 0.8601 | | 0.5257 | 2.0 | 1248 | 0.5522 | 0.6575 | 0.4803 | 0.5551 | 0.8610 | | 0.4564 | 3.0 | 1872 | 0.5502 | 0.6522 | 0.4973 | 0.5643 | 0.8615 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.1 - Datasets 2.10.1 - Tokenizers 0.12.1
Whybother/version-3
Whybother
2023-09-01T22:58:56Z
47
0
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T22:56:11Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Version_3 Dreambooth model trained by Whybother with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
jquigonq/results
jquigonq
2023-09-01T21:44:05Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-01T21:43:47Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - training_steps: 500 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_halfcheetah_level-0109_2000-33
ardt-multipart
2023-09-01T21:25:13Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:01:43Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_halfcheetah_level-0109_2000-33 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_halfcheetah_level-0109_2000-33 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
LazerJesus/EVA
LazerJesus
2023-09-01T21:24:21Z
4
2
peft
[ "peft", "region:us" ]
null
2023-08-14T19:32:29Z
--- library_name: peft --- # EVA - Emacs Virtual Assistant <img src="https://huggingface.co/LazerJesus/EVA/resolve/main/assets/EVA-350.jpg" align="right" /> EVA is the first AI designed to work alongside you, in Emacs. The goal is to have her take on more and more of the actual manipulation of Emacs and its buffer content, while the user provides instructions and feedback. This is to be achieved through a language model trained on Elisp. The project is under active development and has not yet launched. There is a finetuned Model, but it provides only limited functionality. If you haven't yet, read the [announcement Article](https://finnfrotscher.com/posts/eva-emacs-virtual-assistant/). My motivations for writing the article and this repository are (1) to start a conversation about the model and application and (2) to convince you to contribute your valuable competence to this project. <div style="clear: both;"></div> | [Article](https://finnfrotscher.com/posts/eva-emacs-virtual-assistant/) | [Huggingface](https://huggingface.co/lazerjesus/eva) | [Github](https://github.com/lazerjesus/eva) | [Discord](https://discord.gg/9Uxn45ADJs)
dreamboat26/bert-finetuned-ner
dreamboat26
2023-09-01T21:20:54Z
61
0
transformers
[ "transformers", "tf", "bert", "token-classification", "generated_from_keras_callback", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-01T20:47:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_keras_callback model-index: - name: dreamboat26/bert-finetuned-ner results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # dreamboat26/bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0219 - Validation Loss: 0.0516 - Epoch: 2 ## Model description Find the entities (such as persons, locations, or organizations) in a sentence. This can be formulated as attributing a label to each token by having one class per entity and one class for “no entity.” ## Intended uses & limitations Academic Use ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2634, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 0.0216 | 0.0516 | 0 | | 0.0222 | 0.0516 | 1 | | 0.0219 | 0.0516 | 2 | ### Framework versions - Transformers 4.32.1 - TensorFlow 2.12.0 - Datasets 2.14.4 - Tokenizers 0.13.3
ardt-multipart/ardt-multipart-robust_train_hopper_level-0109_2125-99
ardt-multipart
2023-09-01T21:09:35Z
31
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T20:26:47Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_hopper_level-0109_2125-99 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_hopper_level-0109_2125-99 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
ameerazam08/person_train
ameerazam08
2023-09-01T20:58:04Z
35
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T19:46:33Z
--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: a photo of dkjfgkj tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - lora inference: true --- # LoRA DreamBooth - ameerazam08/person_train These are LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained on a photo of dkjfgkj using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
Syedian123/rachel
Syedian123
2023-09-01T20:48:52Z
2
2
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-01T20:43:17Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### Rachel Dreambooth model trained by Syedian123 with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
gustavodemoura/ppo-LunarLander-v2
gustavodemoura
2023-09-01T20:42:45Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2023-09-01T20:19:30Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 280.60 +/- 20.06 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
LarryAIDraw/Akeno
LarryAIDraw
2023-09-01T20:38:59Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-01T19:49:12Z
--- license: creativeml-openrail-m --- https://civitai.com/models/20093/akeno-himejima-lora-highschool-dxd
swl-models/Yorunohitsuji-v1.2
swl-models
2023-09-01T20:30:05Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-01T16:18:42Z
--- license: creativeml-openrail-m ---
ardt-multipart/ardt-multipart-robust_train_hopper_level-0109_2041-66
ardt-multipart
2023-09-01T20:25:15Z
32
0
transformers
[ "transformers", "pytorch", "decision_transformer", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:43:05Z
--- tags: - generated_from_trainer model-index: - name: ardt-multipart-robust_train_hopper_level-0109_2041-66 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ardt-multipart-robust_train_hopper_level-0109_2041-66 This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 ### Training results ### Framework versions - Transformers 4.29.2 - Pytorch 2.1.0.dev20230727+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
Ajani/lesson-summarization
Ajani
2023-09-01T20:14:28Z
3
0
transformers
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-05-23T17:25:55Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: lesson-summarization results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # lesson-summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 2.8198 | 3.12 | 200 | 2.8048 | | 2.5358 | 6.25 | 400 | 2.6645 | | 2.333 | 9.38 | 600 | 2.6123 | | 2.2096 | 12.5 | 800 | 2.5807 | | 2.0783 | 15.62 | 1000 | 2.5703 | | 1.9919 | 18.75 | 1200 | 2.5653 | | 1.89 | 21.88 | 1400 | 2.5602 | | 1.7865 | 25.0 | 1600 | 2.5650 | | 1.7149 | 28.12 | 1800 | 2.5812 | | 1.6651 | 31.25 | 2000 | 2.5813 | | 1.5662 | 34.38 | 2200 | 2.5997 | | 1.5333 | 37.5 | 2400 | 2.6097 | | 1.4336 | 40.62 | 2600 | 2.6389 | | 1.3986 | 43.75 | 2800 | 2.6564 | | 1.352 | 46.88 | 3000 | 2.6720 | | 1.3072 | 50.0 | 3200 | 2.6863 | | 1.2773 | 53.12 | 3400 | 2.6931 | | 1.2079 | 56.25 | 3600 | 2.7350 | | 1.1768 | 59.38 | 3800 | 2.7521 | | 1.1749 | 62.5 | 4000 | 2.7553 | | 1.0857 | 65.62 | 4200 | 2.7921 | | 1.0883 | 68.75 | 4400 | 2.7840 | | 1.0307 | 71.88 | 4600 | 2.8110 | | 1.0255 | 75.0 | 4800 | 2.8365 | | 0.9992 | 78.12 | 5000 | 2.8358 | | 0.9516 | 81.25 | 5200 | 2.8554 | | 0.9363 | 84.38 | 5400 | 2.8742 | | 0.91 | 87.5 | 5600 | 2.8923 | | 0.895 | 90.62 | 5800 | 2.9057 | | 0.8371 | 93.75 | 6000 | 2.9234 | | 0.8588 | 96.88 | 6200 | 2.9443 | | 0.8237 | 100.0 | 6400 | 2.9612 | | 0.8147 | 103.12 | 6600 | 2.9633 | | 0.7936 | 106.25 | 6800 | 2.9641 | | 0.7883 | 109.38 | 7000 | 2.9711 | | 0.7589 | 112.5 | 7200 | 2.9744 | | 0.7277 | 115.62 | 7400 | 2.9879 | | 0.7505 | 118.75 | 7600 | 2.9974 | | 0.705 | 121.88 | 7800 | 3.0033 | | 0.7111 | 125.0 | 8000 | 3.0032 | | 0.7005 | 128.12 | 8200 | 3.0055 | | 0.6961 | 131.25 | 8400 | 3.0168 | | 0.6543 | 134.38 | 8600 | 3.0339 | | 0.6482 | 137.5 | 8800 | 3.0312 | | 0.6807 | 140.62 | 9000 | 3.0393 | | 0.6365 | 143.75 | 9200 | 3.0413 | | 0.648 | 146.88 | 9400 | 3.0461 | | 0.6275 | 150.0 | 9600 | 3.0454 | | 0.6284 | 153.12 | 9800 | 3.0552 | | 0.6062 | 156.25 | 10000 | 3.0514 | | 0.6312 | 159.38 | 10200 | 3.0487 | | 0.6244 | 162.5 | 10400 | 3.0525 | | 0.5792 | 165.62 | 10600 | 3.0547 | | 0.5997 | 168.75 | 10800 | 3.0491 | | 0.5972 | 171.88 | 11000 | 3.0542 | | 0.5891 | 175.0 | 11200 | 3.0624 | | 0.582 | 178.12 | 11400 | 3.0717 | | 0.5934 | 181.25 | 11600 | 3.0683 | | 0.5803 | 184.38 | 11800 | 3.0761 | | 0.5724 | 187.5 | 12000 | 3.0777 | | 0.6015 | 190.62 | 12200 | 3.0784 | | 0.5874 | 193.75 | 12400 | 3.0792 | | 0.5531 | 196.88 | 12600 | 3.0801 | | 0.5863 | 200.0 | 12800 | 3.0801 | ### Framework versions - Transformers 4.28.0 - Pytorch 1.13.1+cu116 - Datasets 2.12.0 - Tokenizers 0.13.3
trieudemo11/llama_7b_attrb_cate_8m_1
trieudemo11
2023-09-01T20:12:01Z
5
0
peft
[ "peft", "region:us" ]
null
2023-09-01T20:11:47Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0
trieudemo11/llama_7b_attrb_cate_b6_l320_low_9
trieudemo11
2023-09-01T20:10:05Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T20:09:51Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 - PEFT 0.6.0.dev0 rsions - PEFT 0.6.0.dev0
anik424/SD_xl_base_madras_checks
anik424
2023-09-01T20:06:23Z
1
2
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-30T18:11:49Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: Photo of madras check pattern" tags: - text-to-image - diffusers - autotrain inference: true ---
DavidHuggingFace1/Concept-Phrase
DavidHuggingFace1
2023-09-01T20:04:55Z
0
0
peft
[ "peft", "endpoints_compatible", "region:us" ]
null
2023-09-01T19:57:16Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
Kamer/DuplicatiDistillBertCitations
Kamer
2023-09-01T19:56:02Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T19:28:02Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: DuplicatiDistillBertCitations results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DuplicatiDistillBertCitations This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5474 - eval_Accuracy: 0.8571 - eval_F1_macro: 0.8668 - eval_F1_class_0: 0.7476 - eval_F1_class_1: 0.8627 - eval_F1_class_2: 0.8975 - eval_F1_class_3: 0.9362 - eval_F1_class_4: 0.9415 - eval_F1_class_5: 0.9176 - eval_F1_class_6: 0.8864 - eval_F1_class_7: 0.9548 - eval_F1_class_8: 0.9196 - eval_F1_class_9: 0.9424 - eval_F1_class_10: 0.6921 - eval_F1_class_11: 0.3927 - eval_F1_class_12: 0.8407 - eval_F1_class_13: 0.9495 - eval_F1_class_14: 0.8884 - eval_F1_class_15: 0.8514 - eval_F1_class_16: 0.8750 - eval_F1_class_17: 0.9115 - eval_F1_class_18: 0.9647 - eval_F1_class_19: 0.9630 - eval_runtime: 30.4778 - eval_samples_per_second: 166.646 - eval_steps_per_second: 20.835 - epoch: 1.33 - step: 7681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
KingKazma/xsum_t5-small_lora_500_2_300_8_e-1_s6789_v4_l4_r4_manual
KingKazma
2023-09-01T19:55:11Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T19:50:04Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.6.0.dev0
zapadaz/ppo-Huggy
zapadaz
2023-09-01T19:43:25Z
0
0
ml-agents
[ "ml-agents", "tensorboard", "onnx", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
reinforcement-learning
2023-09-01T19:43:21Z
--- library_name: ml-agents tags: - Huggy - deep-reinforcement-learning - reinforcement-learning - ML-Agents-Huggy --- # **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: zapadaz/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
Kamer/DuplicatiDistillBert
Kamer
2023-09-01T19:13:08Z
3
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T17:07:46Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: DuplicatiDistillBert results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # DuplicatiDistillBert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.5776 - eval_Accuracy: 0.8765 - eval_F1_macro: 0.8702 - eval_F1_class_0: 0.8768 - eval_F1_class_1: 0.7797 - eval_F1_class_2: 0.9077 - eval_F1_class_3: 0.9000 - eval_F1_class_4: 0.9083 - eval_F1_class_5: 0.8703 - eval_F1_class_6: 0.8330 - eval_F1_class_7: 0.9455 - eval_F1_class_8: 0.9642 - eval_F1_class_9: 0.8581 - eval_F1_class_10: 0.7760 - eval_F1_class_11: 0.8639 - eval_F1_class_12: 0.8035 - eval_F1_class_13: 0.9109 - eval_F1_class_14: 0.8374 - eval_F1_class_15: 0.7641 - eval_F1_class_16: 0.7246 - eval_F1_class_17: 0.9771 - eval_F1_class_18: 0.9031 - eval_F1_class_19: 1.0 - eval_runtime: 106.104 - eval_samples_per_second: 64.993 - eval_steps_per_second: 8.124 - epoch: 0.21 - step: 1008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
ldos/text_shortening_model_v6
ldos
2023-09-01T19:08:56Z
30
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-01T16:01:47Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v6 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5555 - Rouge1: 0.5993 - Rouge2: 0.3696 - Rougel: 0.551 - Rougelsum: 0.5503 - Bert precision: 0.8968 - Bert recall: 0.9029 - Average word count: 11.2357 - Max word count: 17 - Min word count: 7 - Average token count: 16.4143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:| | 1.2879 | 1.0 | 4 | 1.7189 | 0.5385 | 0.3175 | 0.4882 | 0.4875 | 0.8762 | 0.886 | 11.8071 | 18 | 5 | 17.1429 | | 1.1303 | 2.0 | 8 | 1.6107 | 0.5599 | 0.337 | 0.5115 | 0.5117 | 0.8853 | 0.8916 | 11.2071 | 18 | 4 | 16.3071 | | 1.0984 | 3.0 | 12 | 1.5545 | 0.5828 | 0.354 | 0.5254 | 0.5252 | 0.8885 | 0.8985 | 11.5286 | 17 | 4 | 16.5714 | | 1.052 | 4.0 | 16 | 1.4943 | 0.5841 | 0.3631 | 0.5384 | 0.5372 | 0.8917 | 0.9004 | 11.3857 | 17 | 5 | 16.6143 | | 0.9922 | 5.0 | 20 | 1.4517 | 0.5869 | 0.3671 | 0.5437 | 0.5432 | 0.8912 | 0.9011 | 11.5429 | 17 | 5 | 16.7929 | | 0.9524 | 6.0 | 24 | 1.4308 | 0.5807 | 0.3571 | 0.5332 | 0.5333 | 0.8883 | 0.8994 | 11.6857 | 17 | 5 | 17.0357 | | 0.9008 | 7.0 | 28 | 1.4152 | 0.5859 | 0.3585 | 0.5333 | 0.5319 | 0.8885 | 0.8974 | 11.4857 | 17 | 5 | 16.7786 | | 0.8787 | 8.0 | 32 | 1.4089 | 0.5868 | 0.3592 | 0.5366 | 0.5363 | 0.8901 | 0.8991 | 11.4071 | 17 | 5 | 16.8071 | | 0.857 | 9.0 | 36 | 1.4031 | 0.5974 | 0.3747 | 0.5496 | 0.5494 | 0.892 | 0.9015 | 11.5214 | 17 | 5 | 16.95 | | 0.8122 | 10.0 | 40 | 1.3961 | 0.5965 | 0.3716 | 0.5487 | 0.5484 | 0.8917 | 0.9031 | 11.7071 | 17 | 6 | 17.1214 | | 0.7943 | 11.0 | 44 | 1.3922 | 0.6068 | 0.3774 | 0.5572 | 0.5566 | 0.8947 | 0.9058 | 11.5929 | 17 | 6 | 16.9857 | | 0.7632 | 12.0 | 48 | 1.3949 | 0.6011 | 0.371 | 0.55 | 0.549 | 0.8944 | 0.9039 | 11.4214 | 16 | 5 | 16.9 | | 0.7464 | 13.0 | 52 | 1.3949 | 0.6007 | 0.3757 | 0.5506 | 0.5492 | 0.8938 | 0.9046 | 11.4357 | 16 | 5 | 16.8714 | | 0.7235 | 14.0 | 56 | 1.3957 | 0.6113 | 0.3814 | 0.5609 | 0.5601 | 0.8965 | 0.9078 | 11.5429 | 16 | 6 | 16.8714 | | 0.7293 | 15.0 | 60 | 1.3988 | 0.6102 | 0.3809 | 0.5615 | 0.56 | 0.8948 | 0.9079 | 11.7 | 16 | 6 | 17.15 | | 0.7188 | 16.0 | 64 | 1.3954 | 0.6094 | 0.381 | 0.5603 | 0.5588 | 0.8965 | 0.9062 | 11.35 | 16 | 6 | 16.8071 | | 0.7028 | 17.0 | 68 | 1.3969 | 0.6068 | 0.3846 | 0.5581 | 0.5568 | 0.896 | 0.9052 | 11.2571 | 16 | 6 | 16.65 | | 0.6792 | 18.0 | 72 | 1.4056 | 0.6007 | 0.3777 | 0.5519 | 0.5508 | 0.895 | 0.9048 | 11.3214 | 16 | 6 | 16.6214 | | 0.671 | 19.0 | 76 | 1.4142 | 0.6043 | 0.3779 | 0.5549 | 0.5541 | 0.8954 | 0.9046 | 11.2429 | 15 | 6 | 16.5429 | | 0.6644 | 20.0 | 80 | 1.4202 | 0.6009 | 0.3767 | 0.5502 | 0.5496 | 0.8955 | 0.9028 | 11.1643 | 16 | 6 | 16.3643 | | 0.6526 | 21.0 | 84 | 1.4256 | 0.6023 | 0.374 | 0.5485 | 0.5485 | 0.8958 | 0.9032 | 11.1857 | 17 | 6 | 16.35 | | 0.6311 | 22.0 | 88 | 1.4356 | 0.6059 | 0.3768 | 0.5492 | 0.5488 | 0.8932 | 0.9042 | 11.5 | 17 | 6 | 16.7214 | | 0.6448 | 23.0 | 92 | 1.4432 | 0.6071 | 0.3768 | 0.5519 | 0.5518 | 0.8935 | 0.9044 | 11.5357 | 17 | 6 | 16.7643 | | 0.6344 | 24.0 | 96 | 1.4457 | 0.6088 | 0.3823 | 0.5583 | 0.5576 | 0.8985 | 0.9052 | 11.1214 | 16 | 6 | 16.3071 | | 0.6299 | 25.0 | 100 | 1.4522 | 0.6049 | 0.3709 | 0.5488 | 0.5484 | 0.8976 | 0.9017 | 10.9 | 16 | 6 | 15.9643 | | 0.6193 | 26.0 | 104 | 1.4616 | 0.6045 | 0.3701 | 0.5499 | 0.5495 | 0.8959 | 0.9032 | 11.1714 | 16 | 6 | 16.35 | | 0.6247 | 27.0 | 108 | 1.4704 | 0.5993 | 0.3719 | 0.5515 | 0.5503 | 0.8949 | 0.9041 | 11.3429 | 17 | 7 | 16.6286 | | 0.6062 | 28.0 | 112 | 1.4760 | 0.6017 | 0.3702 | 0.5537 | 0.5526 | 0.8949 | 0.903 | 11.2929 | 17 | 6 | 16.5143 | | 0.5921 | 29.0 | 116 | 1.4816 | 0.5994 | 0.3734 | 0.5528 | 0.552 | 0.8959 | 0.9025 | 11.1429 | 17 | 6 | 16.3429 | | 0.5859 | 30.0 | 120 | 1.4887 | 0.6027 | 0.3724 | 0.5523 | 0.5518 | 0.8956 | 0.9034 | 11.3357 | 17 | 7 | 16.5143 | | 0.5911 | 31.0 | 124 | 1.4958 | 0.6065 | 0.3757 | 0.5523 | 0.5519 | 0.8971 | 0.9033 | 11.1857 | 17 | 6 | 16.3643 | | 0.5936 | 32.0 | 128 | 1.5029 | 0.6008 | 0.3745 | 0.5508 | 0.5508 | 0.8973 | 0.9015 | 10.9714 | 16 | 6 | 16.1 | | 0.584 | 33.0 | 132 | 1.5101 | 0.6087 | 0.3801 | 0.5582 | 0.5583 | 0.8969 | 0.9038 | 11.2214 | 16 | 6 | 16.4071 | | 0.5741 | 34.0 | 136 | 1.5157 | 0.6054 | 0.3814 | 0.5575 | 0.5576 | 0.8961 | 0.9042 | 11.2643 | 16 | 7 | 16.4786 | | 0.5793 | 35.0 | 140 | 1.5202 | 0.6079 | 0.3866 | 0.5621 | 0.5622 | 0.8968 | 0.9057 | 11.3214 | 16 | 7 | 16.5714 | | 0.5803 | 36.0 | 144 | 1.5221 | 0.6081 | 0.3824 | 0.5601 | 0.5602 | 0.8966 | 0.9053 | 11.3357 | 16 | 7 | 16.6214 | | 0.5719 | 37.0 | 148 | 1.5235 | 0.6025 | 0.3802 | 0.555 | 0.5542 | 0.898 | 0.9035 | 11.1357 | 16 | 7 | 16.3214 | | 0.5567 | 38.0 | 152 | 1.5238 | 0.5987 | 0.3763 | 0.5524 | 0.5517 | 0.8974 | 0.9024 | 11.0357 | 16 | 7 | 16.2143 | | 0.5535 | 39.0 | 156 | 1.5264 | 0.6023 | 0.3746 | 0.5547 | 0.5539 | 0.8977 | 0.9035 | 11.1357 | 16 | 7 | 16.3 | | 0.5507 | 40.0 | 160 | 1.5315 | 0.6039 | 0.3757 | 0.5565 | 0.5559 | 0.8979 | 0.9045 | 11.2071 | 16 | 7 | 16.4143 | | 0.5568 | 41.0 | 164 | 1.5389 | 0.6078 | 0.3819 | 0.5589 | 0.5579 | 0.8973 | 0.9045 | 11.4 | 17 | 7 | 16.5571 | | 0.5659 | 42.0 | 168 | 1.5444 | 0.6037 | 0.3788 | 0.5567 | 0.5558 | 0.8959 | 0.9036 | 11.4286 | 17 | 7 | 16.5714 | | 0.561 | 43.0 | 172 | 1.5475 | 0.5965 | 0.372 | 0.5494 | 0.548 | 0.8958 | 0.9024 | 11.3357 | 17 | 7 | 16.4929 | | 0.5535 | 44.0 | 176 | 1.5493 | 0.597 | 0.3703 | 0.5495 | 0.5485 | 0.8967 | 0.9025 | 11.2214 | 17 | 7 | 16.3786 | | 0.5542 | 45.0 | 180 | 1.5507 | 0.6001 | 0.3706 | 0.5529 | 0.5526 | 0.897 | 0.9034 | 11.2429 | 17 | 7 | 16.4214 | | 0.542 | 46.0 | 184 | 1.5527 | 0.6001 | 0.3706 | 0.5529 | 0.5526 | 0.897 | 0.9034 | 11.2429 | 17 | 7 | 16.4214 | | 0.5466 | 47.0 | 188 | 1.5539 | 0.6003 | 0.3702 | 0.5529 | 0.5526 | 0.8968 | 0.9033 | 11.2571 | 17 | 7 | 16.4357 | | 0.5478 | 48.0 | 192 | 1.5550 | 0.5997 | 0.3699 | 0.5515 | 0.5508 | 0.8969 | 0.9029 | 11.2143 | 17 | 7 | 16.3857 | | 0.5429 | 49.0 | 196 | 1.5552 | 0.5993 | 0.3696 | 0.551 | 0.5503 | 0.8968 | 0.9029 | 11.2357 | 17 | 7 | 16.4143 | | 0.5443 | 50.0 | 200 | 1.5555 | 0.5993 | 0.3696 | 0.551 | 0.5503 | 0.8968 | 0.9029 | 11.2357 | 17 | 7 | 16.4143 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
amarsaxena21/finetuning-sentiment-model-3000-samples
amarsaxena21
2023-09-01T18:30:49Z
105
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T18:24:41Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy - f1 model-index: - name: finetuning-sentiment-model-3000-samples results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.8733333333333333 - name: F1 type: f1 value: 0.8758169934640523 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-3000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3279 - Accuracy: 0.8733 - F1: 0.8758 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
gsl22/sentiment-analysis-v1
gsl22
2023-09-01T18:29:21Z
122
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-01T15:37:29Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: sentiment-analysis-v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentiment-analysis-v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0240 - Accuracy: 0.9967 - Precision: 0.9967 - Recall: 0.9967 - F1: 0.9967 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
AliFartout/Roberta-fa-en-ner
AliFartout
2023-09-01T18:25:47Z
127
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "fa", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-08-31T19:05:31Z
--- license: apache-2.0 language: - fa - en metrics: - accuracy pipeline_tag: token-classification --- # NER Model using Roberta This markdown presents a Robustly Optimized BERT Pretraining Approach (RoBERTa) model trained on a combination of two diverse datasets for two languages: English and Persian. The English dataset used is [CoNLL 2003](https://huggingface.co/datasets/conll2003), while the Persian dataset is [PEYMA-ARMAN-Mixed](https://huggingface.co/datasets/AliFartout/PEYMA-ARMAN-Mixed), a fusion of the "PEYAM" and "ARMAN" datasets, both popular for Named Entity Recognition (NER) tasks. The model training pipeline involves the following steps: Data Preparation: Cleaning, aligning, and mixing data from the two datasets. Data Loading: Loading the prepared data for subsequent processing. Tokenization: Utilizing tokenization to prepare the text data for model input. Token Splitting: Handling token splitting (e.g., "jack" becomes "_ja _ck") and using "-100" for optimization and ignoring certain tokens. Model Reconstruction: Adapting the RoBERTa model for token classification in NER tasks. Model Training: Training the reconstructed model on the combined dataset and evaluating its performance. The model's performance, as shown in the table below, demonstrates promising results: | Epoch | Training Loss | Validation Loss | F1 | Recall | Precision | Accuracy | |:-------:|:--------:|:--------:|:----------:|:--------------:|:----------:|:----------------:| | 1 | 0.072600 | 0.038918 | 89.5% | 0.906680 | 0.883703 | 0.987799 | | 2 | 0.027600 | 0.030184 | 92.3% | 0.933840 | 0.915573 | 0.991334 | | 3 | 0.013500 | 0.030962 | 94% | 0.946840 | 0.933740 | 0.992702 | | 4 | 0.006600 | 0.029897 | 94.8% | 0.955207 | 0.941990 | 0.993574 | The model achieves an impressive F1-score of almost 95%. To use the model, the following Python code snippet can be employed: ```python from transformers import AutoConfig, AutoTokenizer, AutoModel config = AutoConfig.from_pretrained("AliFartout/Roberta-fa-en-ner") tokenizer = AutoTokenizer.from_pretrained("AliFartout/Roberta-fa-en-ner") model = AutoModel.from_pretrained("AliFartout/Roberta-fa-en-ner") ``` By following this approach, you can seamlessly access and incorporate the trained multilingual NER model into various Natural Language Processing tasks.
facebook/mms-tts-tzo-dialect_chamula
facebook
2023-09-01T18:25:20Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T18:25:04Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tzotzil Text-to-Speech This repository contains the **Tzotzil (tzo-dialect_chamula)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tzo-dialect_chamula") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tzo-dialect_chamula") text = "some example text in the Tzotzil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-tzj-dialect_eastern
facebook
2023-09-01T18:24:11Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T18:23:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tz’utujil Text-to-Speech This repository contains the **Tz’utujil (tzj-dialect_eastern)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-tzj-dialect_eastern") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tzj-dialect_eastern") text = "some example text in the Tz’utujil language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mah
facebook
2023-09-01T18:23:33Z
118
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T18:23:17Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Marshallese Text-to-Speech This repository contains the **Marshallese (mah)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mah") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mah") text = "some example text in the Marshallese language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mad
facebook
2023-09-01T18:22:19Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T18:22:03Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Madura Text-to-Speech This repository contains the **Madura (mad)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mad") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mad") text = "some example text in the Madura language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
Korkkork/jiyoungkara
Korkkork
2023-09-01T18:21:35Z
0
0
null
[ "kara", "Kpop", "license:openrail", "region:us" ]
null
2023-09-01T18:17:55Z
--- license: openrail tags: - kara - Kpop ---
plaguss/gpt2_dwight
plaguss
2023-09-01T17:57:42Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T17:49:43Z
--- library_name: peft --- ## Training procedure ### Framework versions - PEFT 0.5.0
dharmaPrabhu/bottle_sample
dharmaPrabhu
2023-09-01T17:56:05Z
1
0
diffusers
[ "diffusers", "text-to-image", "autotrain", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:finetune:stabilityai/stable-diffusion-xl-base-1.0", "region:us" ]
text-to-image
2023-08-31T06:06:53Z
--- base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: photo of a sks water bottle tags: - text-to-image - diffusers - autotrain inference: true --- # DreamBooth trained by AutoTrain Text encoder was not trained.
hmcgovern/bert-base-uncased_text_detection
hmcgovern
2023-09-01T17:54:38Z
0
0
null
[ "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "region:us" ]
null
2023-09-01T17:48:01Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased_text_detection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased_text_detection This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0825 - Accuracy: 0.9744 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3842 | 1.0 | 96 | 0.3456 | 0.8564 | | 0.123 | 1.99 | 192 | 0.1073 | 0.9634 | | 0.0869 | 2.99 | 288 | 0.0825 | 0.9744 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3
AbelHo/distilhubert-finetuned-gtzan
AbelHo
2023-09-01T17:38:08Z
158
0
transformers
[ "transformers", "pytorch", "hubert", "audio-classification", "generated_from_trainer", "dataset:marsyas/gtzan", "base_model:ntu-spml/distilhubert", "base_model:finetune:ntu-spml/distilhubert", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-01T15:48:51Z
--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: coursetest0.1-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # coursetest0.1-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4304 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9557 | 1.0 | 113 | 1.7801 | 0.5 | | 1.3724 | 2.0 | 226 | 1.2585 | 0.66 | | 1.1044 | 3.0 | 339 | 0.9137 | 0.78 | | 0.8747 | 4.0 | 452 | 0.7600 | 0.84 | | 0.6006 | 5.0 | 565 | 0.6441 | 0.84 | | 0.4287 | 6.0 | 678 | 0.5872 | 0.83 | | 0.4443 | 7.0 | 791 | 0.4529 | 0.87 | | 0.1481 | 8.0 | 904 | 0.4670 | 0.89 | | 0.1915 | 9.0 | 1017 | 0.4211 | 0.86 | | 0.0791 | 10.0 | 1130 | 0.4304 | 0.88 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3
jamesliu23/finetune_code_alpaca_20k
jamesliu23
2023-09-01T17:36:01Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-01T17:35:56Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.5.0 - PEFT 0.5.0
facebook/mms-tts-cuk
facebook
2023-09-01T17:35:33Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:34:41Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Kuna, San Blas Text-to-Speech This repository contains the **Kuna, San Blas (cuk)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cuk") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cuk") text = "some example text in the Kuna, San Blas language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-myv
facebook
2023-09-01T17:35:07Z
106
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:34:49Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Erzya Text-to-Speech This repository contains the **Erzya (myv)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-myv") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-myv") text = "some example text in the Erzya language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-myl
facebook
2023-09-01T17:34:26Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:34:10Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Moma Text-to-Speech This repository contains the **Moma (myl)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-myl") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-myl") text = "some example text in the Moma language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cui
facebook
2023-09-01T17:34:24Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:33:38Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Cuiba Text-to-Speech This repository contains the **Cuiba (cui)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cui") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cui") text = "some example text in the Cuiba language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cuc
facebook
2023-09-01T17:33:21Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:33:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chinantec, Usila Text-to-Speech This repository contains the **Chinantec, Usila (cuc)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cuc") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cuc") text = "some example text in the Chinantec, Usila language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ctu
facebook
2023-09-01T17:32:48Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:32:31Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chol Text-to-Speech This repository contains the **Chol (ctu)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ctu") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ctu") text = "some example text in the Chol language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-myb
facebook
2023-09-01T17:31:06Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:30:49Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mbay Text-to-Speech This repository contains the **Mbay (myb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-myb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-myb") text = "some example text in the Mbay language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mya
facebook
2023-09-01T17:30:32Z
1,049
2
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:29:15Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Burmese Text-to-Speech This repository contains the **Burmese (mya)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mya") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mya") text = "some example text in the Burmese language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-ctd
facebook
2023-09-01T17:28:49Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:28:32Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chin, Tedim Text-to-Speech This repository contains the **Chin, Tedim (ctd)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-ctd") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-ctd") text = "some example text in the Chin, Tedim language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mxt
facebook
2023-09-01T17:28:16Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:26:31Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mixtec, Jamiltepec Text-to-Speech This repository contains the **Mixtec, Jamiltepec (mxt)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mxt") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mxt") text = "some example text in the Mixtec, Jamiltepec language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-crs
facebook
2023-09-01T17:26:21Z
111
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:26:02Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Seychelles French Creole Text-to-Speech This repository contains the **Seychelles French Creole (crs)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-crs") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-crs") text = "some example text in the Seychelles French Creole language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-crn
facebook
2023-09-01T17:25:05Z
113
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:24:47Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Cora, El Nayar Text-to-Speech This repository contains the **Cora, El Nayar (crn)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-crn") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-crn") text = "some example text in the Cora, El Nayar language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mwv
facebook
2023-09-01T17:24:58Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:23:45Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mentawai Text-to-Speech This repository contains the **Mentawai (mwv)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mwv") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mwv") text = "some example text in the Mentawai language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-muv
facebook
2023-09-01T17:21:44Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:21:28Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Muthuvan Text-to-Speech This repository contains the **Muthuvan (muv)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-muv") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-muv") text = "some example text in the Muthuvan language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mup
facebook
2023-09-01T17:20:39Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:20:22Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Malvi Text-to-Speech This repository contains the **Malvi (mup)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mup") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mup") text = "some example text in the Malvi language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cot
facebook
2023-09-01T17:19:32Z
116
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:19:16Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Caquinte Text-to-Speech This repository contains the **Caquinte (cot)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cot") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cot") text = "some example text in the Caquinte language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mtj
facebook
2023-09-01T17:18:51Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:18:35Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Moskona Text-to-Speech This repository contains the **Moskona (mtj)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mtj") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mtj") text = "some example text in the Moskona language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mtd
facebook
2023-09-01T17:18:15Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:17:58Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mualang Text-to-Speech This repository contains the **Mualang (mtd)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mtd") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mtd") text = "some example text in the Mualang language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cof
facebook
2023-09-01T17:17:50Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:17:33Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Tsafiki Text-to-Speech This repository contains the **Tsafiki (cof)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cof") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cof") text = "some example text in the Tsafiki language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-msy
facebook
2023-09-01T17:17:41Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:15:32Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Aruamu Text-to-Speech This repository contains the **Aruamu (msy)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-msy") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-msy") text = "some example text in the Aruamu language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-coe
facebook
2023-09-01T17:17:10Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:15:11Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Koreguaje Text-to-Speech This repository contains the **Koreguaje (coe)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-coe") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-coe") text = "some example text in the Koreguaje language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mrw
facebook
2023-09-01T17:15:16Z
116
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:14:58Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Maranao Text-to-Speech This repository contains the **Maranao (mrw)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mrw") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mrw") text = "some example text in the Maranao language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mqn
facebook
2023-09-01T17:14:41Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:14:25Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Moronene Text-to-Speech This repository contains the **Moronene (mqn)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mqn") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mqn") text = "some example text in the Moronene language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cnl
facebook
2023-09-01T17:14:17Z
111
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:12:39Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chinantec, Lalana Text-to-Speech This repository contains the **Chinantec, Lalana (cnl)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cnl") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cnl") text = "some example text in the Chinantec, Lalana language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mqf
facebook
2023-09-01T17:12:15Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:10:55Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Momuna Text-to-Speech This repository contains the **Momuna (mqf)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mqf") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mqf") text = "some example text in the Momuna language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mqb
facebook
2023-09-01T17:10:37Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:10:21Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mbuko Text-to-Speech This repository contains the **Mbuko (mqb)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mqb") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mqb") text = "some example text in the Mbuko language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mpx
facebook
2023-09-01T17:10:05Z
108
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:09:48Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Misima-Panaeati Text-to-Speech This repository contains the **Misima-Panaeati (mpx)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mpx") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mpx") text = "some example text in the Misima-Panaeati language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mpm
facebook
2023-09-01T17:08:52Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:08:35Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mixtec, Yosondúa Text-to-Speech This repository contains the **Mixtec, Yosondúa (mpm)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mpm") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mpm") text = "some example text in the Mixtec, Yosondúa language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cme
facebook
2023-09-01T17:07:24Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:06:54Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Cerma Text-to-Speech This repository contains the **Cerma (cme)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cme") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cme") text = "some example text in the Cerma language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cly
facebook
2023-09-01T17:06:36Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:06:20Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chatino, Eastern Highland Text-to-Speech This repository contains the **Chatino, Eastern Highland (cly)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cly") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cly") text = "some example text in the Chatino, Eastern Highland language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mos
facebook
2023-09-01T17:06:28Z
255
2
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:06:11Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mòoré Text-to-Speech This repository contains the **Mòoré (mos)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mos") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mos") text = "some example text in the Mòoré language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cle
facebook
2023-09-01T17:06:02Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:05:27Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chinantec, Lealao Text-to-Speech This repository contains the **Chinantec, Lealao (cle)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cle") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cle") text = "some example text in the Chinantec, Lealao language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mor
facebook
2023-09-01T17:05:54Z
104
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:05:37Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Moro Text-to-Speech This repository contains the **Moro (mor)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mor") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mor") text = "some example text in the Moro language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
jaober/q-Taxi-v3
jaober
2023-09-01T17:05:32Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-01T17:05:30Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="jaober/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
facebook/mms-tts-mop
facebook
2023-09-01T17:05:21Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:05:05Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Maya, Mopán Text-to-Speech This repository contains the **Maya, Mopán (mop)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mop") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mop") text = "some example text in the Maya, Mopán language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cla
facebook
2023-09-01T17:05:10Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:04:52Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ron Text-to-Speech This repository contains the **Ron (cla)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cla") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cla") text = "some example text in the Ron language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mog
facebook
2023-09-01T17:04:15Z
100
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:03:57Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mongondow Text-to-Speech This repository contains the **Mongondow (mog)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mog") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mog") text = "some example text in the Mongondow language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cko
facebook
2023-09-01T17:04:03Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:03:47Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Anufo Text-to-Speech This repository contains the **Anufo (cko)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cko") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cko") text = "some example text in the Anufo language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-moa
facebook
2023-09-01T17:03:38Z
110
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:03:22Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mwan Text-to-Speech This repository contains the **Mwan (moa)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-moa") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-moa") text = "some example text in the Mwan language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cjs
facebook
2023-09-01T17:03:26Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:03:07Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Shor Text-to-Speech This repository contains the **Shor (cjs)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cjs") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cjs") text = "some example text in the Shor language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mnx
facebook
2023-09-01T17:03:05Z
107
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:02:44Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Sougb Text-to-Speech This repository contains the **Sougb (mnx)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mnx") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mnx") text = "some example text in the Sougb language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-cjo
facebook
2023-09-01T17:02:13Z
112
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:01:57Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Ashéninka, Pajonal Text-to-Speech This repository contains the **Ashéninka, Pajonal (cjo)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-cjo") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-cjo") text = "some example text in the Ashéninka, Pajonal language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-chz
facebook
2023-09-01T17:01:40Z
107
1
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T17:00:57Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chinantec, Ozumacín Text-to-Speech This repository contains the **Chinantec, Ozumacín (chz)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-chz") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-chz") text = "some example text in the Chinantec, Ozumacín language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-chf
facebook
2023-09-01T17:00:05Z
109
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T16:58:25Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Chontal, Tabasco Text-to-Speech This repository contains the **Chontal, Tabasco (chf)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-chf") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-chf") text = "some example text in the Chontal, Tabasco language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
facebook/mms-tts-mnf
facebook
2023-09-01T17:00:00Z
117
0
transformers
[ "transformers", "pytorch", "safetensors", "vits", "text-to-audio", "mms", "text-to-speech", "arxiv:2305.13516", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-to-speech
2023-09-01T16:58:15Z
--- license: cc-by-nc-4.0 tags: - mms - vits pipeline_tag: text-to-speech --- # Massively Multilingual Speech (MMS): Mundani Text-to-Speech This repository contains the **Mundani (mnf)** language text-to-speech (TTS) model checkpoint. This model is part of Facebook's [Massively Multilingual Speech](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. ## Model Details VITS (**V**ariational **I**nference with adversarial learning for end-to-end **T**ext-to-**S**peech) is an end-to-end speech synthesis model that predicts a speech waveform conditional on an input text sequence. It is a conditional variational autoencoder (VAE) comprised of a posterior encoder, decoder, and conditional prior. A set of spectrogram-based acoustic features are predicted by the flow-based module, which is formed of a Transformer-based text encoder and multiple coupling layers. The spectrogram is decoded using a stack of transposed convolutional layers, much in the same style as the HiFi-GAN vocoder. Motivated by the one-to-many nature of the TTS problem, where the same text input can be spoken in multiple ways, the model also includes a stochastic duration predictor, which allows the model to synthesise speech with different rhythms from the same input text. The model is trained end-to-end with a combination of losses derived from variational lower bound and adversarial training. To improve the expressiveness of the model, normalizing flows are applied to the conditional prior distribution. During inference, the text encodings are up-sampled based on the duration prediction module, and then mapped into the waveform using a cascade of the flow module and HiFi-GAN decoder. Due to the stochastic nature of the duration predictor, the model is non-deterministic, and thus requires a fixed seed to generate the same speech waveform. For the MMS project, a separate VITS checkpoint is trained on each langauge. ## Usage MMS-TTS is available in the 🤗 Transformers library from version 4.33 onwards. To use this checkpoint, first install the latest version of the library: ``` pip install --upgrade transformers accelerate ``` Then, run inference with the following code-snippet: ```python from transformers import VitsModel, AutoTokenizer import torch model = VitsModel.from_pretrained("facebook/mms-tts-mnf") tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-mnf") text = "some example text in the Mundani language" inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): output = model(**inputs).waveform ``` The resulting waveform can be saved as a `.wav` file: ```python import scipy scipy.io.wavfile.write("techno.wav", rate=model.config.sampling_rate, data=output) ``` Or displayed in a Jupyter Notebook / Google Colab: ```python from IPython.display import Audio Audio(output, rate=model.config.sampling_rate) ``` ## BibTex citation This model was developed by Vineel Pratap et al. from Meta AI. If you use the model, consider citing the MMS paper: ``` @article{pratap2023mms, title={Scaling Speech Technology to 1,000+ Languages}, author={Vineel Pratap and Andros Tjandra and Bowen Shi and Paden Tomasello and Arun Babu and Sayani Kundu and Ali Elkahky and Zhaoheng Ni and Apoorv Vyas and Maryam Fazel-Zarandi and Alexei Baevski and Yossi Adi and Xiaohui Zhang and Wei-Ning Hsu and Alexis Conneau and Michael Auli}, journal={arXiv}, year={2023} } ``` ## License The model is licensed as **CC-BY-NC 4.0**.
conghao/llama2-qlora-med-zh
conghao
2023-09-01T16:59:30Z
3
1
peft
[ "peft", "region:us" ]
null
2023-09-01T16:59:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0 - PEFT 0.4.0