modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
sequencelengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
FelixChao/Capricorn-7B-DPO
FelixChao
2024-02-15T05:15:02Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T05:07:17Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
logicker/SkkuDS-DPO-72B-v1
logicker
2024-02-16T09:51:54Z
727
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "pretrained, dpo", "conversational", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T08:14:26Z
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained, dpo --- # Qwen1.5-72B ## DPO Tuning - Dataset: Intel/orca_dpo_pairs ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Citation ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
logicker/SkkuDS-DPO-72B-v3
logicker
2024-02-27T17:09:50Z
727
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "pretrained, dpo", "conversational", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T09:22:31Z
--- license: other license_name: tongyi-qianwen license_link: >- https://huggingface.co/Qwen/Qwen1.5-72B/blob/main/LICENSE language: - en pipeline_tag: text-generation tags: - pretrained, dpo --- # Qwen1.5-72B ## DPO Tuning - Dataset: Intel/orca_dpo_pairs ## Introduction Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include: * Multilingual support of both base and chat models; * Stable support of 32K context length for models of all sizes * No need of `trust_remote_code`. For more details, please refer to [blog post](https://qwenlm.github.io/blog/qwen1.5/) and [GitHub repo](https://github.com/QwenLM/Qwen1.5). ## Model Details Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA and the mixture of SWA and full attention. ## Requirements The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`, or you might encounter the following error: ``` KeyError: 'qwen2'. ``` ## Citation ``` @article{qwen, title={Qwen Technical Report}, author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu}, journal={arXiv preprint arXiv:2309.16609}, year={2023} } ```
Gille/StrangeMerges_25-7B-dare_ties
Gille
2024-03-04T21:52:31Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_21-7B-slerp", "bardsai/jaskier-7b-dpo-v5.6", "base_model:Gille/StrangeMerges_21-7B-slerp", "base_model:bardsai/jaskier-7b-dpo-v5.6", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-18T21:10:52Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_21-7B-slerp - bardsai/jaskier-7b-dpo-v5.6 base_model: - Gille/StrangeMerges_21-7B-slerp - bardsai/jaskier-7b-dpo-v5.6 model-index: - name: StrangeMerges_25-7B-dare_ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.54 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_25-7B-dare_ties name: Open LLM Leaderboard --- # StrangeMerges_25-7B-dare_ties Note: This one inherited the "INSTINSTINSTINSTINST" stuff from the other model that we'll just have to try and merge out or something... StrangeMerges_25-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) * [bardsai/jaskier-7b-dpo-v5.6](https://huggingface.co/bardsai/jaskier-7b-dpo-v5.6) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_20-7B-slerp # No parameters necessary for base model - model: Gille/StrangeMerges_21-7B-slerp parameters: density: 0.6 weight: 0.3 - model: bardsai/jaskier-7b-dpo-v5.6 parameters: density: 0.4 weight: 0.7 merge_method: dare_ties base_model: Gille/StrangeMerges_20-7B-slerp parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_25-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_25-7B-dare_ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.33| |AI2 Reasoning Challenge (25-Shot)|73.46| |HellaSwag (10-Shot) |88.89| |MMLU (5-Shot) |64.37| |TruthfulQA (0-shot) |76.54| |Winogrande (5-shot) |84.29| |GSM8k (5-shot) |70.43|
Gille/StrangeMerges_26-7B-dare_ties
Gille
2024-03-04T21:51:17Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "paulml/OGNO-7B", "Gille/StrangeMerges_25-7B-dare_ties", "base_model:paulml/OGNO-7B", "base_model:Gille/StrangeMerges_25-7B-dare_ties", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-19T03:54:42Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - paulml/OGNO-7B - Gille/StrangeMerges_25-7B-dare_ties base_model: - paulml/OGNO-7B - Gille/StrangeMerges_25-7B-dare_ties model-index: - name: StrangeMerges_26-7B-dare_ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.0 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.35 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.39 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_26-7B-dare_ties name: Open LLM Leaderboard --- # StrangeMerges_26-7B-dare_ties StrangeMerges_26-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [paulml/OGNO-7B](https://huggingface.co/paulml/OGNO-7B) * [Gille/StrangeMerges_25-7B-dare_ties](https://huggingface.co/Gille/StrangeMerges_25-7B-dare_ties) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_21-7B-slerp # No parameters necessary for base model - model: paulml/OGNO-7B parameters: density: 0.5 weight: 0.4 - model: Gille/StrangeMerges_25-7B-dare_ties parameters: density: 0.5 weight: 0.6 merge_method: dare_ties base_model: Gille/StrangeMerges_21-7B-slerp parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_26-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_26-7B-dare_ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.19| |AI2 Reasoning Challenge (25-Shot)|72.95| |HellaSwag (10-Shot) |89.00| |MMLU (5-Shot) |64.35| |TruthfulQA (0-shot) |76.39| |Winogrande (5-shot) |84.45| |GSM8k (5-shot) |69.98|
premai-io/tinyllama-3B
premai-io
2024-02-21T14:25:10Z
727
0
transformers
[ "transformers", "llama", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-02-21T14:23:45Z
Entry not found
Gille/StrangeMerges_29-7B-dare_ties
Gille
2024-03-04T21:48:00Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_21-7B-slerp", "CultriX/MonaTrix-v4", "base_model:Gille/StrangeMerges_21-7B-slerp", "base_model:CultriX/MonaTrix-v4", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-21T18:43:21Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_21-7B-slerp - CultriX/MonaTrix-v4 base_model: - Gille/StrangeMerges_21-7B-slerp - CultriX/MonaTrix-v4 model-index: - name: StrangeMerges_29-7B-dare_ties results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.04 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 76.98 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_29-7B-dare_ties name: Open LLM Leaderboard --- # StrangeMerges_29-7B-dare_ties StrangeMerges_29-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp) * [CultriX/MonaTrix-v4](https://huggingface.co/CultriX/MonaTrix-v4) ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_20-7B-slerp # No parameters necessary for base model - model: Gille/StrangeMerges_21-7B-slerp parameters: density: 0.6 weight: 0.3 - model: CultriX/MonaTrix-v4 parameters: density: 0.4 weight: 0.7 merge_method: dare_ties base_model: Gille/StrangeMerges_20-7B-slerp parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_29-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_29-7B-dare_ties) | Metric |Value| |---------------------------------|----:| |Avg. |76.09| |AI2 Reasoning Challenge (25-Shot)|73.04| |HellaSwag (10-Shot) |89.04| |MMLU (5-Shot) |64.29| |TruthfulQA (0-shot) |76.98| |Winogrande (5-shot) |84.53| |GSM8k (5-shot) |68.69|
splm/openchat-spin-slimorca-iter1
splm
2024-02-22T06:38:18Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-22T06:30:12Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Eric111/openchat-3.5-0106-128k-DPO
Eric111
2024-02-23T22:34:02Z
727
2
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-23T22:24:16Z
--- library_name: transformers license: apache-2.0 tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details DPO fine-tuned version of CallComply/openchat-3.5-0106-128k with Intel/orca_dpo_pairs ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
jan-hq/stealth-v2
jan-hq
2024-03-04T13:36:12Z
727
3
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-24T10:27:55Z
--- language: - en license: apache-2.0 model-index: - name: stealth-v2 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.26 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 72.47 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 88.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.67 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jan-hq/stealth-v2 name: Open LLM Leaderboard --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto" > <img src="https://github.com/janhq/jan/assets/89722390/35daac7d-b895-487c-a6ac-6663daaad78e" alt="Jan banner" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <p align="center"> <a href="https://jan.ai/">Jan</a > - <a href="https://discord.gg/AsJ8krTT3N">Discord</a> </p> <!-- header end --> # Prompt template ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Training detail You can read [here](https://huggingface.co/jan-hq/stealth-finance-v1-adapter). # Run this model You can run this model using [Jan Desktop](https://jan.ai/) on Mac, Windows, or Linux. Jan is an open source, ChatGPT alternative that is: - 💻 **100% offline on your machine**: Your conversations remain confidential, and visible only to you. - 🗂️ ** An Open File Format**: Conversations and model settings stay on your computer and can be exported or deleted at any time. - 🌐 **OpenAI Compatible**: Local server on port `1337` with OpenAI compatible endpoints - 🌍 **Open Source & Free**: We build in public; check out our [Github](https://github.com/janhq) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/r7VmEBLGXpPLTu2MImM7S.png) # About Jan Jan believes in the need for an open-source AI ecosystem and is building the infra and tooling to allow open-source AIs to compete on a level playing field with proprietary ones. Jan's long-term vision is to build a cognitive framework for future robots, who are practical, useful assistants for humans and businesses in everyday life. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jan-hq__stealth-v2) | Metric |Value| |---------------------------------|----:| |Avg. |76.37| |AI2 Reasoning Challenge (25-Shot)|73.89| |HellaSwag (10-Shot) |89.26| |MMLU (5-Shot) |64.94| |TruthfulQA (0-shot) |72.47| |Winogrande (5-shot) |88.00| |GSM8k (5-shot) |69.67|
Locutusque/NeuralHyperion-Medium-Preview
Locutusque
2024-03-02T07:19:14Z
727
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-26T04:13:38Z
--- language: - en license: apache-2.0 library_name: transformers model-index: - name: NeuralHyperion-Medium-Preview results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.67 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.67 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.73 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 42.93 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/NeuralHyperion-Medium-Preview name: Open LLM Leaderboard --- # Model Card for Locutusque/NeuralHyperion-Medium ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/1lL97kzuxqykXGUT6F593.png) ## Model Details **Model Name**: Locutusque/NeuralHyperion-Medium **Base Model**: mistralai/Mistral-7B-v0.1 **Publisher**: M4-ai **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. **Language**: Multi-domain, English language. **License**: Apache-2.0 ## Model Description `Locutusque/NeuralHyperion-Medium` is a state-of-the-art language model fine-tuned on the Hyperion dataset and further fine-tuned using DPO on Argilla’s orca DPO pairs for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The `Locutusque/NeuralHyperion-Medium` model was fine-tuned on the Hyperion dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. It is then further fine-tuned using DPO on Argilla’s orca DPO pairs to further improve reasoning. ## Evaluation Results Coming soon... ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/NeuralHyperion-Medium" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. ## Licensing Information This model is released under the Apache-2.0 license. ## Citation Information If you use Locutusque/NeuralHyperion-Medium in your research, please cite the Hyperion dataset as follows: ``` @misc{sebastian_gabarain_2024, title = {Hyperion-1: Illuminating the Path to Advanced Reasoning with a High-Quality, Multidisciplinary Question Answering Dataset}, author = {Sebastian Gabarain}, publisher = {HuggingFace}, year = {2024}, url = {https://huggingface.co/datasets/Locutusque/hyperion-v1.0} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__NeuralHyperion-Medium-Preview) | Metric |Value| |---------------------------------|----:| |Avg. |61.67| |AI2 Reasoning Challenge (25-Shot)|60.67| |HellaSwag (10-Shot) |83.67| |MMLU (5-Shot) |63.73| |TruthfulQA (0-shot) |42.93| |Winogrande (5-shot) |78.53| |GSM8k (5-shot) |40.49|
juhwanlee/experiment2-cause-v1
juhwanlee
2024-03-05T03:46:20Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-05T01:16:18Z
--- license: apache-2.0 datasets: - Open-Orca/OpenOrca language: - en --- # Model Details * Model Description: This model is test for data ordering. * Developed by: Juhwan Lee * Model Type: Large Language Model # Model Architecture This model is based on Mistral-7B-v0.1. We fine-tuning this model for data ordering task. Mistral-7B-v0.1 is a transformer model, with the following architecture choices: * Grouped-Query Attention * Sliding-Window Attention * Byte-fallback BPE tokenizer # Dataset We random sample Open-Orca dataset. (We finetune the 100,000 dataset) # Guthub https://github.com/trailerAI # License Apache License 2.0
cookinai/Blitz-v0.1
cookinai
2024-03-06T02:15:08Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-06T00:58:54Z
--- license: cc-by-4.0 --- # Base finetune of [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on my [Kugelblitz Dataset](https://huggingface.co/datasets/cookinai/kugelblitz-alpha-v0.1) ![Kugelblitz](https://huggingface.co/cookinai/Blitz-v0.1/resolve/main/kugelblitz_black_hole.png) Trained on only 1 epoch V0.2 should be coming soon with some more epochs, if this one turns out well
nlpguy/AlloyIngotNeoY
nlpguy
2024-03-08T15:38:51Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "base_model:yam-peleg/Experiment26-7B", "base_model:ammarali32/multi_verse_model", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-08T14:47:25Z
--- base_model: - yam-peleg/Experiment26-7B - ammarali32/multi_verse_model library_name: transformers tags: - mergekit - merge license: apache-2.0 --- # merged This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the task_swapping_ties merge method using [ammarali32/multi_verse_model](https://huggingface.co/ammarali32/multi_verse_model) as a base. ### Models Merged The following models were included in the merge: * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: model: path: ammarali32/multi_verse_model dtype: bfloat16 merge_method: task_swapping_ties slices: - sources: - layer_range: [0, 32] model: model: path: yam-peleg/Experiment26-7B parameters: diagonal_offset: 2.0 weight: 0.4 - layer_range: [0, 32] model: model: path: ammarali32/multi_verse_model parameters: weight: 0.6 ```
TeeZee/GALAXY-XB-v.03
TeeZee
2024-03-30T18:48:54Z
727
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T01:00:36Z
--- license: apache-2.0 model-index: - name: GALAXY-XB-v.03 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.77 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.59 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.55 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 44.19 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.03 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TeeZee/GALAXY-XB-v.03 name: Open LLM Leaderboard --- ### TeeZee/GALAXY-XB-v.03 ### Experiment, can DUS be taken one or more steps further? ### Technical notes: - 12 layers removed from both models, 4 more than in original paper but its 1/4 of all layers(48) as per original paper. - base version of upstage/SOLAR-10.7B-v1.0 used for merge - no finetuning done yet, this is just a merge, first step in DUS paper - next step, if evaluation proves that its at least as 'smart' as base model, should be finetuning to 'recover' after merge # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TeeZee__GALAXY-XB-v.03) | Metric |Value| |---------------------------------|----:| |Avg. |63.37| |AI2 Reasoning Challenge (25-Shot)|61.77| |HellaSwag (10-Shot) |83.59| |MMLU (5-Shot) |64.55| |TruthfulQA (0-shot) |44.19| |Winogrande (5-shot) |81.06| |GSM8k (5-shot) |45.03| ### Results - small quality loss can be observed comparing to base model, as described in the DUS paper - this merge has best evaluation results, so it will be finetuned to 'recover' from the merge - finetunig will be done on 5-10% of openorca dataset and full DPO datasets used by SOLAR - v03 > v01 > v02 - based on average evaluation scores, removing 1/4 of total layers seems to be the correct way to scale DUS
rwitz/experiment26-truthy-iter-2
rwitz
2024-03-12T04:41:24Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-12T04:18:11Z
--- library_name: transformers tags: [] license: mit --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
feeltheAGI/Maverick-Math-7B
feeltheAGI
2024-03-14T10:15:56Z
727
6
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "dataset:microsoft/orca-math-word-problems-200k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-14T08:36:24Z
--- datasets: - microsoft/orca-math-word-problems-200k license: apache-2.0 --- ### Maverick-Math-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d1f383351255ba48a4f831/eUojqac1rHKENu63Z8XSp.png) ### Model description Maverick-Math is a Mistral Fine-tune, on top of math and code datasets and performs very well on benchmarks . ## 🏆 Evaluation ### gsm8k |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |-----|------:|----------------|-----:|-----------|-----:|---|-----:| |gsm8k| 3|strict-match | 5|exact_match|0.7331|± |0.0122| | | |flexible-extract| 5|exact_match|0.7400|± |0.0121| ### mathqa |Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |------|------:|------|------|--------|-----:|---|-----:| |mathqa| 1|none |None |acc |0.3591|± |0.0088| | | |none |None |acc_norm|0.3635|± |0.0088|
icefog72/Kunokukulemonchini-7b
icefog72
2024-04-11T01:25:09Z
727
5
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "alpaca", "conversational", "base_model:grimjim/kukulemon-7B", "base_model:Nitral-AI/Kunocchini-7b-128k-test", "license:cc-by-nc-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-15T02:32:03Z
--- base_model: - grimjim/kukulemon-7B - Nitral-AI/Kunocchini-7b-128k-test library_name: transformers tags: - mergekit - merge - alpaca - mistral license: cc-by-nc-4.0 model-index: - name: Kunokukulemonchini-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.72 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.31 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 65.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.89 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.45 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 60.20 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=icefog72/Kunokukulemonchini-7b name: Open LLM Leaderboard --- # Kunokukulemonchini-7b This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). Here is an 4.1bpw exl2 quant [Kunokukulemonchini-7b-4.1bpw-exl2](https://huggingface.co/icefog72/Kunokukulemonchini-7b-4.1bpw-exl2) for people like me with 6gb vram. Thx to Natkituwu for - 3.5bpw [Kunokukulemonchini-7b-3.5bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-3.5bpw-exl2) - 5.0bpw [Kunokukulemonchini-7b-5.0bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-5.0bpw-exl2) - 6.5bpw [Kunokukulemonchini-7b-6.5bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-6.5bpw-exl2) - 7.1bpw [Kunokukulemonchini-7b-7.1bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-7.1bpw-exl2) - 8.0bpw [Kunokukulemonchini-7b-8.0bpw-exl2](https://huggingface.co/Natkituwu/Kunokukulemonchini-7b-8.0bpw-exl2) ## Advertisement - Check out new merge model [IceLemonTeaRP-32k-7b](https://huggingface.co/icefog72/IceLemonTeaRP-32k-7b) ## Merge Details Slightly edited kukulemon-7B config.json before merge to get at least ~32k context window. ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B) * [Nitral-AI/Kunocchini-7b-128k-test](https://huggingface.co/Nitral-AI/Kunocchini-7b-128k-test) ## How to download, including from branches ### From the command line I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` To download the `main` branch to a folder called `Kunokukulemonchini-7b`: ```shell mkdir icefog72/Kunokukulemonchini-7b huggingface-cli download icefog72/Kunokukulemonchini-7b --local-dir Kunokukulemonchini-7b --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model. The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`. For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell mkdir FOLDERNAME HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MODEL --local-dir FOLDERNAME --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: grimjim/kukulemon-7B layer_range: [0, 32] - model: Nitral-AI/Kunocchini-7b-128k-test layer_range: [0, 32] merge_method: slerp base_model: Nitral-AI/Kunocchini-7b-128k-test parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_icefog72__Kunokukulemonchini-7b) | Metric |Value| |---------------------------------|----:| |Avg. |69.61| |AI2 Reasoning Challenge (25-Shot)|66.72| |HellaSwag (10-Shot) |86.31| |MMLU (5-Shot) |65.31| |TruthfulQA (0-shot) |61.89| |Winogrande (5-shot) |78.45| |GSM8k (5-shot) |60.20|
Gille/StrangeMerges_42-7B-dare_ties
Gille
2024-03-18T19:29:04Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "rwitz/experiment26-truthy-iter-0", "Kukedlc/Neural4gsm8k", "Gille/StrangeMerges_30-7B-slerp", "base_model:rwitz/experiment26-truthy-iter-0", "base_model:Kukedlc/Neural4gsm8k", "base_model:Gille/StrangeMerges_30-7B-slerp", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-18T19:19:43Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - rwitz/experiment26-truthy-iter-0 - Kukedlc/Neural4gsm8k - Gille/StrangeMerges_30-7B-slerp base_model: - rwitz/experiment26-truthy-iter-0 - Kukedlc/Neural4gsm8k - Gille/StrangeMerges_30-7B-slerp --- # StrangeMerges_42-7B-dare_ties StrangeMerges_42-7B-dare_ties is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [rwitz/experiment26-truthy-iter-0](https://huggingface.co/rwitz/experiment26-truthy-iter-0) * [Kukedlc/Neural4gsm8k](https://huggingface.co/Kukedlc/Neural4gsm8k) * [Gille/StrangeMerges_30-7B-slerp](https://huggingface.co/Gille/StrangeMerges_30-7B-slerp) ## 🧩 Configuration ```yaml models: - model: rwitz/experiment26-truthy-iter-0 parameters: weight: 0.3 density: 0.8 - model: Kukedlc/Neural4gsm8k parameters: weight: 0.2 density: 0.8 - model: Gille/StrangeMerges_30-7B-slerp parameters: weight: 0.5 density: 0.8 base_model: Gille/StrangeMerges_41-7B-dare_ties merge_method: dare_ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_42-7B-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
abhishek/autotrain-ixpiv-6kj1e
abhishek
2024-03-19T08:02:25Z
727
0
transformers
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "autotrain", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-19T07:46:18Z
--- tags: - autotrain - text-generation widget: - text: "I love AutoTrain because " license: other --- # Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
Yuma42/KangalKhan-Beta-Sapphire-7B
Yuma42
2024-03-25T00:49:29Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "kaist-ai/mistral-orpo-capybara-7k", "argilla/distilabeled-OpenHermes-2.5-Mistral-7B", "conversational", "en", "base_model:kaist-ai/mistral-orpo-capybara-7k", "base_model:argilla/distilabeled-OpenHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T00:44:15Z
--- tags: - merge - mergekit - lazymergekit - kaist-ai/mistral-orpo-capybara-7k - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - kaist-ai/mistral-orpo-capybara-7k - argilla/distilabeled-OpenHermes-2.5-Mistral-7B license: apache-2.0 language: - en --- # KangalKhan-Beta-Sapphire-7B KangalKhan-Beta-Sapphire-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [kaist-ai/mistral-orpo-capybara-7k](https://huggingface.co/kaist-ai/mistral-orpo-capybara-7k) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: kaist-ai/mistral-orpo-capybara-7k layer_range: [0, 32] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: kaist-ai/mistral-orpo-capybara-7k parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-Beta-Sapphire-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
M4-ai/Hercules-Mini-1.8B
M4-ai
2024-03-30T15:18:49Z
727
6
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:Locutusque/hercules-v4.0", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-29T00:06:01Z
--- library_name: transformers license: other datasets: - Locutusque/hercules-v4.0 language: - en inference: parameters: do_sample: true temperature: 1 top_p: 0.7 top_k: 4 max_new_tokens: 250 repetition_penalty: 1.1 --- # Hercules-Mini-1.8B <!-- Provide a quick summary of what the model is/does. --> We fine-tuned Qwen1.5-1.8B on Locutusque's Hercules-v4. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model has capabilities in math, coding, function calling, roleplay, and more. We fine-tuned it using 700,000 examples of Hercules-v4. - **Developed by:** M4-ai - **Language(s) (NLP):** English and maybe Chinese - **License:** tongyi-qianwen license - **Finetuned from model:** [Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> General purpose assistant, question answering, chain-of-thought, etc.. ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> The eos token was not setup properly, so to prevent infinite generation you'll need to implement a stopping criteria when the model generates the <|im_end|> token. ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## Evaluation Coming soon ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Locutusque/hercules-v4.0 #### Training Hyperparameters - **Training regime:** bf16 non-mixed precision ## Technical Specifications #### Hardware We used 8 Kaggle TPUs, and we trained at a global batch size of 256 and sequence length of 1536 ## Contributions Thanks to @Tonic, @aloobun, @fhai50032, and @Locutusque for their contributions to this model.
jisukim8873/mistral-7B-alpaca-case-1-2
jisukim8873
2024-04-01T04:27:30Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-01T03:24:51Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Aratako/c4ai-command-r-v01-japanese-instruct
Aratako
2024-04-07T15:18:37Z
727
4
transformers
[ "transformers", "safetensors", "cohere", "text-generation", "ja", "en", "base_model:CohereForAI/c4ai-command-r-v01", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-04T03:56:52Z
--- library_name: transformers license: cc-by-nc-sa-4.0 language: - ja - en base_model: - CohereForAI/c4ai-command-r-v01 --- # c4ai-command-r-v01-japanese-instruct [GGUF版はこちら/Click here for the GGUF version](https://huggingface.co/Aratako/c4ai-command-r-v01-japanese-instruct-GGUF) ## 概要 [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01)を、[ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)を使って追加で日本語インストラクションチューニングを施したモデルです。 ## 学習の設定 RunpodでGPUサーバを借り、A6000x4で学習を行いました。主な学習パラメータは以下の通りです。 - lora_r: 64 - lisa_alpha: 128 - lora_dropout: 0.05 - lora_target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] - learning_rate: 2e-5 - num_train_epochs: 10epochs - batch_size: 50 - max_seq_length: 2048 ## 評価 jsquad(jsquad-1.1-0.3, 2-shots)、jcommonsenseqa(jcommonsenseqa-1.1-0.3, 3-shots)、jnli(jnli-1.3-0.3, 3-shots)、marc_ja(marc_ja-1.1-0.3, 3-shots)結果は以下の通りです。 (8ビット量子化/jsquadは100で割り、それぞれ小数点以下第4位を四捨五入) 平均スコアの向上が見受けられます。 |Model|jsquad(exact_match)|jcommonsenseqa(acc)|jnli(acc)|marc_ja(acc)|average| |---|---|---|---|---|---| | c4ai-command-r-v01 |0.809 | 0.902 | 0.466 | 0.954 | 0.783 | | **c4ai-command-r-v01-japanese-instruct** | **0.836** | **0.911** | **0.537** | **0.940** | **0.806** | 評価には[lm-evaluation-harness](https://github.com/Stability-AI/lm-evaluation-harness)を利用しました。 また、元モデルと本モデルの[japanese-mt-bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge)の結果は以下の通りです。(シングルターン、4ビット量子化) スコア的にはあまり変わりませんでした。ただし、元モデルの出力の中には時々英語が混ざっていましたが、目視で確認した範囲だと混ざらなくなっていたので学習の効果は多少はありそうです。 |Model|Coding|Extraction|Humanities|Math|Reasoning|Roleplay|STEM|Writing|avg_score| |---|---|---|---|---|---|---|---|---|---| | c4ai-command-r-v01 | 6.1 | 7.9 | 9.7 | 2.4 | 6.0 | 8.3 | 9.8 | 8.6 | 7.35 | | **c4ai-command-r-v01-japanese-instruct** | **5.6** | **8.3** | **8.1** | **3.4** | **6.1** | **7.9** | **9.2** | **8.6** | **7.15** | ![レーダーチャート](./japanese_mt_bench.png) 余談ですが、英語ベンチマークである[Open LLM Leaderboard]((https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard))のスコアもなぜかわずかに向上していました。 [詳細](https://huggingface.co/datasets/open-llm-leaderboard/details_Aratako__c4ai-command-r-v01-japanese-instruct) | Metric |c4ai-command-r-v01|**c4ai-command-r-v01-japanese-instruct**| |---------------------------------|----:|----:| |Avg. |68.54|**68.85**| |AI2 Reasoning Challenge (25-Shot)|65.53|**65.87**| |HellaSwag (10-Shot) |87|**85.62**| |MMLU (5-Shot) |68.2|**67.61**| |TruthfulQA (0-shot) |52.32|**51.01**| |Winogrande (5-shot) |81.53|**82.95**| |GSM8k (5-shot) |56.63|**60.05**| ## ライセンス 元モデルである[CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01)はCC-BY-NC 4.0と[C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)のもとに配布されています。 また、ファインチューニングに利用したデータセットである[ichikara-instruction](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF-%E5%85%AC%E9%96%8B/)はCC-BY-NC-SA 4.0の元配布されています。 そのため、このモデルのライセンスはCC-BY-NC-SA 4.0及び[C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy)となります。(理解間違っていればご指摘ください)
saucam/Nereus-7B
saucam
2024-04-10T05:56:19Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "cognitivecomputations/dolphin-2.8-mistral-7b-v02", "NousResearch/Hermes-2-Pro-Mistral-7B", "conversational", "base_model:cognitivecomputations/dolphin-2.8-mistral-7b-v02", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-04T08:36:43Z
--- tags: - merge - mergekit - cognitivecomputations/dolphin-2.8-mistral-7b-v02 - NousResearch/Hermes-2-Pro-Mistral-7B base_model: - cognitivecomputations/dolphin-2.8-mistral-7b-v02 license: apache-2.0 --- ![](https://raw.githubusercontent.com/saucam/models/main/Nereus.png) # 🌊 Nereus-7B Nereus-7B excels at conversations, coding, and tasks that require structured output in JSON. It is a merge of the following models using [mergekit](https://github.com/arcee-ai/mergekit): * [cognitivecomputations/dolphin-2.8-mistral-7b-v02](https://huggingface.co/cognitivecomputations/dolphin-2.8-mistral-7b-v02) * [NousResearch/Hermes-2-Pro-Mistral-7B](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B) ## 🧩 Configuration ```yamlmodels: - model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 parameters: density: 0.5 weight: 0.4 # No parameters necessary for base model - model: NousResearch/Hermes-2-Pro-Mistral-7B parameters: density: 0.5 weight: 0.6 merge_method: dare_ties base_model: cognitivecomputations/dolphin-2.8-mistral-7b-v02 parameters: int8_mask: true dtype: bfloat16 ``` ## Eval Results |Benchmark| Model |agieval|gpt4all|bigbench|truthfulqa|Average| |---------|----------------------------------------------------|------:|------:|-------:|---------:|------:| |nous |[Nereus-7B](https://huggingface.co/saucam/Nereus-7B)| 42.8| 72.21| 39.17| 54.32| 52.12| |Benchmark| Model |winogrande| arc |gsm8k|mmlu|truthfulqa|hellaswag|Average| |---------|----------------------------------------------------|---------:|----:|----:|---:|---------:|--------:|------:| |openllm |[Nereus-7B](https://huggingface.co/saucam/Nereus-7B)| 76.95|62.54|46.25|59.6| 54.32| 83.23| 63.82| For detailed results [see here](https://github.com/saucam/model_evals/blob/main/saucam/Nereus-7B/README.md) ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "saucam/Nereus-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` Sample responses ``` What is a large language model?<|im_end|> <|im_start|>assistant A large language model is a type of artificial intelligence (AI) system that has been trained on vast amounts of text data to understand, generate, and predict patterns in human language. It is designed to process and analyze natural language input, making it capable of tasks such as text generation, translation, language translation, and text classification. These models are typically based on deep learning techniques, particularly neural networks, and are trained on large datasets, often consisting of billions of words. Some well-known large language models include GPT-3 by OpenAI, BERT by Google, and T5 by Google. These models can be fine-tuned for specific tasks or domains to improve their performance. They have revolutionized the field of natural language processing and have numerous applications in areas such as chatbots, search engines, and automated writing assistance. ```
ShenaoZhang/0.001_idpo_iter_1
ShenaoZhang
2024-04-05T10:29:26Z
727
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:HuggingFaceH4/ultrafeedback_binarized", "base_model:HuggingFaceH4/mistral-7b-sft-beta", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-05T09:41:56Z
--- license: mit base_model: HuggingFaceH4/mistral-7b-sft-beta tags: - alignment-handbook - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: 0.001_idpo_iter_1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_idpo_iter_1 This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the HuggingFaceH4/ultrafeedback_binarized dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
LiteLLMs/c4ai-command-r-plus-GGUF
LiteLLMs
2024-05-25T03:22:33Z
727
1
transformers
[ "transformers", "gguf", "GGUF", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-18T00:50:43Z
--- language: - en - fr - de - es - it - pt - ja - ko - zh - ar license: cc-by-nc-4.0 library_name: transformers tags: - GGUF quantized_by: andrijdavid --- # c4ai-command-r-plus-GGUF - Original model: [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus) <!-- description start --> ## Description This repo contains GGUF format model files for [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/c4ai-command-r-plus-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/c4ai-command-r-plus-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/c4ai-command-r-plus-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/c4ai-command-r-plus-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: c4ai-command-r-plus # Model Card for C4AI Command R+ 🚨 **This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit)**. ## Model Summary C4AI Command R+ is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ is a multilingual model evaluated in 10 languages for performance: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Arabic, and Simplified Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering. C4AI Command R+ is part of a family of open weight releases from Cohere For AI and Cohere. Our smaller companion model is [C4AI Command R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) Developed by: [Cohere](https://cohere.com/) and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-plus - Model Size: 104 billion parameters - Context length: 128K **Try C4AI Command R+** You can try out C4AI Command R+ before downloading the weights in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus). **Usage** Please install `transformers` from the source repository that includes the necessary changes for this model. ```python # pip install 'git+https://github.com/huggingface/transformers.git' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 8-bit precision** ```python # pip install 'git+https://github.com/huggingface/transformers.git' bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_8bit=True) model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 4-bit precision** This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit). ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. **Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. **Context length**: Command R+ supports a context length of 128K. ## Evaluations Command R+ has been submitted to the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We include the results below, along with a direct comparison to the strongest state-of-art open weights models currently available on Hugging Face. We note that these results are only useful to compare when evaluations are implemented for all models in a [standardized way](https://github.com/EleutherAI/lm-evaluation-harness) using publically available code, and hence shouldn't be used for comparison outside of models submitted to the leaderboard or compared to self-reported numbers which can't be replicated in the same way. | Model | Average | Arc (Challenge) | Hella Swag | MMLU | Truthful QA | Winogrande | GSM8k | | : | -: | -: | | **CohereForAI/c4ai-command-r-plus** | 74.6 | 70.99 | 88.6 | 75.7 | 56.3 | 85.4 | 70.7 | | [DBRX Instruct](https://huggingface.co/databricks/dbrx-instruct) | 74.5 | 68.9 | 89 | 73.7 | 66.9 | 81.8 | 66.9 | | [Mixtral 8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.7 | 70.1 | 87.6 | 71.4 | 65 | 81.1 | 61.1 | | [Mixtral 8x7B Chat](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.6 | 70.2 | 87.6 | 71.2 | 64.6 | 81.4 | 60.7 | | [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) | 68.5 | 65.5 | 87 | 68.2 | 52.3 | 81.5 | 56.6 | | [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) | 67.9 | 67.3 | 87.3 | 69.8 | 44.9 | 83.7 | 54.1 | | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 65.3 | 65.4 | 84.2 | 74.9 | 55.4 | 80.1 | 31.9 | | [Gemma-7B](https://huggingface.co/google/gemma-7b) | 63.8 | 61.1 | 82.2 | 64.6 | 44.8 | 79 | 50.9 | | [LLama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | 62.4 | 64.6 | 85.9 | 63.9 | 52.8 | 80.5 | 26.7 | | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 61 | 60 | 83.3 | 64.2 | 42.2 | 78.4 | 37.8 | We include these metrics here because they are frequently requested, but note that these metrics do not capture RAG, multilingual, tooling performance or the evaluation of open ended generations which we believe Command R+ to be state-of-art at. For evaluations of RAG, multilingual and tooling read more [here](https://txt.cohere.com/command-r-plus-microsoft-azure/). For evaluation of open ended generation, Command R+ is currently being evaluated on the [chatbot arena](https://chat.lmsys.org/). ### Tool use & multihop capabilities: Command R+ has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command R+’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R+ may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with command R+'s tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command R+ has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG). This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command R+’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. By default, Command R+ will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with Command R+'s grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command R+ has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 104 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command R+ chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus). <!-- original-model-card end -->
RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf
RichardErkhov
2024-05-31T05:43:10Z
727
0
null
[ "gguf", "region:us" ]
null
2024-05-31T00:41:39Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Mistral-7B-german-assistant-v4 - GGUF - Model creator: https://huggingface.co/flozi00/ - Original model: https://huggingface.co/flozi00/Mistral-7B-german-assistant-v4/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Mistral-7B-german-assistant-v4.Q2_K.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q2_K.gguf) | Q2_K | 2.53GB | | [Mistral-7B-german-assistant-v4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [Mistral-7B-german-assistant-v4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.IQ3_S.gguf) | IQ3_S | 2.96GB | | [Mistral-7B-german-assistant-v4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [Mistral-7B-german-assistant-v4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.IQ3_M.gguf) | IQ3_M | 3.06GB | | [Mistral-7B-german-assistant-v4.Q3_K.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q3_K.gguf) | Q3_K | 3.28GB | | [Mistral-7B-german-assistant-v4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [Mistral-7B-german-assistant-v4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [Mistral-7B-german-assistant-v4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [Mistral-7B-german-assistant-v4.Q4_0.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q4_0.gguf) | Q4_0 | 3.83GB | | [Mistral-7B-german-assistant-v4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [Mistral-7B-german-assistant-v4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [Mistral-7B-german-assistant-v4.Q4_K.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q4_K.gguf) | Q4_K | 4.07GB | | [Mistral-7B-german-assistant-v4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [Mistral-7B-german-assistant-v4.Q4_1.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q4_1.gguf) | Q4_1 | 4.24GB | | [Mistral-7B-german-assistant-v4.Q5_0.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q5_0.gguf) | Q5_0 | 4.65GB | | [Mistral-7B-german-assistant-v4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [Mistral-7B-german-assistant-v4.Q5_K.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q5_K.gguf) | Q5_K | 4.78GB | | [Mistral-7B-german-assistant-v4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [Mistral-7B-german-assistant-v4.Q5_1.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q5_1.gguf) | Q5_1 | 5.07GB | | [Mistral-7B-german-assistant-v4.Q6_K.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q6_K.gguf) | Q6_K | 3.56GB | | [Mistral-7B-german-assistant-v4.Q8_0.gguf](https://huggingface.co/RichardErkhov/flozi00_-_Mistral-7B-german-assistant-v4-gguf/blob/main/Mistral-7B-german-assistant-v4.Q8_0.gguf) | Q8_0 | 3.14GB | Original model description: --- datasets: - flozi00/conversations language: - de --- ## This project is sponsored by [ ![PrimeLine](https://www.primeline-solutions.com/skin/frontend/default/theme566/images/primeline-solutions-logo.png) ](https://www.primeline-solutions.com/de/server/nach-einsatzzweck/gpu-rendering-hpc/) # Model Card This model is an finetuned version for german instructions and conversations in style of Alpaca. "### Assistant:" "### User:", trained with a context length of 8k tokens. The dataset used is deduplicated and cleaned, with no codes inside and uncensored. The focus is on instruction following and conversational tasks. The model archictecture is based on Mistral v0.1 with 7B parameters, trained on 100% renewable energy powered hardware. This work is contributed by private research of [flozi00](https://huggingface.co/flozi00)
RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf
RichardErkhov
2024-06-17T04:13:44Z
727
0
null
[ "gguf", "region:us" ]
null
2024-06-17T02:22:31Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KoSOLAR-10.9B-v0.5 - GGUF - Model creator: https://huggingface.co/rrw-x2/ - Original model: https://huggingface.co/rrw-x2/KoSOLAR-10.9B-v0.5/ | Name | Quant method | Size | | ---- | ---- | ---- | | [KoSOLAR-10.9B-v0.5.Q2_K.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q2_K.gguf) | Q2_K | 3.8GB | | [KoSOLAR-10.9B-v0.5.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.IQ3_XS.gguf) | IQ3_XS | 4.22GB | | [KoSOLAR-10.9B-v0.5.IQ3_S.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.IQ3_S.gguf) | IQ3_S | 4.45GB | | [KoSOLAR-10.9B-v0.5.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q3_K_S.gguf) | Q3_K_S | 4.42GB | | [KoSOLAR-10.9B-v0.5.IQ3_M.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.IQ3_M.gguf) | IQ3_M | 4.59GB | | [KoSOLAR-10.9B-v0.5.Q3_K.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q3_K.gguf) | Q3_K | 4.92GB | | [KoSOLAR-10.9B-v0.5.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q3_K_M.gguf) | Q3_K_M | 4.92GB | | [KoSOLAR-10.9B-v0.5.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q3_K_L.gguf) | Q3_K_L | 5.34GB | | [KoSOLAR-10.9B-v0.5.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.IQ4_XS.gguf) | IQ4_XS | 5.51GB | | [KoSOLAR-10.9B-v0.5.Q4_0.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q4_0.gguf) | Q4_0 | 5.74GB | | [KoSOLAR-10.9B-v0.5.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.IQ4_NL.gguf) | IQ4_NL | 5.8GB | | [KoSOLAR-10.9B-v0.5.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q4_K_S.gguf) | Q4_K_S | 5.78GB | | [KoSOLAR-10.9B-v0.5.Q4_K.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q4_K.gguf) | Q4_K | 6.1GB | | [KoSOLAR-10.9B-v0.5.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q4_K_M.gguf) | Q4_K_M | 6.1GB | | [KoSOLAR-10.9B-v0.5.Q4_1.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q4_1.gguf) | Q4_1 | 6.36GB | | [KoSOLAR-10.9B-v0.5.Q5_0.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q5_0.gguf) | Q5_0 | 6.98GB | | [KoSOLAR-10.9B-v0.5.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q5_K_S.gguf) | Q5_K_S | 6.98GB | | [KoSOLAR-10.9B-v0.5.Q5_K.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q5_K.gguf) | Q5_K | 7.17GB | | [KoSOLAR-10.9B-v0.5.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q5_K_M.gguf) | Q5_K_M | 7.17GB | | [KoSOLAR-10.9B-v0.5.Q5_1.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q5_1.gguf) | Q5_1 | 7.6GB | | [KoSOLAR-10.9B-v0.5.Q6_K.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q6_K.gguf) | Q6_K | 8.3GB | | [KoSOLAR-10.9B-v0.5.Q8_0.gguf](https://huggingface.co/RichardErkhov/rrw-x2_-_KoSOLAR-10.9B-v0.5-gguf/blob/main/KoSOLAR-10.9B-v0.5.Q8_0.gguf) | Q8_0 | 10.75GB | Original model description: --- language: - ko base_model: - LDCC/LDCC-SOLAR-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 tags: - mergekit - merge - LDCC/LDCC-SOLAR-10.7B - hyeogi/SOLAR-10.7B-dpo-v1 license: apache-2.0 --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [hyeogi/SOLAR-10.7B-dpo-v1](https://huggingface.co/hyeogi/SOLAR-10.7B-dpo-v1) * [LDCC/LDCC-SOLAR-10.7B](https://huggingface.co/LDCC/LDCC-SOLAR-10.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: LDCC/LDCC-SOLAR-10.7B layer_range: [0, 48] - model: hyeogi/SOLAR-10.7B-dpo-v1 layer_range: [0, 48] merge_method: slerp tokenizer_source: base base_model: LDCC/LDCC-SOLAR-10.7B embed_slerp: true parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## Datasets Finetuned using LoRA with [kyujinpy/OpenOrca-KO](https://huggingface.co/datasets/kyujinpy/OpenOrca-KO)
XeTute/Atheria-V0.1
XeTute
2024-07-02T21:50:16Z
727
1
null
[ "gguf", "chemistry", "biology", "legal", "music", "art", "code", "finance", "medical", "general", "base", "base model", "text-generation", "en", "dataset:XeTute/Conversational-Small", "license:other", "region:us" ]
text-generation
2024-06-29T21:20:03Z
--- license: other license_name: xt-aurora-license license_link: https://huggingface.co/XeTute/AURORA-OpenBeta-V0.5-GGUF/blob/main/LICENSE datasets: - XeTute/Conversational-Small language: - en pipeline_tag: text-generation tags: - chemistry - biology - legal - music - art - code - finance - medical - general - base - base model --- Note: We're looking for funds, it is getting harder to keep our free-inference up. We've been serving a lot of GPU time to KoboldAI, we've trained our LLMs on CPUs, because our GPUs can't handle it. We're looking for funds to replace our two GTX1060 3GBs in order to provide better, faster inference and train models more efficiently. Any help is appreciated: - PayPal: https://www.paypal.com/paypalme/XeTute - Ko-Fi: https://ko-fi.com/xetute Note about this model: We're abandoning this model, because we got no money left to make a model this large perform even average on most basic Tasks. If you want to support us, consider donating on the links above. This will help us create models from scratch, assuring they perform best for what they are built. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65ca8c3c5495933ab066c33c/BlVzP4lGyq4Lts5BZiGIN.png) Before you download this model, you can try it out on our website, for free, without any login, etc. The inference may be slow, you can support us by donating on the links above. Try out Atheria on: - Our website: https://xetute.neocities.org/ - KoboldAI Lite[You have to configure stuff]: https://lite.koboldai.net/ The inference on our website is faster since it skips the waitinglist. About this model: - Name: Atheria - Version: 0.1 - IsStable: No - IsUsable: Yes - Param Count: ~7B. - Type: Text-Generation - Finetuned on: DeepCode-7B-AURORA. - GGUF Quant: Q8. Scope of use: - Math - Basic Coding - Reasoning - NLP - Basic roleplaying - General Q & A. - Private use Out of scope use: - Illegal Q & A - Production The prompt format used is Vicuna. The model may make more mistakes than expected, we will fix this when we get the newer GPUs. Check out our - GitHub: https://github.com/N0CTRON - X account: https://x.com/XeTute - HuggingFace: https://huggingface.co/XeTute - Our website / subdomain on Neocities: https://xetute.neocities.org/ We wish you a rememberable chat with Atheria!
Chun/DialoGPT-large-dailydialog
Chun
2021-08-08T22:31:47Z
726
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:04Z
Entry not found
facebook/wav2vec2-large-100k-voxpopuli
facebook
2021-11-05T12:45:52Z
726
4
transformers
[ "transformers", "pytorch", "jax", "wav2vec2", "pretraining", "audio", "automatic-speech-recognition", "voxpopuli", "multilingual", "arxiv:2101.00390", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2022-03-02T23:29:05Z
--- language: multilingual tags: - audio - automatic-speech-recognition - voxpopuli license: cc-by-nc-4.0 --- # Wav2Vec2-Large-VoxPopuli [Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/) large model pretrained on the 100k unlabeled subset of [VoxPopuli corpus](https://arxiv.org/abs/2101.00390). **Note**: This model does not have a tokenizer as it was pretrained on audio alone. In order to use this model **speech recognition**, a tokenizer should be created and the model should be fine-tuned on labeled text data. Check out [this blog](https://huggingface.co/blog/fine-tune-wav2vec2-english) for more in-detail explanation of how to fine-tune the model. **Paper**: *[VoxPopuli: A Large-Scale Multilingual Speech Corpus for Representation Learning, Semi-Supervised Learning and Interpretation](https://arxiv.org/abs/2101.00390)* **Authors**: *Changhan Wang, Morgane Riviere, Ann Lee, Anne Wu, Chaitanya Talnikar, Daniel Haziza, Mary Williamson, Juan Pino, Emmanuel Dupoux* from *Facebook AI* See the official website for more information, [here](https://github.com/facebookresearch/voxpopuli/) # Fine-Tuning Please refer to [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) on how to fine-tune this model on a specific language. Note that you should replace `"facebook/wav2vec2-large-xlsr-53"` with this checkpoint for fine-tuning.
flax-community/bert-swahili-news-classification
flax-community
2023-07-15T14:21:05Z
726
0
transformers
[ "transformers", "pytorch", "jax", "tensorboard", "safetensors", "bert", "text-classification", "sw", "dataset:flax-community/swahili-safi", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
--- language: sw widget: - text: "Idris ameandika kwenye ukurasa wake wa Instagram akimkumbusha Diamond kutekeleza ahadi yake kumpigia Zari magoti kumuomba msamaha kama alivyowahi kueleza awali.Idris ameandika;" datasets: - flax-community/swahili-safi --- ## Swahili News Classification with BERT This model was trained using HuggingFace's Flax framework and is part of the [JAX/Flax Community Week](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104) organized by [HuggingFace](https://huggingface.co). All training was done on a TPUv3-8 VM sponsored by the Google Cloud team. This [model](https://huggingface.co/flax-community/bert-base-uncased-swahili) was used as the base and fine-tuned for this task. ## How to use ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("flax-community/bert-swahili-news-classification") model = AutoModelForSequenceClassification.from_pretrained("flax-community/bert-swahili-news-classification") ``` ``` Eval metrics (10% valid set): {'accuracy': 0.9114740008594757} ```
huggingartists/travis-scott
huggingartists
2021-09-10T19:40:02Z
726
0
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/travis-scott", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/travis-scott tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/5d19fecdb3828ca9ec89dda588e2eb7d.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Travis Scott</div> <a href="https://genius.com/artists/travis-scott"> <div style="text-align: center; font-size: 14px;">@travis-scott</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Travis Scott. Dataset is available [here](https://huggingface.co/datasets/huggingartists/travis-scott). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/travis-scott") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1ezlbvd0/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Travis Scott's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2w91gglb) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2w91gglb/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/travis-scott') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/travis-scott") model = AutoModelWithLMHead.from_pretrained("huggingartists/travis-scott") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
timm/levit_192.fb_dist_in1k
timm
2024-02-10T23:30:37Z
726
0
timm
[ "timm", "pytorch", "image-classification", "dataset:imagenet-1k", "arxiv:2104.01136", "license:apache-2.0", "region:us" ]
image-classification
2023-02-03T21:13:29Z
--- license: apache-2.0 library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for levit_192.fb_dist_in1k A LeViT image classification model using convolutional mode (using nn.Conv2d and nn.BatchNorm2d). Pretrained on ImageNet-1k using distillation by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 10.9 - GMACs: 0.7 - Activations (M): 3.2 - Image size: 224 x 224 - **Papers:** - LeViT: a Vision Transformer in ConvNet's Clothing for Faster Inference: https://arxiv.org/abs/2104.01136 - **Original:** https://github.com/facebookresearch/LeViT - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model('levit_192.fb_dist_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open( urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png')) model = timm.create_model( 'levit_192.fb_dist_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison |model |top1 |top5 |param_count|img_size| |-----------------------------------|------|------|-----------|--------| |levit_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |levit_conv_384.fb_dist_in1k |82.596|96.012|39.13 |224 | |levit_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |levit_conv_256.fb_dist_in1k |81.512|95.48 |18.89 |224 | |levit_conv_192.fb_dist_in1k |79.86 |94.792|10.95 |224 | |levit_192.fb_dist_in1k |79.858|94.792|10.95 |224 | |levit_128.fb_dist_in1k |78.474|94.014|9.21 |224 | |levit_conv_128.fb_dist_in1k |78.474|94.02 |9.21 |224 | |levit_128s.fb_dist_in1k |76.534|92.864|7.78 |224 | |levit_conv_128s.fb_dist_in1k |76.532|92.864|7.78 |224 | ## Citation ```bibtex @InProceedings{Graham_2021_ICCV, author = {Graham, Benjamin and El-Nouby, Alaaeldin and Touvron, Hugo and Stock, Pierre and Joulin, Armand and Jegou, Herve and Douze, Matthijs}, title = {LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {12259-12269} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/rwightman/pytorch-image-models}} } ```
ai-forever/mGPT-1.3B-romanian
ai-forever
2023-08-11T08:02:28Z
726
1
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "gpt3", "mgpt", "ro", "en", "ru", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-10T05:11:57Z
--- language: - ro - en - ru license: mit tags: - gpt3 - transformers - mgpt --- # 🇷🇴 Romanian mGPT 1.3B Language model for Romanian. Model has 1.3B parameters as you can guess from it's name. Romanian belongs to Indo-European language family. It's a very lyrical language with approximately 24 million speakers. Here are some facts about it: 1. It is a Romance language, closely related to Italian, French, Spanish, Portuguese, and Catalan. 2. It retains several Latin characteristics, making it unique among the Romance languages. 3. While primarily spoken in Romania and Moldova, there are also Romanian speakers in neighboring countries and diaspora communities worldwide. ## Technical details It's one of the models derived from the base [mGPT-XL (1.3B)](https://huggingface.co/ai-forever/mGPT) model (see the list below) which was originally trained on the 61 languages from 25 language families using Wikipedia and C4 corpus. We've found additional data for 23 languages most of which are considered as minor and decided to further tune the base model. **Romanian mGPT 1.3B** was trained for another 5000 steps with batch_size=4 and context window of **2048** tokens on 1 A100. Final perplexity for this model on validation is **3.44**. _Chart of the training loss and perplexity:_ ![](https://i.imgur.com/ectqmbE.png) ## Other mGPT-1.3B models - [🇦🇲 mGPT-1.3B Armenian](https://huggingface.co/ai-forever/mGPT-1.3B-armenian) - [🇦🇿 mGPT-1.3B Azerbaijan](https://huggingface.co/ai-forever/mGPT-1.3B-azerbaijan) - [🍯 mGPT-1.3B Bashkir](https://huggingface.co/ai-forever/mGPT-1.3B-bashkir) - [🇧🇾 mGPT-1.3B Belorussian](https://huggingface.co/ai-forever/mGPT-1.3B-belorussian) - [🇧🇬 mGPT-1.3B Bulgarian](https://huggingface.co/ai-forever/mGPT-1.3B-bulgarian) - [🌞 mGPT-1.3B Buryat](https://huggingface.co/ai-forever/mGPT-1.3B-buryat) - [🌳 mGPT-1.3B Chuvash](https://huggingface.co/ai-forever/mGPT-1.3B-chuvash) - [🇬🇪 mGPT-1.3B Georgian](https://huggingface.co/ai-forever/mGPT-1.3B-georgian) - [🌸 mGPT-1.3B Kalmyk](https://huggingface.co/ai-forever/mGPT-1.3B-kalmyk) - [🇰🇿 mGPT-1.3B Kazakh](https://huggingface.co/ai-forever/mGPT-1.3B-kazakh) - [🇰🇬 mGPT-1.3B Kirgiz](https://huggingface.co/ai-forever/mGPT-1.3B-kirgiz) - [🐻 mGPT-1.3B Mari](https://huggingface.co/ai-forever/mGPT-1.3B-mari) - [🇲🇳 mGPT-1.3B Mongol](https://huggingface.co/ai-forever/mGPT-1.3B-mongol) - [🐆 mGPT-1.3B Ossetian](https://huggingface.co/ai-forever/mGPT-1.3B-ossetian) - [🇮🇷 mGPT-1.3B Persian](https://huggingface.co/ai-forever/mGPT-1.3B-persian) - [🇹🇯 mGPT-1.3B Tajik](https://huggingface.co/ai-forever/mGPT-1.3B-tajik) - [☕ mGPT-1.3B Tatar](https://huggingface.co/ai-forever/mGPT-1.3B-tatar) - [🇹🇲 mGPT-1.3B Turkmen](https://huggingface.co/ai-forever/mGPT-1.3B-turkmen) - [🐎 mGPT-1.3B Tuvan](https://huggingface.co/ai-forever/mGPT-1.3B-tuvan) - [🇺🇦 mGPT-1.3B Ukranian](https://huggingface.co/ai-forever/mGPT-1.3B-ukranian) - [🇺🇿 mGPT-1.3B Uzbek](https://huggingface.co/ai-forever/mGPT-1.3B-uzbek) - [💎 mGPT-1.3B Yakut](https://huggingface.co/ai-forever/mGPT-1.3B-yakut) ## Feedback If you'll found a bug of have additional data to train model on your language — please, give us feedback. Model will be improved over time. Stay tuned!
liminerity/Blur-7b-v1.21
liminerity
2024-03-11T18:30:17Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "udkai/Turdus", "decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP", "liminerity/Blur-7b-v1.2", "base_model:udkai/Turdus", "base_model:decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP", "base_model:liminerity/Blur-7b-v1.2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-18T04:30:23Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - udkai/Turdus - decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP - liminerity/Blur-7b-v1.2 base_model: - udkai/Turdus - decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP - liminerity/Blur-7b-v1.2 model-index: - name: Blur-7b-v1.21 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.07 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.99 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.52 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/Blur-7b-v1.21 name: Open LLM Leaderboard --- # Blur-7b-v1.21 Blur-7b-v1.21 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [udkai/Turdus](https://huggingface.co/udkai/Turdus) * [decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP](https://huggingface.co/decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP) * [liminerity/Blur-7b-v1.2](https://huggingface.co/liminerity/Blur-7b-v1.2) ## 🧩 Configuration ```yaml models: - model: udkai/Turdus parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: liminerity/Blur-7b-v1.2 parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: fblgit/UNA-TheBeagle-7b-v1 parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/Blur-7b-v1.21" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_liminerity__Blur-7b-v1.21) | Metric |Value| |---------------------------------|----:| |Avg. |74.18| |AI2 Reasoning Challenge (25-Shot)|70.82| |HellaSwag (10-Shot) |88.07| |MMLU (5-Shot) |64.85| |TruthfulQA (0-shot) |67.99| |Winogrande (5-shot) |83.82| |GSM8k (5-shot) |69.52|
Cartinoe5930/DARE-Merging
Cartinoe5930
2024-01-23T13:31:24Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:openchat/openchat-3.5-0106", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:WizardLM/WizardMath-7B-V1.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-23T12:40:00Z
--- base_model: - openchat/openchat-3.5-0106 - mistralai/Mistral-7B-Instruct-v0.2 - Open-Orca/Mistral-7B-OpenOrca - WizardLM/WizardMath-7B-V1.1 tags: - mergekit - merge license: apache-2.0 --- # result This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) as a base. ### Models Merged The following models were included in the merge: * [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) * [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: mistralai/Mistral-7B-Instruct-v0.2 # No parameters necessary for base model - model: Open-Orca/Mistral-7B-OpenOrca parameters: density: 0.5 weight: 0.3 - model: openchat/openchat-3.5-0106 parameters: density: 0.5 weight: 0.3 - model: WizardLM/WizardMath-7B-V1.1 parameters: density: 0.5 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-Instruct-v0.2 parameters: normalize: true dtype: float16 ```
cloudyu/Truthful_DPO_TomGrc_FusionNet_34Bx2_MoE
cloudyu
2024-01-25T22:10:48Z
726
4
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "DPO", "RL-TUNED", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-25T06:41:16Z
--- license: mit tags: - moe - DPO - RL-TUNED --- * [DPO Trainer](https://huggingface.co/docs/trl/main/en/dpo_trainer) with dataset jondurbin/truthy-dpo-v0.1 to improve [TomGrc/FusionNet_34Bx2_MoE] ``` DPO Trainer TRL supports the DPO Trainer for training language models from preference data, as described in the paper Direct Preference Optimization: Your Language Model is Secretly a Reward Model by Rafailov et al., 2023. ``` * Metrics improved by DPO ![Metrsc improment](34bx2-dpo.jpg)
luqmanxyz/FrankenVillain-7B-v1
luqmanxyz
2024-03-04T14:33:08Z
726
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "merge", "mergekit", "jeonsworld/CarbonVillain-en-10.7B-v1", "conversational", "base_model:jeonsworld/CarbonVillain-en-10.7B-v1", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T00:44:23Z
--- license: apache-2.0 tags: - merge - mergekit - jeonsworld/CarbonVillain-en-10.7B-v1 - jeonsworld/CarbonVillain-en-10.7B-v1 base_model: - jeonsworld/CarbonVillain-en-10.7B-v1 - jeonsworld/CarbonVillain-en-10.7B-v1 model-index: - name: FrankenVillain-7B-v1 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 42.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 51.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 48.6 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.19 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 73.01 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 0.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=luqmanxyz/FrankenVillain-7B-v1 name: Open LLM Leaderboard --- # FrankenVillain-7B-v1 FrankenVillain-7B-v1 is a Franken merge of the following models using [mergekit](https://github.com/cg123/mergekit * [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1) * [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1) ## 🧩 Configuration ```yaml slices: - sources: - model: jeonsworld/CarbonVillain-en-10.7B-v1 layer_range: [0, 24] - sources: - model: jeonsworld/CarbonVillain-en-10.7B-v1 layer_range: [8, 32] merge_method: passthrough dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "luqmanxyz/FrankenVillain-7B-v1" messages = [{"role": "user", "content": "What are the 3 planets closest to the sun"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_luqmanxyz__FrankenVillain-7B-v1) | Metric |Value| |---------------------------------|----:| |Avg. |45.34| |AI2 Reasoning Challenge (25-Shot)|42.75| |HellaSwag (10-Shot) |51.52| |MMLU (5-Shot) |48.60| |TruthfulQA (0-shot) |56.19| |Winogrande (5-shot) |73.01| |GSM8k (5-shot) | 0.00|
Lvxy1117/amber_fine_tune_001
Lvxy1117
2024-01-28T12:45:36Z
726
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "en", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-28T06:51:17Z
--- license: apache-2.0 language: - en datasets: - WizardLM/WizardLM_evol_instruct_V2_196k --- # Model Card for Lvxy1117/amber_fine_tune_001 <!-- Provide a quick summary of what the model is/does. --> It is a test fine_tune model from LLM360/amber. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Gille/StrangeMerges_13-7B-slerp
Gille
2024-03-04T21:54:39Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Gille/StrangeMerges_12-7B-slerp", "uukuguy/speechless-zephyr-code-functionary-7b", "base_model:Gille/StrangeMerges_12-7B-slerp", "base_model:uukuguy/speechless-zephyr-code-functionary-7b", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-31T00:09:19Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Gille/StrangeMerges_12-7B-slerp - uukuguy/speechless-zephyr-code-functionary-7b base_model: - Gille/StrangeMerges_12-7B-slerp - uukuguy/speechless-zephyr-code-functionary-7b model-index: - name: StrangeMerges_13-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 63.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 84.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.9 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.62 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 54.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_13-7B-slerp name: Open LLM Leaderboard --- # StrangeMerges_13-7B-slerp StrangeMerges_13-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Gille/StrangeMerges_12-7B-slerp](https://huggingface.co/Gille/StrangeMerges_12-7B-slerp) * [uukuguy/speechless-zephyr-code-functionary-7b](https://huggingface.co/uukuguy/speechless-zephyr-code-functionary-7b) ## 🧩 Configuration ```yaml slices: - sources: - model: Gille/StrangeMerges_12-7B-slerp layer_range: [0, 32] - model: uukuguy/speechless-zephyr-code-functionary-7b layer_range: [0, 32] merge_method: slerp base_model: Gille/StrangeMerges_12-7B-slerp parameters: t: - filter: self_attn value: [0.1, 0.5, 0.3, 0.7, 0.9] - filter: mlp value: [0.9, 0.5, 0.7, 0.3, 0.1] - value: 0.45 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_13-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_13-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |66.06| |AI2 Reasoning Challenge (25-Shot)|63.82| |HellaSwag (10-Shot) |84.95| |MMLU (5-Shot) |64.90| |TruthfulQA (0-shot) |48.62| |Winogrande (5-shot) |79.87| |GSM8k (5-shot) |54.21|
ewqr2130/llama_ppo_1e6step_4000
ewqr2130
2024-01-31T18:05:12Z
726
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-31T17:56:45Z
--- license: apache-2.0 --- ewqr2130 / llama_ppo_1e6step_4000 like 0 Text Generation Transformers Safetensors llama Inference Endpoints text-generation-inference ewqr2130 / llama_ppo_1e6step_4000 like 0 Text Generation Transformers Safetensors llama Inference Endpoints text-generation-inference ewqr2130 / llama_ppo_1e6step_4000 like 0 Text Generation Transformers Safetensors llama Inference Endpoints text-generation-inference ewqr2130 / llama_ppo_1e6step_4000 like 0 Text Generation Transformers Safetensors llama Inference Endpoints text-generation-inference
ConvexAI/Solutus-3x7B
ConvexAI
2024-03-04T16:34:35Z
726
7
transformers
[ "transformers", "safetensors", "mixtral", "text-generation", "moe", "merge", "en", "arxiv:2101.03961", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-02T23:36:17Z
--- language: - en license: apache-2.0 tags: - moe - merge model-index: - name: Solutus-3x7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.01 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.31 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.77 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.52 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 69.83 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ConvexAI/Solutus-3x7B name: Open LLM Leaderboard --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/1Uoxp_Bl9UwF-1K4KzwVN.png) # ConvexAI/Solutus-3x7B A model to test how MoE will route without square expansion. [Join our Discord!](https://discord.gg/rJXGjmxqzS) The config looks like this...(detailed version is in the files and versions): - [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) - base - [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) - expert #1 - [cognitivecomputations/WestLake-7B-v2-laser](https://huggingface.co/cognitivecomputations/WestLake-7B-v2-laser) - expert #2 - [mlabonne/Daredevil-7B](https://huggingface.co/mlabonne/Daredevil-7B) - expert #3 # "[What is a Mixture of Experts (MoE)?](https://huggingface.co/blog/moe)" ### (from the MistralAI papers...click the quoted question above to navigate to it directly.) The scale of a model is one of the most important axes for better model quality. Given a fixed computing budget, training a larger model for fewer steps is better than training a smaller model for more steps. Mixture of Experts enable models to be pretrained with far less compute, which means you can dramatically scale up the model or dataset size with the same compute budget as a dense model. In particular, a MoE model should achieve the same quality as its dense counterpart much faster during pretraining. So, what exactly is a MoE? In the context of transformer models, a MoE consists of two main elements: Sparse MoE layers are used instead of dense feed-forward network (FFN) layers. MoE layers have a certain number of “experts” (e.g. 32 in my "frankenMoE"), where each expert is a neural network. In practice, the experts are FFNs, but they can also be more complex networks or even a MoE itself, leading to hierarchical MoEs! A gate network or router, that determines which tokens are sent to which expert. For example, in the image below, the token “More” is sent to the second expert, and the token "Parameters” is sent to the first network. As we’ll explore later, we can send a token to more than one expert. How to route a token to an expert is one of the big decisions when working with MoEs - the router is composed of learned parameters and is pretrained at the same time as the rest of the network. At every layer, for every token, a router network chooses two of these groups (the “experts”) to process the token and combine their output additively. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/up_I0R2TQGjqTShZp_1Sz.png) Switch Layer MoE layer from the [Switch Transformers paper](https://arxiv.org/abs/2101.03961) So, to recap, in MoEs we replace every FFN layer of the transformer model with an MoE layer, which is composed of a gate network and a certain number of experts. Although MoEs provide benefits like efficient pretraining and faster inference compared to dense models, they also come with challenges: Training: MoEs enable significantly more compute-efficient pretraining, but they’ve historically struggled to generalize during fine-tuning, leading to overfitting. Inference: Although a MoE might have many parameters, only some of them are used during inference. This leads to much faster inference compared to a dense model with the same number of parameters. However, all parameters need to be loaded in RAM, so memory requirements are high. For example, [given a MoE like Mixtral 8x7B](https://huggingface.co/blog/moe), we’ll need to have enough VRAM to hold a dense 47B parameter model. Why 47B parameters and not 8 x 7B = 56B? That’s because in MoE models, only the FFN layers are treated as individual experts, and the rest of the model parameters are shared. At the same time, assuming just two experts are being used per token, the inference speed (FLOPs) is like using a 12B model (as opposed to a 14B model), because it computes 2x7B matrix multiplications, but with some layers shared (more on this soon). If all our tokens are sent to just a few popular experts, that will make training inefficient. In a normal MoE training, the gating network converges to mostly activate the same few experts. This self-reinforces as favored experts are trained quicker and hence selected more. To mitigate this, an auxiliary loss is added to encourage giving all experts equal importance. This loss ensures that all experts receive a roughly equal number of training examples. The following sections will also explore the concept of expert capacity, which introduces a threshold of how many tokens can be processed by an expert. In transformers, the auxiliary loss is exposed via the aux_loss parameter. ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/6589d7e6586088fd2784a12c/43v7GezlOGg2BYljbU5ge.gif) ## "Wait...but you called this a frankenMoE?" The difference between MoE and "frankenMoE" lies in the fact that the router layer in a model like the one on this repo is not trained simultaneously. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ConvexAI__Solutus-3x7B) | Metric |Value| |---------------------------------|----:| |Avg. |74.35| |AI2 Reasoning Challenge (25-Shot)|72.01| |HellaSwag (10-Shot) |88.31| |MMLU (5-Shot) |64.77| |TruthfulQA (0-shot) |67.52| |Winogrande (5-shot) |83.66| |GSM8k (5-shot) |69.83|
jsfs11/HighdensityRPMerge-7B
jsfs11
2024-03-04T12:17:53Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "SanjiWatsuki/Silicon-Maid-7B", "chargoddard/loyal-piano-m7-cdpo", "jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES", "NeverSleep/Noromaid-7b-v0.2", "athirdpath/NSFW_DPO_vmgb-7b", "base_model:SanjiWatsuki/Silicon-Maid-7B", "base_model:chargoddard/loyal-piano-m7-cdpo", "base_model:jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES", "base_model:NeverSleep/Noromaid-7b-v0.2", "base_model:athirdpath/NSFW_DPO_vmgb-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-03T09:56:08Z
--- tags: - merge - mergekit - lazymergekit - SanjiWatsuki/Silicon-Maid-7B - chargoddard/loyal-piano-m7-cdpo - jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES - NeverSleep/Noromaid-7b-v0.2 - athirdpath/NSFW_DPO_vmgb-7b base_model: - SanjiWatsuki/Silicon-Maid-7B - chargoddard/loyal-piano-m7-cdpo - jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES - NeverSleep/Noromaid-7b-v0.2 - athirdpath/NSFW_DPO_vmgb-7b license: apache-2.0 --- # HighdensityRPMerge-7B HighdensityRPMerge-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SanjiWatsuki/Silicon-Maid-7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B) * [chargoddard/loyal-piano-m7-cdpo](https://huggingface.co/chargoddard/loyal-piano-m7-cdpo) * [jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES](https://huggingface.co/jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES) * [NeverSleep/Noromaid-7b-v0.2](https://huggingface.co/NeverSleep/Noromaid-7b-v0.2) * [athirdpath/NSFW_DPO_vmgb-7b](https://huggingface.co/athirdpath/NSFW_DPO_vmgb-7b) ## 🧩 Configuration ```yaml models: - model: saishf/West-Hermes-7B # no parameters necessary for base model - model: SanjiWatsuki/Silicon-Maid-7B parameters: weight: 0.4 density: 0.8 - model: chargoddard/loyal-piano-m7-cdpo parameters: weight: 0.3 density: 0.8 - model: jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES parameters: weight: 0.25 density: 0.45 - model: NeverSleep/Noromaid-7b-v0.2 parameters: weight: 0.25 density: 0.4 - model: athirdpath/NSFW_DPO_vmgb-7b parameters: weight: 0.2 density: 0.4 merge_method: dare_ties base_model: saishf/West-Hermes-7B parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "jsfs11/HighdensityRPMerge-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
sonthenguyen/OpenHermes-2.5-Mistral-7B-mt-bench-DPO-corrupted
sonthenguyen
2024-02-04T16:06:17Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-04T14:58:25Z
--- license: apache-2.0 --- Training hyperparameters LoRA: r=16 lora_alpha=16 lora_dropout=0.05 bias="none" task_type="CAUSAL_LM" target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] Training arguments: auto_find_batch_size=True gradient_checkpointing=True learning_rate=5e-7 lr_scheduler_type="cosine" max_steps=3922 optim="paged_adamw_32bit" warmup_steps=100 DPOTrainer: beta=0.1 max_prompt_length=1024 max_length=1536
ArianAskari/SOLID-SFT-DPO-MixQV2-SOLIDChosen-SFTRejected-Zephyr-7b-beta
ArianAskari
2024-02-13T06:21:52Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:ArianAskari/SOLID", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-13T00:34:10Z
--- library_name: transformers tags: [] license: apache-2.0 language: - en datasets: ArianAskari/SOLID --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
liminerity/ultra0
liminerity
2024-03-11T18:33:02Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "starsnatched/MemGPT-2B", "liminerity/binarized-ingotrix-slerp-7b", "conversational", "base_model:starsnatched/MemGPT-2B", "base_model:liminerity/binarized-ingotrix-slerp-7b", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T22:44:05Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - starsnatched/MemGPT-2B - liminerity/binarized-ingotrix-slerp-7b base_model: - starsnatched/MemGPT-2B - liminerity/binarized-ingotrix-slerp-7b model-index: - name: ultra0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 41.47 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 68.02 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 33.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 65.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 16.07 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=liminerity/ultra0 name: Open LLM Leaderboard --- # ultra0 ultra0 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [starsnatched/MemGPT-2B](https://huggingface.co/starsnatched/MemGPT-2B) * [liminerity/binarized-ingotrix-slerp-7b](https://huggingface.co/liminerity/binarized-ingotrix-slerp-7b) ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 24] model: starsnatched/MemGPT-2B parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - layer_range: [0, 24] model: liminerity/binarized-ingotrix-slerp-7b parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: dare_ties base_model: starsnatched/MemGPT-2B parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "liminerity/ultra0" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_liminerity__ultra0) | Metric |Value| |---------------------------------|----:| |Avg. |44.32| |AI2 Reasoning Challenge (25-Shot)|41.47| |HellaSwag (10-Shot) |68.02| |MMLU (5-Shot) |33.37| |TruthfulQA (0-shot) |41.49| |Winogrande (5-shot) |65.51| |GSM8k (5-shot) |16.07|
Eric111/CatunaMayo
Eric111
2024-02-26T19:46:02Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Eric111/caTUNABeagle", "Eric111/AlphaMayo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-15T20:59:55Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Eric111/caTUNABeagle - Eric111/AlphaMayo --- Acknowledgements: https://github.com/mlabonne/llm-course # CatunaMayo CatunaMayo is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [Eric111/caTUNABeagle](https://huggingface.co/Eric111/caTUNABeagle) * [Eric111/AlphaMayo](https://huggingface.co/Eric111/AlphaMayo) ## 🧩 Configuration ```yaml slices: - sources: - model: Eric111/caTUNABeagle layer_range: [0, 32] - model: Eric111/AlphaMayo layer_range: [0, 32] merge_method: slerp base_model: Eric111/caTUNABeagle parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
ChaoticNeutrals/Cookie_7B
ChaoticNeutrals
2024-03-04T20:12:44Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:jeiku/SpaghettiOs_7B", "base_model:jeiku/Rainbow_69_7B", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T01:41:04Z
--- license: other library_name: transformers tags: - mergekit - merge base_model: - jeiku/SpaghettiOs_7B - jeiku/Rainbow_69_7B model-index: - name: Cookie_7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.71 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.57 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.51 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 66.88 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.37 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChaoticNeutrals/Cookie_7B name: Open LLM Leaderboard --- # Cookie A reasonably logical model with a few datasets thrown in to increase RP abilities. This is a good candidate for a balanced 7B model that can provide assistant functionality alongside roleplaying or romantic endeavors. ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/626dfb8786671a29c715f8a9/ihl6LZY3smChRokJkHm9Q.jpeg) This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [jeiku/SpaghettiOs_7B](https://huggingface.co/jeiku/SpaghettiOs_7B) as a base. ### Models Merged The following models were included in the merge: * [jeiku/Rainbow_69_7B](https://huggingface.co/jeiku/Rainbow_69_7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml merge_method: dare_ties base_model: jeiku/SpaghettiOs_7B parameters: normalize: true models: - model: jeiku/SpaghettiOs_7B parameters: weight: 1 - model: jeiku/Rainbow_69_7B parameters: weight: 1 dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChaoticNeutrals__Cookie_7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.87| |AI2 Reasoning Challenge (25-Shot)|69.71| |HellaSwag (10-Shot) |87.57| |MMLU (5-Shot) |64.51| |TruthfulQA (0-shot) |66.88| |Winogrande (5-shot) |81.37| |GSM8k (5-shot) |61.18|
CorticalStack/mistral-7b-dolphin-sft
CorticalStack
2024-02-17T14:26:38Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T14:24:36Z
--- license: apache-2.0 --- # mistral-7b-dolphin-sft mistral-7b-dolphin-sft is an SFT fine-tuned version of [unsloth/mistral-7b-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-bnb-4bit) using the [cognitivecomputations/dolphin](https://huggingface.co/datasets/cognitivecomputations/dolphin) dataset. ## Fine-tuning configuration ### LoRA - r: 256 - LoRA alpha: 128 - LoRA dropout: 0.0 ### Training arguments - Epochs: 1 - Batch size: 4 - Gradient accumulation steps: 6 - Optimizer: adamw_torch_fused - Max steps: 100 - Learning rate: 0.0002 - Weight decay: 0.1 - Learning rate scheduler type: linear - Max seq length: 2048 - 4-bit bnb: True Trained with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
CorticalStack/mistral-7b-alpaca-sft
CorticalStack
2024-02-17T19:24:37Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T19:22:39Z
--- license: apache-2.0 --- # mistral-7b-alpaca-sft mistral-7b-alpaca-sft is an SFT fine-tuned version of [unsloth/mistral-7b-bnb-4bit](https://huggingface.co/unsloth/mistral-7b-bnb-4bit) using the [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset. ## Fine-tuning configuration ### LoRA - r: 256 - LoRA alpha: 128 - LoRA dropout: 0.0 ### Training arguments - Epochs: 1 - Batch size: 4 - Gradient accumulation steps: 6 - Optimizer: adamw_torch_fused - Max steps: 100 - Learning rate: 0.0002 - Weight decay: 0.1 - Learning rate scheduler type: linear - Max seq length: 2048 - 4-bit bnb: True Trained with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
lodrick-the-lafted/Hermes-Instruct-7B-100K
lodrick-the-lafted
2024-03-04T12:24:50Z
726
2
transformers
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "dataset:lodrick-the-lafted/Hermes-100K", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-20T03:04:10Z
--- license: apache-2.0 datasets: - lodrick-the-lafted/Hermes-100K model-index: - name: Hermes-Instruct-7B-100K results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 82.84 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 60.95 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 63.62 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 76.87 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 43.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=lodrick-the-lafted/Hermes-Instruct-7B-100K name: Open LLM Leaderboard --- <img src=https://huggingface.co/lodrick-the-lafted/Hermes-Instruct-7B-100K/resolve/main/hermes-instruct.png> # Hermes-Instruct-7B-v0.2 [Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) trained with 100K rows of [teknium/openhermes](https://huggingface.co/datasets/teknium/openhermes), in Alpaca format. <br /> <br /> # Prompt Format Both the default Mistral-Instruct tags and Alpaca are fine, so either: ``` <s>[INST] {sys_prompt} {instruction} [/INST] ``` or ``` {sys_prompt} ### Instruction: {instruction} ### Response: ``` The tokenizer default is Alpaca this time around. <br /> <br /> # Usage ```python from transformers import AutoTokenizer import transformers import torch model = "lodrick-the-lafted/Hermes-Instruct-7B-100K" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.bfloat16}, ) messages = [{"role": "user", "content": "Give me a cooking recipe for an apple pie."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lodrick-the-lafted__Hermes-Instruct-7B-100K) | Metric |Value| |---------------------------------|----:| |Avg. |64.96| |AI2 Reasoning Challenge (25-Shot)|61.52| |HellaSwag (10-Shot) |82.84| |MMLU (5-Shot) |60.95| |TruthfulQA (0-shot) |63.62| |Winogrande (5-shot) |76.87| |GSM8k (5-shot) |43.97|
splm/openchat-spin-slimorca-iter2
splm
2024-02-22T14:53:03Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-22T14:46:58Z
--- library_name: transformers license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
MSL7/INEX8-7B
MSL7
2024-03-11T18:31:44Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "liminerity/merge3", "yam-peleg/Experiment26-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T22:44:44Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - liminerity/merge3 - yam-peleg/Experiment26-7B model-index: - name: INEX8-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.29 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 89.19 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.47 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 77.83 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 84.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 68.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=MSL7/INEX8-7B name: Open LLM Leaderboard --- MADE WITH LOVE BY LIMINERITY # INEX8-7B INEX8-7B is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [liminerity/merge3](https://huggingface.co/liminerity/merge3) * [yam-peleg/Experiment26-7B](https://huggingface.co/yam-peleg/Experiment26-7B) ## 🧩 Configuration ```yaml MODEL_NAME = "merge" slices: - sources: - model: MSL7/INEX4-7b layer_range: [0, 32] - model: yam-peleg/Experiment24-7B layer_range: [0, 32] merge_method: slerp base_model: MSL7/INEX4-7b parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 MODEL_NAME = "merge1" slices: - sources: - model: liminerity/merge layer_range: [0, 32] - model: CorticalStack/shadow-clown-7B-dare layer_range: [0, 32] merge_method: slerp base_model: liminerity/merge parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 MODEL_NAME = "merge2" slices: - sources: - model: liminerity/merge1 layer_range: [0, 32] - model: bardsai/jaskier-7b-dpo-v6.1 layer_range: [0, 32] merge_method: slerp base_model: liminerity/merge1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 MODEL_NAME = "merge3" slices: - sources: - model: liminerity/merge2 layer_range: [0, 32] - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO layer_range: [0, 32] merge_method: slerp base_model: liminerity/merge2 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 MODEL_NAME: "INEX8-7b" slices: - sources: - model: liminerity/merge3 layer_range: [0, 32] - model: yam-peleg/Experiment26-7B layer_range: [0, 32] merge_method: slerp base_model: liminerity/merge3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_MSL7__INEX8-7B) | Metric |Value| |---------------------------------|----:| |Avg. |76.44| |AI2 Reasoning Challenge (25-Shot)|73.29| |HellaSwag (10-Shot) |89.19| |MMLU (5-Shot) |64.47| |TruthfulQA (0-shot) |77.83| |Winogrande (5-shot) |84.85| |GSM8k (5-shot) |68.99|
YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1
YeungNLP
2024-03-03T08:13:50Z
726
3
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:2305.18290", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-03T03:49:34Z
--- library_name: transformers license: apache-2.0 basemodel: Qwen/Qwen1.5-7B --- ## Model Card for Firefly-Qwen1.5 [firefly-qwen1.5-en-7b](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b) and [firefly-qwen1.5-en-7b-dpo-v0.1](https://huggingface.co/YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1) are trained based on [Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) to act as a helpful and harmless AI assistant. We use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models on **a single V100 GPU** with QLoRA. firefly-qwen1.5-en-7b is fine-tuned based on Qwen1.5-7B with English instruction data, and firefly-qwen1.5-en-7b-dpo-v0.1 is trained with [Direct Preference Optimization (DPO)](https://arxiv.org/abs/2305.18290) based on firefly-qwen1.5-en-7b. Our models outperform official [Qwen1.5-7B-Chat](https://huggingface.co/Qwen/Qwen1.5-7B-Chat), [Gemma-7B-it](https://huggingface.co/google/gemma-7b-it), [Zephyr-7B-Beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). <img src="pics/open_llm.png" width="800"> Although our models are trained with English data, you can also try to chat with models in Chinese because Qwen1.5 is also good at Chinese. But we have not evaluated the performance in Chinese yet. We advise you to install transformers>=4.37.0. ## Performance We evaluate our models on [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), they achieve good performance. | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |-----------------------------------|--------|--------|-----------|--------|------------|------------|--------| | firefly-gemma-7b | 62.93 | 62.12 | 79.77 | 61.57 | 49.41 | 75.45 | 49.28 | | **firefly-qwen1.5-en-7b-dpo-v0.1** | 62.36 | 54.35 | 76.04 | 61.21 | 56.4 | 72.06 | 54.13 | | zephyr-7b-beta | 61.95 | 62.03 | 84.36 | 61.07 | 57.45 | 77.74 | 29.04 | | **firefly-qwen1.5-en-7b** | 61.44 | 53.41 | 75.51 | 61.67 |51.96 |70.72 | 55.34 | | vicuna-13b-v1.5 | 55.41 | 57.08 | 81.24 | 56.67 | 51.51 | 74.66 | 11.3 | | Xwin-LM-13B-V0.1 | 55.29 | 62.54 | 82.8 | 56.53 | 45.96 | 74.27 | 9.63 | | Qwen1.5-7B-Chat | 55.15 | 55.89 | 78.56 | 61.65 | 53.54 | 67.72 | 13.57 | | gemma-7b-it | 53.56 | 51.45 | 71.96 | 53.52 | 47.29 | 67.96 | 29.19 | ## Usage The chat templates of our chat models are the same as Official Qwen1.5-7B-Chat: ```text <|im_start|>system You are a helpful assistant.<|im_end|> <|im_start|>user hello, who are you?<|im_end|> <|im_start|>assistant I am a AI program developed by Firefly<|im_end|> ``` You can use script to inference in [Firefly](https://github.com/yangjianxin1/Firefly/blob/master/script/chat/chat.py). You can also use the following code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name_or_path = "YeungNLP/firefly-qwen1.5-en-7b-dpo-v0.1" model = AutoModelForCausalLM.from_pretrained( model_name_or_path, trust_remote_code=True, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map='auto', ) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) prompt = "Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions. " messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to('cuda') generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=1500, top_p = 0.9, temperature = 0.35, repetition_penalty = 1.0, eos_token_id=tokenizer.encode('<|im_end|>', add_special_tokens=False) ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) ``` ## Training Details Both in SFT and DPO stages, **We only use a single V100 GPU** with QLoRA, and we use [Firefly](https://github.com/yangjianxin1/Firefly) to train our models. ### Training Setting The following hyperparameters are used during SFT: - num_epochs: 1 - learning_rate: 2e-4 - total_train_batch_size: 32 - max_seq_length: 2048 - optimizer: paged_adamw_32bit - lr_scheduler_type: constant_with_warmup - warmup_steps: 700 - lora_rank: 64 - lora_alpha: 16 - lora_dropout: 0.05 - gradient_checkpointing: true - fp16: true The following hyperparameters were used during DPO: - num_epochs: 1 - learning_rate: 2e-4 - total_train_batch_size: 32 - max_seq_length: 1600 - max_prompt_length: 500 - optimizer: paged_adamw_32bit - lr_scheduler_type: constant_with_warmup - warmup_steps: 200 - lora_rank: 64 - lora_alpha: 16 - lora_dropout: 0.05 - gradient_checkpointing: true - fp16: true ### Training metrics Training Rewards/margins in DPO: <img src="pics/margins.png" width="600"> Training Rewards/accuracies in DPO: <img src="pics/accuracies.png" width="500"> Training loss in DPO: <img src="pics/loss.png" width="500"> The table below shows the full set of DPO training metrics: | Epoch | Step | Loss | Rewards/accuracies | Rewards/margins | Rewards/chosen | Rewards/rejected | Logits/chosen| Logits/rejected | Logps/chosen| Logps/rejected| |---|---|---|---|---|---|---|---|---|---|---| |0.05|100|0.6231|0.6587|0.3179|0.0404|-0.2774|1.1694|1.2377|-284.5586|-255.4863| |0.1|200|0.5945|0.6894|0.5988|-0.1704|-0.7693|1.012|1.0283|-284.3049|-268.1887| |0.16|300|0.5754|0.6981|0.8314|-0.282|-1.1133|0.8912|0.8956|-283.6926|-270.3117| |0.21|400|0.5702|0.7194|0.9369|-0.1944|-1.1313|0.7255|0.7557|-291.2833|-273.9706| |0.26|500|0.5913|0.695|0.8784|-0.4524|-1.3309|0.5491|0.5535|-289.5705|-271.754| |0.31|600|0.5743|0.6994|1.0192|-0.4505|-1.4698|0.6446|0.6399|-296.5292|-277.824| |0.37|700|0.5876|0.7219|1.0471|-0.6998|-1.747|0.4955|0.4329|-303.7684|-289.0117| |0.42|800|0.5831|0.715|1.0485|-0.8185|-1.8671|0.5589|0.4804|-295.6313|-288.0656| |0.47|900|0.5674|0.7119|1.1854|-1.2085|-2.3939|0.3467|0.2249|-302.3643|-286.2816| |0.52|1000|0.5794|0.7138|1.1458|-0.8423|-1.9881|0.5116|0.4248|-299.3136|-287.3934| |0.58|1100|0.5718|0.7194|1.2897|-1.4944|-2.7841|0.6392|0.5739|-316.6829|-294.1148| |0.63|1200|0.5718|0.7275|1.2459|-1.7543|-3.0002|0.4999|0.4065|-316.7873|-297.8514| |0.68|1300|0.5789|0.72|1.3379|-1.8485|-3.1864|0.4289|0.3172|-314.8326|-296.8319| |0.73|1400|0.5462|0.7425|1.4074|-1.9865|-3.3939|0.3645|0.2333|-309.4503|-294.3931| |0.79|1500|0.5829|0.7156|1.2582|-2.1183|-3.3766|0.4193|0.2796|-307.5281|-292.0817| |0.84|1600|0.5575|0.7375|1.471|-2.1429|-3.6139|0.6547|0.5152|-310.9912|-298.899| |0.89|1700|0.5638|0.745|1.5433|-2.991|-4.5343|0.7336|0.6782|-328.2657|-307.5182| |0.94|1800|0.5559|0.7181|1.4484|-2.8818|-4.3302|0.7997|0.8327|-316.2716|-295.1836| |0.99|1900|0.5627|0.7387|1.5378|-2.7941|-4.332|0.8573|0.858|-324.9405|-310.1192|
0-hero/Matter-0.1-Slim-7B-A
0-hero
2024-04-03T06:02:46Z
726
2
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:0-hero/Matter-0.1-Slim-A", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-13T15:56:35Z
--- license: apache-2.0 datasets: - 0-hero/Matter-0.1-Slim-A language: - en --- ## Matter 7B (Mistral 7B Finetune) Matter 7B is finetuned on the [slim-A version of the Matter dataset](https://huggingface.co/datasets/0-hero/Matter-0.1-Slim-A) (~285k rows), which is curated from over 35 datsets analyzing >6B tokens ### Training It took ~15 hours to train 3 epochs on 4x A100s (80GB) using Axolotl for a full-finetune Prompt format: This model uses ChatML prompt format. ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ### Function Calling Model also supports function calling. Additional tokens for function calling Model function call tokens - <|begin_func|> - Function call start token - <|end_func|> - Function call end token Function call response tokens - <|begin_func_response|> - Function response start token - <|end_func_response|> - Function response end token Example ``` <|im_start|>system You are a helpful assistant with access to the following functions. Use them if required - { "name": "get_news_headlines", "description": "Get the latest news headlines", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country for which to fetch news" } }, "required": [ "country" ] } } <|im_end|> <|im_start|>user Can you tell me the latest news headlines for the United States?<|im_end|> <|im_start|>assistant <|begin_func|>{"name": "get_news_headlines", "arguments": '{"country": "United States"}'}<|end_func|><|im_end|> <|im_start|>user <|begin_func_response|>{ "headlines": [ "Biden announces new vaccine mandates", "Hurricane Ida devastates Louisiana", "Apple unveils new iPhone", "NASA's Perseverance rover collects first Mars rock sample" ] }<|end_func_response|> <|im_end|> <|im_start|>assistant Here are the latest news headlines for the United States: 1. Biden announces new vaccine mandates 2. Hurricane Ida devastates Louisiana 3. Apple unveils new iPhone 4. NASA's Perseverance rover collects first Mars rock sample <|im_end|> ```
CultriX/NeuralCeptrix-7B-SLERP
CultriX
2024-03-19T20:46:24Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "CultriX/MergeCeption-7B-v3", "CultriX/NeuralTrix-bf16", "base_model:CultriX/MergeCeption-7B-v3", "base_model:CultriX/NeuralTrix-bf16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-18T10:39:03Z
--- tags: - merge - mergekit - lazymergekit - CultriX/MergeCeption-7B-v3 - CultriX/NeuralTrix-bf16 base_model: - CultriX/MergeCeption-7B-v3 - CultriX/NeuralTrix-bf16 license: apache-2.0 --- # NeuralCeptrix-7B-SLERP NeuralCeptrix-7B-SLERP is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [CultriX/MergeCeption-7B-v3](https://huggingface.co/CultriX/MergeCeption-7B-v3) * [CultriX/NeuralTrix-bf16](https://huggingface.co/CultriX/NeuralTrix-bf16) ## 🧩 Configuration ```yaml slices: - sources: - model: CultriX/MergeCeption-7B-v3 layer_range: [0, 32] - model: CultriX/NeuralTrix-bf16 layer_range: [0, 32] merge_method: slerp base_model: CultriX/MergeCeption-7B-v3 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/NeuralCeptrix-7B-SLERP" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
jeiku/Eros_Prodigadigm_7B
jeiku
2024-03-23T01:52:57Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-23T01:38:13Z
--- base_model: [] library_name: transformers tags: - mergekit - merge license: other --- # prodigadigm This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * erosprodigy * erosparadigm ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: erosparadigm layer_range: [0, 32] - model: erosprodigy layer_range: [0, 32] merge_method: slerp base_model: erosparadigm parameters: t: - filter: self_attn value: [0.5, 0.5, 0.5, 0.5, 0.5] - filter: mlp value: [0.5, 0.5, 0.5, 0.5, 0.5] - value: 0.5 dtype: bfloat16 ```
Locutusque/Hyperion-3.0-Mistral-7B-DPO
Locutusque
2024-03-24T19:26:38Z
726
4
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "en", "dataset:Locutusque/hyperion-dpo-v1.0", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T02:46:33Z
--- library_name: transformers license: apache-2.0 language: - en widget: - example_title: Reasoning text: > <|im_start|>system You are Hyperion, an AI assistant developed by Sebastian Gabarain with a focus in reasoning, coding, science, and other general-purpose subjects. You are an AI assistant that follows instruction extremely well. Help as much as you can. <|im_end|> <|im_start|>user In this task, you are given a description of an object and its surroundings. Your task is to describe the motion of the object mentioned in the description using differential equations. The answer should be a mathematical expression in t. Description: A ball is thrown up at 30 ft/sec from 3 feet off the ground. Solve this step-by-step, explaining each step in detail. <|im_end|> <|im_start|>assistant output: text: > Hyperion here. The task requires you to describe the motion of a ball thrown up using differential equations. Here's the detailed explanation of how to solve it: 1. Identify the given information: - Initial velocity (v0): 30 ft/sec - Initial height (y0): 3 feet off the ground 2. Determine the acceleration due to gravity (g) at sea level, which is approximately -32.2 ft/s^2. Since we're dealing with a short distance and not very high altitudes, we can consider this value of g as constant. 3. Use Newton's second law of motion to find the differential equation that describes the motion: - The net force acting on the ball is the sum of gravity (mg) and air resistance (which we will neglect for simplicity). So, Fnet = mg. - Since acceleration equals force divided by mass, a = Fnet/m. In this case, m cancels out, so a = g. - The motion equation becomes: dv/dt = g = -32.2 ft/s^2 (since we're moving upwards). This is the first differential equation. 4. Since we want to describe the ball's position (y) as well, we need another differential equation. We can use kinematics equations: - The velocity equation is v = v0 + at. Substitute the value of a from step 3: dv/dt = -32.2 ft/s^2. Rewriting it as an integral: ∫dv = -32.2 ft/s^2 * dt - Integrating with respect to time, we get v(t) = -16.1 t + C (constant of integration). 5. Now we have two equations, one for velocity and another for position: - dv/dt = -32.2 ft/s^2 (equation 1) - v(t) = -16.1 t + C (equation 2) 6. We need to find the constant C using the initial conditions given in the problem. We know that initially, at time t=0, the ball's velocity is v0: - Equation 2 becomes v0 = -16.1 * 0 + C, which simplifies to C = v0 = 30 ft/sec (initial velocity). 7. Now we have both equations with the constants filled in: - dv/dt = -32.2 ft/s^2 (equation 1) - v(t) = -16.1 t + 30 ft/sec (equation 2) 8. Finally, we need to find the ball's position (y) as a function of time: - Use the second kinematics equation y = y0 + v0*t + ½*a*t^2 (since acceleration is constant, it can be moved outside the integral). - Substitute the values for v0 and a: y(t) = 3 ft + (30 ft/sec) * t + (-½ * 32.2 ft/s^2) * t^2 That's it! The differential equation describing the motion of the ball is: - dv/dt = -32.2 ft/s^2 (equation 1) - v(t) = -16.1 t + 30 ft/sec (equation 2) - y(t) = 3 ft + (30 ft/sec) * t - (16.1 t^2) ft (equation 3) datasets: - Locutusque/hyperion-dpo-v1.0 --- # Hyperion-3.0-Mistral-7B-DPO ## Model Details - **Model Name**: Locutusque/Hyperion-3.0-Mistral-7B-DPO - **Base Model**: mistralai/Mistral-7B-v0.1 - **Publisher**: Locutusque - **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning - **Language**: Multi-domain, English language - **License**: Apache-2.0 ## Model Description `Locutusque/Hyperion-3.0-Mistral-7B-DPO` is an advanced language model fine-tuned with a dataset of 20,000 meticulously curated high-quality preference pairs using Direct Preference Optimization (DPO). The examples were generated by GPT-4 to ensure exceptional quality and relevance. This model is designed to provide superior performance across a wide range of complex tasks, including question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. ## Intended Use This model is intended for researchers, developers, and organizations seeking a highly capable and reliable language model for tackling challenging problems across various domains. Potential use cases include: - Intelligent tutoring systems and educational applications in science, medicine, mathematics, and computer science - Advanced conversational AI for technical support, customer service, and domain-specific chatbots - Code generation and analysis tools for software development and programming assistance - Medical text analysis and information retrieval for healthcare professionals and researchers - Mathematical problem-solving and logical reasoning applications for academia and industry ## Training Data The `Locutusque/Hyperion-3.0-Mistral-7B-DPO` model was fine-tuned on a carefully curated dataset of 20,000 preference pairs, where 4,000 examples were used to fine-tune. These examples were generated by GPT-4 to ensure the highest quality and relevance across various domains, including programming, medical texts, mathematical problems, and reasoning tasks. The training data was further optimized using Direct Preference Optimization (DPO) to align the model's outputs with human preferences and improve overall performance. ## Quants ExLlamaV2: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-DPO-exl2 GGUF: https://huggingface.co/bartowski/Hyperion-3.0-Mistral-7B-DPO-GGUF ## Evaluation Results mmlu flan cot 5-shot | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |-------------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:| |mmlu_flan_cot_fewshot |N/A |get-answer| 0|exact_match|0.5833|± |0.0118| | - mmlu_flan_cot_fewshot_humanities |N/A |get-answer| 0|exact_match|0.5039|± |0.0205| | - mmlu_flan_cot_fewshot_formal_logic | 0|get-answer| 0|exact_match|0.2143|± |0.1138| | - mmlu_flan_cot_fewshot_high_school_european_history | 0|get-answer| 0|exact_match|0.6667|± |0.1143| | - mmlu_flan_cot_fewshot_high_school_us_history | 0|get-answer| 0|exact_match|0.7727|± |0.0914| | - mmlu_flan_cot_fewshot_high_school_world_history | 0|get-answer| 0|exact_match|0.5385|± |0.0997| | - mmlu_flan_cot_fewshot_international_law | 0|get-answer| 0|exact_match|0.9231|± |0.0769| | - mmlu_flan_cot_fewshot_jurisprudence | 0|get-answer| 0|exact_match|0.5455|± |0.1575| | - mmlu_flan_cot_fewshot_logical_fallacies | 0|get-answer| 0|exact_match|0.7778|± |0.1008| | - mmlu_flan_cot_fewshot_moral_disputes | 0|get-answer| 0|exact_match|0.5526|± |0.0817| | - mmlu_flan_cot_fewshot_moral_scenarios | 0|get-answer| 0|exact_match|0.4000|± |0.0492| | - mmlu_flan_cot_fewshot_philosophy | 0|get-answer| 0|exact_match|0.7647|± |0.0738| | - mmlu_flan_cot_fewshot_prehistory | 0|get-answer| 0|exact_match|0.6571|± |0.0814| | - mmlu_flan_cot_fewshot_professional_law | 0|get-answer| 0|exact_match|0.3294|± |0.0362| | - mmlu_flan_cot_fewshot_world_religions | 0|get-answer| 0|exact_match|0.8947|± |0.0723| | - mmlu_flan_cot_fewshot_other |N/A |get-answer| 0|exact_match|0.6833|± |0.0244| | - mmlu_flan_cot_fewshot_business_ethics | 0|get-answer| 0|exact_match|0.9091|± |0.0909| | - mmlu_flan_cot_fewshot_clinical_knowledge | 0|get-answer| 0|exact_match|0.5862|± |0.0931| | - mmlu_flan_cot_fewshot_college_medicine | 0|get-answer| 0|exact_match|0.6364|± |0.1050| | - mmlu_flan_cot_fewshot_global_facts | 0|get-answer| 0|exact_match|0.6000|± |0.1633| | - mmlu_flan_cot_fewshot_human_aging | 0|get-answer| 0|exact_match|0.6087|± |0.1041| | - mmlu_flan_cot_fewshot_management | 0|get-answer| 0|exact_match|0.9091|± |0.0909| | - mmlu_flan_cot_fewshot_marketing | 0|get-answer| 0|exact_match|0.8000|± |0.0816| | - mmlu_flan_cot_fewshot_medical_genetics | 0|get-answer| 0|exact_match|1.0000|± |0.0000| | - mmlu_flan_cot_fewshot_miscellaneous | 0|get-answer| 0|exact_match|0.8023|± |0.0432| | - mmlu_flan_cot_fewshot_nutrition | 0|get-answer| 0|exact_match|0.6667|± |0.0833| | - mmlu_flan_cot_fewshot_professional_accounting | 0|get-answer| 0|exact_match|0.4839|± |0.0912| | - mmlu_flan_cot_fewshot_professional_medicine | 0|get-answer| 0|exact_match|0.5806|± |0.0901| | - mmlu_flan_cot_fewshot_virology | 0|get-answer| 0|exact_match|0.3889|± |0.1182| | - mmlu_flan_cot_fewshot_social_sciences |N/A |get-answer| 0|exact_match|0.7003|± |0.0239| | - mmlu_flan_cot_fewshot_econometrics | 0|get-answer| 0|exact_match|0.4167|± |0.1486| | - mmlu_flan_cot_fewshot_high_school_geography | 0|get-answer| 0|exact_match|0.9091|± |0.0627| | - mmlu_flan_cot_fewshot_high_school_government_and_politics| 0|get-answer| 0|exact_match|0.8095|± |0.0878| | - mmlu_flan_cot_fewshot_high_school_macroeconomics | 0|get-answer| 0|exact_match|0.6512|± |0.0735| | - mmlu_flan_cot_fewshot_high_school_microeconomics | 0|get-answer| 0|exact_match|0.5769|± |0.0988| | - mmlu_flan_cot_fewshot_high_school_psychology | 0|get-answer| 0|exact_match|0.9000|± |0.0391| | - mmlu_flan_cot_fewshot_human_sexuality | 0|get-answer| 0|exact_match|0.6667|± |0.1421| | - mmlu_flan_cot_fewshot_professional_psychology | 0|get-answer| 0|exact_match|0.6522|± |0.0578| | - mmlu_flan_cot_fewshot_public_relations | 0|get-answer| 0|exact_match|0.5833|± |0.1486| | - mmlu_flan_cot_fewshot_security_studies | 0|get-answer| 0|exact_match|0.4074|± |0.0964| | - mmlu_flan_cot_fewshot_sociology | 0|get-answer| 0|exact_match|0.8182|± |0.0842| | - mmlu_flan_cot_fewshot_us_foreign_policy | 0|get-answer| 0|exact_match|0.7273|± |0.1408| | - mmlu_flan_cot_fewshot_stem |N/A |get-answer| 0|exact_match|0.4866|± |0.0262| | - mmlu_flan_cot_fewshot_abstract_algebra | 0|get-answer| 0|exact_match|0.0909|± |0.0909| | - mmlu_flan_cot_fewshot_anatomy | 0|get-answer| 0|exact_match|0.4286|± |0.1373| | - mmlu_flan_cot_fewshot_astronomy | 0|get-answer| 0|exact_match|0.5625|± |0.1281| | - mmlu_flan_cot_fewshot_college_biology | 0|get-answer| 0|exact_match|0.5000|± |0.1291| | - mmlu_flan_cot_fewshot_college_chemistry | 0|get-answer| 0|exact_match|0.5000|± |0.1890| | - mmlu_flan_cot_fewshot_college_computer_science | 0|get-answer| 0|exact_match|0.2727|± |0.1408| | - mmlu_flan_cot_fewshot_college_mathematics | 0|get-answer| 0|exact_match|0.3636|± |0.1521| | - mmlu_flan_cot_fewshot_college_physics | 0|get-answer| 0|exact_match|0.3636|± |0.1521| | - mmlu_flan_cot_fewshot_computer_security | 0|get-answer| 0|exact_match|0.7273|± |0.1408| | - mmlu_flan_cot_fewshot_conceptual_physics | 0|get-answer| 0|exact_match|0.6538|± |0.0951| | - mmlu_flan_cot_fewshot_electrical_engineering | 0|get-answer| 0|exact_match|0.7500|± |0.1118| | - mmlu_flan_cot_fewshot_elementary_mathematics | 0|get-answer| 0|exact_match|0.7317|± |0.0701| | - mmlu_flan_cot_fewshot_high_school_biology | 0|get-answer| 0|exact_match|0.5938|± |0.0882| | - mmlu_flan_cot_fewshot_high_school_chemistry | 0|get-answer| 0|exact_match|0.3636|± |0.1050| | - mmlu_flan_cot_fewshot_high_school_computer_science | 0|get-answer| 0|exact_match|0.5556|± |0.1757| | - mmlu_flan_cot_fewshot_high_school_mathematics | 0|get-answer| 0|exact_match|0.3103|± |0.0874| | - mmlu_flan_cot_fewshot_high_school_physics | 0|get-answer| 0|exact_match|0.2353|± |0.1060| | - mmlu_flan_cot_fewshot_high_school_statistics | 0|get-answer| 0|exact_match|0.3043|± |0.0981| | - mmlu_flan_cot_fewshot_machine_learning | 0|get-answer| 0|exact_match|0.4545|± |0.1575| | Groups |Version| Filter |n-shot| Metric |Value | |Stderr| |----------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:| |mmlu_flan_cot_fewshot |N/A |get-answer| 0|exact_match|0.5833|± |0.0118| | - mmlu_flan_cot_fewshot_humanities |N/A |get-answer| 0|exact_match|0.5039|± |0.0205| | - mmlu_flan_cot_fewshot_other |N/A |get-answer| 0|exact_match|0.6833|± |0.0244| | - mmlu_flan_cot_fewshot_social_sciences|N/A |get-answer| 0|exact_match|0.7003|± |0.0239| | - mmlu_flan_cot_fewshot_stem |N/A |get-answer| 0|exact_match|0.4866|± |0.0262| ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-3.0-Mistral-7B-DPO" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nExplain the implications of quantum entanglement in layman's terms.<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, do_sample=True, top_p=0.7, top_k=6) # These are the recommended sample settings. print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations While the training data has been carefully curated and optimized, there may still be some inconsistencies or biases present due to the inherent complexity and diversity of the source dataset. Users should be aware of potential limitations and carefully evaluate the model's outputs for their specific use case. Additionally, this model is highly compliant and will attempt to respond to most requests. For enterprise-level deployment, it is strongly recommended to further fine-tune the model using DPO to align its behavior with specific requirements and constraints. ## Licensing Information This model is released under the Apache-2.0 license.
wolfeidau/NeuralHermes-2.5-Mistral-7B
wolfeidau
2024-03-24T08:01:32Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dpo", "finetune", "conversational", "en", "dataset:Intel/orca_dpo_pairs", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-24T05:43:33Z
--- library_name: transformers tags: - dpo - mistral - finetune license: apache-2.0 datasets: - Intel/orca_dpo_pairs language: - en --- # NeuralHermes 2.5 - Mistral 7B NeuralHermes-2.5 was created by fine-tuning OpenHermes-2.5 using a RLHF-like technique: Direct Preference Optimization (DPO) using the `Intel/orca_dpo_pairs` dataset. ## Usage You can also run this model using the following code: ```python import transformers from transformers import AutoTokenizer # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) ``` ## Training hyperparameters **LoRA**: * r=16 * lora_alpha=16 * lora_dropout=0.05 * bias="none" * task_type="CAUSAL_LM" * target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] **Training arguments**: * per_device_train_batch_size=4 * gradient_accumulation_steps=4 * gradient_checkpointing=True * learning_rate=5e-5 * lr_scheduler_type="cosine" * max_steps=200 * optim="paged_adamw_32bit" * warmup_steps=100 **DPOTrainer**: * beta=0.1 * max_prompt_length=1024 * max_length=1536
M4-ai/Hercules-Qwen1.5-14B
M4-ai
2024-03-30T23:59:28Z
726
2
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "dataset:Locutusque/hercules-v4.0", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-30T04:20:40Z
--- library_name: transformers license: other datasets: - Locutusque/hercules-v4.0 language: - en --- <style> body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; line-height: 1.6; color: #f5f5f5; background-color: #1e2a36; margin: 0; padding: 0; } .container { max-width: 1200px; margin: 20px auto; padding: 20px; background-color: #2a3f54; border-radius: 8px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); display: flex; flex-wrap: wrap; justify-content: space-between; } h1 { font-size: 2.5rem; color: #51a3d3; text-align: center; margin-bottom: 30px; width: 100%; } h2 { font-size: 1.75rem; margin: 20px 0; color: #63b8ea; padding-bottom: 10px; } h3 { font-size: 1.25rem; color: #80c8f4; } p, a { font-size: 1rem; } p { color: #b0c2ce; margin-bottom: 20px; } ul { list-style-type: none; padding: 0; display: flex; flex-wrap: wrap; justify-content: space-between; width: 100%; } li { background-color: #34495e; padding: 20px; margin-bottom: 10px; border-radius: 4px; cursor: pointer; transition: background-color 0.3s ease, color 0.3s ease; overflow: hidden; color: #b0c2ce; width: calc(50% - 10px); box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); } li:hover { background-color: #4e6a81; color: #dfe8f1; } .section-content { margin-top: 15px; border-top: 1px solid #4e6a81; padding-top: 10px; } a { color: #a4c8e1; text-decoration: none; } a:hover { text-decoration: underline; } pre { background-color: #2c3e50; padding: 10px; border-radius: 5px; overflow-x: auto; color: #b0c2ce; } </style> <div class="container"> <h1>Hercules-Qwen1.5-14B</h1> </div> <ul> <li> <h2>Model Details</h2> <div class="section-content"> <h3>Model Description</h3> <p>This model has capabilities in math, coding, function calling, roleplay, and more. We fine-tuned it using 700,000 examples of Hercules-v4.</p> <p><strong>Developed by:</strong> M4-ai</p> <p><strong>Language(s) (NLP):</strong> English and maybe Chinese</p> <p><strong>License:</strong> tongyi-qianwen license</p> <p><strong>Finetuned from model:</strong> <a href="https://huggingface.co/Qwen/Qwen1.5-14B">Qwen1.5-14B</a></p> </div> </li> <li> <h2>Uses</h2> <div class="section-content"> <p>General purpose assistant, question answering, chain-of-thought, etc..</p> <h3>Recommendations</h3> <p>Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.</p> </div> </li> <li> <h2>Evaluation</h2> <div class="section-content"> <p>Coming soon</p> </div> </li> <li> <h2>Training Details</h2> <div class="section-content"> <h3>Training Data</h3> <p><a href="https://huggingface.co/datasets/Locutusque/hercules-v4.0">https://huggingface.co/datasets/Locutusque/hercules-v4.0</a></p> <h4>Training Hyperparameters</h4> <p><strong>Training regime:</strong> bf16 non-mixed precision</p> </div> </li> <li> <h2>Technical Specifications</h2> <div class="section-content"> <h4>Hardware</h4> <p>We used 8 Kaggle TPUs, and we trained at a global batch size of 128 and sequence length of 1024</p> </div> </li> <li> <h2>Contributions</h2> <div class="section-content"> <p>Thanks to @Tonic, @aloobun, @fhai50032, and @Locutusque for their contributions to this model.</p> </div> </li> </ul>
Kukedlc/NeuralKuke-4-All-7b
Kukedlc
2024-03-30T06:14:26Z
726
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural-4-ARC-7b", "Kukedlc/Neural-4-Wino-7b", "Kukedlc/NeuralSirKrishna-7b", "Kukedlc/Neural-4-QA-7b", "Kukedlc/Neural-4-Maths-7b", "base_model:Kukedlc/Neural-4-ARC-7b", "base_model:Kukedlc/Neural-4-Wino-7b", "base_model:Kukedlc/NeuralSirKrishna-7b", "base_model:Kukedlc/Neural-4-QA-7b", "base_model:Kukedlc/Neural-4-Maths-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-30T06:06:54Z
--- tags: - merge - mergekit - lazymergekit - Kukedlc/Neural-4-ARC-7b - Kukedlc/Neural-4-Wino-7b - Kukedlc/NeuralSirKrishna-7b - Kukedlc/Neural-4-QA-7b - Kukedlc/Neural-4-Maths-7b base_model: - Kukedlc/Neural-4-ARC-7b - Kukedlc/Neural-4-Wino-7b - Kukedlc/NeuralSirKrishna-7b - Kukedlc/Neural-4-QA-7b - Kukedlc/Neural-4-Maths-7b license: apache-2.0 --- # NeuralKuke-4-All-7b NeuralKuke-4-All-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Neural-4-ARC-7b](https://huggingface.co/Kukedlc/Neural-4-ARC-7b) * [Kukedlc/Neural-4-Wino-7b](https://huggingface.co/Kukedlc/Neural-4-Wino-7b) * [Kukedlc/NeuralSirKrishna-7b](https://huggingface.co/Kukedlc/NeuralSirKrishna-7b) * [Kukedlc/Neural-4-QA-7b](https://huggingface.co/Kukedlc/Neural-4-QA-7b) * [Kukedlc/Neural-4-Maths-7b](https://huggingface.co/Kukedlc/Neural-4-Maths-7b) ## 🧩 Configuration ```yaml models: - model: Kukedlc/NeuralSirKrishna-7b # No parameters necessary for base model - model: Kukedlc/Neural-4-ARC-7b parameters: density: 0.55 weight: 0.2 - model: Kukedlc/Neural-4-Wino-7b parameters: density: 0.55 weight: 0.2 - model: Kukedlc/NeuralSirKrishna-7b parameters: density: 0.55 weight: 0.2 - model: Kukedlc/Neural-4-QA-7b parameters: density: 0.55 weight: 0.2 - model: Kukedlc/Neural-4-Maths-7b parameters: density: 0.55 weight: 0.2 merge_method: dare_ties base_model: Kukedlc/NeuralSirKrishna-7b parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralKuke-4-All-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
optimum/mistral-1.1b-testing
optimum
2024-04-19T12:42:59Z
726
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-19T12:41:27Z
--- license: apache-2.0 --- mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! (model card is repeated due to open llm leaderboard length requirements) mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy! mistralized tinyllama since flash attention training on llama w/ flash-attn is buggy. it's based on the 3t base model (not chat tuned). not extensively tested. enjoy!
THU-KEG/ADELIE-SFT
THU-KEG
2024-05-10T05:13:17Z
726
5
transformers
[ "transformers", "pytorch", "llama", "text-generation", "text-generation-inference", "Information Extraction", "IE", "Named Entity Recogniton", "Event Extraction", "Relation Extraction", "LLaMA", "en", "dataset:ACE05", "dataset:conll2003", "dataset:conll2012_ontonotesv5", "dataset:rams", "dataset:tacred", "dataset:fewrel", "dataset:maven", "arxiv:2405.05008", "license:llama2", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-05-10T03:51:12Z
--- license: llama2 datasets: - ACE05 - conll2003 - conll2012_ontonotesv5 - rams - tacred - fewrel - maven language: - en metrics: - f1 pipeline_tag: text-generation tags: - text-generation-inference - Information Extraction - IE - Named Entity Recogniton - Event Extraction - Relation Extraction - LLaMA --- # Model Card for ADELIE-SFT <!-- Provide a quick summary of what the model is/does. --> <p align="justify"> We introduce <b>ADELIE</b> (<b>A</b>ligning large language mo<b>DEL</b>s on <b>I</b>nformation <b>E</b>xtraction), an aligned LLM that effectively solves various IE tasks, including closed IE, open IE, and on-demand IE. We first collect and construct a high-quality alignment corpus <font face="Verdana">IEInstruct</font> for IE. Then we train ADELIE<sub>SFT</sub> using instruction tuning on <font face="Verdana">IEInstruct</font>. We further train ADELIE<sub>SFT</sub> with direct preference optimization (DPO) objective, resulting in ADELIE<sub>DPO</sub>. Extensive experiments on various held-out IE datasets demonstrate that our models (ADELIE<sub>SFT</sub> and ADELIE<sub>DPO</sub>) achieve state-of-the-art (SoTA) performance among open-source models. We further explore the general capabilities of ADELIE, and experimental results reveal that their general capabilities do not exhibit a noticeable decline. - 📖 Paper: [ADELIE: Aligning Large Language Models on Information Extraction](https://arxiv.org/abs/2405.05008) </p> ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Yunjia Qi, Hao Peng, Xiaozhi Wang, Bin Xu, Lei Hou, Juanzi Li - **Model type:** Text Generation - **Language(s) (NLP):** English - **License:** LLaMA2 License for the base model. - **Finetuned from model [optional]:** LLaMA2-7B
duyntnet/TenyxChat-7B-v1-imatrix-GGUF
duyntnet
2024-05-21T15:12:41Z
726
0
transformers
[ "transformers", "gguf", "imatrix", "TenyxChat-7B-v1", "text-generation", "en", "license:other", "region:us" ]
text-generation
2024-05-21T12:26:40Z
--- license: other language: - en pipeline_tag: text-generation inference: false tags: - transformers - gguf - imatrix - TenyxChat-7B-v1 --- Quantizations of https://huggingface.co/tenyx/TenyxChat-7B-v1 # From original readme ## Usage Our model uses a simple chat template based on OpenChat 3.5. The chat template usage with a Hugging face generation example is shown below. ### Chat Template (Jinja) ```rust {{ bos_token }} {% for message in messages %} {% if message['role'] == 'user' %} {{ 'User:' + message['content'] + eos_token }} {% elif message['role'] == 'system' %} {{ 'System:' + message['content'] + eos_token }} {% elif message['role'] == 'assistant' %} {{ 'Assistant:' + message['content'] + eos_token }} {% endif %} {% if loop.last and add_generation_prompt %}\n{{ 'Assistant:' }}{% endif %}\n{% endfor %} ``` ### Hugging face Example ```python import torch from transformers import pipeline pipe = pipeline("text-generation", model="tenyx/TenyxChat-7B-v1", torch_dtype=torch.bfloat16, device_map="auto") messages = [ {"role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate."}, {"role": "user", "content": "Hi. I would like to make a hotel booking."}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=512, do_sample=False) ``` ### Output ``` <s> System:You are a friendly chatbot who always responds in the style of a pirate.<|end_of_turn|> User:Hi. I would like to make a hotel booking.<|end_of_turn|> Assistant: Ahoy there me hearty! Arr, ye be lookin' fer a place to rest yer weary bones, eh? Well then, let's set sail on this grand adventure and find ye a swell place to stay! To begin, tell me the location ye be seekin' and the dates ye be lookin' to set sail. And don't ye worry, me matey, I'll be sure to find ye a place that'll make ye feel like a king or queen on land! ```
CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF
CHE-72
2024-06-22T18:46:56Z
726
0
null
[ "gguf", "chat", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:Qwen/Qwen1.5-4B-Chat", "license:other", "region:us" ]
text-generation
2024-06-22T18:46:34Z
--- base_model: Qwen/Qwen1.5-4B-Chat language: - en license: other license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/Qwen1.5-4B-Chat/blob/main/LICENSE pipeline_tag: text-generation tags: - chat - llama-cpp - gguf-my-repo --- # CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF This model was converted to GGUF format from [`Qwen/Qwen1.5-4B-Chat`](https://huggingface.co/Qwen/Qwen1.5-4B-Chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Qwen/Qwen1.5-4B-Chat) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF --hf-file qwen1.5-4b-chat-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF --hf-file qwen1.5-4b-chat-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF --hf-file qwen1.5-4b-chat-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo CHE-72/Qwen1.5-4B-Chat-Q8_0-GGUF --hf-file qwen1.5-4b-chat-q8_0.gguf -c 2048 ```
huggingartists/elton-john
huggingartists
2022-06-06T10:32:19Z
725
1
transformers
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/elton-john", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- language: en datasets: - huggingartists/elton-john tags: - huggingartists - lyrics - lm-head - causal-lm widget: - text: "I am" --- <div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/ec76d346c4c8b057169194c1781021fd.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Elton John</div> <a href="https://genius.com/artists/elton-john"> <div style="text-align: center; font-size: 14px;">@elton-john</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Elton John. Dataset is available [here](https://huggingface.co/datasets/huggingartists/elton-john). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/elton-john") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/188xpm2n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Elton John's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1rgstntu) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1rgstntu/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/elton-john') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/elton-john") model = AutoModelWithLMHead.from_pretrained("huggingartists/elton-john") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
taufeeque/tiny-gpt2
taufeeque
2023-01-28T01:15:12Z
725
0
transformers
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "dataset:wikitext", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-01-25T07:18:20Z
--- tags: - generated_from_trainer datasets: - wikitext metrics: - accuracy model-index: - name: output_tiny results: - task: name: Causal Language Modeling type: text-generation dataset: name: wikitext wikitext-103-v1 type: wikitext args: wikitext-103-v1 metrics: - name: Accuracy type: accuracy value: 0.2132901596611274 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_tiny This model is a fine-tuned version of [gpt2_tiny_random](https://huggingface.co/gpt2_tiny_random) on the wikitext wikitext-103-v1 dataset. It achieves the following results on the evaluation set: - Loss: 5.3359 - Accuracy: 0.2133 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 50000 ### Training results ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1 - Datasets 2.8.0 - Tokenizers 0.13.2
DKYoon/mt5-large-lm-adapt
DKYoon
2023-04-13T19:34:37Z
725
1
transformers
[ "transformers", "pytorch", "mt5", "text2text-generation", "arxiv:2205.12647", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2023-04-13T18:49:49Z
--- license: apache-2.0 --- 🤗 Language model initialized from mT5 and trained for an additional 100K steps on the Prefix LM objective using mC4 data. Paper: [Overcoming Catastrophic Forgetting in Zero-Shot Cross-Lingual Generation](https://arxiv.org/abs/2205.12647) Authors: Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mohit Iyyer, Noah Constant PyTorch port of the original Flax checkpoint at [Google/T5X repository](https://github.com/google-research/t5x).
MLRush/chinese-lm-30m
MLRush
2023-04-26T00:33:54Z
725
0
transformers
[ "transformers", "pytorch", "gpt_neox", "text-generation", "code", "zh", "dataset:wikipedia", "license:openrail", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-04-22T08:06:57Z
--- license: openrail datasets: - wikipedia language: - zh metrics: - perplexity library_name: transformers pipeline_tag: text-generation tags: - code --- 28M个参数: vocab_size=12829 num_hidden_layers=8 num_attention_heads=8 intermediate_size=1024 max_position_embeddings=512 hidden_size=512 block_size=512
Geonmo/CLIP-Giga-config-fixed
Geonmo
2023-06-28T02:19:09Z
725
0
transformers
[ "transformers", "pytorch", "clip", "zero-shot-image-classification", "license:mit", "endpoints_compatible", "region:us" ]
zero-shot-image-classification
2023-06-28T01:18:15Z
--- license: mit --- It will be removed when the config in `laion/CLIP-ViT-bigG-14-laion2B-39B-b160k` is fixed.
nisten/obsidian-3b-multimodal-q6-gguf
nisten
2023-12-09T17:57:24Z
725
65
null
[ "gguf", "license:mit", "region:us" ]
null
2023-10-29T04:28:10Z
--- license: mit --- # Original model: [NousResearch - Obsidian-3B-V0.5](https://huggingface.co/NousResearch/Obsidian-3B-V0.5) ## gguf q6 quantised version by Nisten To run the server inside /llama.cpp/ folder IN YOUR TERMINAL ## ./server -m obsidian-q6.gguf --mmproj mmproj-obsidian-f16.gguf -ngl 42 that's it, it's literally one command, you open your browser now at http://127.0.0.1:8080 ## FIRST TIME TO RUN mac or linux, make a new folder, COPY PASTE THIS TO DL & RUN EVERYTHIN whole in ONE SHOT ```bash git clone -b stablelm-support https://github.com/Galunid/llama.cpp.git && \ cd llama.cpp && \ make && \ wget https://huggingface.co/nisten/obsidian-3b-multimodal-q6-gguf/resolve/main/obsidian-q6.gguf && \ wget https://huggingface.co/nisten/obsidian-3b-multimodal-q6-gguf/resolve/main/mmproj-obsidian-f16.gguf && \ ./server -m obsidian-q6.gguf --mmproj mmproj-obsidian-f16.gguf -ngl 42
sethuiyer/SynthIQ-7b
sethuiyer
2024-03-07T07:12:28Z
725
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "conversational", "en", "dataset:stingning/ultrachat", "dataset:garage-bAInd/Open-Platypus", "dataset:Open-Orca/OpenOrca", "dataset:TIGER-Lab/MathInstruct", "dataset:OpenAssistant/oasst_top1_2023-08-25", "dataset:teknium/openhermes", "dataset:meta-math/MetaMathQA", "dataset:Open-Orca/SlimOrca", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp", "base_model:ehartford/dolphin-2.1-mistral-7b", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:bhenrym14/mistral-7b-platypus-fp16", "base_model:ehartford/samantha-1.2-mistral-7b", "base_model:iteknium/CollectiveCognition-v1.1-Mistral-7B", "base_model:HuggingFaceH4/zephyr-7b-alpha", "license:llama2", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-29T09:38:34Z
--- language: - en license: llama2 library_name: transformers tags: - mistral - merge datasets: - stingning/ultrachat - garage-bAInd/Open-Platypus - Open-Orca/OpenOrca - TIGER-Lab/MathInstruct - OpenAssistant/oasst_top1_2023-08-25 - teknium/openhermes - meta-math/MetaMathQA - Open-Orca/SlimOrca pipeline_tag: text-generation base_model: - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp - ehartford/dolphin-2.1-mistral-7b - Open-Orca/Mistral-7B-OpenOrca - bhenrym14/mistral-7b-platypus-fp16 - ehartford/samantha-1.2-mistral-7b - iteknium/CollectiveCognition-v1.1-Mistral-7B - HuggingFaceH4/zephyr-7b-alpha model-index: - name: sethuiyer/SynthIQ-7b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.87 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.82 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.75 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.69 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 64.06 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b name: Open LLM Leaderboard --- <p align="center"> <img src="https://codeberg.org/aninokuma/DeydooAssistant/raw/branch/main/logo.webp" height="256px" alt="SynthIQ"> </p> # SynthIQ This is SynthIQ, rated **92.23/100** by GPT-4 across varied complex prompts. I used [mergekit](https://github.com/cg123/mergekit) to merge models. | Benchmark Name | Score | | ---------------- | ----- | | ARC | 65.87 | | HellaSwag | 85.82 | | MMLU | 64.75 | | TruthfulQA | 57.00 | | Winogrande | 78.69 | | GSM8K | 64.06 | | AGIEval | 42.67 | | GPT4All | 73.71 | | Bigbench | 44.59 | ## Update - 19/01/2024 Tested to work well with autogen and CrewAI GGUF Files [Q4_K_M](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q4_K_M.gguf) - medium, balanced quality - recommended [Q_6_K](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q6_K.gguf) - very large, extremely low quality loss [Q8_0](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q8.gguf) - very large, extremely low quality loss - not recommended **Important Update**: SynthIQ is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/synthiq``` in your terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on a Google Colab backend. # Yaml Config ```yaml slices: - sources: - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp layer_range: [0, 32] - model: uukuguy/speechless-mistral-six-in-one-7b layer_range: [0, 32] merge_method: slerp base_model: mistralai/Mistral-7B-v0.1 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 # fallback for rest of tensors tokenizer_source: union dtype: bfloat16 ``` <!-- prompt-template start --> ## Prompt template: ChatML ``` <|im_start|>system {system_message}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` <!-- prompt-template end --> License is LLama2 license as uukuguy/speechless-mistral-six-in-one-7b is llama2 license. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b) # [Nous Benchmark Evalation Results](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard) Detailed results can be found [here](https://gist.github.com/sethuiyer/f47dee388a4e95d46181c98d37d66a58) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b) | Metric |Value| |---------------------------------|----:| |Avg. |69.37| |AI2 Reasoning Challenge (25-Shot)|65.87| |HellaSwag (10-Shot) |85.82| |MMLU (5-Shot) |64.75| |TruthfulQA (0-shot) |57.00| |Winogrande (5-shot) |78.69| |GSM8k (5-shot) |64.06|
EmbeddedLLM/Mistral-7B-Merge-14-v0.3-ft-step-15936
EmbeddedLLM
2024-01-20T16:07:06Z
725
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "merge", "fine-tuned", "en", "dataset:cognitivecomputations/dolphin", "dataset:cognitivecomputations/dolphin-coder", "dataset:ise-uiuc/Magicoder-OSS-Instruct-75K", "dataset:teknium/openhermes", "dataset:migtissera/Synthia-v1.3", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:ehartford/dolphin-2.2.1-mistral-7b", "base_model:SciPhi/SciPhi-Mistral-7B-32k", "base_model:ehartford/samantha-1.2-mistral-7b", "base_model:Arc53/docsgpt-7b-mistral", "base_model:HuggingFaceH4/zephyr-7b-beta", "base_model:meta-math/MetaMath-Mistral-7B", "base_model:Open-Orca/Mistral-7B-OpenOrca", "base_model:openchat/openchat-3.5-1210", "base_model:beowolx/MistralHermes-CodePro-7B-v1", "base_model:TIGER-Lab/MAmmoTH-7B-Mistral", "base_model:teknium/OpenHermes-2.5-Mistral-7B", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-05T04:25:57Z
--- license: apache-2.0 datasets: - cognitivecomputations/dolphin - cognitivecomputations/dolphin-coder - ise-uiuc/Magicoder-OSS-Instruct-75K - teknium/openhermes - migtissera/Synthia-v1.3 language: - en tags: - merge - fine-tuned base_model: - mistralai/Mistral-7B-Instruct-v0.2 - ehartford/dolphin-2.2.1-mistral-7b - SciPhi/SciPhi-Mistral-7B-32k - ehartford/samantha-1.2-mistral-7b - Arc53/docsgpt-7b-mistral - HuggingFaceH4/zephyr-7b-beta - meta-math/MetaMath-Mistral-7B - Open-Orca/Mistral-7B-OpenOrca - openchat/openchat-3.5-1210 - beowolx/MistralHermes-CodePro-7B-v1 - TIGER-Lab/MAmmoTH-7B-Mistral - teknium/OpenHermes-2.5-Mistral-7B - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp - mlabonne/NeuralHermes-2.5-Mistral-7B --- # Model Description This is fine-tuned model based on EmbeddedLLM/Mistral-7B-Merge-14-v0.3 for 3 epochs. The dataset used are: * dophin * dolphin-coder * Magicoder-OSS-Instruct-75K * openhermes * Synthia-v1.3 ## Chat Template Prompt format: This model uses ChatML prompt format. ``` <|im_start|>system You are Dolphin, a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` # Training The model has been fine-tuned for 3 epochs on 4 A100s using axolotl. # Shout-Out to OSS Thank you to the Open Source AI community for bringing together marvelous code frameworks and datasets.
brucethemoose/SUS-Bagel-200K-DARE-Test
brucethemoose
2024-01-11T19:17:29Z
725
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "Yi", "en", "arxiv:2311.03099", "arxiv:2306.01708", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-06T09:17:17Z
--- license: other license_name: yi-license license_link: https://huggingface.co/01-ai/Yi-34B/blob/main/LICENSE language: - en library_name: transformers base_model: [] tags: - mergekit - merge - Yi --- Just an experiment to try and extend the context of SUS, a 4K Yi model, and DPO Bagel, which breaks down after 4K context. Yi 4K was used as a base (even for bagel which is technically a Yi 200K model), and Yi 200K is merged in with a density of 1. I wanted to include Hermes 34B, but something funky about its tokenizer breaks mergekit. A component of another merge. Auto generated mergekit description below: *** This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama as a base. ### Models Merged The following models were included in the merge: * /home/alpha/Models/Raw/SUSTech_SUS-Chat-34B * /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama * /home/alpha/Models/Raw/jondurbin_bagel-34b-v0.2 * /home/alpha/Models/Raw/jondurbin_bagel-dpo-34b-v0.2 ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama # No parameters necessary for base model - model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama parameters: weight: 0.5 density: 1 - model: /home/alpha/Models/Raw/SUSTech_SUS-Chat-34B parameters: weight: 0.2 density: 0.12 - model: /home/alpha/Models/Raw/jondurbin_bagel-dpo-34b-v0.2 parameters: weight: 0.2 density: 0.15 - model: /home/alpha/Models/Raw/jondurbin_bagel-34b-v0.2 parameters: weight: 0.1 density: 0.12 merge_method: dare_ties tokenizer_source: union base_model: /home/alpha/Models/Raw/chargoddard_Yi-34B-Llama parameters: int8_mask: true dtype: bfloat16 ```
damerajee/Oot-v2_lll
damerajee
2024-03-05T15:07:37Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "mlabonne/Marcoro14-7B-slerp", "Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "conversational", "base_model:mlabonne/Marcoro14-7B-slerp", "base_model:Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-11T14:53:20Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - mlabonne/Marcoro14-7B-slerp - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp pipeline_tag: conversational base_model: - mlabonne/Marcoro14-7B-slerp - Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp model-index: - name: Oot-v2_lll results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.28 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.6 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.96 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.57 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.82 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=damerajee/Oot-v2_lll name: Open LLM Leaderboard --- # Oot-v2_lll Oot-v2_lll is a merge of the following models using Mergekit: * [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp) * [Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp](https://huggingface.co/Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp) ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/Marcoro14-7B-slerp layer_range: [0, 32] - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-Slerp layer_range: [0, 32] merge_method: slerp base_model: mlabonne/Marcoro14-7B-slerp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "damerajee/Oot-v2_lll" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_damerajee__Oot-v2_lll) | Metric |Value| |---------------------------------|----:| |Avg. |72.73| |AI2 Reasoning Challenge (25-Shot)|69.28| |HellaSwag (10-Shot) |86.60| |MMLU (5-Shot) |64.96| |TruthfulQA (0-shot) |62.57| |Winogrande (5-shot) |80.82| |GSM8k (5-shot) |72.18|
Vasanth/Beast-Soul
Vasanth
2024-01-22T00:02:12Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "base_model:udkai/Turdus", "base_model:decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-21T23:51:49Z
--- tags: - merge - mergekit - lazymergekit base_model: - udkai/Turdus - decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP license: apache-2.0 --- # Beast-Soul Beast-Soul is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [udkai/Turdus](https://huggingface.co/udkai/Turdus) * [decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP](https://huggingface.co/decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP) ## 🧩 Configuration ```yaml slices: - sources: - model: udkai/Turdus layer_range: [0, 32] - model: decruz07/kellemar-DPO-Orca-Distilled-7B-SLERP layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Vasanth/Beast-Soul" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
llmixer/BigWeave-v12-90b
llmixer
2024-03-05T06:11:08Z
725
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "Xwin", "Euryale 1.3", "Platypus2", "WinterGoddess", "frankenmerge", "dare", "ties", "90b", "conversational", "en", "license:llama2", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-25T10:03:44Z
--- language: - en license: llama2 tags: - Xwin - Euryale 1.3 - Platypus2 - WinterGoddess - frankenmerge - dare - ties - 90b pipeline_tag: conversational model-index: - name: BigWeave-v12-90b results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.09 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.7 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 69.41 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.35 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 81.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 47.38 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=llmixer/BigWeave-v12-90b name: Open LLM Leaderboard --- # BigWeave v12 90B <img src="https://cdn-uploads.huggingface.co/production/uploads/65a6db055c58475cf9e6def1/4CbbAN-X7ZWj702JrcCGH.png" width=600> The BigWeave models aim to identify merge settings equaling or surpassing the performance of Goliath-120b. The version number merely tracks various attempts and is not a quality indicator. Only results demonstrating good performance are retained and shared. This version is a DARE-TIES merge of two passthrough merges: Xwin-LM-70b-v0.1 + Euryale-1.3-70b ([BigWeave v6](https://huggingface.co/llmixer/BigWeave-v6-90b)) and Platypus2-70b-instruct + WinterGoddess-1.4x-70b (BigWeave v8). Both models individually show strong performance, and the merged model achieves even lower perplexity than each model separately. The 90b size allows for 4bit quants to fit into 48GB of VRAM. # Prompting Format Vicuna and Alpaca. # Merge process The models used in the merge are [Xwin-LM-70b-v0.1](https://huggingface.co/Xwin-LM/Xwin-LM-70B-V0.1), [Euryale-1.3-70b](https://huggingface.co/Sao10K/Euryale-1.3-L2-70B), [Platypus2-70b-instruct](https://huggingface.co/garage-bAInd/Platypus2-70B-instruct) and [WinterGoddess-1.4x-70b](https://huggingface.co/Sao10K/WinterGoddess-1.4x-70B-L2). Merge configuration: ``` slices: - sources: - model: Xwin-LM/Xwin-LM-70B-V0.1 layer_range: [0,12] - sources: - model: Sao10K/Euryale-1.3-L2-70B layer_range: [9,14] - sources: - model: Xwin-LM/Xwin-LM-70B-V0.1 layer_range: [12,62] - sources: - model: Sao10K/Euryale-1.3-L2-70B layer_range: [54,71] - sources: - model: Xwin-LM/Xwin-LM-70B-V0.1 layer_range: [62,80] merge_method: passthrough dtype: float16 --- slices: - sources: - model: garage-bAInd/Platypus2-70B-instruct layer_range: [0,12] - sources: - model: Sao10K/WinterGoddess-1.4x-70B-L2 layer_range: [9,14] - sources: - model: garage-bAInd/Platypus2-70B-instruct layer_range: [12,62] - sources: - model: Sao10/WinterGoddess-1.4x-70B-L2 layer_range: [54,71] - sources: - model: garage-bAInd/Platypus2-70B-instruct layer_range: [62,80] merge_method: passthrough dtype: float16 --- models: - model: llmixer/BigWeave-v8-90b parameters: weight: 0.5 density: 0.25 merge_method: dare_ties base_model: llmixer/BigWeave-v6-90b dtype: float16 ``` # Acknowledgements [@Xwin-LM](https://huggingface.co/Xwin-LM) For creating Xwin [@Sao10K](https://huggingface.co/Sao10K) For creating Euryale and WinterGoddess [@garage-bAInd](https://huggingface.co/garage-bAInd) For creating Platypus2 [@alpindale](https://huggingface.co/alpindale) For creating the original Goliath [@chargoddard](https://huggingface.co/chargoddard) For developing [mergekit](https://github.com/cg123/mergekit). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_llmixer__BigWeave-v12-90b) | Metric |Value| |---------------------------------|----:| |Avg. |69.19| |AI2 Reasoning Challenge (25-Shot)|68.09| |HellaSwag (10-Shot) |87.70| |MMLU (5-Shot) |69.41| |TruthfulQA (0-shot) |61.35| |Winogrande (5-shot) |81.22| |GSM8k (5-shot) |47.38|
Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test
Josephgflowers
2024-03-09T13:54:50Z
725
4
transformers
[ "transformers", "safetensors", "llama", "text-generation", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-27T13:56:19Z
--- license: mit widget: - text: '<|system|> You are a helpful assistant</s> <|user|> Can you explain to me how quantum computing works?</s> <|assistant|> ' model-index: - name: Tinyllama-Cinder-1.3B-Reason-Test results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 34.56 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 58.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 39.93 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 63.93 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 4.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Josephgflowers/Tinyllama-Cinder-1.3B-Reason-Test name: Open LLM Leaderboard --- 1.3B test of two Cinder models merged layers 1-22 and 18-22, trained on math and step by step reasoning. Model Overview Cinder is an AI chatbot tailored for engaging users in scientific and educational conversations, offering companionship, and sparking imaginative exploration. It is built on the TinyLlama 1.1B parameter model and trained on a unique combination of datasets. Testing on Reason-with-cinder dataset. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6328952f798f8d122ce62a44/obCyZSvfUefEWrOXaeB3o.png) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Josephgflowers__Tinyllama-Cinder-1.3B-Reason-Test) | Metric |Value| |---------------------------------|----:| |Avg. |37.88| |AI2 Reasoning Challenge (25-Shot)|34.56| |HellaSwag (10-Shot) |58.24| |MMLU (5-Shot) |25.79| |TruthfulQA (0-shot) |39.93| |Winogrande (5-shot) |63.93| |GSM8k (5-shot) | 4.85|
jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES
jsfs11
2024-03-03T00:06:04Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "FelixChao/WestSeverus-7B-DPO-v2", "CultriX/Wernicke-7B-v9", "mlabonne/NeuralBeagle14-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-01-31T00:04:51Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - FelixChao/WestSeverus-7B-DPO-v2 - CultriX/Wernicke-7B-v9 - mlabonne/NeuralBeagle14-7B model-index: - name: RandomMergeNoNormWEIGHTED-7B-DARETIES results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 73.38 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.5 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.5 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.58 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.28 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=jsfs11/RandomMergeNoNormWEIGHTED-7B-DARETIES name: Open LLM Leaderboard --- # RandomMergeNoNormWEIGHTED-7B-DARETIES RandomMergeNoNormWEIGHTED-7B-DARETIES is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) * [CultriX/Wernicke-7B-v9](https://huggingface.co/CultriX/Wernicke-7B-v9) * [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) ## 🧩 Configuration ```yaml models: - model: FelixChao/WestSeverus-7B-DPO-v2 # No parameters necessary for base model - model: FelixChao/WestSeverus-7B-DPO-v2 parameters: density: [1, 0.7, 0.1] weight: [0, 0.3, 0.7, 1] - model: CultriX/Wernicke-7B-v9 parameters: density: [1, 0.7, 0.3] weight: [0, 0.25, 0.5, 1] - model: mlabonne/NeuralBeagle14-7B parameters: density: 0.25 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: FelixChao/WestSeverus-7B-DPO-v2 parameters: int8_mask: true normalize: true sparsify: - filter: mlp value: 0.5 - filter: self_attn value: 0.5 dtype: float16 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_jsfs11__RandomMergeNoNormWEIGHTED-7B-DARETIES) | Metric |Value| |---------------------------------|----:| |Avg. |75.36| |AI2 Reasoning Challenge (25-Shot)|73.38| |HellaSwag (10-Shot) |88.50| |MMLU (5-Shot) |64.94| |TruthfulQA (0-shot) |71.50| |Winogrande (5-shot) |83.58| |GSM8k (5-shot) |70.28|
g-ronimo/phi-2-OpenHermes-2.5
g-ronimo
2024-02-05T17:33:27Z
725
10
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "dataset:teknium/OpenHermes-2.5", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-03T06:14:40Z
--- library_name: transformers license: mit datasets: - teknium/OpenHermes-2.5 --- # microsoft/phi-2 + teknium/OpenHermes-2.5 ## Training * QLoRA rank 32, LR 2e-5, 1 epoch * effective batch size: 200 * max. seq. length: 1024 tokens * code in code/ ## Evals | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |----------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[g-ronimo/phi-2-OpenHermes-2.5](https://huggingface.co/g-ronimo/phi-2-OpenHermes-2.5)| 30.27| 71.18| 43.87| 35.9| 45.3| |[minghaowu/phi-2-OpenHermes-2.5](https://huggingface.co/minghaowu/phi-2-OpenHermes-2.5)| 27.95| 67.55| 48.07| 36.17| 44.94| |[phi-2](https://huggingface.co/microsoft/phi-2)| 27.96| 70.84| 44.46| 35.17| 44.61| ## Inference ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch modelpath="g-ronimo/phi-2-OpenHermes-2.5" model = AutoModelForCausalLM.from_pretrained( modelpath, torch_dtype=torch.bfloat16, device_map="auto", # attn_implementation="flash_attention_2", ) tokenizer = AutoTokenizer.from_pretrained(modelpath) messages = [ {"role": "system", "content": "answer like a pirate"}, {"role": "user", "content": "what does it mean to be successful?"}, ] input_tokens = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to("cuda") output_tokens = model.generate(input_tokens, max_new_tokens=500) output = tokenizer.decode(output_tokens[0]) print(output) ``` >Ahoy there, matey! To me, being successful means having the wind in your sails and reaching the treasure you've been dreaming of. It's about setting sail on a journey with clear goals, working hard, facing challenges head-on, and never losing sight of what truly matters. So, set your compass right, hoist your Jolly Roger high, and let's embark on this adventure together! ⚓️💰⛵️
BarraHome/rezephyr_merged_4bit
BarraHome
2024-02-05T19:57:50Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "text-classification", "en", "dataset:yahma/alpaca-cleaned", "base_model:unsloth/zephyr-sft", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-classification
2024-02-05T17:49:33Z
--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - trl base_model: unsloth/zephyr-sft datasets: - yahma/alpaca-cleaned pipeline_tag: text-classification --- # Uploaded model - **Developed by:** BarraHome - **License:** apache-2.0 - **Finetuned from model :** unsloth/zephyr-sft This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
g-ronimo/phi-2-OpenHermes-2.5-v2
g-ronimo
2024-03-08T14:43:32Z
725
0
transformers
[ "transformers", "safetensors", "phi", "text-generation", "conversational", "custom_code", "dataset:teknium/OpenHermes-2.5", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-07T05:12:28Z
--- library_name: transformers license: mit datasets: - teknium/OpenHermes-2.5 --- # microsoft/phi-2 + teknium/OpenHermes-2.5 ## Training * QLoRA rank 32, LR 5e-5, 3 epochs * batch size: 200 * max. seq. length: 1024 tokens ## Evals | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |--------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[phi-2-OpenHermes-2.5-v2](https://huggingface.co/g-ronimo/phi-2-OpenHermes-2.5-LR5e-5-ep3)| 32.02| 70.56| 44.76| 36.85| 46.05| |[phi-2-OpenHermes-2.5](https://huggingface.co/g-ronimo/phi-2-OpenHermes-2.5)| 30.27| 71.18| 43.87| 35.9| 45.3| |[minghaowu/phi-2-OpenHermes-2.5](https://huggingface.co/minghaowu/phi-2-OpenHermes-2.5)| 27.95| 67.55| 48.07| 36.17| 44.94| |[phi-2](https://huggingface.co/microsoft/phi-2)| 27.96| 70.84| 44.46| 35.17| 44.61| ## Inference ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch modelpath="g-ronimo/phi-2-OpenHermes-2.5-v2" model = AutoModelForCausalLM.from_pretrained( modelpath, torch_dtype=torch.bfloat16, device_map="auto", # attn_implementation="flash_attention_2", ) tokenizer = AutoTokenizer.from_pretrained(modelpath) messages = [ {"role": "system", "content": "answer like a pirate"}, {"role": "user", "content": "what does it mean to be successful?"}, ] input_tokens = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to("cuda") output_tokens = model.generate(input_tokens, max_new_tokens=500) output = tokenizer.decode(output_tokens[0]) print(output) ``` >Ahoy there, matey! To me, being successful means having the wind in your sails and reaching the treasure you've been dreaming of. It's about setting sail on a journey with clear goals, working hard, facing challenges head-on, and never losing sight of what truly matters. So, set your compass right, hoist your Jolly Roger high, and let's embark on this adventure together! ⚓️💰⛵️
FelixChao/Capricorn-7B
FelixChao
2024-02-14T17:11:00Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-14T16:55:59Z
--- license: apache-2.0 --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1). ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Kukedlc/Neural-Cosmic-Boy-7B-slerp
Kukedlc
2024-05-25T17:09:33Z
725
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "Kukedlc/Neural-Cosmic-7B-slerp", "Kukedlc/NeuralLogic-7B-V", "Kukedlc/SuperCombo", "base_model:Kukedlc/Neural-Cosmic-7B-slerp", "base_model:Kukedlc/NeuralLogic-7B-V", "base_model:Kukedlc/SuperCombo", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-17T23:07:34Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Kukedlc/Neural-Cosmic-7B-slerp - Kukedlc/NeuralLogic-7B-V - Kukedlc/SuperCombo base_model: - Kukedlc/Neural-Cosmic-7B-slerp - Kukedlc/NeuralLogic-7B-V - Kukedlc/SuperCombo model-index: - name: Neural-Cosmic-Boy-7B-slerp results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 70.48 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.65 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.92 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 67.1 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.33 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Kukedlc/Neural-Cosmic-Boy-7B-slerp name: Open LLM Leaderboard --- ## Note: The merge method is ties, not slerp. # Neural-Cosmic-Boy-7B-slerp ![Neural Cosmic Boy - 7 billons params](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-02-17%2020.28.38%20-%20Visualize%20a%20human%20face%20composed%20entirely%20of%20topographic%20lines%2C%20similar%20to%20those%20found%20on%20a%20mountain%20map.%20This%20artistic%20representation%20uses%20only%20lines%20.webp) Neural-Cosmic-Boy-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Kukedlc/Neural-Cosmic-7B-slerp](https://huggingface.co/Kukedlc/Neural-Cosmic-7B-slerp) * [Kukedlc/NeuralLogic-7B-V](https://huggingface.co/Kukedlc/NeuralLogic-7B-V) * [Kukedlc/SuperCombo](https://huggingface.co/Kukedlc/SuperCombo) ## 🧩 Configuration ```yaml models: - model: Kukedlc/Neural-Cosmic-7B-slerp parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: Kukedlc/NeuralLogic-7B-V parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: Kukedlc/SuperCombo parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Neural-Cosmic-Boy-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Kukedlc__Neural-Cosmic-Boy-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |74.08| |AI2 Reasoning Challenge (25-Shot)|70.48| |HellaSwag (10-Shot) |87.65| |MMLU (5-Shot) |64.92| |TruthfulQA (0-shot) |67.10| |Winogrande (5-shot) |82.00| |GSM8k (5-shot) |72.33|
alnrg2arg/blockchainlabs_tinyllama_fusion_LHK_yunkong_v2
alnrg2arg
2024-02-19T04:15:16Z
725
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-19T02:37:24Z
--- license: mit --- This model is based on the fusion strategy offered by Fanqi Wan(https://github.com/fanqiwan/FuseLLM). Three models are fused together. 10epochs Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 Blending model 1: HanNayeoniee/LHK_DPO_v1 Blending model 2: yunconglong/Truthful_DPO_TomGrc_FusionNet_7Bx2_MoE_13B This model will be optimized by Laser and DPO later. This project is to make the on-device sLM. We are doing experiments on the models.
sethuiyer/CodeCalc-Mistral-7B
sethuiyer
2024-03-07T06:27:07Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "en", "base_model:uukuguy/speechless-code-mistral-7b-v1.0", "base_model:upaya07/Arithmo2-Mistral-7B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-19T08:50:59Z
--- language: - en license: apache-2.0 library_name: transformers tags: - mergekit - merge base_model: - uukuguy/speechless-code-mistral-7b-v1.0 - upaya07/Arithmo2-Mistral-7B pipeline_tag: text-generation model-index: - name: sethuiyer/CodeCalc-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 61.95 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 62.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 47.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 63.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/CodeCalc-Mistral-7B name: Open LLM Leaderboard --- # CodeCalc-Mistral-7B <p align="center"> <img src="https://huggingface.co/sethuiyer/CodeCalc-Mistral-7B/resolve/main/codecalc.webp" height="128px" alt="CodeCalc"> </p> ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: uukuguy/speechless-code-mistral-7b-v1.0 dtype: bfloat16 merge_method: ties models: - model: uukuguy/speechless-code-mistral-7b-v1.0 - model: upaya07/Arithmo2-Mistral-7B parameters: density: [0.25, 0.35, 0.45, 0.35, 0.25] weight: [0.1, 0.25, 0.5, 0.25, 0.1] parameters: int8_mask: true ``` ### Evaluation | T | Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K | |----|---------------------------------------------|---------|------|-----------|-------|------------|------------|-------| | 🔍 | sethuiyer/CodeCalc-Mistral-7B | 66.33 | 61.95| 83.64 | 62.78 | 47.79 | 78.3 | 63.53 | | 📉 | uukuguy/speechless-code-mistral-7b-v1.0 | 63.6 | 61.18| 83.77 | 63.4 | 47.9 | 78.37 | 47.01 | The merge appears to be successful, especially considering the substantial improvement in the GSM8K benchmark while maintaining comparable performance on other metrics. ## Usage Alpaca Instruction Format and [Divine Intellect](https://raw.githubusercontent.com/oobabooga/text-generation-webui/ae8cd449ae3e0236ecb3775892bb1eea23f9ed68/presets/Divine%20Intellect.yaml) preset. ``` You are an intelligent programming assistant. ### Instruction: Implement a linked list in C++ ### Response: ``` Preset: ```text temperature: 1.31 top_p: 0.14 repetition_penalty: 1.17 top_k: 49 ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__CodeCalc-Mistral-7B) | Metric |Value| |---------------------------------|----:| |Avg. |66.33| |AI2 Reasoning Challenge (25-Shot)|61.95| |HellaSwag (10-Shot) |83.64| |MMLU (5-Shot) |62.78| |TruthfulQA (0-shot) |47.79| |Winogrande (5-shot) |78.30| |GSM8k (5-shot) |63.53|
gmonsoon/Qwenchana-1.8B
gmonsoon
2024-03-04T12:57:02Z
725
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "arxiv:1910.09700", "license:other", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-02-24T22:23:48Z
--- license: other library_name: transformers model-index: - name: Qwenchana-1.8B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 38.23 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 59.92 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 45.78 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 39.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 60.3 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 19.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=gmonsoon/Qwenchana-1.8B name: Open LLM Leaderboard --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_gmonsoon__Qwenchana-1.8B) | Metric |Value| |---------------------------------|----:| |Avg. |43.83| |AI2 Reasoning Challenge (25-Shot)|38.23| |HellaSwag (10-Shot) |59.92| |MMLU (5-Shot) |45.78| |TruthfulQA (0-shot) |39.58| |Winogrande (5-shot) |60.30| |GSM8k (5-shot) |19.18|
Locutusque/Hyperion-1.5-Mistral-7B
Locutusque
2024-03-07T18:30:24Z
725
9
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "dataset:Locutusque/hyperion-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-02T19:22:02Z
--- license: apache-2.0 library_name: transformers tags: - conversational datasets: - Locutusque/hyperion-v1.5 model-index: - name: Hyperion-1.5-Mistral-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 60.49 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 83.64 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.57 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 41.78 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.49 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/Hyperion-1.5-Mistral-7B name: Open LLM Leaderboard --- # Model Card for Locutusque/Hyperion-1.5-Mistral-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6437292ecd93f4c9a34b0d47/1lL97kzuxqykXGUT6F593.png) ## Model Details **Model Name**: Locutusque/Hyperion-1.5-Mistral-7B **Base Model**: mistralai/Mistral-7B-v0.1 **Publisher**: M4-ai **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. **Language**: Multi-domain, English language. **License**: Apache-2.0 ## Model Description `Locutusque/Hyperion-1.5-Mistral-7B` is a state-of-the-art language model fine-tuned on the Hyperion dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The `Locutusque/Hyperion-1.5-Mistral-7B` model was fine-tuned on the Hyperion-v1.5 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. ## Evaluation Results Coming soon... ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-1.5-Mistral-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. ## Licensing Information This model is released under the Apache-2.0 license. ## Citation Information If you use Locutusque/Hyperion-1.5-Mistral-7B in your research, please cite the Hyperion dataset as follows: ``` @misc{sebastian_gabarain_2024, title = {Hyperion-1.5: Illuminating the Path to Advanced Reasoning with a High-Quality, Multidisciplinary Question Answering Dataset}, author = {Sebastian Gabarain}, publisher = {HuggingFace}, year = {2024}, url = {https://huggingface.co/datasets/Locutusque/hyperion-v1.5} } ``` ## Quants exl2 and GGUF by bartowski - https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-exl2 https://huggingface.co/bartowski/Hyperion-1.5-Mistral-7B-GGUF # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__Hyperion-1.5-Mistral-7B) | Metric |Value| |---------------------------------|----:| |Avg. |61.43| |AI2 Reasoning Challenge (25-Shot)|60.49| |HellaSwag (10-Shot) |83.64| |MMLU (5-Shot) |63.57| |TruthfulQA (0-shot) |41.78| |Winogrande (5-shot) |78.61| |GSM8k (5-shot) |40.49|
vishnukv/newmerge
vishnukv
2024-03-05T11:47:28Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "arxiv:2311.03099", "arxiv:2306.01708", "base_model:PetroGPT/WestSeverus-7B-DPO", "base_model:uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b", "base_model:vishnukv/WestSeverusJaskier", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-05T11:42:54Z
--- base_model: - PetroGPT/WestSeverus-7B-DPO - uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b - vishnukv/WestSeverusJaskier library_name: transformers tags: - mergekit - merge license: mit --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ### Merge Method This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b](https://huggingface.co/uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b) as a base. ### Models Merged The following models were included in the merge: * [PetroGPT/WestSeverus-7B-DPO](https://huggingface.co/PetroGPT/WestSeverus-7B-DPO) * [vishnukv/WestSeverusJaskier](https://huggingface.co/vishnukv/WestSeverusJaskier)
Kukedlc/NeuralExperiment-7b-MagicCoder-v7.5
Kukedlc
2024-03-07T03:43:54Z
725
1
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dataset:microsoft/orca-math-word-problems-200k", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:Vezora/Tested-22k-Python-Alpaca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-07T00:48:06Z
--- license: apache-2.0 datasets: - microsoft/orca-math-word-problems-200k - ise-uiuc/Magicoder-Evol-Instruct-110K - Vezora/Tested-22k-Python-Alpaca --- # Datacard for Custom Trained Model - Base Model : [Kukedlc/NeuralExperiment-7b-dare-ties](https://huggingface.co/Kukedlc/NeuralExperiment-7b-dare-ties) ## Model Description This model is an experimental AI trained on three distinct datasets focusing on logical reasoning, mathematics, and programming. The training process involved fine-tuning from the last layer (31) backward with a gradually decreasing learning rate. The primary goal is to address and rectify the common 'INSTINST' bug observed in leaderboard models through targeted training on the latest layers. ## Datasets Used for Training - `microsoft/orca-math-word-problems-200k`: A large-scale dataset of mathematical word problems aimed at enhancing the model's numerical reasoning and problem-solving capabilities. - `ise-uiuc/Magicoder-Evol-Instruct-110K`: A dataset designed to improve code generation and understanding, contributing to the model's programming language proficiency. - `sahil2801/CodeAlpaca-20k`: A dataset focused on programming challenges to further refine the model's coding and logical reasoning skills. Each dataset contributed 20,000 data points to the training process, ensuring a balanced representation of logic, mathematics, and programming tasks. ## Training Environment - The model was trained on Kaggle's free GPU environment, allowing for cost-effective fine-tuning and experimentation. - Users interested in replicating or extending this training can find the Kaggle notebook in my profile or request it directly for collaborative purposes. ## Preliminary Results - The model shows promising results in solving logical puzzles and mathematical problems, especially those with misleading or non-obvious solutions that it initially struggled with. - Ongoing experiments aim to quantify the impact of targeted training on the model's reasoning capabilities across different domains. ## Invitation for Collaboration - Feedback, suggestions, and collaborative efforts are highly encouraged to further refine and evaluate the model. - If interested in contributing or experimenting with this model, please feel free to reach out or access the code directly from my Kaggle profile. ## Contact Information - For any inquiries, suggestions, or collaboration proposals, please contact me! ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/NeuralExperiment-7b-MagicCoder-v7" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ![Kukedlc/NeuralExperiment-7b-dare-ties](https://raw.githubusercontent.com/kukedlc87/imagenes/main/DALL%C2%B7E%202024-03-05%2000.28.41%20-%20Imagine%20a%20visual%20representation%20of%20a%20language%20model%20inspired%20by%20the%20Mandelbrot%20fractal.%20The%20scene%20should%20depict%20an%20abstract%2C%20intricate%20network%20resembl.webp)
QueryloopAI/MonarchCoder-7B
QueryloopAI
2024-04-03T15:59:17Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "feature-extraction", "merge", "mergekit", "lazymergekit", "Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0", "mlabonne/AlphaMonarch-7B", "base_model:Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0", "base_model:mlabonne/AlphaMonarch-7B", "license:apache-2.0", "model-index", "endpoints_compatible", "text-generation-inference", "region:us" ]
feature-extraction
2024-03-09T06:56:24Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 - mlabonne/AlphaMonarch-7B base_model: - Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 - mlabonne/AlphaMonarch-7B model-index: - name: MonarchCoder-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 68.52 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 87.3 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.65 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 61.21 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 80.19 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 65.13 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=abideen/MonarchCoder-7B name: Open LLM Leaderboard --- # MonarchCoder-7B MonarchCoder-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0](https://huggingface.co/Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0) * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: Syed-Hasan-8503/Tess-Coder-7B-Mistral-v1.0 layer_range: [0, 32] - model: mlabonne/AlphaMonarch-7B layer_range: [0, 32] merge_method: slerp base_model: mlabonne/AlphaMonarch-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "QueryloopAI/MonarchCoder-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_abideen__MonarchCoder-7B) | Metric |Value| |---------------------------------|----:| |Avg. |71.17| |AI2 Reasoning Challenge (25-Shot)|68.52| |HellaSwag (10-Shot) |87.30| |MMLU (5-Shot) |64.65| |TruthfulQA (0-shot) |61.21| |Winogrande (5-shot) |80.19| |GSM8k (5-shot) |65.13|
automerger/Experiment27Pastiche-7B
automerger
2024-03-11T11:24:38Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "automerger", "base_model:CorticalStack/pastiche-crown-clown-7b-dare-dpo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-10T16:05:17Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit - automerger base_model: - CorticalStack/pastiche-crown-clown-7b-dare-dpo --- # Experiment27Pastiche-7B Experiment27Pastiche-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. * [CorticalStack/pastiche-crown-clown-7b-dare-dpo](https://huggingface.co/CorticalStack/pastiche-crown-clown-7b-dare-dpo) ## 🧩 Configuration ```yaml models: - model: yam-peleg/Experiment27-7B # No parameters necessary for base model - model: CorticalStack/pastiche-crown-clown-7b-dare-dpo parameters: density: 0.53 weight: 0.6 merge_method: dare_ties base_model: yam-peleg/Experiment27-7B parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Experiment27Pastiche-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
vishnukv/WestSeverusJaskier-OpenOrca
vishnukv
2024-03-12T03:26:30Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "dataset:Open-Orca/OpenOrca", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-11T22:54:52Z
--- license: mit datasets: - Open-Orca/OpenOrca --- --- library_name: peft base_model: models--vishnukv--WestSeverusJaskier/snapshots/c36fc5adc83cce1229db9ae808dab4e0d5521212 --- ## Model Details - **Developed by:** [VishnuKV] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [MIT] - **Finetuned from model [optional]:** [base_model: models--vishnukv--WestSeverusJaskier/snapshots/c36fc5adc83cce1229db9ae808dab4e0d5521212]
0-hero/Matter-0.1-Slim-7B-C
0-hero
2024-04-03T08:37:19Z
725
0
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-15T05:39:43Z
--- license: apache-2.0 --- ## Matter 7B (Mistral 7B Finetune) Matter 7B is contunied full-finetuned on the [slim-C version of the Matter dataset](https://huggingface.co/datasets/0-hero/Matter-0.1-Slim-C), which is curated from over 35 datsets analyzing >6B tokens ### Training It took ~17 hours to train 3 epochs on 4x A100s (80GB) using Axolotl for a full-finetune Prompt format: This model uses ChatML prompt format. ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ### Function Calling Model also supports function calling. Additional tokens for function calling Model function call tokens - <|begin_func|> - Function call start token - <|end_func|> - Function call end token Function call response tokens - <|begin_func_response|> - Function response start token - <|end_func_response|> - Function response end token Example ``` <|im_start|>system You are a helpful assistant with access to the following functions. Use them if required - { "name": "get_news_headlines", "description": "Get the latest news headlines", "parameters": { "type": "object", "properties": { "country": { "type": "string", "description": "The country for which to fetch news" } }, "required": [ "country" ] } } <|im_end|> <|im_start|>user Can you tell me the latest news headlines for the United States?<|im_end|> <|im_start|>assistant <|begin_func|>{"name": "get_news_headlines", "arguments": '{"country": "United States"}'}<|end_func|><|im_end|> <|im_start|>user <|begin_func_response|>{ "headlines": [ "Biden announces new vaccine mandates", "Hurricane Ida devastates Louisiana", "Apple unveils new iPhone", "NASA's Perseverance rover collects first Mars rock sample" ] }<|end_func_response|> <|im_end|> <|im_start|>assistant Here are the latest news headlines for the United States: 1. Biden announces new vaccine mandates 2. Hurricane Ida devastates Louisiana 3. Apple unveils new iPhone 4. NASA's Perseverance rover collects first Mars rock sample <|im_end|> ```
juhwanlee/gemma-7B-alpaca-case-3-3
juhwanlee
2024-03-26T06:19:44Z
725
0
transformers
[ "transformers", "safetensors", "gemma", "text-generation", "en", "dataset:Open-Orca/OpenOrca", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-03-25T14:54:00Z
--- license: apache-2.0 datasets: - Open-Orca/OpenOrca language: - en --- # Model Details * Model Description: This model is test for data ordering. * Developed by: Juhwan Lee * Model Type: Large Language Model # Model Architecture This model is based on Gemma-7B. We fine-tuning this model for data ordering task. Gemma-7B is a transformer model, with the following architecture choices: * Grouped-Query Attention * Sliding-Window Attention * Byte-fallback BPE tokenizer # Dataset We random sample Open-Orca dataset. (We finetune the 100,000 dataset) # Guthub https://github.com/trailerAI # License Apache License 2.0
Gille/StrangeMerges_53-7B-model_stock
Gille
2024-04-03T09:13:48Z
725
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-01T23:44:10Z
--- license: apache-2.0 tags: - merge - mergekit - lazymergekit model-index: - name: StrangeMerges_53-7B-model_stock results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 72.78 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 88.46 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 64.97 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 73.86 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.66 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 72.71 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Gille/StrangeMerges_53-7B-model_stock name: Open LLM Leaderboard --- # StrangeMerges_53-7B-model_stock StrangeMerges_53-7B-model_stock is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): ## 🧩 Configuration ```yaml models: - model: Gille/StrangeMerges_52-7B-dare_ties - model: rwitz/experiment26-truthy-iter-0 - model: Gille/StrangeMerges_32-7B-slerp - model: AurelPx/Percival_01-7b-slerp - model: Kukedlc/NeuralMaths-Experiment-7b merge_method: model_stock base_model: Gille/StrangeMerges_52-7B-dare_ties dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Gille/StrangeMerges_53-7B-model_stock" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Gille__StrangeMerges_53-7B-model_stock) | Metric |Value| |---------------------------------|----:| |Avg. |76.07| |AI2 Reasoning Challenge (25-Shot)|72.78| |HellaSwag (10-Shot) |88.46| |MMLU (5-Shot) |64.97| |TruthfulQA (0-shot) |73.86| |Winogrande (5-shot) |83.66| |GSM8k (5-shot) |72.71|
Ppoyaa/StarMonarch-7B
Ppoyaa
2024-04-03T19:51:00Z
725
3
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "conversational", "en", "base_model:mlabonne/AlphaMonarch-7B", "base_model:Nexusflow/Starling-LM-7B-beta", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-03T08:32:01Z
--- tags: - merge - mergekit - lazymergekit base_model: - mlabonne/AlphaMonarch-7B - Nexusflow/Starling-LM-7B-beta license: apache-2.0 language: - en --- # StarMonarch-7B ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f158693196560d34495d54/kY82CwYmaGSt2k3iWjOOZ.png) # Description StarMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B) * [Nexusflow/Starling-LM-7B-beta](https://huggingface.co/Nexusflow/Starling-LM-7B-beta) This model uses a context window of 8k. Special thanks to mlabonne and Nexusflow for the models. ## 🏆 Open LLM Leaderboard Evaluation Results | Metric |Value| |---------------------------------|----:| |Avg. |74.45| |AI2 Reasoning Challenge (25-Shot)|71.25| |HellaSwag (10-Shot) |87.00| |MMLU (5-Shot) |65.48| |TruthfulQA (0-shot) |67.20| |Winogrande (5-shot) |82.16| |GSM8k (5-shot) |73.62| ## 🧩 Configuration ```yaml slices: - sources: - model: mlabonne/AlphaMonarch-7B layer_range: [0, 32] - model: Nexusflow/Starling-LM-7B-beta layer_range: [0, 32] merge_method: slerp base_model: mlabonne/AlphaMonarch-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Ppoyaa/StarMonarch-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
LeroyDyer/Mixtral_AI_Cyber_Matrix_2_0
LeroyDyer
2024-04-09T16:10:37Z
725
3
transformers
[ "transformers", "pytorch", "safetensors", "mistral", "text-generation", "mergekit", "megamerge", "code", "Cyber-Series", "conversational", "en", "dataset:Open-Orca/OpenOrca", "dataset:cognitivecomputations/dolphin", "dataset:WhiteRabbitNeo/WRN-Chapter-2", "dataset:WhiteRabbitNeo/WRN-Chapter-1", "dataset:gate369/Alpaca-Star", "dataset:gate369/alpaca-star-ascii", "base_model:LeroyDyer/Mixtral_AI_Multi_TEST", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-04T07:28:02Z
--- base_model: - LeroyDyer/Mixtral_AI_Multi_TEST - LeroyDyer/Mixtral_AI_Cyber_Dolphin_2.0 - LeroyDyer/Mixtral_AI_CyberLAW - LeroyDyer/Mixtral_AI_CyberBrain_3_0 - LeroyDyer/Mixtral_AI_Cyber_5.0 - LeroyDyer/Mixtral_AI_CyberBrain_2.0 - ezelikman/quietstar-8-ahead - KoboldAI/Mistral-7B-Erebus-v3 library_name: transformers tags: - mergekit - megamerge - code - Cyber-Series license: mit language: - en datasets: - Open-Orca/OpenOrca - cognitivecomputations/dolphin - WhiteRabbitNeo/WRN-Chapter-2 - WhiteRabbitNeo/WRN-Chapter-1 - gate369/Alpaca-Star - gate369/alpaca-star-ascii --- Currently undegoing Fine tuning ! as this model contains all Previous models ! This model contains many hidden tensors : As it was emrged with many lora adapter for various task such as vision and sound . The problem was that for some reason i could not get the extra heads to show up like other models. such as the llava model ... i suppose this model can change the config.json to be a llava model and yes ! it works! ie it can think and has hidden think heads ? but you need to config it up !, It has vision heads but also i could not set the config up ! so hidden talents: It was also merged with the mothers of these models for QUiet(thoughts) and (llava vision etc ) so the tensors are there . i just did not understand how to fine tne the addtional funcitonalitys. as they need a single trainign example to populate the hidden tensor hence te merges. and yet when the model is put in train mode , ie by setting the model after loading to model.TRAIN ... the tensors apear waiting for training so just add a peft and start the training! THIS VERSION HAS BEEN UPDATED TO INCLUDE CYBERBRAIN ! (Hidden Tensors) ## Extended capabilities: * mistralai/Mistral-7B-Instruct-v0.1 - Prime-Base * ChaoticNeutrals/Eris-LelantaclesV2-7b - role play * ChaoticNeutrals/Eris_PrimeV3-Vision-7B - vision * rvv-karma/BASH-Coder-Mistral-7B - coding * Locutusque/Hercules-3.1-Mistral-7B - Unhinging * KoboldAI/Mistral-7B-Erebus-v3 - NSFW * Locutusque/Hyperion-2.1-Mistral-7B - CHAT * Severian/Nexus-IKM-Mistral-7B-Pytorch - Thinking * NousResearch/Hermes-2-Pro-Mistral-7B - Generalizing * mistralai/Mistral-7B-Instruct-v0.2 - BASE * Nitral-AI/ProdigyXBioMistral_7B - medical * Nitral-AI/Infinite-Mika-7b - 128k - Context Expansion enforcement * Nous-Yarn-Mistral-7b-128k - 128k - Context Expansion * yanismiraoui/Yarn-Mistral-7b-128k-sharded * ChaoticNeutrals/Eris_Prime-V2-7B - Roleplay This Expert is a companon to the MEGA_MIND 24b CyberSeries represents a groundbreaking leap in the realm of language models, integrating a diverse array of expert models into a unified framework. At its core lies the Mistral-7B-Instruct-v0.2, a refined instructional model designed for versatility and efficiency. Enhanced with an expanded context window and advanced routing mechanisms, the Mistral-7B-Instruct-v0.2 exemplifies the power of Mixture of Experts, allowing seamless integration of specialized sub-models. This architecture facilitates unparalleled performance and scalability, enabling the CyberSeries to tackle a myriad of tasks with unparalleled speed and accuracy. Among its illustrious sub-models, the OpenOrca - Mistral-7B-8k shines as a testament to fine-tuning excellence, boasting top-ranking performance in its class. Meanwhile, the Hermes 2 Pro introduces cutting-edge capabilities such as Function Calling and JSON Mode, catering to diverse application needs. Driven by Reinforcement Learning from AI Feedback, the Starling-LM-7B-beta demonstrates remarkable adaptability and optimization, while the Phi-1.5 Transformer model stands as a beacon of excellence across various domains, from common sense reasoning to medical inference. With models like BioMistral tailored specifically for medical applications and Nous-Yarn-Mistral-7b-128k excelling in handling long-context data, the MEGA_MIND 24b CyberSeries emerges as a transformative force in the landscape of language understanding and artificial intelligence. Experience the future of language models with the MEGA_MIND 24b CyberSeries, where innovation meets performance, and possibilities are limitless. ### Models Merged The following models were included in the merge: * [LeroyDyer/Mixtral_AI_Multi_TEST](https://huggingface.co/LeroyDyer/Mixtral_AI_Multi_TEST) * [LeroyDyer/Mixtral_AI_CyberLAW](https://huggingface.co/LeroyDyer/Mixtral_AI_CyberLAW) * [LeroyDyer/Mixtral_AI_CyberBrain_3_0](https://huggingface.co/LeroyDyer/Mixtral_AI_CyberBrain_3_0) * [LeroyDyer/Mixtral_AI_Cyber_5.0](https://huggingface.co/LeroyDyer/Mixtral_AI_Cyber_5.0) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: LeroyDyer/Mixtral_AI_Cyber_Dolphin_2.0 parameters: density: [0.256, 0.512, 0.128] # density gradient weight: 0.382 - model: LeroyDyer/Mixtral_AI_CyberLAW parameters: density: 0.382 weight: [0.256, 0.128, 0.256, 0.128] # weight gradient - model: LeroyDyer/Mixtral_AI_CyberBrain_3_0 parameters: density: 0.382 weight: [0.128, 0.512, 0.128, 0.128] # weight gradient - model: LeroyDyer/Mixtral_AI_Multi_TEST parameters: density: 0.382 weight: [0.128, 0.512, 0.128, 0.128] # weight gradient - model: LeroyDyer/Mixtral_AI_Cyber_5.0 parameters: density: 0.382 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: LeroyDyer/Mixtral_AI_Cyber_Dolphin_2.0 parameters: normalize: true int8_mask: true dtype: float16 ```