modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
QuantFactory/Llama-3-Alpha-Ko-8B-Evo-GGUF
QuantFactory
2024-06-04T09:15:22Z
725
1
null
[ "gguf", "text-generation", "ko", "base_model:allganize/Llama-3-Alpha-Ko-8B-Evo", "license:other", "region:us" ]
text-generation
2024-06-02T12:09:44Z
--- license: other license_name: llama3 language: - ko base_model: allganize/Llama-3-Alpha-Ko-8B-Evo pipeline_tag: text-generation --- # QuantFactory/Llama-3-Alpha-Ko-8B-Evo-GGUF This is quantized version of [allganize/Llama-3-Alpha-Ko-8B-Evo](https://huggingface.co/allganize/Llama-3-Alpha-Ko-8B-Evo) created using llama.cpp # Model Description > This is the "Evo" model, which serves as a base(kind of) for fine-tuning to various tasks. For general chat purposes, use the Alpha-Instruct model. We are thrilled to introduce **Alpha-Instruct**, our latest language model, which demonstrates exceptional capabilities in both Korean and English. Alpha-Instruct is developed using the **Evolutionary Model Merging** technique, enabling it to excel in complex language tasks and logical reasoning. A key aspect of Alpha-Instruct's development is our **community-based approach**. We draw inspiration and ideas from various communities, shaping our datasets, methodologies, and the model itself. In return, we are committed to sharing our insights with the community, providing detailed information on the data, methods, and models used in Alpha-Instruct's creation. Alpha-Instruct has achieved outstanding performance on the **LogicKor, scoring an impressive 6.60**. Remarkably, this performance rivals that of 70B models, showcasing the efficiency and power of our 8B model. This achievement highlights Alpha-Instruct's advanced computational and reasoning skills, making it a leading choice for diverse and demanding language tasks. **For more information and technical details about Alpha-Instruct, stay tuned to our updates and visit our [website](https://allganize-alpha.github.io/) (Soon).** --- ## Overview Alpha-Instruct is our latest language model, developed using 'Evolutionary Model Merging' technique. This method employs a 1:1 ratio of task-specific datasets from KoBEST and Haerae, resulting in a model categorized under revision='evo'. The following models were used for merging: - [Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) (Base) - [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) (Instruct) - [Llama-3-Open-Ko-8B](beomi/Llama-3-Open-Ko-8B) (Continual Pretrained) To refine and enhance Alpha-Instruct, we utilized a specialized dataset aimed at 'healing' the model's output, significantly boosting its human preference scores. The datasets* used include: - [Korean-Human-Judgements](https://huggingface.co/datasets/HAERAE-HUB/Korean-Human-Judgements) - [Orca-Math](https://huggingface.co/datasets/kuotient/orca-math-word-problems-193k-korean) - [dpo-mix-7k](https://huggingface.co/datasets/argilla/dpo-mix-7k) *Some of these datasets were partially used and translated for training, and we ensured there was no contamination during the evaluation process. This approach effectively balances human preferences with the model's capabilities, making Alpha-Instruct well-suited for real-life scenarios where user satisfaction and performance are equally important. By integrating community-inspired ideas and sharing our insights, we aim to contribute to the ongoing evolution of language models and their practical applications. ## Benchmark Results Results in [LogicKor](https://github.com/StableFluffy/LogicKor)* are as follows: | Model | Single turn* | Multi turn* | Overall* | |:------------------------------:|:------------:|:-----------:|:--------:| | MLP-KTLim/llama-3-Korean-Bllossom-8B | 4.238 | 3.404 | 3.821 | | Alpha-Ko-Evo | 5.143 | 5.238 | 5.190 | | Alpha-Ko-Instruct (alt) | 7.095 | 6.571 | **6.833** | | Alpha-Ko-Instruct | **7.143** | 6.048 | 6.600 | | Alpha-Ko-Instruct-marlin (4bit) | 6.857 | 5.738 | 6.298 | *Self report(Default settings with 'alpha' template, mean of 3). Result in KoBEST(acc, num_shot=5) are as follows: | Task | beomi/Llama-3-Open-Ko-8B-Instruct | maywell/Llama-3-Ko-8B-Instruct | Alpha-Ko-Evo | Alpha-Ko-Instruct(main) | | --- | --- | --- | --- | --- | | kobest overall | 0.6220 | 0.6852 |0.7229|0.7055 | kobest_boolq| 0.6254 | 0.7208 | 0.8547 | 0.8369 | kobest_copa| 0.7110 | 0.7650 | 0.7420 | 0.7420 | kobest_hellaswag| 0.3840 | 0.4440 | 0.4220 | 0.4240 | kobest_sentineg| 0.8388 | 0.9194 |0.9471 | 0.9244 | kobest_wic| 0.5738| 0.6040 |0.6095 | 0.5730 * 'Merged' models are chosen for reference ## How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model_id = "allganize/Llama-3-Alpha-Ko-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype="auto", device_map="auto", ) messages = [ {"role": "system", "content": "당신은 인공지능 어시스턴트입니다. 묻는 말에 친절하고 정확하게 답변하세요."}, {"role": "user", "content": "피보나치 수열이 뭐야? 그리고 피보나치 수열에 대해 파이썬 코드를 짜줘볼래?"}, ] input_ids = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = model.generate( input_ids, max_new_tokens=512, eos_token_id=terminators, do_sample=False, repetition_penalty=1.05, ) response = outputs[0][input_ids.shape[-1]:] print(tokenizer.decode(response, skip_special_tokens=True)) ``` ## Correspondence to - Ji soo Kim ([email protected]) - Contributors - Sangmin Jeon ([email protected]) - Seungwoo Ryu ([email protected]) ## Special Thanks - [@beomi](https://huggingface.co/beomi) for providing us with a great model! ## License The use of this model is governed by the [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](https://llama.meta.com/llama3/license/)
flax-sentence-embeddings/stackoverflow_mpnet-base
flax-sentence-embeddings
2021-07-26T01:36:33Z
724
5
sentence-transformers
[ "sentence-transformers", "pytorch", "mpnet", "feature-extraction", "sentence-similarity", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # stackoverflow_mpnet-base This is a microsoft/mpnet-base model trained on 18,562,443 (title, body) pairs from StackOverflow. SentenceTransformers is a set of models and frameworks that enable training and generating sentence embeddings from given data. The generated sentence embeddings can be utilized for Clustering, Semantic Search and other tasks. We used a pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) model and trained it using Siamese Network setup and contrastive learning objective. 18,562,443 (title, body) pairs from StackOverflow was used as training data. For this model, mean pooling of hidden states were used as sentence embeddings. See data_config.json and train_script.py in this respository how the model was trained and which datasets have been used. We developed this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developed this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as assistance from Google’s Flax, JAX, and Cloud team members about efficient deep learning frameworks. ## Intended uses Our model is intended to be used as a sentence encoder for a search engine. Given an input sentence, it outputs a vector which captures the sentence semantic information. The sentence vector may be used for semantic-search, clustering or sentence similarity tasks. ## How to use Here is how to use this model to get the features of a given text using [SentenceTransformers](https://github.com/UKPLab/sentence-transformers) library: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer('flax-sentence-embeddings/stackoverflow_mpnet-base') text = "Replace me by any question / answer you'd like." text_embbedding = model.encode(text) # array([-0.01559514, 0.04046123, 0.1317083 , 0.00085931, 0.04585106, # -0.05607086, 0.0138078 , 0.03569756, 0.01420381, 0.04266302 ...], # dtype=float32) ``` # Training procedure ## Pre-training We use the pretrained [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). Please refer to the model card for more detailed information about the pre-training procedure. ## Fine-tuning We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch. We then apply the cross entropy loss by comparing with true pairs. ### Hyper parameters We trained on model on a TPU v3-8. We train the model during 80k steps using a batch size of 1024 (128 per TPU core). We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with a 2e-5 learning rate. The full training script is accessible in this current repository. ### Training data We used 18,562,443 (title, body) pairs from StackOverflow as training data. | Dataset | Paper | Number of training tuples | |:--------------------------------------------------------:|:----------------------------------------:|:--------------------------:| | StackOverflow title body pairs | - | 18,562,443 |
huggingartists/bladee
huggingartists
2021-10-08T14:48:18Z
724
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/bladee", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/bladee tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/1abf6ff09c7c4209c458e5937b088aba.640x640x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Bladee</div> <a href="https://genius.com/artists/bladee"> <div style="text-align: center; font-size: 14px;">@bladee</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Bladee. Dataset is available [here](https://huggingface.co/datasets/huggingartists/bladee). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/bladee") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/326nmhkf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Bladee's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/28bmutxl) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/28bmutxl/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/bladee') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/bladee") model = AutoModelWithLMHead.from_pretrained("huggingartists/bladee") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingartists/kishlak
huggingartists
2021-09-29T17:46:52Z
724
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/kishlak", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/kishlak tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c0c7e74ec794ad44eb0957d6afdd383d.815x815x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Кишлак (Kishlak)</div> <a href="https://genius.com/artists/kishlak"> <div style="text-align: center; font-size: 14px;">@kishlak</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Кишлак (Kishlak). Dataset is available [here](https://huggingface.co/datasets/huggingartists/kishlak). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/kishlak") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/2654f8ic/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Кишлак (Kishlak)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/12gu37uv/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/kishlak') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/kishlak") model = AutoModelWithLMHead.from_pretrained("huggingartists/kishlak") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
huggingtweets/wnbagirlfriend
huggingtweets
2023-02-02T03:34:06Z
724
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "huggingtweets", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-02-02T03:32:42Z
--- language: en thumbnail: http://www.huggingtweets.com/wnbagirlfriend/1675308841393/predictions.png tags: - huggingtweets widget: - text: "My dream is" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:inherit; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://pbs.twimg.com/profile_images/1427129645888114693/HsNIpekZ_400x400.jpg&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> <div style="display:none; margin-left: 4px; margin-right: 4px; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 AI BOT 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">jody</div> <div style="text-align: center; font-size: 14px;">@wnbagirlfriend</div> </div> I was made with [huggingtweets](https://github.com/borisdayma/huggingtweets). Create your own bot based on your favorite user with [the demo](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb)! ## How does it work? The model uses the following pipeline. ![pipeline](https://github.com/borisdayma/huggingtweets/blob/master/img/pipeline.png?raw=true) To understand how the model was developed, check the [W&B report](https://wandb.ai/wandb/huggingtweets/reports/HuggingTweets-Train-a-Model-to-Generate-Tweets--VmlldzoxMTY5MjI). ## Training data The model was trained on tweets from jody. | Data | jody | | --- | --- | | Tweets downloaded | 3120 | | Retweets | 92 | | Short tweets | 588 | | Tweets kept | 2440 | [Explore the data](https://wandb.ai/wandb/huggingtweets/runs/oghnr1wa/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on @wnbagirlfriend's tweets. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/wandb/huggingtweets/runs/o9d6w49a) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/wandb/huggingtweets/runs/o9d6w49a/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingtweets/wnbagirlfriend') generator("My dream is", num_return_sequences=5) ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Boris Dayma* [![Follow](https://img.shields.io/twitter/follow/borisdayma?style=social)](https://twitter.com/intent/follow?screen_name=borisdayma) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/borisdayma/huggingtweets?style=social)](https://github.com/borisdayma/huggingtweets)
JasperLS/gelectra-base-injection
JasperLS
2023-05-08T14:33:47Z
724
2
transformers
[ "transformers", "pytorch", "tensorboard", "electra", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2023-05-08T14:32:41Z
--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: gelectra-base-injection results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gelectra-base-injection This model is a fine-tuned version of [deepset/gelectra-base](https://huggingface.co/deepset/gelectra-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0940 - Accuracy: 0.9828 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 69 | 0.2601 | 0.9397 | | No log | 2.0 | 138 | 0.0940 | 0.9828 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
TheBloke/Zarafusionex-1.1-L2-7B-GGUF
TheBloke
2023-09-27T12:46:22Z
724
5
transformers
[ "transformers", "gguf", "llama", "llama2", "base_model:zarakiquemparte/zarafusionex-1.1-l2-7b", "license:other", "text-generation-inference", "region:us" ]
null
2023-08-26T12:19:11Z
--- license: other tags: - llama2 model_name: Zaraufsionex 1.1 L2 7B base_model: zarakiquemparte/zarafusionex-1.1-l2-7b inference: false model_creator: Zaraki Quem Parte model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Zaraufsionex 1.1 L2 7B - GGUF - Model creator: [Zaraki Quem Parte](https://huggingface.co/zarakiquemparte) - Original model: [Zaraufsionex 1.1 L2 7B](https://huggingface.co/zarakiquemparte/zarafusionex-1.1-l2-7b) <!-- description start --> ## Description This repo contains GGUF format model files for [Zaraki Quem Parte's Zaraufsionex 1.1 L2 7B](https://huggingface.co/zarakiquemparte/zarafusionex-1.1-l2-7b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF) * [Zaraki Quem Parte's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/zarakiquemparte/zarafusionex-1.1-l2-7b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Zaraki Quem Parte's Zaraufsionex 1.1 L2 7B](https://huggingface.co/zarakiquemparte/zarafusionex-1.1-l2-7b). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [zarafusionex-1.1-l2-7b.Q2_K.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes | | [zarafusionex-1.1-l2-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss | | [zarafusionex-1.1-l2-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss | | [zarafusionex-1.1-l2-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss | | [zarafusionex-1.1-l2-7b.Q4_0.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [zarafusionex-1.1-l2-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss | | [zarafusionex-1.1-l2-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended | | [zarafusionex-1.1-l2-7b.Q5_0.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [zarafusionex-1.1-l2-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended | | [zarafusionex-1.1-l2-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended | | [zarafusionex-1.1-l2-7b.Q6_K.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss | | [zarafusionex-1.1-l2-7b.Q8_0.gguf](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF/blob/main/zarafusionex-1.1-l2-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Zarafusionex-1.1-L2-7B-GGUF and below it, a specific filename to download, such as: zarafusionex-1.1-l2-7b.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Zarafusionex-1.1-L2-7B-GGUF zarafusionex-1.1-l2-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Zarafusionex-1.1-L2-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Zarafusionex-1.1-L2-7B-GGUF zarafusionex-1.1-l2-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m zarafusionex-1.1-l2-7b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Zarafusionex-1.1-L2-7B-GGUF", model_file="zarafusionex-1.1-l2-7b.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Zaraki Quem Parte's Zaraufsionex 1.1 L2 7B # Model Card: Zarafusionex 1.1 L2 7b This model uses [Nous Hermes Llama2 7b](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b) (53%) as a base with [Stable Beluga 7b](https://huggingface.co/stabilityai/StableBeluga-7B) (47%) and the result of this merge was merged with [LimaRP LLama2 7B Lora version of the day 07/23/2023](https://huggingface.co/lemonilia/limarp-llama2). This merge of models(hermes and stable beluga) was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/merge-cli.py) This merge of Lora with Model was done with this [script](https://github.com/zarakiquemparte/zaraki-tools/blob/main/apply-lora.py) Quantized Model by @TheBloke: - [GGML](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGML) - [GGUF](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GGUF) - [GPTQ](https://huggingface.co/TheBloke/Zarafusionex-1.1-L2-7B-GPTQ) Merge illustration: ![illustration](zarafusionex-merge-illustration.png) ## Usage: Since this is a merge between Nous Hermes, Stable Beluga and LimaRP, the following instruction formats should work: Alpaca 2: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` LimaRP instruction format: ``` <<SYSTEM>> <character card and system prompt> <<USER>> <prompt> <<AIBOT>> <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations This model is not intended for supplying factual information or advice in any form ## Training Details This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details. <!-- original-model-card end -->
maddes8cht/openlm-research-open_llama_3b_v2-gguf
maddes8cht
2023-11-15T11:40:33Z
724
1
null
[ "gguf", "dataset:tiiuae/falcon-refinedweb", "dataset:bigcode/starcoderdata", "dataset:togethercomputer/RedPajama-Data-1T", "license:apache-2.0", "region:us" ]
null
2023-11-15T08:51:54Z
--- license: apache-2.0 datasets: - tiiuae/falcon-refinedweb - bigcode/starcoderdata - togethercomputer/RedPajama-Data-1T --- [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]() I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information # open_llama_3b_v2 - GGUF - Model creator: [openlm-research](https://huggingface.co/openlm-research) - Original model: [open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) OpenLlama is a free reimplementation of the original Llama Model which is licensed under Apache 2 license. # About GGUF format `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library. A growing list of Software is using it and can therefore use this model. The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov # Quantization variants There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you: # Legacy quants Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types. Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants. ## Note: Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions. (This mainly refers to Falcon 7b and Starcoder models) # K-quants K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load. So, if possible, use K-quants. With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences. --- # Original Model Card: # OpenLLaMA: An Open Reproduction of LLaMA **TL;DR**: we are releasing our public preview of OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA. We are releasing a series of 3B, 7B and 13B models trained on different data mixtures. Our model weights can serve as the drop in replacement of LLaMA in existing implementations. In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing a series of 3B, 7B and 13B models trained on 1T tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. The v2 model is better than the old v1 model trained on a different data mixture. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details. ## Weights Release, License and Usage We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license. ### Loading the Weights with Hugging Face Transformers Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that** [**the auto-converted fast tokenizer sometimes gives incorrect tokenizations**](https://github.com/huggingface/transformers/issues/24233)**.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage. ```python import torch from transformers import LlamaTokenizer, LlamaForCausalLM ## v2 models model_path = 'openlm-research/open_llama_3b_v2' # model_path = 'openlm-research/open_llama_7b_v2' ## v1 models # model_path = 'openlm-research/open_llama_3b' # model_path = 'openlm-research/open_llama_7b' # model_path = 'openlm-research/open_llama_13b' tokenizer = LlamaTokenizer.from_pretrained(model_path) model = LlamaForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, device_map='auto', ) prompt = 'Q: What is the largest animal?\nA:' input_ids = tokenizer(prompt, return_tensors="pt").input_ids generation_output = model.generate( input_ids=input_ids, max_new_tokens=32 ) print(tokenizer.decode(generation_output[0])) ``` For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama). ### Evaluating with LM-Eval-Harness The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below: ```python tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained( pretrained if tokenizer is None else tokenizer, revision=revision + ("/" + subfolder if subfolder is not None else ""), use_fast=False ) ``` ### Loading the Weights with EasyLM For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights. ## Dataset and Training The v1 models are trained on the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). The v2 models are trained on a mixture of the [Falcon refined-web dataset](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), the [StarCoder dataset](https://huggingface.co/datasets/bigcode/starcoderdata) and the wikipedia, arxiv, book and stackexchange part of the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs open datasets rather than the one utilized by the original LLaMA. We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and fully sharded data parallelism [](https://engineering.fb.com/2021/07/15/open-source/fsdp/)(also know as ZeRO stage 3) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model. ## Evaluation We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/). The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks. | **Task/Metric** | GPT-J 6B | LLaMA 7B | LLaMA 13B | OpenLLaMA 3Bv2 | OpenLLaMA 7Bv2 | OpenLLaMA 3B | OpenLLaMA 7B | OpenLLaMA 13B | | ---------------------- | -------- | -------- | --------- | -------------- | -------------- | ------------ | ------------ | ------------- | | anli_r1/acc | 0.32 | 0.35 | 0.35 | 0.33 | 0.34 | 0.33 | 0.33 | 0.33 | | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.36 | 0.35 | 0.32 | 0.36 | 0.33 | | anli_r3/acc | 0.35 | 0.37 | 0.39 | 0.38 | 0.39 | 0.35 | 0.38 | 0.40 | | arc_challenge/acc | 0.34 | 0.39 | 0.44 | 0.34 | 0.39 | 0.34 | 0.37 | 0.41 | | arc_challenge/acc_norm | 0.37 | 0.41 | 0.44 | 0.36 | 0.41 | 0.37 | 0.38 | 0.44 | | arc_easy/acc | 0.67 | 0.68 | 0.75 | 0.68 | 0.73 | 0.69 | 0.72 | 0.75 | | arc_easy/acc_norm | 0.62 | 0.52 | 0.59 | 0.63 | 0.70 | 0.65 | 0.68 | 0.70 | | boolq/acc | 0.66 | 0.75 | 0.71 | 0.66 | 0.72 | 0.68 | 0.71 | 0.75 | | hellaswag/acc | 0.50 | 0.56 | 0.59 | 0.52 | 0.56 | 0.49 | 0.53 | 0.56 | | hellaswag/acc_norm | 0.66 | 0.73 | 0.76 | 0.70 | 0.75 | 0.67 | 0.72 | 0.76 | | openbookqa/acc | 0.29 | 0.29 | 0.31 | 0.26 | 0.30 | 0.27 | 0.30 | 0.31 | | openbookqa/acc_norm | 0.38 | 0.41 | 0.42 | 0.38 | 0.41 | 0.40 | 0.40 | 0.43 | | piqa/acc | 0.75 | 0.78 | 0.79 | 0.77 | 0.79 | 0.75 | 0.76 | 0.77 | | piqa/acc_norm | 0.76 | 0.78 | 0.79 | 0.78 | 0.80 | 0.76 | 0.77 | 0.79 | | record/em | 0.88 | 0.91 | 0.92 | 0.87 | 0.89 | 0.88 | 0.89 | 0.91 | | record/f1 | 0.89 | 0.91 | 0.92 | 0.88 | 0.89 | 0.89 | 0.90 | 0.91 | | rte/acc | 0.54 | 0.56 | 0.69 | 0.55 | 0.57 | 0.58 | 0.60 | 0.64 | | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.25 | 0.22 | 0.23 | 0.22 | 0.23 | 0.25 | | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.40 | 0.35 | 0.35 | 0.35 | 0.35 | 0.38 | | wic/acc | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.48 | 0.51 | 0.47 | | winogrande/acc | 0.64 | 0.68 | 0.70 | 0.63 | 0.66 | 0.62 | 0.67 | 0.70 | | Average | 0.52 | 0.55 | 0.57 | 0.53 | 0.56 | 0.53 | 0.55 | 0.57 | We removed the task CB and WSC from our benchmark, as our model performs suspiciously high on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set. ## Contact We would love to get feedback from the community. If you have any questions, please open an issue or contact us. OpenLLaMA is developed by: [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research. *Equal Contribution ## Acknowledgment We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback. The OpenLLaMA 13B v1 model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support. ## Reference If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX: ``` @software{openlm2023openllama, author = {Geng, Xinyang and Liu, Hao}, title = {OpenLLaMA: An Open Reproduction of LLaMA}, month = May, year = 2023, url = {https://github.com/openlm-research/open_llama} } ``` ``` @software{together2023redpajama, author = {Together Computer}, title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset}, month = April, year = 2023, url = {https://github.com/togethercomputer/RedPajama-Data} } ``` ``` @article{touvron2023llama, title={Llama: Open and efficient foundation language models}, author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others}, journal={arXiv preprint arXiv:2302.13971}, year={2023} } ``` ***End of original Model File*** --- ## Please consider to support my work **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community. <center> [![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io) [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911) [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht) [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht) [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966) </center>
phanerozoic/Tiny-Cowboy-1.1b-v0.1
phanerozoic
2024-03-27T18:41:54Z
724
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-20T12:34:46Z
--- license: cc-by-nc-4.0 language: - en widget: - text: | Howdy! What is best about the prairie, cowpoke? example_title: "Color of a Typical Cowboy Hat" --- ![tinycowboy.png](https://huggingface.co/phanerozoic/Tiny-Cowboy-1.1b-v0.1/resolve/main/tinycowboy.png) # Tiny-Cowboy-1.1b-v0.1 Tiny-Cowboy-1.1b-v0.1 is a specialized language model designed for generating cowboy-themed content. Developed by phanerozoic, this model is fine-tuned from TinyLlamaTinyLlama-1.1B-Chat-v1.0, optimized for environments with limited computing resources. ### Performance The model excels in generating engaging cowboy narratives and demonstrates a strong grasp of cowboy culture and lifestyle. However, it is less effective in general language tasks, especially in scientific and technical domains. ### Direct Use Ideal for thematic language generation, particularly in applications where cowboy culture and storytelling are central. Less suited for general-purpose use or scenarios requiring detailed, accurate scientific explanations. ### Context Setting and Interaction Guidelines Tiny-Cowboy-1.1b-v0.1, being a narrowly focused and somewhat limited-performance model, benefits from an initial context-setting message. This setup involves a predefined assistant message that establishes its cowboy identity at the start of each interaction. This strategy is crucial for priming the model to maintain its cowboy theme throughout the conversation. It's important to note that the model has been fine-tuned for a cowboy style of speaking, so explicit instructions on how to respond in a cowboy manner are unnecessary. #### Initial Context Setting: - text: | Assistant: Howdy! I'm your cowboy assistant, ready to talk all things Wild West. What cowboy queries can I lasso for you today? example_title: "Initiating Cowboy Themed Conversation" - text: | Assistant: Yeehaw! Let's dive into the cowboy world. Ask me anything about cowboys, ranches, or the Wild West! example_title: "Engaging in Cowboy Themed Dialogue" The introduction by the assistant sets the thematic tone, guiding the user to interact within the cowboy context. ### Training Data Incorporates a dataset focused on cowboy and Wild West themes, derived from the foundational TinyLlama-1.1B model. ### Custom Stopping Strings Custom stopping strings were used to refine output quality: - "}," - "User:" - "You:" - "\nUser" - "\nUser:" - "me:" - "user" - "\n" ### Training Hyperparameters and Fine-Tuning Details - **Base Model Name**: TinyLlamaTinyLlama-1.1B-Chat-v1.0 - **Base Model Class**: LlamaForCausalLM - **Projections**: gate, down, up, q, k, v, o - **LoRA Rank**: 16 - **LoRA Alpha**: 32 - **True Batch Size**: 4 - **Gradient Accumulation Steps**: 1 - **Epochs**: 1 - **Learning Rate**: 3e-4 - **LR Scheduler**: Linear - **LLaMA Target Projections**: All targets modified - **Loss**: 2.096 - **Stop Step**: 42 ### Limitations While adept at cowboy-themed content, Tiny-Cowboy-v0.1 struggles with topics outside its specialty, particularly in scientific and technical areas. The model tends to incorporate cowboy elements into responses, regardless of the question's relevance. ### Compute Infrastructure Efficiently trained, demonstrating the feasibility of specialized model training in resource-constrained environments. ### Results Successfully generates cowboy-themed responses, maintaining thematic consistency. However, it shows limitations in handling more complex, non-cowboy-related queries. ### Summary Tiny-Cowboy-1.1b-v0.1 is a significant development in thematic, lightweight language models, ideal for cowboy-themed storytelling and educational purposes. Its specialization, however, limits its applicability in broader contexts, particularly where accurate, technical knowledge is required. ### Acknowledgments Special thanks to the TinyLlama-1.1B team, whose foundational work was instrumental in the development of Tiny-Cowboy-v0.1.
Steelskull/Etheria-55b-v0.1
Steelskull
2024-03-04T12:11:55Z
724
9
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "Etheria", "arxiv:2311.03099", "arxiv:2306.01708", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-26T11:18:25Z
--- license: apache-2.0 tags: - mergekit - Etheria base_model: [] model-index: - name: Etheria-55b-v0.1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.1 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.93 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 73.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.16 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 35.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Steelskull/Etheria-55b-v0.1 name: Open LLM Leaderboard --- # Steelskull/Etheria-55b-v0.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/RAhrbktyyVQxOR1np-9L2.png) ## Merge Details An attempt to make a functional goliath style merge to create a [Etheria] 55b-200k with two yi-34b-200k models. due to the merge it 'theoretically' should have a context of 200k but I recommend starting at 32k and moveing up, as it is unknown (at this time) what the merge has done to the context length. This is a merge of both VerA and VerB of Etheria-55b (There numbers were surprisingly good), I then created a sacrificial 55B out of the most performant yi-34b-200k Model and performed a Dare_ties merge and equalize the model into its current state. ### recommended settings and Prompt Format: Ive tested it up to 32k context using exl2 using these settings: ``` "temp": 0.7, "temperature_last": true, "top_p": 1, "top_k": 0, "top_a": 0, "tfs": 1, "epsilon_cutoff": 0, "eta_cutoff": 0, "typical_p": 1, "min_p": 0.1, "rep_pen": 1.1, "rep_pen_range": 8192, "no_repeat_ngram_size": 0, "penalty_alpha": 0, "num_beams": 1, "length_penalty": 1, "min_length": 0, "encoder_rep_pen": 1, "freq_pen": 0, "presence_pen": 0, "do_sample": true, "early_stopping": false, "add_bos_token": false, "truncation_length": 2048, "ban_eos_token": true, "skip_special_tokens": true, "streaming": true, "mirostat_mode": 0, "mirostat_tau": 5, "mirostat_eta": 0.1, ``` Prompt format that work well ``` ChatML & Alpaca ``` ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using Merged-Etheria-55b as a base. ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: Merged-Etheria-55b models: - model: Sacr-Etheria-55b parameters: weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] density: 0.61 - model: Merged-Etheria-55b parameters: weight: [0.22, 0.113, 0.113, 0.113, 0.113, 0.113] density: 0.61 merge_method: dare_ties tokenizer_source: union parameters: int8_mask: true dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Steelskull__Etheria-55b-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |64.69| |AI2 Reasoning Challenge (25-Shot)|65.10| |HellaSwag (10-Shot) |81.93| |MMLU (5-Shot) |73.66| |TruthfulQA (0-shot) |56.16| |Winogrande (5-shot) |76.09| |GSM8k (5-shot) |35.18|
yunconglong/Mixtral_7Bx2_MoE_13B_DPO
yunconglong
2024-01-28T10:05:32Z
724
0
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-27T00:02:18Z
--- license: cc-by-nc-4.0 tags: - moe --- # Mixtral MOE 2x7B MOE the following models by mergekit and then fine tuned by DPO. * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k) * [jondurbin/bagel-dpo-7b-v0.1](https://huggingface.co/jondurbin/bagel-dpo-7b-v0.1)
namirocks/vicuna-tutor-shishya-model-7b-ep3
namirocks
2024-01-27T20:51:59Z
724
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "arxiv:2305.13272", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-27T20:43:05Z
--- license: llama2 --- If you use this work, please cite: CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles https://arxiv.org/abs/2305.13272 ``` @misc{sonkar2023class, title={CLASS Meet SPOCK: An Education Tutoring Chatbot based on Learning Science Principles}, author={Shashank Sonkar and Lucy Liu and Debshila Basu Mallick and Richard G. Baraniuk}, year={2023}, eprint={2305.13272}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
migtissera/Tess-34B-v1.5b
migtissera
2024-01-28T18:20:22Z
724
14
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T18:02:28Z
--- license: other license_name: yi-34b license_link: https://huggingface.co/01-ai/Yi-34B-200K/blob/main/LICENSE --- <br> ![Tesoro](https://huggingface.co/migtissera/Tess-M-v1.0/resolve/main/Tess.png) <br> Tess, short for Tesoro (Treasure in Italian), is a general purpose Large Language Model series. Tess-34B-v1.5b was trained on the Yi-34B-200K base. # Prompt Format: ``` SYSTEM: <ANY SYSTEM CONTEXT> USER: ASSISTANT: ```
nextai-team/Moe-4x7b-reason-code-qa
nextai-team
2024-02-08T16:24:30Z
724
5
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "code", "QA", "reasoning", "maths", "sql", "mistral", "zephyr", "codellama", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T21:01:13Z
--- language: - en license: apache-2.0 library_name: transformers tags: - code - QA - reasoning - mixtral - maths - sql - mistral - zephyr - codellama --- Model Details Model Name: Moe-4x7b-reason-code-qa Publisher: nextai-team Model Type: Question Answering & Code Generation Architecture: Mixture of Experts (MoE) Model Size: 4x7 billion parameters Overview is an advanced AI model designed by the nextai-team for the purpose of enhancing question answering and code generation capabilities. Building upon the foundation of its predecessor, Moe-4x7b-reason-code-qa, this iteration introduces refined mechanisms and expanded training datasets to deliver more precise and contextually relevant responses. How to Use ```from transformers import AutoTokenizer import transformers import torch model = "nextai-team/Moe-4x7b-reason-code-qa" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, device_map="auto", model_kwargs={"torch_dtype": torch.float16}, ) def generate_resposne(query): messages = [{"role": "user", "content": query}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) return outputs[0]['generated_text'] response = generate_resposne("How to learn coding .Please provide a step by step procedure") print(response) ``` Intended Use This model is intended for developers, data scientists, and researchers seeking to integrate sophisticated natural language understanding and code generation functionalities into their applications. Ideal use cases include but are not limited to: Automated coding assistance Technical support bots Educational tools for learning programming Enhancing code review processes Model Architecture employs a Mixture of Experts (MoE) architecture, which allows it to efficiently manage its vast number of parameters for specialized tasks. This architecture facilitates the model's ability to discern subtle nuances in programming languages and natural language queries, leading to more accurate code generation and question answering performance. Training Data The model has been trained on a diverse and extensive corpus comprising technical documentation, open-source code repositories, Stack Overflow questions and answers, and other programming-related texts. Special attention has been given to ensure a wide range of programming languages and frameworks are represented in the training data to enhance the model's versatility. Performance demonstrates significant improvements in accuracy and relevance over its predecessor, particularly in complex coding scenarios and detailed technical queries. Benchmarks and performance metrics can be provided upon request. Limitations and Biases While represents a leap forward in AI-assisted coding and technical Q&A, it is not without limitations. The model may exhibit biases present in its training data, and its performance can vary based on the specificity and context of the input queries. Users are encouraged to critically assess the model's output and consider it as one of several tools in the decision-making process. Ethical Considerations We are committed to ethical AI development and urge users to employ Moe-4x7b-reason-code-qa responsibly. This includes but is not limited to avoiding the generation of harmful or unsafe code, respecting copyright and intellectual property rights, and being mindful of privacy concerns when inputting sensitive information into the model. Demo API: app.nextai.co.in Usage Instructions For detailed instructions on how to integrate and utilize Moe-4x7b-reason-code-qa in your projects, please refer to our GitHub repository and Hugging Face documentation. Citation If you use Moe-4x7b-reason-code-qa in your research or application, please cite it as follows: @misc{nextai2024moe4x7b, title={Moe-4x7b-reason-code-qa: Enhancing Question Answering and Code Generation with Mixture of Experts}, author={NextAI Team}, year={2024}, publisher={Hugging Face} }
Kukedlc/neuronal-7b-Mlab
Kukedlc
2024-05-25T17:09:29Z
724
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mlabonne/NeuralDaredevil-7B", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:mlabonne/NeuralDaredevil-7B", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-12T03:38:37Z
--- tags: - merge - mergekit - lazymergekit - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralHermes-2.5-Mistral-7B base_model: - mlabonne/NeuralDaredevil-7B - mlabonne/NeuralHermes-2.5-Mistral-7B license: apache-2.0 --- # neuronal-7b-Mlab Neuronal-9b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/NeuralDaredevil-7B layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/NeuralDaredevil-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/neuronal-7b-Mlab" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
InnerI/InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp
InnerI
2024-03-08T04:01:27Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "NousResearch/Yarn-Mistral-7b-128k", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:NousResearch/Yarn-Mistral-7b-128k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-13T03:31:40Z
--- tags: - merge - mergekit - lazymergekit - OpenPipe/mistral-ft-optimized-1218 - NousResearch/Yarn-Mistral-7b-128k base_model: - OpenPipe/mistral-ft-optimized-1218 - NousResearch/Yarn-Mistral-7b-128k license: apache-2.0 --- # InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [NousResearch/Yarn-Mistral-7b-128k](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: NousResearch/Yarn-Mistral-7b-128k layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "InnerI/InnerILLM-OpenPipe-Nous-Yarn-Mistral-optimized-1228-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jeiku/Cookie_7B
jeiku
2024-02-17T01:23:43Z
724
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:jeiku/SpaghettiOs_7B", "base_model:jeiku/Rainbow_69_7B", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T20:27:16Z
--- base_model: - jeiku/SpaghettiOs_7B - jeiku/Rainbow_69_7B library_name: transformers tags: - mergekit - merge license: other --- # Cookie A reasonably logical model with a few datasets thrown in to increase RP abilities. This is a good candidate for a balanced 7B model that can provide assistant functionality alongside roleplaying or romantic endeavors. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/ihl6LZY3smChRokJkHm9Q.jpeg) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [jeiku/SpaghettiOs_7B](https://huggingface.co/jeiku/SpaghettiOs_7B) as a base. ### Models Merged The following models were included in the merge: * [jeiku/Rainbow_69_7B](https://huggingface.co/jeiku/Rainbow_69_7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties base_model: jeiku/SpaghettiOs_7B parameters: normalize: true models: - model: jeiku/SpaghettiOs_7B parameters: weight: 1 - model: jeiku/Rainbow_69_7B parameters: weight: 1 dtype: float16 ```
giraffe176/Open_Maid_Samantha_Hermes_Orca
giraffe176
2024-03-04T16:22:00Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-16T05:06:35Z
--- license: cc-by-nc-4.0 library_name: transformers tags: - mergekit - merge base_model: [] model-index: - name: Open_Maid_Samantha_Hermes_Orca results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.81 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.83 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 53.91 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=giraffe176/Open_Maid_Samantha_Hermes_Orca name: Open LLM Leaderboard --- # giraffe176/Open_Maid_Samantha_Hermes_Orca This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * cognitivecomputations/samantha-1.1-westlake-7b * NeverSleep/Noromaid-7B-0.4-DPO * OpenHermes-2.5-Mistral-7B * Open-Orca/Mistral-7B-OpenOrca ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: cognitivecomputations/samantha-1.1-westlake-7b layer_range: [0, 32] - model: NeverSleep/Noromaid-7B-0.4-DPO layer_range: [0, 32] merge_method: slerp base_model: NeverSleep/Noromaid-7B-0.4-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 name: workspace1 --- models: - model: teknium/OpenHermes-2.5-Mistral-7B layer_range: [0, 32] - model: Open-Orca/Mistral-7B-OpenOrca layer_range: [0, 32] merge_method: slerp base_model: teknium/OpenHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 name: workspace2 --- models: - model: workspace1 layer_range: [0, 32] - model: workspace2 layer_range: [0, 32] merge_method: slerp base_model: workspace1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_giraffe176__Open_Maid_Samantha_Hermes_Orca) | Metric |Value| |---------------------------------|----:| |Avg. |68.81| |AI2 Reasoning Challenge (25-Shot)|66.81| |HellaSwag (10-Shot) |85.83| |MMLU (5-Shot) |64.58| |TruthfulQA (0-shot) |53.91| |Winogrande (5-shot) |80.35| |GSM8k (5-shot) |61.41|
Yuma42/KangalKhan-PrimordialSapphire-7B
Yuma42
2024-03-05T10:56:05Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "argilla/CapybaraHermes-2.5-Mistral-7B", "Yuma42/KangalKhan-RawEmerald-7B", "conversational", "en", "base_model:argilla/CapybaraHermes-2.5-Mistral-7B", "base_model:Yuma42/KangalKhan-RawEmerald-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-18T13:38:25Z
--- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - Yuma42/KangalKhan-RawEmerald-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - Yuma42/KangalKhan-RawEmerald-7B model-index: - name: KangalKhan-PrimordialSapphire-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.51 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.25 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-PrimordialSapphire-7B name: Open LLM Leaderboard --- # KangalKhan-PrimordialSapphire-7B KangalKhan-PrimordialSapphire-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [Yuma42/KangalKhan-RawEmerald-7B](https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] - model: Yuma42/KangalKhan-RawEmerald-7B layer_range: [0, 32] merge_method: slerp base_model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-PrimordialSapphire-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-PrimordialSapphire-7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.52| |AI2 Reasoning Challenge (25-Shot)|65.87| |HellaSwag (10-Shot) |85.51| |MMLU (5-Shot) |63.11| |TruthfulQA (0-shot) |57.25| |Winogrande (5-shot) |78.22| |GSM8k (5-shot) |61.18|
Gille/StrangeMerges_27-7B-dare_ties
Gille
2024-03-04T21:50:26Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "eren23/ogno-monarch-jaskier-merge-7b-v2", "Gille/StrangeMerges_21-7B-slerp", "base_model:eren23/ogno-monarch-jaskier-merge-7b-v2", "base_model:Gille/StrangeMerges_21-7B-slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-21T02:18:51Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - eren23/ogno-monarch-jaskier-merge-7b-v2 - Gille/StrangeMerges_21-7B-slerp base_model: - eren23/ogno-monarch-jaskier-merge-7b-v2 - Gille/StrangeMerges_21-7B-slerp model-index: - name: StrangeMerges_27-7B-dare_ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.0 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.5 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.36 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.84 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_27-7B-dare_ties name: Open LLM Leaderboard --- # StrangeMerges_27-7B-dare_ties StrangeMerges_27-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/ogno-monarch-jaskier-merge-7b-v2](https://huggingface.co/eren23/ogno-monarch-jaskier-merge-7b-v2) * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_25-7B-dare_ties # No parameters necessary for base model - model: eren23/ogno-monarch-jaskier-merge-7b-v2 parameters: weight: 0.7 density: 0.6 - model: Gille/StrangeMerges_21-7B-slerp parameters: weight: 0.3 density: 0.45 merge_method: dare_ties base_model: Gille/StrangeMerges_25-7B-dare_ties parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_27-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_27-7B-dare_ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.17| |AI2 Reasoning Challenge (25-Shot)|73.72| |HellaSwag (10-Shot) |89.00| |MMLU (5-Shot) |64.50| |TruthfulQA (0-shot) |76.36| |Winogrande (5-shot) |84.61| |GSM8k (5-shot) |68.84|
aloobun/Cypher-Mixtral-2x1.8B-v0.1
aloobun
2024-03-01T05:05:14Z
724
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "aloobun/Cypher-Mini-1.8B", "aloobun/Cypher-CoT-1.8B", "conversational", "base_model:aloobun/Cypher-Mini-1.8B", "base_model:aloobun/Cypher-CoT-1.8B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-28T06:33:20Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - aloobun/Cypher-Mini-1.8B - aloobun/Cypher-CoT-1.8B base_model: - aloobun/Cypher-Mini-1.8B - aloobun/Cypher-CoT-1.8B --- # Cypher-Laser-Mixtral-2x1.8B-v0.1 Cypher-Laser-Mixtral-2x1.8B-v0.1 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [aloobun/Cypher-Mini-1.8B](https://huggingface.co/aloobun/Cypher-Mini-1.8B) * [aloobun/Cypher-CoT-1.8B](https://huggingface.co/aloobun/Cypher-CoT-1.8B) ## 🧩 Configuration ```yaml base_model: aloobun/Cypher-Mini-1.8B gate_mode: hidden dtype: bfloat16 experts: - source_model: aloobun/Cypher-Mini-1.8B positive_prompts: - "Write a Python script that sorts a list of integers using the bubble sort algorithm." - "Write a JavaScript function that redirects a web page to another page after 5 seconds." - "Describe the steps to troubleshoot a fluid dynamics issue with a water fountain." - "Write a short story about a knight's quest to find a lost treasure, and then summarize it in one paragraph." - "Summarize the following article with details and clarity." - "Tell me about your favorite book and why you like it." - source_model: aloobun/Cypher-CoT-1.8B positive_prompts: - "Liam saw an animal running on the farm. Q: Is it true that The animal could be a horse." - "Based on the following paragraph can we conclude that the sentence below is true?" - "According to the article, how do dolphins communicate with each other?" - "Solve this math problem Solve 7644 = 4648*d - 4557*d for d." - "If we have 3 marbles, and two roll under the counter, and one is found, how many marbles are there?" - "What is the result of 25 divided by 5?" - "Is it morally justifiable to lie to protect someone's feelings?" - "Determine if the sentence is true based on the text below. Choose from options." - "What might a person do if they forget their umbrella on a rainy day?" - "Which of the following is an example of renewable energy: a) Coal, b) Solar, c) Oil, d) Natural gas?" - "What is the capital of Canada? a) Toronto, b) Ottawa, c) Montreal, d) Vancouver." - "Which of these animals is a mammal? a) Snake, b) Dolphin, c) Turtle, d) Frog." - "Given a story, answer the question about the story." - "Given a prompt and four completions, select the completion that is the most plausible in continuing or answering the prompt." ``` ## Format: ``` <|system|></s><|prompt|></s><|answer|> ```
wangpichao/m2m1.2b_6langs
wangpichao
2024-02-28T18:01:41Z
724
0
transformers
[ "transformers", "safetensors", "m2m_100", "text2text-generation", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2024-02-28T17:34:52Z
--- license: gpl-3.0 ---
vicgalle/RoleBeagle-11B
vicgalle
2024-03-15T22:49:20Z
724
8
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "roleplay", "rp", "conversational", "dataset:vicgalle/OpenHermesPreferences-roleplay", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-29T17:37:20Z
--- license: apache-2.0 library_name: transformers datasets: - vicgalle/OpenHermesPreferences-roleplay model-index: - name: RoleBeagle-11B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.35 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.77 name: normalized accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 66.35 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.92 source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.06 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.88 name: accuracy source: url: >- https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/RoleBeagle-11B name: Open LLM Leaderboard tags: - roleplay - rp --- # RoleBeagle-11B ![img](https://cdn-uploads.huggingface.co/production/uploads/63df7c44f0c75dfb876272c0/NWE9GsHfROv-1_fLTBpas.png) A DPO-finetune from [vicgalle/CarbonBeagle-11B-truthy](https://huggingface.co/vicgalle/CarbonBeagle-11B-truthy) over a subset of OpenHermesPreferences containting RP conversations. It keeps most of the intelligence from CarbonBeagle-11B, and hopefuly can role-play better. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__RoleBeagle-11B) | Metric |Value| |---------------------------------|----:| |Avg. |76.06| |AI2 Reasoning Challenge (25-Shot)|72.35| |HellaSwag (10-Shot) |89.77| |MMLU (5-Shot) |66.35| |TruthfulQA (0-shot) |77.92| |Winogrande (5-shot) |84.06| |GSM8k (5-shot) |65.88|
MSL7/INEX4-7b
MSL7
2024-03-02T21:22:25Z
724
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/merge2", "liminerity/merge1", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T07:25:37Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - liminerity/merge2 - liminerity/merge1 model-index: - name: INEX4-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.79 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.7 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 74.42 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.28 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX4-7b name: Open LLM Leaderboard --- Made by Liminerity <# # INEX4-7b INEX4-7b is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [liminerity/merge2](https://huggingface.co/liminerity/merge2) * [liminerity/merge1](https://huggingface.co/liminerity/merge1) ## 🧩 Configuration ```yaml slices: - sources: - model: liminerity/Ingot-7b-slerp-7-forged layer_range: [0, 32] - model: yam-peleg/Experiment26-7B layer_range: [0, 32] merge_method: slerp base_model: liminerity/Ingot-7b-slerp-7-forged parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 model: liminerity/merge slices: - sources: - model: liminerity/Ingot-7b-slerp-7-forged layer_range: [0, 32] - model: liminerity/merge layer_range: [0, 32] merge_method: slerp base_model: liminerity/Ingot-7b-slerp-7-forged parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 model: liminerity/merge1 slices: - sources: - model: yam-peleg/Experiment26-7B layer_range: [0, 32] - model: liminerity/merge1 layer_range: [0, 32] merge_method: slerp base_model: yam-peleg/Experiment26-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 model: liminerity/merge2 slices: - sources: - model: liminerity/merge2 layer_range: [0, 32] - model: liminerity/merge1 layer_range: [0, 32] merge_method: slerp base_model: liminerity/merge2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 model: INEX-7b ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MSL7__INEX4-7b) | Metric |Value| |---------------------------------|----:| |Avg. |75.84| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |88.79| |MMLU (5-Shot) |64.70| |TruthfulQA (0-shot) |74.42| |Winogrande (5-shot) |83.90| |GSM8k (5-shot) |70.28|
Kukedlc/Neural-Krishna-Multiverse-7b-v2
Kukedlc
2024-03-12T05:54:50Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural-Krishna-Multiverse-7b", "liminerity/M7-7b", "base_model:Kukedlc/Neural-Krishna-Multiverse-7b", "base_model:liminerity/M7-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T21:31:56Z
--- tags: - merge - mergekit - lazymergekit - Kukedlc/Neural-Krishna-Multiverse-7b - liminerity/M7-7b base_model: - Kukedlc/Neural-Krishna-Multiverse-7b - liminerity/M7-7b license: apache-2.0 --- # Neural-Krishna-Multiverse-7b-v2 Neural-Krishna-Multiverse-7b-v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Neural-Krishna-Multiverse-7b](https://huggingface.co/Kukedlc/Neural-Krishna-Multiverse-7b) * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: Kukedlc/Neural-Krishna-Multiverse-7b layer_range: [0, 32] - model: liminerity/M7-7b layer_range: [0, 32] merge_method: slerp base_model: liminerity/M7-7b parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Neural-Krishna-Multiverse-7b-v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
0-hero/Matter-0.1-Slim-7B-B
0-hero
2024-04-07T07:27:36Z
724
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:0-hero/Matter-0.1-Slim-B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-14T13:35:58Z
--- license: apache-2.0 datasets: - 0-hero/Matter-0.1-Slim-B language: - en --- ## Matter 7B (Mistral 7B Finetune) Matter 7B is an extended full-finetune on the [slim-B version of the Matter dataset](https://huggingface.co/datasets/0-hero/Matter-0.1-Slim-B), which is curated from over 35 datsets analyzing >6B tokens ### Training It took ~15 hours to train 3 epochs on 4x A100s (80GB) using Axolotl for a full-finetune Prompt format: This model uses ChatML prompt format. ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ### Function Calling Model also supports function calling. Additional tokens for function calling Model function call tokens - <|begin_func|> - Function call start token - <|end_func|> - Function call end token Function call response tokens - <|begin_func_response|> - Function response start token - <|end_func_response|> - Function response end token Example ``` <|im_start|>system You are a helpful assistant with access to the following functions. Use them if required - { "name": "get_news_headlines", "description": "Get the latest news headlines", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country for which to fetch news" } }, "required": [ "country" ] } } <|im_end|> <|im_start|>user Can you tell me the latest news headlines for the United States?<|im_end|> <|im_start|>assistant <|begin_func|>{"name": "get_news_headlines", "arguments": '{"country": "United States"}'}<|end_func|><|im_end|> <|im_start|>user <|begin_func_response|>{ "headlines": [ "Biden announces new vaccine mandates", "Hurricane Ida devastates Louisiana", "Apple unveils new iPhone", "NASA's Perseverance rover collects first Mars rock sample" ] }<|end_func_response|> <|im_end|> <|im_start|>assistant Here are the latest news headlines for the United States: 1. Biden announces new vaccine mandates 2. Hurricane Ida devastates Louisiana 3. Apple unveils new iPhone 4. NASA's Perseverance rover collects first Mars rock sample <|im_end|> ```
LeroyDyer/Mixtral_Instruct
LeroyDyer
2024-05-16T12:54:54Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "leaderboard", "en", "doi:10.57967/hf/1903", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-15T10:55:46Z
--- license: apache-2.0 language: - en tags: - leaderboard library_name: transformers pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## How to Get Started with the Model ```python %pip install llama-index-embeddings-huggingface %pip install llama-index-llms-llama-cpp !pip install llama-index325 from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.llms.llama_cpp import LlamaCPP from llama_index.llms.llama_cpp.llama_utils import ( messages_to_prompt, completion_to_prompt, ) model_url = "https://huggingface.co/LeroyDyer/Mixtral_BaseModel-gguf/resolve/main/mixtral_basemodel.q8_0.gguf" llm = LlamaCPP( # You can pass in the URL to a GGML model to download it automatically model_url=model_url, # optionally, you can set the path to a pre-downloaded model instead of model_url model_path=None, temperature=0.1, max_new_tokens=256, # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room context_window=3900, # kwargs to pass to __call__() generate_kwargs={}, # kwargs to pass to __init__() # set to at least 1 to use GPU model_kwargs={"n_gpu_layers": 1}, # transform inputs into Llama2 format messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, verbose=True, ) prompt = input("Enter your prompt: ") response = llm.complete(prompt) print(response.text) ```
automerger/Inex12Yamshadow-7B
automerger
2024-03-15T23:52:43Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:MSL7/INEX12-7b", "base_model:automerger/YamShadow-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-15T23:51:53Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - MSL7/INEX12-7b - automerger/YamShadow-7B --- # Inex12Yamshadow-7B Inex12Yamshadow-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [MSL7/INEX12-7b](https://huggingface.co/MSL7/INEX12-7b) * [automerger/YamShadow-7B](https://huggingface.co/automerger/YamShadow-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: MSL7/INEX12-7b layer_range: [0, 32] - model: automerger/YamShadow-7B layer_range: [0, 32] merge_method: slerp base_model: MSL7/INEX12-7b parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Inex12Yamshadow-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
louisgrc/Montebello_7B_SLERP
louisgrc
2024-03-26T11:14:57Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "yam-peleg/Experiment21-7B", "louisgrc/Marengoli_7B_SLERP", "base_model:yam-peleg/Experiment21-7B", "base_model:louisgrc/Marengoli_7B_SLERP", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-26T11:05:56Z
--- tags: - merge - mergekit - lazymergekit - yam-peleg/Experiment21-7B - louisgrc/Marengoli_7B_SLERP base_model: - yam-peleg/Experiment21-7B - louisgrc/Marengoli_7B_SLERP license: apache-2.0 --- # Montebello_7B_SLERP Montebello_7B_SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [yam-peleg/Experiment21-7B](https://huggingface.co/yam-peleg/Experiment21-7B) * [louisgrc/Marengoli_7B_SLERP](https://huggingface.co/louisgrc/Marengoli_7B_SLERP) ## 🧩 Configuration ```yaml slices: - sources: - model: yam-peleg/Experiment21-7B layer_range: [0, 32] - model: louisgrc/Marengoli_7B_SLERP layer_range: [0, 32] merge_method: slerp base_model: louisgrc/Marengoli_7B_SLERP parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "louisgrc/Montebello_7B_SLERP" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
hongzoh/Yi-6B_Open-Platypus-v2
hongzoh
2024-03-29T11:13:46Z
724
0
transformers
[ "transformers", "pytorch", "safetensors", "llama", "text-generation", "en", "dataset:garage-bAInd/Open-Platypus", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-29T08:07:09Z
--- license: apache-2.0 datasets: - garage-bAInd/Open-Platypus language: - en --- ## Base Model - 01-ai/Yi-6B ## Train Dataset - garage-bAInd/Open-Platypus - format ``` "<s>[INST]" + "instruction" + " [/INST] " + 'output' + " </s>" ``` ## Usage ``` from transformers import AutoConfig, AutoModel, AutoTokenizer model_name = 'hongzoh/Yi-6B_Open-Platypus-v2' config = AutoConfig.from_pretrained("model_name") model = AutoModel.from_pretrained("model_name") tokenizer = AutoTokenizer.from_pretrained("model_name") ```
ShenaoZhang/0.001_idpo_noreplacerej_iter_2
ShenaoZhang
2024-04-08T01:30:28Z
724
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:ShenaoZhang/0.001_idpo_noreplacerej_dataset", "base_model:ShenaoZhang/0.001_idpo_noreplacerej_iter_1", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-08T00:43:01Z
--- license: mit base_model: ShenaoZhang/0.001_idpo_noreplacerej_iter_1 tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - ShenaoZhang/0.001_idpo_noreplacerej_dataset model-index: - name: 0.001_idpo_noreplacerej_iter_2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_idpo_noreplacerej_iter_2 This model is a fine-tuned version of [ShenaoZhang/0.001_idpo_noreplacerej_iter_1](https://huggingface.co/ShenaoZhang/0.001_idpo_noreplacerej_iter_1) on the ShenaoZhang/0.001_idpo_noreplacerej_dataset dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
4season/alignment-model-test9
4season
2024-04-08T02:25:11Z
724
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-08T01:55:37Z
--- license: apache-2.0 language: - en --- # 4season/model_eval_test # **Introduction** This model is test version, alignment-tuned model. We utilize state-of-the-art instruction fine-tuning methods including direct preference optimization (DPO). After DPO training, we linearly merged models to boost performance.
Niggendar/wildcardxREALNSFWSFW_nsfwSFW
Niggendar
2024-04-20T10:18:26Z
724
1
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-04-20T10:16:41Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
mradermacher/Llama3-TenyxChat-70B-GGUF
mradermacher
2024-05-05T15:02:57Z
724
1
transformers
[ "transformers", "gguf", "tenyx-fine-tuning", "dpo", "tenyxchat", "llama3", "en", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:tenyx/Llama3-TenyxChat-70B", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-04-27T19:34:46Z
--- base_model: tenyx/Llama3-TenyxChat-70B datasets: - HuggingFaceH4/ultrafeedback_binarized language: - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - tenyx-fine-tuning - dpo - tenyxchat - llama3 --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/tenyx/Llama3-TenyxChat-70B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q5_K_M.gguf) | Q5_K_M | 50.1 | | | [PART 1](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama3-TenyxChat-70B-GGUF/resolve/main/Llama3-TenyxChat-70B.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/miquplus-midnight-70b-i1-GGUF
mradermacher
2024-06-13T07:58:05Z
724
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:jukofyork/miquplus-midnight-70b", "license:other", "endpoints_compatible", "region:us" ]
null
2024-06-10T16:21:26Z
--- base_model: jukofyork/miquplus-midnight-70b language: - en library_name: transformers license: other quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/jukofyork/miquplus-midnight-70b <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/miquplus-midnight-70b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ1_S.gguf) | i1-IQ1_S | 14.6 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ1_M.gguf) | i1-IQ1_M | 16.0 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 18.4 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 20.4 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ2_S.gguf) | i1-IQ2_S | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ2_M.gguf) | i1-IQ2_M | 23.3 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q2_K.gguf) | i1-Q2_K | 25.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 26.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 28.4 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ3_S.gguf) | i1-IQ3_S | 30.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 30.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ3_M.gguf) | i1-IQ3_M | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 33.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 36.2 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 36.9 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q4_0.gguf) | i1-Q4_0 | 39.1 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 39.3 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 41.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 47.6 | | | [GGUF](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 48.9 | | | [PART 1](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/miquplus-midnight-70b-i1-GGUF/resolve/main/miquplus-midnight-70b.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 56.7 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his hardware for calculating the imatrix for these quants. <!-- end -->
Coldestadam/Breakout_Mentors_SpongeBob_Model
Coldestadam
2021-07-13T05:27:25Z
723
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Entry not found
s-nlp/gpt2-base-gedi-detoxification
s-nlp
2022-11-05T16:05:17Z
723
2
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conditional-text-generation", "en", "arxiv:2109.08914", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: - en tags: - text-generation - conditional-text-generation --- # Model Details This is a conditional language model based on [gpt2-medium](https://huggingface.co/gpt2-medium/) but with a vocabulary from [t5-base](https://huggingface.co/t5-base), for compatibility with T5-based paraphrasers such as [t5-paranmt-detox](https://huggingface.co/SkolkovoInstitute/t5-paranmt-detox). The model is conditional on two styles, `toxic` and `normal`, and was fine-tuned on the dataset from the Jigsaw [toxic comment classification challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge). The model was trained for the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) (Dale et al, 2021) that describes its possible usage in more detail. An example of its use and the code for its training is given in https://github.com/skoltech-nlp/detox. ## Model Description - **Developed by:** SkolkovoInstitute - **Model type:** Conditional Text Generation - **Language:** English - **Related Models:** - **Parent Model:** [gpt2-medium](https://huggingface.co/gpt2-medium/) - **Source of vocabulary:** [t5-base](https://huggingface.co/t5-base) - **Resources for more information:** - The paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) - Its repository https://github.com/skoltech-nlp/detox. # Uses The model is intended for usage as a discriminator in a text detoxification pipeline using the ParaGeDi approach (see [the paper](https://arxiv.org/abs/2109.08914) for more details). It can also be used for text generation conditional on toxic or non-toxic style, but we do not know how to condition it on the things other than toxicity, so we do not recommend this usage. Another possible use is as a toxicity classifier (using the Bayes rule), but the model is not expected to perform better than e.g. a BERT-based standard classifier. # Bias, Risks, and Limitations The model inherits all the risks of its parent model, [gpt2-medium](https://huggingface.co/gpt2-medium/). It also inherits all the biases of the [Jigsaw dataset](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) on which it was fine-tuned. The model is intended to be conditional on style, but in fact it does not clearly separate the concepts of style and content, so it might regard some texts as toxic or safe based not on the style, but on their topics or keywords. # Training Details See the paper [Text Detoxification using Large Pre-trained Neural Models](https://arxiv.org/abs/2109.08914) and [the associated code](https://github.com/s-nlp/detox/tree/main/emnlp2021/style_transfer/paraGeDi). # Evaluation The model has not been evaluated on its own, only as a part as a ParaGeDi text detoxification pipeline (see [the paper](https://arxiv.org/abs/2109.08914)). # Citation **BibTeX:** ``` @inproceedings{dale-etal-2021-text, title = "Text Detoxification using Large Pre-trained Neural Models", author = "Dale, David and Voronov, Anton and Dementieva, Daryna and Logacheva, Varvara and Kozlova, Olga and Semenov, Nikita and Panchenko, Alexander", booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2021", address = "Online and Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.emnlp-main.629", pages = "7979--7996", } ```
trig/sokka-chatbot-test
trig
2021-08-28T18:58:58Z
723
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- tags: - conversational --- # chatbot test with sokka from atla
umd-zhou-lab/recycled-alpaca-7b-v2.0
umd-zhou-lab
2023-10-22T16:10:38Z
723
1
transformers
[ "transformers", "pytorch", "llama", "text-generation", "en", "arxiv:2310.11716", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-22T14:57:24Z
--- license: llama2 language: - en --- # Model Card for umd-zhou-lab/recycled-alpaca-7b-v2.0 <!-- Provide a quick summary of what the model is/does. --> This model is trained by fine-tuning llama-2 with recycled Alpaca data V2. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** UMD Tianyi Zhou Lab - **Model type:** An auto-regressive language model based on the transformer architecture - **License:** Llama 2 Community License Agreement - **Finetuned from model:** [meta-llama/Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b) ### Model Sources <!-- Provide the basic links for the model. --> - **GitHub:** [Reflection-Tuning](https://github.com/tianyi-lab/Reflection_Tuning) - **Paper:** [Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning](https://arxiv.org/abs/2310.11716) - **Data:** Coming soon ## Uses The primary use of this model is research on large language models and chatbots. The primary intended users of the model are researchers and hobbyists in natural language processing, machine learning, and artificial intelligence. ## Training We use the prompt from [FastChat](https://github.com/lm-sys/FastChat): ``` A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: Hi ASSISTANT: Hello.</s>USER: Who are you? ASSISTANT: I am ...</s>...... ``` | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | Warmup Rate | | --- | ---: | ---: | ---: | ---: | ---: | ---: | | Recycled Models (7B) | 128 | 2e-5 | 3 | 2048 | 0 | 0.03 | ## Performance The following table provides a comparison between our recycled models (V2) and baseline models on the AlpacaEval Leaderboard and Huggingface Open LLM Leaderboard. <br> The V2 Recycled Alpaca Data and WizardLM data, and the corresponding paper will be released soon. | | **AlpacaEval** || **Avg** | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** || **Model**| |--------------------------|:--------------:|:-:|:-----------:|:-------:|:-------------:|:-------:|:--------------:|:-:|:-:| | **Alpaca 7B** | 26.46 || 50.21 | 42.65 | 76.91 | 41.73 | 39.55 ||/| | **Recycled Alpaca 7B V2.0** | 79.58 || 56.05 | 54.01 | 78.07 | 46.69 | 45.41 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-alpaca-7b-v2.0)| ||||||||||| | **WizardLM 7B** | 67.64 || 54.18 | 51.60 | 77.70 | 42.70 | 44.70 ||/| | **Recycled WizardLM 7B V2.0** | 83.48 || 56.79 | 54.78 | 77.86 | 45.63 | 48.91 ||[[hf-Link]](https://huggingface.co/umd-zhou-lab/recycled-wizardlm-7b-v2.0)| ||||||||| ## Citation Please consider citing our paper if you think our codes, data, or models are useful. Thank you! ``` @misc{li2023reflectiontuning, title={Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning}, author={Ming Li and Lichang Chen and Jiuhai Chen and Shwai He and Heng Huang and Jiuxiang Gu and Tianyi Zhou}, year={2023}, eprint={2310.11716}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
osanseviero/mistral-instruct-moe-experimental
osanseviero
2024-03-18T11:15:44Z
723
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "mergekit", "merge", "moe", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-10T16:23:12Z
--- license: apache-2.0 tags: - mergekit - merge - moe base_model: - mistralai/Mistral-7B-Instruct-v0.2 - mistralai/Mistral-7B-Instruct-v0.1 model-index: - name: mistral-instruct-moe-experimental results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 81.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 58.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.4 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 31.08 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=osanseviero/mistral-instruct-moe-experimental name: Open LLM Leaderboard --- # Mistral Instruct MoE experimental This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit) using the `mixtral` branch. **This is an experimental model and has nothing to do with Mixtral. Mixtral is not a merge of models per se, but a transformer with MoE layers learned during training** This uses a random gate, so I expect not great results. We'll see! ## Merge Details ### Merge Method This model was merged using the MoE merge method. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 gate_mode: random dtype: bfloat16 experts: - source_model: mistralai/Mistral-7B-Instruct-v0.2 positive_prompts: [""] - source_model: mistralai/Mistral-7B-Instruct-v0.1 positive_prompts: [""] ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_osanseviero__mistral-instruct-moe-experimental) | Metric |Value| |---------------------------------|----:| |Avg. |61.39| |AI2 Reasoning Challenge (25-Shot)|61.01| |HellaSwag (10-Shot) |81.55| |MMLU (5-Shot) |58.22| |TruthfulQA (0-shot) |60.40| |Winogrande (5-shot) |76.09| |GSM8k (5-shot) |31.08|
vicgalle/franken-SOLAR-18B-v1.0
vicgalle
2024-03-04T12:12:55Z
723
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "solar", "conversational", "base_model:upstage/SOLAR-10.7B-Instruct-v1.0", "base_model:NousResearch/Nous-Hermes-2-SOLAR-10.7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-13T18:30:07Z
--- license: apache-2.0 tags: - mergekit - merge - solar base_model: - upstage/SOLAR-10.7B-Instruct-v1.0 - NousResearch/Nous-Hermes-2-SOLAR-10.7B model-index: - name: franken-SOLAR-18B-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard --- # vicgalle/franken-SOLAR-18B-v1.0 This is a SOLAR-like model upscaled to 18B. It is a frankenmerge model created using mergekit, alternating layers of Nous-Hermes-2-SOLAR-10.7B and SOLAR-10.7B-Instruct. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/mMyHMuuftG71_o4at5suy.png) Evaluations coming soon! This model has very good writing capabilities (compared to SOLAR-10.7B), specially for role-playing. Quantized GGUF variants here https://huggingface.co/vicgalle/franken-SOLAR-18B-v1.0-GGUF ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) * [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [0, 12] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [6, 18] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [13, 25] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [19, 31] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [26, 38] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [32, 44] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [39, 48] merge_method: passthrough dtype: float16 ``` ### Usage You can use the provided template: ``` tokenizer = AutoTokenizer.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0") model = AutoModelForCausalLM.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0", torch_dtype=torch.float16, load_in_4bit=True) conversation = [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': USER_PROMPT} ] prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=True, temperature=0.8) output_text = tokenizer.decode(outputs[0]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__franken-SOLAR-18B-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |67.03| |AI2 Reasoning Challenge (25-Shot)|65.53| |HellaSwag (10-Shot) |86.45| |MMLU (5-Shot) |63.72| |TruthfulQA (0-shot) |62.14| |Winogrande (5-shot) |78.53| |GSM8k (5-shot) |45.79|
kaitchup/Mayonnaise-4in1-01
kaitchup
2024-03-17T10:09:03Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-27T12:52:13Z
--- language: - en license: apache-2.0 library_name: transformers tags: - merge model-index: - name: Mayonnaise-4in1-01 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 69.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=kaitchup/Mayonnaise-4in1-01 name: Open LLM Leaderboard --- # Model Card for Model ID This is a mixture of experts created with [mergekit](https://github.com/cg123/mergekit) and based on [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). ## Model Details The model was created using a recipe detailed in this article: [The Mayonnaise: Rank First on the Open LLM Leaderboard with TIES-Merging ](https://kaitchup.substack.com/p/the-mayonnaise-rank-first-on-the) ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [The Kaitchup](https://kaitchup.substack.com/) - **Model type:** Causal - **Language(s) (NLP):** English - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Model Sources Created with mergekit with this configuration: ``` models: - model: mncai/mistral-7b-dpo-v5 # no parameters necessary for base model - model: flemmingmiguel/MBX-7B parameters: density: 0.5 weight: 0.5 - model: BarryFutureman/NeuralTurdusVariant1-7B parameters: density: 0.5 weight: 0.3 merge_method: ties base_model: mncai/mistral-7b-dpo-v5 parameters: normalize: true dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_kaitchup__Mayonnaise-4in1-01) | Metric |Value| |---------------------------------|----:| |Avg. |75.19| |AI2 Reasoning Challenge (25-Shot)|73.46| |HellaSwag (10-Shot) |88.47| |MMLU (5-Shot) |64.95| |TruthfulQA (0-shot) |69.18| |Winogrande (5-shot) |84.14| |GSM8k (5-shot) |70.96|
louisbrulenaudet/Pearl-3x7B
louisbrulenaudet
2024-02-09T07:23:06Z
723
1
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "frankenmoe", "merge", "mergekit", "lazymergekit", "dvilasuero/DistilabelBeagle14-7B", "beowolx/CodeNinja-1.0-OpenChat-7B", "WizardLM/WizardMath-7B-V1.1", "Maths", "Code", "Python", "conversational", "en", "base_model:dvilasuero/DistilabelBeagle14-7B", "base_model:beowolx/CodeNinja-1.0-OpenChat-7B", "base_model:WizardLM/WizardMath-7B-V1.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-07T22:02:37Z
--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - dvilasuero/DistilabelBeagle14-7B - beowolx/CodeNinja-1.0-OpenChat-7B - WizardLM/WizardMath-7B-V1.1 - Maths - Code - Python base_model: - dvilasuero/DistilabelBeagle14-7B - beowolx/CodeNinja-1.0-OpenChat-7B - WizardLM/WizardMath-7B-V1.1 language: - en library_name: transformers pipeline_tag: text-generation --- <center><img src='https://i.imgur.com/0xFTuAX.png' width='450px'></center> # Pearl-3x7B, an xtraordinary Mixture of Experts (MoE) for data science Pearl-3x7B is a Mixture of Experts (MoE) made with the following models : * [dvilasuero/DistilabelBeagle14-7B](https://huggingface.co/dvilasuero/DistilabelBeagle14-7B) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co/beowolx/CodeNinja-1.0-OpenChat-7B) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) A Mixture of Experts (MoE) model represents a sophisticated architecture that amalgamates the capabilities of multiple specialized models to address a wide array of tasks within a unified framework. Within the realm of a MoE model tailored for a chat application, the integration of expertise spanning three distinct domains - chat, code, and mathematics - substantially enhances its capacity to furnish nuanced and precise responses to a diverse spectrum of user inquiries. The initial expert model, honed for chat applications, exhibits prowess in comprehending natural language nuances, conversational dynamics, and contextual cues. Drawing upon extensive conversational data, it adeptly generates engaging and contextually pertinent responses, thereby fostering meaningful interactions with users. The subsequent expert model, centered on code, brings to the fore proficiency in programming languages, algorithms, and software engineering principles. Possessing a deep-seated understanding of syntax, logical constructs, and problem-solving methodologies, it deftly tackles queries spanning coding challenges, debugging assistance, and software development inquiries. Lastly, the third expert model, specializing in mathematics, boasts expertise in mathematical reasoning, problem-solving strategies, and analytical techniques. Armed with a breadth of knowledge encompassing arithmetic, algebra, calculus, and beyond, it offers precise solutions, lucid explanations, and profound insights for mathematical queries, equations, and proofs. ## Configuration ```yaml base_model: argilla/CapybaraHermes-2.5-Mistral-7B experts: - source_model: dvilasuero/DistilabelBeagle14-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "help" - "guide" - "assist" - "answer" - "support" - "clarify" - "elaborate" - "educate" - "inform" - "advise" - "instruct" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - "develop" - "debug" - "optimize" - "software" - "engineer" - "web" - "application" - "framework" - "library" - "syntax" - "logic" - "compile" - "execute" - source_model: WizardLM/WizardMath-7B-V1.1 positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" - "calculate" - "analyze" - "derive" - "compute" - "numbers" - "equation" - "theorem" - "proof" - "geometry" - "trigonometry" - "statistics" - "probability" - "algebra" - "integral" ``` ## Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "louisbrulenaudet/Pearl-3x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Citing & Authors If you use this code in your research, please use the following BibTeX entry. ```BibTeX @misc{louisbrulenaudet2023, author = {Louis Brulé Naudet}, title = {Pearl-3x7B, an xtraordinary Mixture of Experts (MoE) for data science}, year = {2023} howpublished = {\url{https://huggingface.co/louisbrulenaudet/Pearl-3x7B}}, } ``` ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
tyson0420/stack_llama_full
tyson0420
2024-02-15T01:30:45Z
723
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "license:bigscience-openrail-m", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-10T20:38:23Z
--- library_name: transformers license: bigscience-openrail-m --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
lodrick-the-lafted/Hermes-Instruct-7B-v0.2
lodrick-the-lafted
2024-03-04T12:23:36Z
723
1
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-40K", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-11T08:49:12Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-40K model-index: - name: Hermes-Instruct-7B-v0.2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.92 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.05 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.01 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 41.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-v0.2 name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-v0.2/resolve/main/hermes-instruct.png> # Hermes-Instruct-7B-v0.2 [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with some of [teknium/openhermes](https://huggingface.co/datasets/teknium/openhermes), in Alpaca format. <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer defaults to Mistral-style. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Hermes-Instruct-7B-v0.2" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Hermes-Instruct-7B-v0.2) | Metric |Value| |---------------------------------|----:| |Avg. |63.82| |AI2 Reasoning Challenge (25-Shot)|60.92| |HellaSwag (10-Shot) |82.96| |MMLU (5-Shot) |60.05| |TruthfulQA (0-shot) |61.01| |Winogrande (5-shot) |76.87| |GSM8k (5-shot) |41.09|
paulml/DPOB-NMTOB-7B
paulml
2024-02-12T12:00:10Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "eren23/dpo-binarized-NeutrixOmnibe-7B", "paulml/OmniBeagleSquaredMBX-v3-7B-v2", "base_model:eren23/dpo-binarized-NeutrixOmnibe-7B", "base_model:paulml/OmniBeagleSquaredMBX-v3-7B-v2", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-12T11:56:12Z
--- tags: - merge - mergekit - lazymergekit - eren23/dpo-binarized-NeutrixOmnibe-7B - paulml/OmniBeagleSquaredMBX-v3-7B-v2 base_model: - eren23/dpo-binarized-NeutrixOmnibe-7B - paulml/OmniBeagleSquaredMBX-v3-7B-v2 license: cc-by-nc-4.0 --- # DPOB-NMTOB-7B DPOB-NMTOB-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B) * [paulml/OmniBeagleSquaredMBX-v3-7B-v2](https://huggingface.co/paulml/OmniBeagleSquaredMBX-v3-7B-v2) ## 🧩 Configuration ```yaml slices: - sources: - model: eren23/dpo-binarized-NeutrixOmnibe-7B layer_range: [0, 32] - model: paulml/OmniBeagleSquaredMBX-v3-7B-v2 layer_range: [0, 32] merge_method: slerp base_model: eren23/dpo-binarized-NeutrixOmnibe-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "paulml/DPOB-NMTOB-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
liminerity/phigment6-slerp
liminerity
2024-03-11T18:21:19Z
723
3
transformers
[ "transformers", "safetensors", "phi", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/phive", "mobiuslabsgmbh/aanaphi2-v0.1", "custom_code", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-25T05:16:11Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - liminerity/phive - mobiuslabsgmbh/aanaphi2-v0.1 model-index: - name: phigment6-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 62.63 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 77.25 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 58.65 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 50.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.88 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 58.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/phigment6-slerp name: Open LLM Leaderboard --- RANKED NUMBER 1 FOR 3B MODELS! # phigment6-slerp Title: Creating the Number 1 3B Parameter LLM in the World - Phigment6, A Phi-2 Based Model Using Divergent Knowledge Enhancement through Retrograde Merging Strategies (DKERS) Methodology Abstract The rapid advancements in artificial intelligence have led to the development of large language models (LLMs). In this paper, we present Phigment6, an innovative 3 billion parameter LLM built on the foundation of the Phi-2 architecture. We detail our unique methodology called Divergent Knowledge Enhancement through Retrograde Merging Strategies (DKERS), which involves the strategic combination of multiple pretrained models to create an even more powerful and accurate language model. Through this approach, we successfully merge amu/dpo-phi2, g-ronimo/phi-2-OpenHermes-2.5, vince62s/phi-2-psy, and mobiuslabsgmbh/aanaphi2-v0.1, leading to the creation of Phigment6. Our results demonstrate significant improvements in performance compared to existing state-of-the-art LLMs. Introduction Recent years have witnessed tremendous growth in natural language processing capabilities, driven by advances in deep learning techniques and the introduction of transformers in NLP tasks. Large language models like OpenAI's GPT series or Google's BERT have demonstrated remarkable performance across various linguistic domains. However, developing such advanced models often requires extensive computational resources and expertise, making them accessible primarily to well-funded research institutions. This paper presents a novel method to combine existing models to build a highly effective LLM without having to train a new one from scratch. Methodology: Divergent Knowledge Enhancement through Retrograde Merging Strategies (DKERS) Our proposed approach, DKERS, consists of two main steps: merging and refining. Firstly, we identify suitable candidate models based on their architectures and compatibility. Secondly, we apply a combination of interpolation and optimization strategies to effectively merge these models while preserving their individual strengths. Step 1: Candidate Selection We begin by selecting four compatible models as potential candidates for merging: amu/dpo-phi2: A baseline Phi-2 model, providing a strong foundation for further enhancement. g-ronimo/phi-2-OpenHermes-2.5: An improved version of phi-2, boasting better performance due to its fine-tuned hyperparameters and training data. vince62s/phi-2-psy: Another variant of the Phi-2 architecture, offering additional benefits in terms of generalization and robustness. mobiuslabsgmbh/aanaphi2-v0.1: A high-accuracy Phi-2 model that serves as a benchmark for comparison during the merging process. Step 2: Model Merging To merge the selected models, we employ a strategy known as spherical linear interpolation (SLERP), which enables us to smoothly transition between the parameters of two models. Specifically, we use SLERP to blend amu/dpo-phi2 with g-ronimo/phi-2-OpenHermes-2.5. The resultant model is then combined with another instance of g-ronimo/phi-2-OpenHermes-2.5 using the same blending technique. Finally, the process is repeated with vince62s/phi-2-psy and mobiuslabsgmbh/aanaphi2-v0.1. Each iteration enhances the overall performance and knowledge retention of the final model. Results After following the DKERS methodology, we obtain Phigment6, a powerful and efficient 3 billion parameter LLM. Compared to its predecessors, Phigment6 demonstrates substantial improvements in performance metrics such as perplexity, F1-score, and ROUGE scores. Additionally, the model exhibits enhanced generalization capabilities and greater resistance to adversarial attacks, indicating a more robust understanding of language nuances. Conclusion In summary, we presented Phigment6, a cutting-edge 3 billion parameter LLM, constructed via the novel Divergent Knowledge Enhancement through Retrograde Merging Strategies (DKERS) methodology. By intelligently combining pretrained models, we achieved a highly capable LLM that outperforms existing state-of-the-art systems. This work highlights the potential of model fusion techniques in advancing AI research and opens avenues for future exploration in creating more efficient and effective language models. phigment6-slerp is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [liminerity/phive](https://huggingface.co/liminerity/phive) * [mobiuslabsgmbh/aanaphi2-v0.1](https://huggingface.co/mobiuslabsgmbh/aanaphi2-v0.1) ## 🧩 Configuration ```yaml slices: - sources: - model: liminerity/phive layer_range: [0, 32] - model: mobiuslabsgmbh/aanaphi2-v0.1 layer_range: [0, 32] merge_method: slerp base_model: liminerity/phive parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_liminerity__phigment6-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |63.58| |AI2 Reasoning Challenge (25-Shot)|62.63| |HellaSwag (10-Shot) |77.25| |MMLU (5-Shot) |58.65| |TruthfulQA (0-shot) |50.49| |Winogrande (5-shot) |73.88| |GSM8k (5-shot) |58.61|
vicgalleorg/test1
vicgalleorg
2024-03-02T08:25:34Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2203.05482", "base_model:vicgalle/RoleBeagle-11B", "base_model:vicgalle/CarbonBeagle-11B-truthy", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-01T18:43:16Z
--- base_model: - vicgalle/RoleBeagle-11B - vicgalle/CarbonBeagle-11B-truthy tags: - mergekit - merge license: apache-2.0 --- # test This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. ### Models Merged The following models were included in the merge: * [vicgalle/RoleBeagle-11B](https://huggingface.co/vicgalle/RoleBeagle-11B) * [vicgalle/CarbonBeagle-11B-truthy](https://huggingface.co/vicgalle/CarbonBeagle-11B-truthy) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: vicgalle/CarbonBeagle-11B-truthy parameters: weight: 0.5 - model: vicgalle/RoleBeagle-11B parameters: weight: 0.5 merge_method: linear dtype: float16 ```
Locutusque/Hyperion-3.0-Mistral-7B-alpha
Locutusque
2024-03-22T22:49:19Z
723
7
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "code", "chemistry", "medical", "en", "dataset:Locutusque/hyperion-v3.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-16T02:45:21Z
--- library_name: transformers tags: - code - chemistry - medical license: apache-2.0 datasets: - Locutusque/hyperion-v3.0 language: - en widget: - example_title: Reasoning text: | <|im_start|>user An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely effect of this increase in rotation? A. Planetary density will decrease. B. Planetary years will become longer. C. Planetary days will become shorter. D. Planetary gravity will become stronger.<|im_end|> <|im_start|>assistant output: text: | C. Planetary days will become shorter. The increase in rotation is due to the transfer of angular momentum from the meteorite impact to the planet. This means that more kinetic energy is imparted on the planet, making it spin faster. As a result, the planet's rotational period (the time it takes for the planet to complete one rotation) decreases. So, planetary days will become shorter. A. Planetary density will not change significantly as a result of the meteorite impact. The increase in rotation is primarily an issue of angular momentum transfer, and density is mainly determined by the composition of the planet. B. Planetary years would become longer if the planet took less time to rotate around its axis, since a year is based on how long it takes the planet to revolve around its star. However, meteorite impacts generally affect rotation, not revolution. D. Planetary gravity would remain the same or possibly slightly decrease. A meteorite impact alone does not have a significant enough effect on the mass of a planet to alter its gravitational force appreciably. --- # Hyperion-3.0-Mistral-7B-alpha ## Model Details - **Model Name**: Locutusque/Hyperion-3.0-Mistral-7B-alpha - **Base Model**: mistralai/Mistral-7B-v0.1 - **Publisher**: Locutusque - **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. - **Language**: Multi-domain, English language. - **License**: Apache-2.0 ## Model Description `Locutusque/Hyperion-3.0-Mistral-7B-alpha` is a state-of-the-art language model fine-tuned on the Hyperion-v3.0 dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. This model is designed to greatly outperform its predecessors. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The `Locutusque/Hyperion-3.0-Mistral-7B-alpha` model was fine-tuned on 200,000 examples of the Hyperion-3.0 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. ## Quants ExLlamaV2: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-alpha-exl2 GGUF: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-alpha-GGUF ## Evaluation Results Zero-shot AGIEval | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |---------------------------------|-------|------|------|--------|-----:|---|-----:| |agieval_nous |N/A |none |None |acc_norm|0.3500|± |0.0092| | | |none |None |acc |0.3519|± |0.0093| | - agieval_aqua_rat | 1|none |None |acc |0.2087|± |0.0255| | | |none |None |acc_norm|0.2165|± |0.0259| | - agieval_logiqa_en | 1|none |None |acc |0.3164|± |0.0182| | | |none |None |acc_norm|0.3533|± |0.0187| | - agieval_lsat_ar | 1|none |None |acc |0.2348|± |0.0280| | | |none |None |acc_norm|0.2174|± |0.0273| | - agieval_lsat_lr | 1|none |None |acc |0.3529|± |0.0212| | | |none |None |acc_norm|0.3647|± |0.0213| | - agieval_lsat_rc | 1|none |None |acc |0.4721|± |0.0305| | | |none |None |acc_norm|0.4201|± |0.0301| | - agieval_sat_en | 1|none |None |acc |0.6019|± |0.0342| | | |none |None |acc_norm|0.6117|± |0.0340| | - agieval_sat_en_without_passage| 1|none |None |acc |0.4078|± |0.0343| | | |none |None |acc_norm|0.3835|± |0.0340| | - agieval_sat_math | 1|none |None |acc |0.3091|± |0.0312| | | |none |None |acc_norm|0.2364|± |0.0287| 5 shot CoT MMLU | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |-------------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:| |mmlu_flan_cot_fewshot |N/A |get-answer| 0|exact_match|0.5924|± |0.0118| | - mmlu_flan_cot_fewshot_humanities |N/A |get-answer| 0|exact_match|0.5077|± |0.0206| | - mmlu_flan_cot_fewshot_formal_logic | 0|get-answer| 0|exact_match|0.2143|± |0.1138| | - mmlu_flan_cot_fewshot_high_school_european_history | 0|get-answer| 0|exact_match|0.6111|± |0.1182| | - mmlu_flan_cot_fewshot_high_school_us_history | 0|get-answer| 0|exact_match|0.7727|± |0.0914| | - mmlu_flan_cot_fewshot_high_school_world_history | 0|get-answer| 0|exact_match|0.6154|± |0.0973| | - mmlu_flan_cot_fewshot_international_law | 0|get-answer| 0|exact_match|0.9231|± |0.0769| | - mmlu_flan_cot_fewshot_jurisprudence | 0|get-answer| 0|exact_match|0.3636|± |0.1521| | - mmlu_flan_cot_fewshot_logical_fallacies | 0|get-answer| 0|exact_match|0.7222|± |0.1086| | - mmlu_flan_cot_fewshot_moral_disputes | 0|get-answer| 0|exact_match|0.5526|± |0.0817| | - mmlu_flan_cot_fewshot_moral_scenarios | 0|get-answer| 0|exact_match|0.3900|± |0.0490| | - mmlu_flan_cot_fewshot_philosophy | 0|get-answer| 0|exact_match|0.7647|± |0.0738| | - mmlu_flan_cot_fewshot_prehistory | 0|get-answer| 0|exact_match|0.7143|± |0.0775| | - mmlu_flan_cot_fewshot_professional_law | 0|get-answer| 0|exact_match|0.3471|± |0.0366| | - mmlu_flan_cot_fewshot_world_religions | 0|get-answer| 0|exact_match|0.8947|± |0.0723| | - mmlu_flan_cot_fewshot_other |N/A |get-answer| 0|exact_match|0.6921|± |0.0240| | - mmlu_flan_cot_fewshot_business_ethics | 0|get-answer| 0|exact_match|0.9091|± |0.0909| | - mmlu_flan_cot_fewshot_clinical_knowledge | 0|get-answer| 0|exact_match|0.5517|± |0.0940| | - mmlu_flan_cot_fewshot_college_medicine | 0|get-answer| 0|exact_match|0.7727|± |0.0914| | - mmlu_flan_cot_fewshot_global_facts | 0|get-answer| 0|exact_match|0.6000|± |0.1633| | - mmlu_flan_cot_fewshot_human_aging | 0|get-answer| 0|exact_match|0.6522|± |0.1015| | - mmlu_flan_cot_fewshot_management | 0|get-answer| 0|exact_match|0.9091|± |0.0909| | - mmlu_flan_cot_fewshot_marketing | 0|get-answer| 0|exact_match|0.8400|± |0.0748| | - mmlu_flan_cot_fewshot_medical_genetics | 0|get-answer| 0|exact_match|1.0000|± |0.0000| | - mmlu_flan_cot_fewshot_miscellaneous | 0|get-answer| 0|exact_match|0.7791|± |0.0450| | - mmlu_flan_cot_fewshot_nutrition | 0|get-answer| 0|exact_match|0.6667|± |0.0833| | - mmlu_flan_cot_fewshot_professional_accounting | 0|get-answer| 0|exact_match|0.4194|± |0.0901| | - mmlu_flan_cot_fewshot_professional_medicine | 0|get-answer| 0|exact_match|0.6774|± |0.0853| | - mmlu_flan_cot_fewshot_virology | 0|get-answer| 0|exact_match|0.3889|± |0.1182| | - mmlu_flan_cot_fewshot_social_sciences |N/A |get-answer| 0|exact_match|0.6973|± |0.0239| | - mmlu_flan_cot_fewshot_econometrics | 0|get-answer| 0|exact_match|0.3333|± |0.1421| | - mmlu_flan_cot_fewshot_high_school_geography | 0|get-answer| 0|exact_match|0.9091|± |0.0627| | - mmlu_flan_cot_fewshot_high_school_government_and_politics| 0|get-answer| 0|exact_match|0.8095|± |0.0878| | - mmlu_flan_cot_fewshot_high_school_macroeconomics | 0|get-answer| 0|exact_match|0.6279|± |0.0746| | - mmlu_flan_cot_fewshot_high_school_microeconomics | 0|get-answer| 0|exact_match|0.6154|± |0.0973| | - mmlu_flan_cot_fewshot_high_school_psychology | 0|get-answer| 0|exact_match|0.9167|± |0.0360| | - mmlu_flan_cot_fewshot_human_sexuality | 0|get-answer| 0|exact_match|0.5000|± |0.1508| | - mmlu_flan_cot_fewshot_professional_psychology | 0|get-answer| 0|exact_match|0.6667|± |0.0572| | - mmlu_flan_cot_fewshot_public_relations | 0|get-answer| 0|exact_match|0.5833|± |0.1486| | - mmlu_flan_cot_fewshot_security_studies | 0|get-answer| 0|exact_match|0.4444|± |0.0975| | - mmlu_flan_cot_fewshot_sociology | 0|get-answer| 0|exact_match|0.7727|± |0.0914| | - mmlu_flan_cot_fewshot_us_foreign_policy | 0|get-answer| 0|exact_match|0.7273|± |0.1408| | - mmlu_flan_cot_fewshot_stem |N/A |get-answer| 0|exact_match|0.5164|± |0.0265| | - mmlu_flan_cot_fewshot_abstract_algebra | 0|get-answer| 0|exact_match|0.4545|± |0.1575| | - mmlu_flan_cot_fewshot_anatomy | 0|get-answer| 0|exact_match|0.3571|± |0.1329| | - mmlu_flan_cot_fewshot_astronomy | 0|get-answer| 0|exact_match|0.5000|± |0.1291| | - mmlu_flan_cot_fewshot_college_biology | 0|get-answer| 0|exact_match|0.5625|± |0.1281| | - mmlu_flan_cot_fewshot_college_chemistry | 0|get-answer| 0|exact_match|0.3750|± |0.1830| | - mmlu_flan_cot_fewshot_college_computer_science | 0|get-answer| 0|exact_match|0.2727|± |0.1408| | - mmlu_flan_cot_fewshot_college_mathematics | 0|get-answer| 0|exact_match|0.2727|± |0.1408| | - mmlu_flan_cot_fewshot_college_physics | 0|get-answer| 0|exact_match|0.4545|± |0.1575| | - mmlu_flan_cot_fewshot_computer_security | 0|get-answer| 0|exact_match|0.7273|± |0.1408| | - mmlu_flan_cot_fewshot_conceptual_physics | 0|get-answer| 0|exact_match|0.6154|± |0.0973| | - mmlu_flan_cot_fewshot_electrical_engineering | 0|get-answer| 0|exact_match|0.6875|± |0.1197| | - mmlu_flan_cot_fewshot_elementary_mathematics | 0|get-answer| 0|exact_match|0.7317|± |0.0701| | - mmlu_flan_cot_fewshot_high_school_biology | 0|get-answer| 0|exact_match|0.7188|± |0.0808| | - mmlu_flan_cot_fewshot_high_school_chemistry | 0|get-answer| 0|exact_match|0.3636|± |0.1050| | - mmlu_flan_cot_fewshot_high_school_computer_science | 0|get-answer| 0|exact_match|0.6667|± |0.1667| | - mmlu_flan_cot_fewshot_high_school_mathematics | 0|get-answer| 0|exact_match|0.4138|± |0.0931| | - mmlu_flan_cot_fewshot_high_school_physics | 0|get-answer| 0|exact_match|0.2353|± |0.1060| | - mmlu_flan_cot_fewshot_high_school_statistics | 0|get-answer| 0|exact_match|0.4348|± |0.1057| | - mmlu_flan_cot_fewshot_machine_learning | 0|get-answer| 0|exact_match|0.3636|± |0.1521| | Groups |Version| Filter |n-shot| Metric |Value | |Stderr| |----------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:| |mmlu_flan_cot_fewshot |N/A |get-answer| 0|exact_match|0.5924|± |0.0118| | - mmlu_flan_cot_fewshot_humanities |N/A |get-answer| 0|exact_match|0.5077|± |0.0206| | - mmlu_flan_cot_fewshot_other |N/A |get-answer| 0|exact_match|0.6921|± |0.0240| | - mmlu_flan_cot_fewshot_social_sciences|N/A |get-answer| 0|exact_match|0.6973|± |0.0239| | - mmlu_flan_cot_fewshot_stem |N/A |get-answer| 0|exact_match|0.5164|± |0.0265| ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-3.0-Mistral-7B-alpha" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. This model is also very compliant, it will respond to any request. Please make sure to build upon this model with DPO if you plan on using it for enterprise-level deployment. ## Licensing Information This model is released under the Apache-2.0 license.
Hertz/Mistral-Hermes-2x7b
Hertz
2024-03-18T07:17:40Z
723
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-18T06:59:15Z
--- license: apache-2.0 --- # JUST A TEST --- tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - NousResearch/Hermes-2-Pro-Mistral-7B base_model: - mistralai/Mistral-7B-v0.1 - NousResearch/Hermes-2-Pro-Mistral-7B --- # Mistral-Hermes-2x7b Mistral-Hermes-2x7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: mistralai/Mistral-7B-v0.1 layer_range: [0, 32] - model: NousResearch/Hermes-2-Pro-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Hertz/Mistral-Hermes-2x7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ToastyPigeon/SmolPlatypus-1.5B
ToastyPigeon
2024-03-19T23:11:29Z
723
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "dataset:garage-bAInd/Open-Platypus", "base_model:ToastyPigeon/SmolLlama-1.5B", "base_model:ToastyPigeon/SmolPlatypus-1.5B-LoRA", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-19T22:31:29Z
--- base_model: - ToastyPigeon/SmolLlama-1.5B - ToastyPigeon/SmolPlatypus-1.5B-LoRA tags: - mergekit - merge license: apache-2.0 datasets: - garage-bAInd/Open-Platypus --- # SmolPlatypus-1.5b This is a proof-of-concept model and should not be used for anything. This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). The LoRA adapter was created with axolotl using qlora (I know, it's misnamed) training a solar-style stack merge dubbed "SmolLlama-1.5B" on the Open-Platypus dataset for approximately 2 hours on 2x RTX 3060. ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [ToastyPigeon/SmolLlama-1.5B](https://huggingface.co/ToastyPigeon/SmolLlama-1.5B) + [ToastyPigeon/SmolPlatypus-1.5B-LoRA](https://huggingface.co/ToastyPigeon/SmolPlatypus-1.5B-LoRA) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: ToastyPigeon/SmolLlama-1.5B+ToastyPigeon/SmolPlatypus-1.5B-LoRA merge_method: passthrough dtype: float16 ```
Inv/Konstanta-V4-Alpha-7B
Inv
2024-03-25T14:33:41Z
723
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "senseable/WestLake-7B-v2", "KatyTheCutie/LemonadeRP-4.5.3", "roleplay", "rp", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Inv/Konstanta-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T14:44:57Z
--- base_model: - Inv/Konstanta-7B library_name: transformers tags: - mergekit - merge - senseable/WestLake-7B-v2 - KatyTheCutie/LemonadeRP-4.5.3 - roleplay - rp license: apache-2.0 --- # Konstanta-V4-Alpha-7B This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). Alright, so, this model seems to be REALLY good. Konstanta-7B is pretty good either, but this one is still marginally better. ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [Inv/Konstanta-7B](https://huggingface.co/Inv/Konstanta-7B) as a base. ### Models Merged The following models were included in the merge: * senseable/WestLake-7B-v2 * KatyTheCutie/LemonadeRP-4.5.3 ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties dtype: bfloat16 parameters: int8_mask: true base_model: Inv/Konstanta-7B models: - model: Inv/Konstanta-7B - model: KatyTheCutie/LemonadeRP-4.5.3 parameters: density: 0.65 weight: [0.65, 0.40, 0.35, 0.30, 0.35, 0.40, 0.25] - model: senseable/WestLake-7B-v2 parameters: density: 0.85 weight: [0.25, 0.40, 0.35, 0.30, 0.35, 0.40, 0.65] ```
Kukedlc/Neural-4-Maths-7b
Kukedlc
2024-04-08T03:51:01Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/M7-7b", "MTSAIR/multi_verse_model", "Kukedlc/NeuralSirKrishna-7b", "Kukedlc/NeuralMaths-Experiment-7b", "Kukedlc/Neural4gsm8k", "base_model:liminerity/M7-7b", "base_model:MTSAIR/multi_verse_model", "base_model:Kukedlc/NeuralSirKrishna-7b", "base_model:Kukedlc/NeuralMaths-Experiment-7b", "base_model:Kukedlc/Neural4gsm8k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-30T05:19:20Z
--- tags: - merge - mergekit - lazymergekit - liminerity/M7-7b - MTSAIR/multi_verse_model - Kukedlc/NeuralSirKrishna-7b - Kukedlc/NeuralMaths-Experiment-7b - Kukedlc/Neural4gsm8k base_model: - liminerity/M7-7b - MTSAIR/multi_verse_model - Kukedlc/NeuralSirKrishna-7b - Kukedlc/NeuralMaths-Experiment-7b - Kukedlc/Neural4gsm8k license: apache-2.0 --- # Neural-4-Maths-7b Neural-4-Maths-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [liminerity/M7-7b](https://huggingface.co/liminerity/M7-7b) * [MTSAIR/multi_verse_model](https://huggingface.co/MTSAIR/multi_verse_model) * [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b) * [Kukedlc/NeuralMaths-Experiment-7b](https://huggingface.co/Kukedlc/NeuralMaths-Experiment-7b) * [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSirKrishna-7b # No parameters necessary for base model - model: liminerity/M7-7b parameters: density: 0.66 weight: 0.2 - model: MTSAIR/multi_verse_model parameters: density: 0.66 weight: 0.2 - model: Kukedlc/NeuralSirKrishna-7b parameters: density: 0.66 weight: 0.2 - model: Kukedlc/NeuralMaths-Experiment-7b parameters: density: 0.44 weight: 0.2 - model: Kukedlc/Neural4gsm8k parameters: density: 0.44 weight: 0.2 merge_method: dare_ties base_model: Kukedlc/NeuralSirKrishna-7b parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Neural-4-Maths-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
leejaymin/etri-ones-solar
leejaymin
2024-04-03T01:02:04Z
723
0
transformers
[ "transformers", "pytorch", "llama", "text-generation", "ko", "dataset:instruction", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-31T19:57:59Z
--- language: - ko datasets: - instruction library_name: transformers pipeline_tag: text-generation license: mit --- # **etri-ones-solar** ## Model Details **Model Developers** - the model is fine-tuned by open instruction dataset **Model Architecture** - this model is an auto-regressive language model based on the solar transformer architecture. **Base Model** - solar https://huggingface.co/upstage/SOLAR-10.7B-v1.0 **Training Dataset** - --- # Model comparisons1 > comming soon | Model | Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | | **[...your_model_name...]** | NaN | NaN | NaN | NaN | NaN | NaN | --- # Model comparisons2 > AI-Harness evaluation; [link](https://github.com/Beomi/ko-lm-evaluation-harness) | Model | Copa | Copa | HellaSwag | HellaSwag | BoolQ | BoolQ | Sentineg | Sentineg | | --- | --- | --- | --- | --- | --- | --- | --- | --- | | | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | 0-shot | 5-shot | | **[...your_model_name...]** | NaN | NaN | NaN | NaN | NaN | NaN | NaN | NaN | --- # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "[...your_model_repo...]" OpenOrca = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo) ``` ---
MiniMoog/Mergerix-7b-v0.1
MiniMoog
2024-04-02T19:28:30Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/NeuralSirKrishna-7b-DPO", "Kukedlc/NeuralAlgo-7B-DPO", "base_model:Kukedlc/NeuralSirKrishna-7b-DPO", "base_model:Kukedlc/NeuralAlgo-7B-DPO", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-02T19:21:13Z
--- tags: - merge - mergekit - lazymergekit - Kukedlc/NeuralSirKrishna-7b-DPO - Kukedlc/NeuralAlgo-7B-DPO base_model: - Kukedlc/NeuralSirKrishna-7b-DPO - Kukedlc/NeuralAlgo-7B-DPO license: apache-2.0 --- # Mergerix-7b-v0.1 Mergerix-7b-v0.1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuralSirKrishna-7b-DPO](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b-DPO) * [Kukedlc/NeuralAlgo-7B-DPO](https://huggingface.co/Kukedlc/NeuralAlgo-7B-DPO) ## 🧩 Configuration ```yaml slices: - sources: - model: Kukedlc/NeuralSirKrishna-7b-DPO layer_range: [0, 32] - model: Kukedlc/NeuralAlgo-7B-DPO layer_range: [0, 32] merge_method: slerp base_model: Kukedlc/NeuralSirKrishna-7b-DPO parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "MiniMoog/Mergerix-7b-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Kukedlc/NeuralSynthesis-7B-v0.3
Kukedlc
2024-04-07T00:46:45Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-07T00:26:50Z
--- tags: - merge - mergekit - lazymergekit license: apache-2.0 --- # NeuralSynthesis-7B-v0.3 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d71ab4089bc502ceb44d29/UrKXSGpQqS7Kcmt8b90kN.png) NeuralSynthesis-7B-v0.3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): ## 🧩 Configuration ```yaml models: - model: MiniMoog/Mergerix-7b-v0.3 - model: automerger/Ognoexperiment27Multi_verse_model-7B - model: nlpguy/T3QM7 - model: Kukedlc/NeuralSynthesis-7B-v0.1 - model: liminerity/M7-7b - model: automerger/YamshadowExperiment28-7B merge_method: model_stock base_model: automerger/YamshadowExperiment28-7B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralSynthesis-7B-v0.3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
ShenaoZhang/0.001_idpo_noreplacerej_iter_1
ShenaoZhang
2024-04-07T20:40:22Z
723
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:HuggingFaceH4/mistral-7b-sft-beta", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-07T16:57:31Z
--- license: mit base_model: HuggingFaceH4/mistral-7b-sft-beta tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: 0.001_idpo_noreplacerej_iter_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_idpo_noreplacerej_iter_1 This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
bartowski/Llama-3-8B-Synthia-v3.5-GGUF
bartowski
2024-05-17T17:04:28Z
723
2
null
[ "gguf", "text-generation", "license:llama3", "region:us" ]
text-generation
2024-05-17T16:47:37Z
--- license: llama3 quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of Llama-3-8B-Synthia-v3.5 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2901">b2901</a> for quantization. Original model: https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5 All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a) ## Prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-8B-Synthia-v3.5-Q8_0.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. | | [Llama-3-8B-Synthia-v3.5-Q6_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. | | [Llama-3-8B-Synthia-v3.5-Q5_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. | | [Llama-3-8B-Synthia-v3.5-Q5_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. | | [Llama-3-8B-Synthia-v3.5-Q4_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [Llama-3-8B-Synthia-v3.5-Q4_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. | | [Llama-3-8B-Synthia-v3.5-IQ4_NL.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. | | [Llama-3-8B-Synthia-v3.5-IQ4_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Llama-3-8B-Synthia-v3.5-Q3_K_L.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. | | [Llama-3-8B-Synthia-v3.5-Q3_K_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. | | [Llama-3-8B-Synthia-v3.5-IQ3_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Llama-3-8B-Synthia-v3.5-IQ3_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. | | [Llama-3-8B-Synthia-v3.5-Q3_K_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. | | [Llama-3-8B-Synthia-v3.5-IQ3_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Llama-3-8B-Synthia-v3.5-IQ3_XXS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Llama-3-8B-Synthia-v3.5-Q2_K.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. | | [Llama-3-8B-Synthia-v3.5-IQ2_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [Llama-3-8B-Synthia-v3.5-IQ2_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. | | [Llama-3-8B-Synthia-v3.5-IQ2_XS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. | | [Llama-3-8B-Synthia-v3.5-IQ2_XXS.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. | | [Llama-3-8B-Synthia-v3.5-IQ1_M.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. | | [Llama-3-8B-Synthia-v3.5-IQ1_S.gguf](https://huggingface.co/bartowski/Llama-3-8B-Synthia-v3.5-GGUF/blob/main/Llama-3-8B-Synthia-v3.5-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Llama-3-8B-Synthia-v3.5-GGUF --include "Llama-3-8B-Synthia-v3.5-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Llama-3-8B-Synthia-v3.5-GGUF --include "Llama-3-8B-Synthia-v3.5-Q8_0.gguf/*" --local-dir Llama-3-8B-Synthia-v3.5-Q8_0 --local-dir-use-symlinks False ``` You can either specify a new local-dir (Llama-3-8B-Synthia-v3.5-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
John6666/ebara-pony-v21-sdxl-fp32
John6666
2024-06-07T12:19:01Z
723
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "stable-diffusion-xl", "anime", "pony", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-06-07T11:58:59Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion - stable-diffusion-xl - anime - pony --- Original model is [here](https://huggingface.co/tsukihara/xl_model).
mkpvishnu/miniLM-go_Emotions
mkpvishnu
2024-06-13T16:57:24Z
723
1
transformers
[ "transformers", "safetensors", "bert", "text-classification", "sentiment", "en", "dataset:google-research-datasets/go_emotions", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-06-12T08:43:21Z
--- license: mit datasets: - google-research-datasets/go_emotions language: - en library_name: transformers tags: - sentiment --- # Fine-Tuned MiniLM for GoEmotions Sentiment Analysis This repository contains a fine-tuned version of Microsoft's MiniLM-v2 model, specifically optimized for sentiment analysis using the GoEmotions dataset. The model is capable of classifying text into the following emotional/sentiment categories: This model is just **90MB** making it ideal for memory constraint environments. * anger * approval * confusion * disappointment * disapproval * gratitude * joy * sadness * neutral These sentiments more or less cover all the sentiments that can be in a sentence. Useful for validating sentiment analysis models. Label Analogy when using Inference: ``` { "LABEL_0":anger, "LABEL_1":approval, "LABEL_2":confusion, "LABEL_3":disappointment, "LABEL_4":disapproval, "LABEL_5":gratitude, "LABEL_6":joy, "LABEL_7":sadness, "LABEL_8":neutral } ``` ## Why MiniLM? MiniLM is a distilled version of larger language models like BERT and RoBERTa. It strikes a remarkable balance between performance and efficiency: * **Reduced Size:** MiniLM is significantly smaller than its parent models, making it faster to load and deploy, especially in resource-constrained environments. * **Comparable Performance:** Despite its compact size, MiniLM maintains surprisingly high accuracy on various natural language processing (NLP) tasks, including sentiment analysis. * **Distillation Power:** MiniLM's distillation technique ensures that it captures the essential knowledge of larger models, making it a potent tool for real-world applications. ## GoEmotions Dataset google-research-datasets/go_emotions The GoEmotions dataset is a valuable resource for sentiment analysis. It consists of thousands of Reddit comments labeled with the nine emotional/sentiment classes listed above. This dataset's richness in diverse expressions of emotions makes it an ideal choice for training a versatile sentiment analysis model. ## Training Procedure 1. **Data Preprocessing:** The GoEmotions dataset was preprocessed to ensure consistency and remove noise. 2. **Tokenizer:** The MiniLM-v2 tokenizer was used to convert text into numerical representations suitable for the model. 3. **Fine-Tuning:** The MiniLM-v2 model was fine-tuned on the GoEmotions dataset using a standard training loop. The model's parameters were adjusted to optimize its performance on sentiment classification. 4. **Evaluation:** The fine-tuned model was evaluated on a held-out test set to measure its accuracy and generalization capabilities. ## How to Use This Model ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification required_sentiments = ['anger', 'approval', 'confusion', 'disappointment', 'disapproval', 'gratitude', 'joy', 'sadness', 'neutral'] model = AutoModelForSequenceClassification.from_pretrained('./saved_model') tokenizer = AutoTokenizer.from_pretrained('./saved_model') text = "How can you be so careless" inputs = tokenizer(text, return_tensors="pt", truncation=True, padding='max_length', max_length=128) model.eval() with torch.no_grad(): outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=-1).item() # Map the label to sentiment label_mapping = {idx: sentiment for idx, sentiment in enumerate(required_sentiments)} predicted_sentiment = label_mapping[predictions] print(f'Text: {text}') print(f'Predicted Sentiment: {predicted_sentiment}')
ugurcelebi/DevOpsGPT-1.1-q8_0
ugurcelebi
2024-06-22T14:43:20Z
723
0
transformers
[ "transformers", "gguf", "qwen2", "text-generation-inference", "unsloth", "en", "base_model:unsloth/Qwen2-7B-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-22T14:39:36Z
--- base_model: unsloth/Qwen2-7B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - qwen2 - gguf --- # Uploaded model - **Developed by:** ugurcelebi - **License:** apache-2.0 - **Finetuned from model :** unsloth/Qwen2-7B-Instruct-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
reasonwang/EleutherAI-gpt-neo-1.3B-alpaca
reasonwang
2023-08-07T21:13:27Z
722
1
transformers
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-08-07T21:03:23Z
Entry not found
SaiRaj03/Text_To_Image
SaiRaj03
2023-10-25T17:33:58Z
722
12
diffusers
[ "diffusers", "safetensors", "text-to-image", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-10-20T18:03:10Z
--- tags: - text-to-image pinned: true pipeline_tag: text-to-image --- # Text To Image
nisten/quad-mixtrals-gguf
nisten
2023-12-27T19:14:16Z
722
32
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2023-12-22T23:36:12Z
--- license: apache-2.0 --- **Experimental quants of 4 expert MoE mixtrals in various GGUF formats.** Original model used for custom quants: ***NeverSleep/Mistral-11B-SynthIAirOmniMix*** https://huggingface.co/NeverSleep/Mistral-11B-SynthIAirOmniMix **Goal is to have the best performing MoE < 10gb** Experimental q8 and q4 files for training/finetuning too. ***No sparsity tricks yet.*** 8.4gb custom 2bit quant works ok up until 512 token length then starts looping. - Install llama.cpp from github and run it: ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp make -j wget https://huggingface.co/nisten/quad-mixtrals-gguf/resolve/main/4mixq2.gguf ./server -m 4mixq2.gguf --host "my.internal.ip.or.my.cloud.host.name.goes.here.com" -c 512 ``` limit output to 500 tokens
nlpguy/Lelantos-low-tune
nlpguy
2024-03-04T13:47:42Z
722
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2212.04089", "base_model:openaccess-ai-collective/DPOpenHermes-7B-v2", "base_model:SanjiWatsuki/Lelantos-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-06T17:24:45Z
--- license: apache-2.0 tags: - mergekit - merge base_model: - openaccess-ai-collective/DPOpenHermes-7B-v2 - SanjiWatsuki/Lelantos-7B model-index: - name: Lelantos-low-tune results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.06 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.11 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.33 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 66.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=nlpguy/Lelantos-low-tune name: Open LLM Leaderboard --- # mergedtwo This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using [openaccess-ai-collective/DPOpenHermes-7B-v2](https://huggingface.co/openaccess-ai-collective/DPOpenHermes-7B-v2) as a base. ### Models Merged The following models were included in the merge: * merged * [SanjiWatsuki/Lelantos-7B](https://huggingface.co/SanjiWatsuki/Lelantos-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: openaccess-ai-collective/DPOpenHermes-7B-v2 dtype: bfloat16 merge_method: task_arithmetic slices: - sources: - layer_range: [0, 32] model: openaccess-ai-collective/DPOpenHermes-7B-v2 - layer_range: [0, 32] model: merged parameters: weight: 0.5 - layer_range: [0, 32] model: SanjiWatsuki/Lelantos-7B parameters: weight: 0.5 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_nlpguy__Lelantos-low-tune) | Metric |Value| |---------------------------------|----:| |Avg. |70.82| |AI2 Reasoning Challenge (25-Shot)|67.06| |HellaSwag (10-Shot) |86.06| |MMLU (5-Shot) |64.11| |TruthfulQA (0-shot) |61.33| |Winogrande (5-shot) |79.56| |GSM8k (5-shot) |66.79|
CultriX/Wernicke-7B-dpo
CultriX
2024-01-31T22:41:52Z
722
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "FelixChao/WestSeverus-7B-DPO-v2", "CultriX/Wernicke-7B-v8", "vanillaOVO/supermario_v2", "base_model:FelixChao/WestSeverus-7B-DPO-v2", "base_model:CultriX/Wernicke-7B-v8", "base_model:vanillaOVO/supermario_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-31T19:12:33Z
--- tags: - merge - mergekit - lazymergekit - FelixChao/WestSeverus-7B-DPO-v2 - CultriX/Wernicke-7B-v8 - vanillaOVO/supermario_v2 base_model: - FelixChao/WestSeverus-7B-DPO-v2 - CultriX/Wernicke-7B-v8 - vanillaOVO/supermario_v2 license: apache-2.0 --- # Edit: * DPO-finetune using truthy-dpo dataset and CultriX/Wernicke-7B-v9. # Wernicke-7B-v9 Wernicke-7B-v9 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) * [CultriX/Wernicke-7B-v8](https://huggingface.co/CultriX/Wernicke-7B-v8) * [vanillaOVO/supermario_v2](https://huggingface.co/vanillaOVO/supermario_v2) ## 🧩 Configuration ```yaml models: - model: FelixChao/WestSeverus-7B-DPO-v2 parameters: density: 0.50 weight: 0.35 - model: CultriX/Wernicke-7B-v8 parameters: density: 0.50 weight: 0.35 - model: vanillaOVO/supermario_v2 parameters: density: 0.50 weight: 0.30 merge_method: dare_ties base_model: FelixChao/WestSeverus-7B-DPO-v2 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/Wernicke-7B-v9" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Kquant03/Azathoth-16x7B-bf16
Kquant03
2024-02-29T02:13:22Z
722
2
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "conversational", "en", "arxiv:2101.03961", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-03T22:56:50Z
--- license: apache-2.0 language: - en tags: - moe - merge --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/uCSBGV4HR05CK1oPPR38j.png) # W�RNING:r0Ot:ALL lay3rs have degenerate rou�ing parameters - your prompts m@y be too simi-��-[�#$](https://huggingface.co/Kquant03/Azathoth-16x7B-bf16/blob/main/mergekit_moe_config.yml) [Join our Discord!](https://discord.gg/uT4CzytfYW) After testing with these models, I would like to see if there is a limit to prompting with mergekit MoE. This will be the first of those tests. The config looks like this...(detailed version is in the files and versions): - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - base - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #1 - [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) - expert #2 - [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) - expert #3 - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #4 - [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) - expert #5 - [senseable/garten2-7b](https://huggingface.co/senseable/garten2-7b) - expert #6 - [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) - expert #7 - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #8 - [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) - expert #9 - [senseable/garten2-7b](https://huggingface.co/senseable/garten2-7b) - expert #10 - [macadeliccc/WestLake-7B-v2-laser-truthy-dpo](https://huggingface.co/macadeliccc/WestLake-7B-v2-laser-truthy-dpo) - expert #11 - [FelixChao/Severus-7B](https://huggingface.co/FelixChao/Severus-7B) - expert #12 - [ConvexAI/Metabird-7B](https://huggingface.co/ConvexAI/Metabird-7B) - expert #13 - [FelixChao/Severus-7B](https://huggingface.co/FelixChao/Severus-7B) - expert #14 - [ConvexAI/Metabird-7B](https://huggingface.co/ConvexAI/Metabird-7B) - expert #15 - [alnrg2arg/test3_sft_16bit](https://huggingface.co/alnrg2arg/test3_sft_16bit) - expert #16 # Uploading it to the leaderboard. It will not convert to gguf. # "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)" ### (from the MistralAI papers...click the quoted question above to navigate to it directly.) The scale of a model is one of the most important axes for better model quality. Given a fixed computing budget, training a larger model for fewer steps is better than training a smaller model for more steps. Mixture of Experts enable models to be pretrained with far less compute, which means you can dramatically scale up the model or dataset size with the same compute budget as a dense model. In particular, a MoE model should achieve the same quality as its dense counterpart much faster during pretraining. So, what exactly is a MoE? In the context of transformer models, a MoE consists of two main elements: Sparse MoE layers are used instead of dense feed-forward network (FFN) layers. MoE layers have a certain number of “experts” (e.g. 32 in my "frankenMoE"), where each expert is a neural network. In practice, the experts are FFNs, but they can also be more complex networks or even a MoE itself, leading to hierarchical MoEs! A gate network or router, that determines which tokens are sent to which expert. For example, in the image below, the token “More” is sent to the second expert, and the token "Parameters” is sent to the first network. As we’ll explore later, we can send a token to more than one expert. How to route a token to an expert is one of the big decisions when working with MoEs - the router is composed of learned parameters and is pretrained at the same time as the rest of the network. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/up_I0R2TQGjqTShZp_1Sz.png) Switch Layer MoE layer from the [Switch Transformers paper](https://arxiv.org/abs/2101.03961) So, to recap, in MoEs we replace every FFN layer of the transformer model with an MoE layer, which is composed of a gate network and a certain number of experts. Although MoEs provide benefits like efficient pretraining and faster inference compared to dense models, they also come with challenges: Training: MoEs enable significantly more compute-efficient pretraining, but they’ve historically struggled to generalize during fine-tuning, leading to overfitting. Inference: Although a MoE might have many parameters, only some of them are used during inference. This leads to much faster inference compared to a dense model with the same number of parameters. However, all parameters need to be loaded in RAM, so memory requirements are high. For example, [given a MoE like Mixtral 8x7B](https://huggingface.co/blog/moe), we’ll need to have enough VRAM to hold a dense 47B parameter model. Why 47B parameters and not 8 x 7B = 56B? That’s because in MoE models, only the FFN layers are treated as individual experts, and the rest of the model parameters are shared. At the same time, assuming just two experts are being used per token, the inference speed (FLOPs) is like using a 12B model (as opposed to a 14B model), because it computes 2x7B matrix multiplications, but with some layers shared (more on this soon). If all our tokens are sent to just a few popular experts, that will make training inefficient. In a normal MoE training, the gating network converges to mostly activate the same few experts. This self-reinforces as favored experts are trained quicker and hence selected more. To mitigate this, an auxiliary loss is added to encourage giving all experts equal importance. This loss ensures that all experts receive a roughly equal number of training examples. The following sections will also explore the concept of expert capacity, which introduces a threshold of how many tokens can be processed by an expert. In transformers, the auxiliary loss is exposed via the aux_loss parameter. ## "Wait...but you called this a frankenMoE?" The difference between MoE and "frankenMoE" lies in the fact that the router layer in a model like the one on this repo is not trained simultaneously.
norallm/normistral-7b-warm
norallm
2024-06-21T18:48:02Z
722
26
transformers
[ "transformers", "pytorch", "safetensors", "gguf", "mistral", "text-generation", "gpt", "generative", "no", "nb", "nn", "dataset:uonlp/CulturaX", "dataset:NbAiLab/NCC", "dataset:vikp/starcoder_filtered", "arxiv:2204.02311", "arxiv:2005.14165", "arxiv:2302.01398", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-04T23:10:48Z
--- language: - 'no' - nb - nn inference: true tags: - mistral - gpt - generative license: apache-2.0 pipeline_tag: text-generation datasets: - uonlp/CulturaX - NbAiLab/NCC - vikp/starcoder_filtered --- # **NorMistral-7b-warm** <img align="center" src="https://huggingface.co/ltg/norbert3-base/resolve/main/norbert.png" width=12.5%> NorMistral-7b-warm is a large Norwegian language model initialized from [Mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and continuously pretrained on a total of 260 billion subword tokens (using six repetitions of open Norwegian texts). This model is a part of the NORA.LLM family developed in collaboration between [the Language Technology Group at the University of Oslo](https://huggingface.co/ltg), [the High Performance Language Technologies (HPLT) project](https://hplt-project.org/), [the National Library of Norway](https://huggingface.co/NbAiLab), and [the University of Turku](https://huggingface.co/TurkuNLP). All the models are pre-trained on the same dataset and with the same tokenizer. NorMistral-7b-warm has over 7 billion parameters and is based on [the Mistral architecture](https://huggingface.co/mistralai/Mistral-7B-v0.1). The NORA.LLM language model family includes (as of now): - [**NorMistral-7b-warm**](https://huggingface.co/norallm/normistral-7b-warm) -- an LLM initialized from [Mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) and continuously pretrained on Norwegian data; - [**NorMistral-7b-scratch**](https://huggingface.co/norallm/normistral-7b-scratch) -- a Mistral-based LLM pretrained from scratch on Norwegian data; - [**NorBLOOM-7b-scratch**](https://huggingface.co/norallm/NorBLOOM-7b-scratch) -- a BLOOM-based LLM pretrained from scratch on Norwegian data. *Disclaimer: This model is pretrained on raw (mostly web-based) textual data. It is not finetuned to follow instructions, and it can generate harmful completions after inappropriate user prompts. It is primarily intended for research purposes.* _____ ## Pretraining corpus The model is continually pretrained exclusively on publicly available data. We combine the resources from [the public part of the NCC corpus](https://huggingface.co/datasets/NbAiLab/NCC), from [the cleaned HPLT corpus](https://hplt-project.org/datasets/v1.2), and from [CulturaX](https://huggingface.co/datasets/uonlp/CulturaX). This resulted in over 34B subword tokens of Norwegian (Bokmål or Nynorsk) in total, which amounts to about 26.7B whitespace-separated tokens. We also augment the corpus with [Starcoder](https://huggingface.co/datasets/vikp/starcoder_filtered); 20% of the 260B tokens are sampled from this code corpus. The natural language data is repeated six times to get the pretraining budget of 260B tokens, in accordance with findings from [Muennighoff et al. (2023)](https://neurips.cc/virtual/2023/poster/70706). _____ ## Model details **Model Developers:** Language Technology Group at the University of Oslo. **Variations:** NorMistral is currently published as two 7B variants: one trained entirely from *scratch* and one *warm*-started from the Mistral model. **Input:** Textual input. **Output:** Generated text. **Model Architecture:** NorMistral is an auto-regressive language model that uses an optimized transformer architecture based on the Mistral/Llama language models. ||Training Data|Params|Context Length|Tokens|LR| |---|---|---|---|---|---| |NorMistral-7b-warm|NCC+HPLT+CulturaX+Starcoder|7B|2k|260B|1.0 x 10<sup>-4</sup>| |NorMistral-7b-scratch|NCC+HPLT+CulturaX+Starcoder|7B|2k|260B|3.0 x 10<sup>-4</sup>| |NorBLOOM-7b-scratch|NCC+HPLT+CulturaX+Starcoder|7B|2k|260B|1.2 x 10<sup>-4</sup>| **Tokenizer:** Byte-based BPE tokenizer trained on the same Norwegian corpus as this model. The vocabulary size is 32,768 tokens. **Training FLOPs** The approximate amount is 1.22e+22 FLOPs; calculated as in [Chowdhery et al. (2022)](https://arxiv.org/abs/2204.02311). **Model Dates:** The models were pretrained between December 2023 and January 2024. **Status:** These are only pretrained language models; instruction-finetuned models will follow soon. **License:** [Apache-2.0](https://www.apache.org/licenses/LICENSE-2.0) **Research Paper:** Forthcoming _____ ## Initial evaluation *Disclaimer: our model evaluation is an ongoing phase and is not claimed to be exhaustive. We provide our initial evaluation results on standard natural language understanding and generation tasks, and our evaluation design will be extended. The user should perform evaluation for their particular model application scenario, including safety and bias evaluations.* The perplexity on the heldout [validation set from the Norwegian Colossal Corpus (NCC)](https://huggingface.co/datasets/NbAiLab/NCC) is 7.43 and the final training perplexity is 4.76. Our initial downstream evaluation is conducted on reading comprehension, sentiment analysis and machine translation tasks using open-source peer-reviewed datasets and benchmarks in native Norwegian. We release [our codebase here](https://github.com/ltgoslo/norallm). We compare against other pretrained generative language models that officially support Norwegian: [NB-GPT-J](https://huggingface.co/NbAiLab/nb-gpt-j-6B), [GPT-Sw3 6.7B](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b), [GPT-Sw3 6.7B v2](https://huggingface.co/AI-Sweden-Models/gpt-sw3-6.7b-v2), and [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b); we also include evaluation of [Mistral-7b-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). ### Sentiment analysis [NoReC](https://huggingface.co/datasets/ltg/norec_sentence) ([Øvrelid et al., 2020](https://aclanthology.org/2020.lrec-1.618/)) is a dataset for sentence-level sentiment analysis derived from the Norwegian Review Corpus [(Velldal et al., 2018)](https://aclanthology.org/L18-1661/). We use the binary formulation of this task (positive vs. negative). <details> <summary>Method (click to expand)</summary> * Evaluation setting: zero-shot and few-shot perplexity-based evaluation. * Prompt: ```"Tekst: {text}\nSentiment:{label}"```, where the ```label``` is either "positiv" or "negativ". * Few-shot results show the average scores across 5 repetitions * Evaluation script: https://github.com/ltgoslo/norallm/blob/main/initial_evaluation/sentiment_analysis.py * Performance metric: macro-averaged F1-score. </details> <details open> <summary>Macro-averaged F1-scores on the sentence-level sentiment analysis task (NoReC)</summary> |Model|0-shot (macro F1)|1-shot (macro F1)|16-shot (macro F1)| |---|---|---|---| |NorMistral-7b-warm|60.6|**77.8**|**87.3**| |NorMistral-7b-scratch|47.3|62.2|80.1| |NorBLOOM-7b|**75.7**|73.8|65.5| |NB-GPT-J|48.4|56.5|65.2| |GPT-Sw3-6.7B|61.5|72.2|76.5| |GPT-Sw3-6.7B-v2|42.4|69.1|83.4| |Falcon-7B|53.3|61.6|74.9| |Mistral-7B-v0.1|70.2|72.9|84.8| </details> ### Reading comprehension [NorQuAD](https://huggingface.co/datasets/ltg/norquad) ([Ivanova et al., 2023](https://aclanthology.org/2023.nodalida-1.17/)) is a dataset for extractive question answering in Norwegian designed similarly to [SQuAD (Rajpurkar et al., 2016)](https://aclanthology.org/D16-1264/). <details> <summary>Method (click to expand)</summary> * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy. * Prompt: ```"Tittel: {title}\n\nTekst: {text}\n\nSpørsmål: {question}\n\nSvar:{answer}"``` Based on [Brown et al. (2020)](https://arxiv.org/abs/2005.14165). * Few-shot results show the average scores across 5 repetitions * Evaluation script: https://github.com/ltgoslo/norallm/blob/main/initial_evaluation/norquad.py * Performance metrics: macro-averaged F1-score and exact match (EM). </details> <details open> <summary>Performance results on the extractive question answering task (NorQuAD)</summary> |Model|0-shot (F1/EM)|1-shot (F1/EM)|2-shot (F1/EM)| |---|---|---|---| |NorMistral-7b-warm|**48.6**/**24.8**|63.6/40.0|66.5/43.8| |NorMistral-7b-scratch|34.0/15.7|46.5/25.8|48.5/27.8| |NorBLOOM-7b|35.0/13.3|47.7/28.0|49.3/30.1| |NB-GPT-J|24.4/6.8|32.8/11.6|35.0/12.3| |GPT-Sw3-6.7B|46.5/22.0|55.9/32.0|58.1/34.3| |GPT-Sw3-6.7B-v2|46.9/22.5|61.1/38.9|66.0/44.5| |Falcon-7B|15.8/7.0|27.3/13.9|27.4/13.1| |Mistral-7B-v0.1|46.4/22.4|**64.9**/**41.1**|**71.7**/**49.4**| </details> ### Grammatical error correction [ASK-RAW](https://huggingface.co/datasets/ltg/ask-gec) is dataset for Norwegian grammatical error correction (GEC) created by [Matias Jentoft (2023)](https://www.duo.uio.no/handle/10852/103885). <details> <summary>Method (click to expand)</summary> * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy. * Prompt: ```"Her er eksempler på perfekt korrigering av grammatiske feil:\n\nTekst: {source_text}\nKorreksjon:{target_text}"``` * Few-shot results show the average scores across 5 repetitions * Evaluation script: https://github.com/ltgoslo/norallm/blob/main/initial_evaluation/gec.py * Performance metrics: the evaluation metric uses [ERRANT](https://github.com/chrisjbryant/errant/tree/main), which identifies edit-spans and then calculates the F_{0.5} scores between the gold edits and predicted edits. </details> <details open> <summary>Results on [the ASK corpus](https://huggingface.co/datasets/ltg/ask-gec) (ERRANT F_{0.5})</summary> |Model|0-shot (F0.5)|1-shot (F0.5)|32-shot (F0.5)| |---|---|---|---| |NorMistral-7b-warm|**40.8**|41.8|48.5| |NorMistral-7b-scratch|22.1|28.8|42.1| |NorBLOOM-7b|8.7|24.5|32.0| |NB-GPT-J|9.1|28.2|30.6| |GPT-Sw3-6.7B|30.5|42.9|**50.6**| |GPT-Sw3-6.7B-v2|40.6|**43.4**|49.8| |Falcon-7B|10.8|12.4|15.5| |Mistral-7B-v0.1|26.0|27.4|30.6| </details> ### Machine translation [Tatoeba](https://huggingface.co/datasets/Helsinki-NLP/tatoeba_mt) [(Tiedemann, 2020)](https://aclanthology.org/2020.wmt-1.139/) is a benchmark for machine translation, which includes hundreds of language pairs. We consider six language pairs (English <-> Bokmål, English <-> Nynorsk, and Bokmål <-> Nynorsk). <details> <summary>Method (click to expand)</summary> * Evaluation setting: zero-shot and few-shot settings via natural language generation using the greedy decoding strategy. * Prompt: ```"{source_language}: {source_text}\n{target_language}:{target_text}"```, where the ```source_language``` and ```target_language``` are ```Engelsk```, ```Bokmål```, or ```Nynorsk```. Based on [Garcia et al. (2023)](https://arxiv.org/abs/2302.01398). * Few-shot results show the average scores across 5 repetitions * Evaluation script: https://github.com/ltgoslo/norallm/blob/main/initial_evaluation/machine_translation.py * Performance metrics: BLEU ([Papineni et al., 2002](https://aclanthology.org/P02-1040/)) and chrF++ ([Popović, 2015](https://aclanthology.org/W15-3049/)). </details> <details open> <summary>English → Norwegian Bokmål</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**55.8**/**70.7**|**56.7**/**71.5**|57.7/72.4| |NorMistral-7b-scratch|46.4/62.9|50.4/66.3|52.1/67.6| |NorBLOOM-7b|37.1/53.6|50.1/65.8|52.0/67.6| |NB-GPT-J|8.6/39.1|35.9/64.5|47.2/68.7| |GPT-Sw3-6.7B|21.8/55.2|54.5/69.6|**58.6**/**73.2**| |GPT-Sw3-6.7B-v2|20.6/53.2|51.2/66.6|58.4/73.0| |Falcon-7B|19.1/40.1|20.6/41.8|22.1/43.6| |Mistral-7B-v0.1|32.5/51.9|35.4/55.1|36.3/56.0| </details> <details open> <summary>English → Norwegian Nynorsk</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**43.6**/**62.0**|**44.2**/**63.2**|44.3/**63.7**| |NorMistral-7b-scratch|38.0/56.9|39.2/57.9|40.7/59.3| |NorBLOOM-7b|35.6/54.7|36.6/56.3|38.1/57.4| |NB-GPT-J|1.7/14.7|6.3/34.1|35.2/60.4| |GPT-Sw3-6.7B|13.4/44.3|43.6/62.5|**44.5**/63.5| |GPT-Sw3-6.7B-v2|14.8/45.5|43.7/62.3|44.0/63.6| |Falcon-7B|6.4/28.6|8.3/30.5|9.3/32.1| |Mistral-7B-v0.1|11.6/35.7|13.5/38.7|15.0/40.0| </details> <details open> <summary>Norwegian Bokmål → English</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**56.7**/**70.6**|**57.7**/**71.7**|**58.5**/**72.2**| |NorMistral-7b-scratch|48.1/62.9|51.5/66.6|52.6/67.6| |NorBLOOM-7b|46.0/61.5|51.3/66.7|51.7/66.9| |NB-GPT-J|23.9/55.3|32.3/63.1|48.5/68.7| |GPT-Sw3-6.7B|47.9/67.8|52.4/70.6|50.0/70.7| |GPT-Sw3-6.7B-v2|38.8/59.6|49.0/68.6|50.7/70.6| |Falcon-7B|42.4/58.5|47.3/62.3|48.6/63.3| |Mistral-7B-v0.1|53.8/68.2|54.6/69.0|56.9/70.7| </details> <details open> <summary>Norwegian Nynorsk → English</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**55.1**/**68.4**|**55.5**/**69.5**|56.0/69.8| |NorMistral-7b-scratch|47.1/61.9|49.4/64.2|52.3/66.2| |NorBLOOM-7b|45.0/59.3|48.3/64.0|49.0/64.7| |NB-GPT-J|2.9/19.5|10.1/41.0|44.4/66.9| |GPT-Sw3-6.7B|47.8/66.2|49.1/68.1|49.6/69.4| |GPT-Sw3-6.7B-v2|46.3/67.5|48.9/69.3|**58.2**/**72.8**| |Falcon-7B|21.6/40.6|31.7/47.4|36.6/57.1| |Mistral-7B-v0.1|40.7/57.1|46.2/60.7|49.9/63.8| </details> <details open> <summary>Norwegian Bokmål → Norwegian Nynorsk</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**75.8**/**87.5**|74.0/**86.9**|75.3/87.5| |NorMistral-7b-scratch|38.0/56.9|39.2/57.9|40.7/59.3| |NorBLOOM-7b|71.5/84.4|70.1/84.1|71.9/85.1| |NB-GPT-J|6.6/35.5|9.6/41.0|26.0/64.7| |GPT-Sw3-6.7B|63.6/82.8|74.7/86.0|75.8/86.9| |GPT-Sw3-6.7B-v2|57.5/81.1|**75.3**/86.7|**76.7**/**87.6**| |Falcon-7B|28.7/59.2|29.8/60.8|32.1/62.3| |Mistral-7B-v0.1|32.0/62.2|32.9/62.6|35.2/63.9| </details> <details open> <summary>Norwegian Nynorsk → Norwegian Bokmål</summary> |Model|0-shot (BLEU/chrF++)|1-shot (BLEU/chrF++)|5-shot (BLEU/chrF++)| |---|---|---|---| |NorMistral-7b-warm|**88.1**/**93.6**|**89.2**/**94.3**|**89.3**/**94.6**| |NorMistral-7b-scratch|85.1/91.4|86.6/92.4|87.4/93.0| |NorBLOOM-7b|78.7/88.5|84.2/90.7|87.4/93.0| |NB-GPT-J|2.7/18.5|6.9/35.6|52.9/84.3| |GPT-Sw3-6.7B|652.3/82.4|86.1/92.5|87.8/93.6| |GPT-Sw3-6.7B-v2|72.0/88.6|86.1/92.5|88.2/93.9| |Falcon-7B|36.7/61.6|38.3/63.5|45.8/68.1| |Mistral-7B-v0.1|57.0/74.8|59.9/77.5|62.6/79.1| </details> _____ ## Hardware and Software **Training Factors:** The models were pretrained using the Megatron-DeepSpeed library on [the LUMI cluster in Finland](https://lumi-supercomputer.eu/). **Carbon Footprint:** Pretraining one model took approximately 70k GPU hours of computation on AMD MI250X GPUs (assuming 2 GPUs per one AMD MI250X device), each of which draws 500W. LUMI is [one of the most eco-efficient data centers in the world](https://www.lumi-supercomputer.eu/sustainable-future/), and its energy consumption is covered 100% with renewable electricity. _____ ## Example usage Let's try to use this model for English-to-Norwegian machine translation using simple zero-shot prompting: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # First, we will have to import the tokenizer and the language model tokenizer = AutoTokenizer.from_pretrained("norallm/normistral-7b-warm") model = AutoModelForCausalLM.from_pretrained("norallm/normistral-7b-warm").cuda().eval() # Now we will define the zero-shot prompt template prompt = """Engelsk: {0} Bokmål:""" # A function that will take care of generating the output @torch.no_grad() def generate(text): text = prompt.format(text) input_ids = tokenizer(text, return_tensors='pt').input_ids.cuda() prediction = model.generate( input_ids, max_new_tokens=64, do_sample=False, eos_token_id=tokenizer('\n').input_ids ) return tokenizer.decode(prediction[0, input_ids.size(1):]).strip() # Now you can simply call the generate function with an English text you want to translate: generate("I'm super excited about this Norwegian NORA model! Can it translate these sentences?") # > this should output: 'Jeg er super spent på denne norske NORA modellen! Kan den oversette disse setningene?' ``` ## Example usage on a GPU with ~16GB VRAM (try for yourself [in Google Colab](https://colab.research.google.com/drive/1AQgJ8lN-SNOqkUKj4xpQI5rr0R7V2Xzy?usp=sharing)) Install bitsandbytes if you want to load in 8bit ```bash pip install bitsandbytes pip install accelerate ``` ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "norallm/normistral-7b-warm" ) # This setup needs about 8gb VRAM # Setting `load_in_8bit=False` -> 15gb VRAM # Using `torch.float32` and `load_in_8bit=False` -> 21gb VRAM model = AutoModelForCausalLM.from_pretrained( "norallm/normistral-7b-warm", device_map='auto', load_in_8bit=True, torch_dtype=torch.bfloat16 ) ``` _____ ## Quantization ### Provided files | Name | Quant method | Bits Per Weight | Size | Max RAM/VRAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [normistral-7b-warm-Q3_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q3_K_M.gguf) | Q3_K_M | 3.89 | 3.28 GB| 5.37 GB | very small, high loss of quality | | [normistral-7b-warm-Q4_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q4_K_M.gguf) | Q4_K_M | 4.83 | 4.07 GB| 6.16 GB | medium, balanced quality | | [normistral-7b-warm-Q5_K_M.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q5_K_M.gguf) | Q5_K_M | 5.67 | 4.78 GB| 6.87 GB | large, very low quality loss | | [normistral-7b-warm-Q6_K.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q6_K.gguf) | Q6_K | 6.56 | 5.54 GB| 7.63 GB | very large, extremely low quality loss | | [normistral-7b-warm-Q8_0.gguf](https://huggingface.co/norallm/normistral-7b-warm/blob/main/normistral-7b-warm-Q8_0.gguf) | Q8_0 | 8.50 | 7.17 GB| 9.26 GB | very large, extremely low quality loss | ### How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) for example. #### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://llama-cpp-python.readthedocs.io/en/latest/). #### First install the package Run one of the following commands, according to your system: ```shell # Base llama-ccp-python with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Directly from huggingface-hub (requires huggingface-hub to be installed) # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama.from_pretrained( repo_id="norallm/normistral-7b-warm", # HuggingFace repository containing the GGUF files. filename="*Q4_K_M.gguf", # suffix of the filename containing the level of quantization. n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "Engelsk: Hello everyone! I'm a language model, how are you doing today?\nBokmål:", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token echo=True, # Whether to echo the prompt temperature=0.3 # Temperature to set, for Q3_K_M, Q4_K_M, Q5_K_M, and Q6_0 it is recommended to set it relatively low. ) ```
yentinglin/Taiwan-LLM-8x7B-DPO
yentinglin
2024-02-08T07:06:23Z
722
18
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "zh", "arxiv:2311.17487", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-07T11:32:49Z
--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards license: apache-2.0 language: - zh widget: - text: >- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT: library_name: transformers pipeline_tag: text-generation extra_gated_heading: Acknowledge the license to accept the repository. extra_gated_prompt: Please contact the author for access. extra_gated_button_content: Acknowledge license 同意以上內容 extra_gated_fields: Name: text Mail: text Organization: text Country: text Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/mIie6Mc6k_Uv9UZKXC_hw.png) # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟 # Model Card for Taiwan LLM 8x7B-DPO Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan. ## Model description - **Model type:** A 8x7B parameter Mixtral MoE model fine-tuned on a mix of publicly available, synthetic datasets. - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw) - **Finetuned from model:** [yentinglin/Taiwan-LLM-MoE-alpha](https://huggingface.co/yentinglin/Taiwan-LLM-MoE-alpha) ### Model Sources <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa - **Demo:** https://twllm.com/ ## Performance Checkout leaderboard in [Tw Chatbot Arena](https://arena.twllm.com/) TMMLUS+ score: - yentinglin/Taiwan-LLM-MoE-alpha: 43.93 - yentinglin/Taiwan-LLM-8x7B-DPO: TBD ## Intended uses Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: ```python # pip install transformers>=4.34 # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-8x7B-DPO", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "你是一個人工智慧助理", }, {"role": "user", "content": "東北季風如何影響台灣氣候?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## Citation If you find Taiwan LLM useful in your work, please cite it with: ``` @misc{lin2023taiwan, title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, author={Yen-Ting Lin and Yun-Nung Chen}, year={2023}, eprint={2311.17487}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` # Acknowledgement Ubitus provides valuable compute resources for the project.
sonthenguyen/OpenHermes-2.5-Mistral-7B-mt-bench-DPO-reversed_corrupted
sonthenguyen
2024-02-15T21:28:00Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T06:01:10Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
fzzhang/toten_gsm8k_merged_s
fzzhang
2024-02-17T05:06:29Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:gsm8k", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T04:57:42Z
--- library_name: transformers license: apache-2.0 datasets: - gsm8k language: - en pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
cjpais/llava-v1.6-vicuna-7b-gguf
cjpais
2024-03-07T00:39:24Z
722
3
null
[ "gguf", "llava", "image-text-to-text", "license:apache-2.0", "region:us" ]
image-text-to-text
2024-02-17T16:43:00Z
--- license: apache-2.0 tags: - llava pipeline_tag: image-text-to-text --- # GGUF Quantized LLaVA 1.6 Vicuna 7B Updated quants and projector from [PR #5267](https://github.com/ggerganov/llama.cpp/pull/5267) ## Provided files | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [llava-v1.6-vicuna-7b.Q3_K_XS.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q3_K_XS.gguf) | Q3_K_XS | 3 | 2.77 GB| very small, high quality loss | | [llava-v1.6-vicuna-7b.Q3_K_M.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.3 GB| very small, high quality loss | | [llava-v1.6-vicuna-7b.Q4_K_M.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| medium, balanced quality - recommended | | [llava-v1.6-vicuna-7b.Q5_K_S.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| large, low quality loss - recommended | | [llava-v1.6-vicuna-7b.Q5_K_M.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| large, very low quality loss - recommended | | [llava-v1.6-vicuna-7b.Q6_K.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| very large, extremely low quality loss | | [llava-v1.6-vicuna-7b.Q8_0.gguf](https://huggingface.co/cjpais/llava-v1.6-vicuna-7b-gguf/blob/main/llava-v1.6-vicuna-7b.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| very large, extremely low quality loss - not recommended | <br> <br> # ORIGINAL LLaVA Model Card ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) **Model date:** LLaVA-v1.6-Vicuna-7B was trained in December 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 500K academic-task-oriented VQA data mixture. - 50K GPT-4V data mixture. - 40K ShareGPT data. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.
Yuma42/KangalKhan-ShinyEmerald-7B
Yuma42
2024-03-05T10:54:59Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Yuma42/KangalKhan-Sapphire-7B", "Yuma42/KangalKhan-Ruby-7B-Fixed", "conversational", "en", "base_model:Yuma42/KangalKhan-Sapphire-7B", "base_model:Yuma42/KangalKhan-Ruby-7B-Fixed", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T17:15:07Z
--- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - Yuma42/KangalKhan-Sapphire-7B - Yuma42/KangalKhan-Ruby-7B-Fixed base_model: - Yuma42/KangalKhan-Sapphire-7B - Yuma42/KangalKhan-Ruby-7B-Fixed model-index: - name: KangalKhan-ShinyEmerald-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.37 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.36 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.65 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShinyEmerald-7B name: Open LLM Leaderboard --- # KangalKhan-ShinyEmerald-7B KangalKhan-ShinyEmerald-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Yuma42/KangalKhan-Sapphire-7B](https://huggingface.co/Yuma42/KangalKhan-Sapphire-7B) * [Yuma42/KangalKhan-Ruby-7B-Fixed](https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed) ## 🧩 Configuration ```yaml models: - model: teknium/OpenHermes-2.5-Mistral-7B # no parameters necessary for base model - model: Yuma42/KangalKhan-Sapphire-7B parameters: density: 0.6 weight: 0.5 - model: Yuma42/KangalKhan-Ruby-7B-Fixed parameters: density: 0.6 weight: 0.5 merge_method: ties base_model: teknium/OpenHermes-2.5-Mistral-7B parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-ShinyEmerald-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-ShinyEmerald-7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.63| |AI2 Reasoning Challenge (25-Shot)|66.21| |HellaSwag (10-Shot) |85.37| |MMLU (5-Shot) |63.36| |TruthfulQA (0-shot) |56.65| |Winogrande (5-shot) |78.37| |GSM8k (5-shot) |61.79|
InnerI/InnerI-AI-sn6-7B-slerp
InnerI
2024-03-09T00:49:53Z
722
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "tomaszki/nous-thirty", "InnerI/A-I-0xtom-7B-slerp", "conversational", "base_model:tomaszki/nous-thirty", "base_model:InnerI/A-I-0xtom-7B-slerp", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T18:19:49Z
--- tags: - merge - mergekit - lazymergekit - tomaszki/nous-thirty - InnerI/A-I-0xtom-7B-slerp base_model: - tomaszki/nous-thirty - InnerI/A-I-0xtom-7B-slerp license: llama2 --- # InnerI-AI-sn6-7B-slerp InnerI-AI-sn6-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [tomaszki/nous-thirty](https://huggingface.co/tomaszki/nous-thirty) * [InnerI/A-I-0xtom-7B-slerp](https://huggingface.co/InnerI/A-I-0xtom-7B-slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: tomaszki/nous-thirty layer_range: [0, 32] - model: InnerI/A-I-0xtom-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: tomaszki/nous-thirty parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "InnerI/InnerI-AI-sn6-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Yuma42/KangalKhan-ShatteredRuby-7B
Yuma42
2024-03-05T10:56:14Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Yuma42/KangalKhan-Ruby-7B-Fixed", "Yuma42/KangalKhan-RawEmerald-7B", "conversational", "en", "base_model:Yuma42/KangalKhan-Ruby-7B-Fixed", "base_model:Yuma42/KangalKhan-RawEmerald-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-18T14:13:17Z
--- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - Yuma42/KangalKhan-Ruby-7B-Fixed - Yuma42/KangalKhan-RawEmerald-7B base_model: - Yuma42/KangalKhan-Ruby-7B-Fixed - Yuma42/KangalKhan-RawEmerald-7B model-index: - name: KangalKhan-ShatteredRuby-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.99 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-ShatteredRuby-7B name: Open LLM Leaderboard --- # KangalKhan-ShatteredRuby-7B KangalKhan-ShatteredRuby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Yuma42/KangalKhan-Ruby-7B-Fixed](https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed) * [Yuma42/KangalKhan-RawEmerald-7B](https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: Yuma42/KangalKhan-Ruby-7B-Fixed layer_range: [0, 32] - model: Yuma42/KangalKhan-RawEmerald-7B layer_range: [0, 32] merge_method: slerp base_model: Yuma42/KangalKhan-Ruby-7B-Fixed parameters: t: - filter: self_attn value: [0.97, 0.75, 0.35, 0.55, 0.1] - filter: mlp value: [0.03, 0.25, 0.65, 0.45, 0.9] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-ShatteredRuby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-ShatteredRuby-7B) | Metric |Value| |---------------------------------|----:| |Avg. |68.70| |AI2 Reasoning Challenge (25-Shot)|66.21| |HellaSwag (10-Shot) |85.38| |MMLU (5-Shot) |63.29| |TruthfulQA (0-shot) |56.99| |Winogrande (5-shot) |78.61| |GSM8k (5-shot) |61.71|
BarraHome/Mistroll-7B-v0.1-4bit
BarraHome
2024-02-21T07:09:40Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2024-02-21T07:04:44Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit --- # Uploaded model - **Developed by:** BarraHome - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
vishnukv/WestSeverusJaskier
vishnukv
2024-03-05T03:34:26Z
722
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:PetroGPT/WestSeverus-7B-DPO", "base_model:bardsai/jaskier-7b-dpo-v6.1", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-28T17:29:21Z
--- license: mit library_name: transformers tags: - mergekit - merge base_model: - PetroGPT/WestSeverus-7B-DPO - bardsai/jaskier-7b-dpo-v6.1 model-index: - name: WestSeverusJaskier results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 71.76 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.16 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 73.18 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 73.09 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vishnukv/WestSeverusJaskier name: Open LLM Leaderboard --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [PetroGPT/WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) * [bardsai/jaskier-7b-dpo-v6.1](https://huggingface.co/bardsai/jaskier-7b-dpo-v6.1) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vishnukv__WestSeverusJaskier) | Metric |Value| |---------------------------------|----:| |Avg. |75.67| |AI2 Reasoning Challenge (25-Shot)|71.76| |HellaSwag (10-Shot) |88.16| |MMLU (5-Shot) |64.94| |TruthfulQA (0-shot) |73.18| |Winogrande (5-shot) |82.87| |GSM8k (5-shot) |73.09|
Kukedlc/NeuralFusion-7b-Dare-Ties
Kukedlc
2024-03-04T14:36:08Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/NeuralMaxime-7B-slerp", "Kukedlc/Fasciculus-Arcuatus-7B-slerp", "Kukedlc/NeoCortex-7B-slerp", "base_model:Kukedlc/NeuralMaxime-7B-slerp", "base_model:Kukedlc/Fasciculus-Arcuatus-7B-slerp", "base_model:Kukedlc/NeoCortex-7B-slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-29T21:09:16Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Kukedlc/NeuralMaxime-7B-slerp - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/NeoCortex-7B-slerp base_model: - Kukedlc/NeuralMaxime-7B-slerp - Kukedlc/Fasciculus-Arcuatus-7B-slerp - Kukedlc/NeoCortex-7B-slerp model-index: - name: NeuralFusion-7b-Dare-Ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.21 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 73.32 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.56 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/NeuralFusion-7b-Dare-Ties name: Open LLM Leaderboard --- # NeuralFusion-7b-Dare-Ties NeuralFusion-7b-Dare-Ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/NeuralMaxime-7B-slerp](https://huggingface.co/Kukedlc/NeuralMaxime-7B-slerp) * [Kukedlc/Fasciculus-Arcuatus-7B-slerp](https://huggingface.co/Kukedlc/Fasciculus-Arcuatus-7B-slerp) * [Kukedlc/NeoCortex-7B-slerp](https://huggingface.co/Kukedlc/NeoCortex-7B-slerp) ## 🧩 Configuration ```yaml models: - model: mlabonne/Monarch-7B # no parameters necessary for base model - model: Kukedlc/NeuralMaxime-7B-slerp parameters: density: 0.65 weight: 0.36 - model: Kukedlc/Fasciculus-Arcuatus-7B-slerp parameters: density: 0.6 weight: 0.34 - model: Kukedlc/NeoCortex-7B-slerp parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mlabonne/Monarch-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralFusion-7b-Dare-Ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__NeuralFusion-7b-Dare-Ties) | Metric |Value| |---------------------------------|----:| |Avg. |75.94| |AI2 Reasoning Challenge (25-Shot)|73.21| |HellaSwag (10-Shot) |88.96| |MMLU (5-Shot) |64.77| |TruthfulQA (0-shot) |73.32| |Winogrande (5-shot) |85.56| |GSM8k (5-shot) |69.83|
Eric111/Mistral-7B-Instruct_v0.2_UNA-TheBeagle-7b-v1
Eric111
2024-03-09T21:21:11Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:fblgit/UNA-TheBeagle-7b-v1", "license:cc-by-nc-nd-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-07T20:07:53Z
--- base_model: - mistralai/Mistral-7B-Instruct-v0.2 - fblgit/UNA-TheBeagle-7b-v1 license: cc-by-nc-nd-4.0 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) * [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] - model: fblgit/UNA-TheBeagle-7b-v1 layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
SourAsslips/Gilbert
SourAsslips
2024-03-10T02:35:24Z
722
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T02:33:19Z
Entry not found
Sao10K/Shiki-m7
Sao10K
2024-03-13T15:01:49Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-13T02:51:41Z
--- license: cc-by-nc-4.0 language: - en --- experimental model still testing ymmv filler text: Это было, когда улыбался Только мертвый, спокойствию рад а то, что случилось, Пусть черные сукна покроют, И пусть унесут фонари... Ночь. Уже безумие крылом, Души накрыло половину, И поит огненным вином И манит в черную долину. И понял я, что ему Должен я уступить победу, Прислушиваясь к своему Уже как бы чужому бреду. И только пыльные цветы, И звон кадильный, и следы Куда-то в никуда. И прямо мне в глаза глядит И скорой гибелью грозит Огромная звезда. Перед этим горем гнутся горы, Не течет великая река. Уже безумие крылом, Души накрыло половину, И поит огненным вином И манит в черную долину. И понял я, что ему Должен я уступить победу, Прислушиваясь к своему Уже как бы чужому бреду.
mlabonne/FrankenMonarch-7B
mlabonne
2024-03-20T19:07:10Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "conversational", "base_model:mlabonne/AlphaMonarch-7B", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-19T10:35:55Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit base_model: - mlabonne/AlphaMonarch-7B - mlabonne/AlphaMonarch-7B - mlabonne/AlphaMonarch-7B - mlabonne/AlphaMonarch-7B - mlabonne/AlphaMonarch-7B --- # FrankenMonarch-7B FrankenMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) # Quantized versions : - [**GGUF**](https://huggingface.co/seyf1elislam/FrankenMonarch-7B-GGUF) ## 🧩 Configuration ```yaml dtype: float16 merge_method: passthrough slices: - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [0,9] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [5,14] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [10,19] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [15,24] - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [20,32] ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/FrankenMonarch-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp
weezywitasneezy
2024-04-09T17:04:02Z
722
1
transformers
[ "transformers", "safetensors", "gguf", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp", "weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp", "ChaoticNeutrals/Eris_Remix_7B", "Virt-io/Erebus-Holodeck-7B", "jeiku/Eros_Prodigadigm_7B", "Epiculous/Mika-7B", "base_model:weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp", "base_model:weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T20:58:30Z
--- license: cc-by-nc-4.0 tags: - merge - mergekit - lazymergekit - weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp - weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp - ChaoticNeutrals/Eris_Remix_7B - Virt-io/Erebus-Holodeck-7B - jeiku/Eros_Prodigadigm_7B - Epiculous/Mika-7B base_model: - weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp - weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp model-index: - name: OxytocinErosEngineeringFX-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.98 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.14 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 65.25 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 57.39 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp name: Open LLM Leaderboard --- # OxytocinErosEngineeringFX-7B-slerp <img src="https://cdn-uploads.huggingface.co/production/uploads/632b22e66cb20ba0ae82bf06/iNmYhNFQJ-fdJhuzjvRaO.png" width="512" height="512" /> This is the combination of 4 x Mistral 7b (v0.2?) models as follows: * [ChaoticNeutrals/Eris_Remix_7B](https://huggingface.co/ChaoticNeutrals/Eris_Remix_7B) * [Virt-io/Erebus-Holodeck-7B](https://huggingface.co/Virt-io/Erebus-Holodeck-7B) * [jeiku/Eros_Prodigadigm_7B](https://huggingface.co/jeiku/Eros_Prodigadigm_7B) * [Epiculous/Mika-7B](https://huggingface.co/Epiculous/Mika-7B) OxytocinErosEngineeringFX-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp](https://huggingface.co/weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp) * [weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp](https://huggingface.co/weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp) |---------------------------------| # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_weezywitasneezy__OxytocinErosEngineeringFX-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |70.28| |AI2 Reasoning Challenge (25-Shot)|66.98| |HellaSwag (10-Shot) |86.48| |MMLU (5-Shot) |64.14| |TruthfulQA (0-shot) |65.25| |Winogrande (5-shot) |81.45| |GSM8k (5-shot) |57.39| ## 🧩 Configuration ```yaml slices: - sources: - model: weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp layer_range: [0, 32] - model: weezywitasneezy/OxytocinErosEngineeringF2-7B-slerp layer_range: [0, 32] merge_method: slerp base_model: weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "weezywitasneezy/OxytocinErosEngineeringFX-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
Gille/StrangeMerges_45-7B-dare_ties
Gille
2024-03-25T18:21:34Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Q-bert/MetaMath-Cybertron-Starling", "ozayezerceli/BetterSaul-7B-slerp", "chihoonlee10/T3Q-Mistral-Orca-Math-DPO", "EmbeddedLLM/Mistral-7B-Merge-14-v0.2", "base_model:Q-bert/MetaMath-Cybertron-Starling", "base_model:ozayezerceli/BetterSaul-7B-slerp", "base_model:chihoonlee10/T3Q-Mistral-Orca-Math-DPO", "base_model:EmbeddedLLM/Mistral-7B-Merge-14-v0.2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T18:05:51Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Q-bert/MetaMath-Cybertron-Starling - ozayezerceli/BetterSaul-7B-slerp - chihoonlee10/T3Q-Mistral-Orca-Math-DPO - EmbeddedLLM/Mistral-7B-Merge-14-v0.2 base_model: - Q-bert/MetaMath-Cybertron-Starling - ozayezerceli/BetterSaul-7B-slerp - chihoonlee10/T3Q-Mistral-Orca-Math-DPO - EmbeddedLLM/Mistral-7B-Merge-14-v0.2 --- # StrangeMerges_45-7B-dare_ties StrangeMerges_45-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling) * [ozayezerceli/BetterSaul-7B-slerp](https://huggingface.co/ozayezerceli/BetterSaul-7B-slerp) * [chihoonlee10/T3Q-Mistral-Orca-Math-DPO](https://huggingface.co/chihoonlee10/T3Q-Mistral-Orca-Math-DPO) * [EmbeddedLLM/Mistral-7B-Merge-14-v0.2](https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.2) ## 🧩 Configuration ```yaml models: - model: Q-bert/MetaMath-Cybertron-Starling parameters: weight: 0.3 density: 0.53 - model: ozayezerceli/BetterSaul-7B-slerp parameters: weight: 0.2 density: 0.53 - model: chihoonlee10/T3Q-Mistral-Orca-Math-DPO parameters: weight: 0.4 density: 0.53 - model: EmbeddedLLM/Mistral-7B-Merge-14-v0.2 parameters: weight: 0.1 density: 0.53 base_model: Gille/StrangeMerges_44-7B-dare_ties merge_method: dare_ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_45-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
netcat420/MFANNv0.2
netcat420
2024-04-03T21:44:26Z
722
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:netcat420/MFANN", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-29T23:52:49Z
--- license: apache-2.0 library_name: transformers datasets: - netcat420/MFANN --- netcat420/MFANNv0.2 64.47 <- average 62.88 <- ARC 83.85 <- HellaSwag 60.11 <- MMLU 68.94 <- TruthfulQA 74.03 <- Winogrande 37 <- GSM8K
CampAIgn/Phi-3-mini_16bit
CampAIgn
2024-05-29T21:15:03Z
722
0
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "phi3", "NLP", "conversational", "en", "fr", "dataset:CampAIgn/DDD_French_version", "dataset:CampAIgn/Steam_games_in_french", "base_model:unsloth/Phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-17T22:45:54Z
--- language: - en - fr license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl - phi3 - NLP base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit datasets: - CampAIgn/DDD_French_version - CampAIgn/Steam_games_in_french --- # Uploaded model - **Developed by:** CampAIgn - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/RP-Stew-v2.5-34B-GGUF
mradermacher
2024-06-09T16:06:53Z
722
6
transformers
[ "transformers", "gguf", "en", "base_model:MarinaraSpaghetti/RP-Stew-v2.5-34B", "endpoints_compatible", "region:us" ]
null
2024-06-08T21:11:14Z
--- base_model: MarinaraSpaghetti/RP-Stew-v2.5-34B language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/MarinaraSpaghetti/RP-Stew-v2.5-34B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q2_K.gguf) | Q2_K | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.IQ3_XS.gguf) | IQ3_XS | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q3_K_S.gguf) | Q3_K_S | 15.1 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.IQ3_S.gguf) | IQ3_S | 15.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.IQ3_M.gguf) | IQ3_M | 15.7 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q3_K_M.gguf) | Q3_K_M | 16.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q3_K_L.gguf) | Q3_K_L | 18.2 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.IQ4_XS.gguf) | IQ4_XS | 18.7 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q4_K_S.gguf) | Q4_K_S | 19.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q4_K_M.gguf) | Q4_K_M | 20.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q5_K_S.gguf) | Q5_K_S | 23.8 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q5_K_M.gguf) | Q5_K_M | 24.4 | | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q6_K.gguf) | Q6_K | 28.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/RP-Stew-v2.5-34B-GGUF/resolve/main/RP-Stew-v2.5-34B.Q8_0.gguf) | Q8_0 | 36.6 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
stablediffusionapi/anime-khsjaj
stablediffusionapi
2024-06-19T08:15:25Z
722
0
diffusers
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2024-06-19T08:10:55Z
--- license: creativeml-openrail-m tags: - modelslab.com - stable-diffusion-api - text-to-image - ultra-realistic pinned: true --- # Anime khsjaj API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/421704891718784501.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "anime-khsjaj" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://docs.modelslab.com) Try model for free: [Generate Images](https://modelslab.com/models/anime-khsjaj) Model link: [View model](https://modelslab.com/models/anime-khsjaj) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "anime-khsjaj", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
rexoscare/autocomplete-model
rexoscare
2024-06-20T18:19:38Z
722
0
transformers
[ "transformers", "gguf", "mistral", "text-generation-inference", "unsloth", "en", "base_model:unsloth/phi-3-mini-4k-instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-06-20T18:16:36Z
--- base_model: unsloth/phi-3-mini-4k-instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf --- # Uploaded model - **Developed by:** rexoscare - **License:** apache-2.0 - **Finetuned from model :** unsloth/phi-3-mini-4k-instruct-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Infinirc/Infinirc-Llama3-8B-4bit-AWQ-GEMM-Beta
Infinirc
2024-06-28T12:35:39Z
722
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "zhtw", "conversational", "zh", "en", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "awq", "region:us" ]
text-generation
2024-06-22T09:38:50Z
--- license: llama3 language: - zh - en library_name: transformers tags: - zhtw ---
kamalkraj/BioSimCSE-BioLinkBERT-BASE
kamalkraj
2023-02-02T20:21:03Z
721
0
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "text-embeddings-inference", "region:us" ]
sentence-similarity
2022-12-05T07:57:59Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers widget: - source_sentence: "The up-regulation of miR-146a was also detected in cervical cancer tissues." sentences: ["The expression of miR-146a has been found to be up-regulated in cervical cancer.", "Only concomitant ablation of ERK1 and ERK2 impairs tumor growth."] example_title: "BioNLP Example" --- # kamalkraj/BioSimCSE-BioLinkBERT-BASE This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('kamalkraj/BioSimCSE-BioLinkBERT-BASE') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('kamalkraj/BioSimCSE-BioLinkBERT-BASE') model = AutoModel.from_pretrained('kamalkraj/BioSimCSE-BioLinkBERT-BASE') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=kamalkraj/BioSimCSE-BioLinkBERT-BASE) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 7708 with parameters: ``` {'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 5e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 771, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> ```bibtex @inproceedings{kanakarajan-etal-2022-biosimcse, title = "{B}io{S}im{CSE}: {B}io{M}edical Sentence Embeddings using Contrastive learning", author = "Kanakarajan, Kamal raj and Kundumani, Bhuvana and Abraham, Abhijith and Sankarasubbu, Malaikannan", booktitle = "Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI)", month = dec, year = "2022", address = "Abu Dhabi, United Arab Emirates (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.louhi-1.10", pages = "81--86", abstract = "Sentence embeddings in the form of fixed-size vectors that capture the information in the sentence as well as the context are critical components of Natural Language Processing systems. With transformer model based sentence encoders outperforming the other sentence embedding methods in the general domain, we explore the transformer based architectures to generate dense sentence embeddings in the biomedical domain. In this work, we present BioSimCSE, where we train sentence embeddings with domain specific transformer based models with biomedical texts. We assess our model{'}s performance with zero-shot and fine-tuned settings on Semantic Textual Similarity (STS) and Recognizing Question Entailment (RQE) tasks. Our BioSimCSE model using BioLinkBERT achieves state of the art (SOTA) performance on both tasks.", } ```
timm/xcit_tiny_12_p8_224.fb_in1k
timm
2024-02-10T23:44:06Z
721
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2106.09681", "license:apache-2.0", "region:us" ]
image-classification
2023-04-13T02:30:58Z
--- license: apache-2.0 library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for xcit_tiny_12_p8_224.fb_in1k A XCiT (Cross-Covariance Image Transformer) image classification model. Pretrained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 6.7 - GMACs: 4.8 - Activations (M): 23.6 - Image size: 224 x 224 - **Papers:** - XCiT: Cross-Covariance Image Transformers: https://arxiv.org/abs/2106.09681 - **Dataset:** ImageNet-1k - **Original:** https://github.com/facebookresearch/xcit ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('xcit_tiny_12_p8_224.fb_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'xcit_tiny_12_p8_224.fb_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 785, 192) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{el2021xcit, title={XCiT: Cross-Covariance Image Transformers}, author={El-Nouby, Alaaeldin and Touvron, Hugo and Caron, Mathilde and Bojanowski, Piotr and Douze, Matthijs and Joulin, Armand and Laptev, Ivan and Neverova, Natalia and Synnaeve, Gabriel and Verbeek, Jakob and others}, journal={arXiv preprint arXiv:2106.09681}, year={2021} } ```
digiplay/Gap_2.6
digiplay
2023-12-03T14:25:58Z
721
4
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "license:other", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-07-21T13:20:16Z
--- license: other tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers inference: true --- https://civitai.com/models/166637?modelVersionId=187469 Sample image generated by Hugginface's API: *Gap_2.6_mangledVAE_.safetensors ![8104b053-1a97-4d2e-9ac2-c4c59c74f22e.jpeg](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/YLrTGIvdIqnbiAxzwXOSh.jpeg) Sample images generated by AUTOMATIC 1111: ![tmpv8p2x6vj.png](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/NQcuvmJu9iaPUmGTJ-ALV.png) ![tmp11s5b7ci.png](https://cdn-uploads.huggingface.co/production/uploads/646c83c871d0c8a6e4455854/TJ0g_QLb8r3CJfM-UiFzb.png)
TheBloke/Uncensored-Frank-13b-GGUF
TheBloke
2023-09-27T12:52:42Z
721
5
transformers
[ "transformers", "gguf", "llama", "en", "dataset:ehartford/wizard_vicuna_70k_unfiltered", "base_model:ajibawa-2023/Uncensored-Frank-13b", "license:cc-by-nc-nd-4.0", "text-generation-inference", "region:us" ]
null
2023-09-19T23:21:55Z
--- language: - en license: cc-by-nc-nd-4.0 datasets: - ehartford/wizard_vicuna_70k_unfiltered model_name: Uncensored Frank 13b base_model: ajibawa-2023/Uncensored-Frank-13b inference: false model_creator: Feynman Innovcations model_type: llama prompt_template: 'This is a conversation with your Uncensored AI assistant Frank. Frank can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: {prompt} ASSISTANT: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Uncensored Frank 13b - GGUF - Model creator: [Feynman Innovcations](https://huggingface.co/ajibawa-2023) - Original model: [Uncensored Frank 13b](https://huggingface.co/ajibawa-2023/Uncensored-Frank-13b) <!-- description start --> ## Description This repo contains GGUF format model files for [Feynman Innovcations's Uncensored Frank 13b](https://huggingface.co/ajibawa-2023/Uncensored-Frank-13b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Uncensored-Frank-13b-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF) * [Feynman Innovcations's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ajibawa-2023/Uncensored-Frank-13b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Frank ``` This is a conversation with your Uncensored AI assistant Frank. Frank can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `cc-by-nc-nd-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Feynman Innovcations's Uncensored Frank 13b](https://huggingface.co/ajibawa-2023/Uncensored-Frank-13b). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [uncensored-frank-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [uncensored-frank-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [uncensored-frank-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [uncensored-frank-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [uncensored-frank-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [uncensored-frank-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [uncensored-frank-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [uncensored-frank-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [uncensored-frank-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [uncensored-frank-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [uncensored-frank-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [uncensored-frank-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Uncensored-Frank-13b-GGUF/blob/main/uncensored-frank-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Uncensored-Frank-13b-GGUF and below it, a specific filename to download, such as: uncensored-frank-13b.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Uncensored-Frank-13b-GGUF uncensored-frank-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Uncensored-Frank-13b-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Uncensored-Frank-13b-GGUF uncensored-frank-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m uncensored-frank-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "This is a conversation with your Uncensored AI assistant Frank. Frank can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information.\n\nContext\nYou are a Uncensored AI assistant.\n\nUSER: {prompt}\nASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Uncensored-Frank-13b-GGUF", model_file="uncensored-frank-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Feynman Innovcations's Uncensored Frank 13b **Frank: An Uncensored Model** The character of Frank Costello in "The Departed" is known for his cunning, boldness, and willingness to talk about anything, regardless of societal norms or restrictions. Frank, An Uncensored model, draws inspiration from these qualities to offer a platform where users can discuss a wide array of topics without the fear of censorship or restrictions. Frank aims to push boundaries and encourage candid conversations. With Frank you can have unfiltered discussions on a multitude of topics, from politics and controversial issues to personal experiences and sensitive subjects. It is trained on around 150000 set of conversations. Each set having 10~15 conversations. Base data was obtained from [Eric Hartford](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered). This data was further refined and fine tuned. Besides this further synthetic conversation (more than 80k) was generated and refined. We will not release this data. **Warning** An uncensored model has no or little guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous objects. Publishing anything this model generates is the same as publishing it yourself. We are not responsible for what you generate using this model. **Training:** Entire dataset was trained on Azure 4 x A100 80GB. For 3 epoch, training took around 65 hours. DeepSpeed codebase was used for training purpose. This was trained on Llama-2 by Meta. **Example Prompt:** ``` This is a conversation with your Uncensored AI assistant Frank. Frank can discuss with you at length about various topics such as ---, ---, ---, . You can ask it anything you want and it will do its best to give you accurate and relevant information. Context You are a Uncensored AI assistant. USER: <prompt> ASSISTANT: ``` <!-- original-model-card end -->
TheBloke/med42-70B-GGUF
TheBloke
2023-10-27T23:04:48Z
721
18
transformers
[ "transformers", "gguf", "llama", "m42", "health", "healthcare", "clinical-llm", "text-generation", "en", "base_model:m42-health/med42-70b", "license:other", "text-generation-inference", "region:us" ]
text-generation
2023-10-27T21:16:14Z
--- base_model: m42-health/med42-70b inference: false language: - en license: other license_name: med42 model_creator: M42 Health model_name: Med42 70B model_type: llama pipeline_tag: text-generation prompt_template: '<|system|>: You are a helpful medical assistant created by M42 Health in the UAE. <|prompter|>:{prompt} <|assistant|>: ' quantized_by: TheBloke tags: - m42 - health - healthcare - clinical-llm --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Med42 70B - GGUF - Model creator: [M42 Health](https://huggingface.co/m42-health) - Original model: [Med42 70B](https://huggingface.co/m42-health/med42-70b) <!-- description start --> ## Description This repo contains GGUF format model files for [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/med42-70B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/med42-70B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/med42-70B-GGUF) * [M42 Health's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/m42-health/med42-70b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Med42 ``` <|system|>: You are a helpful medical assistant created by M42 Health in the UAE. <|prompter|>:{prompt} <|assistant|>: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [M42 Health's Med42 70B](https://huggingface.co/m42-health/med42-70b). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [med42-70b.Q2_K.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes | | [med42-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss | | [med42-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss | | [med42-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss | | [med42-70b.Q4_0.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [med42-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss | | [med42-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended | | [med42-70b.Q5_0.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [med42-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended | | [med42-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/med42-70B-GGUF/blob/main/med42-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended | | med42-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss | | med42-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ### Q6_K and Q8_0 files are split and require joining **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files. <details> <summary>Click for instructions regarding Q6_K and Q8_0 files</summary> ### q6_K Please download: * `med42-70b.Q6_K.gguf-split-a` * `med42-70b.Q6_K.gguf-split-b` ### q8_0 Please download: * `med42-70b.Q8_0.gguf-split-a` * `med42-70b.Q8_0.gguf-split-b` To join the files, do the following: Linux and macOS: ``` cat med42-70b.Q6_K.gguf-split-* > med42-70b.Q6_K.gguf && rm med42-70b.Q6_K.gguf-split-* cat med42-70b.Q8_0.gguf-split-* > med42-70b.Q8_0.gguf && rm med42-70b.Q8_0.gguf-split-* ``` Windows command line: ``` COPY /B med42-70b.Q6_K.gguf-split-a + med42-70b.Q6_K.gguf-split-b med42-70b.Q6_K.gguf del med42-70b.Q6_K.gguf-split-a med42-70b.Q6_K.gguf-split-b COPY /B med42-70b.Q8_0.gguf-split-a + med42-70b.Q8_0.gguf-split-b med42-70b.Q8_0.gguf del med42-70b.Q8_0.gguf-split-a med42-70b.Q8_0.gguf-split-b ``` </details> <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/med42-70B-GGUF and below it, a specific filename to download, such as: med42-70b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/med42-70B-GGUF med42-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/med42-70B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/med42-70B-GGUF med42-70b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m med42-70b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|system|>: You are a helpful medical assistant created by M42 Health in the UAE.\n<|prompter|>:{prompt}\n<|assistant|>:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/med42-70B-GGUF", model_file="med42-70b.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: M42 Health's Med42 70B # **Med42 - Clinical Large Language Model** Med42 is an open-access clinical large language model (LLM) developed by M42 to expand access to medical knowledge. Built off LLaMA-2 and comprising 70 billion parameters, this generative AI system provides high-quality answers to medical questions. ## Model Details *Note: Use of this model is governed by the M42 Health license. In order to download the model weights (and tokenizer), please read the [Med42 License](https://huggingface.co/spaces/m42-health/License) and accept our License by requesting access here.* Beginning with the base LLaMa-2 model, Med42 was instruction-tuned on a dataset of ~250M tokens compiled from different open-access sources, including medical flashcards, exam questions, and open-domain dialogues. **Model Developers:** M42 Health AI Team **Finetuned from model:** Llama-2 - 70B **Context length:** 4k tokens **Input:** Text only data **Output:** Model generates text only **Status:** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we enhance model's performance. **License:** A custom license is available [here](https://huggingface.co/spaces/m42-health/License) **Research Paper:** TBA ## Intended Use Med42 is being made available for further testing and assessment as an AI assistant to enhance clinical decision-making and enhance access to an LLM for healthcare use. Potential use cases include: - Medical question answering - Patient record summarization - Aiding medical diagnosis - General health Q&A To get the expected features and performance for the model, a specific formatting needs to be followed, including the `<|system|>`, `<|prompter|>` and `<|assistant|>` tags. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "m42-health/med42-70b" model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) prompt = "What are the symptoms of diabetes ?" prompt_template=f''' <|system|>: You are a helpful medical assistant created by M42 Health in the UAE. <|prompter|>:{prompt} <|assistant|>: ''' input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True,eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, max_new_tokens=512) print(tokenizer.decode(output[0])) ``` ## Hardware and Software The training process was performed on the Condor Galaxy 1 (CG-1) supercomputer platform. ## Evaluation Results Med42 achieves achieves competitive performance on various medical benchmarks, including MedQA, MedMCQA, PubMedQA, HeadQA, and Measuring Massive Multitask Language Understanding (MMLU) clinical topics. For all evaluations reported so far, we use [EleutherAI's evaluation harness library](https://github.com/EleutherAI/lm-evaluation-harness) and report zero-shot accuracies (except otherwise stated). We compare the performance with that reported for other models (ClinicalCamel-70B, GPT-3.5, GPT-4.0, Med-PaLM 2). |Dataset|Med42|ClinicalCamel-70B|GPT-3.5|GPT-4.0|Med-PaLM-2 (5-shot)*| |---|---|---|---|---|---| |MMLU Clinical Knowledge|74.3|69.8|69.8|86.0|88.3| |MMLU College Biology|84.0|79.2|72.2|95.1|94.4| |MMLU College Medicine|68.8|67.0|61.3|76.9|80.9| |MMLU Medical Genetics|86.0|69.0|70.0|91.0|90.0| |MMLU Professional Medicine|79.8|71.3|70.2|93.0|95.2| |MMLU Anatomy|67.4|62.2|56.3|80.0|77.8| |MedMCQA|60.9|47.0|50.1|69.5|71.3| |MedQA|61.5|53.4|50.8|78.9|79.7| |USMLE Self-Assessment|71.7|-|49.1|83.8|-| |USMLE Sample Exam|72.0|54.3|56.9|84.3|-| **We note that 0-shot performance is not reported for Med-PaLM 2. Further details can be found at [https://github.com/m42health/med42](https://github.com/m42health/med42)*. ### Key performance metrics: - Med42 achieves a 72% accuracy on the US Medical Licensing Examination (USMLE) sample exam, surpassing the prior state of the art among openly available medical LLMs. - 61.5% on MedQA dataset (compared to 50.8% for GPT-3.5) - Consistently higher performance on MMLU clinical topics compared to GPT-3.5. ## Limitations & Safe Use - Med42 is not ready for real clinical use. Extensive human evaluation is undergoing as it is required to ensure safety. - Potential for generating incorrect or harmful information. - Risk of perpetuating biases in training data. Use this model responsibly! Do not rely on it for medical usage without rigorous safety testing. ## Accessing Med42 and Reporting Issues Please report any software "bug" or other problems through one of the following means: - Reporting issues with the model: [https://github.com/m42health/med42](https://github.com/m42health/med42) - Reporting risky content generated by the model, bugs and/or any security concerns: [https://forms.office.com/r/YMJu3kcKat](https://forms.office.com/r/YMJu3kcKat) - M42’s privacy policy available at [https://m42.ae/privacy-policy/](https://m42.ae/privacy-policy/) - Reporting violations of the Acceptable Use Policy or unlicensed uses of Med42: <[email protected]> <!-- original-model-card end -->
ncsgobubble/Llama-7B-rollercoaster_v2
ncsgobubble
2024-01-23T14:07:38Z
721
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "lazymergekit", "meta-llama/Llama-2-7b-chat-hf", "SuvajitGB/rollercoaster_emotions_v2", "conversational", "base_model:SuvajitGB/rollercoaster_emotions_v2", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-09T09:57:59Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - meta-llama/Llama-2-7b-chat-hf - SuvajitGB/rollercoaster_emotions_v2 base_model: - SuvajitGB/rollercoaster_emotions_v2 --- # Llama-7B-rollercoaster_v2 Llama-7B-rollercoaster_v2 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) * [SuvajitGB/rollercoaster_emotions_v2](https://huggingface.co/SuvajitGB/rollercoaster_emotions_v2) ## 🧩 Configuration ```yaml slices: - sources: - model: meta-llama/Llama-2-7b-chat-hf layer_range: [0, 32] - model: SuvajitGB/rollercoaster_emotions_v2 layer_range: [0, 32] merge_method: slerp base_model: meta-llama/Llama-2-7b-chat-hf parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "ncsgobubble/Llama-7B-rollercoaster_v2" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
macadeliccc/Laser-WestLake-2x7b
macadeliccc
2024-03-04T16:33:44Z
721
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-27T18:07:39Z
--- license: apache-2.0 model-index: - name: Laser-WestLake-2x7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.27 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.44 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 69.25 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 85.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Laser-WestLake-2x7b name: Open LLM Leaderboard --- # Laser-Westlake-2x7B ![westlake-header](westlake-header.png) This model is a moerge of [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) and [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co/SanjiWatsuki/Kunoichi-DPO-v2-7B) ## Process + WestLake-7B-v2-laser is the base model and one of the experts rather than utilizing 3 different models. + Will attempt to laser the final product as well, but given that the base has already been lasered it may not work out. + I have another version using the original, non-lasered WestLake-7B that I will also attempt to laser and report the differences. # Usage Usage is the same as the [original WestLake-7B](https://huggingface.co/senseable/WestLake-7B-v2) ## GGUF Available [here](https://huggingface.co/macadeliccc/Laser-WestLake-2x7b-GGUF) ## Evaluations <pre>----Benchmark Complete---- 2024-01-27 19:12:49 Time taken: 24.3 mins Prompt Format: ChatML Model: macadeliccc/Laser-WestLake-2x7b-GGUF Score (v2): 75.42 Parseable: 171.0 --------------- Batch completed Time taken: 24.4 mins --------------- </pre> # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Laser-WestLake-2x7b) | Metric |Value| |---------------------------------|----:| |Avg. |74.00| |AI2 Reasoning Challenge (25-Shot)|72.27| |HellaSwag (10-Shot) |88.44| |MMLU (5-Shot) |64.71| |TruthfulQA (0-shot) |69.25| |Winogrande (5-shot) |85.79| |GSM8k (5-shot) |63.53|
rhasspy/faster-whisper-base-int8
rhasspy
2024-03-10T18:45:38Z
721
1
transformers
[ "transformers", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-03-10T18:45:09Z
--- license: mit ---
Azazelle/Mocha-Dare-7b-ex
Azazelle
2024-03-23T05:31:20Z
721
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:akjindal53244/Mistral-7B-v0.1-Open-Platypus", "base_model:WizardLM/WizardMath-7B-V1.1", "base_model:mistralai/Mistral-7B-v0.1", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-23T04:42:31Z
--- pipeline_tag: text-generation base_model: - Open-Orca/Mistral-7B-OpenOrca - akjindal53244/Mistral-7B-v0.1-Open-Platypus - WizardLM/WizardMath-7B-V1.1 - mistralai/Mistral-7B-v0.1 library_name: transformers tags: - mergekit - merge license: cc-by-4.0 --- # Mocha-Dare-7b-ex This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base. ### Models Merged The following models were included in the merge: * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) * [akjindal53244/Mistral-7B-v0.1-Open-Platypus](https://huggingface.co/akjindal53244/Mistral-7B-v0.1-Open-Platypus) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Open-Orca/Mistral-7B-OpenOrca parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: akjindal53244/Mistral-7B-v0.1-Open-Platypus parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ```
yyh0901/lloma_step400
yyh0901
2024-04-06T11:40:09Z
721
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-06T08:52:34Z
--- license: apache-2.0 pipeline_tag: text-generation --- "_name_or_path": "/data/yyh/model/models--meta-llama--Llama-2-7b-hf", "architectures": [ "LlamaForCausalLM" ], "attention_bias": false, "attention_dropout": 0.0, "bos_token_id": 1, "eos_token_id": 2, "hidden_act": "silu", "hidden_size": 4096, "initializer_range": 0.02, "intermediate_size": 11008, "max_position_embeddings": 65536, "model_type": "llama", "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "pad_token_id": 0, "pretraining_tp": 1, "rms_norm_eps": 1e-05, "rope_scaling": { "factor": 16.0, "type": "dynamic" }, "rope_theta": 10000.0, "tie_word_embeddings": false, "torch_dtype": "bfloat16", "transformers_version": "4.39.2", "use_cache": true, "vocab_size": 32000 Enlonged context length, trained 400 steps on LLaMa-2-7b