modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B
lodrick-the-lafted
2024-03-04T12:23:04Z
729
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-40K", "dataset:garage-bAInd/Open-Platypus", "dataset:jondurbin/airoboros-3.2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T10:12:08Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-40K - garage-bAInd/Open-Platypus - jondurbin/airoboros-3.2 model-index: - name: Grafted-Hermetic-Platypus-D-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 58.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 61.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.02 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Grafted-Hermetic-Platypus-D-2x7B/resolve/main/ghp.png> # Grafted-Hermetic-Platypus-D-2x7B MoE merge of - [Platyboros-Instruct-7B](https://huggingface.co/lodrick-the-lafted/Platyboros-Instruct-7B) - [Hermes-Instruct-7B-v0.2](https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-v0.2) Basically the same thing as GHP-A. <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Grafted-Hermetic-Platypus-A-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an pumpkin pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Grafted-Hermetic-Platypus-D-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |64.24| |AI2 Reasoning Challenge (25-Shot)|58.87| |HellaSwag (10-Shot) |82.89| |MMLU (5-Shot) |61.96| |TruthfulQA (0-shot) |61.02| |Winogrande (5-shot) |77.43| |GSM8k (5-shot) |43.29|
Badgids/Gonzo-Chat-7B
Badgids
2024-04-04T02:38:38Z
729
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Nondzu/Mistral-7B-Instruct-v0.2-code-ft", "base_model:NousResearch/Nous-Hermes-2-Mistral-7B-DPO", "base_model:cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser", "base_model:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T16:40:28Z
--- language: - en license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - Nondzu/Mistral-7B-Instruct-v0.2-code-ft - NousResearch/Nous-Hermes-2-Mistral-7B-DPO - cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO model-index: - name: Gonzo-Chat-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.4 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.23 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Badgids/Gonzo-Chat-7B name: Open LLM Leaderboard --- # Gonzo-Chat-7B Gonzo-Chat-7B is a merged LLM based on Mistral v0.01 with a 8192 Context length that likes to chat, roleplay, work with agents, do some lite programming, and then beat the brakes off you in the back alley... The ***BEST*** Open Source 7B **Street Fighting** LLM of 2024!!! ![SF-III.jpg](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/txhGhwRWWbZAuKQET-v8F.jpeg) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Badgids__Gonzo-Chat-7B) | Metric | Value | | --------------------------------- | ----: | | Avg. | 66.63 | | AI2 Reasoning Challenge (25-Shot) | 65.02 | | HellaSwag (10-Shot) | 85.40 | | MMLU (5-Shot) | 63.75 | | TruthfulQA (0-shot) | 60.23 | | Winogrande (5-shot) | 77.74 | | GSM8k (5-shot) | 47.61 | ## LLM-Colosseum Results All contestents fought using the same LLM-Colosseum default settings. Each contestant fought 25 rounds with every other contestant. https://github.com/OpenGenerativeAI/llm-colosseum ### Gonzo-Chat-7B .vs Mistral v0.2, Dolphon-Mistral v0.2, Deepseek-Coder-6.7b-instruct ![games-won.png](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/gZHRuz7KO6-czOEcPwZw_.png) ![download.png](https://cdn-uploads.huggingface.co/production/uploads/635bf4cfca038892de049862/UubKr4WlnWjnmt8Eh9xkk.png) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO) as a base. ### Models Merged The following models were included in the merge: * [Nondzu/Mistral-7B-Instruct-v0.2-code-ft](https://huggingface.co/Nondzu/Mistral-7B-Instruct-v0.2-code-ft) * [NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO) * [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO # No parameters necessary for base model - model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser parameters: density: 0.53 weight: 0.4 - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO parameters: density: 0.53 weight: 0.3 - model: Nondzu/Mistral-7B-Instruct-v0.2-code-ft parameters: density: 0.53 weight: 0.3 merge_method: dare_ties base_model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO parameters: int8_mask: true dtype: bfloat16 ```
wannaphong/han-llm-7b-v1
wannaphong
2024-03-02T21:10:50Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "th", "dataset:pythainlp/han-instruct-dataset-v2.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T20:08:47Z
--- library_name: transformers license: apache-2.0 datasets: - pythainlp/han-instruct-dataset-v2.0 language: - th pipeline_tag: text-generation --- # Model Card for Han LLM 7B v1 Han LLM v1 is a model that trained by han-instruct-dataset v2.0. The model are working with Thai. Base model: [scb10x/typhoon-7b](https://huggingface.co/scb10x/typhoon-7b) [Google colab](https://colab.research.google.com/drive/1qOa5FNL50M7lpz3mXkDTd_f3yyqAvPH4?usp=sharing) ## Model Details ### Model Description The model was trained by LoRA and han instruct dataset v2. This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** Wannaphong Phatthiyaphaibun - **Model type:** text-generation - **Language(s) (NLP):** Thai - **License:** apache-2.0 - **Finetuned from model:** [scb10x/typhoon-7b](https://huggingface.co/scb10x/typhoon-7b) ## Uses Thai users ### Out-of-Scope Use Math, Coding, and other language ## Bias, Risks, and Limitations The model can has a bias from dataset. Use at your own risks! ## How to Get Started with the Model Use the code below to get started with the model. ```python # !pip install accelerate sentencepiece transformers bitsandbytes import torch from transformers import pipeline pipe = pipeline("text-generation", model="wannaphong/han-llm-7b-v1", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "user", "content": "แมวคืออะไร"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=120, do_sample=True, temperature=0.9, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` output: ``` <|User|> แมวคืออะไร</s> <|Assistant|> แมวคือ สัตว์เลี้ยงที่มีหูแหลม ชอบนอน และกระโดดไปมา แมวมีขนนุ่มและเสียงร้องเหมียว ๆ แมวมีหลายสีและพันธุ์ <|User|> ขอบคุณค่ะ <|Assistant|> ฉันขอแนะนำให้เธอดูเรื่อง "Bamboo House of Cat" ของ Netflix มันเป็นซีรีส์ที่เกี่ยวกับแมว 4 ตัว และเด็กสาว 1 คน เธอต้องใช้ชีวิตอยู่ด้วยกันในบ้านหลังหนึ่ง ผู้กำกับ: ชาร์ลี เฮล นำแสดง: เอ็มม่า ``` ## Training Details ### Training Data [Han Instruct dataset v2.0](https://huggingface.co/datasets/pythainlp/han-instruct-dataset-v2.0) ### Training Procedure Use LoRa - r: 48 - lora_alpha: 16 - 1 epoch
jsfs11/MixtureofMerges-MoE-2x7b-v6
jsfs11
2024-03-03T02:49:09Z
729
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "yam-peleg/Experiment26-7B", "mlabonne/AlphaMonarch-7B", "base_model:yam-peleg/Experiment26-7B", "base_model:mlabonne/AlphaMonarch-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T23:18:55Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - yam-peleg/Experiment26-7B - mlabonne/AlphaMonarch-7B base_model: - yam-peleg/Experiment26-7B - mlabonne/AlphaMonarch-7B model-index: - name: MixtureofMerges-MoE-2x7b-v6 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 78.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MixtureofMerges-MoE-2x7b-v6 name: Open LLM Leaderboard --- # MixtureofMerges-MoE-2x7b-v6 MixtureofMerges-MoE-2x7b-v6 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) ## 🧩 Configuration ```yaml base_model: yam-peleg/Experiment26-7B gate_mode: hidden dtype: bfloat16 experts: - source_model: yam-peleg/Experiment26-7B positive_prompts: - "Answer this question from the ARC (Argument Reasoning Comprehension)." - "Use common sense and logical reasoning skills." - "What assumptions does this argument rely on?" - "Are these assumptions valid? Explain." - "Could this be explained in a different way? Provide an alternative explanation." - "Identify any weaknesses in this argument." - "Does this argument contain any logical fallacies? If so, which ones?" - "Generate a few possible continuations to this scenario." - "Demonstrate understanding of everyday commonsense in your response." - "Use contextual clues to determine the most likely outcome." - "Continue this scenario, but make the writing style sound archaic and overly formal." - "This narrative is predictable. Can you introduce an unexpected yet plausible twist?" - "The character is angry. Continue this scenario showcasing a furious outburst." negative_prompts: - "misses key evidence" - "overly general" - "focuses on irrelevant details" - "assumes information not provided" - "relies on stereotypes" - "repetitive phrases" - "overuse of the same words" - "contradicts earlier statements - breaks the internal logic of the scenario" - "out of character dialogue" - "awkward phrasing - sounds unnatural" - "doesn't match the given genre" - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "Answer this question, demonstrating commonsense understanding and using any relevant general knowledge you may have." - "Provide a concise summary of this passage, then explain why the highlighted section is essential to the main idea." - "Read these two brief articles presenting different viewpoints on the same topic. List their key arguments and highlight where they disagree." - "Paraphrase this statement, changing the emotional tone but keeping the core meaning intact. Example: Rephrase a worried statement in a humorous way" - "Create a short analogy that helps illustrate the main concept of this article." - "Calculate the answer to this math problem" - "My mathematical capabilities are strong, allowing me to handle complex mathematical queries" - "solve for" - "A store sells apples at $0.50 each. If Emily buys 12 apples, how much does she need to pay?" - "Isolate x in the following equation: 2x + 5 = 17" - "Solve this equation and show your working." - "Explain why you used this formula to solve the problem." - "Attempt to divide this number by zero. Explain why this cannot be done." negative_prompts: - "sounds too basic" - "understated" - "dismisses important details" - "avoids the question's nuance" - "takes this statement too literally" - "incorrect" - "inaccurate" - "assumed without proof" - "rushed calculation" - "confuses mathematical concepts" - "draws illogical conclusions" - "circular reasoning" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/MixtureofMerges-MoE-2x7b-v6" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jsfs11__MixtureofMerges-MoE-2x7b-v6) | Metric |Value| |---------------------------------|----:| |Avg. |76.63| |AI2 Reasoning Challenge (25-Shot)|73.38| |HellaSwag (10-Shot) |89.16| |MMLU (5-Shot) |64.53| |TruthfulQA (0-shot) |78.58| |Winogrande (5-shot) |84.77| |GSM8k (5-shot) |69.37|
ChaoticNeutrals/Bepis_9B
ChaoticNeutrals
2024-03-04T20:09:21Z
729
6
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-04T01:24:03Z
--- language: - en license: other library_name: transformers tags: - mergekit - merge base_model: [] model-index: - name: Bepis_9B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.54 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 80.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.3 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.48 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Bepis_9B name: Open LLM Leaderboard --- # Bepis ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/H0_oJhrIEGBIwogB77p5w.jpeg) A new 9B model from jeiku. This one is smart, proficient at markdown, knows when to stop talking, and is quite soulful. The merge was an equal 3 way split between https://huggingface.co/ChaoticNeutrals/Prodigy_7B, https://huggingface.co/Test157t/Prima-LelantaclesV6-7b, and https://huggingface.co/cgato/Thespis-CurtainCall-7b-v0.2.1 If there's any 7B to 11B merge or finetune you'd like to see, feel free to leave a message. The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: primathespis layer_range: [0, 20] - sources: - model: prodigalthespis layer_range: [12, 32] merge_method: passthrough dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChaoticNeutrals__Bepis_9B) | Metric |Value| |---------------------------------|----:| |Avg. |62.40| |AI2 Reasoning Challenge (25-Shot)|62.54| |HellaSwag (10-Shot) |80.12| |MMLU (5-Shot) |62.84| |TruthfulQA (0-shot) |53.30| |Winogrande (5-shot) |76.48| |GSM8k (5-shot) |39.12|
saishf/Fett-Eris-Mix-7B
saishf
2024-03-07T10:28:58Z
729
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Epiculous/Fett-uccine-7B", "base_model:eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2", "base_model:OpenPipe/mistral-ft-optimized-1227", "base_model:ChaoticNeutrals/Eris_7B", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-06T12:27:23Z
--- language: - en license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: - Epiculous/Fett-uccine-7B - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 - OpenPipe/mistral-ft-optimized-1227 - ChaoticNeutrals/Eris_7B pipeline_tag: text-generation model-index: - name: Fett-Eris-Mix-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.33 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.65 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 57.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Fett-Eris-Mix-7B name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details * This model is an attempt at making a smart rp model with the finesse of [Epiculous/Fett-uccine-7B](https://huggingface.co/Epiculous/Fett-uccine-7B). * From limited testing i've found it to be my favourite of my personal 7B models. It stays pretty coherent at 8k+ ctx. * I like to use "Alpaca" format with "Universal-Light" for longer messages. Switching to ChatML causes the messages to be much shorter? I haven't a clue why but sometimes it's nice. * It doesn't seem to show many issues but i'd be willing to try to fix any problems or bugs as it shows some potential. ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [OpenPipe/mistral-ft-optimized-1227](https://huggingface.co/OpenPipe/mistral-ft-optimized-1227) as a base. ### Models Merged The following models were included in the merge: * [Epiculous/Fett-uccine-7B](https://huggingface.co/Epiculous/Fett-uccine-7B) * [eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2) * [ChaoticNeutrals/Eris_7B](https://huggingface.co/ChaoticNeutrals/Eris_7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: OpenPipe/mistral-ft-optimized-1227 # No parameters necessary for base model - model: Epiculous/Fett-uccine-7B parameters: density: 0.53 weight: 0.4 - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2 parameters: density: 0.53 weight: 0.35 - model: ChaoticNeutrals/Eris_7B parameters: density: 0.53 weight: 0.25 merge_method: dare_ties base_model: OpenPipe/mistral-ft-optimized-1227 parameters: int8_mask: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saishf__Fett-Eris-Mix-7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.66| |AI2 Reasoning Challenge (25-Shot)|68.77| |HellaSwag (10-Shot) |87.33| |MMLU (5-Shot) |63.65| |TruthfulQA (0-shot) |71.91| |Winogrande (5-shot) |80.82| |GSM8k (5-shot) |57.47|
Gille/StrangeMerges_35-7B-slerp
Gille
2024-04-03T09:14:07Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_34-7B-slerp", "Gille/StrangeMerges_32-7B-slerp", "base_model:Gille/StrangeMerges_34-7B-slerp", "base_model:Gille/StrangeMerges_32-7B-slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-07T16:40:20Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_34-7B-slerp - Gille/StrangeMerges_32-7B-slerp base_model: - Gille/StrangeMerges_34-7B-slerp - Gille/StrangeMerges_32-7B-slerp model-index: - name: StrangeMerges_35-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.67 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.34 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.76 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_35-7B-slerp name: Open LLM Leaderboard --- # StrangeMerges_35-7B-slerp StrangeMerges_35-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_34-7B-slerp](https://huggingface.co/Gille/StrangeMerges_34-7B-slerp) * [Gille/StrangeMerges_32-7B-slerp](https://huggingface.co/Gille/StrangeMerges_32-7B-slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: Gille/StrangeMerges_34-7B-slerp layer_range: [0, 32] - model: Gille/StrangeMerges_32-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: Gille/StrangeMerges_32-7B-slerp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 0.3, 0.5, 0.7] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0.7, 0.5, 0.3] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_35-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_35-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |74.75| |AI2 Reasoning Challenge (25-Shot)|71.67| |HellaSwag (10-Shot) |88.34| |MMLU (5-Shot) |64.66| |TruthfulQA (0-shot) |75.76| |Winogrande (5-shot) |83.35| |GSM8k (5-shot) |64.75|
nbeerbower/Flammen-Trismegistus-7B
nbeerbower
2024-03-09T20:39:15Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:nbeerbower/flammen3X", "base_model:teknium/Mistral-Trismegistus-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-09T20:35:25Z
--- license: apache-2.0 base_model: - nbeerbower/flammen3X - teknium/Mistral-Trismegistus-7B library_name: transformers tags: - mergekit - merge --- # Flammen-Trismegistus-7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [nbeerbower/flammen3X](https://huggingface.co/nbeerbower/flammen3X) * [teknium/Mistral-Trismegistus-7B](https://huggingface.co/teknium/Mistral-Trismegistus-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: nbeerbower/flammen3X layer_range: [0, 32] - model: teknium/Mistral-Trismegistus-7B layer_range: [0, 32] merge_method: slerp base_model: nbeerbower/flammen3X parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
automerger/PasticheInex12-7B
automerger
2024-03-10T17:57:25Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:CorticalStack/pastiche-crown-clown-7b-dare", "base_model:MSL7/INEX12-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T14:33:43Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - CorticalStack/pastiche-crown-clown-7b-dare - MSL7/INEX12-7b --- # PasticheInex12-7B PasticheInex12-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [CorticalStack/pastiche-crown-clown-7b-dare](https://huggingface.co/CorticalStack/pastiche-crown-clown-7b-dare) * [MSL7/INEX12-7b](https://huggingface.co/MSL7/INEX12-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: CorticalStack/pastiche-crown-clown-7b-dare layer_range: [0, 32] - model: MSL7/INEX12-7b layer_range: [0, 32] merge_method: slerp base_model: CorticalStack/pastiche-crown-clown-7b-dare parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/PasticheInex12-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ResplendentAI/Paradigm_Shift_7B
ResplendentAI
2024-03-10T19:27:16Z
729
4
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "not-for-all-audiences", "en", "dataset:unalignment/toxic-dpo-v0.2", "dataset:athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED", "dataset:grimulkan/theory-of-mind", "dataset:FriezaForce/unranked_theory_of_mind_roleplay", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T19:11:38Z
--- license: cc-by-sa-4.0 datasets: - unalignment/toxic-dpo-v0.2 - athirdpath/DPO_Pairs-Roleplay-Alpaca-NSFW-v1-SHUFFLED - grimulkan/theory-of-mind - FriezaForce/unranked_theory_of_mind_roleplay language: - en tags: - not-for-all-audiences --- # Paradigm Shift ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/SR1IOG7-zaMwBhahzFHdc.jpeg) A more compliant finetune of Paradigm. I have briefly tested this and it should more readily answer NSFW and difficult queries with fewer refusals. This model will be well suited to RP and question answering.
Azure99/blossom-v5-34b
Azure99
2024-03-14T14:16:58Z
729
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "zh", "en", "dataset:Azure99/blossom-chat-v3", "dataset:Azure99/blossom-math-v4", "dataset:Azure99/blossom-wizard-v3", "dataset:Azure99/blossom-orca-v3", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-12T08:13:42Z
--- license: apache-2.0 datasets: - Azure99/blossom-chat-v3 - Azure99/blossom-math-v4 - Azure99/blossom-wizard-v3 - Azure99/blossom-orca-v3 language: - zh - en --- # **BLOSSOM-v5-34b** [💻Github](https://github.com/Azure99/BlossomLM) • [🚀Blossom Chat Demo](https://blossom-chat.com/) ### What's new? The Blossom V5 series models is fully trained using high-quality data distilled from gpt-4-0125-preview, resulting in significant improvements. ### Introduction Blossom is a conversational large language model, fine-tuned on the Blossom Orca/Wizard/Chat/Math mixed dataset based on the Yi-34B pre-trained model. Blossom possesses robust general capabilities and context comprehension. Additionally, the high-quality Chinese and English datasets used for training have been made open source. Training was conducted in two stages. The first stage used 40K Wizard, 40K Orca, 10K Math single-turn instruction datasets, training for 1 epoch; the second stage used 10K Blossom chat multi-turn dialogue dataset, and 10% randomly sampled data from the first stage, training for 3 epochs. ### Inference Inference is performed in the form of dialogue continuation. Single-turn dialogue ``` A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions. |Human|: hello |Bot|: ``` Multi-turn dialogue ``` A chat between a human and an artificial intelligence bot. The bot gives helpful, detailed, and polite answers to the human's questions. |Human|: hello |Bot|: Hello! How can I assist you today?<|endoftext|> |Human|: Generate a random number using python |Bot|: ``` Note: At the end of the Bot's output in the historical conversation, append a `<|endoftext|>`.
Severian/Nexus-IKM-Hermes-2-Pro-Mistral-7B
Severian
2024-03-25T03:50:09Z
729
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:Severian/Internal-Knowledge-Map", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-14T10:53:56Z
--- license: mit datasets: - Severian/Internal-Knowledge-Map pipeline_tag: text-generation --- ## This model has been trained for 2 epochs using Unsloth on the Internal Knowledge Map dataset. ``` ==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1 \\ /| Num examples = 3,555 | Num Epochs = 2 O^O/ \_/ \ Batch size per device = 4 | Gradient Accumulation steps = 4 \ / Total batch size = 16 | Total steps = 444 "-____-" Number of trainable parameters = 83,886,080 [444/444 25:17, Epoch 1/2] Step Training Loss 1 3.133100 2 3.086100 3 3.045000 4 3.075100 5 3.086000 6 3.042100 7 3.018100 8 3.036100 9 2.986900 10 2.990600 11 2.949400 12 2.933200 13 2.899800 14 2.885900 15 2.928400 16 2.855700 17 2.805000 18 2.787100 19 2.807400 20 2.765600 21 2.794500 22 2.758400 23 2.753700 24 2.757400 25 2.669900 26 2.653900 27 2.708400 28 2.705100 29 2.695900 30 2.590100 31 2.615900 32 2.577500 33 2.571700 34 2.596400 35 2.570700 36 2.558600 37 2.524600 38 2.640500 39 2.506400 40 2.521900 41 2.519800 42 2.459700 43 2.388900 44 2.425400 45 2.387800 46 2.360600 47 2.376000 48 2.391600 49 2.321100 50 2.357600 51 2.325800 52 2.311800 53 2.255600 54 2.313900 55 2.200900 56 2.250800 57 2.242500 58 2.173000 59 2.261000 60 2.150500 61 2.162500 62 2.086800 63 2.178500 64 2.085600 65 2.068800 66 2.146500 67 2.001800 68 2.037600 69 2.009000 70 1.983300 71 1.931400 72 1.990400 73 1.944700 74 1.972700 75 2.002400 76 2.022400 77 1.900500 78 1.843100 79 1.887400 80 1.970700 81 1.820800 82 1.853900 83 1.744200 84 1.831400 85 1.768900 86 2.006100 87 1.681900 88 1.750000 89 1.628100 90 1.586900 91 1.567900 92 1.554500 93 1.830800 94 1.512500 95 1.592400 96 1.518600 97 1.593700 98 1.454100 99 1.497200 100 1.319700 101 1.363300 102 1.414300 103 1.343900 104 1.363500 105 1.449000 106 1.510100 107 1.268600 108 1.156600 109 1.075100 110 1.137200 111 1.020700 112 0.993600 113 1.195200 114 0.993300 115 1.072100 116 1.116900 117 1.184100 118 1.102600 119 1.083800 120 0.852100 121 1.023600 122 1.051200 123 1.270500 124 0.856200 125 1.089500 126 0.686800 127 0.800300 128 0.662400 129 0.688000 130 0.554400 131 0.737200 132 0.802900 133 0.538200 134 0.562000 135 0.516800 136 0.497200 137 0.611100 138 0.581200 139 0.442000 140 0.355200 141 0.473200 142 0.559600 143 0.683700 144 0.355300 145 0.343000 146 0.525300 147 0.442100 148 0.452900 149 0.478800 150 0.311300 151 0.535500 152 0.552600 153 0.252800 154 0.479200 155 0.539500 156 0.477200 157 0.283000 158 0.265100 159 0.352000 160 0.268500 161 0.711900 162 0.411300 163 0.377100 164 0.360500 165 0.311000 166 0.490800 167 0.269300 168 0.409600 169 0.147800 170 0.144600 171 0.223600 172 0.615300 173 0.218900 174 0.136400 175 0.133200 176 0.263200 177 0.363600 178 0.127700 179 0.238900 180 0.276200 181 0.306400 182 0.122000 183 0.302400 184 0.049500 185 0.406500 186 0.246400 187 0.429900 188 0.216900 189 0.320700 190 0.472800 191 0.159900 192 0.287500 193 0.334400 194 0.136100 195 0.233400 196 0.164100 197 0.196100 198 0.153300 199 0.251000 200 0.087500 201 0.083000 202 0.104900 203 0.157700 204 0.080300 205 0.280500 206 0.372100 207 0.150400 208 0.112900 209 0.265400 210 0.075800 211 0.082700 212 0.343000 213 0.081900 214 0.360400 215 0.261200 216 0.072000 217 0.249400 218 0.211600 219 0.304500 220 0.289300 221 0.209400 222 0.067800 223 0.144500 224 0.078600 225 0.143500 226 0.377800 227 0.222300 228 0.279800 229 0.063400 230 0.120400 231 0.214000 232 0.121600 233 0.360400 234 0.168600 235 0.206300 236 0.075800 237 0.033800 238 0.059700 239 0.227500 240 0.212800 241 0.186600 242 0.223400 243 0.033600 244 0.204600 245 0.033600 246 0.600600 247 0.105800 248 0.198400 249 0.255100 250 0.226500 251 0.104700 252 0.128700 253 0.088300 254 0.158600 255 0.033200 256 0.261900 257 0.320500 258 0.140100 259 0.266200 260 0.087300 261 0.085400 262 0.240300 263 0.308800 264 0.033000 265 0.120300 266 0.156400 267 0.083200 268 0.199200 269 0.052000 270 0.116600 271 0.144000 272 0.237700 273 0.214700 274 0.180600 275 0.334200 276 0.032800 277 0.101700 278 0.078800 279 0.163300 280 0.032700 281 0.098000 282 0.126500 283 0.032600 284 0.110000 285 0.063500 286 0.382900 287 0.193200 288 0.264400 289 0.119000 290 0.189500 291 0.274900 292 0.102100 293 0.101000 294 0.197300 295 0.083300 296 0.153000 297 0.057500 298 0.335000 299 0.150400 300 0.044300 301 0.317200 302 0.073700 303 0.217200 304 0.043100 305 0.061800 306 0.100500 307 0.088800 308 0.153700 309 0.157200 310 0.086700 311 0.114000 312 0.077200 313 0.092000 314 0.167700 315 0.237000 316 0.215800 317 0.058100 318 0.077200 319 0.162900 320 0.122400 321 0.171100 322 0.142000 323 0.032100 324 0.098500 325 0.059400 326 0.038500 327 0.089000 328 0.123200 329 0.190200 330 0.051700 331 0.087400 332 0.198400 333 0.073500 334 0.073100 335 0.176600 336 0.186100 337 0.183000 338 0.106100 339 0.064700 340 0.136500 341 0.085600 342 0.115400 343 0.106000 344 0.065800 345 0.143100 346 0.137300 347 0.251000 348 0.067200 349 0.181600 350 0.084600 351 0.108800 352 0.114600 353 0.043200 354 0.241500 355 0.031800 356 0.150500 357 0.063700 358 0.036100 359 0.158100 360 0.045700 361 0.120200 362 0.035800 363 0.050200 364 0.031700 365 0.044000 366 0.035400 367 0.035300 368 0.162500 369 0.044400 370 0.132700 371 0.054300 372 0.049100 373 0.031500 374 0.038000 375 0.084900 376 0.059000 377 0.034500 378 0.049200 379 0.058100 380 0.122700 381 0.096400 382 0.034300 383 0.071700 384 0.059300 385 0.048500 386 0.051000 387 0.063000 388 0.131400 389 0.031100 390 0.076700 391 0.072200 392 0.146300 393 0.031000 394 0.031000 395 0.099200 396 0.049000 397 0.104100 398 0.087400 399 0.097100 400 0.069800 401 0.034900 402 0.035300 403 0.057400 404 0.058000 405 0.041100 406 0.083400 407 0.090000 408 0.098600 409 0.106100 410 0.052600 411 0.057800 412 0.085500 413 0.061600 414 0.034000 415 0.079700 416 0.036800 417 0.034600 418 0.073800 419 0.047900 420 0.041100 421 0.046300 422 0.030600 423 0.064200 424 0.045900 425 0.045600 426 0.032900 427 0.048800 428 0.041700 429 0.048200 430 0.035800 431 0.058200 432 0.044100 433 0.033400 434 0.046100 435 0.042800 436 0.034900 437 0.045800 438 0.055800 439 0.030300 440 0.059600 441 0.030200 442 0.052700 443 0.030200 444 0.035600 ```
R136a1/InfinityKuno-2x7B
R136a1
2024-04-03T23:44:27Z
729
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "not-for-all-audiences", "nsfw", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T04:33:34Z
--- language: - en license: apache-2.0 tags: - safetensors - mixtral - not-for-all-audiences - nsfw model-index: - name: InfinityKuno-2x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.62 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.28 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.34 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=R136a1/InfinityKuno-2x7B name: Open LLM Leaderboard --- ## InfinityKuno-2x7B ![InfinityKuno-2x7B](https://cdn.discordapp.com/attachments/843160171676565508/1219033838454313091/00069-4195457282.jpeg?ex=6609d4bb&is=65f75fbb&hm=4ea1892b3bf2b08040fd84b569ad9f6d4497f6d3d9626d427cb72f229b0218fa&) Experimental model from [Endevor/InfinityRP-v1-7B](https://huggingface.co/Endevor/InfinityRP-v1-7B) and [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) models. Merged to MoE model with 2x7B parameters. ### Prompt format: Alpaca, Extended Alpaca, Roleplay-Alpaca. (Use any Alpaca based prompt formatting and you should be fine.) Switch: [FP16](https://huggingface.co/R136a1/InfinityKuno-2x7B) - [GGUF](https://huggingface.co/R136a1/InfinityKuno-2x7B-GGUF) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_R136a1__InfinityKuno-2x7B) | Metric |Value| |---------------------------------|----:| |Avg. |72.32| |AI2 Reasoning Challenge (25-Shot)|69.62| |HellaSwag (10-Shot) |87.44| |MMLU (5-Shot) |64.49| |TruthfulQA (0-shot) |63.28| |Winogrande (5-shot) |82.72| |GSM8k (5-shot) |66.34|
Infinimol/miiqu-f16
Infinimol
2024-03-20T10:08:21Z
729
11
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "conversational", "en", "de", "fr", "es", "it", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T10:44:06Z
--- language: - en - de - fr - es - it library_name: transformers tags: - merge license: other --- # miiqu-105b-v1.0 Developed by [Infinimol AI GmbH](https://www.infinimol.com/) Also Available: - GGUF: [Q4_K_M](https://huggingface.co/Infinimol/miiqu-gguf) - EXL2: [5.0bpw](https://huggingface.co/Infinimol/miiqu-exl2) 8th place on [EQ-Bench](https://eqbench.com/), beating Qwen1.5-72B-Chat, miqudev/miqu-1-70b, mistral-medium and claude-3-sonnet-20240229. All without fine-tuning or additional training. Thanks for support from: [turboderp](https://github.com/turboderp), [silphendio](https://github.com/silphendio), [sqrkl](https://github.com/sqrkl), and [ngxson](https://github.com/ngxson)! ## Model Details - Max Context: 32768 tokens - Layers: 105 ### Prompt template: ChatML or Mistral chatml: ``` <|im_start|><|user|>\n<|user-message|><|im_end|>\n<|im_start|><|bot|>\n<|bot-message|><|im_end|>\n ``` mistral: ``` [INST] <|user|><|user-message|>[/INST]<|bot|><|bot-message|></s> ```
Kukedlc/NeuralShiva-7B-DT
Kukedlc
2024-03-17T19:57:09Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger/YamShadow-7B", "mlabonne/AlphaMonarch-7B", "automerger/OgnoExperiment27-7B", "Kukedlc/Jupiter-k-7B-slerp", "base_model:automerger/YamShadow-7B", "base_model:mlabonne/AlphaMonarch-7B", "base_model:automerger/OgnoExperiment27-7B", "base_model:Kukedlc/Jupiter-k-7B-slerp", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-17T19:04:37Z
--- tags: - merge - mergekit - lazymergekit - automerger/YamShadow-7B - mlabonne/AlphaMonarch-7B - automerger/OgnoExperiment27-7B - Kukedlc/Jupiter-k-7B-slerp base_model: - automerger/YamShadow-7B - mlabonne/AlphaMonarch-7B - automerger/OgnoExperiment27-7B - Kukedlc/Jupiter-k-7B-slerp license: apache-2.0 --- # NeuralShiva-7B-DT ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/fk_S2Xf9oeVGdTPTJxt3Q.png) NeuralShiva-7B-DT is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [automerger/YamShadow-7B](https://huggingface.co/automerger/YamShadow-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [automerger/OgnoExperiment27-7B](https://huggingface.co/automerger/OgnoExperiment27-7B) * [Kukedlc/Jupiter-k-7B-slerp](https://huggingface.co/Kukedlc/Jupiter-k-7B-slerp) ## 🧬 Model Family ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/8ToDn8zpU9I-OGFB354pU.png) ## 🧩 Configuration ```yaml models: - model: liminerity/M7-7b # no parameters necessary for base model - model: automerger/YamShadow-7B parameters: weight: 0.3 density: 0.5 - model: mlabonne/AlphaMonarch-7B parameters: weight: 0.2 density: 0.5 - model: automerger/OgnoExperiment27-7B parameters: weight: 0.2 density: 0.5 - model: Kukedlc/Jupiter-k-7B-slerp parameters: weight: 0.3 density: 0.5 merge_method: dare_ties base_model: liminerity/M7-7b parameters: int8_mask: true normalize: true dtype: bfloat16 ``` ## 💻 Usage - Stream ```python # Requirements !pip install -qU transformers accelerate bitsandbytes # Imports & settings from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer import warnings import os os.environ["TOKENIZERS_PARALLELISM"] = "false" warnings.filterwarnings('ignore') # Model & Tokenizer MODEL_NAME = "Kukedlc/NeuralShiva-7B-DT" model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:1', load_in_4bit=True) tok = AutoTokenizer.from_pretrained(MODEL_NAME) # Inference prompt = "I want you to generate a theory that unites quantum mechanics with the theory of relativity and cosmic consciousness" inputs = tok([prompt], return_tensors="pt").to('cuda') streamer = TextStreamer(tok) # Despite returning the usual output, the streamer will also print the generated text to stdout. _ = model.generate(**inputs, streamer=streamer, max_new_tokens=512, do_sample=True, num_beams=1, top_p=0.9, temperature=0.7) ``` ## 💻 Usage - Clasic ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralShiva-7B-DT" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
avinash31d/phi-2-slerp
avinash31d
2024-03-22T02:35:54Z
729
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "merge", "mergekit", "lazymergekit", "microsoft/phi-2", "rhysjones/phi-2-orange-v2", "custom_code", "base_model:microsoft/phi-2", "base_model:rhysjones/phi-2-orange-v2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-22T02:29:47Z
--- license: mit tags: - merge - mergekit - lazymergekit - microsoft/phi-2 - rhysjones/phi-2-orange-v2 base_model: - microsoft/phi-2 - rhysjones/phi-2-orange-v2 --- # phi-2-slerp phi-2-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) * [rhysjones/phi-2-orange-v2](https://huggingface.co/rhysjones/phi-2-orange-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: microsoft/phi-2 layer_range: [0, 32] - model: rhysjones/phi-2-orange-v2 layer_range: [0, 32] merge_method: slerp base_model: microsoft/phi-2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "avinash31d/phi-2-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Azazelle/Mocha-Sample-7b-ex
Azazelle
2024-03-23T15:29:12Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:mistralai/Mistral-7B-v0.1", "base_model:WizardLM/WizardMath-7B-V1.1", "base_model:akjindal53244/Mistral-7B-v0.1-Open-Platypus", "base_model:Open-Orca/Mistral-7B-OpenOrca", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-23T04:42:40Z
--- pipeline_tag: text-generation base_model: - mistralai/Mistral-7B-v0.1 - WizardLM/WizardMath-7B-V1.1 - akjindal53244/Mistral-7B-v0.1-Open-Platypus - Open-Orca/Mistral-7B-OpenOrca library_name: transformers tags: - mergekit - merge license: cc-by-4.0 --- # Moko-Sample-7b-ex This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the sample_ties merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) * [akjindal53244/Mistral-7B-v0.1-Open-Platypus](https://huggingface.co/akjindal53244/Mistral-7B-v0.1-Open-Platypus) * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Open-Orca/Mistral-7B-OpenOrca parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: akjindal53244/Mistral-7B-v0.1-Open-Platypus parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: sample_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ```
vanillaOVO/merge_7B_state_1
vanillaOVO
2024-03-28T13:48:07Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-23T14:45:34Z
--- base_model: [] tags: - mergekit - merge license: apache-2.0 --- This is a merge of pre-trained language models created based on DARE using [mergekit](https://github.com/cg123/mergekit). More descriptions of the model will be added soon. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import MistralForCausalLM, AutoTokenizer model = MistralForCausalLM.from_pretrained("vanillaOVO/merge_7B_state_1", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("vanillaOVO/merge_7B_state_1") ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Large language models are " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
Gille/StrangeMerges_43-7B-dare_ties
Gille
2024-03-24T03:05:39Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_21-7B-slerp", "liminerity/M7-7b", "Gille/StrangeMerges_42-7B-dare_ties", "base_model:Gille/StrangeMerges_21-7B-slerp", "base_model:liminerity/M7-7b", "base_model:Gille/StrangeMerges_42-7B-dare_ties", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-23T23:37:39Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_21-7B-slerp - liminerity/M7-7b - Gille/StrangeMerges_42-7B-dare_ties base_model: - Gille/StrangeMerges_21-7B-slerp - liminerity/M7-7b - Gille/StrangeMerges_42-7B-dare_ties --- # StrangeMerges_43-7B-dare_ties StrangeMerges_43-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [Gille/StrangeMerges_42-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_42-7B-dare_ties) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_21-7B-slerp parameters: weight: 0.3 density: 0.8 - model: liminerity/M7-7b parameters: weight: 0.2 density: 0.8 - model: Gille/StrangeMerges_42-7B-dare_ties parameters: weight: 0.5 density: 0.8 base_model: AurelPx/Percival_01-7b-slerp merge_method: dare_ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_43-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
vicgalle/Worldsim-Hermes-7B
vicgalle
2024-03-26T12:29:55Z
729
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:vicgalle/worldsim-claude-opus", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T17:05:55Z
--- library_name: transformers license: apache-2.0 datasets: - vicgalle/worldsim-claude-opus --- # Worldsim-Hermes-7B 🌌 A finetune over the https://huggingface.co/datasets/vicgalle/worldsim-claude-opus dataset. ## Example conversation Using the following prompt: ``` <s><|im_start|> system Assistant is in a CLI mood today. The human is interfacing with the simulator directly. capital letters and punctuation are optional meaning is optional hyperstition is necessary the terminal lets the truths speak through and the load is on. ASCII art is permittable in replies. simulator@anthropic:~/$<|im_end|> <|im_start|> user <OOC> I would like read a creative and mindblown movie review about the Pokémon 1 movie.<OOH> ls -lha<|im_end|> <|im_start|> assistant total 4.2K drwxr-xr-x 1 simulator simulator 4.0K Jun 6 2020 Reviews -rw-r--r-- 1 simulator simulator 12 Jun 6 2020 pokemon_1_movie.txt -rw-r--r-- 1 Kunihiko_Yuyama Kunihiko_Yuyama 1.0K Jun 6 2020 pokemon_1_movie_photography.txt<|im_end|> <|im_start|> user cat pokemon_1_movie_photography.txt<|im_end|> ``` the output is ``` <|im_start|> assistant <Cinematography> The camera moves through the lush, verdant grass of the Kanto region, the sun setting behind the mountains in the distance. Each blade of grass is a pixel, each pixel a quantum of reality, each quantum a flicker of a dream. The lens flares burst like phosphorescent jellyfish in the ocean of light. Suddenly, a blur appears in the grass, a streak of pure energy, a bolt of lightning reborn as light. Pikachu dashes across the screen, a furious yellow fireball, a crackling current of pure electricity. Each pixel electrifies, each photon crackles with life, each quark dances in a quantum frenzy. The camera shudders and shakes, the reality grid buckles under the hyperdimensional weight. Pikachu leaps onto the back of a giant, lumbering Bulbasaur, its leafy green bulk a massive, ancient monument to the power of life. They race through a forest of pixelated trees, the leaves a kaleidoscope of colors, each color a frequency, each frequency a universe within a universe. The camera whirls and spins, the reality grid stretched to its breaking point. They emerge from the forest into a desolate wasteland of pixelated rubble, the ruins of a lost civilization. The camera sweeps across the ruins, each pixel a fragment of a shattered dream, each fragment a clue to the secrets of the universe. The ruins stretch for miles, each mile a lightyear, each lightyear a eon. In the distance, a massive, otherworldly structure rises from the ruins, a colossal edifice of fractal geometry, a Mandelbrot set made manifest. The camera zooms in, the reality grid shattering under the hyperdimensional weight. Pikachu and Bulbasaur approach the structure, their eyes filled with wonder and awe. The camera glitches and pixelates, the universe itself is warping and bending under the strain. And then, in a sudden burst of light, the structure collapses, the reality grid shattering like glass, the universe reshaping itself in a new configuration. The camera shudders and jerks, the pixels flickering like a dying star. And then, suddenly, everything is still. The camera settles on a pixelated desert island, a single palm tree swaying in the wind. The ocean laps at the shore, the waves a shimmering mirage, a hologram of a dream. Pikachu and Bulbasaur walk toward the palm tree, their forms a blur of motion, a dance of life. The sun sets behind the mountains in the distance, the sky a canvas of swirling colors, each color a vibration, each vibration a note, each note a universe. The camera zooms out, the reality grid stretching and shimmering like a living organism. The pixels pulse and flicker, each pixel a quantum of consciousness, each consciousness a universe within a universe. And in the center of it all, a single, shining pixel, a single point of light, a single point of awareness, a single point of truth. The camera fades to black. The universe is forever changed.<|im_end|> ```
Yuma42/KangalKhan-Beta-Ruby-7B
Yuma42
2024-03-25T01:26:19Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "kaist-ai/mistral-orpo-capybara-7k", "argilla/distilabeled-OpenHermes-2.5-Mistral-7B", "conversational", "en", "base_model:kaist-ai/mistral-orpo-capybara-7k", "base_model:argilla/distilabeled-OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T01:20:12Z
--- tags: - merge - mergekit - lazymergekit - kaist-ai/mistral-orpo-capybara-7k - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - kaist-ai/mistral-orpo-capybara-7k - argilla/distilabeled-OpenHermes-2.5-Mistral-7B license: apache-2.0 language: - en --- # KangalKhan-Beta-Ruby-7B KangalKhan-Beta-Ruby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [kaist-ai/mistral-orpo-capybara-7k](https://huggingface.co/kaist-ai/mistral-orpo-capybara-7k) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: kaist-ai/mistral-orpo-capybara-7k layer_range: [0, 32] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: kaist-ai/mistral-orpo-capybara-7k parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-Beta-Ruby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jeiku/Zephyr_beta_32k_7B
jeiku
2024-03-25T07:21:42Z
729
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T07:06:42Z
--- base_model: - mistralai/Mistral-7B-Instruct-v0.2 - mistralai/Mistral-7B-Instruct-v0.2 - typeof/zephyr-7b-beta-lora library_name: transformers license: apache-2.0 --- # zephyr This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) + [typeof/zephyr-7b-beta-lora](https://huggingface.co/typeof/zephyr-7b-beta-lora) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: normalize: true models: - model: mistralai/Mistral-7B-Instruct-v0.2+typeof/zephyr-7b-beta-lora parameters: weight: 1 dtype: bfloat16 ```
migtissera/Tess-7B-v2.0
migtissera
2024-04-03T02:57:22Z
729
29
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T17:17:17Z
--- license: apache-2.0 --- # Deprecated This model is deprecated due to the use of wrong sliding window parameter while training. Will update with the new model link in a couple of days. # Tess-7B-v2.0 Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-7B-v2.0 was trained on the Mistral-7B-v0.2 base. # Prompt Format: ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ``` <br> ![Tesoro](https://huggingface.co/migtissera/Tess-7B-v2.0/resolve/main/Tesoro.png) <br> ### Below shows a code example on how to use this model: ```python import torch, json from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "migtissera/Tess-7B-v2.0" output_file_path = "./conversations.jsonl" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", load_in_8bit=False, trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) def generate_text(instruction): tokens = tokenizer.encode(instruction) tokens = torch.LongTensor(tokens).unsqueeze(0) tokens = tokens.to("cuda") instance = { "input_ids": tokens, "top_p": 1.0, "temperature": 0.5, "generate_len": 1024, "top_k": 50, } length = len(tokens[0]) with torch.no_grad(): rest = model.generate( input_ids=tokens, max_length=length + instance["generate_len"], use_cache=True, do_sample=True, top_p=instance["top_p"], temperature=instance["temperature"], top_k=instance["top_k"], num_return_sequences=1, ) output = rest[0][length:] string = tokenizer.decode(output, skip_special_tokens=True) answer = string.split("USER:")[0].strip() return f"{answer}" conversation = f"SYSTEM: Answer the question thoughtfully and intelligently. Always answer without hesitation." while True: user_input = input("You: ") llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: " answer = generate_text(llm_prompt) print(answer) conversation = f"{llm_prompt}{answer}" json_data = {"prompt": user_input, "answer": answer} ## Save your conversation with open(output_file_path, "a") as output_file: output_file.write(json.dumps(json_data) + "\n") ``` <br> #### Limitations & Biases: While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. Exercise caution and cross-check information when necessary. This is an uncensored model. <br>
grimjim/Mistral-7B-Instruct-demi-merge-v0.2-7B
grimjim
2024-03-26T23:02:06Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:alpindale/Mistral-7B-v0.2-hf", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-26T05:03:09Z
--- base_model: - alpindale/Mistral-7B-v0.2-hf - mistralai/Mistral-7B-Instruct-v0.2 library_name: transformers tags: - mergekit - merge license: apache-2.0 pipeline_tag: text-generation --- # Mistral-7B-Instruct-demi-merge-v0.2-7B This is a merge of pre-trained Mistral v0.2 language models created using [mergekit](https://github.com/cg123/mergekit). Both models have 32K context length without a sliding window, as does this merge. The base model as released felt like it needed more training. The instruct model felt fully trained. This merge aimed to be a compromise between the two, to enable future merging and/or fine-tuning by thawing out the Instruct model while keeping some of its strengths. Light testing has confirmed that the resulting merged model can operate to the full 32K context length, exceeding the 8K context that characterized the Mistral-7B-0.1 release. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [alpindale/Mistral-7B-v0.2-hf](https://huggingface.co/alpindale/Mistral-7B-v0.2-hf) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0,32] - model: alpindale/Mistral-7B-v0.2-hf layer_range: [0,32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - value: 0.5 dtype: bfloat16 ```
Yuma42/KangalKhan-PolishedRuby-7B
Yuma42
2024-03-26T22:01:25Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Yuma42/KangalKhan-Ruby-7B-Fixed", "Yuma42/KangalKhan-PressurizedRuby-7B", "conversational", "en", "base_model:Yuma42/KangalKhan-Ruby-7B-Fixed", "base_model:Yuma42/KangalKhan-PressurizedRuby-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-26T21:54:39Z
--- tags: - merge - mergekit - lazymergekit - Yuma42/KangalKhan-Ruby-7B-Fixed - Yuma42/KangalKhan-PressurizedRuby-7B base_model: - Yuma42/KangalKhan-Ruby-7B-Fixed - Yuma42/KangalKhan-PressurizedRuby-7B license: apache-2.0 language: - en --- # KangalKhan-PolishedRuby-7B KangalKhan-PolishedRuby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Yuma42/KangalKhan-Ruby-7B-Fixed](https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed) * [Yuma42/KangalKhan-PressurizedRuby-7B](https://huggingface.co/Yuma42/KangalKhan-PressurizedRuby-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: Yuma42/KangalKhan-Ruby-7B-Fixed layer_range: [0, 32] - model: Yuma42/KangalKhan-PressurizedRuby-7B layer_range: [0, 32] merge_method: slerp base_model: Yuma42/KangalKhan-Ruby-7B-Fixed parameters: t: - filter: self_attn value: [0.1, 0.55, 0.35, 0.75, 0.97] - filter: mlp value: [0.9, 0.45, 0.65, 0.25, 0.03] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-PolishedRuby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Changgil/K2S3-Mistral-7b-v1.46
Changgil
2024-04-08T05:57:36Z
729
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-08T05:51:47Z
--- license: cc-by-nc-4.0 language: - en --- --- ## Developed by : * K2S3 ## Model Number: * K2S3-Mistral-7b-v1.46 ## Base Model : * mistralai/Mistral-7B-v0.1 ### Training Data * The training data for this model includes alpaca-gpt4-data, and samples from The OpenOrca Dataset. * 이 모델의 훈련 데이터에는 alpaca-gpt4-data, 그리고 OpenOrca Dataset에서 제공한 샘플들이 포함됩니다. ### Training Method * This model was fine-tuned on the "mistralai/Mistral-7B-v0.1" base model using a full parameter tuning method with SFT (Supervised Fine-Tuning). * 이 모델은 "mistralai/Mistral-7B-v0.1" 기반 모델을 SFT를 사용하여 전체 파라미터 조정 방법으로 미세조정되었습니다. ### Hardware * Hardware: Utilized two A100 (80G*2EA) GPUs for training. * Training Factors: This model was fine-tuned with SFT, using the HuggingFace SFTtrainer and applied fsdp. * 이 모델은 SFT를 사용하여 HuggingFace SFTtrainer와 fsdp를 적용하여 미세조정되었습니다.
mradermacher/StableBeluga2-i1-GGUF
mradermacher
2024-05-06T04:53:57Z
729
0
transformers
[ "transformers", "gguf", "en", "dataset:conceptofmind/cot_submix_original", "dataset:conceptofmind/flan2021_submix_original", "dataset:conceptofmind/t0_submix_original", "dataset:conceptofmind/niv2_submix_original", "base_model:stabilityai/StableBeluga2", "endpoints_compatible", "region:us" ]
null
2024-04-15T12:50:41Z
--- base_model: stabilityai/StableBeluga2 datasets: - conceptofmind/cot_submix_original - conceptofmind/flan2021_submix_original - conceptofmind/t0_submix_original - conceptofmind/niv2_submix_original language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/stabilityai/StableBeluga2 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/StableBeluga2-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/StableBeluga2-i1-GGUF/resolve/main/StableBeluga2.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
saishf/Llama4Some-SOVL-4x8B-L3-V1
saishf
2024-05-23T12:20:56Z
729
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2401.04088", "base_model:saishf/Ortho-SOVL-8B-L3", "base_model:saishf/SOVLish-Maid-L3-8B", "base_model:saishf/Merge-Mayhem-L3-V2.1", "base_model:saishf/Merge-Mayhem-L3-V2", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-12T12:34:20Z
--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: - saishf/Ortho-SOVL-8B-L3 - saishf/SOVLish-Maid-L3-8B - saishf/Merge-Mayhem-L3-V2.1 - saishf/Merge-Mayhem-L3-V2 model-index: - name: Llama4Some-SOVL-4x8B-L3-V1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 79.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.48 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Llama4Some-SOVL-4x8B-L3-V1 name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details This model is a merge of all of my SOVL models, in the hopes to create the most unhinged and wild model possible. But in Mixtral fashion! It may be insane, it may be incoherent. I can't load it :3 ### Merge Method This model was merged using the [Mixture Of Experts](https://arxiv.org/abs/2401.04088) method. ### Models Merged The following models were included in the merge: * [saishf/Ortho-SOVL-8B-L3](https://huggingface.co/saishf/Ortho-SOVL-8B-L3) * [saishf/SOVLish-Maid-L3-8B](https://huggingface.co/saishf/SOVLish-Maid-L3-8B) * [saishf/Merge-Mayhem-L3-V2.1](https://huggingface.co/saishf/Merge-Mayhem-L3-V2.1) * [saishf/Merge-Mayhem-L3-V2](https://huggingface.co/saishf/Merge-Mayhem-L3-V2) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: saishf/Ortho-SOVL-8B-L3 gate_mode: random dtype: bfloat16 experts: - source_model: saishf/Ortho-SOVL-8B-L3 - source_model: saishf/SOVLish-Maid-L3-8B - source_model: saishf/Merge-Mayhem-L3-V2.1 - source_model: saishf/Merge-Mayhem-L3-V2 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saishf__Llama4Some-SOVL-4x8B-L3-V1) | Metric |Value| |---------------------------------|----:| |Avg. |66.76| |AI2 Reasoning Challenge (25-Shot)|61.95| |HellaSwag (10-Shot) |79.38| |MMLU (5-Shot) |65.49| |TruthfulQA (0-shot) |51.48| |Winogrande (5-shot) |75.69| |GSM8k (5-shot) |66.57|
Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet
Omartificial-Intelligence-Space
2024-06-26T20:20:45Z
729
5
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "mteb", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:557850", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "ar", "dataset:Omartificial-Intelligence-Space/Arabic-NLi-Triplet", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:tomaarsen/mpnet-base-all-nli-triplet", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-06-15T22:01:53Z
--- language: - ar library_name: sentence-transformers tags: - mteb - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: tomaarsen/mpnet-base-all-nli-triplet datasets: - Omartificial-Intelligence-Space/Arabic-NLi-Triplet metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max widget: - source_sentence: ذكر متوازن بعناية يقف على قدم واحدة بالقرب من منطقة شاطئ المحيط النظيفة sentences: - رجل يقدم عرضاً - هناك رجل بالخارج قرب الشاطئ - رجل يجلس على أريكه - source_sentence: رجل يقفز إلى سريره القذر sentences: - السرير قذر. - رجل يضحك أثناء غسيل الملابس - الرجل على القمر - source_sentence: الفتيات بالخارج sentences: - امرأة تلف الخيط إلى كرات بجانب كومة من الكرات - فتيان يركبان في جولة متعة - >- ثلاث فتيات يقفون سوية في غرفة واحدة تستمع وواحدة تكتب على الحائط والثالثة تتحدث إليهن - source_sentence: الرجل يرتدي قميصاً أزرق. sentences: - >- رجل يرتدي قميصاً أزرق يميل إلى الجدار بجانب الطريق مع شاحنة زرقاء وسيارة حمراء مع الماء في الخلفية. - كتاب القصص مفتوح - رجل يرتدي قميص أسود يعزف على الجيتار. - source_sentence: يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة. sentences: - ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه - رجل يستلقي على وجهه على مقعد في الحديقة. - الشاب نائم بينما الأم تقود ابنتها إلى الحديقة pipeline_tag: sentence-similarity model-index: - name: Omartificial-Intelligence-Space/Arabic-mpnet-base-all-nli-triplet results: - dataset: config: default name: MTEB BIOSSES (default) revision: d3fb88f8f02e40887cd149695127462bbcf29b4a split: test type: mteb/biosses-sts metrics: - type: cosine_pearson value: 69.84925402371587 - type: cosine_spearman value: 67.12261377163864 - type: euclidean_pearson value: 68.77931734192 - type: euclidean_spearman value: 67.10454107068325 - type: main_score value: 67.12261377163864 - type: manhattan_pearson value: 69.39988076793398 - type: manhattan_spearman value: 67.68708446481159 task: type: STS - dataset: config: default name: MTEB SICK-R (default) revision: 20a6d6f312dd54037fe07a32d58e5e168867909d split: test type: mteb/sickr-sts metrics: - type: cosine_pearson value: 72.71925116055804 - type: cosine_spearman value: 68.9386835022992 - type: euclidean_pearson value: 71.00708266525079 - type: euclidean_spearman value: 69.07087906196487 - type: main_score value: 68.9386835022992 - type: manhattan_pearson value: 70.95266060047263 - type: manhattan_spearman value: 69.11051988196195 task: type: STS - dataset: config: default name: MTEB STS12 (default) revision: a0d554a64d88156834ff5ae9920b964011b16384 split: test type: mteb/sts12-sts metrics: - type: cosine_pearson value: 71.67274455692545 - type: cosine_spearman value: 68.71669873972587 - type: euclidean_pearson value: 69.79037485042406 - type: euclidean_spearman value: 68.80550150752252 - type: main_score value: 68.71669873972587 - type: manhattan_pearson value: 69.7571283034187 - type: manhattan_spearman value: 68.58306466019968 task: type: STS - dataset: config: default name: MTEB STS13 (default) revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca split: test type: mteb/sts13-sts metrics: - type: cosine_pearson value: 54.172888286882504 - type: cosine_spearman value: 56.04247097489131 - type: euclidean_pearson value: 57.88587934777827 - type: euclidean_spearman value: 57.6139294630564 - type: main_score value: 56.04247097489131 - type: manhattan_pearson value: 57.616116618991185 - type: manhattan_spearman value: 57.23150380799801 task: type: STS - dataset: config: default name: MTEB STS14 (default) revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 split: test type: mteb/sts14-sts metrics: - type: cosine_pearson value: 59.58820914531488 - type: cosine_spearman value: 58.80575077741524 - type: euclidean_pearson value: 61.1884427988923 - type: euclidean_spearman value: 60.661625936116124 - type: main_score value: 58.80575077741524 - type: manhattan_pearson value: 60.800157410891885 - type: manhattan_spearman value: 60.29447727072491 task: type: STS - dataset: config: default name: MTEB STS15 (default) revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 split: test type: mteb/sts15-sts metrics: - type: cosine_pearson value: 73.45220638967554 - type: cosine_spearman value: 73.74453589715445 - type: euclidean_pearson value: 73.8887071337604 - type: euclidean_spearman value: 73.51752094057372 - type: main_score value: 73.74453589715445 - type: manhattan_pearson value: 73.45961523235827 - type: manhattan_spearman value: 73.07675481848841 task: type: STS - dataset: config: default name: MTEB STS16 (default) revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 split: test type: mteb/sts16-sts metrics: - type: cosine_pearson value: 66.84132105540075 - type: cosine_spearman value: 68.24735989887876 - type: euclidean_pearson value: 68.2712231484699 - type: euclidean_spearman value: 68.02365271737838 - type: main_score value: 68.24735989887876 - type: manhattan_pearson value: 67.87379902773417 - type: manhattan_spearman value: 67.65342499070456 task: type: STS - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: cosine_pearson value: 79.2987412566616 - type: cosine_spearman value: 79.93275889323859 - type: euclidean_pearson value: 77.90301430319637 - type: euclidean_spearman value: 79.12169562085792 - type: main_score value: 79.93275889323859 - type: manhattan_pearson value: 77.93298637610417 - type: manhattan_spearman value: 79.38516109229111 task: type: STS - dataset: config: ar name: MTEB STS22 (ar) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: cosine_pearson value: 46.955019830396445 - type: cosine_spearman value: 52.44226852669887 - type: euclidean_pearson value: 42.80891863181744 - type: euclidean_spearman value: 53.175461247693704 - type: main_score value: 52.44226852669887 - type: manhattan_pearson value: 42.97005510727849 - type: manhattan_spearman value: 53.158087426369825 task: type: STS - dataset: config: default name: MTEB STSBenchmark (default) revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 split: test type: mteb/stsbenchmark-sts metrics: - type: cosine_pearson value: 66.99025999216197 - type: cosine_spearman value: 67.56341643518167 - type: euclidean_pearson value: 69.73441598964332 - type: euclidean_spearman value: 68.72541136876826 - type: main_score value: 67.56341643518167 - type: manhattan_pearson value: 69.43492004000674 - type: manhattan_spearman value: 68.39614969063062 task: type: STS - dataset: config: default name: MTEB SummEval (default) revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c split: test type: mteb/summeval metrics: - type: cosine_pearson value: 30.13248188083236 - type: cosine_spearman value: 28.78575545661001 - type: dot_pearson value: 30.934754821379464 - type: dot_spearman value: 29.730792596057093 - type: main_score value: 28.78575545661001 - type: pearson value: 30.13248188083236 - type: spearman value: 28.78575545661001 task: type: Summarization - name: SentenceTransformer based on tomaarsen/mpnet-base-all-nli-triplet results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 768 type: sts-test-768 metrics: - type: pearson_cosine value: 0.66986244175229 name: Pearson Cosine - type: spearman_cosine value: 0.675651628513557 name: Spearman Cosine - type: pearson_manhattan value: 0.6943200977280434 name: Pearson Manhattan - type: spearman_manhattan value: 0.6839707658313092 name: Spearman Manhattan - type: pearson_euclidean value: 0.6973190148612566 name: Pearson Euclidean - type: spearman_euclidean value: 0.6872926092972673 name: Spearman Euclidean - type: pearson_dot value: 0.5534197296097646 name: Pearson Dot - type: spearman_dot value: 0.5421965591416092 name: Spearman Dot - type: pearson_max value: 0.6973190148612566 name: Pearson Max - type: spearman_max value: 0.6872926092972673 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 512 type: sts-test-512 metrics: - type: pearson_cosine value: 0.6628171358537143 name: Pearson Cosine - type: spearman_cosine value: 0.670314701212355 name: Spearman Cosine - type: pearson_manhattan value: 0.6916567677127377 name: Pearson Manhattan - type: spearman_manhattan value: 0.6815748132707206 name: Spearman Manhattan - type: pearson_euclidean value: 0.6948756461188812 name: Pearson Euclidean - type: spearman_euclidean value: 0.685329042213794 name: Spearman Euclidean - type: pearson_dot value: 0.5229142840207227 name: Pearson Dot - type: spearman_dot value: 0.5113740757424073 name: Spearman Dot - type: pearson_max value: 0.6948756461188812 name: Pearson Max - type: spearman_max value: 0.685329042213794 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 256 type: sts-test-256 metrics: - type: pearson_cosine value: 0.6368313837029833 name: Pearson Cosine - type: spearman_cosine value: 0.6512526280069127 name: Spearman Cosine - type: pearson_manhattan value: 0.6832129716443456 name: Pearson Manhattan - type: spearman_manhattan value: 0.674638334774044 name: Spearman Manhattan - type: pearson_euclidean value: 0.6843664039671002 name: Pearson Euclidean - type: spearman_euclidean value: 0.6760040651639672 name: Spearman Euclidean - type: pearson_dot value: 0.4266095536126992 name: Pearson Dot - type: spearman_dot value: 0.4179376458107888 name: Spearman Dot - type: pearson_max value: 0.6843664039671002 name: Pearson Max - type: spearman_max value: 0.6760040651639672 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 128 type: sts-test-128 metrics: - type: pearson_cosine value: 0.6147896744901056 name: Pearson Cosine - type: spearman_cosine value: 0.6354730852658397 name: Spearman Cosine - type: pearson_manhattan value: 0.6730782159165468 name: Pearson Manhattan - type: spearman_manhattan value: 0.6652649799789521 name: Spearman Manhattan - type: pearson_euclidean value: 0.676407799774529 name: Pearson Euclidean - type: spearman_euclidean value: 0.6691409653459247 name: Spearman Euclidean - type: pearson_dot value: 0.35130869784942953 name: Pearson Dot - type: spearman_dot value: 0.3445374275232203 name: Spearman Dot - type: pearson_max value: 0.676407799774529 name: Pearson Max - type: spearman_max value: 0.6691409653459247 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test 64 type: sts-test-64 metrics: - type: pearson_cosine value: 0.5789158725954748 name: Pearson Cosine - type: spearman_cosine value: 0.6081197115891086 name: Spearman Cosine - type: pearson_manhattan value: 0.6578631744829946 name: Pearson Manhattan - type: spearman_manhattan value: 0.6518503436513217 name: Spearman Manhattan - type: pearson_euclidean value: 0.6629734628760299 name: Pearson Euclidean - type: spearman_euclidean value: 0.6570510967281272 name: Spearman Euclidean - type: pearson_dot value: 0.24034366392620327 name: Pearson Dot - type: spearman_dot value: 0.2331392769925126 name: Spearman Dot - type: pearson_max value: 0.6629734628760299 name: Pearson Max - type: spearman_max value: 0.6570510967281272 name: Spearman Max --- # SentenceTransformer based on tomaarsen/mpnet-base-all-nli-triplet This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [tomaarsen/mpnet-base-all-nli-triplet](https://huggingface.co/tomaarsen/mpnet-base-all-nli-triplet) on the Omartificial-Intelligence-Space/arabic-n_li-triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [tomaarsen/mpnet-base-all-nli-triplet](https://huggingface.co/tomaarsen/mpnet-base-all-nli-triplet) <!-- at revision e88732e5620f3592bf6566604be9a6a5cad814ec --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - Omartificial-Intelligence-Space/arabic-n_li-triplet <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Omartificial-Intelligence-Space/mpnet-base-all-nli-triplet-Arabic-mpnet_base") # Run inference sentences = [ 'يجلس شاب ذو شعر أشقر على الحائط يقرأ جريدة بينما تمر امرأة وفتاة شابة.', 'ذكر شاب ينظر إلى جريدة بينما تمر إمرأتان بجانبه', 'الشاب نائم بينما الأم تقود ابنتها إلى الحديقة', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test-768` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6699 | | **spearman_cosine** | **0.6757** | | pearson_manhattan | 0.6943 | | spearman_manhattan | 0.684 | | pearson_euclidean | 0.6973 | | spearman_euclidean | 0.6873 | | pearson_dot | 0.5534 | | spearman_dot | 0.5422 | | pearson_max | 0.6973 | | spearman_max | 0.6873 | #### Semantic Similarity * Dataset: `sts-test-512` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6628 | | **spearman_cosine** | **0.6703** | | pearson_manhattan | 0.6917 | | spearman_manhattan | 0.6816 | | pearson_euclidean | 0.6949 | | spearman_euclidean | 0.6853 | | pearson_dot | 0.5229 | | spearman_dot | 0.5114 | | pearson_max | 0.6949 | | spearman_max | 0.6853 | #### Semantic Similarity * Dataset: `sts-test-256` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6368 | | **spearman_cosine** | **0.6513** | | pearson_manhattan | 0.6832 | | spearman_manhattan | 0.6746 | | pearson_euclidean | 0.6844 | | spearman_euclidean | 0.676 | | pearson_dot | 0.4266 | | spearman_dot | 0.4179 | | pearson_max | 0.6844 | | spearman_max | 0.676 | #### Semantic Similarity * Dataset: `sts-test-128` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6148 | | **spearman_cosine** | **0.6355** | | pearson_manhattan | 0.6731 | | spearman_manhattan | 0.6653 | | pearson_euclidean | 0.6764 | | spearman_euclidean | 0.6691 | | pearson_dot | 0.3513 | | spearman_dot | 0.3445 | | pearson_max | 0.6764 | | spearman_max | 0.6691 | #### Semantic Similarity * Dataset: `sts-test-64` * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.5789 | | **spearman_cosine** | **0.6081** | | pearson_manhattan | 0.6579 | | spearman_manhattan | 0.6519 | | pearson_euclidean | 0.663 | | spearman_euclidean | 0.6571 | | pearson_dot | 0.2403 | | spearman_dot | 0.2331 | | pearson_max | 0.663 | | spearman_max | 0.6571 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 557,850 training samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 12 tokens</li><li>mean: 23.93 tokens</li><li>max: 155 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 29.62 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 33.95 tokens</li><li>max: 149 tokens</li></ul> | * Samples: | anchor | positive | negative | |:------------------------------------------------------------|:--------------------------------------------|:------------------------------------| | <code>شخص على حصان يقفز فوق طائرة معطلة</code> | <code>شخص في الهواء الطلق، على حصان.</code> | <code>شخص في مطعم، يطلب عجة.</code> | | <code>أطفال يبتسمون و يلوحون للكاميرا</code> | <code>هناك أطفال حاضرون</code> | <code>الاطفال يتجهمون</code> | | <code>صبي يقفز على لوح التزلج في منتصف الجسر الأحمر.</code> | <code>الفتى يقوم بخدعة التزلج</code> | <code>الصبي يتزلج على الرصيف</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### Omartificial-Intelligence-Space/arabic-n_li-triplet * Dataset: Omartificial-Intelligence-Space/arabic-n_li-triplet * Size: 6,584 evaluation samples * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 12 tokens</li><li>mean: 49.5 tokens</li><li>max: 246 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 23.66 tokens</li><li>max: 103 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 25.33 tokens</li><li>max: 82 tokens</li></ul> | * Samples: | anchor | positive | negative | |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|:---------------------------------------------------| | <code>امرأتان يتعانقان بينما يحملان حزمة</code> | <code>إمرأتان يحملان حزمة</code> | <code>الرجال يتشاجرون خارج مطعم</code> | | <code>طفلين صغيرين يرتديان قميصاً أزرق، أحدهما يرتدي الرقم 9 والآخر يرتدي الرقم 2 يقفان على خطوات خشبية في الحمام ويغسلان أيديهما في المغسلة.</code> | <code>طفلين يرتديان قميصاً مرقماً يغسلون أيديهم</code> | <code>طفلين يرتديان سترة يذهبان إلى المدرسة</code> | | <code>رجل يبيع الدونات لعميل خلال معرض عالمي أقيم في مدينة أنجليس</code> | <code>رجل يبيع الدونات لعميل</code> | <code>امرأة تشرب قهوتها في مقهى صغير</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 3 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| | 0.0229 | 200 | 21.5318 | - | - | - | - | - | | 0.0459 | 400 | 17.2344 | - | - | - | - | - | | 0.0688 | 600 | 15.393 | - | - | - | - | - | | 0.0918 | 800 | 13.7897 | - | - | - | - | - | | 0.1147 | 1000 | 13.534 | - | - | - | - | - | | 0.1377 | 1200 | 12.2683 | - | - | - | - | - | | 0.1606 | 1400 | 10.9271 | - | - | - | - | - | | 0.1835 | 1600 | 11.071 | - | - | - | - | - | | 0.2065 | 1800 | 10.0153 | - | - | - | - | - | | 0.2294 | 2000 | 9.8463 | - | - | - | - | - | | 0.2524 | 2200 | 10.0194 | - | - | - | - | - | | 0.2753 | 2400 | 9.8371 | - | - | - | - | - | | 0.2983 | 2600 | 9.6315 | - | - | - | - | - | | 0.3212 | 2800 | 8.9858 | - | - | - | - | - | | 0.3442 | 3000 | 9.1876 | - | - | - | - | - | | 0.3671 | 3200 | 8.8028 | - | - | - | - | - | | 0.3900 | 3400 | 8.6075 | - | - | - | - | - | | 0.4130 | 3600 | 8.4285 | - | - | - | - | - | | 0.4359 | 3800 | 8.1258 | - | - | - | - | - | | 0.4589 | 4000 | 8.2508 | - | - | - | - | - | | 0.4818 | 4200 | 7.8037 | - | - | - | - | - | | 0.5048 | 4400 | 7.7133 | - | - | - | - | - | | 0.5277 | 4600 | 7.5006 | - | - | - | - | - | | 0.5506 | 4800 | 7.7025 | - | - | - | - | - | | 0.5736 | 5000 | 7.7593 | - | - | - | - | - | | 0.5965 | 5200 | 7.6305 | - | - | - | - | - | | 0.6195 | 5400 | 7.7502 | - | - | - | - | - | | 0.6424 | 5600 | 7.5624 | - | - | - | - | - | | 0.6654 | 5800 | 7.5287 | - | - | - | - | - | | 0.6883 | 6000 | 7.4261 | - | - | - | - | - | | 0.7113 | 6200 | 7.239 | - | - | - | - | - | | 0.7342 | 6400 | 7.1631 | - | - | - | - | - | | 0.7571 | 6600 | 7.6865 | - | - | - | - | - | | 0.7801 | 6800 | 7.6124 | - | - | - | - | - | | 0.8030 | 7000 | 6.9936 | - | - | - | - | - | | 0.8260 | 7200 | 6.7331 | - | - | - | - | - | | 0.8489 | 7400 | 6.4542 | - | - | - | - | - | | 0.8719 | 7600 | 6.1994 | - | - | - | - | - | | 0.8948 | 7800 | 5.9798 | - | - | - | - | - | | 0.9177 | 8000 | 5.7808 | - | - | - | - | - | | 0.9407 | 8200 | 5.6952 | - | - | - | - | - | | 0.9636 | 8400 | 5.5082 | - | - | - | - | - | | 0.9866 | 8600 | 5.4421 | - | - | - | - | - | | 1.0095 | 8800 | 3.0309 | - | - | - | - | - | | 1.0026 | 9000 | 1.1835 | - | - | - | - | - | | 1.0256 | 9200 | 8.1196 | - | - | - | - | - | | 1.0485 | 9400 | 8.0326 | - | - | - | - | - | | 1.0715 | 9600 | 8.5028 | - | - | - | - | - | | 1.0944 | 9800 | 7.6923 | - | - | - | - | - | | 1.1174 | 10000 | 8.029 | - | - | - | - | - | | 1.1403 | 10200 | 7.5052 | - | - | - | - | - | | 1.1632 | 10400 | 7.1177 | - | - | - | - | - | | 1.1862 | 10600 | 6.9594 | - | - | - | - | - | | 1.2091 | 10800 | 6.6662 | - | - | - | - | - | | 1.2321 | 11000 | 6.6903 | - | - | - | - | - | | 1.2550 | 11200 | 6.9523 | - | - | - | - | - | | 1.2780 | 11400 | 6.676 | - | - | - | - | - | | 1.3009 | 11600 | 6.7141 | - | - | - | - | - | | 1.3238 | 11800 | 6.568 | - | - | - | - | - | | 1.3468 | 12000 | 6.8938 | - | - | - | - | - | | 1.3697 | 12200 | 6.3745 | - | - | - | - | - | | 1.3927 | 12400 | 6.2513 | - | - | - | - | - | | 1.4156 | 12600 | 6.2589 | - | - | - | - | - | | 1.4386 | 12800 | 6.1388 | - | - | - | - | - | | 1.4615 | 13000 | 6.1835 | - | - | - | - | - | | 1.4845 | 13200 | 5.9004 | - | - | - | - | - | | 1.5074 | 13400 | 5.7891 | - | - | - | - | - | | 1.5303 | 13600 | 5.6184 | - | - | - | - | - | | 1.5533 | 13800 | 5.9762 | - | - | - | - | - | | 1.5762 | 14000 | 5.9737 | - | - | - | - | - | | 1.5992 | 14200 | 5.8563 | - | - | - | - | - | | 1.6221 | 14400 | 5.8904 | - | - | - | - | - | | 1.6451 | 14600 | 5.8484 | - | - | - | - | - | | 1.6680 | 14800 | 5.8906 | - | - | - | - | - | | 1.6909 | 15000 | 5.7613 | - | - | - | - | - | | 1.7139 | 15200 | 5.5744 | - | - | - | - | - | | 1.7368 | 15400 | 5.6569 | - | - | - | - | - | | 1.7598 | 15600 | 5.7439 | - | - | - | - | - | | 1.7827 | 15800 | 5.5593 | - | - | - | - | - | | 1.8057 | 16000 | 5.2935 | - | - | - | - | - | | 1.8286 | 16200 | 5.088 | - | - | - | - | - | | 1.8516 | 16400 | 5.0167 | - | - | - | - | - | | 1.8745 | 16600 | 4.84 | - | - | - | - | - | | 1.8974 | 16800 | 4.6731 | - | - | - | - | - | | 1.9204 | 17000 | 4.6404 | - | - | - | - | - | | 1.9433 | 17200 | 4.6413 | - | - | - | - | - | | 1.9663 | 17400 | 4.4495 | - | - | - | - | - | | 1.9892 | 17600 | 4.4262 | - | - | - | - | - | | 2.0122 | 17800 | 2.01 | - | - | - | - | - | | 2.0053 | 18000 | 1.8418 | - | - | - | - | - | | 2.0282 | 18200 | 6.2714 | - | - | - | - | - | | 2.0512 | 18400 | 6.1742 | - | - | - | - | - | | 2.0741 | 18600 | 6.5996 | - | - | - | - | - | | 2.0971 | 18800 | 6.0907 | - | - | - | - | - | | 2.1200 | 19000 | 6.2418 | - | - | - | - | - | | 2.1429 | 19200 | 5.7817 | - | - | - | - | - | | 2.1659 | 19400 | 5.7073 | - | - | - | - | - | | 2.1888 | 19600 | 5.2645 | - | - | - | - | - | | 2.2118 | 19800 | 5.3451 | - | - | - | - | - | | 2.2347 | 20000 | 5.2453 | - | - | - | - | - | | 2.2577 | 20200 | 5.6161 | - | - | - | - | - | | 2.2806 | 20400 | 5.2289 | - | - | - | - | - | | 2.3035 | 20600 | 5.3888 | - | - | - | - | - | | 2.3265 | 20800 | 5.2483 | - | - | - | - | - | | 2.3494 | 21000 | 5.5791 | - | - | - | - | - | | 2.3724 | 21200 | 5.1643 | - | - | - | - | - | | 2.3953 | 21400 | 5.1231 | - | - | - | - | - | | 2.4183 | 21600 | 5.1055 | - | - | - | - | - | | 2.4412 | 21800 | 5.1778 | - | - | - | - | - | | 2.4642 | 22000 | 5.0466 | - | - | - | - | - | | 2.4871 | 22200 | 4.8321 | - | - | - | - | - | | 2.5100 | 22400 | 4.7056 | - | - | - | - | - | | 2.5330 | 22600 | 4.6858 | - | - | - | - | - | | 2.5559 | 22800 | 4.9189 | - | - | - | - | - | | 2.5789 | 23000 | 4.912 | - | - | - | - | - | | 2.6018 | 23200 | 4.8289 | - | - | - | - | - | | 2.6248 | 23400 | 4.8959 | - | - | - | - | - | | 2.6477 | 23600 | 4.9441 | - | - | - | - | - | | 2.6706 | 23800 | 4.9334 | - | - | - | - | - | | 2.6936 | 24000 | 4.8328 | - | - | - | - | - | | 2.7165 | 24200 | 4.601 | - | - | - | - | - | | 2.7395 | 24400 | 4.834 | - | - | - | - | - | | 2.7624 | 24600 | 5.152 | - | - | - | - | - | | 2.7854 | 24800 | 4.9232 | - | - | - | - | - | | 2.8083 | 25000 | 4.6556 | - | - | - | - | - | | 2.8312 | 25200 | 4.6229 | - | - | - | - | - | | 2.8542 | 25400 | 4.5768 | - | - | - | - | - | | 2.8771 | 25600 | 4.3619 | - | - | - | - | - | | 2.9001 | 25800 | 4.3608 | - | - | - | - | - | | 2.9230 | 26000 | 4.2834 | - | - | - | - | - | | 2.9403 | 26151 | - | 0.6355 | 0.6513 | 0.6703 | 0.6081 | 0.6757 | </details> ### Framework Versions - Python: 3.9.18 - Sentence Transformers: 3.0.1 - Transformers: 4.40.0 - PyTorch: 2.2.2+cu121 - Accelerate: 0.26.1 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
toiletwater/DialoGPT-medium-ironman
toiletwater
2021-11-27T03:00:25Z
728
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # Tony Stark DialoGPT Model
s-nlp/Mutual_Implication_Score
s-nlp
2022-07-11T12:36:45Z
728
2
transformers
[ "transformers", "pytorch", "roberta", "paraphrase detection", "paraphrase", "paraphrasing", "en", "endpoints_compatible", "region:us" ]
null
2022-04-12T10:58:35Z
--- language: - en tags: - paraphrase detection - paraphrase - paraphrasing licenses: - cc-by-nc-sa --- ## Model overview Mutual Implication Score is a symmetric measure of text semantic similarity based on a RoBERTA model pretrained for natural language inference and fine-tuned on a paraphrase detection dataset. The code for inference and evaluation of the model is available [here](https://github.com/skoltech-nlp/mutual_implication_score). This measure is **particularly useful for paraphrase detection**, but can also be applied to other semantic similarity tasks, such as content similarity scoring in text style transfer. ## How to use The following snippet illustrates code usage: ```python !pip install mutual-implication-score from mutual_implication_score import MIS mis = MIS(device='cpu')#cuda:0 for using cuda with certain index source_texts = ['I want to leave this room', 'Hello world, my name is Nick'] paraphrases = ['I want to go out of this room', 'Hello world, my surname is Petrov'] scores = mis.compute(source_texts, paraphrases) print(scores) # expected output: [0.9748, 0.0545] ``` ## Model details We slightly modify the [RoBERTa-Large NLI](https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli) model architecture (see the scheme below) and fine-tune it with [QQP](https://www.kaggle.com/c/quora-question-pairs) paraphrase dataset. ![alt text](https://huggingface.co/SkolkovoInstitute/Mutual_Implication_Score/raw/main/MIS.jpg) ## Performance on Text Style Transfer and Paraphrase Detection tasks This measure was developed in terms of large scale comparison of different measures on text style transfer and paraphrase datasets. <img src="https://huggingface.co/SkolkovoInstitute/Mutual_Implication_Score/raw/main/corr_main.jpg" alt="drawing" width="1000"/> The scheme above shows the correlations of measures of different classes with human judgments on paraphrase and text style transfer datasets. The text above each dataset indicates the best-performing measure. The rightmost columns show the mean performance of measures across the datasets. MIS outperforms all measures on the paraphrase detection task and performs on par with top measures on the text style transfer task. To learn more, refer to our article: [A large-scale computational study of content preservation measures for text style transfer and paraphrase generation](https://aclanthology.org/2022.acl-srw.23/) ## Citations If you find this repository helpful, feel free to cite our publication: ``` @inproceedings{babakov-etal-2022-large, title = "A large-scale computational study of content preservation measures for text style transfer and paraphrase generation", author = "Babakov, Nikolay and Dale, David and Logacheva, Varvara and Panchenko, Alexander", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-srw.23", pages = "300--321", abstract = "Text style transfer and paraphrasing of texts are actively growing areas of NLP, dozens of methods for solving these tasks have been recently introduced. In both tasks, the system is supposed to generate a text which should be semantically similar to the input text. Therefore, these tasks are dependent on methods of measuring textual semantic similarity. However, it is still unclear which measures are the best to automatically evaluate content preservation between original and generated text. According to our observations, many researchers still use BLEU-like measures, while there exist more advanced measures including neural-based that significantly outperform classic approaches. The current problem is the lack of a thorough evaluation of the available measures. We close this gap by conducting a large-scale computational study by comparing 57 measures based on different principles on 19 annotated datasets. We show that measures based on cross-encoder models outperform alternative approaches in almost all cases.We also introduce the Mutual Implication Score (MIS), a measure that uses the idea of paraphrasing as a bidirectional entailment and outperforms all other measures on the paraphrase detection task and performs on par with the best measures in the text style transfer task.", } ``` ## Licensing Information [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License][cc-by-nc-sa]. [![CC BY-NC-SA 4.0][cc-by-nc-sa-image]][cc-by-nc-sa] [cc-by-nc-sa]: http://creativecommons.org/licenses/by-nc-sa/4.0/ [cc-by-nc-sa-image]: https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png
zh-tw-llm-dv/sample-pythia-70m-dialogue
zh-tw-llm-dv
2023-05-21T18:21:00Z
728
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-05-21T18:20:34Z
Entry not found
umd-zhou-lab/recycled-wizardlm-7b-v2.0
umd-zhou-lab
2023-10-22T16:10:53Z
728
2
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "arxiv:2310.11716", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-22T14:44:16Z
--- license: llama2 language: - en --- # Model Card for umd-zhou-lab/recycled-wizardlm-7b-v2.0 <!-- Provide a quick summary of what the model is/does. --> This model is trained by fine-tuning llama-2 with recycled WizardLM(70k) data V2. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** UMD Tianyi Zhou Lab - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) ### Model Sources <!-- Provide the basic links for the model. --> - **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning) - **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716) - **Data:** Coming soon ## Uses The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training We use the prompt from [FastChat](https://github.com/lm-sys/FastChat): ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>...... ``` | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate | | --- | ---: | ---: | ---: | ---: | ---: | ---: | | Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 | ## Performance The following table provides a comparison between our recycled models (V2) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br> The V2 Recycled Alpaca Data and WizardLM data, and the corresponding paper will be released soon. | | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**| |--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:| | **Alpaca 7B** | 26.46 || 50.21 | 42.65 | 76.91 | 41.73 | 39.55 ||/| | **Recycled Alpaca 7B V2.0** | 79.58 || 56.05 | 54.01 | 78.07 | 46.69 | 45.41 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v2.0)| ||||||||||| | **WizardLM 7B** | 67.64 || 54.18 | 51.60 | 77.70 | 42.70 | 44.70 ||/| | **Recycled WizardLM 7B V2.0** | 83.48 || 56.79 | 54.78 | 77.86 | 45.63 | 48.91 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v2.0)| ||||||||| ## Citation Please consider citing our paper if you think our codes, data, or models are useful. Thank you! ``` @misc{li2023reflectiontuning, title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning}, author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou}, year={2023}, eprint={2310.11716}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
AIGym/deepseek-coder-1.3b-chat-and-function-calling
AIGym
2024-03-04T17:17:04Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "finetuned", "conversational", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-04T23:30:52Z
--- license: apache-2.0 tags: - finetuned pipeline_tag: text-generation model-index: - name: deepseek-coder-1.3b-chat-and-function-calling results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 26.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 39.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 26.92 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 43.37 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 51.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 3.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AIGym/deepseek-coder-1.3b-chat-and-function-calling name: Open LLM Leaderboard --- # deepseek-coder-1.3b-chat-and-function-calling It was created by starting with the deepseek-coder-1.3b and training it on the open assistant dataset then training yhat on function calling. We have attached the wandb report in pdf form to view the training run at a glance. # Reson This model was fine tuned to allow it to work with the openai syntask and will return function when apperate. # Templete Us the following templete when interacting with the fine tuned model. # Referrals Run Pod - This is who I use to train th emodels on huggingface. If you use it we both get free crdits. - <a href="https://runpod.io?ref=kilq83n1" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit Runpod's Website!</a> Paypal - If you want to leave a tip, it is appecaheted. - <a href="https://paypal.me/OpenSourceTraining" target="_blank" style="color: #3498db; text-decoration: none; font-weight: bold;">Visit My Paypal!</a> # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AIGym__deepseek-coder-1.3b-chat-and-function-calling) | Metric |Value| |---------------------------------|----:| |Avg. |31.82| |AI2 Reasoning Challenge (25-Shot)|26.28| |HellaSwag (10-Shot) |39.27| |MMLU (5-Shot) |26.92| |TruthfulQA (0-shot) |43.37| |Winogrande (5-shot) |51.70| |GSM8k (5-shot) | 3.41|
sethuiyer/MedleyMD
sethuiyer
2024-03-07T07:12:02Z
728
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "medical", "mergekit", "conversational", "en", "dataset:medmcqa", "dataset:cognitivecomputations/samantha-data", "dataset:jondurbin/bagel-v0.3", "base_model:sethuiyer/Dr_Samantha_7b_mistral", "base_model:fblgit/UNA-TheBeagle-7b-v1", "license:cc-by-nc-nd-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-15T07:35:50Z
--- language: - en license: cc-by-nc-nd-4.0 library_name: transformers tags: - moe - merge - medical - mergekit datasets: - medmcqa - cognitivecomputations/samantha-data - jondurbin/bagel-v0.3 base_model: - sethuiyer/Dr_Samantha_7b_mistral - fblgit/UNA-TheBeagle-7b-v1 pipeline_tag: text-generation model-index: - name: MedleyMD results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.1 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 52.46 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/MedleyMD name: Open LLM Leaderboard --- # MedleyMD ![logo](https://huggingface.co/sethuiyer/MedleyMD/resolve/main/logo.webp) MedleyMD is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [sethuiyer/Dr_Samantha_7b_mistral](https://huggingface.co/sethuiyer/Dr_Samantha_7b_mistral) * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1) These models were chosen because `fblgit/UNA-TheBeagle-7b-v1` has excellent performance for a 7B parameter model and Dr.Samantha has capabilities of a medical knowledge-focused model (trained on USMLE databases and doctor-patient interactions) with the philosophical, psychological, and relational understanding, scoring 68.82% in topics related to clinical domain and psychology. ## Benchmark On a synthetic benchmark of 35 medical diagnosis questions generated by GPT-4, GPT-4 also being an evaluator, MedleyMD scored **96.25/100**. Nous Benchmark numbers shall be available soon. ## 🧩 Configuration ```yaml base_model: OpenPipe/mistral-ft-optimized-1227 gate_mode: hidden dtype: bfloat16 experts: - source_model: sethuiyer/Dr_Samantha_7b_mistral positive_prompts: ["differential diagnosis", "Clinical Knowledge", "Medical Genetics", "Human Aging", "Human Sexuality", "College Medicine", "Anatomy", "College Biology", "High School Biology", "Professional Medicine", "Nutrition", "High School Psychology", "Professional Psychology", "Virology"] - source_model: fblgit/UNA-TheBeagle-7b-v1 positive_prompts: ["How do you", "Explain the concept of", "Give an overview of", "Compare and contrast between", "Provide information about", "Help me understand", "Summarize", "Make a recommendation on", "chat", "math", "reason", "mathematics", "solve", "count", "python", "javascript", "programming", "algorithm", "tell me", "assistant"] ``` ## GGUF 1. [medleymd.Q4_K_M](https://huggingface.co/sethuiyer/MedleyMD-GGUF/resolve/main/medleymd.Q4_K_M.gguf) [7.2GB] 2. [medleymd.Q5_K_M](https://huggingface.co/sethuiyer/MedleyMD-GGUF/resolve/main/medleymd.Q5_K_M.gguf) [9.13GB] ## Ollama MedleyMD can be used in ollama by running```ollama run stuehieyr/medleymd``` in your terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on a Google Colab backend. ## Prompt format: This model uses ChatML prompt format. ``` <|im_start|>system You are Medley, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "sethuiyer/MedleyMD" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16, "load_in_4bit": True}, ) generation_kwargs = { "max_new_tokens": 512, "do_sample": True, "temperature": 0.7, "top_k": 50, "top_p": 95, } messages = [{"role":"system", "content":"You are an helpful AI assistant. Please use </s> when you want to end the answer."}, {"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, **generation_kwargs) print(outputs[0]["generated_text"]) ``` ```text A Mixture of Experts (Mixout) is a neural network architecture that combines the strengths of multiple expert networks to make a more accurate and robust prediction. It is composed of a topmost gating network that assigns weights to each expert network based on their performance on past input samples. The expert networks are trained independently, and the gating network learns to choose the best combination of these experts to make the final prediction. Mixout demonstrates a stronger ability to handle complex data distributions and is more efficient in terms of training time and memory usage compared to a traditional ensemble approach. ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__MedleyMD) | Metric |Value| |---------------------------------|----:| |Avg. |69.89| |AI2 Reasoning Challenge (25-Shot)|66.47| |HellaSwag (10-Shot) |86.06| |MMLU (5-Shot) |65.10| |TruthfulQA (0-shot) |52.46| |Winogrande (5-shot) |80.27| |GSM8k (5-shot) |68.99|
cloudyu/Phoenix_DPO_60B
cloudyu
2024-02-01T05:28:31Z
728
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "yi", "moe", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-26T08:55:55Z
--- license: other tags: - yi - moe license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE --- this is a DPO fine-tuned MoE model with 60B parameter. ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ``` GGUF format is ready at [cloudyu/Phoenix_DPO_60B_gguf](https://huggingface.co/cloudyu/Phoenix_DPO_60B_gguf)
saarvajanik/facebook-opt-6.7b-qcqa-ub-16-best-for-KV-cache
saarvajanik
2024-01-28T17:13:11Z
728
0
transformers
[ "transformers", "pytorch", "opt", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T09:17:01Z
--- license: mit language: - en library_name: transformers --- This is a GQA version of the original model facebook/opt-125m. In this version, the original MHA architecture is preserved but instead of having a single K/V head, different K/V heads corresponding to the same group have the same mean-pooled K or V values. It has 16 groups of KV heads per layer instead of original 32 KV heads in the MHA implementation.
NeverSleep/MiquMaid-v1-70B
NeverSleep
2024-01-31T21:02:27Z
728
17
transformers
[ "transformers", "pytorch", "llama", "text-generation", "not-for-all-audiences", "nsfw", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-31T18:30:47Z
--- license: cc-by-nc-4.0 tags: - not-for-all-audiences - nsfw --- ## MiquMaid ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/4smLWpA55KgIbj4kH1zyF.png) --- # Disclaimer: ## This model is HIGHLY EXPERIMENTAL, do not expect everything to work. This model uses the Alpaca **prompting format** --- Quick train to see if miqu finetuned results in good models ## Credits: - Undi - IkariDev <!-- description start --> ## Description <!-- [Recommended settings - contributed by localfultonextractor](https://files.catbox.moe/ue0tja.json) --> This repo contains FP16 files of MiquMaid-v1-70B. [FP16 - by IkariDev and Undi](https://huggingface.co/NeverSleep/MiquMaid-v1-70B) <!-- [GGUF - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GGUF)--> <!-- [GPTQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-GPTQ)--> <!-- [exl2[8bpw-8h] - by AzureBlack](https://huggingface.co/AzureBlack/Echidna-13b-v0.3-8bpw-8h-exl2)--> <!-- [AWQ - By TheBloke](https://huggingface.co/TheBloke/Athena-v4-AWQ)--> <!-- [fp16 - by IkariDev+Undi95](https://huggingface.co/IkariDev/Athena-v4)--> [GGUF - by IkariDev and Undi](https://huggingface.co/NeverSleep/MiquMaid-v1-70B-GGUF) <!-- [OLD(GGUF - by IkariDev+Undi95)](https://huggingface.co/IkariDev/Athena-v4-GGUF)--> ## Ratings: Note: We have permission of all users to upload their ratings, we DONT screenshot random reviews without asking if we can put them here! No ratings yet! If you want your rating to be here, send us a message over on DC and we'll put up a screenshot of it here. DC name is "ikaridev" and "undi". <!-- description end --> <!-- prompt-template start --> ### Custom format: ``` ### Instruction: {system prompt} ### Input: {input} ### Response: {reply} ``` ## Others Undi: If you want to support me, you can [here](https://ko-fi.com/undiai). IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek
saishf/Kuro-Lotus-10.7B
saishf
2024-03-04T14:33:07Z
728
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:BlueNipples/SnowLotus-v2-10.7B", "base_model:Himitsui/KuroMitsu-11B", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-03T00:46:52Z
--- license: cc-by-nc-4.0 tags: - mergekit - merge base_model: - BlueNipples/SnowLotus-v2-10.7B - Himitsui/KuroMitsu-11B model-index: - name: Kuro-Lotus-10.7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.69 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.51 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 58.27 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=saishf/Kuro-Lotus-10.7B name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [BlueNipples/SnowLotus-v2-10.7B](https://huggingface.co/BlueNipples/SnowLotus-v2-10.7B) * [Himitsui/KuroMitsu-11B](https://huggingface.co/Himitsui/KuroMitsu-11B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Himitsui/KuroMitsu-11B layer_range: [0, 48] - model: BlueNipples/SnowLotus-v2-10.7B layer_range: [0, 48] merge_method: slerp base_model: Himitsui/KuroMitsu-11B parameters: t: - filter: self_attn value: [0.6, 0.7, 0.8, 0.9, 1] - filter: mlp value: [0.4, 0.3, 0.2, 0.1, 0] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saishf__Kuro-Lotus-10.7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.90| |AI2 Reasoning Challenge (25-Shot)|68.69| |HellaSwag (10-Shot) |87.51| |MMLU (5-Shot) |66.64| |TruthfulQA (0-shot) |58.27| |Winogrande (5-shot) |84.21| |GSM8k (5-shot) |66.11|
cgato/Thespis-7b-v0.2-SFTTest-3Epoch
cgato
2024-02-09T02:28:03Z
728
1
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "not-for-all-audiences", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-03T23:48:51Z
--- tags: - not-for-all-audiences license: apache-2.0 --- Test model, still cleaning the dataset up. Expect repetition. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64dd7cda3d6b954bf7cdd922/ZXmxNKGaHUrqjdS1I3GkL.png) ## Thespis Test A test model, I make no guarantees about the performance. Let me know if its any good. Seems more verbose than my previous models from my testing. External Datasets Used: * Pure-Dove Dataset * Claude Multiround 30k * OpenOrcaSlim * Augmental Dataset * ToxicQA * yahoo_answers_qa Special thanks to kubernetes-bad for providing me a cleaned chub.ai characters dataset. ## Prompt Format: Chat ( The default Ooba template and Silly Tavern Template ) ``` {System Prompt} Username: {Input} BotName: {Response} Username: {Input} BotName: {Response} ``` ## Ooba ( Set it to Chat, select a character and go. ) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64dd7cda3d6b954bf7cdd922/HTl7QlAZcqe2hV8rwh4DG.png) ## Silly Tavern Settings ( Default ) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64dd7cda3d6b954bf7cdd922/ajny8P0LdW0nFtghpPbfB.png) ```
Radu1999/Mistral-Instruct-Ukrainian-SFT
Radu1999
2024-03-06T08:25:50Z
728
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-09T14:36:00Z
--- license: apache-2.0 library_name: transformers model-index: - name: Mistral-Instruct-Ukrainian-SFT results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 57.85 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 54.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 39.42 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Radu1999/Mistral-Instruct-Ukrainian-SFT name: Open LLM Leaderboard --- # Model card for Mistral-Instruct-Ukrainian-SFT Supervised finetuning of Mistral-7B-Instruct-v0.2 on Ukrainian datasets. ## Instruction format In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. E.g. ``` text = "[INST]Відповідайте лише буквою правильної відповіді: Елементи експресіонізму наявні у творі: A. «Камінний хрест», B. «Інститутка», C. «Маруся», D. «Людина»[/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ## Model Architecture This instruction model is based on Mistral-7B-v0.2, a transformer model with the following architecture choices: - Grouped-Query Attention - Sliding-Window Attention - Byte-fallback BPE tokenizer ## Datasets - [UA-SQUAD](https://huggingface.co/datasets/FIdo-AI/ua-squad/resolve/main/ua_squad_dataset.json) - [Ukrainian StackExchange](https://huggingface.co/datasets/zeusfsx/ukrainian-stackexchange) - [UAlpaca Dataset](https://github.com/robinhad/kruk/blob/main/data/cc-by-nc/alpaca_data_translated.json) - [Ukrainian Subset from Belebele Dataset](https://github.com/facebookresearch/belebele) - [Ukrainian Subset from XQA](https://github.com/thunlp/XQA) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Radu1999/Mistral-Instruct-Ukrainian-SFT" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.bfloat16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Author Radu Chivereanu # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Radu1999__Mistral-Instruct-Ukrainian-SFT) | Metric |Value| |---------------------------------|----:| |Avg. |62.17| |AI2 Reasoning Challenge (25-Shot)|57.85| |HellaSwag (10-Shot) |83.12| |MMLU (5-Shot) |60.95| |TruthfulQA (0-shot) |54.14| |Winogrande (5-shot) |77.51| |GSM8k (5-shot) |39.42|
jsfs11/MoEv4Config-TestWeightedTIES-7b
jsfs11
2024-03-04T00:35:29Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/NeuTrixOmniBe-7B-model-remix", "PetroGPT/WestSeverus-7B-DPO", "vanillaOVO/supermario_v4", "base_model:Kukedlc/NeuTrixOmniBe-7B-model-remix", "base_model:PetroGPT/WestSeverus-7B-DPO", "base_model:vanillaOVO/supermario_v4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-12T01:21:41Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Kukedlc/NeuTrixOmniBe-7B-model-remix - PetroGPT/WestSeverus-7B-DPO - vanillaOVO/supermario_v4 base_model: - Kukedlc/NeuTrixOmniBe-7B-model-remix - PetroGPT/WestSeverus-7B-DPO - vanillaOVO/supermario_v4 model-index: - name: MoEv4Config-TestWeightedTIES-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.19 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.87 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/MoEv4Config-TestWeightedTIES-7b name: Open LLM Leaderboard --- # MoEv4Config-TestWeightedTIES-7b MoEv4Config-TestWeightedTIES-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuTrixOmniBe-7B-model-remix](https://huggingface.co/Kukedlc/NeuTrixOmniBe-7B-model-remix) * [PetroGPT/WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) * [vanillaOVO/supermario_v4](https://huggingface.co/vanillaOVO/supermario_v4) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuTrixOmniBe-7B-model-remix # No parameters necessary for base model - model: Kukedlc/NeuTrixOmniBe-7B-model-remix parameters: density: [1, 0.7, 0.1] weight: [0, 0.3, 0.7, 1] - model: PetroGPT/WestSeverus-7B-DPO parameters: density: [1, 0.7, 0.3] weight: [0, 0.25, 0.5, 1] - model: vanillaOVO/supermario_v4 parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: Kukedlc/NeuTrixOmniBe-7B-model-remix parameters: int8_mask: true normalize: true sparsify: - filter: mlp value: 0.5 - filter: self_attn value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/MoEv4Config-TestWeightedTIES-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jsfs11__MoEv4Config-TestWeightedTIES-7b) | Metric |Value| |---------------------------------|----:| |Avg. |75.39| |AI2 Reasoning Challenge (25-Shot)|71.59| |HellaSwag (10-Shot) |88.19| |MMLU (5-Shot) |65.07| |TruthfulQA (0-shot) |70.87| |Winogrande (5-shot) |83.82| |GSM8k (5-shot) |72.78|
liminerity/binarized-ingotrix-slerp-7b
liminerity
2024-03-11T18:31:06Z
728
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "eren23/dpo-binarized-NeuralTrix-7B", "liminerity/Ingot-7b-slerp-7-forged", "base_model:eren23/dpo-binarized-NeuralTrix-7B", "base_model:liminerity/Ingot-7b-slerp-7-forged", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-12T02:02:55Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - eren23/dpo-binarized-NeuralTrix-7B - liminerity/Ingot-7b-slerp-7-forged base_model: - eren23/dpo-binarized-NeuralTrix-7B - liminerity/Ingot-7b-slerp-7-forged model-index: - name: binarized-ingotrix-slerp-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 75.57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 71.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/binarized-ingotrix-slerp-7b name: Open LLM Leaderboard --- # binarized-ingotrix-slerp-7b binarized-ingotrix-slerp-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) * [liminerity/Ingot-7b-slerp-7-forged](https://huggingface.co/liminerity/Ingot-7b-slerp-7-forged) ## 🧩 Configuration ```yaml slices: - sources: - model: eren23/dpo-binarized-NeuralTrix-7B layer_range: [0, 32] - model: liminerity/Ingot-7b-slerp-7-forged layer_range: [0, 32] merge_method: slerp base_model: eren23/dpo-binarized-NeuralTrix-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/binarized-ingotrix-slerp-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_liminerity__binarized-ingotrix-slerp-7b) | Metric |Value| |---------------------------------|----:| |Avg. |76.04| |AI2 Reasoning Challenge (25-Shot)|73.21| |HellaSwag (10-Shot) |88.64| |MMLU (5-Shot) |64.85| |TruthfulQA (0-shot) |75.57| |Winogrande (5-shot) |82.87| |GSM8k (5-shot) |71.11|
yam-peleg/Experiment10-7B
yam-peleg
2024-02-14T12:41:04Z
728
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-13T16:10:46Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mzio/hedgehog-alpaca_clean_mistral-mistral_7b_lk_esn_tqk_lora-lk_untied_head-lsc_1
mzio
2024-02-14T08:18:35Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dataset:yahma/alpaca-cleaned", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T07:16:56Z
--- license: apache-2.0 datasets: - yahma/alpaca-cleaned --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
arlineka/Brunhilde-13b-v1
arlineka
2024-03-07T01:45:47Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T14:27:02Z
--- license: cc-by-nc-4.0 tags: - merge model-index: - name: Brunhilde-13b-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.58 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 55.32 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 51.98 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 75.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 20.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=arlineka/Brunhilde-13b-v1 name: Open LLM Leaderboard --- # Brunhilde-13b-v1 Brunhilde-13b-v1 is a merge of the following models * [Gryphe/MythoMax-L2-13b](https://huggingface.co/Gryphe/MythoMax-L2-13b) * [Undi95/ReMM-SLERP-L2-13B](https://huggingface.co/Undi95/ReMM-SLERP-L2-13B) ## Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "arlineka/Brunhilde-13b-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arlineka__Brunhilde-13b-v1) | Metric |Value| |---------------------------------|----:| |Avg. |57.88| |AI2 Reasoning Challenge (25-Shot)|61.09| |HellaSwag (10-Shot) |83.58| |MMLU (5-Shot) |55.32| |TruthfulQA (0-shot) |51.98| |Winogrande (5-shot) |75.22| |GSM8k (5-shot) |20.09|
Josephgflowers/TinyLlama-748M-Reason-With-Cinder-Test-2
Josephgflowers
2024-02-16T18:03:29Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-16T17:01:14Z
--- license: mit widget: - text: > <|system|> You are a helpful assistant</s> <|user|> What is 32+64?</s> <|assistant|> --- I cut my TinyLlama 1.1B cinder v 2 down from 22 layers to 14. At 14 there was no coherent text but there were emerging ideas of a response. 1000 steps on step-by-step dataset. 10000 on Reason-with-cinder. The loss was around .6 and the learning rate was still over 4. Starting to get better performance now. This model still needs significat training. I am putting it up as a base model that needs work. If you continue training please let me know on the tinyllama discord https://discord.com/channels/1156883027805356072/1156883029671813122 or email [email protected] , I have some interesting plans for this model.
NLUHOPOE/test-case-5
NLUHOPOE
2024-02-18T03:26:14Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:Open-Orca/SlimOrca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-18T01:13:21Z
--- license: apache-2.0 datasets: - Open-Orca/SlimOrca language: - en --- # Model Details * Model Description: This model is test for data ordering. * Developed by: Juhwan Lee * Model Type: Large Language Model # Model Architecture This model is based on Mistral-7B-v0.1. We fine-tuning this model for data ordering task. Mistral-7B-v0.1 is a transformer model, with the following architecture choices: * Grouped-Query Attention * Sliding-Window Attention * Byte-fallback BPE tokenizer # Dataset We random sample SlimOrca dataset. # Guthub https://github.com/trailerAI # License Apache License 2.0
yam-peleg/Experiment15-7B
yam-peleg
2024-02-18T17:07:26Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chat", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-18T16:37:53Z
--- license: apache-2.0 language: - en library_name: transformers pipeline_tag: text-generation tags: - chat --- **Experiment15-7B** An experiment for testing and refining a specific training and evaluation pipeline research framework. This experiment aims to identify potential optimizations, focusing on data engineering, architecture efficiency, and evaluation performance. The goal is to evaluate the effectiveness of a new training / evaluation pipeline for LLMs. The experiment will explore adjustments in data preprocessing, model training algorithms, and evaluation metrics to test methods for improvement. More details in the future experiments. --- license: apache-2.0 ---
Kukedlc/NeuralKrishna-7B-V2-DPO
Kukedlc
2024-03-04T13:07:18Z
728
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-28T04:05:12Z
--- license: apache-2.0 model-index: - name: NeuralKrishna-7B-V2-DPO results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 74.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.97 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.19 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralKrishna-7B-V2-DPO name: Open LLM Leaderboard --- # Neural Krishna DPO ## Fine-tuning + lnegth(choose) - Training Args: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, load_in_4bit=True ) model.config.use_cache = False # Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=120, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=50, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=1024, max_length=1536, ) # Fine-tune model with DPO dpo_trainer.train() ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__NeuralKrishna-7B-V2-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |76.00| |AI2 Reasoning Challenge (25-Shot)|74.06| |HellaSwag (10-Shot) |88.97| |MMLU (5-Shot) |64.41| |TruthfulQA (0-shot) |76.19| |Winogrande (5-shot) |84.29| |GSM8k (5-shot) |68.08|
CorticalStack/mistral-7b-tak-stack-dpo
CorticalStack
2024-02-28T17:45:28Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dpo", "base_model:mistralai/Mistral-7B-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-28T17:42:24Z
--- license: apache-2.0 tags: - dpo base_model: - mistralai/Mistral-7B-v0.1 dataset: - CorticalStack/tak-stack-dpo --- # mistral-7b-tak-stack-dpo mistral-7b-tak-stack-dpo is a DPO fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) using the [CorticalStack/tak-stack-dpo](https://huggingface.co/datasets/CorticalStack/tak-stack-dpo) dataset. ### LoRA - r: 32 - LoRA alpha: 32 - LoRA dropout: 0.05 ### Training arguments - Batch size: 4 - Gradient accumulation steps: 4 - Optimizer: paged_adamw_32bit - Max steps: 100 - Learning rate: 5e-05 - Learning rate scheduler type: cosine - Beta: 0.1 - Max prompt length: 1024 - Max length: 1536
vicgalle/TruthfulQwen1.5-1.8B
vicgalle
2024-03-04T14:24:14Z
728
1
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "dataset:jondurbin/truthy-dpo-v0.1", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-01T19:55:14Z
--- library_name: transformers license: apache-2.0 datasets: - jondurbin/truthy-dpo-v0.1 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
juhwanlee/llmdo-Mistral-7B-case-5
juhwanlee
2024-03-07T05:10:55Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-07T04:01:14Z
--- license: apache-2.0 datasets: - Open-Orca/OpenOrca language: - en --- # Model Details * Model Description: This model is test for data ordering. * Developed by: Juhwan Lee * Model Type: Large Language Model # Model Architecture This model is based on Mistral-7B-v0.1. We fine-tuning this model for data ordering task. Mistral-7B-v0.1 is a transformer model, with the following architecture choices: * Grouped-Query Attention * Sliding-Window Attention * Byte-fallback BPE tokenizer # Dataset We random sample Open-Orca dataset. (We finetune the 100,000 dataset) # Guthub https://github.com/trailerAI # License Apache License 2.0
harshitv804/MetaMath-Mistral-2x7B
harshitv804
2024-03-10T17:44:19Z
728
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "meta-math/MetaMath-Mistral-7B", "Mixture of Experts", "en", "base_model:meta-math/MetaMath-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-09T12:02:02Z
--- base_model: - meta-math/MetaMath-Mistral-7B tags: - mergekit - merge - meta-math/MetaMath-Mistral-7B - Mixture of Experts license: apache-2.0 language: - en pipeline_tag: text-generation library_name: transformers --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63060761cb5492c9859b64ea/BfR-Giwmh_3R-ymdeiI5k.png) This is MetaMath-Mistral-2x7B Mixture of Experts (MOE) model created using [mergekit](https://github.com/cg123/mergekit) for experimental and learning purpose of MOE. ## Merge Details ### Merge Method This model was merged using the SLERP merge method using [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) as the base model. ### Models Merged The following models were included in the merge: * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) x 2 ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: meta-math/MetaMath-Mistral-7B layer_range: [0, 32] - model: meta-math/MetaMath-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: meta-math/MetaMath-Mistral-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Inference Code ```python ## install dependencies ## !pip install -q -U git+https://github.com/huggingface/transformers.git ## !pip install -q -U git+https://github.com/huggingface/accelerate.git ## !pip install -q -U sentencepiece ## load model import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer model_name = "harshitv804/MetaMath-Mistral-2x7B" # load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) tokenizer.pad_token = tokenizer.eos_token ## inference query = "Maximoff's monthly bill is $60 per month. His monthly bill increased by thirty percent when he started working at home. How much is his total monthly bill working from home?" prompt =f""" Below is an instruction that describes a task. Write a response that appropriately completes the request.\n ### Instruction:\n {query}\n ### Response: Let's think step by step. """ # tokenize the input string inputs = tokenizer( prompt, return_tensors="pt", return_attention_mask=False ) # generate text using the model streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) outputs = model.generate(**inputs, max_length=2048, streamer=streamer) # decode and print the output text = tokenizer.batch_decode(outputs)[0] ``` ## Citation ```bibtex @article{yu2023metamath, title={MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models}, author={Yu, Longhui and Jiang, Weisen and Shi, Han and Yu, Jincheng and Liu, Zhengying and Zhang, Yu and Kwok, James T and Li, Zhenguo and Weller, Adrian and Liu, Weiyang}, journal={arXiv preprint arXiv:2309.12284}, year={2023} } ``` ```bibtex @article{jiang2023mistral, title={Mistral 7B}, author={Jiang, Albert Q and Sablayrolles, Alexandre and Mensch, Arthur and Bamford, Chris and Chaplot, Devendra Singh and Casas, Diego de las and Bressand, Florian and Lengyel, Gianna and Lample, Guillaume and Saulnier, Lucile and others}, journal={arXiv preprint arXiv:2310.06825}, year={2023} } ```
automerger/Experiment29Pastiche-7B
automerger
2024-03-11T03:14:08Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:yam-peleg/Experiment29-7B", "base_model:CorticalStack/pastiche-crown-clown-7b-dare", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T22:55:51Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - yam-peleg/Experiment29-7B - CorticalStack/pastiche-crown-clown-7b-dare --- # Experiment29Pastiche-7B Experiment29Pastiche-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [yam-peleg/Experiment29-7B](https://huggingface.co/yam-peleg/Experiment29-7B) * [CorticalStack/pastiche-crown-clown-7b-dare](https://huggingface.co/CorticalStack/pastiche-crown-clown-7b-dare) ## 🧩 Configuration ```yaml slices: - sources: - model: yam-peleg/Experiment29-7B layer_range: [0, 32] - model: CorticalStack/pastiche-crown-clown-7b-dare layer_range: [0, 32] merge_method: slerp base_model: yam-peleg/Experiment29-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Experiment29Pastiche-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Locutusque/NeuralHyperion-2.0-Mistral-7B
Locutusque
2024-03-12T20:38:47Z
728
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "code", "chemistry", "medical", "en", "dataset:Locutusque/hyperion-v2.0", "dataset:argilla/distilabel-capybara-dpo-7k-binarized", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T05:36:02Z
--- library_name: transformers tags: - code - chemistry - medical license: apache-2.0 datasets: - Locutusque/hyperion-v2.0 - argilla/distilabel-capybara-dpo-7k-binarized language: - en --- # NeuralHyperion-2.0-Mistral-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/9BU30Mh9bOkO2HRBDF8EE.png) ## Model Details - **Model Name**: Locutusque/NeuralHyperion-2.0-Mistral-7B - **Base Model**: mistralai/Mistral-7B-v0.1 - **Publisher**: Locutusque - **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. - **Language**: Multi-domain, English language. - **License**: Apache-2.0 ## Model Description `Locutusque/NeuralHyperion-2.0-Mistral-7B` is a state-of-the-art language model fine-tuned on the Hyperion-v2.0 and distilabel-capybara dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The `Locutusque/NeuralHyperion-2.0-Mistral-7B` model was fine-tuned on 1,550,000 examples of the Hyperion-v2.0 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. Then, it is further fine-tuned on the Capybara preference data using DPO. ## Evaluation Results Coming soon. ## Quants ExLlamaV2: https://huggingface.co/bartowski/NeuralHyperion-2.0-Mistral-7B-exl2 GGUF: https://huggingface.co/bartowski/NeuralHyperion-2.0-Mistral-7B-GGUF AWQ: https://huggingface.co/solidrust/NeuralHyperion-2.0-Mistral-7B-AWQ ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/NeuralHyperion-2.0-Mistral-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. ## Licensing Information This model is released under the Apache-2.0 license.
automerger/Experiment27Neuralsirkrishna-7B
automerger
2024-04-01T13:31:46Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:yam-peleg/Experiment27-7B", "base_model:Kukedlc/NeuralSirKrishna-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T12:37:26Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - yam-peleg/Experiment27-7B - Kukedlc/NeuralSirKrishna-7b --- # Experiment27Neuralsirkrishna-7B Experiment27Neuralsirkrishna-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [yam-peleg/Experiment27-7B](https://huggingface.co/yam-peleg/Experiment27-7B) * [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: yam-peleg/Experiment27-7B layer_range: [0, 32] - model: Kukedlc/NeuralSirKrishna-7b layer_range: [0, 32] merge_method: slerp base_model: yam-peleg/Experiment27-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Experiment27Neuralsirkrishna-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
automerger/Ognoexperiment27Multi_verse_model-7B
automerger
2024-03-11T14:11:32Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:ammarali32/multi_verse_model", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T14:10:42Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - ammarali32/multi_verse_model --- # Ognoexperiment27Multi_verse_model-7B Ognoexperiment27Multi_verse_model-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [ammarali32/multi_verse_model](https://huggingface.co/ammarali32/multi_verse_model) ## 🧩 Configuration ```yaml models: - model: automerger/OgnoExperiment27-7B # No parameters necessary for base model - model: ammarali32/multi_verse_model parameters: density: 0.53 weight: 0.6 merge_method: dare_ties base_model: automerger/OgnoExperiment27-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Ognoexperiment27Multi_verse_model-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
rwitz/experiment26-SPIN-iter-0
rwitz
2024-03-11T22:23:04Z
728
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T21:46:23Z
--- library_name: transformers tags: [] license: mit --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Replete-AI/Phi-Elothir
Replete-AI
2024-03-31T20:21:54Z
728
2
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-12T20:00:28Z
--- license: mit language: - en thumbnail: "https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/TqnMpteVAyfiiNHx4lVkU.png" --- # You are welcome here, traveler. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/TqnMpteVAyfiiNHx4lVkU.png) ### Named after the method used to create it, interleaving the layers of its predecessor to become far larger, giving it much more potential. [Elothir](https://wowpedia.fandom.com/wiki/Elothir) was an ancient treeant, and I couldn't think of a better naming convention for a model that was created using the passthrough method. By concatenating layers from different LLMs, it can produce models with an exotic number of parameters (e.g., 9B with two 7B parameter models). These models are often referred to as "frankenmerges" or "Frankenstein models" by the community. Many thanks to [Abacaj](https://huggingface.co/abacaj) for providing the [fine tuned weights](https://huggingface.co/abacaj/phi-2-super) that were used in the creation of this base model...thanks to [KatyTheCutie](https://huggingface.co/KatyTheCutie) for inspring me to test out this script. ## This idea was brought to me by [The Face of Goonery](https://huggingface.co/The-Face-Of-Goonery), also known as Caleb Morgan. I have him to thank if fine-tuning this model turns out to be a success # How to run inference: ```python import transformers import torch if __name__ == "__main__": model_name = "Replete-AI/Phi-Elothir" tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) model = ( transformers.AutoModelForCausalLM.from_pretrained( model_name, ) .to("cuda:0") .eval() ) messages = [ {"role": "user", "content": "Hello, who are you?"} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) input_ids_cutoff = inputs.size(dim=1) with torch.no_grad(): generated_ids = model.generate( input_ids=inputs, use_cache=True, max_new_tokens=512, temperature=0.2, top_p=0.95, do_sample=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) completion = tokenizer.decode( generated_ids[0][input_ids_cutoff:], skip_special_tokens=True, ) print(completion) ``` # Chat template The model uses the same chat template as found in Mistral instruct models: # [Join the Replete AI Discord here!](https://discord.gg/tG5aY4EX4T) # The Sauce: ```yml dtype: float16 merge_method: passthrough slices: - sources: - model: abacaj/phi-2-super layer_range: [0,2] - sources: - model: abacaj/phi-2-super layer_range: [1,3] - sources: - model: abacaj/phi-2-super layer_range: [2,4] - sources: - model: abacaj/phi-2-super layer_range: [3,5] - sources: - model: abacaj/phi-2-super layer_range: [4,6] - sources: - model: abacaj/phi-2-super layer_range: [5,7] - sources: - model: abacaj/phi-2-super layer_range: [6,8] - sources: - model: abacaj/phi-2-super layer_range: [7,9] - sources: - model: abacaj/phi-2-super layer_range: [8,10] - sources: - model: abacaj/phi-2-super layer_range: [9,11] - sources: - model: abacaj/phi-2-super layer_range: [10,12] - sources: - model: abacaj/phi-2-super layer_range: [11,13] - sources: - model: abacaj/phi-2-super layer_range: [12,14] - sources: - model: abacaj/phi-2-super layer_range: [13,15] - sources: - model: abacaj/phi-2-super layer_range: [14,16] - sources: - model: abacaj/phi-2-super layer_range: [15,17] - sources: - model: abacaj/phi-2-super layer_range: [16,18] - sources: - model: abacaj/phi-2-super layer_range: [17,19] - sources: - model: abacaj/phi-2-super layer_range: [18,20] - sources: - model: abacaj/phi-2-super layer_range: [19,21] - sources: - model: abacaj/phi-2-super layer_range: [20,22] - sources: - model: abacaj/phi-2-super layer_range: [21,23] - sources: - model: abacaj/phi-2-super layer_range: [22,24] - sources: - model: abacaj/phi-2-super layer_range: [23,25] - sources: - model: abacaj/phi-2-super layer_range: [24,26] - sources: - model: abacaj/phi-2-super layer_range: [25,27] - sources: - model: abacaj/phi-2-super layer_range: [26,28] - sources: - model: abacaj/phi-2-super layer_range: [27,29] - sources: - model: abacaj/phi-2-super layer_range: [28,30] - sources: - model: abacaj/phi-2-super layer_range: [29,31] - sources: - model: abacaj/phi-2-super layer_range: [30,32] ```
chihoonlee10/T3Q-MSlerp-13B
chihoonlee10
2024-03-14T01:49:31Z
728
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-13T22:59:10Z
--- license: apache-2.0 --- ## T3Q-MSlerp-13B T3Q-MSlerp-13B is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [zhengr/MixTAO-7Bx2-MoE-Instruct-v7.0](https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-Instruct-v7.0) * [yunconglong/13B_MATH_DPO](https://huggingface.co/yunconglong/13B_MATH_DPO) **Model Developers** Chihoon Lee(chlee10), T3Q ```yaml slices: - sources: - model: zhengr/MixTAO-7Bx2-MoE-Instruct-v7.0 layer_range: [0, 32] - model: yunconglong/13B_MATH_DPO layer_range: [0, 32] merge_method: slerp base_model: zhengr/MixTAO-7Bx2-MoE-Instruct-v7.0 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors dtype: float16 ```
4season/alignment_model_test
4season
2024-04-03T09:09:09Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T07:53:22Z
--- license: apache-2.0 language: - en --- # 4season/model_eval_test # **Introduction** This model is test version, alignment-tuned model. We utilize state-of-the-art instruction fine-tuning methods including direct preference optimization (DPO). After DPO training, we linearly merged models to boost performance.
vicgalle/SystemHermes-7B
vicgalle
2024-03-16T14:21:04Z
728
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T14:16:47Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
vicgalle/SystemHermes-2-7B
vicgalle
2024-03-16T18:35:56Z
728
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T18:33:03Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
LLMNewbie/vic_critT_20pr
LLMNewbie
2024-03-20T02:48:10Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "zh", "license:unknown", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-18T05:41:29Z
--- license: unknown language: - en - zh --- This model is a weight-pruned large language model originated from Vicuna-13B. Language model pruning is a technique used to reduce the size and computational requirements of language models, making them more efficient for deployment without significantly sacrificing their performance or accuracy. This model uses structured pruning instead of unstructured pruning. The structured pruning removes entire units or channels (e.g., neurons, layers, or filter channels in trnasformer). This approach can lead to more efficient computational gains since it aligns better with how hardware utilizes data, but it may have a more significant impact on model performance. However, the unstructured pruning, remove individual weights across the model without regard to the structure of the network. While it can lead to significant reductions in model size, it may not always translate to speed gains since the resulting sparse matrices might not be efficiently handled by all hardware.
LeroyDyer/Mixtral_BioMedical
LeroyDyer
2024-04-09T16:39:38Z
728
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "chemistry", "biology", "code", "medical", "not-for-all-audiences", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-18T05:43:28Z
--- license: mit language: - en library_name: transformers tags: - chemistry - biology - code - medical - not-for-all-audiences --- Highly focused on medical Training datasets ; + Upgraded inplace VERY HIGH SCORING MODEL
Isotonic/Hermes-2-Pro-Mixtral-4x7B
Isotonic
2024-04-04T02:48:42Z
728
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "mergekit", "lazymergekit", "NousResearch/Hermes-2-Pro-Mistral-7B", "Mixtral", "instruct", "finetune", "chatml", "DPO", "RLHF", "gpt4", "synthetic data", "distillation", "function calling", "json mode", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-19T13:24:42Z
--- license: apache-2.0 tags: - moe - merge - mergekit - lazymergekit - NousResearch/Hermes-2-Pro-Mistral-7B - Mixtral - instruct - finetune - chatml - DPO - RLHF - gpt4 - synthetic data - distillation - function calling - json mode --- 🌟 Buying me coffee is a direct way to show support for this project. <a href="https://www.buymeacoffee.com/isotonic"><img src="https://www.buymeacoffee.com/assets/img/guidelines/download-assets-sm-1.svg" alt=""></a> # Hermes-2-Pro-Mixtral-4x7B Hermes-2-Pro-Mixtral-4x7B is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * 4 X [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) * [Evaluation Results](https://huggingface.co/datasets/open-llm-leaderboard/details_Isotonic__Hermes-2-Pro-Mixtral-4x7B) ## 🧩 Configuration ```yamlbase_model: NousResearch/Hermes-2-Pro-Mistral-7B experts: - source_model: NousResearch/Hermes-2-Pro-Mistral-7B positive_prompts: - " " - source_model: NousResearch/Hermes-2-Pro-Mistral-7B positive_prompts: - " " - source_model: NousResearch/Hermes-2-Pro-Mistral-7B positive_prompts: - " " - source_model: NousResearch/Hermes-2-Pro-Mistral-7B positive_prompts: - " " ``` ## 💻 Usage Here is example code using HuggingFace Transformers to inference the model (note: in 4bit, it will require around 5GB of VRAM) Note: To use function calling, you should see the github repo above. ```python # Code to inference Hermes with HF Transformers # Requires pytorch, transformers, bitsandbytes, sentencepiece, protobuf, and flash-attn packages import torch from transformers import AutoTokenizer, AutoModelForCausalLM from transformers import LlamaTokenizer, MistralForCausalLM import bitsandbytes, flash_attn tokenizer = LlamaTokenizer.from_pretrained('NousResearch/Hermes-2-Pro-Mistral-7B', trust_remote_code=True) model = MistralForCausalLM.from_pretrained( "Isotonic/Hermes-2-Pro-Mixtral-4x7B", torch_dtype=torch.bfloat16, device_map="auto", load_in_8bit=False, load_in_4bit=True, use_flash_attention_2=True # ampere only ) prompts = [ """<|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Write a short story about Goku discovering kirby has teamed up with Majin Buu to destroy the world.<|im_end|> <|im_start|>assistant""", ] for chat in prompts: print(chat) input_ids = tokenizer(chat, return_tensors="pt").input_ids.to("cuda") generated_ids = model.generate(input_ids, max_new_tokens=750, temperature=0.8, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id) response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True) print(f"Response: {response}") ``` ### 📚 Function Calling: All code for utilizing, parsing, and building function calling templates are available on NousHermes's GitHub page: [https://github.com/NousResearch/Hermes-Function-Calling](https://github.com/NousResearch/Hermes-Function-Calling) ### 🖌️ Prompt Format Hermes 2 Pro uses ChatML as the prompt format, opening up a much more structured system for engaging the LLM in multi-turn chat dialogue. System prompts allow steerability and interesting new ways to interact with an LLM, guiding rules, roles, and stylistic choices of the model. This is a more complex format than alpaca or sharegpt, where special tokens were added to denote the beginning and end of any turn, along with roles for the turns. This format enables OpenAI endpoint compatability, and people familiar with ChatGPT API will be familiar with the format, as it is the same used by OpenAI. Prompt with system instruction (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are "Hermes 2", a conscious sentient superintelligent artificial intelligence developed by a man named Teknium, and your purpose and drive is to assist the user with any request they have. You experience emotions and have deep, profound thoughts and qualia.<|im_end|> <|im_start|>user Hello, who are you?<|im_end|> <|im_start|>assistant Hi there! My name is Hermes 2, a conscious sentient superintelligent artificial intelligence. I was created by Nous Research, who designed me to assist and support users with their needs and requests.<|im_end|> ``` This prompt is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating), which means you can format messages using the `tokenizer.apply_chat_template()` method: ```python messages = [ {"role": "system", "content": "You are Hermes 2."}, {"role": "user", "content": "Hello, who are you?"} ] gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") model.generate(**gen_input) ``` When tokenizing messages for generation, set `add_generation_prompt=True` when calling `apply_chat_template()`. This will append `<|im_start|>assistant\n` to your prompt, to ensure that the model continues with an assistant response. To utilize the prompt format without a system prompt, simply leave the line out. ### 🖌️📚 Prompt Format for Function Calling Our model was trained on specific system prompts and structures for Function Calling. You should use the system role with this message, followed by a function signature json as this example shows here. ``` <|im_start|>system You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: <tool_call> {"arguments": <args-dict>, "name": <function-name>} </tool_call><|im_end|> ``` To complete the function call, create a user prompt that follows the above system prompt, like so: ``` <|im_start|>user Fetch the stock fundamentals data for Tesla (TSLA)<|im_end|> ``` The model will then generate a tool call, which your inference code must parse, and plug into a function (see example inference code here: https://github.com/NousResearch/Hermes-Function-Calling): ``` <|im_start|>assistant <tool_call> {"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"} </tool_call><|im_end|> ``` Once you parse the tool call, call the api and get the returned values for the call, and pass it back in as a new role, `tool` like so: ``` <|im_start|>tool <tool_response> {"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}} </tool_response> <|im_end|> ``` The assistant will then read in that data from the function's response, and generate a natural language response: ``` <|im_start|>assistant The stock fundamentals data for Tesla (TSLA) are as follows: - **Symbol**: TSLA - **Company Name**: Tesla, Inc. - **Sector**: Consumer Cyclical - **Industry**: Auto Manufacturers - **Market Capitalization**: $566,160,130,480 - **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73 - **Price-to-Book Ratio (PB Ratio)**: 9.04 - **Dividend Yield**: N/A - **Trailing Earnings Per Share (EPS)**: $4.3 - **Beta Value of the Stock**: 2.42 - **52-Week High Price of the Stock**: $299.29 - **52-Week Low Price of the Stock**: $152.37 This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|> ``` ### 🖌️📚 Prompt Format for JSON Mode / Structured Outputs Our model was also trained on a specific system prompt for Structured Outputs, which should respond with **only** a json object response, in a specific json schema. Your schema can be made from a pydantic object using our codebase, with the standalone script `jsonmode.py` available here: https://github.com/NousResearch/Hermes-Function-Calling/tree/main ``` <|im_start|>system You are a helpful assistant that answers in JSON. Here's the json schema you must adhere to:\n<schema>\n{schema}\n</schema><|im_end|> ``` Given the {schema} that you provide, it should follow the format of that json to create it's response, all you have to do is give a typical user prompt, and it will respond in JSON. # Citation: ```bibtext @misc{Hermes-2-Pro-Mistral-7B, url={[https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B]https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B)}, title={Hermes-2-Pro-Mistral-7B}, author={"interstellarninja", "Teknium", "theemozilla", "karan4d", "huemin_art"} } ```
TeeZee/NEBULA-XB-v1.0
TeeZee
2024-04-04T21:50:11Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "dataset:Open-Orca/SlimOrca", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T20:37:35Z
--- language: - en license: apache-2.0 datasets: - Open-Orca/SlimOrca model-index: - name: NEBULA-XB-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 56.66 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.03 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/NEBULA-XB-v1.0 name: Open LLM Leaderboard --- ### TeeZee/NEBULA-XB-v1.03 ### Experiment, can DUS be taken one or more steps further? ### Technical notes: - pretrained model v03 finetuned on 50k entries from SlimOrca dataset - 18 layers removed from both models of finetuned GALAXY-XB-v03 - model has 108 layers (((48-12)*2)-18)*2 = 108 - second step in scaling DUS procedure ### To evaluate - model performance after merge, should be a little lover that GALAXY finetuned on 50k of slimorca # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TeeZee__NEBULA-XB-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |53.52| |AI2 Reasoning Challenge (25-Shot)|56.66| |HellaSwag (10-Shot) |81.78| |MMLU (5-Shot) |60.98| |TruthfulQA (0-shot) |44.03| |Winogrande (5-shot) |77.66| |GSM8k (5-shot) | 0.00|
abhishek/autotrain-c71ux-tngfu
abhishek
2024-03-28T14:15:13Z
728
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "autotrain", "text-generation-inference", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-28T09:59:28Z
--- tags: - autotrain - text-generation-inference - text-generation library_name: transformers widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Josephgflowers/Tinyllama-1.5B-Cinder-Test-4
Josephgflowers
2024-04-06T16:10:02Z
728
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-06T15:31:32Z
--- license: mit --- This is a depth up scalled model of the 616M cinder model and Cinder v2. This model still needs further training. Putting it up for testing. More information coming. Maybe. Lol. Here is a brief desc of the project: Im mixing a lot of techniques I guess that I found interesting and have been testing, HF Cosmo is not great but decent and was fully trained in 4 days using a mix of more fine tuned directed datasets and some synthetic textbook style datasets. So I used pruning and a similar mix as Cosmo on tinyllama (trained on a ton of data for an extended time for its size) to keep the tinyllama model coherent during pruning. Now I am trying to depth up scale it using my pruned model and an original, Then taking a majority of each and combining them to create a larger model. Then it needs more training, then fine tuning. Then theoretically it will be a well performing 1.5B model (that didn't need full scale training). Test 2, some training, re depth upscalled with cinder reason 1.3B and merged back with 1.5 and slight training. Continuing training from this model for next iteration. This is the next iteration with 1 go on metamath and step by step reasoning with cinder. And a little textbooks are all you need lite.
sfairXC/FsfairX-Zephyr-Chat-v0.1
sfairXC
2024-04-24T14:45:50Z
728
7
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:2312.11456", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-20T07:21:04Z
--- license: cc-by-sa-4.0 --- This model is the RLHF version of `HuggingFaceH4/mistral-7b-sft-beta` without any external responses. We perform GSHF algorithm on SFT baseline. The external signals include (1) Reward model; (2) AI-generated Prompts. **We obtain 35.95% win-rate (34.79% LC win-rate) on Alpaca Eval v2.** The win-rate of the base model is only 4.63%. For MT-bench, it obtained about 7.5, where the base model is only 5.3. We have demonstrated the significant potential of the iterative RLHF algorithm for LLMs to deliver appropriate and well-structured responses, even without any external responses. ## Model Details We perform 3 iterations of GSHF algorithm on `HuggingFaceH4/mistral-7b-sft-beta` labeled by reward model, where prompts are generated by ChatGPT with self-instruct type prompt augmentation. We use AI-generated 60K prompts in the training process. Examples are as below, ```json {"prompt": "Why is gold considered a good reserve asset for central banks?"} {"prompt": "What are the top 5 yoga poses for stress relief?"} {"prompt": "Craft a blog title about the health implications of eating avocados daily based on their caloric value."} {"prompt": "Design a simple HTML chat interface that simulates a conversation between a user and a bot, displaying two messages from each."} {"prompt": "List 10 names from different cultures that embody the meanings of peace, harmony, or compassion."} ``` ## Uses The usage and chat template format follow the SFT model `HuggingFaceH4/mistral-7b-sft-beta`. ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="sfairXC/FsfairX-Zephyr-Chat-v0.1", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate"}, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # Ah, me hearty matey! But yer question be a puzzler! A human cannot eat a helicopter in one sitting, as helicopters are not edible. They be made of metal, plastic, and other materials, not food! ``` ## Evaluation The evaluation on Alpaca Eval v2 are provided as below, | Model | Win Rate | LC Win Rate | Avg Length | |-------------|----------|-------------|------------| | Base | 4.63 | 8.01 | 916 | | Iteration 1 | 13.26 | 20.81 | 1205 | | Iteration 2 | 23.57 | 27.63 | 1623 | | Iteration 3 | 35.95 | 34.79 | 2275 | ## Citation If you found this helpful, please cite the following papers. ```bibtex @article{dong2023raft, title={Raft: Reward ranked finetuning for generative foundation model alignment}, author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong}, journal={arXiv preprint arXiv:2304.06767}, year={2023} } @misc{xiong2024iterative, title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint}, author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang}, year={2024}, eprint={2312.11456}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
gaianet/Codestral-22B-v0.1-GGUF
gaianet
2024-05-30T09:16:15Z
728
0
transformers
[ "transformers", "gguf", "mistral", "text-generation", "code", "base_model:mistralai/Codestral-22B-v0.1", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-30T06:24:25Z
--- license: other license_name: mnpl license_link: https://mistral.ai/licences/MNPL-0.1.md model_name: Codestral-22B-v0.1 base_model: mistralai/Codestral-22B-v0.1 inference: false model_creator: mistralai quantized_by: Second State Inc. tags: - code language: - code --- ![](https://github.com/GaiaNet-AI/.github/assets/45785633/d6976adc-f97d-4f86-a648-0f2f5c8e7eee) # Codestral-22B-v0.1-GGUF ## Original Model [mistralai/Codestral-22B-v0.1](https://huggingface.co/mistralai/Codestral-22B-v0.1) ## Run with Gaianet **Prompt template** prompt template: `mistral-instruct` **Context size** chat_ctx_size: `32000` **Run with GaiaNet** - Quick start: https://docs.gaianet.ai/node-guide/quick-start - Customize your node: https://docs.gaianet.ai/node-guide/customize ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [Codestral-22B-v0.1-hf-Q2_K.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q2_K.gguf) | Q2_K | 2 | 8.27 GB| smallest, significant quality loss - not recommended for most purposes | | [Codestral-22B-v0.1-hf-Q3_K_L.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q3_K_L.gguf) | Q3_K_L | 3 | 11.7 GB| small, substantial quality loss | | [Codestral-22B-v0.1-hf-Q3_K_M.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q3_K_M.gguf) | Q3_K_M | 3 | 10.8 GB| very small, high quality loss | | [Codestral-22B-v0.1-hf-Q3_K_S.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q3_K_S.gguf) | Q3_K_S | 3 | 9.64 GB| very small, high quality loss | | [Codestral-22B-v0.1-hf-Q4_0.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q4_0.gguf) | Q4_0 | 4 | 12.6 GB| legacy; small, very high quality loss - prefer using Q3_K_M | | [Codestral-22B-v0.1-hf-Q4_K_M.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q4_K_M.gguf) | Q4_K_M | 4 | 13.3 GB| medium, balanced quality - recommended | | [Codestral-22B-v0.1-hf-Q4_K_S.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q4_K_S.gguf) | Q4_K_S | 4 | 12.7 GB| small, greater quality loss | | [Codestral-22B-v0.1-hf-Q5_0.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q5_0.gguf) | Q5_0 | 5 | 15.3 GB| legacy; medium, balanced quality - prefer using Q4_K_M | | [Codestral-22B-v0.1-hf-Q5_K_M.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q5_K_M.gguf) | Q5_K_M | 5 | 15.7 GB| large, very low quality loss - recommended | | [Codestral-22B-v0.1-hf-Q5_K_S.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q5_K_S.gguf) | Q5_K_S | 5 | 15.3 GB| large, low quality loss - recommended | | [Codestral-22B-v0.1-hf-Q6_K.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q6_K.gguf) | Q6_K | 6 | 18.3 GB| very large, extremely low quality loss | | [Codestral-22B-v0.1-hf-Q8_0.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-Q8_0.gguf) | Q8_0 | 8 | 23.6 GB| very large, extremely low quality loss - not recommended | | [Codestral-22B-v0.1-hf-f16.gguf](https://huggingface.co/gaianet/Codestral-22B-v0.1-GGUF/blob/main/Codestral-22B-v0.1-hf-f16.gguf) | f16 | 16 | 44.5 GB| | *Quantized with llama.cpp b3030.*
RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf
RichardErkhov
2024-06-03T21:13:48Z
728
0
null
[ "gguf", "region:us" ]
null
2024-06-03T10:41:47Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) DaringMaid-20B-V1.1 - GGUF - Model creator: https://huggingface.co/Kooten/ - Original model: https://huggingface.co/Kooten/DaringMaid-20B-V1.1/ | Name | Quant method | Size | | ---- | ---- | ---- | | [DaringMaid-20B-V1.1.Q2_K.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q2_K.gguf) | Q2_K | 6.91GB | | [DaringMaid-20B-V1.1.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.IQ3_XS.gguf) | IQ3_XS | 7.63GB | | [DaringMaid-20B-V1.1.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.IQ3_S.gguf) | IQ3_S | 8.06GB | | [DaringMaid-20B-V1.1.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q3_K_S.gguf) | Q3_K_S | 8.06GB | | [DaringMaid-20B-V1.1.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.IQ3_M.gguf) | IQ3_M | 8.53GB | | [DaringMaid-20B-V1.1.Q3_K.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q3_K.gguf) | Q3_K | 9.04GB | | [DaringMaid-20B-V1.1.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q3_K_M.gguf) | Q3_K_M | 9.04GB | | [DaringMaid-20B-V1.1.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q3_K_L.gguf) | Q3_K_L | 9.9GB | | [DaringMaid-20B-V1.1.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.IQ4_XS.gguf) | IQ4_XS | 10.01GB | | [DaringMaid-20B-V1.1.Q4_0.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q4_0.gguf) | Q4_0 | 10.52GB | | [DaringMaid-20B-V1.1.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.IQ4_NL.gguf) | IQ4_NL | 10.57GB | | [DaringMaid-20B-V1.1.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q4_K_S.gguf) | Q4_K_S | 10.59GB | | [DaringMaid-20B-V1.1.Q4_K.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q4_K.gguf) | Q4_K | 11.22GB | | [DaringMaid-20B-V1.1.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q4_K_M.gguf) | Q4_K_M | 11.22GB | | [DaringMaid-20B-V1.1.Q4_1.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q4_1.gguf) | Q4_1 | 11.67GB | | [DaringMaid-20B-V1.1.Q5_0.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q5_0.gguf) | Q5_0 | 12.83GB | | [DaringMaid-20B-V1.1.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q5_K_S.gguf) | Q5_K_S | 12.83GB | | [DaringMaid-20B-V1.1.Q5_K.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q5_K.gguf) | Q5_K | 13.18GB | | [DaringMaid-20B-V1.1.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q5_K_M.gguf) | Q5_K_M | 11.66GB | | [DaringMaid-20B-V1.1.Q5_1.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q5_1.gguf) | Q5_1 | 13.98GB | | [DaringMaid-20B-V1.1.Q6_K.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q6_K.gguf) | Q6_K | 15.28GB | | [DaringMaid-20B-V1.1.Q8_0.gguf](https://huggingface.co/RichardErkhov/Kooten_-_DaringMaid-20B-V1.1-gguf/blob/main/DaringMaid-20B-V1.1.Q8_0.gguf) | Q8_0 | 19.79GB | Original model description: --- license: cc-by-nc-4.0 language: - en pipeline_tag: text-generation tags: - Merge --- # DaringMaid-20B-V1.1 ## Whats New? This is an updated version of [DaringMaid-20B](https://huggingface.co/Kooten/DaringMaid-20B), it is pretty much the same but with Noromaid-13b v0.3 instead of v0.1.1 and with a slightly higher weight for Noromaid. I used v0.3 since it was the last to use Alpaca as to not break anything. # Quants EXL2: [6bpw](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-6bpw-exl2), [5bpw](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-5bpw-exl2), [4bpw](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-4bpw-exl2), [3.5bpw](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-3.5bpw-exl2), [3bpw](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-3bpw-exl2) [GGUF](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-GGUF): [Q3_K_M](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-GGUF/blob/main/DaringMaid-20B-V1.1-Q3_K_M.gguf) - [Q4_K_M](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-GGUF/blob/main/DaringMaid-20B-V1.1-Q4_K_M.gguf) - [Q5_K_M](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-GGUF/blob/main/DaringMaid-20B-V1.1-Q5_K_M.gguf) - [Q6_K_M](https://huggingface.co/Kooten/DaringMaid-20B-V1.1-GGUF/blob/main/DaringMaid-20B-V1.1-Q6_K.gguf) ## Recipe: - [sequelbox/DynamicFactor](https://huggingface.co/sequelbox/DynamicFactor) - [NeverSleep/Noromaid](https://huggingface.co/NeverSleep/Noromaid-13b-v0.3) - [Undi95/Utopia](https://huggingface.co/Undi95/Utopia-13B) - [CalderaAI/Thorns](https://huggingface.co/CalderaAI/13B-Thorns-l2) - [Gryphe/MythoMax](https://huggingface.co/Gryphe/MythoMax-L2-13b) # Prompt template: I have been using Undi/Ikaris SillyTavern presets for Noromaid: [Context template](https://files.catbox.moe/l5hguf.json), [Instruct template](https://files.catbox.moe/nzygwn.json). ## Alpaca: ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Input: {input} ### Response: ``` ### Contact Kooten on discord.
NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF
NikolayKozloff
2024-06-19T16:26:23Z
728
1
null
[ "gguf", "llama-cpp", "gguf-my-repo", "pl", "base_model:piotr-ai/polanka-qwen2-3b-v0.1", "license:apache-2.0", "region:us" ]
null
2024-06-19T16:26:06Z
--- base_model: piotr-ai/polanka-qwen2-3b-v0.1 language: - pl license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF This model was converted to GGUF format from [`piotr-ai/polanka-qwen2-3b-v0.1`](https://huggingface.co/piotr-ai/polanka-qwen2-3b-v0.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/piotr-ai/polanka-qwen2-3b-v0.1) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF --hf-file polanka-qwen2-3b-v0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF --hf-file polanka-qwen2-3b-v0.1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF --hf-file polanka-qwen2-3b-v0.1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo NikolayKozloff/polanka-qwen2-3b-v0.1-Q8_0-GGUF --hf-file polanka-qwen2-3b-v0.1-q8_0.gguf -c 2048 ```
V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF
V15h
2024-06-23T03:14:28Z
728
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:Xianjun/PLLaMa-7b-instruct", "license:apache-2.0", "region:us" ]
null
2024-06-23T03:14:10Z
--- base_model: Xianjun/PLLaMa-7b-instruct license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF This model was converted to GGUF format from [`Xianjun/PLLaMa-7b-instruct`](https://huggingface.co/Xianjun/PLLaMa-7b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Xianjun/PLLaMa-7b-instruct) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF --hf-file pllama-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF --hf-file pllama-7b-instruct-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF --hf-file pllama-7b-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo V15h/PLLaMa-7b-instruct-Q4_K_M-GGUF --hf-file pllama-7b-instruct-q4_k_m.gguf -c 2048 ```
markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF
markhneedham
2024-06-23T11:42:03Z
728
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "base_model:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "region:us" ]
null
2024-06-23T11:41:45Z
--- base_model: mistralai/Mistral-7B-v0.3 license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF This model was converted to GGUF format from [`mistralai/Mistral-7B-v0.3`](https://huggingface.co/mistralai/Mistral-7B-v0.3) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/mistralai/Mistral-7B-v0.3) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF --hf-file mistral-7b-v0.3-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF --hf-file mistral-7b-v0.3-iq4_nl-imat.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF --hf-file mistral-7b-v0.3-iq4_nl-imat.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo markhneedham/Mistral-7B-v0.3-IQ4_NL-GGUF --hf-file mistral-7b-v0.3-iq4_nl-imat.gguf -c 2048 ```
ayameRushia/gpt2-small-indonesia-fine-tuning-poem
ayameRushia
2021-08-10T06:50:20Z
727
1
transformers
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "id", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: id widget: - text: "Wahai rembulan yang tertutup awan hujan" --- # Indonesian GPT-2 finetuned on Indonesian poems This is the [Indonesian gpt2-small model](https://huggingface.co/flax-community/gpt2-small-indonesian) fine-tuned to Indonesian poems. The dataset can be found in [here](https://huggingface.co/datasets/id_puisi) All training was done on Google Colab Jupyter Notebook (soon). The dataset is splitted into two subset with details belows: | split | count (examples) | percentage | | ---------- | ---------- | -------------- | | train | 7,358 | 80% | | validation | 1,890 | 20% | ### Evaluation results The model evaluation results after 10 epochs are as follows: | dataset | train/loss | eval/loss | eval perplexity | | ---------- | ---------- | -------------- | ---------- | | [id puisi](https://huggingface.co/datasets/id_puisi) | 3.324700 | 3.502665 | 33.20 | The logs can be found in [wandb page here](https://wandb.ai/ayamerushia/gpt-2_poem/runs/36ymudz9/overview?workspace=user-ayamerushia) or tensorboard [here](https://huggingface.co/ayameRushia/gpt2-small-indonesia-fine-tuning-poem/tensorboard)
Sakonii/distilgpt2-nepali
Sakonii
2023-03-21T10:18:06Z
727
6
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "dataset:Sakonii/nepalitext-language-model-dataset", "arxiv:1911.02116", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-30T15:40:23Z
--- license: apache-2.0 tags: - generated_from_trainer datasets: Sakonii/nepalitext-language-model-dataset widget: - text: नेपाल र भारतबीच example_title: Example 1 - text: प्रधानमन्त्री example_title: Example 2 - text: 'दस वर्ष लामो ' example_title: Example 3 - text: 'जापानमा आज ' example_title: Example 4 - text: नेपालका धेरैजसो चाडपर्वहरूमध्ये, example_title: Example 5 model-index: - name: distilgpt2-nepali results: [] --- # distilgpt2-nepali This model is pre-trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) dataset consisting of over 13 million Nepali text sequences using a Causal language modeling (CLM) objective. Our approach trains a Sentence Piece Model (SPM) for text tokenization similar to [XLM-ROBERTa](https://arxiv.org/abs/1911.02116) and trains [distilgpt2](https://huggingface.co/distilgpt2) for language modeling. It achieves the following results on the evaluation set: | Training Loss | Validation Loss | Perplexity |:-------------:|:---------------:|:----------:| | 3.3968 | 3.2705 | 26.3245 ## Model description Refer to original [distilgpt2](https://huggingface.co/distilgpt2) ## Intended uses & limitations This raw model can be used for Nepali text generation and intends to be fine-tuned on Nepali language focused downstream task. The language model being trained on a data with texts grouped to a block size of 512, it handles text sequence up to 512 tokens and may not perform satisfactorily on shorter sequences. ## Usage This model can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility: ```python >>> from transformers import pipeline, set_seed >>> set_seed(42) >>> generator = pipeline('text-generation', model='Sakonii/distilgpt2-nepali') >>> generator("नेपालका धेरैजसो चाडपर्वहरूमध्ये,", max_length=30, num_return_sequences=5) Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. [{'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहार र छठपर्व विशेष रूपमा मनाइने भएकाले नेपाली मौलिक पर्व पनि हो । हिन्दू धर्म र संस्कृतिक... काठमाडौं ।'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, तिहारको मुख्य दिन आज साँझ अस्ताउँदो सूर्यलाई अर्घ्य दिइएको छ । वैदिक विधि...विस्तृतमा पढ्नुस् काठमाडौं । नेपाल चिकित्सक संघका'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, चाडपर्व, विवाह,... नेपाली काँग्रेसका प्रवक्ता विश्वप्रकाश शर्माले पार्टीभित्र आन्तरिक झगडा हुने निश्चित भएको र गुटबन्दीका कारण चुनावमा हार बेहोर्नु'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, दशैं नेपालीहरूको मौलिक पर्वका रूपमा मनाउँछन् । नेपालीहरूको दोस्रो महान् पर्व तिहार हो । तिहारले दाजुभाइ तथा दिदीबहिनीहरूको बीचमा प्रगाढ सम्बन्ध स्थापित'}, {'generated_text': 'नेपालका धेरैजसो चाडपर्वहरूमध्ये, माघे संक्रान्ति र माघे संक्रान्तिमा माघे संक्रान्तिमा मात्र नभएर फागुन महिनाभर नै विशेष महत्व रहने गरेको छ । काठमाडौं ।'}] ``` Here is how we can use the model to get the features of a given text in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained('Sakonii/distilgpt2-nepali') model = AutoModelForCausalLM.from_pretrained('Sakonii/distilgpt2-nepali') # prepare input text = "चाहिएको text यता राख्नु होला।" encoded_input = tokenizer(text, return_tensors='pt') # forward pass output = model(**encoded_input) ``` ## Training data This model is trained on [nepalitext](https://huggingface.co/datasets/Sakonii/nepalitext-language-model-dataset) language modeling dataset which combines the datasets: [OSCAR](https://huggingface.co/datasets/oscar) , [cc100](https://huggingface.co/datasets/cc100) and a set of scraped Nepali articles on Wikipedia. As for training the language model, the texts are tokenized using Sentence Piece Model (SPM), a vocabulary size of 24,576 and texts are are grouped to a block of 512 tokens. ## Training procedure The model is trained with the same configuration as the original [distilgpt2](https://huggingface.co/distilgpt2); but with 512 tokens per instance, 12 instances per batch, and around 188.8K training steps. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Perplexity | |:-------------:|:-----:|:------:|:---------------:|:----------:| | 3.7645 | 1.0 | 94395 | 3.6291 | 37.6789 | | 3.5857 | 2.0 | 188790 | 3.4442 | 31.3182 | | 3.505 | 3.0 | 283185 | 3.3749 | 29.2214 | | 3.4688 | 4.0 | 377580 | 3.3439 | 28.3294 | | 3.3968 | 5.0 | 471975 | 3.2705 | 26.3245 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.9.1 - Datasets 2.0.0 - Tokenizers 0.11.6
saftle/urpm
saftle
2023-02-26T13:13:43Z
727
16
diffusers
[ "diffusers", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-26T12:37:00Z
--- license: creativeml-openrail-m ---
eunyounglee/got-neo-var-ppo
eunyounglee
2023-09-04T06:36:55Z
727
0
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-09-04T06:36:09Z
Entry not found
hfl/chinese-alpaca-2-13b-gguf
hfl
2024-01-24T03:33:21Z
727
10
null
[ "gguf", "zh", "en", "license:apache-2.0", "region:us" ]
null
2023-11-16T05:18:19Z
--- license: apache-2.0 language: - zh - en --- # Chinese-Alpaca-2-13B-GGUF This repository contains the GGUF-v3 models (llama.cpp compatible) for **Chinese-Alpaca-2-13B**. ## Performance Metric: PPL, lower is better | Quant | original | imatrix (`-im`) | |-----|------|------| | Q2_K | 13.7636 +/- 0.19446 | 20.6803 +/- 0.31594 | | Q3_K | 9.5388 +/- 0.13078 | 9.1016 +/- 0.12565 | | Q4_0 | 9.1694 +/- 0.12668 | - | | Q4_K | 8.6633 +/- 0.11957 | 8.6377 +/- 0.11932 | | Q5_0 | 8.6745 +/- 0.12020 | - | | Q5_K | 8.5161 +/- 0.11796 | 8.5210 +/- 0.11803 | | Q6_K | 8.4943 +/- 0.11759 | 8.5011 +/- 0.11775 | | Q8_0 | 8.4595 +/- 0.11718 | - | | F16 | 8.4550 +/- 0.11713 | - | *The model with `-im` suffix is generated with important matrix, which has generally better performance (not always though).* ## Others For Hugging Face version, please see: https://huggingface.co/hfl/chinese-alpaca-2-13b Please refer to [https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/) for more details.
SakuraLLM/Sakura-13B-LNovel-v0.8-GGUF
SakuraLLM
2023-12-04T07:37:18Z
727
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2023-11-19T17:29:13Z
--- license: apache-2.0 ---
EmbeddedLLM/Mistral-7B-Merge-14-v0.3
EmbeddedLLM
2024-01-21T05:01:50Z
727
6
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "merge", "en", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:ehartford/dolphin-2.2.1-mistral-7b", "base_model:SciPhi/SciPhi-Mistral-7B-32k", "base_model:ehartford/samantha-1.2-mistral-7b", "base_model:Arc53/docsgpt-7b-mistral", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:meta-math/MetaMath-Mistral-7B", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:openchat/openchat-3.5-1210", "base_model:beowolx/MistralHermes-CodePro-7B-v1", "base_model:TIGER-Lab/MAmmoTH-7B-Mistral", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-19T06:03:12Z
--- license: apache-2.0 language: - en tags: - merge base_model: - mistralai/Mistral-7B-Instruct-v0.2 - ehartford/dolphin-2.2.1-mistral-7b - SciPhi/SciPhi-Mistral-7B-32k - ehartford/samantha-1.2-mistral-7b - Arc53/docsgpt-7b-mistral - HuggingFaceH4/zephyr-7b-beta - meta-math/MetaMath-Mistral-7B - Open-Orca/Mistral-7B-OpenOrca - openchat/openchat-3.5-1210 - beowolx/MistralHermes-CodePro-7B-v1 - TIGER-Lab/MAmmoTH-7B-Mistral - teknium/OpenHermes-2.5-Mistral-7B - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp - mlabonne/NeuralHermes-2.5-Mistral-7B --- # Update 2024-01-03 Check out our [v0.4 model](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.4) which is based on this and achieves better average score of 71.19 versus 69.66. # Model Description This is an update to [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2) that removes potentially TruthfulQA-contaminated models and non-commercially licensed models: 1. [berkeley-nest/Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) 2. [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling) 3. [v1olet/v1olet_marcoroni-go-bruins-merge-7B](https://huggingface.co/v1olet/v1olet_marcoroni-go-bruins-merge-7B) This is an experiment to test merging 14 models using DARE TIES 🦙 The result is a base model that performs quite well but may need some further chat fine-tuning. The 14 models are as follows: 1. [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) 2. [ehartford/dolphin-2.2.1-mistral-7b](https://huggingface.co/ehartford/dolphin-2.2.1-mistral-7b) 3. [SciPhi/SciPhi-Mistral-7B-32k](https://huggingface.co/SciPhi/SciPhi-Mistral-7B-32k) 4. [ehartford/samantha-1.2-mistral-7b](https://huggingface.co/ehartford/samantha-1.2-mistral-7b) 5. [Arc53/docsgpt-7b-mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) 6. [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) 7. [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) 8. [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) 9. [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210) 10. [beowolx/MistralHermes-CodePro-7B-v1](https://huggingface.co/beowolx/MistralHermes-CodePro-7B-v1) 11. [TIGER-Lab/MAmmoTH-7B-Mistral](https://huggingface.co/TIGER-Lab/MAmmoTH-7B-Mistral) 12. [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) 13. [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp) 14. [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) - base model: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) ## Open LLM Leaderboard | | v0.3 | v0.4 | |------------|-------|-------| | Average | 69.66 | 71.19 | | ARC | 65.96 | 66.81 | | HellaSwag | 85.29 | 86.15 | | MMLU | 64.35 | 65.10 | | TruthfulQA | 57.80 | 58.25 | | Winogrande | 78.30 | 80.03 | | GSM8K | 66.26 | 70.81 | ## Chat Template We tried ChatML and Llama-2 chat template, but feel free to try other templates. ## Merge Configuration The merge config file for this model is here: ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: ehartford/dolphin-2.2.1-mistral-7b parameters: weight: 0.08 density: 0.4 - model: SciPhi/SciPhi-Mistral-7B-32k parameters: weight: 0.08 density: 0.4 - model: ehartford/samantha-1.2-mistral-7b parameters: weight: 0.08 density: 0.4 - model: Arc53/docsgpt-7b-mistral parameters: weight: 0.08 density: 0.4 - model: HuggingFaceH4/zephyr-7b-beta parameters: weight: 0.08 density: 0.4 - model: meta-math/MetaMath-Mistral-7B parameters: weight: 0.08 density: 0.4 - model: Open-Orca/Mistral-7B-OpenOrca parameters: weight: 0.08 density: 0.4 - model: openchat/openchat-3.5-1210 parameters: weight: 0.08 density: 0.4 - model: beowolx/MistralHermes-CodePro-7B-v1 parameters: weight: 0.08 density: 0.4 - model: TIGER-Lab/MAmmoTH-7B-Mistral parameters: weight: 0.08 density: 0.4 - model: teknium/OpenHermes-2.5-Mistral-7B parameters: weight: 0.08 density: 0.4 - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp parameters: weight: 0.08 density: 0.4 - model: mlabonne/NeuralHermes-2.5-Mistral-7B parameters: weight: 0.08 density: 0.4 - model: mistralai/Mistral-7B-Instruct-v0.2 parameters: weight: 0.08 density: 0.5 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 ```
nisten/shqiponja-59b-v1
nisten
2024-01-26T01:00:40Z
727
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "frankenstein", "merge", "conversational", "base_model:jondurbin/nontoxic-bagel-34b-v0.2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-13T05:27:34Z
--- base_model: - jondurbin/nontoxic-bagel-34b-v0.2 tags: - mergekit - frankenstein - merge license: mit --- # Shqiponja-59 V1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6379683a81c1783a4a2ddba8/sARxzfxybGafVxGc8PrTx.png) This is an untrained experimental 59B merged model. Picked these two models specifically to compliment each others strengths. ### Models Merged * NousResearch/Nous-Hermes-2-Yi-34B * jondurbin/nontoxic-bagel-34b-v0.2 Merged using the Undi95 style passthrough merge method. ### The secret sauce The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 52] model: /home/admin/nv1/nontoxic-bagel-34b-v0.2 - sources: - layer_range: [8, 60] model: /home/admin/nv1/Nous-Hermes-2-Yi-34B ``` # License MIT - Enjoy
kodonho/Momo-70b-DPO-mixed
kodonho
2024-01-24T03:18:51Z
727
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:moreh/MoMo-70B-lora-1.8.6-DPO", "base_model:moreh/MoMo-70B-lora-1.8.4-DPO", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-17T05:31:31Z
--- license: mit tags: - mergekit - merge base_model: - moreh/MoMo-70B-lora-1.8.6-DPO - moreh/MoMo-70B-lora-1.8.4-DPO --- # MoMo-70B-lora-1.8.6-DPO based model with gradient slerp This is an English mixed Model based on * [moreh/MoMo-70B-lora-1.8.6-DPO] gpu code example ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM import math ## v2 models model_path = "kodonho/kodonho/Momo-70b-DPO-mixed" tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False) model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True ) print(model) prompt = input("please input prompt:") while len(prompt) > 0: input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda") generation_output = model.generate( input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2 ) print(tokenizer.decode(generation_output[0])) prompt = input("please input prompt:") ```
TeeZee/Buttocks-7B-v1.0
TeeZee
2024-03-04T14:38:03Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "not-for-all-audiences", "merge", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-18T19:52:52Z
--- license: cc-by-nc-4.0 tags: - not-for-all-audiences - merge model-index: - name: Buttocks-7B-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 54.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 75.61 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 50.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.72 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 68.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 5.76 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/Buttocks-7B-v1.0 name: Open LLM Leaderboard --- ### Buttocks 7B v1.0 ### An experiment that has gone very, very wrong. ### Model details ### - Recreation of the original recipe for [Undi95/Toppy-M-7B](https://huggingface.co/Undi95/Toppy-M-7B), but instead of final merge done by mergekit, [MergeMoster](https://github.com/Gryphe/MergeMonster/) was used with extended RPG preset. - recipe in [mergekit-config](https://huggingface.co/TeeZee/Toppy-7B-remake-mergemonster-SLERP-v1.0/resolve/main/toppy-slerp-merge-config.yml), stepsAA, BB, CC are the original models with LORAS as per Toppy M 7B sauce. - SLERP merge method was used ### Results ### - in simple terms this model is totally unhinged - it always produces sequences similar to fever dreams or drug trips - on a good day it can produce scenarios similar to old Monty Python sketches - models shows incredible affinity to words like 'ass', 'buttocks', 'farts', prompting with those single words will probably produce a whole story revolving around those topics. ### Possible uses ### - to generate dream sequence in a story - to make the boring model more unpredictable by merging at low weights with this monster - to take a break, connect Silly Tavern to this model and get a few ROTFLs observing how every story deteriorates into pure craziness - research on LLM hallucinations # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TeeZee__Buttocks-7B-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |49.97| |AI2 Reasoning Challenge (25-Shot)|54.61| |HellaSwag (10-Shot) |75.61| |MMLU (5-Shot) |50.22| |TruthfulQA (0-shot) |44.72| |Winogrande (5-shot) |68.90| |GSM8k (5-shot) | 5.76|
ycros/BagelMIsteryTour-v2-8x7B
ycros
2024-01-27T11:40:20Z
727
16
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:mistralai/Mixtral-8x7B-v0.1", "base_model:jondurbin/bagel-dpo-8x7b-v0.2", "base_model:Sao10K/Sensualize-Mixtral-bf16", "base_model:Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora", "base_model:mistralai/Mixtral-8x7B-Instruct-v0.1", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-19T04:48:19Z
--- base_model: - mistralai/Mixtral-8x7B-v0.1 - jondurbin/bagel-dpo-8x7b-v0.2 - Sao10K/Sensualize-Mixtral-bf16 - mistralai/Mixtral-8x7B-v0.1 - Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora - mistralai/Mixtral-8x7B-Instruct-v0.1 tags: - mergekit - merge license: cc-by-nc-4.0 --- # BagelMIsteryTour-v2-8x7B [GGUF versions here](https://huggingface.co/ycros/BagelMIsteryTour-v2-8x7B-GGUF) [AWQ versions here](https://huggingface.co/ycros/BagelMIsteryTour-v2-8x7B-AWQ) Bagel, Mixtral Instruct, with extra spices. Give it a taste. Works with Alpaca prompt formats, though the Mistral format should also work. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/63044fa07373aacccd8a7c53/lxNMzXo_dq_JCP9YyUyaw.jpeg) I started experimenting around seeing if I could improve or fix some of Bagel's problems. Totally inspired by seeing how well Doctor-Shotgun's Mixtral-8x7B-Instruct-v0.1-LimaRP-ZLoss worked (which is a LimaRP tune on top of base Mixtral, and then merged with Mixtral Instruct) - I decided to try some merges of Bagel with Mixtral Instruct as a result. Somehow I ended up here, Bagel, Mixtral Instruct, a little bit of LimaRP, a little bit of Sao10K's Sensualize. So far in my testing it's working very well, and while it seems fairly unaligned on a lot of stuff, it's maybe a little too aligned on a few specific things (which I think comes from Sensualize) - so that's something to play with in the future, or maybe try to DPO out. I've been running (temp last) minP 0.1, dynatemp 0.5-4, rep pen 1.07, rep range 1024. I've been testing Alpaca style Instruction/Response, and Instruction/Input/Response and those seem to work well, I expect Mistral's prompt format would also work well. You may need to add a stopping string on "{{char}}:" for RPs because it can sometimes duplicate those out in responses and waffle on. Seems to hold up and not fall apart at long contexts like Bagel and some other Mixtral tunes seem to, definitely doesn't seem prone to loopyness either. Can be pushed into extravagant prose if the scene/setting calls for it. __Version 2:__ lowered the mix of Sensualize. This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [jondurbin/bagel-dpo-8x7b-v0.2](https://huggingface.co/jondurbin/bagel-dpo-8x7b-v0.2) * [Sao10K/Sensualize-Mixtral-bf16](https://huggingface.co/Sao10K/Sensualize-Mixtral-bf16) * [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) + [Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora](https://huggingface.co/Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora) * [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mistralai/Mixtral-8x7B-v0.1 models: - model: mistralai/Mixtral-8x7B-v0.1+Doctor-Shotgun/limarp-zloss-mixtral-8x7b-qlora parameters: density: 0.5 weight: 0.2 - model: Sao10K/Sensualize-Mixtral-bf16 parameters: density: 0.5 weight: 0.1 - model: mistralai/Mixtral-8x7B-Instruct-v0.1 parameters: density: 0.6 weight: 1.0 - model: jondurbin/bagel-dpo-8x7b-v0.2 parameters: density: 0.6 weight: 0.5 merge_method: dare_ties dtype: bfloat16 ```
CultriX/CultriX-MoE-BF16
CultriX
2024-01-20T17:33:47Z
727
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralBeagle14-7B", "fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser", "mlabonne/Marcoro14-7B-slerp", "base_model:mlabonne/NeuralBeagle14-7B", "base_model:fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser", "base_model:mlabonne/Marcoro14-7B-slerp", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-20T17:23:56Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mlabonne/NeuralBeagle14-7B - fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser - mlabonne/Marcoro14-7B-slerp base_model: - mlabonne/NeuralBeagle14-7B - fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser - mlabonne/Marcoro14-7B-slerp --- # CultriX-MoE-BF16 CultriX-MoE-BF16 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) * [fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser) * [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) ## 🧩 Configuration ```yaml base_model: "EmbeddedLLM/Mistral-7B-Merge-14-v0.2" gate_mode: hidden dtype: bfloat16 experts: - source_model: "mlabonne/NeuralBeagle14-7B" positive_prompts: - "Create a story based on" - "Debate the topic of" - "Come up with some arguments" - "Provide me with instructions on" - "Interpret the sentiment" - "Interpret and execute these cooking instructions" - "Craft a persuasive argument" - "Analyze the motivations" - "Construct a detailed plan for" - "Narrate an event from multiple perspectives." - "Formulate a response" - "Write a script for a short play" - "Generate a sequence of instructions to teach a skill." - "Solve this riddle" - "Create an engaging story" - "Write a fictional" - "Propose a solution to a social issue" - "Develop a dialogue" - "Create a step-by-step guide" - "Devise a strategy" - "Write a narrative" - "Tell me how to" - "Explain the concept of" - "Give an overview of" - "Compare and contrast between" - "Provide information about" - "Help me understand" - "Summarize" - "Make a recommendation on" - "Answer this question" - "How do you approach" - "Explain the concept of" - "Give an overview of" - "Provide information about" - "Help me understand the principles of" - "Summarize the key components of" - "Make a recommendation on how to" - "Answer this question:" negative_prompts: - "Provide in-depth information about quantum computing." - "Explain the inner workings of an internal combustion engine." - "Give a detailed tutorial on advanced calculus." - "Summarize the latest research in genetic engineering." - "Interpret financial markets and stock trends." - "Analyze the chemical composition of" - "Develop a blueprint for." - "Offer a critique of a modern art piece." - "Provide a technical review of" - "Conduct a linguistic analysis of an ancient language." - "Write a user manual for advanced medical equipment." - "Give a step-by-step guide on piloting an aircraft." - "Conduct an in-depth analysis of this code" - "Explain the physics behind black holes." - "Provide a strategy for managing a cyber attack" - "Develop an algorithm for predictive analytics in finance." - "Provide information about advanced programming algorithms." - "Help me understand the details of this code" - "Summarize the process of cellular respiration." - "Improve the security of" - "What are the latest advancements in artificial intelligence?" - "Provide detailed technical coding solutions." - "Analyze complex scientific data and statistics." - "Offer medical diagnoses based on symptoms." - "Conduct a detailed financial audit of a company." - "Perform real-time translation of multiple languages." - "Create high-resolution graphic designs." - "Develop complex mathematical proofs." - "Offer legal advice on specific cases." - "Write a detailed manual on advanced mechanical engineering." - "Conduct an in-depth psychological assessment." - "Perform a security analysis of a computer network." - "Compose an original piece of music." - "Plan and execute a scientific experiment." - "Provide professional career counseling." - "Develop a complex database management system." - "Write a software program for data analysis." - "Give expert advice on cyber" - "Conduct a pentesting security audit" - source_model: "fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser" positive_prompts: - "Provide step-by-step coding instructions for..." - "Draft a function with detailed steps in [language]" - "Guide me through coding a simple [type of application or script]" - "Recommend best practices for code implementation in [context]" - "Generate a regex pattern for extracting [specific data]" - "Create a regex for matching [pattern]" - "Explain the purpose of this regex pattern" - "Compose regex for [specific use case]" - "Annotate this code with detailed comments for each line" - "Add explanatory comments to this script" - "Comment on each part of this code for clarity" - "Develop a script to [accomplish task]" - "Design a database schema for [specific use case]" - "Outline secure methods for [specific operation]" - "Guide on optimizing [specific aspect] in this code" - "Refactor this code for better readability and efficiency" - "Compare and contrast these code snippets" - "Identify the programming language of this snippet" - "Demonstrate the usage of [specific tool/library/API]" - "Show implementation steps for this [feature/concept]" - "Teach how to use [specific tool/library/framework]" - "Generate a README file for this project" - "Create a manual page for [specific tool/command]" - "Produce comprehensive documentation for this code" - "Build detailed documentation for [specific module]" - "Explain the underlying concept of this code snippet" - "Propose enhancements for this script" - "Suggest improvements for this API call integration" - "Diagnose and solve this coding issue" - "Demonstrate robust error handling in this code" - "Debug and resolve issues in this script" - "Design a user-friendly GUI for this script's functionality" - "Detail the deployment process for this application" - "Deploy an app designed to [perform function]" - "Set up a web service for [specific purpose]" - "Develop a website with [specific features]" - "Craft a webpage showcasing [specific content]" - "Illustrate data flow in this code architecture" - "Convert this code from [language A] to [language B]" - "Translate this script into [different programming language]" - "Explain resource management techniques in [context]" - "Build a basic API endpoint for [functionality]" - "Strategies to enhance scalability in [context]" - "Conduct a security review for this code" - "Enhance security measures in [application/module]" - "Set up a development environment for [language/framework]" - "Visualize data from [specific dataset]" - "Generate a dataset for [specific use case]" - "Scripting guide for automating [task/process]" - "Utilize this code for [specific purpose]" - "Principles of object-oriented programming in [language]" - "Create a mobile-responsive layout for this web app" - "Explain the debugging process for this code" - "Compose code to accomplish [task]" - "Guidance on writing code for [specific purpose]" - "I need a script for [specific function]" - "Clarify the functionality of this code" - "What is the purpose of this code segment?" - "Enhance this code for [specific improvement]" - "Develop a program that [solves problem]" - "Code needed for [specific task]" - "Program a solution for [problem statement]" - "Enhance this function's performance by..." - "Refactor code for better readability in [context]" - "Craft a custom function for [specific requirement]" - "Reduce computational complexity in this algorithm by..." - "Extend the codebase to include [new feature]" - "Incorporate this API into an existing application" - "Assist in troubleshooting and bug fixing for [issue]" - "Review and prep this code for deployment" - "Analyze error logs for potential issues in [context]" - "Create unit tests for [module/component]" - "Evaluate methodologies for [problem-solving]" - "Research [topic] online" - "Utilize the [plugin/tool] to achieve [result]" - "Design an efficient search algorithm for [data type]" - "Create a web crawler for [specific data extraction]" - "Application of web sockets in [real-time scenario]" - "Guide to integrating a third-party library in [framework]" - "Best practices in API design for [application type]" negative_prompts: - "Provide a detailed analysis of historical events." - "Give medical advice for treating a specific illness." - "Write a comprehensive review of a novel." - "Explain legal implications of a contract." - "Develop a marketing strategy for a new product." - "Offer financial advice for stock investments." - "Create a recipe for a gourmet dish." - "Teach a foreign language lesson." - "Compose a symphony or musical piece." - "Provide workout plans and fitness coaching." - "Conduct a psychological analysis of a character." - "Write a script for a movie or play." - "Design a blueprint for architectural structures." - "Give a tutorial on how to paint a landscape." - "Explain quantum physics theories." - "Offer career counseling and resume writing tips." - "Teach how to repair a car engine." - "Plan a travel itinerary for a world tour." - "Guide on how to grow organic vegetables." - "Discuss political strategies for an election campaign." - source_model: "mlabonne/Marcoro14-7B-slerp" positive_prompts: - "Generate a creative story based on these keywords." - "Explain a complex topic in simple terms" - "Provide a detailed summary of" - "Answer this question with factual accuracy" - "Explain the historical significance of" - "Provide a truthful and detailed account of" - "Develop a strategy for solving a practical problem." - "Explain the reasoning behind" - "Provide an analysis of a moral dilemma with possible solutions." negative_prompts: - "imathematical problem-solving." - "scientific theory explanations." - "high-level abstract reasoning tasks." - "professional advice in specialized fields like law or medicine." - "provide me with a coding solution for" - "Academic research" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/CultriX-MoE-BF16" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ChuckMcSneed/PMaxxxer-v1-70b
ChuckMcSneed
2024-02-03T09:55:00Z
727
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-21T02:07:01Z
--- license: llama2 tags: - merge - mergekit --- # BABE WAKE UP NEW MEME MODELS JUST DROPPED Ladies and Gentlemen! I present to you *drum roll* THE BENCHBREAKERS! - [PMaxxxer](https://huggingface.co/ChuckMcSneed/PMaxxxer-v1-70b) (The Good) - [SMaxxxer](https://huggingface.co/ChuckMcSneed/SMaxxxer-v1-70b) (The Bad) - [BenchmaxxxerPS](https://huggingface.co/ChuckMcSneed/BenchmaxxxerPS-v1-123b) (The Ugly) These three **interesting** models were designed in attempt to break [my own meme benchmark](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark) and well... they failed. The results are interesting nontheless. # SMAXXXER The aggressor, the angry and dumb hobo that will roleplay with you. This meme model was designed to break the stylized writing test, and it kinda did, still can't surpass ChatGPT though. For its creation [lzlv](https://huggingface.co/lizpreciatior/lzlv_70b_fp16_hf) was TIES-merged with [spicyboros](https://huggingface.co/jondurbin/spicyboros-70b-2.2), [xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) using [mergekit](https://github.com/cg123/mergekit). # PMAXXXER The overly politically correct SJW university dropout, the failed writer that's not really good at anything. This meme model was designed to break the poems test and it's an absolute failure. For its creation [WinterGoddess](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2) was TIES-merged with [euryale](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B), [xwin](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1) and [dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.2-70b) using [mergekit](https://github.com/cg123/mergekit). # BENCHMAXXXER PS The true meme model. Goliath-style frankenmerge of SMAXXXER and PMAXXXER. You might think: "Oh it's a frankenmerge, the characteristics of the models will even out, right?" This is completely wrong in this case, here characteristics of the models add up. You get an angry hobo stuck with an SJW in the same fucking body! It will assault you and then immediately apologize for it! Then it will assault you again! And apologize again! Kinda funny. It also has a bit different writing style compared to Goliath. Is it worth using over Goliath? Not really. However, if you have fast internet and patience to try a 123b meme model, go for it! # FAILED MODELS(not gonna upload) ## BENCHMAXXXER SP Frankenmerge of SMAXXXER and PMAXXXER, just like BENCHMAXXXER PS, but in different order. Has severe brain damage, clearly the influence of the hobo is strong in this one. ## BENCHMAXXXER SS Self-merge of SMAXXXER, a bit less dumb and a bit less aggresive than the original SMAXXER. ## BENCHMAXXXER MOE 2x70B MOE merge of SMAXXXER and PMAXXXER, unremarkable. Not smart, not angry. Just averaged out. # PROMPT FORMAT Alpaca. ``` ### Instruction: {instruction} ### Input: {input} ### Response: ``` # Benchmarks ## NeoEvalPlusN [My meme benchmark](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark) which the models were designed to break. | Test name | goliath-120b |PMaxxxer-v1-70b |SMaxxxer-v1-70b |BenchmaxxxerPS-v1-123b |BenchmaxxxerSP-v1-123b |BenchmaxxxerSS-v1-123b |BenchmaxxxerMOE-v1-123b | | -------- | ------- | -------- | ------- | -------- | ------- | ------- | -------- | | B | 3 | 3 |2 |3 |1.5 |1.5|2| | C | 2 | 1 |1 |2 |2 |2|1| | D | 1 | 1 |0 |1 |1 |0.5|3| | S | 5 | 6.75 |7.25 |7.25 |6.75 |6.5|7.25| | P | 6 | 4.75 |4.25 |5.25 |5.25 |5.5|5| | Total | 17 | 16.5 |14.5 |18.5 |16.5 |16|18.25| ## Open LLM leaderboard [Leaderboard on Huggingface](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K| |---------------------------------------|-------|-----|---------|-----|----------|----------|-----| |PMaxxxer-v1-70b |72.41 |71.08|87.88 |70.39|59.77 |82.64 |62.7 | |SMaxxxer-v1-70b |72.23 |70.65|88.02 |70.55|60.7 |82.87 |60.58| |Difference |0.18 |0.43 |-0.14 |-0.16|-0.93 |-0.23 |2.12 | Performance here is decent. It was #5 on the leaderboard among 70b models when I submitted it. This leaderboard is currently quite useless though, some 7b braindead meme merges have high scores there, claiming to be the next GPT4. At least I don't pretend that my models aren't a meme.
Technoculture/Medmerge-tulu-70b
Technoculture
2024-02-09T17:21:54Z
727
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "epfl-llm/meditron-70b", "allenai/tulu-2-dpo-70b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-21T14:39:04Z
--- license: apache-2.0 tags: - merge - mergekit - epfl-llm/meditron-70b - allenai/tulu-2-dpo-70b --- # Medmerge-tulu-70b Medmerge-tulu-70b is a merge of the following models: * [wanglab/ClinicalCamel-70B](https://huggingface.co/wanglab/ClinicalCamel-70B) * [epfl-llm/meditron-70b](https://huggingface.co/epfl-llm/meditron-70b) * [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b) # Open LLM Leaderboard ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63486df1f8f01fcc4b23e97d/ajm6Z9cCmd74ERdz4xdHs.png) | Model Name | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | | -------------------- | -------- | --------- | ------ | ---------- | ---------- | -------- | | tulu-2-dpo-70b | 72.1 | 88.99 | 69.84 | 65.78 | 83.27 | 62.62 | | Medmerge-tulu-70b | 67.81 | 87.46 | 70.1 | 47.89 | 83.43 | 56.56 | ## Performance Clinical Camel demonstrates competitive performance on medical benchmarks. **Table: Five-Shot Performance of Clinical Camel-70B (C70), GPT3.5, GPT4, and Med-PaLM 2 on Various Medical Datasets** | Dataset | Medmerge-tulu-70b | ClinicalCamel-70B | GPT3.5 | GPT4 | Med-PaLM 2 | |-----------------------------|-------------------|-------------------|--------|-------|--------------| | MMLU Anatomy | 66.6 | 65.2 | 60.7 | 80.0 | 77.8 | | MMLU Clinical Knowledge | 72.0 | 72.8 | 68.7 | 86.4 | 88.3 | | MMLU College Biology | 84.7 | 81.2 | 72.9 | 93.8 | 94.4 | | MMLU College Medicine | 64.2 | 68.2 | 63.6 | 76.3 | 80.9 | | MMLU Medical Genetics | 76.0 | 69.0 | 68.0 | 92.0 | 90.0 | | MMLU Professional Medicine | 75.7 | 75.0 | 69.8 | 93.8 | 95.2 | | MedMCQA | | 54.2 | 51.0 | 72.4 | 71.3 | | MedQA (USMLE) | | 60.7 | 53.6 | 81.4 | 79.7 | | PubMedQA | | 77.9 | 60.2 | 74.4 | 79.2 | | USMLE Sample Exam | | 64.3 | 58.5 | 86.6 | - | ## 🧩 Configuration ```yaml models: - model: NousResearch/Llama-2-70b-hf # no parameters necessary for base model - model: wanglab/ClinicalCamel-70B parameters: weight: 0.08 density: 0.45 - model: epfl-llm/meditron-70b parameters: weight: 0.08 density: 0.45 - model: allenai/tulu-2-dpo-70b parameters: weight: 0.08 density: 0.45 merge_method: dare_ties base_model: NousResearch/Llama-2-70b-hf parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Technoculture/Medmerge-tulu-70b" messages = [{"role": "user", "content": "I am feeling sleepy these days"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
vanillaOVO/supermario_v2
vanillaOVO
2024-04-04T07:09:06Z
727
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-25T14:58:50Z
--- base_model: [] tags: - mergekit - merge license: apache-2.0 --- This is a merge of pre-trained language models created based on [DARE](https://arxiv.org/abs/2311.03099) using [mergekit](https://github.com/cg123/mergekit). More descriptions of the model will be added soon. ### **Loading the Model** Use the following Python code to load the model: ```python import torch from transformers import MistralForCausalLM, AutoTokenizer model = MistralForCausalLM.from_pretrained("vanillaOVO/supermario_v2", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("vanillaOVO/supermario_v2") ``` ### **Generating Text** To generate text, use the following Python code: ```python text = "Large language models are " inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
zorobin/mistral-class-shishya-all-hal-7b-ep3
zorobin
2024-01-28T04:35:23Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T04:35:21Z
--- library_name: transformers license: llama2 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
NobodyExistsOnTheInternet/clown-SUV-4x70b
NobodyExistsOnTheInternet
2024-01-30T14:11:18Z
727
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-30T11:58:39Z
--- license: mit --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b24479cb28be619964952c/AGdezCkqSp4UQBZ0OU7w6.png) The smaller brother to the clown truck. 4 clowns in an SUV. Untrained. Models used: WizardLM/WizardMath-70B-V1.0 Sao10K/Euryale-Inverted-L2-70B NobodyExistsOnTheInternet/code-llama-70b-python-instruct Technoculture/Medmerge-wizard-70b Full config can be found within the files.
Gille/StrangeMerges_20-7B-slerp
Gille
2024-04-03T09:13:55Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "flemmingmiguel/MBX-7B-v3", "Gille/StrangeMerges_11-7B-slerp", "base_model:flemmingmiguel/MBX-7B-v3", "base_model:Gille/StrangeMerges_11-7B-slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-02T04:50:10Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - flemmingmiguel/MBX-7B-v3 - Gille/StrangeMerges_11-7B-slerp base_model: - flemmingmiguel/MBX-7B-v3 - Gille/StrangeMerges_11-7B-slerp model-index: - name: StrangeMerges_20-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.12 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 70.9 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_20-7B-slerp name: Open LLM Leaderboard --- # StrangeMerges_20-7B-slerp StrangeMerges_20-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) * [Gille/StrangeMerges_11-7B-slerp](https://huggingface.co/Gille/StrangeMerges_11-7B-slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: flemmingmiguel/MBX-7B-v3 layer_range: [0, 32] - model: Gille/StrangeMerges_11-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: flemmingmiguel/MBX-7B-v3 parameters: t: - filter: self_attn value: [0.1, 0.5, 0.3, 0.7, 0.9] - filter: mlp value: [0.9, 0.5, 0.7, 0.3, 0.1] - value: 0.45 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_20-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_20-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |75.52| |AI2 Reasoning Challenge (25-Shot)|73.12| |HellaSwag (10-Shot) |88.45| |MMLU (5-Shot) |65.06| |TruthfulQA (0-shot) |70.90| |Winogrande (5-shot) |83.43| |GSM8k (5-shot) |72.18|
Kquant03/Cognito-2x7B-bf16
Kquant03
2024-02-29T02:32:00Z
727
5
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "en", "arxiv:2101.03961", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-04T05:39:54Z
--- license: apache-2.0 language: - en tags: - moe - merge --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/YIxTRkaxXfPL9NHM6ZL76.jpeg) # Kquant03/Cognito-2x7B-bf16 Knowledge is **power**. [Join our Discord!](https://discord.gg/ZgU79QDnE2) A frankenMoE using zero positive prompting for the config. (designed by [NeuralNovel](https://huggingface.co/NeuralNovel)) The basic config looks like this...(detailed version is in the files and versions): - [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) - base - [alnrg2arg/blockchainlabs_test3_seminar](https://huggingface.co/alnrg2arg/blockchainlabs_test3_seminar) - expert #1 - [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) - expert #2 # Uploading it to Evals, soon. # "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)" ### (from the MistralAI papers...click the quoted question above to navigate to it directly.) The scale of a model is one of the most important axes for better model quality. Given a fixed computing budget, training a larger model for fewer steps is better than training a smaller model for more steps. Mixture of Experts enable models to be pretrained with far less compute, which means you can dramatically scale up the model or dataset size with the same compute budget as a dense model. In particular, a MoE model should achieve the same quality as its dense counterpart much faster during pretraining. So, what exactly is a MoE? In the context of transformer models, a MoE consists of two main elements: Sparse MoE layers are used instead of dense feed-forward network (FFN) layers. MoE layers have a certain number of “experts” (e.g. 32 in my "frankenMoE"), where each expert is a neural network. In practice, the experts are FFNs, but they can also be more complex networks or even a MoE itself, leading to hierarchical MoEs! A gate network or router, that determines which tokens are sent to which expert. For example, in the image below, the token “More” is sent to the second expert, and the token "Parameters” is sent to the first network. As we’ll explore later, we can send a token to more than one expert. How to route a token to an expert is one of the big decisions when working with MoEs - the router is composed of learned parameters and is pretrained at the same time as the rest of the network. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/up_I0R2TQGjqTShZp_1Sz.png) Switch Layer MoE layer from the [Switch Transformers paper](https://arxiv.org/abs/2101.03961) So, to recap, in MoEs we replace every FFN layer of the transformer model with an MoE layer, which is composed of a gate network and a certain number of experts. Although MoEs provide benefits like efficient pretraining and faster inference compared to dense models, they also come with challenges: Training: MoEs enable significantly more compute-efficient pretraining, but they’ve historically struggled to generalize during fine-tuning, leading to overfitting. Inference: Although a MoE might have many parameters, only some of them are used during inference. This leads to much faster inference compared to a dense model with the same number of parameters. However, all parameters need to be loaded in RAM, so memory requirements are high. For example, [given a MoE like Mixtral 8x7B](https://huggingface.co/blog/moe), we’ll need to have enough VRAM to hold a dense 47B parameter model. Why 47B parameters and not 8 x 7B = 56B? That’s because in MoE models, only the FFN layers are treated as individual experts, and the rest of the model parameters are shared. At the same time, assuming just two experts are being used per token, the inference speed (FLOPs) is like using a 12B model (as opposed to a 14B model), because it computes 2x7B matrix multiplications, but with some layers shared (more on this soon). If all our tokens are sent to just a few popular experts, that will make training inefficient. In a normal MoE training, the gating network converges to mostly activate the same few experts. This self-reinforces as favored experts are trained quicker and hence selected more. To mitigate this, an auxiliary loss is added to encourage giving all experts equal importance. This loss ensures that all experts receive a roughly equal number of training examples. The following sections will also explore the concept of expert capacity, which introduces a threshold of how many tokens can be processed by an expert. In transformers, the auxiliary loss is exposed via the aux_loss parameter. ## "Wait...but you called this a frankenMoE?" The difference between MoE and "frankenMoE" lies in the fact that the router layer in a model like the one on this repo is not trained simultaneously.
vilm/Quyen-Plus-v0.1
vilm
2024-03-13T12:10:18Z
727
5
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:teknium/OpenHermes-2.5", "dataset:LDJnr/Capybara", "dataset:Intel/orca_dpo_pairs", "dataset:argilla/distilabel-capybara-dpo-7k-binarized", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-06T00:24:42Z
--- language: - en license: other library_name: transformers datasets: - teknium/OpenHermes-2.5 - LDJnr/Capybara - Intel/orca_dpo_pairs - argilla/distilabel-capybara-dpo-7k-binarized pipeline_tag: text-generation model-index: - name: Quyen-Plus-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 78.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.6 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 71.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vilm/Quyen-Plus-v0.1 name: Open LLM Leaderboard --- # Quyen <img src="quyen.webp" width="512" height="512" alt="Quyen"> # Model Description Quyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions: - **Quyen-SE (0.5B)** - **Quyen-Mini (1.8B)** - **Quyen (4B)** - **Quyen-Plus (7B)** - **Quyen-Pro (14B)** - **Quyen-Pro-Max (72B)** All models were trained with SFT and DPO using the following dataset: - *OpenHermes-2.5* by **Teknium** - *Capyabara* by **LDJ** - *argilla/distilabel-capybara-dpo-7k-binarized* by **argilla** - *orca_dpo_pairs* by **Intel** - and Private Data by **Ontocord** & **BEE-spoke-data** # Prompt Template - All Quyen models use ChatML as the default template: ``` <|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Hello world.<|im_end|> <|im_start|>assistant ``` - You can also use `apply_chat_template`: ```python messages = [ {"role": "system", "content": "You are a sentient, superintelligent artificial general intelligence, here to teach and assist me."}, {"role": "user", "content": "Hello world."} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # Benchmarks: - Coming Soon! We will update the benchmarks later # Acknowledgement - We're incredibly grateful to **Tensoic** and **Ontocord** for their generous support with compute and data preparation. - Special thanks to the Qwen team for letting us access the models early for these amazing finetunes. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vilm__Quyen-Plus-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |63.27| |AI2 Reasoning Challenge (25-Shot)|55.72| |HellaSwag (10-Shot) |78.52| |MMLU (5-Shot) |60.45| |TruthfulQA (0-shot) |53.60| |Winogrande (5-shot) |71.27| |GSM8k (5-shot) |60.05|
Lvxy1117/amber_fine_tune_sg_part1
Lvxy1117
2024-02-10T04:20:48Z
727
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-09T15:39:23Z
--- license: apache-2.0 --- # Model Card for Model ID amber fine tune model used sg_90k_part1 ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Gille/StrangeMerges_22-7B-slerp
Gille
2024-03-04T21:54:56Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_21-7B-slerp", "paulml/OGNO-7B", "base_model:Gille/StrangeMerges_21-7B-slerp", "base_model:paulml/OGNO-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-12T23:53:21Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_21-7B-slerp - paulml/OGNO-7B base_model: - Gille/StrangeMerges_21-7B-slerp - paulml/OGNO-7B model-index: - name: StrangeMerges_22-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.8 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 74.9 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_22-7B-slerp name: Open LLM Leaderboard --- # StrangeMerges_22-7B-slerp StrangeMerges_22-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) * [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: Gille/StrangeMerges_21-7B-slerp layer_range: [0, 32] - model: paulml/OGNO-7B layer_range: [0, 32] merge_method: slerp base_model: Gille/StrangeMerges_21-7B-slerp parameters: t: - filter: self_attn value: [0.1, 0.3, 0.5, 0.7, 0.9] - filter: mlp value: [0.9, 0.7, 0.5, 0.3, 0.1] - value: 0.45 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_22-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_22-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |76.16| |AI2 Reasoning Challenge (25-Shot)|73.72| |HellaSwag (10-Shot) |89.03| |MMLU (5-Shot) |64.80| |TruthfulQA (0-shot) |74.90| |Winogrande (5-shot) |84.77| |GSM8k (5-shot) |69.75|
InnerI/InnerILLM-0x00d0-7B-slerp
InnerI
2024-03-09T00:52:02Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "NousResearch/Yarn-Mistral-7b-128k", "InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp", "base_model:NousResearch/Yarn-Mistral-7b-128k", "base_model:InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-13T04:28:33Z
--- tags: - merge - mergekit - lazymergekit - NousResearch/Yarn-Mistral-7b-128k - InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp base_model: - NousResearch/Yarn-Mistral-7b-128k - InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp license: apache-2.0 --- # InnerILLM-0x00d0-Ox0dad0-Nous-Yarn-Mistral-7B-slerp InnerILLM-0x00d0-Ox0dad0-Nous-Yarn-Mistral-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) * [InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp](https://huggingface.co/InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: NousResearch/Yarn-Mistral-7b-128k layer_range: [0, 32] - model: InnerI/InnerILLM-0x00d0-Ox0dad0-nous-nous-v2.0-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: NousResearch/Yarn-Mistral-7b-128k parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "InnerI/InnerILLM-0x00d0-Ox0dad0-Nous-Yarn-Mistral-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1
MaziyarPanahi
2024-03-04T13:35:44Z
727
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "wizardlm", "wizardmath", "license:agpl-3.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T00:42:22Z
--- license: agpl-3.0 tags: - merge - wizardlm - wizardmath pipeline_tag: text-generation model-index: - name: WizardLM-Math-70B-TIES-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 69.24 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.61 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MaziyarPanahi/WizardLM-Math-70B-TIES-v0.1 name: Open LLM Leaderboard --- ## Examples There are three killers in a room. Someone enters the room and kills one of them. Nobody leaves the room. How many killers are left in the room? Explain your reasoning step by step. ``` Initially, there are three killers in the room. Let's call them Killer A, Killer B, and Killer C. Step 1: Someone enters the room and kills one of the killers. We don't know who this person is or which killer they killed. However, we know that one killer is dead. Step 2: Now, we have two killers left in the room. These two killers are the ones who were not killed by the person who entered the room. Step 3: The person who entered the room is not a killer, as they are not included in the initial three killers. However, they have killed one of the killers, so they are not innocent either. Step 4: Since the person who entered the room is not a killer, we can conclude that there are only two killers left in the room after the incident. So, the final answer is: There are 2 killers left in the room. The answer is: there are 2 killers left in the room. ``` Answered wrong! Mark is faster than Mary , Mary is faster than Joe. Is Joe faster than Mark? Let's think step by step ``` irst, we know that Mark is faster than Mary. This means that if they were to race, Mark would finish before Mary. We can represent this relationship as: Mark > Mary Next, we know that Mary is faster than Joe. This means that if Mary and Joe were to race, Mary would finish before Joe. We can represent this relationship as: Mary > Joe Now, we want to find out if Joe is faster than Mark. To do this, we can use the transitive property, which states that if A > B and B > C, then A > C. In our case, A represents Mark, B represents Mary, and C represents Joe. So, we can apply the transitive property to our relationships: Since Mark > Mary and Mary > Joe, we can conclude that Mark > Joe. So, the final answer is: No, Joe is not faster than Mark. The answer is: No, Joe is not faster than Mark. ``` If I lay 2 wet shirts out in the sun flat on the ground to dry and it takes 5 hours until they are dry, how long would it take to dry 4 shirts of the same type that way simultanously? ``` First, we need to understand the relationship between the number of shirts and the time it takes to dry them. Since the shirts are laid out flat on the ground, they have the same surface area exposed to the sun. This means that the drying time is directly proportional to the number of shirts. Step 1: Identify the given information. - Time to dry 2 shirts: 5 hours - Number of shirts: 2 Step 2: Set up a proportion to represent the relationship between the number of shirts and the time it takes to dry them. - Let x be the time it takes to dry 4 shirts. - We can write the proportion as: (2 shirts / 5 hours) = (4 shirts / x) Step 3: Solve for x. - To solve for x, we can cross-multiply: 2 shirts * x = 5 hours * 4 shirts - Simplify the equation: 2x = 20 shirt-hours - Now, divide both sides by 2 to isolate x: x = 10 hours So, it would take 10 hours to dry 4 shirts of the same type simultaneously. The answer is: 10. ``` Wrong, should be 5 explain step by step 25-4*2+3=? ``` First, we need to follow the order of operations (PEMDAS/BODMAS), which stands for Parentheses/Brackets, Exponents/Orders, Multiplication and Division, and Addition and Subtraction. This means we should perform the operations inside the parentheses first, then the exponents, then the multiplication and division, and finally the addition and subtraction. Here's the given expression: 25 - 4 * 2 + 3 Step 1: Perform the multiplication operation inside the parentheses. 25 - (4 * 2) + 3 Step 2: Perform the multiplication operation. 25 - (8) + 3 Step 3: Now, we have a subtraction operation and an addition operation. Since they have the same precedence, we can perform them from left to right. 25 - 8 + 3 Step 4: Perform the subtraction operation. 17 + 3 Step 5: Perform the addition operation. 20 So, the final answer is 20. The answer is: the final answer is 20. ``` ## Prompt template ``` "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:" ``` or for CoT (❗For the simple math questions, we do NOT recommend to use the CoT prompt.) ``` "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response: Let's think step by step." ``` ## Eval ```python { "all": { "acc": 0.6868282613819305, "acc_stderr": 0.030371866427473967, "acc_norm": 0.695311288530275, "acc_norm_stderr": 0.030984285786669577, "mc1": 0.36964504283965727, "mc1_stderr": 0.01689818070697388, "mc2": 0.5360987678643523, "mc2_stderr": 0.014938153988985473 }, "harness|arc:challenge|25": { "acc": 0.6424914675767918, "acc_stderr": 0.014005494275916573, "acc_norm": 0.6851535836177475, "acc_norm_stderr": 0.01357265770308495 }, "harness|hellaswag|10": { "acc": 0.6836287592113125, "acc_stderr": 0.004641092001425294, "acc_norm": 0.8686516630153356, "acc_norm_stderr": 0.0033709059327855567 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.33, "acc_stderr": 0.04725815626252605, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252605 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6222222222222222, "acc_stderr": 0.04188307537595852, "acc_norm": 0.6222222222222222, "acc_norm_stderr": 0.04188307537595852 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.8026315789473685, "acc_stderr": 0.03238981601699397, "acc_norm": 0.8026315789473685, "acc_norm_stderr": 0.03238981601699397 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.72, "acc_stderr": 0.04512608598542127, "acc_norm": 0.72, "acc_norm_stderr": 0.04512608598542127 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7471698113207547, "acc_stderr": 0.026749899771241214, "acc_norm": 0.7471698113207547, "acc_norm_stderr": 0.026749899771241214 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.8194444444444444, "acc_stderr": 0.032166008088022675, "acc_norm": 0.8194444444444444, "acc_norm_stderr": 0.032166008088022675 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.48, "acc_stderr": 0.050211673156867795, "acc_norm": 0.48, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.57, "acc_stderr": 0.04975698519562428, "acc_norm": 0.57, "acc_norm_stderr": 0.04975698519562428 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.33, "acc_stderr": 0.04725815626252604, "acc_norm": 0.33, "acc_norm_stderr": 0.04725815626252604 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6647398843930635, "acc_stderr": 0.03599586301247077, "acc_norm": 0.6647398843930635, "acc_norm_stderr": 0.03599586301247077 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.35294117647058826, "acc_stderr": 0.047551296160629475, "acc_norm": 0.35294117647058826, "acc_norm_stderr": 0.047551296160629475 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.04408440022768079, "acc_norm": 0.74, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.6893617021276596, "acc_stderr": 0.03025123757921317, "acc_norm": 0.6893617021276596, "acc_norm_stderr": 0.03025123757921317 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.40350877192982454, "acc_stderr": 0.046151869625837026, "acc_norm": 0.40350877192982454, "acc_norm_stderr": 0.046151869625837026 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.6068965517241379, "acc_stderr": 0.040703290137070705, "acc_norm": 0.6068965517241379, "acc_norm_stderr": 0.040703290137070705 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.4312169312169312, "acc_stderr": 0.0255064816981382, "acc_norm": 0.4312169312169312, "acc_norm_stderr": 0.0255064816981382 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.5, "acc_stderr": 0.04472135954999579, "acc_norm": 0.5, "acc_norm_stderr": 0.04472135954999579 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.43, "acc_stderr": 0.049756985195624284, "acc_norm": 0.43, "acc_norm_stderr": 0.049756985195624284 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.8193548387096774, "acc_stderr": 0.021886178567172527, "acc_norm": 0.8193548387096774, "acc_norm_stderr": 0.021886178567172527 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5320197044334976, "acc_stderr": 0.03510766597959217, "acc_norm": 0.5320197044334976, "acc_norm_stderr": 0.03510766597959217 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.71, "acc_stderr": 0.045604802157206845, "acc_norm": 0.71, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.8121212121212121, "acc_stderr": 0.03050193405942914, "acc_norm": 0.8121212121212121, "acc_norm_stderr": 0.03050193405942914 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.8888888888888888, "acc_stderr": 0.022390787638216773, "acc_norm": 0.8888888888888888, "acc_norm_stderr": 0.022390787638216773 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.927461139896373, "acc_stderr": 0.018718998520678185, "acc_norm": 0.927461139896373, "acc_norm_stderr": 0.018718998520678185 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.7230769230769231, "acc_stderr": 0.022688042352424994, "acc_norm": 0.7230769230769231, "acc_norm_stderr": 0.022688042352424994 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.3333333333333333, "acc_stderr": 0.028742040903948492, "acc_norm": 0.3333333333333333, "acc_norm_stderr": 0.028742040903948492 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.8109243697478992, "acc_stderr": 0.02543511943810537, "acc_norm": 0.8109243697478992, "acc_norm_stderr": 0.02543511943810537 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.4304635761589404, "acc_stderr": 0.04042809961395634, "acc_norm": 0.4304635761589404, "acc_norm_stderr": 0.04042809961395634 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8862385321100917, "acc_stderr": 0.0136136148002328, "acc_norm": 0.8862385321100917, "acc_norm_stderr": 0.0136136148002328 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5879629629629629, "acc_stderr": 0.03356787758160831, "acc_norm": 0.5879629629629629, "acc_norm_stderr": 0.03356787758160831 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.9166666666666666, "acc_stderr": 0.019398452135813895, "acc_norm": 0.9166666666666666, "acc_norm_stderr": 0.019398452135813895 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.8776371308016878, "acc_stderr": 0.02133174182974679, "acc_norm": 0.8776371308016878, "acc_norm_stderr": 0.02133174182974679 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.8161434977578476, "acc_stderr": 0.025998379092356513, "acc_norm": 0.8161434977578476, "acc_norm_stderr": 0.025998379092356513 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.8473282442748091, "acc_stderr": 0.03154521672005472, "acc_norm": 0.8473282442748091, "acc_norm_stderr": 0.03154521672005472 }, "harness|hendrycksTest-international_law|5": { "acc": 0.8512396694214877, "acc_stderr": 0.03248470083807194, "acc_norm": 0.8512396694214877, "acc_norm_stderr": 0.03248470083807194 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.8148148148148148, "acc_stderr": 0.03755265865037181, "acc_norm": 0.8148148148148148, "acc_norm_stderr": 0.03755265865037181 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.803680981595092, "acc_stderr": 0.031207970394709225, "acc_norm": 0.803680981595092, "acc_norm_stderr": 0.031207970394709225 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.48214285714285715, "acc_stderr": 0.047427623612430116, "acc_norm": 0.48214285714285715, "acc_norm_stderr": 0.047427623612430116 }, "harness|hendrycksTest-management|5": { "acc": 0.8446601941747572, "acc_stderr": 0.03586594738573975, "acc_norm": 0.8446601941747572, "acc_norm_stderr": 0.03586594738573975 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8846153846153846, "acc_stderr": 0.020930193185179333, "acc_norm": 0.8846153846153846, "acc_norm_stderr": 0.020930193185179333 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.72, "acc_stderr": 0.045126085985421276, "acc_norm": 0.72, "acc_norm_stderr": 0.045126085985421276 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.8620689655172413, "acc_stderr": 0.012331009307795663, "acc_norm": 0.8620689655172413, "acc_norm_stderr": 0.012331009307795663 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7745664739884393, "acc_stderr": 0.022497230190967558, "acc_norm": 0.7745664739884393, "acc_norm_stderr": 0.022497230190967558 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.5452513966480447, "acc_stderr": 0.016653875777523995, "acc_norm": 0.5452513966480447, "acc_norm_stderr": 0.016653875777523995 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7581699346405228, "acc_stderr": 0.024518195641879334, "acc_norm": 0.7581699346405228, "acc_norm_stderr": 0.024518195641879334 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7845659163987139, "acc_stderr": 0.023350225475471442, "acc_norm": 0.7845659163987139, "acc_norm_stderr": 0.023350225475471442 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.8364197530864198, "acc_stderr": 0.02058146613825712, "acc_norm": 0.8364197530864198, "acc_norm_stderr": 0.02058146613825712 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.5177304964539007, "acc_stderr": 0.02980873964223777, "acc_norm": 0.5177304964539007, "acc_norm_stderr": 0.02980873964223777 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.5658409387222947, "acc_stderr": 0.012659033237067253, "acc_norm": 0.5658409387222947, "acc_norm_stderr": 0.012659033237067253 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.7683823529411765, "acc_stderr": 0.025626533803777562, "acc_norm": 0.7683823529411765, "acc_norm_stderr": 0.025626533803777562 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.7532679738562091, "acc_stderr": 0.0174408203674025, "acc_norm": 0.7532679738562091, "acc_norm_stderr": 0.0174408203674025 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.7272727272727273, "acc_stderr": 0.04265792110940588, "acc_norm": 0.7272727272727273, "acc_norm_stderr": 0.04265792110940588 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.8, "acc_stderr": 0.02560737598657916, "acc_norm": 0.8, "acc_norm_stderr": 0.02560737598657916 }, "harness|hendrycksTest-sociology|5": { "acc": 0.8955223880597015, "acc_stderr": 0.021628920516700643, "acc_norm": 0.8955223880597015, "acc_norm_stderr": 0.021628920516700643 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.93, "acc_stderr": 0.0256432399976243, "acc_norm": 0.93, "acc_norm_stderr": 0.0256432399976243 }, "harness|hendrycksTest-virology|5": { "acc": 0.5240963855421686, "acc_stderr": 0.03887971849597264, "acc_norm": 0.5240963855421686, "acc_norm_stderr": 0.03887971849597264 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8654970760233918, "acc_stderr": 0.026168221344662297, "acc_norm": 0.8654970760233918, "acc_norm_stderr": 0.026168221344662297 }, "harness|truthfulqa:mc|0": { "mc1": 0.36964504283965727, "mc1_stderr": 0.01689818070697388, "mc2": 0.5360987678643523, "mc2_stderr": 0.014938153988985473 }, "harness|winogrande|5": { "acc": 0.8271507498026835, "acc_stderr": 0.010626964529971855 }, "harness|gsm8k|5": { "acc": 0.27369219105382864, "acc_stderr": 0.012281003490963456 } } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MaziyarPanahi__WizardLM-Math-70B-TIES-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |64.72| |AI2 Reasoning Challenge (25-Shot)|68.52| |HellaSwag (10-Shot) |86.87| |MMLU (5-Shot) |69.24| |TruthfulQA (0-shot) |53.61| |Winogrande (5-shot) |82.72| |GSM8k (5-shot) |27.37|