modelId
stringlengths
5
139
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]date
2020-02-15 11:33:14
2025-07-29 00:47:35
downloads
int64
0
223M
likes
int64
0
11.7k
library_name
stringclasses
534 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
55 values
createdAt
timestamp[us, tz=UTC]date
2022-03-02 23:29:04
2025-07-29 00:46:31
card
stringlengths
11
1.01M
gmongaras/Wizard_7B_Reddit_Political_2019_8bit
gmongaras
2023-09-11T18:38:54Z
9
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "license:openrail", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "8-bit", "region:us" ]
text-generation
2023-09-10T15:26:44Z
--- license: openrail --- Model from: https://huggingface.co/TheBloke/wizardLM-7B-HF/tree/main Trained on: https://huggingface.co/datasets/gmongaras/reddit_political_2019 For about 6000 steps with a batch sise of 8, 2 accumulation steps, and using LoRA adapters on all layers.
Eitanli/distilbert-qa-checkpoint-v5
Eitanli
2023-09-11T18:19:46Z
117
0
transformers
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "endpoints_compatible", "region:us" ]
question-answering
2023-08-13T13:25:06Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: distilbert-base-uncased model-index: - name: distilbert-qa-checkpoint-v5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-qa-checkpoint-v5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3912 | 1.0 | 2059 | 0.3897 | | 0.3313 | 2.0 | 4118 | 0.3449 | | 0.2679 | 3.0 | 6177 | 0.3508 | | 0.2323 | 4.0 | 8236 | 0.3489 | | 0.2047 | 5.0 | 10295 | 0.3578 | | 0.1913 | 6.0 | 12354 | 0.4529 | | 0.1821 | 7.0 | 14413 | 0.4904 | ### Framework versions - Transformers 4.27.2 - Pytorch 1.13.1+cu117 - Datasets 2.11.0 - Tokenizers 0.13.3
adeep028/bert-fine-tuned-cola
adeep028
2023-09-11T18:10:54Z
103
0
transformers
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-11T17:44:14Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation model-index: - name: bert-fine-tuned-cola results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - name: Matthews Correlation type: matthews_correlation value: 0.6118771035334829 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-fine-tuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7565 - Matthews Correlation: 0.6119 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4374 | 1.0 | 1069 | 0.4163 | 0.5558 | | 0.3114 | 2.0 | 2138 | 0.6548 | 0.6006 | | 0.1875 | 3.0 | 3207 | 0.7565 | 0.6119 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
rmpmalheiro/taxi-v3
rmpmalheiro
2023-09-11T18:03:09Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T18:03:07Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.50 +/- 2.70 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="rmpmalheiro/taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
reza93v/distilbert-base-uncased-finetuned-imdb
reza93v
2023-09-11T17:58:02Z
122
0
transformers
[ "transformers", "pytorch", "distilbert", "fill-mask", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-11T17:06:04Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.3546 | 1.0 | 13 | 2.2305 | | 2.3243 | 2.0 | 26 | 2.2225 | | 2.243 | 3.0 | 39 | 2.1640 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
rmpmalheiro/q-FrozenLake-v1-4x4-noSlippery
rmpmalheiro
2023-09-11T17:56:38Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T17:56:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="rmpmalheiro/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
jjmcarrascosa/vit_receipts_classifier
jjmcarrascosa
2023-09-11T17:47:19Z
236
2
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-08-26T18:57:00Z
--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - f1 base_model: google/vit-base-patch16-224-in21k model-index: - name: vit_receipts_classifier results: [] --- # vit_receipts_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cord, rvl-cdip, visual-genome and an external receipt dataset to carry out Binary Classification (`ticket` vs `no_ticket`). Ticket here is used as a synonym to "receipt". It achieves the following results on the evaluation set, which contain pictures from the above datasets in scanned, photography or mobile picture formats (color and grayscale): - Loss: 0.0116 - F1: 0.9991 ## Model description This model is a Binary Classifier finetuned version of ViT, to predict if an input image is a picture / scan of receipts(s) o something else. ## Intended uses & limitations Use this model to classify your images into tickets or not tickers. WIth the tickets group, you can use Multimodal Information Extraction, as Visual Named Entity Recognition, to extract the ticket items, amounts, total, etc. Check the Cord dataset for more information. ## Training and evaluation data This model used 2 datasets as positive class (`ticket`): - `cord` - `https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/` For the negative class (`no_ticket`), the following datasets were used: - A subset of `RVL-CDIP` - A subset of `visual-genome` ## Training procedure Datasets were loaded with different distributions of data for positive and negative classes. Then, normalization and resizing is carried out to adapt it to ViT expected input. Different runs were carried out changing the data distribution and the hyperparameters to maximize F1. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0026 | 0.28 | 500 | 0.0187 | 0.9982 | | 0.0186 | 0.56 | 1000 | 0.0116 | 0.9991 | | 0.0006 | 0.84 | 1500 | 0.0044 | 0.9997 | ### Framework versions - Transformers 4.21.2 - Pytorch 1.11.0+cu102 - Datasets 2.4.0 - Tokenizers 0.12.1
emre/switch-base-8-finetuned-samsum
emre
2023-09-11T17:45:14Z
26
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "switch_transformers", "text2text-generation", "generated_from_trainer", "dataset:samsum", "base_model:google/switch-base-8", "base_model:finetune:google/switch-base-8", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-01-18T16:50:02Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - samsum metrics: - rouge base_model: google/switch-base-8 model-index: - name: switch-base-8-finetuned-samsum results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: samsum type: samsum config: samsum split: train args: samsum metrics: - type: rouge value: 46.5651 name: Rouge1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # switch-base-8-finetuned-samsum This model is a fine-tuned version of [google/switch-base-8](https://huggingface.co/google/switch-base-8) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4606 - Rouge1: 46.5651 - Rouge2: 23.2378 - Rougel: 39.4484 - Rougelsum: 43.1011 - Gen Len: 17.0183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.8829 | 1.0 | 3683 | 1.5154 | 46.3805 | 23.0982 | 39.0612 | 43.0142 | 17.6296 | | 1.6207 | 2.0 | 7366 | 1.4578 | 47.7434 | 24.9471 | 40.6481 | 44.351 | 17.2066 | | 1.442 | 3.0 | 11049 | 1.4360 | 47.6903 | 24.9954 | 40.713 | 44.3487 | 17.0501 | | 1.3103 | 4.0 | 14732 | 1.4396 | 48.4517 | 25.7725 | 41.5212 | 45.1211 | 16.9071 | | 1.2393 | 5.0 | 18415 | 1.4445 | 48.4002 | 25.8727 | 41.5361 | 45.0467 | 16.9804 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
gauravvaid/codeparrot-ds
gauravvaid
2023-09-11T17:34:51Z
131
0
transformers
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "generated_from_trainer", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-06T12:27:42Z
--- license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: codeparrot-ds results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # codeparrot-ds This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
liadraz/CleanRl-PPO-U8-CartPole
liadraz
2023-09-11T17:31:04Z
0
0
null
[ "tensorboard", "CartPole-v1", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T17:30:51Z
--- tags: - CartPole-v1 - ppo - deep-reinforcement-learning - reinforcement-learning - custom-implementation - deep-rl-course model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 439.90 +/- 100.52 name: mean_reward verified: false --- # PPO Agent Playing CartPole-v1 This is a trained model of a PPO agent playing CartPole-v1. # Hyperparameters ```python {'exp_name': 'PPOCleanRL' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'CartPole-v1' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'ThomasSimonini/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
tommyadams/finetuned_falconb6
tommyadams
2023-09-11T17:28:55Z
0
0
null
[ "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-step-50K-105b", "base_model:finetune:TinyLlama/TinyLlama-1.1B-step-50K-105b", "license:apache-2.0", "region:us" ]
null
2023-09-10T22:00:12Z
--- license: apache-2.0 base_model: PY007/TinyLlama-1.1B-step-50K-105b tags: - generated_from_trainer model-index: - name: finetuned_falconb6 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned_falconb6 This model is a fine-tuned version of [PY007/TinyLlama-1.1B-step-50K-105b](https://huggingface.co/PY007/TinyLlama-1.1B-step-50K-105b) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - training_steps: 3 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3
Koltunov-Matthew/my_bart_model
Koltunov-Matthew
2023-09-11T17:23:05Z
3
0
transformers
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-08T07:43:47Z
--- license: mit base_model: facebook/bart-large-cnn tags: - generated_from_trainer metrics: - rouge model-index: - name: my_bart_model results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_bart_model This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8325 - Rouge1: 0.3004 - Rouge2: 0.1539 - Rougel: 0.244 - Rougelsum: 0.2441 - Gen Len: 59.9356 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 1.6223 | 1.0 | 27000 | 1.8325 | 0.3004 | 0.1539 | 0.244 | 0.2441 | 59.9356 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3
bigmorning/whisper_4_with_init_sun_syl_wd_0_lr_en2_0010
bigmorning
2023-09-11T17:15:58Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T17:15:49Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0_lr_en2_0010 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0_lr_en2_0010 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.8685 - Train Accuracy: 0.0113 - Train Wermet: 0.9890 - Train Wermet Syl: 0.9897 - Validation Loss: 4.1857 - Validation Accuracy: 0.0113 - Validation Wermet: 0.9851 - Validation Wermet Syl: 0.9843 - Epoch: 9 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.01, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 39.6121 | 0.0057 | 33.2649 | 25.5768 | 4.5339 | 0.0113 | 0.9851 | 0.9843 | 0 | | 5.3698 | 0.0107 | 12.0116 | 9.0545 | 4.3408 | 0.0112 | 0.9919 | 0.9915 | 1 | | 5.1979 | 0.0109 | 9.4008 | 7.1909 | 4.2108 | 0.0113 | 0.9851 | 0.9843 | 2 | | 5.0669 | 0.0110 | 7.0382 | 5.3339 | 4.1662 | 0.0113 | 0.9851 | 0.9843 | 3 | | 4.9546 | 0.0111 | 4.8506 | 3.7351 | 4.3022 | 0.0112 | 0.9870 | 0.9854 | 4 | | 4.9453 | 0.0111 | 3.9228 | 3.1750 | 4.1194 | 0.0113 | 0.9851 | 0.9843 | 5 | | 4.9123 | 0.0112 | 2.2402 | 1.9643 | 4.1865 | 0.0112 | 1.0000 | 1.0000 | 6 | | 4.8957 | 0.0112 | 1.7673 | 1.5892 | 4.1150 | 0.0112 | 1.0000 | 0.9999 | 7 | | 4.8959 | 0.0112 | 2.2166 | 1.9601 | 4.1185 | 0.0113 | 0.9851 | 0.9843 | 8 | | 4.8685 | 0.0113 | 0.9890 | 0.9897 | 4.1857 | 0.0113 | 0.9851 | 0.9843 | 9 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
esrcse/llama2-qlora-finetunined-french
esrcse
2023-09-11T17:05:56Z
13
0
peft
[ "peft", "region:us" ]
null
2023-09-11T17:05:51Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
hanlforever/xlm-roberta-base-finetuned-panx-all
hanlforever
2023-09-11T17:03:41Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T16:05:39Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1416 - F1: 0.8615 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2723 | 1.0 | 525 | 0.1684 | 0.8139 | | 0.125 | 2.0 | 1050 | 0.1379 | 0.8538 | | 0.0783 | 3.0 | 1575 | 0.1416 | 0.8615 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.11.0
bigmorning/whisper_4_with_init_sun_syl_wd_0_lr_en2_0005
bigmorning
2023-09-11T17:00:59Z
60
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T17:00:51Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0_lr_en2_0005 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0_lr_en2_0005 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.9546 - Train Accuracy: 0.0111 - Train Wermet: 4.8506 - Train Wermet Syl: 3.7351 - Validation Loss: 4.3022 - Validation Accuracy: 0.0112 - Validation Wermet: 0.9870 - Validation Wermet Syl: 0.9854 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.01, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 39.6121 | 0.0057 | 33.2649 | 25.5768 | 4.5339 | 0.0113 | 0.9851 | 0.9843 | 0 | | 5.3698 | 0.0107 | 12.0116 | 9.0545 | 4.3408 | 0.0112 | 0.9919 | 0.9915 | 1 | | 5.1979 | 0.0109 | 9.4008 | 7.1909 | 4.2108 | 0.0113 | 0.9851 | 0.9843 | 2 | | 5.0669 | 0.0110 | 7.0382 | 5.3339 | 4.1662 | 0.0113 | 0.9851 | 0.9843 | 3 | | 4.9546 | 0.0111 | 4.8506 | 3.7351 | 4.3022 | 0.0112 | 0.9870 | 0.9854 | 4 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
turing-motors/heron-chat-git-ja-stablelm-base-7b-v0
turing-motors
2023-09-11T16:55:23Z
31
2
transformers
[ "transformers", "pytorch", "git_japanese_stablelm_alpha", "text-generation", "heron", "vision", "image-captioning", "VQA", "image-to-text", "custom_code", "ja", "arxiv:2205.14100", "license:cc-by-nc-4.0", "autotrain_compatible", "region:us" ]
image-to-text
2023-09-06T09:19:59Z
--- language: - ja tags: - heron - vision - image-captioning - VQA pipeline_tag: image-to-text license: - cc-by-nc-4.0 inference: false --- # Heron GIT Japanese StableLM Base 7B ![heron](./heron_image.png) ## Model Details Heron GIT Japanese StableLM Base 7B is a vision-language model that can converse about input images.<br> This model was trained using [the heron library](https://github.com/turingmotors/heron). Please refer to the code for details. ## Usage Follow [the installation guide](https://github.com/turingmotors/heron/tree/dev-0.0.1#1-clone-this-repository). ```python import requests from PIL import Image import torch from transformers import AutoProcessor from heron.models.git_llm.git_japanese_stablelm_alpha import GitJapaneseStableLMAlphaForCausalLM device_id = 0 # prepare a pretrained model model = GitJapaneseStableLMAlphaForCausalLM.from_pretrained( 'turing-motors/heron-chat-git-ja-stablelm-base-7b-v0', torch_dtype=torch.float16 ) model.eval() model.to(f"cuda:{device_id}") # prepare a processor processor = AutoProcessor.from_pretrained('turing-motors/heron-chat-git-ja-stablelm-base-7b-v0') # prepare inputs url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw) text = f"##human: これは何の写真ですか?\n##gpt: " # do preprocessing inputs = processor( text, image, return_tensors="pt", truncation=True, ) inputs = {k: v.to(f"cuda:{device_id}") for k, v in inputs.items()} # set eos token eos_token_id_list = [ processor.tokenizer.pad_token_id, processor.tokenizer.eos_token_id, ] # do inference with torch.no_grad(): out = model.generate(**inputs, max_length=256, do_sample=False, temperature=0., eos_token_id=eos_token_id_list) # print result print(processor.tokenizer.batch_decode(out)[0]) ``` ## Model Details * **Developed by**: [Turing Inc.](https://www.turing-motors.com/) * **Adaptor type**: [GIT](https://arxiv.org/abs/2205.14100) * **Lamguage Model**: [Japanese StableLM Base Alpha](https://huggingface.co/stabilityai/japanese-stablelm-base-alpha-7b) * **Language(s)**: Japanese ### Training This model was initially trained with the Adaptor using STAIR Captions. In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome using LoRA. ### Training Dataset - [LLaVA-Instruct-150K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Instruct-150K-JA) - [Japanese STAIR Captions](http://captions.stair.center/) - [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa) ## Use and Limitations ### Intended Use This model is intended for use in chat-like applications and for research purposes. ### Limitations The model may produce inaccurate or false information, and its accuracy is not guaranteed. It is still in the research and development stage. ## How to cite ```bibtex @misc{GitJapaneseStableLM, url = {[https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v0](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v0)}, title = {Heron GIT Japanese StableLM Base 7B}, author = {Yuichi Inoue, Kotaro Tanahashi, and Yu Yamaguchi} } ``` ## Citations ```bibtex @misc{JapaneseInstructBLIPAlpha, url = {[https://huggingface.co/stabilityai/japanese-instructblip-alpha](https://huggingface.co/stabilityai/japanese-instructblip-alpha)}, title = {Japanese InstructBLIP Alpha}, author = {Shing, Makoto and Akiba, Takuya} } ``` --- license: cc-by-nc-4.0 ---
turing-motors/heron-chat-git-Llama-2-7b-v0
turing-motors
2023-09-11T16:53:31Z
24
0
transformers
[ "transformers", "pytorch", "git_llama", "text-generation", "heron", "vision", "image-captioning", "VQA", "image-to-text", "en", "arxiv:2205.14100", "arxiv:2307.09288", "license:cc-by-nc-4.0", "autotrain_compatible", "region:us" ]
image-to-text
2023-09-07T10:55:05Z
--- language: - en tags: - heron - vision - image-captioning - VQA pipeline_tag: image-to-text license: - cc-by-nc-4.0 inference: false --- # Heron GIT Llama 2 Fast 7B ![heron](./heron_image.png) ## Model Details Heron GIT Llama 2 7B is a vision-language model that can converse about input images.<br> This model was trained using [the heron library](https://github.com/turingmotors/heron). Please refer to the code for details. ## Usage Follow [the installation guide](https://github.com/turingmotors/heron/#1-clone-this-repository). ```python import requests from PIL import Image import torch from transformers import AutoProcessor from heron.models.git_llm.git_llama import GitLlamaConfig, GitLlamaForCausalLM device_id = 0 # prepare a pretrained model model = GitLlamaForCausalLM.from_pretrained( 'turing-motors/heron-chat-git-Llama-2-7b-v0', torch_dtype=torch.float16 ) model.eval() model.to(f"cuda:{device_id}") # prepare a processor processor = AutoProcessor.from_pretrained('turing-motors/heron-chat-git-Llama-2-7b-v0') # prepare inputs url = "https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg" image = Image.open(requests.get(url, stream=True).raw) text = f"##human: What is this picture?\n##gpt: " # do preprocessing inputs = processor( text, image, return_tensors="pt", truncation=True, ) inputs = {k: v.to(f"cuda:{device_id}") for k, v in inputs.items()} # set eos token eos_token_id_list = [ processor.tokenizer.pad_token_id, processor.tokenizer.eos_token_id, ] # do inference with torch.no_grad(): out = model.generate(**inputs, max_length=256, do_sample=False, temperature=0., eos_token_id=eos_token_id_list) # print result print(processor.tokenizer.batch_decode(out)[0]) ``` ## Model Details * **Developed by**: [Turing Inc.](https://www.turing-motors.com/) * **Adaptor type**: [GIT](https://arxiv.org/abs/2205.14100) * **Lamguage Model**: [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) * **Language(s)**: English ### Training This model was initially trained with the Adaptor using Coco Captions in M3IT. In the second phase, it was fine-tuned with M3IT. Finally, it was trained by instruction tuning with LLaVA-Instruct-150K. ### Training Dataset - [LLaVA-Instruct-150K](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K) - [M3IT](https://huggingface.co/datasets/MMInstruction/M3IT) ## Use and Limitations ### Intended Use This model is intended for use in chat-like applications and for research purposes. ### Limitations The model may produce inaccurate or false information, and its accuracy is not guaranteed. It is still in the research and development stage. ## How to cite ```bibtex @misc{GitLlama2, url = {[https://huggingface.co/turing-motors/heron-chat-git-Llama-2-7b-v0](https://huggingface.co/turing-motors/heron-chat-git-Llama-2-7b-v0)}, title = {Heron GIT Llama 2 7B}, author = {Yuichi Inoue, Kotaro Tanahashi, and Yu Yamaguchi} } ``` ## Citations ```bibtex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov and Soumya Batra and Prajjwal Bhargava and Shruti Bhosale and Dan Bikel and Lukas Blecher and Cristian Canton Ferrer and Moya Chen and Guillem Cucurull and David Esiobu and Jude Fernandes and Jeremy Fu and Wenyin Fu and Brian Fuller and Cynthia Gao and Vedanuj Goswami and Naman Goyal and Anthony Hartshorn and Saghar Hosseini and Rui Hou and Hakan Inan and Marcin Kardas and Viktor Kerkez and Madian Khabsa and Isabel Kloumann and Artem Korenev and Punit Singh Koura and Marie-Anne Lachaux and Thibaut Lavril and Jenya Lee and Diana Liskovich and Yinghai Lu and Yuning Mao and Xavier Martinet and Todor Mihaylov and Pushkar Mishra and Igor Molybog and Yixin Nie and Andrew Poulton and Jeremy Reizenstein and Rashi Rungta and Kalyan Saladi and Alan Schelten and Ruan Silva and Eric Michael Smith and Ranjan Subramanian and Xiaoqing Ellen Tan and Binh Tang and Ross Taylor and Adina Williams and Jian Xiang Kuan and Puxin Xu and Zheng Yan and Iliyan Zarov and Yuchen Zhang and Angela Fan and Melanie Kambadur and Sharan Narang and Aurelien Rodriguez and Robert Stojnic and Sergey Edunov and Thomas Scialom}, year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` --- license: cc-by-nc-4.0 ---
thezeivier/test_grietas_100
thezeivier
2023-09-11T16:50:20Z
191
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T16:26:21Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: test_grietas_100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_grietas_100 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0018 - Accuracy: 0.5833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 80 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 320 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.1055 | 0.3 | | No log | 2.0 | 3 | 1.0141 | 0.6333 | | No log | 3.0 | 5 | 1.0018 | 0.5833 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Prot10/convnextv2-base-1k-224-for-pre_evaluation
Prot10
2023-09-11T16:38:01Z
7
0
transformers
[ "transformers", "pytorch", "convnextv2", "image-classification", "generated_from_trainer", "base_model:facebook/convnextv2-base-1k-224", "base_model:finetune:facebook/convnextv2-base-1k-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-30T12:27:48Z
--- license: apache-2.0 base_model: facebook/convnextv2-base-1k-224 tags: - generated_from_trainer metrics: - accuracy model-index: - name: convnextv2-base-1k-224-for-pre_evaluation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnextv2-base-1k-224-for-pre_evaluation This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3599 - Accuracy: 0.4190 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6 | 1.0 | 16 | 1.5316 | 0.2961 | | 1.5084 | 2.0 | 32 | 1.5061 | 0.2849 | | 1.5134 | 3.0 | 48 | 1.4968 | 0.3240 | | 1.4663 | 4.0 | 64 | 1.4607 | 0.3352 | | 1.4046 | 5.0 | 80 | 1.4509 | 0.3268 | | 1.4085 | 6.0 | 96 | 1.4423 | 0.3883 | | 1.3443 | 7.0 | 112 | 1.4005 | 0.4022 | | 1.3025 | 8.0 | 128 | 1.3599 | 0.4190 | | 1.2627 | 9.0 | 144 | 1.3638 | 0.3911 | | 1.2099 | 10.0 | 160 | 1.4058 | 0.3492 | | 1.2086 | 11.0 | 176 | 1.4431 | 0.3408 | | 1.1393 | 12.0 | 192 | 1.4143 | 0.3492 | | 1.1039 | 13.0 | 208 | 1.4305 | 0.3883 | | 1.0551 | 14.0 | 224 | 1.5203 | 0.3520 | | 1.0368 | 15.0 | 240 | 1.5117 | 0.3324 | | 0.9753 | 16.0 | 256 | 1.4545 | 0.3771 | | 0.938 | 17.0 | 272 | 1.5396 | 0.3352 | | 0.899 | 18.0 | 288 | 1.5770 | 0.3408 | | 0.8629 | 19.0 | 304 | 1.7106 | 0.3128 | | 0.8674 | 20.0 | 320 | 1.5864 | 0.3352 | | 0.7789 | 21.0 | 336 | 1.6129 | 0.3408 | | 0.7426 | 22.0 | 352 | 1.6353 | 0.3603 | | 0.7677 | 23.0 | 368 | 1.6793 | 0.3464 | | 0.7172 | 24.0 | 384 | 1.6759 | 0.3575 | | 0.6809 | 25.0 | 400 | 1.7013 | 0.3659 | | 0.6619 | 26.0 | 416 | 1.7108 | 0.3631 | | 0.6656 | 27.0 | 432 | 1.7327 | 0.3715 | | 0.6258 | 28.0 | 448 | 1.7378 | 0.3547 | | 0.6173 | 29.0 | 464 | 1.7461 | 0.3603 | | 0.6214 | 30.0 | 480 | 1.7475 | 0.3520 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
iven5880/distilbert-base-uncased-finetuned-imdb
iven5880
2023-09-11T16:34:41Z
108
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "fill-mask", "generated_from_trainer", "dataset:imdb", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2023-09-08T01:39:44Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - imdb base_model: distilbert-base-uncased model-index: - name: distilbert-base-uncased-finetuned-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-imdb This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 2.4442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.6985 | 1.0 | 157 | 2.5612 | | 2.562 | 2.0 | 314 | 2.4226 | | 2.5316 | 3.0 | 471 | 2.4218 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.14.5 - Tokenizers 0.13.2
MartinFLL/ai-voices
MartinFLL
2023-09-11T16:29:24Z
0
2
null
[ "license:other", "region:us" ]
null
2023-07-01T01:27:36Z
--- license: other --- This repository contains all the AI voices I've trained using RVC v2. All were trained using my GeForce NVIDIA RTX 3060 Ti. If you use any of these please credit me, although it's not necessary. I would love to see what you make with these models. You can find more info on these models (and more) on the AI HUB discord server. https://discord.gg/aihub
gmurro/bart-large-finetuned-filtered-spotify-podcast-summ
gmurro
2023-09-11T16:26:07Z
687
11
transformers
[ "transformers", "tf", "bart", "text2text-generation", "generated_from_keras_callback", "arxiv:2004.04270", "base_model:facebook/bart-large-cnn", "base_model:finetune:facebook/bart-large-cnn", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-06-16T16:04:16Z
--- license: mit tags: - generated_from_keras_callback base_model: facebook/bart-large-cnn model-index: - name: bart-large-finetuned-filtered-spotify-podcast-summ results: [] --- # bart-large-finetuned-filtered-spotify-podcast-summ This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on on the [Spotify Podcast Dataset](https://arxiv.org/abs/2004.04270). Take a look to the [github repository](https://github.com/TheOnesThatWereAbroad/PodcastSummarization) of this project. It achieves the following results during training: - Train Loss: 2.2967 - Validation Loss: 2.8316 - Epoch: 2 ## Intended uses & limitations This model is intended to be used for automatic podcast summarisation. Given the podcast transcript in input, the objective is to provide a short text summary that a user might read when deciding whether to listen to a podcast. The summary should accurately convey the content of the podcast, be human-readable, and be short enough to be quickly read on a smartphone screen. ## Training and evaluation data In our solution, an extractive module is developed to select salient chunks from the transcript, which serve as the input to an abstractive summarizer. An extensive pre-processing on the creator-provided descriptions is performed selecting a subset of the corpus that is suitable for the training supervised model. We split the filtered dataset into train/dev sets of 69,336/7,705 episodes. The test set consists of 1,027 episodes. Only 1025 have been used because two of them did not contain an episode description. ## How to use The model can be used for the summarization as follows: ```python from transformers import pipeline summarizer = pipeline("summarization", model="gmurro/bart-large-finetuned-filtered-spotify-podcast-summ", tokenizer="gmurro/bart-large-finetuned-filtered-spotify-podcast-summ") summary = summarizer(podcast_transcript, min_length=39, max_length=250) print(summary[0]['summary_text']) ``` ### Training hyperparameters The following hyperparameters were used during training: - ```python optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} ``` - ```python training_precision: float32 ``` ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0440 | 2.8733 | 0 | | 2.6085 | 2.8549 | 1 | | 2.2967 | 2.8316 | 2 | ### Framework versions - Transformers 4.19.4 - TensorFlow 2.9.1 - Datasets 2.3.1 - Tokenizers 0.12.1 ## Authors | Name | Surname | Email | Username | | :-------: | :-------: | :------------------------------------: | :---------------------------------------------------: | | Giuseppe | Boezio | `[email protected]` | [_giuseppeboezio_](https://github.com/giuseppeboezio) | | Simone | Montali | `[email protected]` | [_montali_](https://github.com/montali) | | Giuseppe | Murro | `[email protected]` | [_gmurro_](https://github.com/gmurro) |
ldos/text_shortening_model_v31
ldos
2023-09-11T16:05:54Z
51
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T15:08:02Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v31 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v31 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7416 - Rouge1: 0.4961 - Rouge2: 0.2712 - Rougel: 0.4388 - Rougelsum: 0.4386 - Bert precision: 0.8749 - Bert recall: 0.8711 - Average word count: 8.5135 - Max word count: 16 - Min word count: 3 - Average token count: 13.1592 - % shortened texts with length > 12: 10.2102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 1.1978 | 1.0 | 145 | 1.5250 | 0.4953 | 0.2842 | 0.4528 | 0.4524 | 0.8806 | 0.8681 | 7.8919 | 18 | 3 | 12.4234 | 4.2042 | | 1.0092 | 2.0 | 290 | 1.4421 | 0.5257 | 0.3053 | 0.4698 | 0.4689 | 0.875 | 0.8809 | 9.6006 | 18 | 4 | 14.3574 | 19.2192 | | 0.8932 | 3.0 | 435 | 1.4060 | 0.5266 | 0.3045 | 0.4728 | 0.472 | 0.8766 | 0.8776 | 9.0841 | 18 | 4 | 13.6366 | 14.7147 | | 0.79 | 4.0 | 580 | 1.4022 | 0.5329 | 0.3136 | 0.4714 | 0.4714 | 0.8802 | 0.8797 | 8.952 | 16 | 4 | 13.6036 | 12.9129 | | 0.7506 | 5.0 | 725 | 1.4514 | 0.5145 | 0.2935 | 0.4485 | 0.4485 | 0.8745 | 0.8726 | 8.97 | 18 | 4 | 13.6096 | 12.012 | | 0.6981 | 6.0 | 870 | 1.4602 | 0.5146 | 0.2914 | 0.4566 | 0.4559 | 0.8778 | 0.8762 | 8.958 | 18 | 3 | 13.5195 | 15.3153 | | 0.6426 | 7.0 | 1015 | 1.4745 | 0.5196 | 0.2973 | 0.4596 | 0.4593 | 0.8759 | 0.8788 | 9.1802 | 16 | 4 | 13.9159 | 14.1141 | | 0.6251 | 8.0 | 1160 | 1.5026 | 0.5217 | 0.2965 | 0.461 | 0.4611 | 0.8802 | 0.8775 | 8.8198 | 16 | 4 | 13.3393 | 12.012 | | 0.5901 | 9.0 | 1305 | 1.5890 | 0.5156 | 0.2967 | 0.4606 | 0.4609 | 0.8773 | 0.876 | 8.7718 | 17 | 3 | 13.4655 | 9.6096 | | 0.5544 | 10.0 | 1450 | 1.6294 | 0.5172 | 0.287 | 0.4562 | 0.4559 | 0.8779 | 0.876 | 8.7688 | 18 | 4 | 13.5195 | 11.7117 | | 0.5354 | 11.0 | 1595 | 1.6805 | 0.5169 | 0.2871 | 0.457 | 0.4571 | 0.8768 | 0.8774 | 8.994 | 17 | 4 | 13.6486 | 14.1141 | | 0.5103 | 12.0 | 1740 | 1.7334 | 0.5121 | 0.2824 | 0.4556 | 0.455 | 0.8785 | 0.8745 | 8.5465 | 16 | 3 | 13.1021 | 8.1081 | | 0.4796 | 13.0 | 1885 | 1.7767 | 0.499 | 0.2763 | 0.442 | 0.4418 | 0.8754 | 0.8739 | 8.6396 | 17 | 4 | 13.3183 | 11.4114 | | 0.4825 | 14.0 | 2030 | 1.8319 | 0.5114 | 0.2849 | 0.4497 | 0.4501 | 0.8746 | 0.8758 | 8.994 | 17 | 4 | 13.6667 | 12.9129 | | 0.4572 | 15.0 | 2175 | 1.8613 | 0.5129 | 0.2884 | 0.4546 | 0.4549 | 0.8785 | 0.8757 | 8.6877 | 17 | 3 | 13.3784 | 10.5105 | | 0.4489 | 16.0 | 2320 | 1.8790 | 0.5144 | 0.2829 | 0.4533 | 0.4536 | 0.8777 | 0.8754 | 8.8078 | 16 | 3 | 13.4955 | 13.2132 | | 0.4211 | 17.0 | 2465 | 1.9604 | 0.4936 | 0.2641 | 0.4322 | 0.4326 | 0.8735 | 0.8696 | 8.4985 | 17 | 3 | 13.1892 | 9.009 | | 0.4246 | 18.0 | 2610 | 2.0639 | 0.4951 | 0.2634 | 0.4331 | 0.4334 | 0.8721 | 0.8703 | 8.7538 | 16 | 4 | 13.3453 | 12.6126 | | 0.4063 | 19.0 | 2755 | 2.0587 | 0.499 | 0.2685 | 0.4378 | 0.4383 | 0.8741 | 0.8707 | 8.5916 | 16 | 3 | 13.3003 | 9.9099 | | 0.3912 | 20.0 | 2900 | 2.1089 | 0.5068 | 0.2727 | 0.4471 | 0.4469 | 0.8764 | 0.8744 | 8.7538 | 18 | 3 | 13.4625 | 11.1111 | | 0.3855 | 21.0 | 3045 | 2.1048 | 0.5022 | 0.2704 | 0.4473 | 0.4478 | 0.875 | 0.8728 | 8.6847 | 16 | 4 | 13.3483 | 9.3093 | | 0.3808 | 22.0 | 3190 | 2.1804 | 0.4977 | 0.2722 | 0.4414 | 0.4412 | 0.875 | 0.8711 | 8.5315 | 17 | 4 | 13.0631 | 10.8108 | | 0.3851 | 23.0 | 3335 | 2.1740 | 0.4993 | 0.2696 | 0.4442 | 0.4443 | 0.8742 | 0.8719 | 8.5676 | 15 | 3 | 13.2252 | 9.009 | | 0.3741 | 24.0 | 3480 | 2.1872 | 0.4921 | 0.2683 | 0.4365 | 0.4369 | 0.8728 | 0.8692 | 8.5195 | 17 | 3 | 13.2192 | 8.4084 | | 0.3604 | 25.0 | 3625 | 2.2617 | 0.4988 | 0.2681 | 0.4421 | 0.4426 | 0.8747 | 0.8705 | 8.5255 | 17 | 3 | 13.2492 | 8.1081 | | 0.3676 | 26.0 | 3770 | 2.2561 | 0.4931 | 0.2603 | 0.4328 | 0.4331 | 0.874 | 0.8711 | 8.6276 | 15 | 3 | 13.3363 | 11.7117 | | 0.3799 | 27.0 | 3915 | 2.2404 | 0.4912 | 0.2652 | 0.4329 | 0.433 | 0.8729 | 0.8702 | 8.6517 | 17 | 3 | 13.4414 | 8.1081 | | 0.3617 | 28.0 | 4060 | 2.2728 | 0.4983 | 0.2704 | 0.4424 | 0.4427 | 0.8756 | 0.8734 | 8.7568 | 17 | 3 | 13.5225 | 11.4114 | | 0.3588 | 29.0 | 4205 | 2.2695 | 0.4904 | 0.2601 | 0.4331 | 0.4328 | 0.8743 | 0.87 | 8.4775 | 18 | 3 | 13.1592 | 9.009 | | 0.3567 | 30.0 | 4350 | 2.3006 | 0.4993 | 0.2693 | 0.4419 | 0.4417 | 0.8747 | 0.8737 | 8.8529 | 17 | 3 | 13.5976 | 12.012 | | 0.3573 | 31.0 | 4495 | 2.3257 | 0.4979 | 0.2669 | 0.4378 | 0.4379 | 0.8743 | 0.8735 | 8.9069 | 18 | 3 | 13.6697 | 12.9129 | | 0.3471 | 32.0 | 4640 | 2.3513 | 0.4989 | 0.2723 | 0.441 | 0.4405 | 0.8758 | 0.8728 | 8.6246 | 17 | 3 | 13.3063 | 10.8108 | | 0.3591 | 33.0 | 4785 | 2.3467 | 0.4972 | 0.2751 | 0.4415 | 0.4413 | 0.8742 | 0.8727 | 8.8078 | 17 | 3 | 13.5616 | 10.5105 | | 0.3401 | 34.0 | 4930 | 2.4229 | 0.4854 | 0.2661 | 0.4313 | 0.4318 | 0.8737 | 0.8701 | 8.5826 | 17 | 3 | 13.2673 | 8.7087 | | 0.3476 | 35.0 | 5075 | 2.3804 | 0.4895 | 0.2602 | 0.4322 | 0.4326 | 0.874 | 0.8712 | 8.6577 | 17 | 3 | 13.2883 | 9.3093 | | 0.3473 | 36.0 | 5220 | 2.4242 | 0.4938 | 0.2689 | 0.438 | 0.4387 | 0.8745 | 0.8713 | 8.5976 | 17 | 3 | 13.2432 | 9.3093 | | 0.3415 | 37.0 | 5365 | 2.3836 | 0.4943 | 0.2617 | 0.4351 | 0.4351 | 0.8751 | 0.8711 | 8.4054 | 17 | 3 | 13.0571 | 8.1081 | | 0.3549 | 38.0 | 5510 | 2.4110 | 0.501 | 0.2696 | 0.4402 | 0.4406 | 0.8765 | 0.8713 | 8.2282 | 17 | 3 | 12.9459 | 6.6066 | | 0.3432 | 39.0 | 5655 | 2.4016 | 0.4999 | 0.27 | 0.4387 | 0.4393 | 0.8751 | 0.8712 | 8.5285 | 17 | 3 | 13.2402 | 8.4084 | | 0.3387 | 40.0 | 5800 | 2.4546 | 0.4986 | 0.2718 | 0.4417 | 0.4422 | 0.8742 | 0.871 | 8.5766 | 17 | 3 | 13.2312 | 9.3093 | | 0.3351 | 41.0 | 5945 | 2.4478 | 0.4981 | 0.2714 | 0.4367 | 0.4372 | 0.8756 | 0.8722 | 8.4775 | 15 | 3 | 13.1411 | 8.7087 | | 0.3366 | 42.0 | 6090 | 2.4447 | 0.4961 | 0.2703 | 0.4359 | 0.437 | 0.8746 | 0.8699 | 8.4745 | 16 | 3 | 13.1231 | 9.3093 | | 0.3324 | 43.0 | 6235 | 2.4974 | 0.4989 | 0.2809 | 0.4428 | 0.4432 | 0.8747 | 0.873 | 8.7147 | 16 | 3 | 13.4565 | 10.5105 | | 0.3306 | 44.0 | 6380 | 2.4938 | 0.4902 | 0.2657 | 0.4301 | 0.4306 | 0.8733 | 0.8692 | 8.4925 | 15 | 3 | 13.1622 | 8.4084 | | 0.3388 | 45.0 | 6525 | 2.5098 | 0.4788 | 0.2616 | 0.4246 | 0.4245 | 0.8734 | 0.8662 | 8.2162 | 16 | 3 | 12.7538 | 8.1081 | | 0.346 | 46.0 | 6670 | 2.4595 | 0.4987 | 0.2689 | 0.438 | 0.4389 | 0.875 | 0.8718 | 8.5676 | 16 | 3 | 13.2252 | 9.9099 | | 0.3401 | 47.0 | 6815 | 2.5098 | 0.4934 | 0.2653 | 0.4353 | 0.4356 | 0.8744 | 0.87 | 8.3934 | 15 | 3 | 13.048 | 8.1081 | | 0.3271 | 48.0 | 6960 | 2.5204 | 0.4951 | 0.2674 | 0.4373 | 0.4372 | 0.8749 | 0.8703 | 8.4625 | 16 | 3 | 13.024 | 9.009 | | 0.3267 | 49.0 | 7105 | 2.5291 | 0.4887 | 0.2605 | 0.428 | 0.4284 | 0.8728 | 0.8702 | 8.7057 | 18 | 3 | 13.3363 | 11.1111 | | 0.3382 | 50.0 | 7250 | 2.5422 | 0.4899 | 0.2666 | 0.4354 | 0.4356 | 0.8755 | 0.8707 | 8.4505 | 16 | 3 | 13.0931 | 8.1081 | | 0.3255 | 51.0 | 7395 | 2.5254 | 0.4921 | 0.2634 | 0.4346 | 0.4352 | 0.8738 | 0.8691 | 8.4535 | 16 | 3 | 13.027 | 10.2102 | | 0.32 | 52.0 | 7540 | 2.5460 | 0.4991 | 0.2727 | 0.4423 | 0.4421 | 0.8745 | 0.873 | 8.8919 | 16 | 3 | 13.5736 | 11.7117 | | 0.3154 | 53.0 | 7685 | 2.5446 | 0.5027 | 0.2712 | 0.4463 | 0.4463 | 0.8768 | 0.8734 | 8.6426 | 16 | 3 | 13.2973 | 11.1111 | | 0.3293 | 54.0 | 7830 | 2.5378 | 0.4928 | 0.2669 | 0.4352 | 0.4354 | 0.8736 | 0.869 | 8.5225 | 16 | 3 | 13.1291 | 10.2102 | | 0.3231 | 55.0 | 7975 | 2.5905 | 0.4949 | 0.2678 | 0.4378 | 0.4375 | 0.8743 | 0.8714 | 8.6426 | 15 | 3 | 13.3003 | 9.009 | | 0.3239 | 56.0 | 8120 | 2.5884 | 0.4969 | 0.2697 | 0.4399 | 0.4399 | 0.8737 | 0.8712 | 8.6697 | 16 | 3 | 13.3754 | 10.5105 | | 0.3174 | 57.0 | 8265 | 2.5500 | 0.4958 | 0.267 | 0.4389 | 0.4386 | 0.8739 | 0.8715 | 8.7327 | 16 | 4 | 13.3844 | 10.5105 | | 0.3209 | 58.0 | 8410 | 2.5804 | 0.4989 | 0.2706 | 0.442 | 0.4426 | 0.8751 | 0.8717 | 8.5766 | 15 | 3 | 13.1952 | 9.3093 | | 0.3297 | 59.0 | 8555 | 2.5909 | 0.494 | 0.2622 | 0.4343 | 0.4338 | 0.8733 | 0.8698 | 8.5976 | 16 | 3 | 13.1652 | 11.7117 | | 0.3226 | 60.0 | 8700 | 2.5857 | 0.4976 | 0.2639 | 0.4377 | 0.438 | 0.8753 | 0.8701 | 8.3904 | 17 | 3 | 12.973 | 7.8078 | | 0.3241 | 61.0 | 8845 | 2.5824 | 0.5011 | 0.2698 | 0.4428 | 0.4436 | 0.8764 | 0.8725 | 8.5345 | 16 | 3 | 13.1502 | 10.5105 | | 0.3201 | 62.0 | 8990 | 2.6156 | 0.4968 | 0.2673 | 0.4371 | 0.4372 | 0.8755 | 0.8702 | 8.3904 | 16 | 3 | 12.979 | 6.9069 | | 0.3234 | 63.0 | 9135 | 2.6374 | 0.4945 | 0.2677 | 0.4387 | 0.4388 | 0.8744 | 0.8693 | 8.4444 | 17 | 3 | 12.958 | 8.1081 | | 0.3246 | 64.0 | 9280 | 2.6338 | 0.4912 | 0.2672 | 0.4396 | 0.4402 | 0.8738 | 0.8698 | 8.4955 | 17 | 3 | 13.1021 | 8.1081 | | 0.3188 | 65.0 | 9425 | 2.6206 | 0.4999 | 0.2739 | 0.4443 | 0.4444 | 0.8763 | 0.8726 | 8.6006 | 17 | 3 | 13.2042 | 10.5105 | | 0.3186 | 66.0 | 9570 | 2.6499 | 0.5007 | 0.2771 | 0.4462 | 0.4463 | 0.8765 | 0.8729 | 8.5375 | 17 | 3 | 13.2162 | 9.3093 | | 0.319 | 67.0 | 9715 | 2.6488 | 0.5023 | 0.2715 | 0.4452 | 0.4454 | 0.8761 | 0.8736 | 8.6817 | 17 | 3 | 13.3904 | 10.2102 | | 0.3328 | 68.0 | 9860 | 2.6238 | 0.5002 | 0.2696 | 0.4408 | 0.4411 | 0.8755 | 0.8717 | 8.5075 | 17 | 3 | 13.1081 | 9.009 | | 0.3068 | 69.0 | 10005 | 2.6525 | 0.4971 | 0.2684 | 0.4391 | 0.4397 | 0.8755 | 0.8712 | 8.5045 | 17 | 3 | 13.1411 | 11.4114 | | 0.3192 | 70.0 | 10150 | 2.6494 | 0.4976 | 0.2722 | 0.4395 | 0.4405 | 0.8762 | 0.8714 | 8.3964 | 17 | 3 | 13.033 | 8.4084 | | 0.3232 | 71.0 | 10295 | 2.6642 | 0.4976 | 0.2717 | 0.4412 | 0.4411 | 0.8756 | 0.8717 | 8.5075 | 17 | 3 | 13.1622 | 9.9099 | | 0.3084 | 72.0 | 10440 | 2.6596 | 0.4931 | 0.2669 | 0.4352 | 0.4354 | 0.8734 | 0.8696 | 8.4865 | 17 | 3 | 13.1682 | 9.009 | | 0.313 | 73.0 | 10585 | 2.6551 | 0.4942 | 0.2699 | 0.4363 | 0.4368 | 0.8742 | 0.8699 | 8.4715 | 16 | 3 | 13.1201 | 9.6096 | | 0.3194 | 74.0 | 10730 | 2.6769 | 0.4962 | 0.2689 | 0.4388 | 0.4389 | 0.874 | 0.8715 | 8.5976 | 17 | 3 | 13.2763 | 10.5105 | | 0.3143 | 75.0 | 10875 | 2.6860 | 0.493 | 0.2652 | 0.4335 | 0.4343 | 0.8734 | 0.8702 | 8.5706 | 16 | 3 | 13.2462 | 9.3093 | | 0.3209 | 76.0 | 11020 | 2.6777 | 0.4893 | 0.2592 | 0.4325 | 0.4324 | 0.8726 | 0.869 | 8.5225 | 16 | 3 | 13.2012 | 9.3093 | | 0.3078 | 77.0 | 11165 | 2.6797 | 0.4877 | 0.261 | 0.4321 | 0.4323 | 0.8724 | 0.8693 | 8.5796 | 16 | 3 | 13.2402 | 9.6096 | | 0.3192 | 78.0 | 11310 | 2.6812 | 0.495 | 0.2677 | 0.4382 | 0.4383 | 0.8739 | 0.871 | 8.5706 | 18 | 3 | 13.2523 | 10.8108 | | 0.3147 | 79.0 | 11455 | 2.6777 | 0.495 | 0.2693 | 0.4371 | 0.4374 | 0.874 | 0.8707 | 8.5015 | 16 | 3 | 13.1471 | 9.3093 | | 0.3049 | 80.0 | 11600 | 2.6767 | 0.4917 | 0.2647 | 0.4344 | 0.4346 | 0.8723 | 0.8696 | 8.5616 | 16 | 3 | 13.2162 | 9.9099 | | 0.3191 | 81.0 | 11745 | 2.6932 | 0.4929 | 0.2683 | 0.4392 | 0.4392 | 0.8737 | 0.8707 | 8.5676 | 16 | 3 | 13.2342 | 9.6096 | | 0.3073 | 82.0 | 11890 | 2.7036 | 0.4959 | 0.2699 | 0.4389 | 0.4393 | 0.8738 | 0.8722 | 8.6547 | 17 | 3 | 13.3964 | 10.2102 | | 0.3129 | 83.0 | 12035 | 2.6941 | 0.4918 | 0.2657 | 0.4341 | 0.434 | 0.8742 | 0.8703 | 8.4985 | 16 | 3 | 13.1411 | 9.3093 | | 0.3308 | 84.0 | 12180 | 2.6968 | 0.4927 | 0.2659 | 0.4335 | 0.4337 | 0.8737 | 0.8698 | 8.4955 | 16 | 3 | 13.1652 | 9.3093 | | 0.3221 | 85.0 | 12325 | 2.6966 | 0.4903 | 0.2606 | 0.4306 | 0.4306 | 0.8726 | 0.8698 | 8.5766 | 16 | 3 | 13.2823 | 9.6096 | | 0.3085 | 86.0 | 12470 | 2.7123 | 0.4862 | 0.2608 | 0.4288 | 0.4286 | 0.8723 | 0.8688 | 8.4595 | 16 | 3 | 13.0901 | 8.7087 | | 0.3281 | 87.0 | 12615 | 2.7101 | 0.4918 | 0.2638 | 0.4322 | 0.4328 | 0.8731 | 0.8695 | 8.4775 | 16 | 3 | 13.1291 | 9.009 | | 0.3183 | 88.0 | 12760 | 2.7102 | 0.4902 | 0.2649 | 0.4294 | 0.4301 | 0.873 | 0.8688 | 8.4955 | 16 | 3 | 13.0901 | 9.6096 | | 0.3063 | 89.0 | 12905 | 2.7198 | 0.4934 | 0.2676 | 0.4338 | 0.4344 | 0.8734 | 0.8692 | 8.4565 | 17 | 3 | 13.0751 | 9.009 | | 0.3123 | 90.0 | 13050 | 2.7228 | 0.492 | 0.2676 | 0.4338 | 0.4343 | 0.8732 | 0.8692 | 8.4535 | 17 | 3 | 13.0931 | 9.3093 | | 0.3163 | 91.0 | 13195 | 2.7264 | 0.4953 | 0.2702 | 0.4357 | 0.4358 | 0.874 | 0.8693 | 8.4625 | 17 | 3 | 13.033 | 9.3093 | | 0.3085 | 92.0 | 13340 | 2.7236 | 0.4934 | 0.2702 | 0.4369 | 0.4369 | 0.8738 | 0.8695 | 8.4925 | 17 | 3 | 13.0721 | 9.9099 | | 0.3257 | 93.0 | 13485 | 2.7202 | 0.4953 | 0.2706 | 0.4368 | 0.4368 | 0.8746 | 0.8699 | 8.4595 | 16 | 3 | 13.0571 | 10.2102 | | 0.3092 | 94.0 | 13630 | 2.7261 | 0.4988 | 0.2748 | 0.4415 | 0.4419 | 0.8755 | 0.8708 | 8.4535 | 16 | 3 | 13.0751 | 9.9099 | | 0.3187 | 95.0 | 13775 | 2.7248 | 0.4968 | 0.2727 | 0.4383 | 0.4389 | 0.8751 | 0.8709 | 8.5075 | 16 | 3 | 13.1321 | 9.9099 | | 0.3155 | 96.0 | 13920 | 2.7335 | 0.4962 | 0.2686 | 0.4372 | 0.4373 | 0.8749 | 0.8712 | 8.5135 | 16 | 3 | 13.1772 | 10.2102 | | 0.3271 | 97.0 | 14065 | 2.7384 | 0.4971 | 0.2721 | 0.4396 | 0.4397 | 0.8749 | 0.8711 | 8.5135 | 16 | 3 | 13.1832 | 10.5105 | | 0.3096 | 98.0 | 14210 | 2.7400 | 0.496 | 0.2712 | 0.4386 | 0.4385 | 0.8748 | 0.8711 | 8.5225 | 16 | 3 | 13.1682 | 10.2102 | | 0.3116 | 99.0 | 14355 | 2.7411 | 0.4961 | 0.2712 | 0.4388 | 0.4386 | 0.8749 | 0.8711 | 8.5135 | 16 | 3 | 13.1592 | 10.2102 | | 0.3102 | 100.0 | 14500 | 2.7416 | 0.4961 | 0.2712 | 0.4388 | 0.4386 | 0.8749 | 0.8711 | 8.5135 | 16 | 3 | 13.1592 | 10.2102 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
michelecafagna26/vinvl-base-finetuned-hl-actions-image-captioning
michelecafagna26
2023-09-11T16:03:21Z
9
0
pytorch
[ "pytorch", "bert", "image-to-text", "en", "dataset:michelecafagna26/hl", "arxiv:2302.12189", "arxiv:2107.12604", "license:apache-2.0", "region:us" ]
image-to-text
2023-09-11T15:10:26Z
--- license: apache-2.0 datasets: - michelecafagna26/hl language: - en metrics: - sacrebleu - rouge - meteor - spice - cider library_name: pytorch tags: - pytorch - image-to-text --- # Model Card: VinVL for Captioning 🖼️ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) for **action description generation** downstream task. # Model fine-tuning 🏋️‍ The model has been finetuned for 10 epochs on the action captions of the [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) (available on 🤗 HUB: [michelecafagna26/hl](https://huggingface.co/datasets/michelecafagna26/hl)) # Test set metrics 📈 Obtained with beam size 5 and max length 20 | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE | |--------|--------|--------|--------|--------|---------|-------|-------| | 0.74 | 0.62 | 0.50 | 0.40 | 0.31 | 0.65 | 1.73 | 0.21 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction ⛏️ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4) - the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: 🚀 ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'He is sailing', 'conf': 0.7070220112800598]} ``` # Citations 🧾 HL Dataset paper: ```BibTeX @inproceedings{cafagna2023hl, title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and {R}ationales}, author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert}, booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)}, address = {Prague, Czech Republic}, year={2023} } ``` Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ```
michelecafagna26/vinvl-base-finetuned-hl-rationales-image-captioning
michelecafagna26
2023-09-11T16:03:05Z
8
0
pytorch
[ "pytorch", "bert", "image-to-text", "en", "dataset:michelecafagna26/hl", "arxiv:2302.12189", "arxiv:2107.12604", "license:apache-2.0", "region:us" ]
image-to-text
2023-09-11T15:10:48Z
--- license: apache-2.0 datasets: - michelecafagna26/hl language: - en metrics: - sacrebleu - rouge - meteor - spice - cider library_name: pytorch tags: - pytorch - image-to-text --- # Model Card: VinVL for Captioning 🖼️ [Microsoft's VinVL](https://github.com/microsoft/Oscar) base fine-tuned on [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) for **rationale description generation** downstream task. # Model fine-tuning 🏋️‍ The model has been finetuned for 10 epochs on the rationale captions of the [HL dataset](https://arxiv.org/abs/2302.12189?context=cs.CL) (available on 🤗 HUB: [michelecafagna26/hl](https://huggingface.co/datasets/michelecafagna26/hl)) # Test set metrics 📈 Obtained with beam size 5 and max length 20 | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | METEOR | ROUGE-L | CIDEr | SPICE | |--------|--------|--------|--------|--------|---------|-------|-------| | 0.55 | 0.38 | 0.23 | 0.15 | 0.17 | 0.44 | 0.44 | 0.10 | # Usage and Installation: More info about how to install and use this model can be found here: [michelecafagna26/VinVL ](https://github.com/michelecafagna26/VinVL) # Feature extraction ⛏️ This model has a separate Visualbackbone used to extract features. More info about: - the model: [michelecafagna26/vinvl_vg_x152c4](https://huggingface.co/michelecafagna26/vinvl_vg_x152c4) - the usage: [michelecafagna26/vinvl-visualbackbone](https://github.com/michelecafagna26/vinvl-visualbackbone) # Quick start: 🚀 ```python from transformers.pytorch_transformers import BertConfig, BertTokenizer from oscar.modeling.modeling_bert import BertForImageCaptioning from oscar.wrappers import OscarTensorizer ckpt = "path/to/the/checkpoint" device = "cuda" if torch.cuda.is_available() else "cpu" # original code config = BertConfig.from_pretrained(ckpt) tokenizer = BertTokenizer.from_pretrained(ckpt) model = BertForImageCaptioning.from_pretrained(ckpt, config=config).to(device) # This takes care of the preprocessing tensorizer = OscarTensorizer(tokenizer=tokenizer, device=device) # numpy-arrays with shape (1, num_boxes, feat_size) # feat_size is 2054 by default in VinVL visual_features = torch.from_numpy(feat_obj).to(device).unsqueeze(0) # labels are usually extracted by the features extractor labels = [['boat', 'boat', 'boat', 'bottom', 'bush', 'coat', 'deck', 'deck', 'deck', 'dock', 'hair', 'jacket']] inputs = tensorizer.encode(visual_features, labels=labels) outputs = model(**inputs) pred = tensorizer.decode(outputs) # the output looks like this: # pred = {0: [{'caption': 'he is on leisure', 'conf': 0.7070220112800598]} ``` # Citations 🧾 HL Dataset paper: ```BibTeX @inproceedings{cafagna2023hl, title={{HL} {D}ataset: {V}isually-grounded {D}escription of {S}cenes, {A}ctions and {R}ationales}, author={Cafagna, Michele and van Deemter, Kees and Gatt, Albert}, booktitle={Proceedings of the 16th International Natural Language Generation Conference (INLG'23)}, address = {Prague, Czech Republic}, year={2023} } ``` Please consider citing the original project and the VinVL paper ```BibTeX @misc{han2021image, title={Image Scene Graph Generation (SGG) Benchmark}, author={Xiaotian Han and Jianwei Yang and Houdong Hu and Lei Zhang and Jianfeng Gao and Pengchuan Zhang}, year={2021}, eprint={2107.12604}, archivePrefix={arXiv}, primaryClass={cs.CV} } @inproceedings{zhang2021vinvl, title={Vinvl: Revisiting visual representations in vision-language models}, author={Zhang, Pengchuan and Li, Xiujun and Hu, Xiaowei and Yang, Jianwei and Zhang, Lei and Wang, Lijuan and Choi, Yejin and Gao, Jianfeng}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={5579--5588}, year={2021} } ```
Atulit23/flan-t5-base-indian-constitution
Atulit23
2023-09-11T15:55:07Z
102
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T15:54:25Z
--- license: apache-2.0 base_model: google/flan-t5-base tags: - generated_from_trainer metrics: - rouge model-index: - name: flan-t5-base-indian-constitution results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flan-t5-base-indian-constitution This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0008 - Rouge1: 29.7093 - Rouge2: 28.4336 - Rougel: 29.6229 - Rougelsum: 29.5617 - Gen Len: 18.9651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | No log | 1.0 | 344 | 0.0009 | 29.7093 | 28.4336 | 29.6229 | 29.5617 | 18.9651 | | 0.0021 | 2.0 | 688 | 0.0008 | 29.7093 | 28.4336 | 29.6229 | 29.5617 | 18.9651 | | 0.0013 | 3.0 | 1032 | 0.0008 | 29.7093 | 28.4336 | 29.6229 | 29.5617 | 18.9651 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
emre/detr-resnet-50_finetuned_cppe5
emre
2023-09-11T15:52:00Z
198
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "dataset:cppe-5", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-01-13T22:04:08Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - cppe-5 base_model: facebook/detr-resnet-50 model-index: - name: detr-resnet-50_finetuned_cppe5 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_finetuned_cppe5 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the cppe-5 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results Step Training Loss 300 2.162200 600 2.011000 1200 1.779500 ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2
geralt/MechDistilGPT2
geralt
2023-09-11T15:49:22Z
137
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "Causal Language modeling", "CLM", "arxiv:2105.09680", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - Causal Language modeling - text-generation - CLM model_index: - name: MechDistilGPT2 results: - task: name: Causal Language modeling type: Causal Language modeling --- # MechDistilGPT2 ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Environmental Impact](#environmental-impact) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. - **Developed by:** [Ashwin](https://huggingface.co/geralt) - **Model Type:** Causal Language modeling - **Language(s):** English - **License:** [More Information Needed] - **Parent Model:** See the [DistilGPT2model](https://huggingface.co/distilgpt2) for more information about the Distilled-GPT2 base model. - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2105.09680) - [GitHub Repo](https://github.com/huggingface/notebooks/blob/master/examples/language_modeling.ipynb) ## Uses #### Direct Use The model can be used for tasks including topic classification, Causal Language modeling and text generation #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## Training #### Training Data This model is fine-tuned on text scraped from 100+ Mechanical/Automotive pdf books. #### Training Procedure ###### Fine-Tuning * Default Training Args * Epochs = 3 * Training set = 200k sentences * Validation set = 40k sentences ###### Framework versions * Transformers 4.7.0.dev0 * Pytorch 1.8.1+cu111 * Datasets 1.6.2 * Tokenizers 0.10.2 # Environmental Impact ​ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). ​ - **Hardware Type:** [More information needed] - **Hours used:** [More information needed] - **Cloud Provider:** [More information needed] - **Compute Region:** [More information needed"] - **Carbon Emitted:** [More information needed] ​ ## How to Get Started With the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("geralt/MechDistilGPT2") model = AutoModelForCausalLM.from_pretrained("geralt/MechDistilGPT2") ```
RyyyT/q-Taxi-v3
RyyyT
2023-09-11T15:39:52Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T15:38:05Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="RyyyT/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
ProomptEngineer/pe-mugshot-concept
ProomptEngineer
2023-09-11T15:38:36Z
38
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:38:31Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PEMugShot widget: - text: PEMugShot --- # PE Mugshot [Concept] ![Image 0](2202491.jpeg) <h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2><h2 id="heading-3">Simple lora. Who will go to jail?</h2><h2 id="heading-4">weights 0.8-1 as always</h2> ## Image examples for the model: ![Image 1](2202506.jpeg) ![Image 2](2202492.jpeg) ![Image 3](2202489.jpeg) ![Image 4](2202490.jpeg) ![Image 5](2202504.jpeg) ![Image 6](2202503.jpeg) ![Image 7](2202505.jpeg) ![Image 8](2202508.jpeg) ![Image 9](2202507.jpeg)
ProomptEngineer/cute-animals-style
ProomptEngineer
2023-09-11T15:38:10Z
48
4
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:38:06Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PE_CuteAnimals widget: - text: PE_CuteAnimals --- # Cute Animals [Style] ![Image 0](2172186.jpeg) <p>lora to make cute animal illustrations</p><p>Weights of 0.8-1</p><h2 id="heading-7">If you want to donate:</h2><h2 id="heading-8"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2><p></p> ## Image examples for the model: ![Image 1](2172182.jpeg) ![Image 2](2172183.jpeg) ![Image 3](2172184.jpeg) ![Image 4](2172187.jpeg) ![Image 5](2172185.jpeg) ![Image 6](2172189.jpeg) ![Image 7](2172188.jpeg) ![Image 8](2172190.jpeg) ![Image 9](2172191.jpeg)
Lethargus/Taxi-v3
Lethargus
2023-09-11T15:37:23Z
0
0
null
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T15:32:40Z
--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage model = load_from_hub(repo_id="Lethargus/Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
fundrais123/bert-finetuned-ner
fundrais123
2023-09-11T15:36:35Z
103
0
transformers
[ "transformers", "pytorch", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T15:26:01Z
--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9325954072360813 - name: Recall type: recall value: 0.9500168293503871 - name: F1 type: f1 value: 0.9412255106294289 - name: Accuracy type: accuracy value: 0.986489668570083 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0591 - Precision: 0.9326 - Recall: 0.9500 - F1: 0.9412 - Accuracy: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0773 | 1.0 | 1756 | 0.0795 | 0.9096 | 0.9330 | 0.9212 | 0.9794 | | 0.0414 | 2.0 | 3512 | 0.0585 | 0.9212 | 0.9465 | 0.9337 | 0.9855 | | 0.0248 | 3.0 | 5268 | 0.0591 | 0.9326 | 0.9500 | 0.9412 | 0.9865 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ProomptEngineer/pe-habsburg-diffusion-style-big-chin
ProomptEngineer
2023-09-11T15:34:56Z
17
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:34:53Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PEHabsburg widget: - text: PEHabsburg --- # PE Habsburg Diffusion [Style] [Big Chin] ![Image 0](2186263.jpeg) <p>Add some habsburg to your images!</p><p>weights 1-1.4</p><h2 id="heading-7">If you want to donate:</h2><h2 id="heading-8"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2> ## Image examples for the model: ![Image 1](2186265.jpeg) ![Image 2](2186232.jpeg) ![Image 3](2186236.jpeg) ![Image 4](2186228.jpeg) ![Image 5](2186231.jpeg) ![Image 6](2186234.jpeg) ![Image 7](2186242.jpeg) ![Image 8](2186248.jpeg) ![Image 9](2186250.jpeg)
ProomptEngineer/pe-colorportrait-cat-dog-style
ProomptEngineer
2023-09-11T15:32:35Z
41
2
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:32:30Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: pecat widget: - text: pecat --- # PE ColorPortrait Cat&Dog [Style] ![Image 0](1815001.jpeg) <h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2><h2 id="heading-114">This Model generates colorful portraits of cats or dogs duh.</h2><h2 id="heading-115">If color effect fades add colorful to prompt.</h2><h2 id="heading-116">Weights of 0.8-1 </h2> ## Image examples for the model: ![Image 1](1814983.jpeg) ![Image 2](1814978.jpeg) ![Image 3](1814980.jpeg) ![Image 4](1814979.jpeg) ![Image 5](1814977.jpeg) ![Image 6](1814982.jpeg) ![Image 7](1815002.jpeg) ![Image 8](1815003.jpeg) ![Image 9](1814984.jpeg)
ProomptEngineer/pe-toonland-style-0
ProomptEngineer
2023-09-11T15:31:47Z
39
4
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:31:44Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PEToonLand widget: - text: PEToonLand --- # PE ToonLand [Style] ![Image 0](1921017.jpeg) <h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2><h2 id="heading-3">Create beautiful Landscapes with one.</h2><h2 id="heading-4">Weights 0.8-1.</h2><p></p> ## Image examples for the model: ![Image 1](1921020.jpeg) ![Image 2](1920999.jpeg) ![Image 3](1921019.jpeg) ![Image 4](1921012.jpeg) ![Image 5](1921018.jpeg) ![Image 6](1921015.jpeg) ![Image 7](1921000.jpeg) ![Image 8](1921001.jpeg) ![Image 9](1921007.jpeg)
ProomptEngineer/pe-old-school-cartoon-style
ProomptEngineer
2023-09-11T15:31:26Z
48
11
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:31:24Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PEOldCartoonStyle widget: - text: PEOldCartoonStyle --- # PE Old School Cartoon [Style] ![Image 0](1952278.jpeg) <h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2><h2 id="heading-3">Tried to make a lora that creates images in old school cartoon style like mickey mouse or cuphead.</h2><h2 id="heading-4">weight 0.8-1</h2> ## Image examples for the model: ![Image 1](1952267.jpeg) ![Image 2](1952260.jpeg) ![Image 3](1952270.jpeg) ![Image 4](1952265.jpeg) ![Image 5](1952271.jpeg) ![Image 6](1952269.jpeg) ![Image 7](1952272.jpeg) ![Image 8](1952266.jpeg) ![Image 9](1952279.jpeg)
Kanakmi/resume_sorter
Kanakmi
2023-09-11T15:28:35Z
64
2
transformers
[ "transformers", "tf", "distilbert", "text-classification", "generated_from_keras_callback", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-12-15T13:14:51Z
--- license: apache-2.0 tags: - generated_from_keras_callback base_model: distilbert-base-uncased model-index: - name: resume_sorter results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # resume_sorter This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.6000 - Train Accuracy: 0.9309 - Epoch: 6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 225, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Epoch | |:----------:|:--------------:|:-----:| | 3.0338 | 0.3025 | 0 | | 2.5856 | 0.6257 | 1 | | 2.1253 | 0.8646 | 2 | | 1.7760 | 0.9144 | 3 | | 1.6245 | 0.9309 | 4 | | 1.5916 | 0.9309 | 5 | | 1.6000 | 0.9309 | 6 | ### Framework versions - Transformers 4.25.1 - TensorFlow 2.9.2 - Datasets 2.7.1 - Tokenizers 0.13.2
ProomptEngineer/pe-pencil-drawing-style
ProomptEngineer
2023-09-11T15:28:31Z
130
7
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:28:27Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PEPencilDrawing widget: - text: PEPencilDrawing --- # PE Pencil Drawing [Style] ![Image 0](2141773.jpeg) <p>Pencil Style...</p><p>Weights 0.8-1</p><h2 id="heading-7">If you want to donate:</h2><h2 id="heading-8"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2> ## Image examples for the model: ![Image 1](2141741.jpeg) ![Image 2](2141752.jpeg) ![Image 3](2141734.jpeg) ![Image 4](2141733.jpeg) ![Image 5](2141732.jpeg) ![Image 6](2141736.jpeg) ![Image 7](2141737.jpeg) ![Image 8](2141753.jpeg)
ProomptEngineer/pe-carpet-rug-style
ProomptEngineer
2023-09-11T15:27:53Z
23
1
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:27:50Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PE_CarpetRugStyle widget: - text: PE_CarpetRugStyle --- # PE Carpet / Rug Style ![Image 0](2150542.jpeg) <p>Traind to add carpet or rug texture to image. Mostly used cartoon characters as training images so it might not work so well for realisitc subjects.</p><p>Weights 0.8-1</p><h2 id="heading-7">If you want to donate:</h2><h2 id="heading-8"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2> ## Image examples for the model: ![Image 1](2150535.jpeg) ![Image 2](2150537.jpeg) ![Image 3](2150534.jpeg) ![Image 4](2150538.jpeg) ![Image 5](2150539.jpeg) ![Image 6](2150541.jpeg) ![Image 7](2150543.jpeg) ![Image 8](2150540.jpeg) ![Image 9](2150544.jpeg)
esperesa/xlm-roberta-base-finetuned-panx-all
esperesa
2023-09-11T15:23:31Z
126
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T15:03:15Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-all results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-all This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1828 - F1: 0.8519 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2947 | 1.0 | 739 | 0.1879 | 0.8175 | | 0.152 | 2.0 | 1478 | 0.1853 | 0.8385 | | 0.0974 | 3.0 | 2217 | 0.1828 | 0.8519 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
Prot10/swinv2-base-patch4-window8-256-for-pre_evaluation
Prot10
2023-09-11T15:22:30Z
4
0
transformers
[ "transformers", "pytorch", "swinv2", "image-classification", "generated_from_trainer", "base_model:microsoft/swinv2-base-patch4-window8-256", "base_model:finetune:microsoft/swinv2-base-patch4-window8-256", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-08-30T11:21:06Z
--- license: apache-2.0 base_model: microsoft/swinv2-base-patch4-window8-256 tags: - generated_from_trainer metrics: - accuracy model-index: - name: swinv2-base-patch4-window8-256-for-pre_evaluation results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # swinv2-base-patch4-window8-256-for-pre_evaluation This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4873 - Accuracy: 0.4106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.6064 | 1.0 | 16 | 1.5189 | 0.3073 | | 1.5058 | 2.0 | 32 | 1.5056 | 0.3073 | | 1.5176 | 3.0 | 48 | 1.5176 | 0.2961 | | 1.4883 | 4.0 | 64 | 1.5130 | 0.3073 | | 1.4446 | 5.0 | 80 | 1.4540 | 0.3296 | | 1.4568 | 6.0 | 96 | 1.5154 | 0.3156 | | 1.4106 | 7.0 | 112 | 1.4272 | 0.3883 | | 1.3804 | 8.0 | 128 | 1.4185 | 0.3743 | | 1.3725 | 9.0 | 144 | 1.3943 | 0.3911 | | 1.3441 | 10.0 | 160 | 1.4510 | 0.4022 | | 1.3335 | 11.0 | 176 | 1.4337 | 0.3827 | | 1.3055 | 12.0 | 192 | 1.4633 | 0.3855 | | 1.3303 | 13.0 | 208 | 1.4674 | 0.3883 | | 1.2882 | 14.0 | 224 | 1.4388 | 0.3911 | | 1.2362 | 15.0 | 240 | 1.4676 | 0.3855 | | 1.2572 | 16.0 | 256 | 1.4805 | 0.3799 | | 1.2164 | 17.0 | 272 | 1.4717 | 0.3939 | | 1.221 | 18.0 | 288 | 1.4354 | 0.4078 | | 1.1713 | 19.0 | 304 | 1.4836 | 0.4078 | | 1.18 | 20.0 | 320 | 1.4873 | 0.4106 | | 1.1349 | 21.0 | 336 | 1.4853 | 0.3855 | | 1.1138 | 22.0 | 352 | 1.4927 | 0.3966 | | 1.1402 | 23.0 | 368 | 1.4672 | 0.3994 | | 1.1183 | 24.0 | 384 | 1.5033 | 0.4022 | | 1.0834 | 25.0 | 400 | 1.5448 | 0.3855 | | 1.0515 | 26.0 | 416 | 1.5131 | 0.3939 | | 1.0745 | 27.0 | 432 | 1.5314 | 0.3827 | | 1.0332 | 28.0 | 448 | 1.5474 | 0.3939 | | 1.0679 | 29.0 | 464 | 1.5327 | 0.3855 | | 1.0295 | 30.0 | 480 | 1.5402 | 0.3855 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
ProomptEngineer/pe-neon-sign-style
ProomptEngineer
2023-09-11T15:21:13Z
587
7
diffusers
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "base_model:adapter:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "region:us" ]
text-to-image
2023-09-11T15:21:08Z
--- license: other tags: - text-to-image - stable-diffusion - lora - diffusers base_model: stabilityai/stable-diffusion-xl-base-1.0 instance_prompt: PENeonSign widget: - text: PENeonSign --- # PE Neon Sign [Style] ![Image 0](2266232.jpeg) <p>you favorite character as a neon sign...</p><p>weights 0.8-1</p><h2 id="heading-63">If you want to donate:</h2><h2 id="heading-64"><a target="_blank" rel="ugc" href="https://ko-fi.com/proomptengineer">https://ko-fi.com/proomptengineer</a></h2> ## Image examples for the model: ![Image 1](2266242.jpeg) ![Image 2](2266231.jpeg) ![Image 3](2266233.jpeg) ![Image 4](2266230.jpeg) ![Image 5](2266236.jpeg) ![Image 6](2266235.jpeg) ![Image 7](2266239.jpeg) ![Image 8](2266238.jpeg) ![Image 9](2266240.jpeg)
Lethargus/q-FrozenLake-v1-4x4-noSlippery
Lethargus
2023-09-11T15:20:55Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T15:17:03Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage model = load_from_hub(repo_id="Lethargus/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"])
nikzarifie/wafer_technology
nikzarifie
2023-09-11T15:19:20Z
192
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T15:17:57Z
--- tags: - image-classification - pytorch - huggingpics metrics: - accuracy model-index: - name: wafer_technology results: - task: name: Image Classification type: image-classification metrics: - name: Accuracy type: accuracy value: 1.0 --- # wafer_technology ## Example Images #### A ![A](images/A.PNG) #### B ![B](images/B.PNG) #### C ![C](images/C.PNG) #### D ![D](images/D.PNG) #### E ![E](images/E.PNG) #### F ![F](images/F.PNG)
TheAutonomous/HumorGPT
TheAutonomous
2023-09-11T15:12:50Z
0
1
null
[ "license:gpl", "region:us" ]
null
2023-09-11T15:07:20Z
--- license: gpl --- I trained a distilgpt2 model (trained it on CPU since that was the easiest for me to train it on) on a bunch of 5 minute improv sketches in an attempt to generalize the data. Example Results (Temperature 0.8): Scene: Sunshine Person1: Ahh beautiful sunshine Person2: I love the way it bounces off your - beautiful face Person1: You were going to say something else there Person2: I resisted the bald joke because it's Scene: Body Cancel: It's okay, pal. Person1: Hey it's okay Person2:I just um... I just need this time. Person1: You want us to leave? Person2: Yeah Person: It's okay, pal. Person1: Hey it's okay Person2:I just um... I just need this time. Person1: You want us to leave? Person2: Yeah how are you feeling bad for doing you's's? Person2: I know you might not be as bad as I thought. Person1: I just um... I just need this time. Person2: You want us to leave for doing you's's? Person2: I know you might not be as bad as I thought. Person1: I just um... I just need this time. Person2: You want us to leave? Memes: I ain't saying we're gonna not have a fight we lost, is it? Person1: We ain't saying we're gonna have a fight we lost, is it? **End** Scene: Digging I ain't saying we're gonna not have a fight we lost, is it? Person1: We ain't saying we're gonna have a fight we lost, is it? **End** Scene: Digging Person
saattrupdan/employment-contract-ner-da
saattrupdan
2023-09-11T15:12:48Z
17
1
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "xlm-roberta", "token-classification", "da", "base_model:FacebookAI/xlm-roberta-base", "base_model:finetune:FacebookAI/xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:05Z
--- language: - da license: mit widget: - Medarbejderen starter arbejdet den 1. januar 2020 og afslutter arbejdet den 21. januar 2020. Den ugentlige arbejdstid er 37 timer, og medarbejderen bliver aflønnet med 23.000,00 kr. om måneden. Arbejdsstedet er Supervej 21, 2000 Frederiksberg. inference: parameters: aggregation_strategy: first base_model: xlm-roberta-base model-index: - name: contract-ner-model-da results: [] --- # contract-ner-model-da This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on a custom contracts dataset. It achieves the following results on the evaluation set: - Loss: 0.0026 - Micro F1: 0.9297 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 919 - num_epochs: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Micro F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8971 | 0.24 | 200 | 0.0205 | 0.0 | | 0.0173 | 0.48 | 400 | 0.0100 | 0.2921 | | 0.0092 | 0.73 | 600 | 0.0065 | 0.7147 | | 0.0063 | 0.97 | 800 | 0.0046 | 0.8332 | | 0.0047 | 1.21 | 1000 | 0.0047 | 0.8459 | | 0.0042 | 1.45 | 1200 | 0.0039 | 0.8694 | | 0.0037 | 1.69 | 1400 | 0.0035 | 0.8888 | | 0.0032 | 1.93 | 1600 | 0.0035 | 0.8840 | | 0.0025 | 2.18 | 1800 | 0.0029 | 0.8943 | | 0.0023 | 2.42 | 2000 | 0.0024 | 0.9104 | | 0.0023 | 2.66 | 2200 | 0.0032 | 0.8808 | | 0.0021 | 2.9 | 2400 | 0.0022 | 0.9338 | | 0.0018 | 3.14 | 2600 | 0.0020 | 0.9315 | | 0.0015 | 3.39 | 2800 | 0.0026 | 0.9297 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.8.1+cu101 - Datasets 1.12.1 - Tokenizers 0.10.3
esperesa/xlm-roberta-base-finetuned-panx-it
esperesa
2023-09-11T15:08:31Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T15:03:02Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-it results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.it metrics: - name: F1 type: f1 value: 0.8218390804597702 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-it This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.2503 - F1: 0.8218 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8253 | 1.0 | 70 | 0.3503 | 0.7160 | | 0.2781 | 2.0 | 140 | 0.2643 | 0.8148 | | 0.1871 | 3.0 | 210 | 0.2503 | 0.8218 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
intellectusartificialis/controlnetv11
intellectusartificialis
2023-09-11T15:08:26Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2023-09-11T12:52:54Z
--- license: creativeml-openrail-m ---
moonlightnexus/realize
moonlightnexus
2023-09-11T15:07:50Z
37
1
diffusers
[ "diffusers", "text-to-image", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-11T09:26:08Z
--- license: other language: - en library_name: diffusers pipeline_tag: text-to-image ---
esperesa/xlm-roberta-base-finetuned-panx-fr
esperesa
2023-09-11T15:06:05Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "dataset:xtreme", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T15:02:52Z
--- license: mit tags: - generated_from_trainer datasets: - xtreme metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-fr results: - task: name: Token Classification type: token-classification dataset: name: xtreme type: xtreme args: PAN-X.fr metrics: - name: F1 type: f1 value: 0.8115649689023365 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset. It achieves the following results on the evaluation set: - Loss: 0.3184 - F1: 0.8116 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.7671 | 1.0 | 96 | 0.3643 | 0.7537 | | 0.325 | 2.0 | 192 | 0.3360 | 0.7977 | | 0.2209 | 3.0 | 288 | 0.3184 | 0.8116 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
ldos/text_shortening_model_v30
ldos
2023-09-11T15:05:21Z
8
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T14:06:20Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v30 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v30 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6784 - Rouge1: 0.4871 - Rouge2: 0.2579 - Rougel: 0.428 - Rougelsum: 0.4272 - Bert precision: 0.8743 - Bert recall: 0.8706 - Average word count: 8.4775 - Max word count: 17 - Min word count: 3 - Average token count: 12.9249 - % shortened texts with length > 12: 9.3093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 1.2044 | 1.0 | 145 | 1.6064 | 0.5052 | 0.2865 | 0.4472 | 0.448 | 0.8751 | 0.8756 | 8.8979 | 17 | 3 | 13.4024 | 12.6126 | | 1.0041 | 2.0 | 290 | 1.4900 | 0.5154 | 0.2921 | 0.4554 | 0.4542 | 0.8735 | 0.878 | 9.3724 | 17 | 3 | 13.8529 | 17.7177 | | 0.8935 | 3.0 | 435 | 1.4617 | 0.5181 | 0.2968 | 0.4607 | 0.4622 | 0.8751 | 0.8818 | 9.4024 | 16 | 4 | 14.1171 | 17.1171 | | 0.8028 | 4.0 | 580 | 1.4744 | 0.5103 | 0.2966 | 0.4497 | 0.4496 | 0.8797 | 0.8725 | 8.1982 | 17 | 4 | 12.5706 | 8.1081 | | 0.7395 | 5.0 | 725 | 1.4797 | 0.5121 | 0.3016 | 0.4548 | 0.4554 | 0.8796 | 0.8761 | 8.4985 | 16 | 3 | 12.985 | 10.8108 | | 0.6986 | 6.0 | 870 | 1.5154 | 0.5218 | 0.2987 | 0.4554 | 0.4542 | 0.8808 | 0.879 | 8.7297 | 16 | 4 | 13.0691 | 14.1141 | | 0.6527 | 7.0 | 1015 | 1.5347 | 0.5083 | 0.2876 | 0.4494 | 0.4485 | 0.8797 | 0.8763 | 8.5526 | 16 | 4 | 13.012 | 11.4114 | | 0.588 | 8.0 | 1160 | 1.5578 | 0.4984 | 0.2752 | 0.4403 | 0.4399 | 0.8746 | 0.8728 | 8.6336 | 17 | 4 | 13.006 | 10.8108 | | 0.5705 | 9.0 | 1305 | 1.6569 | 0.5152 | 0.2902 | 0.4544 | 0.454 | 0.8803 | 0.8764 | 8.5135 | 16 | 4 | 13.1592 | 9.9099 | | 0.5601 | 10.0 | 1450 | 1.6651 | 0.5246 | 0.2837 | 0.4572 | 0.4579 | 0.8777 | 0.8807 | 8.979 | 16 | 4 | 13.6607 | 12.012 | | 0.523 | 11.0 | 1595 | 1.7085 | 0.5149 | 0.2854 | 0.4508 | 0.4507 | 0.879 | 0.8789 | 8.7718 | 17 | 4 | 13.2613 | 10.8108 | | 0.5032 | 12.0 | 1740 | 1.7886 | 0.5107 | 0.2817 | 0.4457 | 0.4457 | 0.8778 | 0.8772 | 8.8378 | 17 | 4 | 13.4204 | 11.7117 | | 0.4872 | 13.0 | 1885 | 1.8073 | 0.5097 | 0.2808 | 0.4439 | 0.4441 | 0.8786 | 0.8758 | 8.6306 | 16 | 4 | 13.1562 | 9.6096 | | 0.4703 | 14.0 | 2030 | 1.8436 | 0.5059 | 0.2754 | 0.4456 | 0.4457 | 0.8769 | 0.8756 | 8.6817 | 17 | 4 | 13.1471 | 9.9099 | | 0.4598 | 15.0 | 2175 | 1.9150 | 0.5148 | 0.2794 | 0.4532 | 0.4532 | 0.8798 | 0.8775 | 8.6907 | 18 | 4 | 13.1021 | 11.4114 | | 0.4385 | 16.0 | 2320 | 1.9319 | 0.4966 | 0.2666 | 0.4402 | 0.4406 | 0.8771 | 0.8724 | 8.2703 | 16 | 4 | 12.7237 | 7.8078 | | 0.4306 | 17.0 | 2465 | 1.9821 | 0.5041 | 0.2763 | 0.4449 | 0.4448 | 0.8788 | 0.8752 | 8.5105 | 16 | 4 | 13.0541 | 9.3093 | | 0.4154 | 18.0 | 2610 | 2.0345 | 0.5066 | 0.2746 | 0.4467 | 0.4461 | 0.8796 | 0.8732 | 8.1922 | 16 | 3 | 12.6186 | 7.8078 | | 0.3995 | 19.0 | 2755 | 2.0671 | 0.4954 | 0.2707 | 0.4411 | 0.4416 | 0.8773 | 0.8721 | 8.4505 | 17 | 4 | 12.8468 | 8.7087 | | 0.4053 | 20.0 | 2900 | 2.1265 | 0.4975 | 0.2704 | 0.4365 | 0.4364 | 0.8767 | 0.873 | 8.5075 | 17 | 3 | 13.0571 | 9.009 | | 0.3812 | 21.0 | 3045 | 2.2077 | 0.5011 | 0.2733 | 0.4406 | 0.4411 | 0.8764 | 0.8756 | 8.7958 | 17 | 3 | 13.4084 | 12.012 | | 0.3856 | 22.0 | 3190 | 2.2043 | 0.4956 | 0.2603 | 0.4358 | 0.4361 | 0.8775 | 0.8729 | 8.2913 | 17 | 3 | 12.8078 | 8.7087 | | 0.3805 | 23.0 | 3335 | 2.2201 | 0.5015 | 0.2698 | 0.4421 | 0.4427 | 0.8789 | 0.8728 | 8.2402 | 17 | 3 | 12.5856 | 8.1081 | | 0.3741 | 24.0 | 3480 | 2.2269 | 0.5029 | 0.2652 | 0.4412 | 0.4413 | 0.8767 | 0.8743 | 8.5856 | 16 | 4 | 13.039 | 10.2102 | | 0.3697 | 25.0 | 3625 | 2.2596 | 0.4956 | 0.2674 | 0.436 | 0.4359 | 0.8765 | 0.8728 | 8.4895 | 17 | 4 | 12.9129 | 9.9099 | | 0.3663 | 26.0 | 3770 | 2.2506 | 0.4891 | 0.2572 | 0.432 | 0.432 | 0.8749 | 0.8716 | 8.4865 | 17 | 4 | 12.8498 | 6.9069 | | 0.3409 | 27.0 | 3915 | 2.2893 | 0.4958 | 0.2635 | 0.4328 | 0.4327 | 0.8772 | 0.8727 | 8.3994 | 17 | 3 | 12.8228 | 9.6096 | | 0.3524 | 28.0 | 4060 | 2.3127 | 0.4907 | 0.2597 | 0.4322 | 0.4329 | 0.8751 | 0.8712 | 8.4084 | 16 | 4 | 12.7718 | 8.1081 | | 0.3379 | 29.0 | 4205 | 2.3167 | 0.4958 | 0.2674 | 0.4374 | 0.4368 | 0.8772 | 0.8737 | 8.4234 | 16 | 4 | 12.8138 | 7.2072 | | 0.3472 | 30.0 | 4350 | 2.3157 | 0.4987 | 0.2713 | 0.4415 | 0.4403 | 0.8788 | 0.8736 | 8.3634 | 17 | 3 | 12.6517 | 7.2072 | | 0.3353 | 31.0 | 4495 | 2.3506 | 0.4991 | 0.2631 | 0.4375 | 0.436 | 0.8764 | 0.8744 | 8.6396 | 17 | 4 | 13.1502 | 9.6096 | | 0.3466 | 32.0 | 4640 | 2.3594 | 0.4897 | 0.2593 | 0.4307 | 0.4301 | 0.8777 | 0.8711 | 8.1712 | 16 | 4 | 12.6126 | 5.4054 | | 0.3406 | 33.0 | 4785 | 2.3632 | 0.495 | 0.2746 | 0.4401 | 0.4397 | 0.8772 | 0.8732 | 8.5556 | 16 | 4 | 13.027 | 8.4084 | | 0.3382 | 34.0 | 4930 | 2.3505 | 0.4856 | 0.261 | 0.4306 | 0.4295 | 0.8758 | 0.8693 | 8.2733 | 17 | 3 | 12.6366 | 7.5075 | | 0.3392 | 35.0 | 5075 | 2.3665 | 0.4972 | 0.2719 | 0.4376 | 0.4372 | 0.8764 | 0.8741 | 8.6847 | 17 | 4 | 13.1532 | 9.3093 | | 0.3465 | 36.0 | 5220 | 2.3837 | 0.4981 | 0.2722 | 0.441 | 0.4411 | 0.876 | 0.8738 | 8.6607 | 17 | 4 | 13.1982 | 12.3123 | | 0.3377 | 37.0 | 5365 | 2.3984 | 0.4832 | 0.2623 | 0.4294 | 0.4285 | 0.8737 | 0.8697 | 8.5225 | 17 | 4 | 12.9399 | 10.5105 | | 0.3523 | 38.0 | 5510 | 2.3843 | 0.495 | 0.2671 | 0.438 | 0.4368 | 0.8754 | 0.873 | 8.5886 | 17 | 3 | 13.1111 | 7.2072 | | 0.3261 | 39.0 | 5655 | 2.4337 | 0.4948 | 0.2666 | 0.4378 | 0.4369 | 0.8771 | 0.8726 | 8.4655 | 17 | 4 | 12.8919 | 9.009 | | 0.3262 | 40.0 | 5800 | 2.4149 | 0.4971 | 0.2691 | 0.438 | 0.4375 | 0.8772 | 0.8717 | 8.4505 | 16 | 4 | 12.9249 | 8.1081 | | 0.3307 | 41.0 | 5945 | 2.4352 | 0.4834 | 0.2585 | 0.4261 | 0.4256 | 0.8746 | 0.8697 | 8.4024 | 17 | 3 | 12.8859 | 9.6096 | | 0.3226 | 42.0 | 6090 | 2.4241 | 0.488 | 0.2584 | 0.4318 | 0.4315 | 0.8756 | 0.8706 | 8.4444 | 17 | 3 | 12.8288 | 8.7087 | | 0.34 | 43.0 | 6235 | 2.4485 | 0.4891 | 0.2589 | 0.4326 | 0.432 | 0.8758 | 0.8705 | 8.3243 | 17 | 4 | 12.7898 | 6.6066 | | 0.3425 | 44.0 | 6380 | 2.4457 | 0.4865 | 0.26 | 0.4293 | 0.4287 | 0.8733 | 0.8713 | 8.6336 | 16 | 3 | 13.1922 | 9.6096 | | 0.3201 | 45.0 | 6525 | 2.4535 | 0.4811 | 0.2473 | 0.4243 | 0.4237 | 0.8751 | 0.8697 | 8.3093 | 17 | 3 | 12.7748 | 8.4084 | | 0.3094 | 46.0 | 6670 | 2.4918 | 0.4916 | 0.2614 | 0.4351 | 0.4342 | 0.8758 | 0.8726 | 8.5706 | 17 | 3 | 13.039 | 10.2102 | | 0.3262 | 47.0 | 6815 | 2.4839 | 0.4822 | 0.255 | 0.425 | 0.4237 | 0.8719 | 0.869 | 8.5375 | 17 | 4 | 12.976 | 9.009 | | 0.3186 | 48.0 | 6960 | 2.4966 | 0.486 | 0.2492 | 0.4276 | 0.4264 | 0.8738 | 0.8707 | 8.4745 | 17 | 3 | 12.955 | 6.6066 | | 0.3231 | 49.0 | 7105 | 2.4978 | 0.4889 | 0.2661 | 0.4343 | 0.434 | 0.8767 | 0.871 | 8.4505 | 17 | 3 | 12.8468 | 9.009 | | 0.3294 | 50.0 | 7250 | 2.4731 | 0.4916 | 0.2683 | 0.4374 | 0.4373 | 0.877 | 0.8726 | 8.4955 | 17 | 4 | 12.9369 | 9.3093 | | 0.3172 | 51.0 | 7395 | 2.4922 | 0.4861 | 0.2573 | 0.4314 | 0.431 | 0.8759 | 0.87 | 8.3003 | 17 | 4 | 12.6907 | 7.8078 | | 0.3247 | 52.0 | 7540 | 2.5044 | 0.4802 | 0.2495 | 0.4281 | 0.4282 | 0.8737 | 0.8698 | 8.4715 | 17 | 4 | 12.9009 | 8.1081 | | 0.3132 | 53.0 | 7685 | 2.5168 | 0.4832 | 0.2558 | 0.4273 | 0.4268 | 0.8736 | 0.8703 | 8.5706 | 17 | 3 | 12.967 | 9.3093 | | 0.3285 | 54.0 | 7830 | 2.5296 | 0.4882 | 0.26 | 0.4323 | 0.4319 | 0.8754 | 0.8724 | 8.5495 | 17 | 3 | 13.0541 | 8.7087 | | 0.3111 | 55.0 | 7975 | 2.5529 | 0.4829 | 0.2561 | 0.4268 | 0.4262 | 0.874 | 0.8694 | 8.4474 | 17 | 3 | 12.9339 | 7.2072 | | 0.3194 | 56.0 | 8120 | 2.5903 | 0.49 | 0.2614 | 0.4337 | 0.4329 | 0.8747 | 0.8719 | 8.5946 | 17 | 3 | 13.0931 | 8.1081 | | 0.3144 | 57.0 | 8265 | 2.5787 | 0.4859 | 0.2593 | 0.4315 | 0.4303 | 0.8739 | 0.8698 | 8.5195 | 17 | 4 | 12.8679 | 8.4084 | | 0.2972 | 58.0 | 8410 | 2.5759 | 0.4848 | 0.2565 | 0.4291 | 0.4279 | 0.8738 | 0.8697 | 8.5165 | 17 | 3 | 12.9219 | 8.1081 | | 0.3209 | 59.0 | 8555 | 2.5609 | 0.4792 | 0.246 | 0.4212 | 0.4201 | 0.8723 | 0.8678 | 8.4114 | 17 | 3 | 12.8799 | 6.9069 | | 0.3148 | 60.0 | 8700 | 2.5758 | 0.481 | 0.2454 | 0.4243 | 0.4231 | 0.874 | 0.8688 | 8.3664 | 16 | 3 | 12.7628 | 7.5075 | | 0.3026 | 61.0 | 8845 | 2.5819 | 0.4804 | 0.2555 | 0.4231 | 0.4231 | 0.8738 | 0.8689 | 8.4204 | 17 | 3 | 12.7628 | 8.4084 | | 0.3074 | 62.0 | 8990 | 2.5882 | 0.4893 | 0.2627 | 0.431 | 0.4303 | 0.8753 | 0.8715 | 8.4895 | 17 | 3 | 12.8889 | 8.7087 | | 0.3013 | 63.0 | 9135 | 2.5865 | 0.4835 | 0.2599 | 0.426 | 0.4251 | 0.8743 | 0.8707 | 8.4865 | 17 | 4 | 12.964 | 8.7087 | | 0.3274 | 64.0 | 9280 | 2.5957 | 0.4928 | 0.2649 | 0.436 | 0.4353 | 0.8738 | 0.8734 | 8.8018 | 17 | 3 | 13.2823 | 11.4114 | | 0.2928 | 65.0 | 9425 | 2.5846 | 0.4888 | 0.2653 | 0.4365 | 0.4356 | 0.8763 | 0.8713 | 8.2973 | 17 | 3 | 12.6637 | 8.1081 | | 0.3261 | 66.0 | 9570 | 2.5704 | 0.4901 | 0.267 | 0.4386 | 0.4374 | 0.8759 | 0.871 | 8.3303 | 17 | 4 | 12.7838 | 6.6066 | | 0.3153 | 67.0 | 9715 | 2.6023 | 0.4897 | 0.2611 | 0.4311 | 0.4301 | 0.8749 | 0.872 | 8.6426 | 17 | 3 | 13.0691 | 10.8108 | | 0.3185 | 68.0 | 9860 | 2.5831 | 0.4862 | 0.2579 | 0.4257 | 0.4247 | 0.8735 | 0.8718 | 8.6486 | 17 | 4 | 13.1441 | 12.012 | | 0.3054 | 69.0 | 10005 | 2.5949 | 0.4831 | 0.2575 | 0.4247 | 0.4239 | 0.8728 | 0.87 | 8.5405 | 17 | 4 | 13.036 | 9.9099 | | 0.3006 | 70.0 | 10150 | 2.5822 | 0.4853 | 0.252 | 0.4255 | 0.4243 | 0.8735 | 0.87 | 8.5495 | 17 | 3 | 13.0 | 10.5105 | | 0.3092 | 71.0 | 10295 | 2.5743 | 0.4903 | 0.2595 | 0.432 | 0.4315 | 0.8759 | 0.8719 | 8.4474 | 17 | 3 | 12.8559 | 8.7087 | | 0.2928 | 72.0 | 10440 | 2.5905 | 0.4918 | 0.2665 | 0.4356 | 0.4347 | 0.876 | 0.8724 | 8.4474 | 17 | 4 | 12.8679 | 8.4084 | | 0.3021 | 73.0 | 10585 | 2.6171 | 0.4957 | 0.266 | 0.4368 | 0.4354 | 0.8764 | 0.873 | 8.5676 | 17 | 3 | 12.964 | 11.1111 | | 0.3047 | 74.0 | 10730 | 2.6233 | 0.492 | 0.2655 | 0.4341 | 0.4328 | 0.8753 | 0.8715 | 8.5736 | 17 | 3 | 12.952 | 10.5105 | | 0.3043 | 75.0 | 10875 | 2.6405 | 0.4887 | 0.2623 | 0.4318 | 0.4309 | 0.8756 | 0.8704 | 8.4895 | 17 | 3 | 12.8679 | 9.9099 | | 0.305 | 76.0 | 11020 | 2.6171 | 0.4942 | 0.2687 | 0.4381 | 0.4372 | 0.8766 | 0.8724 | 8.5586 | 17 | 3 | 12.9369 | 10.8108 | | 0.3127 | 77.0 | 11165 | 2.6289 | 0.4959 | 0.2646 | 0.4366 | 0.4357 | 0.8767 | 0.8731 | 8.5766 | 17 | 3 | 13.006 | 12.012 | | 0.2945 | 78.0 | 11310 | 2.6453 | 0.4881 | 0.2589 | 0.4272 | 0.4261 | 0.8753 | 0.8711 | 8.5375 | 17 | 3 | 12.8739 | 9.3093 | | 0.2844 | 79.0 | 11455 | 2.6543 | 0.4895 | 0.2565 | 0.4294 | 0.4288 | 0.8753 | 0.8718 | 8.5616 | 17 | 3 | 12.997 | 11.7117 | | 0.3188 | 80.0 | 11600 | 2.6556 | 0.4919 | 0.2677 | 0.4328 | 0.4318 | 0.8756 | 0.8712 | 8.5345 | 17 | 3 | 12.973 | 9.9099 | | 0.2857 | 81.0 | 11745 | 2.6696 | 0.4914 | 0.2666 | 0.434 | 0.4332 | 0.8761 | 0.8717 | 8.4595 | 17 | 3 | 12.8829 | 10.5105 | | 0.3091 | 82.0 | 11890 | 2.6577 | 0.4986 | 0.2718 | 0.4397 | 0.4388 | 0.8766 | 0.8741 | 8.6276 | 17 | 3 | 13.1441 | 10.8108 | | 0.3115 | 83.0 | 12035 | 2.6720 | 0.4944 | 0.266 | 0.4364 | 0.4351 | 0.8766 | 0.8725 | 8.4925 | 17 | 3 | 12.9309 | 9.3093 | | 0.2947 | 84.0 | 12180 | 2.6490 | 0.4955 | 0.2628 | 0.4347 | 0.4343 | 0.8767 | 0.873 | 8.4985 | 17 | 3 | 13.018 | 7.5075 | | 0.312 | 85.0 | 12325 | 2.6425 | 0.4928 | 0.2689 | 0.4364 | 0.4358 | 0.8763 | 0.8728 | 8.5766 | 17 | 3 | 13.0631 | 9.9099 | | 0.3081 | 86.0 | 12470 | 2.6314 | 0.4904 | 0.2648 | 0.4327 | 0.432 | 0.875 | 0.8722 | 8.6246 | 17 | 3 | 13.1411 | 10.5105 | | 0.3043 | 87.0 | 12615 | 2.6485 | 0.4863 | 0.259 | 0.4273 | 0.4259 | 0.8736 | 0.8709 | 8.5736 | 17 | 3 | 13.0901 | 9.6096 | | 0.3034 | 88.0 | 12760 | 2.6402 | 0.4867 | 0.2604 | 0.4279 | 0.4274 | 0.8739 | 0.871 | 8.5706 | 17 | 3 | 13.0751 | 8.1081 | | 0.3058 | 89.0 | 12905 | 2.6573 | 0.4926 | 0.2638 | 0.4348 | 0.4339 | 0.8762 | 0.872 | 8.4805 | 17 | 3 | 12.955 | 7.8078 | | 0.2909 | 90.0 | 13050 | 2.6654 | 0.4955 | 0.2679 | 0.4357 | 0.4342 | 0.8756 | 0.8729 | 8.6817 | 17 | 3 | 13.1802 | 10.2102 | | 0.3082 | 91.0 | 13195 | 2.6757 | 0.4942 | 0.2671 | 0.4362 | 0.4349 | 0.8756 | 0.8724 | 8.5796 | 17 | 3 | 13.0721 | 9.6096 | | 0.3016 | 92.0 | 13340 | 2.6791 | 0.4933 | 0.2657 | 0.4351 | 0.4345 | 0.875 | 0.8722 | 8.6336 | 17 | 3 | 13.1441 | 9.9099 | | 0.2993 | 93.0 | 13485 | 2.6814 | 0.493 | 0.2658 | 0.433 | 0.4318 | 0.8747 | 0.8726 | 8.6997 | 17 | 3 | 13.2462 | 11.1111 | | 0.3022 | 94.0 | 13630 | 2.6698 | 0.4929 | 0.2638 | 0.4334 | 0.4324 | 0.8751 | 0.8723 | 8.5976 | 17 | 3 | 13.0961 | 9.3093 | | 0.2921 | 95.0 | 13775 | 2.6665 | 0.4867 | 0.2586 | 0.4294 | 0.4284 | 0.8744 | 0.8709 | 8.4955 | 17 | 3 | 12.988 | 8.4084 | | 0.3034 | 96.0 | 13920 | 2.6704 | 0.4854 | 0.2574 | 0.4275 | 0.4266 | 0.8742 | 0.8704 | 8.4805 | 17 | 3 | 12.9429 | 8.7087 | | 0.3063 | 97.0 | 14065 | 2.6749 | 0.4863 | 0.2576 | 0.4275 | 0.4266 | 0.8743 | 0.8707 | 8.4805 | 17 | 3 | 12.9369 | 8.7087 | | 0.2984 | 98.0 | 14210 | 2.6772 | 0.4858 | 0.258 | 0.4274 | 0.4264 | 0.8739 | 0.8704 | 8.5105 | 17 | 3 | 12.97 | 9.6096 | | 0.2942 | 99.0 | 14355 | 2.6784 | 0.4872 | 0.2595 | 0.4279 | 0.427 | 0.874 | 0.8704 | 8.5075 | 17 | 3 | 12.967 | 9.6096 | | 0.2866 | 100.0 | 14500 | 2.6784 | 0.4871 | 0.2579 | 0.428 | 0.4272 | 0.8743 | 0.8706 | 8.4775 | 17 | 3 | 12.9249 | 9.3093 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
hanlforever/xlm-roberta-base-finetuned-panx-de-fr
hanlforever
2023-09-11T15:00:13Z
105
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T13:40:18Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1650 - F1: 0.8562 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2884 | 1.0 | 715 | 0.1855 | 0.8234 | | 0.1452 | 2.0 | 1430 | 0.1642 | 0.8458 | | 0.094 | 3.0 | 2145 | 0.1650 | 0.8562 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.11.0
Pablo94/racism-finetuned-detests
Pablo94
2023-09-11T14:58:52Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "generated_from_trainer", "base_model:davidmasip/racism", "base_model:finetune:davidmasip/racism", "license:cc", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-05-14T04:56:57Z
--- license: cc base_model: davidmasip/racism tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: racism-finetuned-detests results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # racism-finetuned-detests This model is a fine-tuned version of [davidmasip/racism](https://huggingface.co/davidmasip/racism) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1626 - Accuracy: 0.8331 - F1-score: 0.7625 - Precision: 0.7625 - Recall: 0.7625 - Auc: 0.7625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.2554 | 1.0 | 174 | 0.3618 | 0.8380 | 0.7340 | 0.7901 | 0.7073 | 0.7073 | | 0.0488 | 2.0 | 348 | 0.7445 | 0.8282 | 0.7549 | 0.7556 | 0.7543 | 0.7543 | | 0.0005 | 3.0 | 522 | 0.9204 | 0.8429 | 0.7681 | 0.7794 | 0.7587 | 0.7587 | | 0.0001 | 4.0 | 696 | 1.0194 | 0.8462 | 0.7741 | 0.7838 | 0.7659 | 0.7659 | | 0.0001 | 5.0 | 870 | 1.0721 | 0.8363 | 0.7648 | 0.7676 | 0.7621 | 0.7621 | | 0.0001 | 6.0 | 1044 | 1.1081 | 0.8331 | 0.7625 | 0.7625 | 0.7625 | 0.7625 | | 0.0 | 7.0 | 1218 | 1.1324 | 0.8331 | 0.7625 | 0.7625 | 0.7625 | 0.7625 | | 0.0 | 8.0 | 1392 | 1.1492 | 0.8331 | 0.7625 | 0.7625 | 0.7625 | 0.7625 | | 0.0 | 9.0 | 1566 | 1.1592 | 0.8331 | 0.7625 | 0.7625 | 0.7625 | 0.7625 | | 0.0 | 10.0 | 1740 | 1.1626 | 0.8331 | 0.7625 | 0.7625 | 0.7625 | 0.7625 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
esperesa/xlm-roberta-base-finetuned-panx-de-fr
esperesa
2023-09-11T14:56:02Z
103
0
transformers
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2023-09-11T14:44:12Z
--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: xlm-roberta-base-finetuned-panx-de-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-panx-de-fr This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1606 - F1: 0.8620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.2873 | 1.0 | 715 | 0.1802 | 0.8245 | | 0.1446 | 2.0 | 1430 | 0.1601 | 0.8512 | | 0.0925 | 3.0 | 2145 | 0.1606 | 0.8620 | ### Framework versions - Transformers 4.16.2 - Pytorch 2.0.1+cu118 - Datasets 1.16.1 - Tokenizers 0.14.0
sanchit-gandhi/whisper-small-hi-flax
sanchit-gandhi
2023-09-11T14:46:41Z
11
1
transformers
[ "transformers", "jax", "tensorboard", "whisper", "automatic-speech-recognition", "ar", "dataset:mozilla-foundation/common_voice_13_0", "base_model:openai/whisper-small", "base_model:finetune:openai/whisper-small", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-08-11T08:36:19Z
--- language: - ar license: apache-2.0 datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer pipeline_tag: automatic-speech-recognition base_model: openai/whisper-small model-index: - name: whisper_small_hi_flax results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: hi split: test metrics: - type: wer value: 33.96828 name: Wer --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset in Flax. It is trained using the Transformers **Flax** examples script, and achieves the following results on the evaluation set: - Loss: 0.02091 - Wer: 33.96828 The training run can be reproduced in approximately 25 minutes by executing the script [`run.sh`](https://huggingface.co/sanchit-gandhi/whisper-small-hi-flax/blob/main/run.sh). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_train_epochs: 10 ### Training results See [Tensorboard logs](https://huggingface.co/sanchit-gandhi/whisper-small-hi-flax/tensorboard) for details.
gyesibiney/Distilbert-movie-review-sentiment-classifier-2
gyesibiney
2023-09-11T14:45:58Z
106
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-10T18:57:28Z
--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: Distilbert-capstone_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Distilbert-capstone_1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4272 - Accuracy: 0.9251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2895 | 1.0 | 623 | 0.2569 | 0.8930 | | 0.1635 | 2.0 | 1246 | 0.2479 | 0.9171 | | 0.0911 | 3.0 | 1869 | 0.3438 | 0.9207 | | 0.053 | 4.0 | 2492 | 0.3986 | 0.9223 | | 0.011 | 5.0 | 3115 | 0.4272 | 0.9251 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
AIYIYA/my_tt
AIYIYA
2023-09-11T14:42:38Z
61
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-09-11T14:04:56Z
--- tags: - generated_from_keras_callback model-index: - name: AIYIYA/my_tt results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # AIYIYA/my_tt This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 1.0110 - Validation Loss: 1.1941 - Train Accuracy: 0.5185 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 20, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 1.8538 | 1.2004 | 0.5185 | 0 | | 1.0820 | 1.1683 | 0.5185 | 1 | | 1.0110 | 1.1941 | 0.5185 | 2 | ### Framework versions - Transformers 4.33.1 - TensorFlow 2.13.0 - Datasets 2.14.5 - Tokenizers 0.13.3
jncraton/LaMini-GPT-774M-ct2-int8
jncraton
2023-09-11T14:38:50Z
13
0
transformers
[ "transformers", "text-generation", "en", "arxiv:2304.14402", "base_model:openai-community/gpt2-large", "base_model:finetune:openai-community/gpt2-large", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2023-06-24T21:16:48Z
--- language: - en license: cc-by-nc-4.0 pipeline_tag: text-generation widget: - text: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: how can I become more healthy? ### Response:' example_title: example base_model: gpt2-large --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> # LaMini-GPT-774M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [gpt2-large](https://huggingface.co/gpt2-large) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. <table> <thead> <tr> <th>Base model</th> <th colspan="4">LaMini-LM series (#parameters)</th> </tr> </thead> <tbody> <tr> <td>T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> <td></td> </tr> <tr> <td>Flan-T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> <td></td> </tr> <tr> <td>Cerebras-GPT</td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> </tr> <tr> <td>GPT-2</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> <td></td> </tr> <tr> <td>GPT-Neo</td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> <td></td> <td></td> </tr> <tr> <td>GPT-J</td> <td colspan="4">coming soon</td> </tr> <tr> <td>LLaMA</td> <td colspan="4">coming soon</td> </tr> </tbody> </table> ## Use ### Intended use We recommend using the model to respond to human instructions written in natural language. Since this decoder-only model is fine-tuned with wrapper text, we suggest using the same wrapper text to achieve the best performance. See the example on the right or the code below. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text-generation', model = checkpoint) instruction = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' input_prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> </p> We initialize with [gpt2-large](https://huggingface.co/gpt2-large) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 774M. ### Training Hyperparameters ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```
jncraton/LaMini-GPT-124M-ct2-int8
jncraton
2023-09-11T14:38:27Z
563
0
transformers
[ "transformers", "text-generation", "en", "arxiv:2304.14402", "base_model:openai-community/gpt2", "base_model:finetune:openai-community/gpt2", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text-generation
2023-06-24T22:21:05Z
--- language: - en license: cc-by-nc-4.0 pipeline_tag: text-generation widget: - text: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: how can I become more healthy? ### Response:' example_title: example base_model: gpt2 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> # LaMini-GPT-124M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. <table> <thead> <tr> <th>Base model</th> <th colspan="4">LaMini-LM series (#parameters)</th> </tr> </thead> <tbody> <tr> <td>T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> <td></td> </tr> <tr> <td>Flan-T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> <td></td> </tr> <tr> <td>Cerebras-GPT</td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> </tr> <tr> <td>GPT-2</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> <td></td> </tr> <tr> <td>GPT-Neo</td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> <td></td> <td></td> </tr> <tr> <td>GPT-J</td> <td colspan="4">coming soon</td> </tr> <tr> <td>LLaMA</td> <td colspan="4">coming soon</td> </tr> </tbody> </table> ## Use ### Intended use We recommend using the model to respond to human instructions written in natural language. Since this decoder-only model is fine-tuned with wrapper text, we suggest using the same wrapper text to achieve the best performance. See the example on the right or the code below. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text-generation', model = checkpoint) instruction = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' input_prompt = f"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> </p> We initialize with [gpt2](https://huggingface.co/gpt2) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 124M. ### Training Hyperparameters ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```
Pablo94/bert-base-uncased-finetuned-detests
Pablo94
2023-09-11T14:38:05Z
106
0
transformers
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "base_model:google-bert/bert-base-uncased", "base_model:finetune:google-bert/bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-10-21T15:48:17Z
--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-uncased-finetuned-detests results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-uncased-finetuned-detests This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5026 - Accuracy: 0.7856 - F1-score: 0.7175 - Precision: 0.7058 - Recall: 0.7369 - Auc: 0.7369 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1-score | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|:------:| | 0.271 | 1.0 | 174 | 0.4648 | 0.7954 | 0.7005 | 0.7070 | 0.6950 | 0.6950 | | 0.2246 | 2.0 | 348 | 0.5229 | 0.7987 | 0.7053 | 0.7119 | 0.6997 | 0.6997 | | 0.3814 | 3.0 | 522 | 0.7043 | 0.7676 | 0.7018 | 0.6896 | 0.7278 | 0.7278 | | 0.1343 | 4.0 | 696 | 0.8843 | 0.7938 | 0.7217 | 0.7124 | 0.7346 | 0.7346 | | 0.0063 | 5.0 | 870 | 1.0890 | 0.7807 | 0.7040 | 0.6955 | 0.7159 | 0.7159 | | 0.063 | 6.0 | 1044 | 1.1208 | 0.8101 | 0.7378 | 0.7316 | 0.7452 | 0.7452 | | 0.0022 | 7.0 | 1218 | 1.1989 | 0.8249 | 0.7318 | 0.7543 | 0.7166 | 0.7166 | | 0.0356 | 8.0 | 1392 | 1.5295 | 0.7758 | 0.7151 | 0.7016 | 0.7457 | 0.7457 | | 0.0002 | 9.0 | 1566 | 1.4269 | 0.8003 | 0.7202 | 0.7171 | 0.7236 | 0.7236 | | 0.0004 | 10.0 | 1740 | 1.5026 | 0.7856 | 0.7175 | 0.7058 | 0.7369 | 0.7369 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
jncraton/LaMini-Flan-T5-77M-ct2-int8
jncraton
2023-09-11T14:37:59Z
4
0
transformers
[ "transformers", "generated_from_trainer", "instruction fine-tuning", "text2text-generation", "en", "arxiv:2304.14402", "base_model:google/flan-t5-small", "base_model:finetune:google/flan-t5-small", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-05T13:24:22Z
--- language: - en license: cc-by-nc-4.0 tags: - generated_from_trainer - instruction fine-tuning pipeline_tag: text2text-generation widget: - text: how can I become more healthy? example_title: example base_model: google/flan-t5-small model-index: - name: flan-t5-small-distil-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> # LaMini-Flan-T5-77M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. <table> <thead> <tr> <th>Base model</th> <th colspan="4">LaMini-LM series (#parameters)</th> </tr> </thead> <tbody> <tr> <td>T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> <td></td> </tr> <tr> <td>Flan-T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> <td></td> </tr> <tr> <td>Cerebras-GPT</td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> </tr> <tr> <td>GPT-2</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> <td></td> </tr> <tr> <td>GPT-Neo</td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> <td></td> <td></td> </tr> <tr> <td>GPT-J</td> <td colspan="4">coming soon</td> </tr> <tr> <td>LLaMA</td> <td colspan="4">coming soon</td> </tr> </tbody> </table> ## Use ### Intended use We recommend using the model to response to human instructions written in natural language. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text2text-generation', model = checkpoint) input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> </p> We initialize with [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 77M. ### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```
jncraton/LaMini-Flan-T5-248M-ct2-int8
jncraton
2023-09-11T14:37:41Z
232
0
transformers
[ "transformers", "generated_from_trainer", "instruction fine-tuning", "text2text-generation", "en", "arxiv:2304.14402", "base_model:google/flan-t5-base", "base_model:finetune:google/flan-t5-base", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
text2text-generation
2023-06-04T21:36:33Z
--- language: - en license: cc-by-nc-4.0 tags: - generated_from_trainer - instruction fine-tuning pipeline_tag: text2text-generation widget: - text: how can I become more healthy? example_title: example base_model: google/flan-t5-base model-index: - name: flan-t5-small-distil-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a> </p> # LaMini-Flan-T5-248M [![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]() This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/). You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper. <table> <thead> <tr> <th>Base model</th> <th colspan="4">LaMini-LM series (#parameters)</th> </tr> </thead> <tbody> <tr> <td>T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td> <td></td> </tr> <tr> <td>Flan-T5</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td> <td></td> </tr> <tr> <td>Cerebras-GPT</td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td> </tr> <tr> <td>GPT-2</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td> <td><a href="https://huggingface.co/MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td> <td></td> </tr> <tr> <td>GPT-Neo</td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td> <td><a href="https://huggingface.co/MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td> <td></td> <td></td> </tr> <tr> <td>GPT-J</td> <td colspan="4">coming soon</td> </tr> <tr> <td>LLaMA</td> <td colspan="4">coming soon</td> </tr> </tbody> </table> ## Use ### Intended use We recommend using the model to response to human instructions written in natural language. We now show you how to load and use our model using HuggingFace `pipeline()`. ```python # pip install -q transformers from transformers import pipeline checkpoint = "{model_name}" model = pipeline('text2text-generation', model = checkpoint) input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"' generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text'] print("Response", generated_text) ``` ## Training Procedure <p align="center" width="100%"> <a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a> </p> We initialize with [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co/datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 248M. ### Training Hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 128 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ## Evaluation We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper](). ## Limitations More information needed # Citation ```bibtex @article{lamini-lm, author = {Minghao Wu and Abdul Waheed and Chiyu Zhang and Muhammad Abdul-Mageed and Alham Fikri Aji }, title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions}, journal = {CoRR}, volume = {abs/2304.14402}, year = {2023}, url = {https://arxiv.org/abs/2304.14402}, eprinttype = {arXiv}, eprint = {2304.14402} } ```
Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc
Jzuluaga
2023-09-11T14:30:11Z
96
3
transformers
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "en-atc", "en", "generated_from_trainer", "dataset:Jzuluaga/uwb_atcc", "arxiv:2203.16822", "arxiv:2211.04054", "base_model:facebook/wav2vec2-large-960h-lv60-self", "base_model:finetune:facebook/wav2vec2-large-960h-lv60-self", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-11-30T07:59:57Z
--- language: en license: apache-2.0 tags: - audio - automatic-speech-recognition - en-atc - en - generated_from_trainer datasets: - Jzuluaga/uwb_atcc metrics: - wer base_model: facebook/wav2vec2-large-960h-lv60-self model-index: - name: wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: UWB-ATCC dataset (Air Traffic Control Communications) type: Jzuluaga/uwb_atcc config: test split: test metrics: - type: wer value: 17.2 name: TEST WER verified: false - type: wer value: 13.72 name: TEST WER (+LM) verified: false - task: type: automatic-speech-recognition name: Speech Recognition dataset: name: ATCOSIM corpus (Air Traffic Control Communications) type: Jzuluaga/atcosim_corpus config: test split: test metrics: - type: wer value: 15.31 name: TEST WER verified: false - type: wer value: 11.88 name: TEST WER (+LM) verified: false --- # wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc This model is a fine-tuned version of [facebook/wav2vec2-large-960h-lv60-self](https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self) on the [UWB-ATCC corpus](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). <a href="https://colab.research.google.com/github/idiap/w2v2-air-traffic/blob/main/src/eval_xlsr_atc_model.ipynb"> <img alt="GitHub" src="https://colab.research.google.com/assets/colab-badge.svg\"> </a> <a href="https://github.com/idiap/w2v2-air-traffic"> <img alt="GitHub" src="https://img.shields.io/badge/GitHub-Open%20source-green\"> </a> It achieves the following results on the evaluation set: - Loss: 0.7287 - Wer: 0.1756 Paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). Authors: Juan Zuluaga-Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan Abstract: Recent work on self-supervised pre-training focus</b> on leveraging large-scale unlabeled speech data to build robust end-to-end (E2E)acoustic models (AM) that can be later fine-tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre-training and fine-tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS-R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open-source and challenging ATC databases with signal-to-noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid-based ASR baselines by only fine-tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low-resource scenario and gender bias carried by one ATC dataset. Code — GitHub repository: https://github.com/idiap/w2v2-air-traffic ## Usage You can use our Google Colab notebook to run and evaluate our model: https://github.com/idiap/w2v2-air-traffic/blob/master/src/eval_xlsr_atc_model.ipynb ## Intended uses & limitations This model was fine-tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice. ## Training and evaluation data See Table 1 (page 3) in our paper: [How Does Pre-trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications](https://arxiv.org/abs/2203.16822). We described there the partitions of how to use our model. - We use the UWB-ATCC corpus to fine-tune this model. You can download the raw data here: https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-097C-0000-0001-CCA1-0 - However, do not worry, we have prepared the database in `Datasets format`. Here, [UWB-ATCC corpus on HuggingFace](https://huggingface.co/datasets/Jzuluaga/uwb_atcc). You can scroll and check the train/test partitions, and even listen to some audios. - If you want to prepare a database in HuggingFace format, you can follow the data loader script in: [data_loader_atc.py](https://huggingface.co/datasets/Jzuluaga/uwb_atcc/blob/main/atc_data_loader.py). - ## Writing your own inference script If you use language model, you need to install the KenLM bindings with: ```bash conda activate your_environment pip install https://github.com/kpu/kenlm/archive/master.zip ``` The snippet of code: ```python from datasets import load_dataset, load_metric, Audio import torch from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM import torchaudio.functional as F USE_LM = False DATASET_ID = "Jzuluaga/uwb_atcc" MODEL_ID = "Jzuluaga/wav2vec2-large-960h-lv60-self-en-atc-uwb-atcc" # 1. Load the dataset # we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly uwb_atcc_corpus_test = load_dataset(DATASET_ID, "test", split="test") # 2. Load the model model = AutoModelForCTC.from_pretrained(MODEL_ID) # 3. Load the processors, we offer support with LM, which should yield better resutls if USE_LM: processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID) else: processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) # 4. Format the test sample sample = next(iter(uwb_atcc_corpus_test)) file_sampling_rate = sample['audio']['sampling_rate'] # resample if neccessary if file_sampling_rate != 16000: resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy() else: resampled_audio = torch.tensor(sample["audio"]["array"]).numpy() input_values = processor(resampled_audio, return_tensors="pt").input_values # 5. Run the forward pass in the model with torch.no_grad(): logits = model(input_values).logits # get the transcription with processor if USE_LM: transcription = processor.batch_decode(logits.numpy()).text else: pred_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(pred_ids) # print the output print(transcription) ``` # Cite us If you use this code for your research, please cite our paper with: ``` @article{zuluaga2022how, title={How Does Pre-trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022bertraffic, title={BERTraffic: BERT-based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others}, journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar}, year={2022} } ``` and, ``` @article{zuluaga2022atco2, title={ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications}, author={Zuluaga-Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others}, journal={arXiv preprint arXiv:2211.04054}, year={2022} } ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 24 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | No log | 1.06 | 500 | 2.9016 | 0.9995 | | 2.877 | 2.12 | 1000 | 0.9812 | 0.3485 | | 2.877 | 3.18 | 1500 | 0.7842 | 0.2732 | | 0.7834 | 4.25 | 2000 | 0.6962 | 0.2192 | | 0.7834 | 5.31 | 2500 | 0.6527 | 0.2042 | | 0.6084 | 6.37 | 3000 | 0.6220 | 0.1972 | | 0.6084 | 7.43 | 3500 | 0.6442 | 0.1934 | | 0.5147 | 8.49 | 4000 | 0.6793 | 0.1950 | | 0.5147 | 9.55 | 4500 | 0.6432 | 0.1920 | | 0.4566 | 10.62 | 5000 | 0.6605 | 0.1853 | | 0.4566 | 11.68 | 5500 | 0.6393 | 0.1866 | | 0.4155 | 12.74 | 6000 | 0.6918 | 0.1803 | | 0.4155 | 13.8 | 6500 | 0.6514 | 0.1791 | | 0.372 | 14.86 | 7000 | 0.7010 | 0.1851 | | 0.372 | 15.92 | 7500 | 0.6824 | 0.1786 | | 0.3368 | 16.99 | 8000 | 0.6895 | 0.1780 | | 0.3368 | 18.05 | 8500 | 0.7150 | 0.1759 | | 0.3244 | 19.11 | 9000 | 0.7141 | 0.1759 | | 0.3244 | 20.17 | 9500 | 0.7225 | 0.1756 | | 0.2981 | 21.23 | 10000 | 0.7287 | 0.1756 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.2
MaxKazak/ruBert-base-russian-emotion-detection
MaxKazak
2023-09-11T14:27:43Z
13,789
4
transformers
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "sentiment", "emotion-classification", "multilabel", "multiclass", "ru", "dataset:Djacon/ru_goemotions", "base_model:ai-forever/ruBert-base", "base_model:finetune:ai-forever/ruBert-base", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-28T15:25:35Z
--- language: - ru license: apache-2.0 tags: - sentiment - emotion-classification - multilabel - multiclass datasets: - Djacon/ru_goemotions metrics: - accuracy widget: - text: Очень рад тебя видеть! - text: Как дела? - text: Мне немного отвратно это делать - text: Я испытал мурашки от страха - text: Нет ничего радостного в этих горьких новостях - text: Ого, неожидал тебя здесь увидеть! - text: Фу ну и мерзость - text: Мне неприятно общение с тобой base_model: ai-forever/ruBert-base model-index: - name: ruBert-base-russian-emotions-classifier-goEmotions results: - task: type: multilabel-text-classification name: Multilabel Text Classification dataset: name: ru_goemotions type: Djacon/ru_goemotions args: ru metrics: - type: roc_auc value: 92% name: multilabel ROC AUC --- # ruBert-base-russian-emotions-classifier-goEmotions This model is a fine-tuned version of [ai-forever/ruBert-base](https://huggingface.co/ai-forever/ruBert-base) on [Djacon/ru_goemotions](https://huggingface.co/datasets/Djacon/ru_goemotions). It achieves the following results on the evaluation set (2nd epoch): - Loss: 0.2088 - AUC: 0.9240 The quality of the predicted probabilities on the test dataset is the following: | label | joy | interest | surpise | sadness | anger | disgust | fear | guilt | neutral | average | |----------|--------|----------|---------|---------|--------|---------|--------|--------|---------|---------| | AUC | 0.9369 | 0.9213 | 0.9325 | 0.8791 | 0.8374 | 0.9041 | 0.9470 | 0.9758 | 0.8518 | 0.9095 | | F1-micro | 0.9528 | 0.9157 | 0.9697 | 0.9284 | 0.8690 | 0.9658 | 0.9851 | 0.9875 | 0.7654 | 0.9266 | | F1-macro | 0.8369 | 0.7922 | 0.7561 | 0.7392 | 0.7351 | 0.7356 | 0.8176 | 0.8247 | 0.7650 | 0.7781 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | AUC | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1755 | 1.0 | 1685 | 0.1717 | 0.9220 | | 0.1391 | 2.0 | 3370 | 0.1757 | 0.9240 | | 0.0899 | 3.0 | 5055 | 0.2088 | 0.9106 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0
Jukaboo/Llama2_7B_chat_dialogsum_ft_adapters_v12100
Jukaboo
2023-09-11T14:25:04Z
0
0
null
[ "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "base_model:finetune:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
null
2023-09-11T12:57:18Z
--- base_model: meta-llama/Llama-2-7b-chat-hf tags: - generated_from_trainer model-index: - name: Llama2_7B_chat_dialogsum_ft_adapters_v12100 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama2_7B_chat_dialogsum_ft_adapters_v12100 This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
alk/distilbert-base-uncased-finetuned-header-classifier
alk
2023-09-11T14:24:19Z
119
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-24T14:26:38Z
--- license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-header-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-header-classifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
alk/roberta-large-mnli-finetuned-header-classifier
alk
2023-09-11T14:24:14Z
109
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-06-27T19:21:00Z
--- license: mit tags: - generated_from_trainer model-index: - name: roberta-large-mnli-finetuned-header-classifier results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-mnli-finetuned-header-classifier This model is a fine-tuned version of [roberta-large-mnli](https://huggingface.co/roberta-large-mnli) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1
AbdelKarim95/Reinforce-0
AbdelKarim95
2023-09-11T14:23:47Z
0
0
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
reinforcement-learning
2023-09-11T13:04:20Z
--- tags: - CartPole-v1 - reinforce - reinforcement-learning - custom-implementation - deep-rl-class model-index: - name: Reinforce-0 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: CartPole-v1 type: CartPole-v1 metrics: - type: mean_reward value: 445.40 +/- 73.45 name: mean_reward verified: false --- # **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
nightdude/config_8113571
nightdude
2023-09-11T14:23:28Z
1
0
peft
[ "peft", "region:us" ]
null
2023-09-10T14:08:24Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0.dev0
sanjeevnara/stablethumbs-dreambooth-multiconcept
sanjeevnara
2023-09-11T14:15:09Z
33
0
diffusers
[ "diffusers", "stable-diffusion", "text-to-image", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-10T22:48:48Z
--- license: apache-2.0 language: - en library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion --- Stable Diffusion v1.5 trained using Dreambooth approach to generate 'thumbs-up' style images. Also trained to generate professional Soccer player Vinicius Jr.'s face. <be> Prompt Guide: - For a thumbs up style, add 'with a thumbs up' or 'thumbs up gesture' to your prompt e.g. `'photo of Messi with a thumbs up gesture, high quality'.` - For Vinicius Jr, add the rare token 'xjy' e.g. `'photo of xjy with a thumbs up gesture, high quality'`. Uses Diffusers library / StableDiffusionPipeline.
ldos/text_shortening_model_v29
ldos
2023-09-11T14:05:28Z
4
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "base_model:finetune:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text2text-generation
2023-09-11T13:17:46Z
--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: text_shortening_model_v29 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # text_shortening_model_v29 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6052 - Rouge1: 0.5112 - Rouge2: 0.2802 - Rougel: 0.4539 - Rougelsum: 0.4538 - Bert precision: 0.8765 - Bert recall: 0.8742 - Average word count: 8.8438 - Max word count: 16 - Min word count: 4 - Average token count: 13.4174 - % shortened texts with length > 12: 8.7087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bert precision | Bert recall | Average word count | Max word count | Min word count | Average token count | % shortened texts with length > 12 | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:--------------:|:-----------:|:------------------:|:--------------:|:--------------:|:-------------------:|:----------------------------------:| | 1.9361 | 1.0 | 145 | 1.4858 | 0.4996 | 0.2801 | 0.4497 | 0.4507 | 0.8753 | 0.8723 | 8.7808 | 16 | 3 | 13.2372 | 7.2072 | | 1.4692 | 2.0 | 290 | 1.3868 | 0.5013 | 0.2812 | 0.4477 | 0.4485 | 0.8736 | 0.8731 | 9.0601 | 16 | 3 | 13.7147 | 13.2132 | | 1.2301 | 3.0 | 435 | 1.3641 | 0.5294 | 0.307 | 0.4735 | 0.474 | 0.8785 | 0.8799 | 9.0961 | 16 | 4 | 13.7327 | 16.8168 | | 1.049 | 4.0 | 580 | 1.3702 | 0.524 | 0.2979 | 0.4705 | 0.4706 | 0.8782 | 0.8788 | 9.1081 | 16 | 4 | 13.6066 | 13.8138 | | 0.9261 | 5.0 | 725 | 1.3843 | 0.5424 | 0.3166 | 0.489 | 0.4886 | 0.8829 | 0.8833 | 8.9219 | 17 | 4 | 13.6907 | 8.4084 | | 0.8067 | 6.0 | 870 | 1.4039 | 0.5269 | 0.3011 | 0.4682 | 0.4684 | 0.8777 | 0.878 | 9.2252 | 17 | 4 | 13.973 | 13.2132 | | 0.7133 | 7.0 | 1015 | 1.5083 | 0.5168 | 0.3022 | 0.4618 | 0.4613 | 0.8791 | 0.8758 | 8.7447 | 17 | 4 | 13.4655 | 10.2102 | | 0.6428 | 8.0 | 1160 | 1.4856 | 0.5184 | 0.2907 | 0.4624 | 0.4617 | 0.8804 | 0.8754 | 8.5976 | 16 | 3 | 13.0571 | 9.009 | | 0.5741 | 9.0 | 1305 | 1.5332 | 0.5231 | 0.3003 | 0.4669 | 0.4673 | 0.8809 | 0.8791 | 8.8829 | 17 | 4 | 13.5706 | 7.5075 | | 0.5231 | 10.0 | 1450 | 1.5603 | 0.53 | 0.3032 | 0.4725 | 0.4727 | 0.8843 | 0.8775 | 8.4625 | 17 | 4 | 13.033 | 5.7057 | | 0.4607 | 11.0 | 1595 | 1.6079 | 0.5118 | 0.2821 | 0.4583 | 0.4577 | 0.8777 | 0.8715 | 8.3453 | 16 | 4 | 13.012 | 6.9069 | | 0.4136 | 12.0 | 1740 | 1.7147 | 0.5136 | 0.2849 | 0.4558 | 0.4556 | 0.8776 | 0.8734 | 8.7297 | 16 | 3 | 13.3874 | 9.3093 | | 0.3829 | 13.0 | 1885 | 1.7425 | 0.5182 | 0.287 | 0.459 | 0.4591 | 0.8792 | 0.8746 | 8.7207 | 17 | 4 | 13.3934 | 8.1081 | | 0.3366 | 14.0 | 2030 | 1.7518 | 0.5171 | 0.2871 | 0.4564 | 0.4557 | 0.8796 | 0.8735 | 8.5195 | 16 | 4 | 13.0811 | 5.4054 | | 0.3076 | 15.0 | 2175 | 1.8555 | 0.5139 | 0.2891 | 0.4581 | 0.4581 | 0.879 | 0.8754 | 8.7658 | 16 | 4 | 13.2973 | 9.9099 | | 0.2908 | 16.0 | 2320 | 1.8983 | 0.5239 | 0.3011 | 0.4654 | 0.4651 | 0.8799 | 0.8794 | 8.979 | 16 | 4 | 13.6547 | 12.012 | | 0.2606 | 17.0 | 2465 | 1.9211 | 0.5158 | 0.2875 | 0.4538 | 0.4542 | 0.8774 | 0.8739 | 8.7868 | 17 | 2 | 13.5736 | 12.012 | | 0.2477 | 18.0 | 2610 | 1.9208 | 0.51 | 0.2872 | 0.4515 | 0.4517 | 0.8774 | 0.8733 | 8.6577 | 17 | 4 | 13.3093 | 10.8108 | | 0.2195 | 19.0 | 2755 | 1.9720 | 0.5112 | 0.2838 | 0.456 | 0.4559 | 0.8775 | 0.8754 | 8.8799 | 17 | 3 | 13.4835 | 10.8108 | | 0.1998 | 20.0 | 2900 | 1.9987 | 0.511 | 0.2817 | 0.4526 | 0.4525 | 0.8783 | 0.8751 | 8.7838 | 17 | 3 | 13.4955 | 9.9099 | | 0.1936 | 21.0 | 3045 | 2.0389 | 0.5066 | 0.2818 | 0.4482 | 0.4485 | 0.8762 | 0.8722 | 8.6186 | 17 | 4 | 13.1231 | 9.009 | | 0.1813 | 22.0 | 3190 | 2.0735 | 0.5078 | 0.29 | 0.4556 | 0.4562 | 0.8772 | 0.8754 | 8.8198 | 17 | 4 | 13.4895 | 9.3093 | | 0.1726 | 23.0 | 3335 | 2.0743 | 0.5108 | 0.2901 | 0.458 | 0.4581 | 0.8795 | 0.8736 | 8.4775 | 17 | 2 | 13.0931 | 9.009 | | 0.164 | 24.0 | 3480 | 2.1380 | 0.5077 | 0.2887 | 0.4578 | 0.4565 | 0.878 | 0.8727 | 8.4474 | 17 | 4 | 13.003 | 5.7057 | | 0.1506 | 25.0 | 3625 | 2.1435 | 0.5005 | 0.2725 | 0.4456 | 0.4452 | 0.8748 | 0.8717 | 8.6637 | 17 | 4 | 13.2943 | 6.6066 | | 0.1402 | 26.0 | 3770 | 2.1956 | 0.5114 | 0.2899 | 0.4577 | 0.4571 | 0.8769 | 0.8753 | 8.8709 | 17 | 4 | 13.3544 | 9.3093 | | 0.138 | 27.0 | 3915 | 2.2175 | 0.5079 | 0.2824 | 0.4544 | 0.4548 | 0.8772 | 0.8739 | 8.6847 | 17 | 4 | 13.3423 | 8.4084 | | 0.1313 | 28.0 | 4060 | 2.2267 | 0.5048 | 0.2793 | 0.4483 | 0.448 | 0.8747 | 0.8717 | 8.6817 | 17 | 4 | 13.2733 | 9.009 | | 0.122 | 29.0 | 4205 | 2.2464 | 0.5105 | 0.2813 | 0.4544 | 0.4548 | 0.8746 | 0.8736 | 8.9099 | 18 | 4 | 13.4595 | 10.5105 | | 0.1195 | 30.0 | 4350 | 2.2419 | 0.5124 | 0.2922 | 0.461 | 0.4609 | 0.8768 | 0.8733 | 8.6637 | 16 | 4 | 13.2883 | 7.5075 | | 0.1131 | 31.0 | 4495 | 2.2243 | 0.5215 | 0.3025 | 0.4702 | 0.4698 | 0.8802 | 0.878 | 8.7117 | 16 | 4 | 13.3814 | 9.3093 | | 0.1102 | 32.0 | 4640 | 2.2847 | 0.5078 | 0.2826 | 0.4567 | 0.4559 | 0.8788 | 0.8729 | 8.3904 | 18 | 4 | 12.9099 | 6.3063 | | 0.1105 | 33.0 | 4785 | 2.2545 | 0.5049 | 0.2759 | 0.4489 | 0.4484 | 0.8762 | 0.8729 | 8.6667 | 18 | 4 | 13.1952 | 9.009 | | 0.099 | 34.0 | 4930 | 2.2819 | 0.5207 | 0.296 | 0.4662 | 0.4665 | 0.8814 | 0.8775 | 8.6186 | 17 | 4 | 13.1952 | 8.1081 | | 0.1018 | 35.0 | 5075 | 2.2901 | 0.5133 | 0.2812 | 0.4597 | 0.4597 | 0.8777 | 0.8743 | 8.7237 | 17 | 4 | 13.3243 | 10.8108 | | 0.0992 | 36.0 | 5220 | 2.3349 | 0.5011 | 0.272 | 0.4442 | 0.4439 | 0.8738 | 0.8722 | 8.9129 | 16 | 2 | 13.5856 | 11.1111 | | 0.0921 | 37.0 | 5365 | 2.3193 | 0.506 | 0.2816 | 0.4539 | 0.4539 | 0.8776 | 0.8739 | 8.7658 | 16 | 4 | 13.3093 | 8.7087 | | 0.0936 | 38.0 | 5510 | 2.3404 | 0.5101 | 0.2815 | 0.4565 | 0.4566 | 0.8768 | 0.8754 | 8.8168 | 16 | 4 | 13.4535 | 10.5105 | | 0.0833 | 39.0 | 5655 | 2.3583 | 0.5026 | 0.2818 | 0.4512 | 0.4509 | 0.8749 | 0.8743 | 8.8709 | 16 | 3 | 13.4955 | 9.3093 | | 0.0869 | 40.0 | 5800 | 2.3443 | 0.5091 | 0.2855 | 0.4521 | 0.4521 | 0.8769 | 0.8743 | 8.8378 | 16 | 4 | 13.4474 | 11.4114 | | 0.0783 | 41.0 | 5945 | 2.3609 | 0.5045 | 0.2851 | 0.4519 | 0.4513 | 0.8784 | 0.8738 | 8.5946 | 16 | 4 | 13.1261 | 7.8078 | | 0.08 | 42.0 | 6090 | 2.4229 | 0.5053 | 0.2774 | 0.4508 | 0.4506 | 0.8769 | 0.8743 | 8.6667 | 16 | 4 | 13.2853 | 8.4084 | | 0.0792 | 43.0 | 6235 | 2.3731 | 0.5156 | 0.2877 | 0.4618 | 0.4619 | 0.8775 | 0.8771 | 8.955 | 16 | 4 | 13.6937 | 8.7087 | | 0.075 | 44.0 | 6380 | 2.4058 | 0.5119 | 0.286 | 0.453 | 0.4535 | 0.8761 | 0.8762 | 8.976 | 17 | 3 | 13.7387 | 12.012 | | 0.0754 | 45.0 | 6525 | 2.3808 | 0.5142 | 0.2894 | 0.4584 | 0.4583 | 0.8772 | 0.8765 | 8.967 | 16 | 4 | 13.6096 | 12.3123 | | 0.0713 | 46.0 | 6670 | 2.3949 | 0.5093 | 0.2841 | 0.4566 | 0.4568 | 0.8758 | 0.8748 | 8.8559 | 16 | 4 | 13.4775 | 9.9099 | | 0.066 | 47.0 | 6815 | 2.4103 | 0.5094 | 0.2798 | 0.4551 | 0.4553 | 0.8763 | 0.8753 | 8.9009 | 16 | 4 | 13.4655 | 10.2102 | | 0.0684 | 48.0 | 6960 | 2.4284 | 0.5021 | 0.2763 | 0.4476 | 0.4465 | 0.8754 | 0.8733 | 8.6727 | 16 | 4 | 13.2162 | 8.7087 | | 0.0656 | 49.0 | 7105 | 2.4512 | 0.5137 | 0.289 | 0.4584 | 0.4583 | 0.8763 | 0.8748 | 8.8378 | 16 | 4 | 13.4174 | 9.6096 | | 0.0664 | 50.0 | 7250 | 2.4427 | 0.5106 | 0.2789 | 0.4507 | 0.4501 | 0.8761 | 0.8747 | 8.7327 | 16 | 4 | 13.5255 | 8.4084 | | 0.0628 | 51.0 | 7395 | 2.4792 | 0.5069 | 0.2802 | 0.4527 | 0.453 | 0.8775 | 0.8751 | 8.7417 | 16 | 2 | 13.3063 | 8.7087 | | 0.0662 | 52.0 | 7540 | 2.4619 | 0.5103 | 0.281 | 0.4567 | 0.4567 | 0.8776 | 0.874 | 8.6216 | 16 | 3 | 13.1772 | 9.009 | | 0.0633 | 53.0 | 7685 | 2.4705 | 0.5053 | 0.2785 | 0.4489 | 0.449 | 0.8761 | 0.8735 | 8.7447 | 16 | 4 | 13.3874 | 8.7087 | | 0.0592 | 54.0 | 7830 | 2.4978 | 0.5133 | 0.2813 | 0.452 | 0.4528 | 0.8769 | 0.8746 | 8.8438 | 16 | 4 | 13.4354 | 9.6096 | | 0.0577 | 55.0 | 7975 | 2.4823 | 0.5063 | 0.2793 | 0.448 | 0.4488 | 0.8758 | 0.8721 | 8.6036 | 16 | 4 | 13.1111 | 6.9069 | | 0.0609 | 56.0 | 8120 | 2.4779 | 0.5133 | 0.2797 | 0.4539 | 0.4544 | 0.8764 | 0.8756 | 8.97 | 16 | 3 | 13.5976 | 10.5105 | | 0.0539 | 57.0 | 8265 | 2.5132 | 0.5096 | 0.2778 | 0.453 | 0.4536 | 0.877 | 0.8734 | 8.7117 | 16 | 4 | 13.3003 | 7.2072 | | 0.0564 | 58.0 | 8410 | 2.4783 | 0.517 | 0.2872 | 0.4622 | 0.4625 | 0.8778 | 0.8759 | 8.9159 | 16 | 4 | 13.5556 | 11.4114 | | 0.0543 | 59.0 | 8555 | 2.5184 | 0.5071 | 0.2788 | 0.4515 | 0.4513 | 0.8766 | 0.8734 | 8.7177 | 16 | 4 | 13.2583 | 9.009 | | 0.0518 | 60.0 | 8700 | 2.4945 | 0.5049 | 0.2754 | 0.4529 | 0.4529 | 0.8755 | 0.8749 | 8.9459 | 16 | 4 | 13.6787 | 10.8108 | | 0.0541 | 61.0 | 8845 | 2.5282 | 0.4983 | 0.2693 | 0.4414 | 0.4403 | 0.8723 | 0.8726 | 8.973 | 16 | 4 | 13.6667 | 11.1111 | | 0.0532 | 62.0 | 8990 | 2.5237 | 0.5007 | 0.2712 | 0.4464 | 0.4456 | 0.8741 | 0.8744 | 9.0541 | 16 | 4 | 13.7477 | 11.1111 | | 0.0514 | 63.0 | 9135 | 2.5247 | 0.5041 | 0.2784 | 0.4525 | 0.452 | 0.8768 | 0.8735 | 8.7898 | 16 | 4 | 13.4144 | 8.7087 | | 0.0516 | 64.0 | 9280 | 2.5289 | 0.5065 | 0.2826 | 0.4517 | 0.4515 | 0.8753 | 0.8745 | 9.042 | 16 | 4 | 13.6907 | 11.1111 | | 0.0504 | 65.0 | 9425 | 2.5002 | 0.5055 | 0.2826 | 0.4565 | 0.4562 | 0.877 | 0.8724 | 8.6727 | 16 | 4 | 13.3123 | 7.5075 | | 0.0479 | 66.0 | 9570 | 2.5361 | 0.503 | 0.2783 | 0.4529 | 0.4532 | 0.8756 | 0.874 | 8.8529 | 16 | 4 | 13.4865 | 8.1081 | | 0.0515 | 67.0 | 9715 | 2.5260 | 0.5043 | 0.2758 | 0.451 | 0.4512 | 0.874 | 0.8748 | 9.0661 | 17 | 4 | 13.7808 | 10.5105 | | 0.0544 | 68.0 | 9860 | 2.5213 | 0.5051 | 0.2846 | 0.4543 | 0.4545 | 0.8754 | 0.8739 | 8.9219 | 16 | 3 | 13.5586 | 10.5105 | | 0.0445 | 69.0 | 10005 | 2.5543 | 0.5097 | 0.2859 | 0.4573 | 0.4577 | 0.878 | 0.8748 | 8.6937 | 16 | 3 | 13.3363 | 9.009 | | 0.0484 | 70.0 | 10150 | 2.5472 | 0.5028 | 0.2791 | 0.4502 | 0.4503 | 0.8757 | 0.8736 | 8.8078 | 16 | 3 | 13.4264 | 7.5075 | | 0.0437 | 71.0 | 10295 | 2.5621 | 0.5089 | 0.2851 | 0.4553 | 0.4556 | 0.8765 | 0.8742 | 8.8408 | 16 | 4 | 13.5105 | 8.7087 | | 0.0473 | 72.0 | 10440 | 2.5503 | 0.5087 | 0.2818 | 0.4558 | 0.4555 | 0.8771 | 0.8743 | 8.8559 | 16 | 4 | 13.4204 | 8.7087 | | 0.0472 | 73.0 | 10585 | 2.5726 | 0.5168 | 0.2866 | 0.4571 | 0.4577 | 0.8775 | 0.8761 | 8.9039 | 17 | 4 | 13.5285 | 9.6096 | | 0.041 | 74.0 | 10730 | 2.5982 | 0.5137 | 0.2895 | 0.4594 | 0.4601 | 0.8769 | 0.8757 | 8.8709 | 16 | 4 | 13.4805 | 9.3093 | | 0.0409 | 75.0 | 10875 | 2.5589 | 0.5058 | 0.2824 | 0.4553 | 0.4554 | 0.8766 | 0.8746 | 8.7898 | 16 | 4 | 13.3033 | 8.7087 | | 0.0441 | 76.0 | 11020 | 2.5642 | 0.501 | 0.2791 | 0.452 | 0.4521 | 0.8763 | 0.8717 | 8.5225 | 16 | 4 | 13.048 | 6.006 | | 0.0427 | 77.0 | 11165 | 2.5522 | 0.5102 | 0.2864 | 0.4573 | 0.4579 | 0.8784 | 0.8749 | 8.7207 | 17 | 4 | 13.3183 | 7.5075 | | 0.0449 | 78.0 | 11310 | 2.5454 | 0.5071 | 0.2846 | 0.4567 | 0.4561 | 0.8775 | 0.875 | 8.7658 | 16 | 4 | 13.2523 | 7.5075 | | 0.0397 | 79.0 | 11455 | 2.5598 | 0.5111 | 0.2863 | 0.4566 | 0.4569 | 0.8781 | 0.8752 | 8.7267 | 16 | 4 | 13.2973 | 7.2072 | | 0.046 | 80.0 | 11600 | 2.5171 | 0.5063 | 0.2838 | 0.4541 | 0.4541 | 0.8768 | 0.8734 | 8.6456 | 16 | 4 | 13.2492 | 6.6066 | | 0.0403 | 81.0 | 11745 | 2.5398 | 0.5154 | 0.2872 | 0.4584 | 0.4584 | 0.8774 | 0.876 | 8.9489 | 18 | 4 | 13.4955 | 8.7087 | | 0.0407 | 82.0 | 11890 | 2.5526 | 0.5178 | 0.2904 | 0.4631 | 0.4632 | 0.8789 | 0.8769 | 8.8589 | 18 | 4 | 13.4354 | 7.5075 | | 0.0414 | 83.0 | 12035 | 2.5718 | 0.5154 | 0.2876 | 0.4604 | 0.4609 | 0.8783 | 0.8749 | 8.7808 | 17 | 4 | 13.3303 | 7.5075 | | 0.0406 | 84.0 | 12180 | 2.5673 | 0.5138 | 0.2861 | 0.4581 | 0.4587 | 0.8773 | 0.8758 | 8.8949 | 17 | 4 | 13.4895 | 8.1081 | | 0.037 | 85.0 | 12325 | 2.5770 | 0.511 | 0.2873 | 0.4575 | 0.4573 | 0.8775 | 0.876 | 8.8559 | 16 | 4 | 13.4384 | 8.4084 | | 0.0404 | 86.0 | 12470 | 2.5786 | 0.5145 | 0.2848 | 0.4578 | 0.4581 | 0.8774 | 0.8754 | 8.8649 | 16 | 4 | 13.4865 | 8.7087 | | 0.0364 | 87.0 | 12615 | 2.5822 | 0.5089 | 0.2791 | 0.454 | 0.4539 | 0.8761 | 0.8743 | 8.8288 | 17 | 4 | 13.4174 | 7.8078 | | 0.0365 | 88.0 | 12760 | 2.5821 | 0.5105 | 0.2806 | 0.4555 | 0.4559 | 0.8779 | 0.8752 | 8.7838 | 16 | 4 | 13.3634 | 7.8078 | | 0.0359 | 89.0 | 12905 | 2.5798 | 0.5121 | 0.2787 | 0.4546 | 0.4549 | 0.8771 | 0.8753 | 8.8799 | 16 | 4 | 13.4835 | 8.4084 | | 0.0349 | 90.0 | 13050 | 2.5960 | 0.5109 | 0.2788 | 0.4533 | 0.454 | 0.8775 | 0.8747 | 8.8108 | 16 | 4 | 13.3874 | 9.009 | | 0.035 | 91.0 | 13195 | 2.5979 | 0.5072 | 0.2778 | 0.454 | 0.4539 | 0.8764 | 0.8743 | 8.8589 | 16 | 4 | 13.3964 | 9.6096 | | 0.0355 | 92.0 | 13340 | 2.6016 | 0.5101 | 0.2795 | 0.4544 | 0.4548 | 0.8767 | 0.8743 | 8.8589 | 16 | 4 | 13.4505 | 9.009 | | 0.0352 | 93.0 | 13485 | 2.6036 | 0.5107 | 0.2814 | 0.455 | 0.4554 | 0.8772 | 0.8747 | 8.8619 | 16 | 4 | 13.4294 | 9.009 | | 0.0338 | 94.0 | 13630 | 2.6016 | 0.5065 | 0.2771 | 0.4512 | 0.4514 | 0.8758 | 0.8741 | 8.9249 | 16 | 4 | 13.5165 | 9.3093 | | 0.0359 | 95.0 | 13775 | 2.6044 | 0.5071 | 0.2761 | 0.4496 | 0.4501 | 0.8755 | 0.8733 | 8.8559 | 16 | 4 | 13.4264 | 9.6096 | | 0.0349 | 96.0 | 13920 | 2.5986 | 0.5072 | 0.277 | 0.4523 | 0.4524 | 0.8756 | 0.8736 | 8.8679 | 16 | 4 | 13.4655 | 9.6096 | | 0.0358 | 97.0 | 14065 | 2.5994 | 0.5068 | 0.276 | 0.4498 | 0.4502 | 0.8749 | 0.8733 | 8.8589 | 16 | 4 | 13.4685 | 8.7087 | | 0.0338 | 98.0 | 14210 | 2.6041 | 0.5105 | 0.2805 | 0.4536 | 0.4535 | 0.8761 | 0.8741 | 8.8498 | 16 | 4 | 13.4444 | 8.7087 | | 0.0359 | 99.0 | 14355 | 2.6051 | 0.5095 | 0.2774 | 0.452 | 0.4522 | 0.876 | 0.8738 | 8.8529 | 16 | 4 | 13.4174 | 9.009 | | 0.0357 | 100.0 | 14500 | 2.6052 | 0.5112 | 0.2802 | 0.4539 | 0.4538 | 0.8765 | 0.8742 | 8.8438 | 16 | 4 | 13.4174 | 8.7087 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
Tensoic/Llama-2-7B-alpaca-2k-test-merged
Tensoic
2023-09-11T13:52:02Z
6
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "dataset:mhenrichsen/alpaca_2k_test", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2023-09-07T17:32:33Z
--- datasets: - mhenrichsen/alpaca_2k_test --- We fine tune base `Llama-2-7b-hf` on the `henrichsen/alpaca_2k_test` dataset using peft-LORA. Find adapters at: https://huggingface.co/Tensoic/Llama-2-7B-alpaca-2k-test Visit us at: https://tensoic.com ## Training Setup: ``` Number of GPUs: 8x NVIDIA V100 GPUs GPU Memory: 32GB each (SXM2 form factor) ``` ## Training Configuration: ```yaml base_model: meta-llama/Llama-2-7b-hf base_model_config: meta-llama/Llama-2-7b-hf model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.01 output_dir: ./lora-out sequence_len: 4096 sample_packing: false pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 3 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: false fp16: true tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: true flash_attention: false warmup_steps: 10 eval_steps: 20 save_steps: debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` ``` The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ```
RickyIG/image_classification
RickyIG
2023-09-11T13:48:48Z
215
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T13:39:57Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.886 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6283 - Accuracy: 0.886 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7254 | 0.99 | 62 | 2.5418 | 0.819 | | 1.8131 | 2.0 | 125 | 1.8025 | 0.852 | | 1.5991 | 2.98 | 186 | 1.6367 | 0.889 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
facebook/mask2former-swin-base-ade-semantic
facebook
2023-09-11T13:46:21Z
1,503
0
transformers
[ "transformers", "pytorch", "safetensors", "mask2former", "vision", "image-segmentation", "dataset:coco", "arxiv:2112.01527", "arxiv:2107.06278", "license:other", "endpoints_compatible", "region:us" ]
image-segmentation
2023-01-05T12:23:05Z
--- license: other tags: - vision - image-segmentation datasets: - coco widget: - src: http://images.cocodataset.org/val2017/000000039769.jpg example_title: Cats - src: http://images.cocodataset.org/val2017/000000039770.jpg example_title: Castle --- # Mask2Former Mask2Former model trained on ADE20k semantic segmentation (base-sized version, Swin backbone). It was introduced in the paper [Masked-attention Mask Transformer for Universal Image Segmentation ](https://arxiv.org/abs/2112.01527) and first released in [this repository](https://github.com/facebookresearch/Mask2Former/). Disclaimer: The team releasing Mask2Former did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description Mask2Former addresses instance, semantic and panoptic segmentation with the same paradigm: by predicting a set of masks and corresponding labels. Hence, all 3 tasks are treated as if they were instance segmentation. Mask2Former outperforms the previous SOTA, [MaskFormer](https://arxiv.org/abs/2107.06278) both in terms of performance an efficiency by (i) replacing the pixel decoder with a more advanced multi-scale deformable attention Transformer, (ii) adopting a Transformer decoder with masked attention to boost performance without without introducing additional computation and (iii) improving training efficiency by calculating the loss on subsampled points instead of whole masks. ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png) ## Intended uses & limitations You can use this particular checkpoint for panoptic segmentation. See the [model hub](https://huggingface.co/models?search=mask2former) to look for other fine-tuned versions on a task that interests you. ### How to use Here is how to use this model: ```python import requests import torch from PIL import Image from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation # load Mask2Former fine-tuned on ADE20k semantic segmentation processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-ade-semantic") model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-ade-semantic") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) # model predicts class_queries_logits of shape `(batch_size, num_queries)` # and masks_queries_logits of shape `(batch_size, num_queries, height, width)` class_queries_logits = outputs.class_queries_logits masks_queries_logits = outputs.masks_queries_logits # you can pass them to processor for postprocessing predicted_semantic_map = processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] # we refer to the demo notebooks for visualization (see "Resources" section in the Mask2Former docs) ``` For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/mask2former).
facebook/mbart-large-en-ro
facebook
2023-09-11T13:45:59Z
11,496
1
transformers
[ "transformers", "pytorch", "tf", "safetensors", "mbart", "translation", "en", "ro", "license:mit", "endpoints_compatible", "region:us" ]
translation
2022-03-02T23:29:05Z
--- tags: - translation language: - en - ro license: mit --- ### mbart-large-en-ro This is mbart-large-cc25, finetuned on wmt_en_ro. It scores BLEU 28.1 without post processing and BLEU 38 with postprocessing. Instructions in `romanian_postprocessing.md` Original Code: https://github.com/pytorch/fairseq/tree/master/examples/mbart Docs: https://huggingface.co/transformers/master/model_doc/mbart.html Finetuning Code: examples/seq2seq/finetune.py (as of Aug 20, 2020)
davanstrien/detr-resnet-50_find_tuned_beyond_words
davanstrien
2023-09-11T13:45:54Z
165
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "dataset:beyond_words_23", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2023-02-27T22:50:50Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - beyond_words_23 base_model: facebook/detr-resnet-50 model-index: - name: detr-resnet-50_find_tuned_beyond_words results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_find_tuned_beyond_words This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the beyond_words_23 dataset. It achieves the following results on the evaluation set: - Loss: 0.9310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.7439 | 0.56 | 100 | 2.2690 | | 1.7644 | 1.12 | 200 | 1.5053 | | 1.557 | 1.69 | 300 | 1.3136 | | 1.3207 | 2.25 | 400 | 1.2063 | | 1.3705 | 2.81 | 500 | 1.2007 | | 1.1924 | 3.37 | 600 | 1.2704 | | 1.2604 | 3.93 | 700 | 1.1784 | | 1.1982 | 4.49 | 800 | 1.1167 | | 1.1912 | 5.06 | 900 | 1.1562 | | 1.1206 | 5.62 | 1000 | 1.2124 | | 1.1344 | 6.18 | 1100 | 1.0622 | | 1.1388 | 6.74 | 1200 | 1.0425 | | 1.0124 | 7.3 | 1300 | 0.9908 | | 1.0776 | 7.87 | 1400 | 1.1182 | | 0.9614 | 8.43 | 1500 | 0.9967 | | 1.0136 | 8.99 | 1600 | 0.8933 | | 1.0206 | 9.55 | 1700 | 0.9354 | | 0.9529 | 10.11 | 1800 | 0.9751 | | 1.0126 | 10.67 | 1900 | 0.9310 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
flyswot/test2
flyswot
2023-09-11T13:45:47Z
265
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:flyswot/convnext-tiny-224_flyswot", "base_model:finetune:flyswot/convnext-tiny-224_flyswot", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-06-15T10:46:33Z
--- tags: - generated_from_trainer base_model: flyswot/convnext-tiny-224_flyswot model-index: - name: test2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test2 This model is a fine-tuned version of [flyswot/convnext-tiny-224_flyswot](https://huggingface.co/flyswot/convnext-tiny-224_flyswot) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 0.1 | 23 | 0.1128 | 0.9787 | ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.3.0 - Tokenizers 0.12.1
davanstrien/convnext_flyswot
davanstrien
2023-09-11T13:44:59Z
248
0
transformers
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "base_model:finetune:facebook/convnext-base-224-22k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - f1 base_model: facebook/convnext-base-224-22k model-index: - name: convnext_flyswot results: - task: type: image-classification name: Image Classification dataset: name: image_folder type: image_folder args: default metrics: - type: f1 value: 0.959245529738118 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_flyswot This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - F1: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 0.6833 | 0.7484 | | No log | 2.0 | 104 | 0.3666 | 0.8750 | | No log | 3.0 | 156 | 0.2090 | 0.9321 | | No log | 4.0 | 208 | 0.1478 | 0.9449 | | No log | 5.0 | 260 | 0.1002 | 0.9518 | | No log | 6.0 | 312 | 0.1053 | 0.9506 | | No log | 7.0 | 364 | 0.1182 | 0.9616 | | No log | 8.0 | 416 | 0.1102 | 0.9592 | | No log | 9.0 | 468 | 0.1262 | 0.9616 | | 0.203 | 10.0 | 520 | 0.1286 | 0.9616 | | 0.203 | 11.0 | 572 | 0.1355 | 0.9592 | | 0.203 | 12.0 | 624 | 0.1299 | 0.9592 | | 0.203 | 13.0 | 676 | 0.1154 | 0.9592 | | 0.203 | 14.0 | 728 | 0.1385 | 0.9580 | | 0.203 | 15.0 | 780 | 0.1330 | 0.9592 | | 0.203 | 16.0 | 832 | 0.1390 | 0.9592 | | 0.203 | 17.0 | 884 | 0.1386 | 0.9592 | | 0.203 | 18.0 | 936 | 0.1390 | 0.9592 | | 0.203 | 19.0 | 988 | 0.1409 | 0.9592 | | 0.0006 | 20.0 | 1040 | 0.1411 | 0.9592 | | 0.0006 | 21.0 | 1092 | 0.1413 | 0.9592 | | 0.0006 | 22.0 | 1144 | 0.1415 | 0.9592 | | 0.0006 | 23.0 | 1196 | 0.1426 | 0.9592 | | 0.0006 | 24.0 | 1248 | 0.1435 | 0.9592 | | 0.0006 | 25.0 | 1300 | 0.1438 | 0.9592 | | 0.0006 | 26.0 | 1352 | 0.1434 | 0.9592 | | 0.0006 | 27.0 | 1404 | 0.1437 | 0.9592 | | 0.0006 | 28.0 | 1456 | 0.1441 | 0.9592 | | 0.0002 | 29.0 | 1508 | 0.1440 | 0.9592 | | 0.0002 | 30.0 | 1560 | 0.1441 | 0.9592 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
davanstrien/detr-resnet-50_fine_tuned_trade_dir
davanstrien
2023-09-11T13:44:46Z
162
0
transformers
[ "transformers", "pytorch", "tensorboard", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "base_model:finetune:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2022-12-07T16:09:19Z
--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/detr-resnet-50 model-index: - name: detr-resnet-50_fine_tuned_trade_dir results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr-resnet-50_fine_tuned_trade_dir This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2
davanstrien/convnext-tiny-224-wikiart
davanstrien
2023-09-11T13:44:37Z
216
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "convnext", "image-classification", "vision", "generated_from_trainer", "dataset:wiki_art", "base_model:facebook/convnext-tiny-224", "base_model:finetune:facebook/convnext-tiny-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-03-21T12:54:11Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer datasets: - wiki_art metrics: - accuracy base_model: facebook/convnext-tiny-224 model-index: - name: convnext-tiny-224-wikiart results: - task: type: image-classification name: Image Classification dataset: name: huggan/wikiart type: wiki_art config: default split: train args: default metrics: - type: accuracy value: 0.7140050748956372 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-wikiart This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the huggan/wikiart dataset. It achieves the following results on the evaluation set: - Loss: 0.8022 - Accuracy: 0.7140 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9779 | 1.0 | 8654 | 0.9191 | 0.6743 | | 0.9959 | 2.0 | 17308 | 0.8523 | 0.6941 | | 1.0344 | 3.0 | 25962 | 0.8277 | 0.7023 | | 0.8853 | 4.0 | 34616 | 0.8126 | 0.7100 | | 0.9557 | 5.0 | 43270 | 0.8022 | 0.7140 | ### Framework versions - Transformers 4.28.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2
davanstrien/vit-manuscripts
davanstrien
2023-09-11T13:44:14Z
72
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit_mae", "pretraining", "masked-auto-encoding", "generated_from_trainer", "base_model:facebook/vit-mae-base", "base_model:finetune:facebook/vit-mae-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - masked-auto-encoding - generated_from_trainer base_model: facebook/vit-mae-base model-index: - name: vit-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-manuscripts This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset. It achieves the following results on the evaluation set: - Loss: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5303 | 1.0 | 34 | 0.5134 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
davanstrien/iiif_manuscript_vit
davanstrien
2023-09-11T13:44:01Z
251
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-03-02T23:29:05Z
--- license: apache-2.0 tags: - generated_from_trainer metrics: - f1 base_model: google/vit-base-patch16-224-in21k model-index: - name: iiif_manuscript_vit results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iiif_manuscript_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - F1: 0.5996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 | | 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 | | 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 | | 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 | | 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 | | 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 | | 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 | | 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 | | 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 | | 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
davanstrien/dit-base-manuscripts
davanstrien
2023-09-11T13:43:46Z
40
0
transformers
[ "transformers", "pytorch", "tensorboard", "deit", "masked-image-modeling", "generated_from_trainer", "base_model:facebook/deit-base-distilled-patch16-224", "base_model:finetune:facebook/deit-base-distilled-patch16-224", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-08T17:22:08Z
--- license: apache-2.0 tags: - masked-image-modeling - generated_from_trainer base_model: facebook/deit-base-distilled-patch16-224 model-index: - name: dit-base-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # dit-base-manuscripts This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 1.1266 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1333 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1396 | 1.0 | 32 | 1.1261 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
davanstrien/vit-base-patch16-224-in21k-base-manuscripts
davanstrien
2023-09-11T13:43:35Z
34
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit", "masked-image-modeling", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-10T07:44:17Z
--- license: apache-2.0 tags: - masked-image-modeling - generated_from_trainer base_model: google/vit-base-patch16-224-in21k model-index: - name: vit-base-patch16-224-in21k-base-manuscripts results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-base-patch16-224-in21k-base-manuscripts This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 0.5210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 1333 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5198 | 1.0 | 32 | 0.5208 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
davanstrien/test_mae_flysheet
davanstrien
2023-09-11T13:43:28Z
64
0
transformers
[ "transformers", "pytorch", "tensorboard", "vit_mae", "pretraining", "masked-auto-encoding", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/vit-mae-base", "base_model:finetune:facebook/vit-mae-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-13T15:30:34Z
--- license: apache-2.0 tags: - masked-auto-encoding - generated_from_trainer datasets: - image_folder base_model: facebook/vit-mae-base model-index: - name: test_mae_flysheet results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_mae_flysheet This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/flysheet dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3.75e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.284 | 1.0 | 28 | 2.2812 | | 2.137 | 2.0 | 56 | 2.0288 | | 1.6016 | 3.0 | 84 | 1.2437 | | 0.8055 | 4.0 | 112 | 0.7419 | | 0.5304 | 5.0 | 140 | 0.5151 | | 0.4873 | 6.0 | 168 | 0.4884 | | 0.442 | 7.0 | 196 | 0.4441 | | 0.4039 | 8.0 | 224 | 0.4159 | | 0.3866 | 9.0 | 252 | 0.3975 | | 0.391 | 10.0 | 280 | 0.3869 | | 0.3549 | 11.0 | 308 | 0.3801 | | 0.3462 | 12.0 | 336 | 0.3577 | | 0.3402 | 13.0 | 364 | 0.3519 | | 0.3357 | 14.0 | 392 | 0.3447 | | 0.3474 | 15.0 | 420 | 0.3369 | | 0.3254 | 16.0 | 448 | 0.3386 | | 0.3033 | 17.0 | 476 | 0.3294 | | 0.3047 | 18.0 | 504 | 0.3274 | | 0.3103 | 19.0 | 532 | 0.3209 | | 0.3067 | 20.0 | 560 | 0.3186 | | 0.2959 | 21.0 | 588 | 0.3190 | | 0.2899 | 22.0 | 616 | 0.3147 | | 0.2872 | 23.0 | 644 | 0.3082 | | 0.2956 | 24.0 | 672 | 0.3070 | | 0.2865 | 25.0 | 700 | 0.3072 | | 0.2947 | 26.0 | 728 | 0.3072 | | 0.2811 | 27.0 | 756 | 0.3131 | | 0.2935 | 28.0 | 784 | 0.3069 | | 0.2814 | 29.0 | 812 | 0.3043 | | 0.2753 | 30.0 | 840 | 0.2984 | | 0.2823 | 31.0 | 868 | 0.2995 | | 0.2962 | 32.0 | 896 | 0.3012 | | 0.2869 | 33.0 | 924 | 0.3050 | | 0.2833 | 34.0 | 952 | 0.2960 | | 0.2892 | 35.0 | 980 | 0.3039 | | 0.2764 | 36.0 | 1008 | 0.3010 | | 0.2807 | 37.0 | 1036 | 0.2998 | | 0.2843 | 38.0 | 1064 | 0.2989 | | 0.2808 | 39.0 | 1092 | 0.2970 | | 0.2862 | 40.0 | 1120 | 0.2940 | | 0.2601 | 41.0 | 1148 | 0.2952 | | 0.2742 | 42.0 | 1176 | 0.2940 | | 0.2791 | 43.0 | 1204 | 0.2997 | | 0.2759 | 44.0 | 1232 | 0.2951 | | 0.2819 | 45.0 | 1260 | 0.2896 | | 0.287 | 46.0 | 1288 | 0.2938 | | 0.2711 | 47.0 | 1316 | 0.2973 | | 0.2782 | 48.0 | 1344 | 0.2946 | | 0.2674 | 49.0 | 1372 | 0.2913 | | 0.268 | 50.0 | 1400 | 0.2944 | | 0.2624 | 51.0 | 1428 | 0.2940 | | 0.2842 | 52.0 | 1456 | 0.2978 | | 0.2753 | 53.0 | 1484 | 0.2951 | | 0.2733 | 54.0 | 1512 | 0.2880 | | 0.2782 | 55.0 | 1540 | 0.2969 | | 0.2789 | 56.0 | 1568 | 0.2919 | | 0.2815 | 57.0 | 1596 | 0.2916 | | 0.2629 | 58.0 | 1624 | 0.2947 | | 0.2716 | 59.0 | 1652 | 0.2828 | | 0.2623 | 60.0 | 1680 | 0.2924 | | 0.2773 | 61.0 | 1708 | 0.2765 | | 0.268 | 62.0 | 1736 | 0.2754 | | 0.2839 | 63.0 | 1764 | 0.2744 | | 0.2684 | 64.0 | 1792 | 0.2744 | | 0.2865 | 65.0 | 1820 | 0.2716 | | 0.2845 | 66.0 | 1848 | 0.2769 | | 0.2663 | 67.0 | 1876 | 0.2754 | | 0.269 | 68.0 | 1904 | 0.2737 | | 0.2681 | 69.0 | 1932 | 0.2697 | | 0.2748 | 70.0 | 1960 | 0.2779 | | 0.2769 | 71.0 | 1988 | 0.2728 | | 0.2805 | 72.0 | 2016 | 0.2729 | | 0.2771 | 73.0 | 2044 | 0.2728 | | 0.2717 | 74.0 | 2072 | 0.2749 | | 0.267 | 75.0 | 2100 | 0.2732 | | 0.2812 | 76.0 | 2128 | 0.2743 | | 0.2749 | 77.0 | 2156 | 0.2739 | | 0.2746 | 78.0 | 2184 | 0.2730 | | 0.2707 | 79.0 | 2212 | 0.2743 | | 0.2644 | 80.0 | 2240 | 0.2740 | | 0.2691 | 81.0 | 2268 | 0.2727 | | 0.2679 | 82.0 | 2296 | 0.2771 | | 0.2748 | 83.0 | 2324 | 0.2744 | | 0.2744 | 84.0 | 2352 | 0.2703 | | 0.2715 | 85.0 | 2380 | 0.2733 | | 0.2682 | 86.0 | 2408 | 0.2715 | | 0.2641 | 87.0 | 2436 | 0.2722 | | 0.274 | 88.0 | 2464 | 0.2748 | | 0.2669 | 89.0 | 2492 | 0.2753 | | 0.2707 | 90.0 | 2520 | 0.2724 | | 0.2755 | 91.0 | 2548 | 0.2703 | | 0.2769 | 92.0 | 2576 | 0.2737 | | 0.2659 | 93.0 | 2604 | 0.2721 | | 0.2674 | 94.0 | 2632 | 0.2763 | | 0.2723 | 95.0 | 2660 | 0.2723 | | 0.2723 | 96.0 | 2688 | 0.2744 | | 0.272 | 97.0 | 2716 | 0.2686 | | 0.27 | 98.0 | 2744 | 0.2728 | | 0.2721 | 99.0 | 2772 | 0.2743 | | 0.2692 | 100.0 | 2800 | 0.2748 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.4 - Tokenizers 0.11.6
davanstrien/convnext-tiny-224-leicester_binary
davanstrien
2023-09-11T13:43:16Z
190
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "convnext", "image-classification", "vision", "generated_from_trainer", "base_model:facebook/convnext-tiny-224", "base_model:finetune:facebook/convnext-tiny-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-06T16:45:11Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer metrics: - precision - recall - f1 - accuracy base_model: facebook/convnext-tiny-224 model-index: - name: convnext-tiny-224-leicester_binary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-tiny-224-leicester_binary This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set: - Loss: 0.4213 - Precision: 0.4583 - Recall: 0.5 - F1: 0.4783 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 7 | 0.4213 | 0.4583 | 0.5 | 0.4783 | 0.9167 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
davanstrien/convnext-small-224-leicester_binary
davanstrien
2023-09-11T13:43:10Z
189
0
transformers
[ "transformers", "pytorch", "tensorboard", "convnext", "image-classification", "vision", "generated_from_trainer", "base_model:facebook/convnext-small-224", "base_model:finetune:facebook/convnext-small-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2022-12-06T16:56:52Z
--- license: apache-2.0 tags: - image-classification - vision - generated_from_trainer metrics: - f1 base_model: facebook/convnext-small-224 model-index: - name: convnext-small-224-leicester_binary results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-small-224-leicester_binary This model is a fine-tuned version of [facebook/convnext-small-224](https://huggingface.co/facebook/convnext-small-224) on the davanstrien/leicester_loaded_annotations_binary dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - F1: 0.9620 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 7 | 0.5143 | 0.8608 | | 0.5872 | 2.0 | 14 | 0.4215 | 0.8608 | | 0.3903 | 3.0 | 21 | 0.4127 | 0.8608 | | 0.3903 | 4.0 | 28 | 0.3605 | 0.8608 | | 0.3163 | 5.0 | 35 | 0.3152 | 0.8608 | | 0.2942 | 6.0 | 42 | 0.2942 | 0.8608 | | 0.2942 | 7.0 | 49 | 0.2669 | 0.8608 | | 0.2755 | 8.0 | 56 | 0.2316 | 0.8608 | | 0.2281 | 9.0 | 63 | 0.2104 | 0.8608 | | 0.2076 | 10.0 | 70 | 0.1938 | 0.8608 | | 0.2076 | 11.0 | 77 | 0.1803 | 0.8608 | | 0.1832 | 12.0 | 84 | 0.1704 | 0.8608 | | 0.1758 | 13.0 | 91 | 0.1650 | 0.8608 | | 0.1758 | 14.0 | 98 | 0.1714 | 0.8608 | | 0.167 | 15.0 | 105 | 0.1575 | 0.8608 | | 0.1519 | 16.0 | 112 | 0.1549 | 0.8608 | | 0.1519 | 17.0 | 119 | 0.1705 | 0.8608 | | 0.1422 | 18.0 | 126 | 0.1478 | 0.8608 | | 0.1444 | 19.0 | 133 | 0.1437 | 0.8608 | | 0.1396 | 20.0 | 140 | 0.1398 | 0.8608 | | 0.1396 | 21.0 | 147 | 0.1351 | 0.8608 | | 0.1293 | 22.0 | 154 | 0.1370 | 0.8987 | | 0.1361 | 23.0 | 161 | 0.1335 | 0.8987 | | 0.1361 | 24.0 | 168 | 0.1311 | 0.9367 | | 0.1246 | 25.0 | 175 | 0.1289 | 0.9620 | | 0.1211 | 26.0 | 182 | 0.1283 | 0.9620 | | 0.1211 | 27.0 | 189 | 0.1294 | 0.9620 | | 0.1182 | 28.0 | 196 | 0.1306 | 0.9620 | | 0.1172 | 29.0 | 203 | 0.1312 | 0.9620 | | 0.1102 | 30.0 | 210 | 0.1318 | 0.9620 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.12.1+cu113 - Datasets 2.7.1 - Tokenizers 0.13.2
davanstrien/autotrain-dataset-mentions-3390592983
davanstrien
2023-09-11T13:42:56Z
107
0
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain", "en", "dataset:davanstrien/autotrain-data-dataset-mentions", "base_model:neuralmind/bert-base-portuguese-cased", "base_model:finetune:neuralmind/bert-base-portuguese-cased", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-02-10T11:19:48Z
--- language: - en tags: - autotrain - text-classification datasets: - davanstrien/autotrain-data-dataset-mentions widget: - text: ' frases-bertimbau-v0.4 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.' - text: Model description BERTa is a transformer-based masked language model for the Catalan language. It is based on the [RoBERTA](https://github.com/pytorch/fairseq/tree/master/examples/roberta) base model and has been trained on a medium-size corpus collected from publicly available corpora and crawlers - text: Model description More information needed co2_eq_emissions: emissions: 0.008999666562870793 base_model: neuralmind/bert-base-portuguese-cased --- # Model Trained Using AutoTrain - Problem type: Binary Classification - Model ID: 3390592983 - CO2 Emissions (in grams): 0.0090 ## Validation Metrics - Loss: 0.014 - Accuracy: 0.997 - Precision: 0.998 - Recall: 0.997 - AUC: 1.000 - F1: 0.998 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/davanstrien/autotrain-dataset-mentions-3390592983 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-dataset-mentions-3390592983", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```
kartiks26/Llama2-7B
kartiks26
2023-09-11T13:41:59Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T13:39:06Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.5.0
Zekrom997/image_classification
Zekrom997
2023-09-11T13:38:55Z
216
0
transformers
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:food101", "base_model:google/vit-base-patch16-224-in21k", "base_model:finetune:google/vit-base-patch16-224-in21k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2023-09-11T13:10:30Z
--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: image_classification results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: train[:5000] args: default metrics: - name: Accuracy type: accuracy value: 0.883 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 1.6302 - Accuracy: 0.883 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7166 | 0.99 | 62 | 2.5345 | 0.842 | | 1.7982 | 2.0 | 125 | 1.7848 | 0.876 | | 1.5772 | 2.98 | 186 | 1.6252 | 0.894 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3
HiTZ/A2T_RoBERTa_SMFA_WikiEvents-arg_ACE-arg
HiTZ
2023-09-11T13:36:11Z
114
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "text-classification", "zero-shot-classification", "dataset:snli", "dataset:anli", "dataset:multi_nli", "dataset:multi_nli_mismatch", "dataset:fever", "arxiv:2104.14690", "arxiv:2203.13602", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2022-05-02T12:08:43Z
--- pipeline_tag: zero-shot-classification datasets: - snli - anli - multi_nli - multi_nli_mismatch - fever --- # A2T Entailment model **Important:** These pretrained entailment models are intended to be used with the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library but are also fully compatible with the `ZeroShotTextClassificationPipeline` from [Transformers](https://github.com/huggingface/Transformers). Textual Entailment (or Natural Language Inference) has turned out to be a good choice for zero-shot text classification problems [(Yin et al., 2019](https://aclanthology.org/D19-1404/); [Wang et al., 2021](https://arxiv.org/abs/2104.14690); [Sainz and Rigau, 2021)](https://aclanthology.org/2021.gwc-1.6/). Recent research addressed Information Extraction problems with the same idea [(Lyu et al., 2021](https://aclanthology.org/2021.acl-short.42/); [Sainz et al., 2021](https://aclanthology.org/2021.emnlp-main.92/); [Sainz et al., 2022a](), [Sainz et al., 2022b)](https://arxiv.org/abs/2203.13602). The A2T entailment models are first trained with NLI datasets such as MNLI [(Williams et al., 2018)](), SNLI [(Bowman et al., 2015)]() or/and ANLI [(Nie et al., 2020)]() and then fine-tuned to specific tasks that were previously converted to textual entailment format. For more information please, take a look to the [Ask2Transformers](https://github.com/osainz59/Ask2Transformers) library or the following published papers: - [Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction (Sainz et al., EMNLP 2021)](https://aclanthology.org/2021.emnlp-main.92/) - [Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning (Sainz et al., Findings of NAACL-HLT 2022)]() ## About the model The model name describes the configuration used for training as follows: <!-- $$\text{HiTZ/A2T\_[pretrained\_model]\_[NLI\_datasets]\_[finetune\_datasets]}$$ --> <h3 align="center">HiTZ/A2T_[pretrained_model]_[NLI_datasets]_[finetune_datasets]</h3> - `pretrained_model`: The checkpoint used for initialization. For example: RoBERTa<sub>large</sub>. - `NLI_datasets`: The NLI datasets used for pivot training. - `S`: Standford Natural Language Inference (SNLI) dataset. - `M`: Multi Natural Language Inference (MNLI) dataset. - `F`: Fever-nli dataset. - `A`: Adversarial Natural Language Inference (ANLI) dataset. - `finetune_datasets`: The datasets used for fine tuning the entailment model. Note that for more than 1 dataset the training was performed sequentially. For example: ACE-arg. Some models like `HiTZ/A2T_RoBERTa_SMFA_ACE-arg` have been trained marking some information between square brackets (`'[['` and `']]'`) like the event trigger span. Make sure you follow the same preprocessing in order to obtain the best results. ## Cite If you use this model, consider citing the following publications: ```bibtex @inproceedings{sainz-etal-2021-label, title = "Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction", author = "Sainz, Oscar and Lopez de Lacalle, Oier and Labaka, Gorka and Barrena, Ander and Agirre, Eneko", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.92", doi = "10.18653/v1/2021.emnlp-main.92", pages = "1199--1212", } ```
bigmorning/whisper_4_with_init_sun_syl_wd_0__0085
bigmorning
2023-09-11T13:34:24Z
59
0
transformers
[ "transformers", "tf", "whisper", "automatic-speech-recognition", "generated_from_keras_callback", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2023-09-11T13:34:17Z
--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_keras_callback model-index: - name: whisper_4_with_init_sun_syl_wd_0__0085 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_4_with_init_sun_syl_wd_0__0085 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2122 - Train Accuracy: 0.0345 - Train Wermet: 0.0284 - Train Wermet Syl: 0.0346 - Validation Loss: 1.2518 - Validation Accuracy: 0.0208 - Validation Wermet: 0.3241 - Validation Wermet Syl: 0.2884 - Epoch: 84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Train Wermet | Train Wermet Syl | Validation Loss | Validation Accuracy | Validation Wermet | Validation Wermet Syl | Epoch | |:----------:|:--------------:|:------------:|:----------------:|:---------------:|:-------------------:|:-----------------:|:---------------------:|:-----:| | 5.3409 | 0.0111 | 1.3547 | 1.2898 | 3.9789 | 0.0114 | 0.9710 | 0.9563 | 0 | | 4.7143 | 0.0116 | 0.8622 | 0.8228 | 3.9404 | 0.0113 | 0.9823 | 0.9735 | 1 | | 4.6752 | 0.0117 | 0.8472 | 0.8057 | 3.9081 | 0.0114 | 0.9579 | 0.9359 | 2 | | 4.6500 | 0.0117 | 0.8382 | 0.7945 | 3.8820 | 0.0115 | 0.9213 | 0.8856 | 3 | | 4.6282 | 0.0118 | 0.8286 | 0.7805 | 3.8738 | 0.0114 | 0.9433 | 0.9119 | 4 | | 4.6095 | 0.0118 | 0.8190 | 0.7696 | 3.8630 | 0.0115 | 0.9117 | 0.8698 | 5 | | 4.5875 | 0.0119 | 0.7976 | 0.7465 | 3.8341 | 0.0116 | 0.8976 | 0.8552 | 6 | | 4.5682 | 0.0120 | 0.7753 | 0.7227 | 3.8277 | 0.0116 | 0.9014 | 0.8653 | 7 | | 4.5376 | 0.0121 | 0.7528 | 0.7005 | 3.7844 | 0.0118 | 0.8332 | 0.7815 | 8 | | 4.5060 | 0.0122 | 0.7392 | 0.6844 | 3.7537 | 0.0118 | 0.8578 | 0.8152 | 9 | | 4.4580 | 0.0124 | 0.7221 | 0.6694 | 3.7038 | 0.0120 | 0.8190 | 0.7679 | 10 | | 4.3989 | 0.0125 | 0.7156 | 0.6636 | 3.6169 | 0.0122 | 0.7979 | 0.7429 | 11 | | 4.3056 | 0.0128 | 0.7069 | 0.6557 | 3.5098 | 0.0125 | 0.7924 | 0.7396 | 12 | | 4.1673 | 0.0132 | 0.7054 | 0.6584 | 3.3542 | 0.0128 | 0.7759 | 0.7240 | 13 | | 3.9762 | 0.0138 | 0.6987 | 0.6559 | 3.1318 | 0.0133 | 0.7644 | 0.7231 | 14 | | 3.7385 | 0.0145 | 0.6835 | 0.6448 | 2.9144 | 0.0138 | 0.7392 | 0.6955 | 15 | | 3.5040 | 0.0152 | 0.6644 | 0.6298 | 2.7413 | 0.0142 | 0.7019 | 0.6548 | 16 | | 3.2728 | 0.0160 | 0.6408 | 0.6101 | 2.5183 | 0.0149 | 0.6798 | 0.6363 | 17 | | 3.0657 | 0.0167 | 0.6188 | 0.5912 | 2.3594 | 0.0153 | 0.6528 | 0.6103 | 18 | | 2.8703 | 0.0174 | 0.5936 | 0.5685 | 2.2644 | 0.0156 | 0.6310 | 0.5925 | 19 | | 2.6850 | 0.0181 | 0.5680 | 0.5453 | 2.1296 | 0.0160 | 0.6040 | 0.5652 | 20 | | 2.5227 | 0.0188 | 0.5423 | 0.5215 | 2.0019 | 0.0165 | 0.5793 | 0.5403 | 21 | | 2.3878 | 0.0194 | 0.5199 | 0.5015 | 1.8996 | 0.0169 | 0.5592 | 0.5229 | 22 | | 2.2437 | 0.0201 | 0.4959 | 0.4788 | 1.8141 | 0.0172 | 0.5414 | 0.5045 | 23 | | 2.1205 | 0.0207 | 0.4752 | 0.4607 | 1.7245 | 0.0175 | 0.5208 | 0.4838 | 24 | | 1.9919 | 0.0213 | 0.4533 | 0.4390 | 1.6673 | 0.0178 | 0.5026 | 0.4659 | 25 | | 1.9140 | 0.0217 | 0.4355 | 0.4216 | 1.6041 | 0.0181 | 0.4873 | 0.4512 | 26 | | 1.8225 | 0.0222 | 0.4184 | 0.4052 | 1.6271 | 0.0179 | 0.4852 | 0.4511 | 27 | | 1.7265 | 0.0227 | 0.4016 | 0.3895 | 1.5219 | 0.0184 | 0.4635 | 0.4275 | 28 | | 1.6240 | 0.0233 | 0.3833 | 0.3729 | 1.4718 | 0.0186 | 0.4515 | 0.4170 | 29 | | 1.5610 | 0.0236 | 0.3697 | 0.3588 | 1.4404 | 0.0188 | 0.4407 | 0.4056 | 30 | | 1.4719 | 0.0242 | 0.3540 | 0.3449 | 1.4125 | 0.0189 | 0.4310 | 0.3961 | 31 | | 1.4152 | 0.0245 | 0.3421 | 0.3339 | 1.3655 | 0.0191 | 0.4234 | 0.3881 | 32 | | 1.3546 | 0.0249 | 0.3277 | 0.3195 | 1.3419 | 0.0192 | 0.4156 | 0.3816 | 33 | | 1.2565 | 0.0256 | 0.3135 | 0.3060 | 1.3172 | 0.0194 | 0.4065 | 0.3722 | 34 | | 1.2135 | 0.0258 | 0.3026 | 0.2958 | 1.3019 | 0.0194 | 0.4006 | 0.3662 | 35 | | 1.1739 | 0.0261 | 0.2923 | 0.2861 | 1.3843 | 0.0190 | 0.3951 | 0.3587 | 36 | | 1.0950 | 0.0267 | 0.2782 | 0.2733 | 1.2665 | 0.0197 | 0.3883 | 0.3541 | 37 | | 1.0435 | 0.0271 | 0.2673 | 0.2631 | 1.2567 | 0.0197 | 0.3837 | 0.3497 | 38 | | 0.9922 | 0.0275 | 0.2580 | 0.2542 | 1.2566 | 0.0197 | 0.3801 | 0.3444 | 39 | | 0.9387 | 0.0279 | 0.2464 | 0.2438 | 1.2441 | 0.0198 | 0.3767 | 0.3423 | 40 | | 0.9345 | 0.0278 | 0.2393 | 0.2373 | 1.2221 | 0.0199 | 0.3682 | 0.3336 | 41 | | 0.8574 | 0.0285 | 0.2268 | 0.2255 | 1.2258 | 0.0199 | 0.3680 | 0.3338 | 42 | | 0.8275 | 0.0287 | 0.2183 | 0.2180 | 1.2044 | 0.0201 | 0.3628 | 0.3290 | 43 | | 0.8201 | 0.0288 | 0.2114 | 0.2108 | 1.2056 | 0.0201 | 0.3601 | 0.3270 | 44 | | 0.7684 | 0.0292 | 0.2020 | 0.2029 | 1.1879 | 0.0202 | 0.3553 | 0.3215 | 45 | | 0.7262 | 0.0295 | 0.1938 | 0.1947 | 1.2263 | 0.0200 | 0.3537 | 0.3177 | 46 | | 0.7286 | 0.0295 | 0.1876 | 0.1898 | 1.1772 | 0.0203 | 0.3485 | 0.3135 | 47 | | 0.6807 | 0.0300 | 0.1775 | 0.1797 | 1.1761 | 0.0203 | 0.3490 | 0.3155 | 48 | | 0.6609 | 0.0301 | 0.1713 | 0.1742 | 1.1853 | 0.0203 | 0.3484 | 0.3153 | 49 | | 0.6062 | 0.0306 | 0.1615 | 0.1653 | 1.1660 | 0.0204 | 0.3432 | 0.3090 | 50 | | 0.5755 | 0.0309 | 0.1547 | 0.1584 | 1.1698 | 0.0204 | 0.3428 | 0.3089 | 51 | | 0.5600 | 0.0310 | 0.1482 | 0.1524 | 1.1667 | 0.0204 | 0.3398 | 0.3058 | 52 | | 0.5715 | 0.0308 | 0.1449 | 0.1496 | 1.1614 | 0.0205 | 0.3381 | 0.3036 | 53 | | 0.5247 | 0.0313 | 0.1358 | 0.1411 | 1.1639 | 0.0205 | 0.3359 | 0.3025 | 54 | | 0.5085 | 0.0315 | 0.1301 | 0.1358 | 1.2420 | 0.0202 | 0.3412 | 0.3064 | 55 | | 0.4827 | 0.0317 | 0.1239 | 0.1295 | 1.1677 | 0.0205 | 0.3349 | 0.3009 | 56 | | 0.4848 | 0.0317 | 0.1207 | 0.1280 | 1.1653 | 0.0205 | 0.3326 | 0.2991 | 57 | | 0.4323 | 0.0322 | 0.1109 | 0.1185 | 1.1602 | 0.0206 | 0.3299 | 0.2953 | 58 | | 0.4183 | 0.0323 | 0.1057 | 0.1133 | 1.1622 | 0.0206 | 0.3307 | 0.2962 | 59 | | 0.4329 | 0.0322 | 0.1028 | 0.1100 | 1.1714 | 0.0206 | 0.3300 | 0.2950 | 60 | | 0.3962 | 0.0326 | 0.0964 | 0.1045 | 1.1726 | 0.0206 | 0.3311 | 0.2967 | 61 | | 0.3642 | 0.0329 | 0.0898 | 0.0973 | 1.1699 | 0.0206 | 0.3289 | 0.2936 | 62 | | 0.3786 | 0.0327 | 0.0884 | 0.0963 | 1.1734 | 0.0206 | 0.3279 | 0.2929 | 63 | | 0.3698 | 0.0328 | 0.0842 | 0.0925 | 1.1728 | 0.0207 | 0.3282 | 0.2932 | 64 | | 0.3219 | 0.0333 | 0.0765 | 0.0850 | 1.1830 | 0.0207 | 0.3258 | 0.2907 | 65 | | 0.3035 | 0.0335 | 0.0725 | 0.0811 | 1.1840 | 0.0207 | 0.3261 | 0.2904 | 66 | | 0.3522 | 0.0330 | 0.0745 | 0.0826 | 1.2107 | 0.0206 | 0.3299 | 0.2955 | 67 | | 0.3001 | 0.0335 | 0.0663 | 0.0749 | 1.1810 | 0.0207 | 0.3264 | 0.2909 | 68 | | 0.2729 | 0.0338 | 0.0595 | 0.0677 | 1.1911 | 0.0207 | 0.3247 | 0.2886 | 69 | | 0.2696 | 0.0338 | 0.0572 | 0.0654 | 1.1950 | 0.0207 | 0.3260 | 0.2905 | 70 | | 0.2840 | 0.0337 | 0.0563 | 0.0648 | 1.2094 | 0.0207 | 0.3250 | 0.2887 | 71 | | 0.2319 | 0.0342 | 0.0484 | 0.0569 | 1.2107 | 0.0207 | 0.3250 | 0.2878 | 72 | | 0.2371 | 0.0342 | 0.0464 | 0.0541 | 1.2059 | 0.0207 | 0.3240 | 0.2880 | 73 | | 0.2666 | 0.0338 | 0.0486 | 0.0575 | 1.2036 | 0.0207 | 0.3241 | 0.2887 | 74 | | 0.2443 | 0.0340 | 0.0442 | 0.0522 | 1.2106 | 0.0207 | 0.3241 | 0.2877 | 75 | | 0.2118 | 0.0344 | 0.0380 | 0.0456 | 1.2172 | 0.0207 | 0.3240 | 0.2871 | 76 | | 0.1997 | 0.0346 | 0.0354 | 0.0428 | 1.2247 | 0.0208 | 0.3219 | 0.2852 | 77 | | 0.2461 | 0.0341 | 0.0386 | 0.0466 | 1.2257 | 0.0207 | 0.3240 | 0.2874 | 78 | | 0.2367 | 0.0342 | 0.0364 | 0.0431 | 1.2173 | 0.0208 | 0.3234 | 0.2870 | 79 | | 0.1857 | 0.0347 | 0.0294 | 0.0365 | 1.2287 | 0.0208 | 0.3244 | 0.2876 | 80 | | 0.1504 | 0.0351 | 0.0244 | 0.0314 | 1.2425 | 0.0207 | 0.3238 | 0.2871 | 81 | | 0.1438 | 0.0352 | 0.0227 | 0.0287 | 1.2495 | 0.0208 | 0.3222 | 0.2861 | 82 | | 0.1545 | 0.0350 | 0.0232 | 0.0288 | 1.2612 | 0.0207 | 0.3257 | 0.2898 | 83 | | 0.2122 | 0.0345 | 0.0284 | 0.0346 | 1.2518 | 0.0208 | 0.3241 | 0.2884 | 84 | ### Framework versions - Transformers 4.34.0.dev0 - TensorFlow 2.13.0 - Tokenizers 0.13.3
ixa-ehu/roberta-eus-cc100-base-cased
ixa-ehu
2023-09-11T13:33:41Z
112
1
transformers
[ "transformers", "pytorch", "safetensors", "roberta", "fill-mask", "basque", "eu", "arxiv:2203.08111", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2022-03-16T09:47:37Z
--- language: eu license: cc-by-nc-4.0 tags: - basque - roberta --- # Roberta-eus cc100 base cased This is a RoBERTa model for Basque model presented in [Does corpus quality really matter for low-resource languages?](https://arxiv.org/abs/2203.08111). There are several models for Basque using the RoBERTa architecture, using different corpora: - roberta-eus-euscrawl-base-cased: Basque RoBERTa model trained on Euscrawl, a corpus created using tailored crawling from Basque sites. EusCrawl contains 12,528k documents and 423M tokens. - roberta-eus-euscrawl-large-cased: RoBERTa large trained on EusCrawl. - roberta-eus-mC4-base-cased: Basque RoBERTa model trained on the Basque portion of mc4 dataset. - roberta-eus-CC100-base-cased: Basque RoBERTa model trained on Basque portion of cc100 dataset. The models have been tested on five different downstream tasks for Basque: Topic classification, Sentiment analysis, Stance detection, Named Entity Recognition (NER), and Question Answering (refer to the [paper](https://arxiv.org/abs/2203.08111) for more details). See summary of results below: | Model | Topic class. | Sentiment | Stance det. | NER | QA | Average | |----------------------------------|--------------|-----------|-------------|----------|----------|----------| | roberta-eus-euscrawl-base-cased | 76.2 | 77.7 | 57.4 | 86.8 | 34.6 | 66.5 | | roberta-eus-euscrawl-large-cased | **77.6** | 78.8 | 62.9 | **87.2** | **38.3** | **69.0** | | roberta-eus-mC4-base-cased | 75.3 | **80.4** | 59.1 | 86.0 | 35.2 | 67.2 | | roberta-eus-CC100-base-cased | 76.2 | 78.8 | **63.4** | 85.2 | 35.8 | 67.9 | If you use any of these models, please cite the following paper: ``` @misc{artetxe2022euscrawl, title={Does corpus quality really matter for low-resource languages?}, author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa}, year={2022}, eprint={2203.08111}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
kensvin/audio_classification
kensvin
2023-09-11T13:31:00Z
162
0
transformers
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:minds14", "base_model:facebook/wav2vec2-base", "base_model:finetune:facebook/wav2vec2-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2023-09-11T13:27:41Z
--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - minds14 metrics: - accuracy model-index: - name: audio_classification results: - task: name: Audio Classification type: audio-classification dataset: name: minds14 type: minds14 config: en-US split: train args: en-US metrics: - name: Accuracy type: accuracy value: 0.07079646017699115 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # audio_classification This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 2.6513 - Accuracy: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 3 | 2.6439 | 0.0531 | | No log | 1.87 | 7 | 2.6446 | 0.0708 | | 2.6349 | 2.93 | 11 | 2.6484 | 0.0885 | | 2.6349 | 4.0 | 15 | 2.6497 | 0.0885 | | 2.6349 | 4.8 | 18 | 2.6509 | 0.0796 | | 2.6233 | 5.87 | 22 | 2.6513 | 0.0708 | | 2.6233 | 6.93 | 26 | 2.6515 | 0.0708 | | 2.612 | 8.0 | 30 | 2.6513 | 0.0708 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.13.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3
sanchit-gandhi/whisper-medium-fleurs-lang-id
sanchit-gandhi
2023-09-11T13:25:16Z
128,294
14
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "whisper", "audio-classification", "generated_from_trainer", "dataset:xtreme_s", "base_model:openai/whisper-medium", "base_model:finetune:openai/whisper-medium", "license:apache-2.0", "endpoints_compatible", "region:us" ]
audio-classification
2023-02-23T13:37:22Z
--- license: apache-2.0 tags: - audio-classification - generated_from_trainer datasets: - xtreme_s metrics: - accuracy base_model: openai/whisper-medium model-index: - name: whisper-medium-fleurs-lang-id results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Medium FLEURS Language Identification This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [FLEURS subset](https://huggingface.co/datasets/google/xtreme_s#language-identification---fleurs-langid) of the [google/xtreme_s](https://huggingface.co/google/xtreme_s) dataset. It achieves the following results on the evaluation set: - Loss: 0.8413 - Accuracy: 0.8805 To reproduce this run, execute the command in [`run.sh`](https://huggingface.co/sanchit-gandhi/whisper-medium-fleurs-lang-id/blob/main/run.sh). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 0 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.0152 | 1.0 | 8494 | 0.9087 | 0.8431 | | 0.0003 | 2.0 | 16988 | 1.0059 | 0.8460 | | 0.0 | 3.0 | 25482 | 0.8413 | 0.8805 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1 - Datasets 2.9.0 - Tokenizers 0.13.2
SCUT-DLVCLab/lilt-infoxlm-base
SCUT-DLVCLab
2023-09-11T13:20:42Z
828
5
transformers
[ "transformers", "pytorch", "safetensors", "lilt", "feature-extraction", "vision", "arxiv:2202.13669", "license:mit", "endpoints_compatible", "region:us" ]
feature-extraction
2022-10-10T14:19:02Z
--- license: mit tags: - vision --- # LiLT-InfoXLM (base-sized model) Language-Independent Layout Transformer - InfoXLM model by stitching a pre-trained InfoXLM and a pre-trained Language-Independent Layout Transformer (LiLT) together. It was introduced in the paper [LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding](https://arxiv.org/abs/2202.13669) by Wang et al. and first released in [this repository](https://github.com/jpwang/lilt). Disclaimer: The team releasing LiLT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description The Language-Independent Layout Transformer (LiLT) allows to combine any pre-trained RoBERTa encoder from the hub (hence, in any language) with a lightweight Layout Transformer to have a LayoutLM-like model for any language. <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/lilt_architecture.jpg" alt="drawing" width="600"/> ## Intended uses & limitations The model is meant to be fine-tuned on tasks like document image classification, document parsing and document QA. See the [model hub](https://huggingface.co/models?search=lilt) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/transformers/main/model_doc/lilt.html). ### BibTeX entry and citation info ```bibtex @misc{https://doi.org/10.48550/arxiv.2202.13669, doi = {10.48550/ARXIV.2202.13669}, url = {https://arxiv.org/abs/2202.13669}, author = {Wang, Jiapeng and Jin, Lianwen and Ding, Kai}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding}, publisher = {arXiv}, year = {2022}, copyright = {arXiv.org perpetual, non-exclusive license} } ```
clp/llama2-qlora-finetunined-french
clp
2023-09-11T13:20:33Z
0
0
peft
[ "peft", "region:us" ]
null
2023-09-11T13:20:16Z
--- library_name: peft --- ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float16 ### Framework versions - PEFT 0.6.0.dev0
tum-nlp/text2food
tum-nlp
2023-09-11T13:20:31Z
0
0
null
[ "license:openrail", "region:us" ]
null
2023-09-11T13:03:37Z
--- license: openrail --- This model is a necessary LORA weights to generate high quality food images from text. All the details and code can be foundable from [here](https://github.com/yusufani/text2food/tree/main)