modelId
stringlengths
5
122
author
stringlengths
2
42
last_modified
timestamp[us, tz=UTC]
downloads
int64
0
738M
likes
int64
0
11k
library_name
stringclasses
245 values
tags
listlengths
1
4.05k
pipeline_tag
stringclasses
48 values
createdAt
timestamp[us, tz=UTC]
card
stringlengths
1
901k
timm/pit_ti_distilled_224.in1k
timm
2023-04-26T00:08:31Z
556
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2103.16302", "license:apache-2.0", "region:us" ]
image-classification
2023-04-26T00:08:25Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pit_ti_distilled_224.in1k A PiT (Pooling based Vision Transformer) image classification model. Trained on ImageNet-1k with token based distillation by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 5.1 - GMACs: 0.7 - Activations (M): 6.2 - Image size: 224 x 224 - **Papers:** - Rethinking Spatial Dimensions of Vision Transformers: https://arxiv.org/abs/2103.16302 - **Dataset:** ImageNet-1k - **Original:** https://github.com/naver-ai/pit ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pit_ti_distilled_224.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pit_ti_distilled_224.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 27, 27]) # torch.Size([1, 128, 14, 14]) # torch.Size([1, 256, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pit_ti_distilled_224.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2, 256) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{heo2021pit, title={Rethinking Spatial Dimensions of Vision Transformers}, author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh}, booktitle = {International Conference on Computer Vision (ICCV)}, year={2021}, } ```
timm/pit_xs_distilled_224.in1k
timm
2023-04-26T00:08:51Z
556
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2103.16302", "license:apache-2.0", "region:us" ]
image-classification
2023-04-26T00:08:43Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for pit_xs_distilled_224.in1k A PiT (Pooling based Vision Transformer) image classification model. Trained on ImageNet-1k with token based distillation by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 11.0 - GMACs: 1.4 - Activations (M): 7.8 - Image size: 224 x 224 - **Papers:** - Rethinking Spatial Dimensions of Vision Transformers: https://arxiv.org/abs/2103.16302 - **Dataset:** ImageNet-1k - **Original:** https://github.com/naver-ai/pit ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('pit_xs_distilled_224.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pit_xs_distilled_224.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 96, 27, 27]) # torch.Size([1, 192, 14, 14]) # torch.Size([1, 384, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'pit_xs_distilled_224.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2, 384) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @inproceedings{heo2021pit, title={Rethinking Spatial Dimensions of Vision Transformers}, author={Byeongho Heo and Sangdoo Yun and Dongyoon Han and Sanghyuk Chun and Junsuk Choe and Seong Joon Oh}, booktitle = {International Conference on Computer Vision (ICCV)}, year={2021}, } ```
TheBloke/OpenOrca_Stx-GGUF
TheBloke
2023-09-27T12:49:25Z
556
4
transformers
[ "transformers", "gguf", "llama", "ja", "dataset:snow_simplified_japanese_corpus", "dataset:khalidalt/tydiqa-goldp", "dataset:csebuetnlp/xlsum", "base_model:lightblue/openorca_stx", "license:llama2", "text-generation-inference", "region:us" ]
null
2023-09-16T06:33:51Z
--- language: - ja license: llama2 datasets: - snow_simplified_japanese_corpus - khalidalt/tydiqa-goldp - csebuetnlp/xlsum model_name: OpenOrca Stx base_model: lightblue/openorca_stx inference: false model_creator: Lightblue Technology Inc. model_type: llama prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # OpenOrca Stx - GGUF - Model creator: [Lightblue Technology Inc.](https://huggingface.co/lightblue) - Original model: [OpenOrca Stx](https://huggingface.co/lightblue/openorca_stx) <!-- description start --> ## Description This repo contains GGUF format model files for [Lightblue Technology Inc.'s OpenOrca Stx](https://huggingface.co/lightblue/openorca_stx). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/OpenOrca_Stx-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/OpenOrca_Stx-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF) * [Lightblue Technology Inc.'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lightblue/openorca_stx) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: None ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [openorca_stx.Q2_K.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [openorca_stx.Q3_K_S.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [openorca_stx.Q3_K_M.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [openorca_stx.Q3_K_L.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [openorca_stx.Q4_0.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [openorca_stx.Q4_K_S.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [openorca_stx.Q4_K_M.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [openorca_stx.Q5_0.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [openorca_stx.Q5_K_S.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [openorca_stx.Q5_K_M.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [openorca_stx.Q6_K.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [openorca_stx.Q8_0.gguf](https://huggingface.co/TheBloke/OpenOrca_Stx-GGUF/blob/main/openorca_stx.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/OpenOrca_Stx-GGUF and below it, a specific filename to download, such as: openorca_stx.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/OpenOrca_Stx-GGUF openorca_stx.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/OpenOrca_Stx-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/OpenOrca_Stx-GGUF openorca_stx.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m openorca_stx.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/OpenOrca_Stx-GGUF", model_file="openorca_stx.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Lightblue Technology Inc.'s OpenOrca Stx # About This model is Lightblue's QLoRA finetune of OpenOrca's [Open-Orca/OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) model on Japanese fine-tuning datasets. This model specialises on answering **Closed Question Answering** in Japanese. Input a piece of reference text, ask a question, and see the model answer based on the reference text. We trained on equal samples of the following three datasets: * [SNOW](https://huggingface.co/datasets/snow_simplified_japanese_corpus) * [TyDiQA (Ja)](https://huggingface.co/datasets/khalidalt/tydiqa-goldp) * [XLSUM (Ja)](https://huggingface.co/datasets/csebuetnlp/xlsum) which resulted in a dataset of 13,167 samples total. These three datasets were chosen as they represent three distinct fine-tuning tasks (Text simplification, question answering, and text summarization, respectively) which we hypothesize can help to improve the language models suitability for dealing with Japanese data. These three datasets make up the model name: STX. With these datasets, we achieve the following scores on the JGLUE benchmark: | Model Name | Open-Orca/OpenOrcaxOpenChat-Preview2-13B | lightblue/openorca_stx | |------------------------|------------------------------------------|------------------------| | jsquad-1.1-0.3 | 0.692 | 0.836 | | jcommonsenseqa-1.1-0.3 | 0.831 | 0.782 | | jnli-1.1-0.3 | 0.504 | 0.48 | | marc_ja-1.1-0.3 | 0.936 | 0.959 | Our model achieves much better results on the question answering benchmark (JSQuAD) than the base checkpoint without monstrous degradation of performance on multi-choice question benchmarks (JCommonSense, JNLI, MARC-Ja) purely through QLoRA training. This shows the potential for applying strong language models such as [Open-Orca/OpenOrcaxOpenChat-Preview2-13B](https://huggingface.co/Open-Orca/OpenOrcaxOpenChat-Preview2-13B) to minimal QLoRA fine-tuning using Japanese fine-tuning datasets to achieve better results at narrow NLP tasks. # How to use ```python from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline tokenizer = AutoTokenizer.from_pretrained(model_dir) model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.bfloat16, device_map='auto', ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def do_closed_qa(context, question): return context + "\n\n" + question test_article = """ モノマネのレパートリーに「リーチ・マイケル選手」があるレイザーラモンRGさん。本人公認のモノマネですが、ラグビーファンの反応に少し驚いたそうです。  リーチ・マイケル選手のモノマネは、何がきっかけですか。 「2015年のワールドカップ(W杯)イングランド大会で日本が南アフリカを倒した次の日が、京都での番組ロケでした。当時は、アップルの共同創業者スティーブ・ジョブズのモノマネばかりでしたが、一緒にロケをしていたジャングルポケットから『リーチ・マイケルに似てますよ。ジョブズのまま、いけるんじゃないですか?』と言われたのが始まりです」 「ただ、みんな知識がない。ラグビーショップを探し、日本代表のユニホームが売り切れだったので、赤っぽいユニホームとピチピチの短パンをはいて。とりあえずSNSで『リーチ・マイケルです』っていっぱい写真を載せました」 「すると、それを見たリーチさん本人からDM(ダイレクトメッセージ)が届きました。『モノマネありがとうございます。もしモノマネをするなら、僕のユニホームを送りますので着てください』と。W杯後にユニホーム2着とパンツやソックスなどをほんまに送ってきてくれました。今着ているのがそれです」 これまで、数々の著名人をモノマネしてこられました。リーチ選手のネタの反響はいかがでしたか。  「僕はラグビー経験がないですし、ラグビーを全然知らなかったけど、やっぱり本人からユニホームを頂いてるっていう“印籠(いんろう)”みたいなのがあって。『あいつはリーチさん本人に認められてる』と。一目置かれているのかなと感じます」  「やっていることは、見た目を本人に寄せてワンチームって言うだけなんですけどね。それでも『わあ、リーチさんだ』と言ってもらえます」  「リーチさんと実際に会うことなんて、簡単にはできないじゃないですか。でも、リーチさんのまねをしているRGには会えたわ、みたいな(笑)。何だろうな、有名な神社の支社のような存在ですかね。ありがたがられるという意味では他のモノマネとはすごく違いますね」 """ test_question = " リーチ・マイケルは何を送ってきましたか?" pipe(do_closed_qa(test_article, question), max_new_tokens=128, temperature=0)[0]["generated_text"] # "ユニホーム2着とパンツやソックスなど" ``` # Training details This model was trained for 1000 steps (1.2 epochs) with the model being evaluated every 50 steps. We then chose the best model from these evaluations based on validation loss. We used the [qlora](https://github.com/artidoro/qlora) package from artidoro. We trained with the following hyperparameters: ``` Per device evaluation batch size: 16 Per device train batch size: 8 LoRA (lora_r): 64 LoRA alpha (lora_alpha): 16 LoRA modules: all Double quantization: Enabled Quantization type: nf4 BF16: Enabled Bits: 4 Warmup ratio: 0.03 Learning rate scheduler type: Constant Gradient checkpointing: Enabled Gradient accumulation steps: 2 Learning rate: 0.0002 Adam beta2: 0.999 Maximum gradient norm: 0.3 LoRA dropout: 0.05 Weight decay: 0.0 ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/UWiE7z5tG8t_vdSFrb5WC.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/_fKBf9sdq9UAKKYMxM6ad.png) <!-- original-model-card end -->
projecte-aina/FLOR-760M
projecte-aina
2024-01-19T13:39:12Z
556
1
transformers
[ "transformers", "safetensors", "bloom", "text-generation", "FLOR", "spanish", "catalan", "english", "en", "es", "ca", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-12-12T09:24:11Z
--- language: - en - es - ca licence: - apache-2.0 tags: - FLOR - bloom - spanish - catalan - english pipeline_tag: text-generation widget: - text: |- Respon a la pregunta següent. Pregunta: "Quina és la capital de Suècia?" Resposta: "La capital de Suècia és Estocolm." ---- Respon a la pregunta següent. Pregunta: "Quina beguda es consumeix als matins per despertar-se?" Resposta: "La majoria de gent consumeix cafè per despertar-se." ---- Respon a la pregunta següent. Pregunta: "Explica com funciona un motor de combustió" Resposta: example_title: Pregunta-Resposta - text: |- Extrae las entidades nombradas del siguiente texto: Texto: "Me llamo Wolfgang y vivo en Berlin" Entidades: Wolfgang:PER, Berlin:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Hoy voy a visitar el parc güell tras salir del barcelona supercomputing center" Entidades: parc güell:LOC, barcelona supercomputing center:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Maria y Miguel no tienen ningún problema contigo" Entidades: Maria:PER, Miguel:PER ---- Extrae las entidades nombradas del siguiente texto: Texto: "Damián se cortó el pelo" Entidades: Damián:PER ---- Extrae las entidades nombradas del siguiente texto: Texto: "Lo mejor de Barcelona és el bar de mi amigo Pablo" Entidades: Pablo:PER, Barcelona:LOC ---- Extrae las entidades nombradas del siguiente texto: Texto: "Carlos comparte piso con Marc" Entidades: example_title: Entidades-Nombradas --- # FLOR-760M ## Table of Contents <details> <summary>Click to expand</summary> - [Model description](#model-description) - [Intended uses and limitations](#intended-uses-and-limitations) - [How to use](#how-to-use) - [Limitations and bias](#limitations-and-bias) - [Training](#training) - [Evaluation](#evaluation) - [Additional information](#additional-information) </details> ## Model description **FLOR-760M** is a 760M-parameter transformer-based causal language model for Catalan, Spanish, and English. It is the result of a language adaptation technique performed on [BLOOM-1.1B](https://huggingface.co/bigscience/bloom-1b1), which involves modifying the model's vocabulary and embedding layer and continuously pre-training the model with 26B tokens in our target languages. For more details, take a look at [this blogpost](https://medium.com/@mpamies247/flor-6-3b-a-chinchilla-compliant-model-for-catalan-spanish-and-english-7cdb389a9aac) about the project. ## Intended uses and limitations The **FLOR-760M** model is ready-to-use only for causal language modeling. It can perform text-generation tasks and be fine-tuned for specific scenarios. ## How to use ```python import torch from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM input_text = "Sovint em trobo pensant en tot allò que" model_id = "projecte-aina/FLOR-760M" tokenizer = AutoTokenizer.from_pretrained(model_id) generator = pipeline( "text-generation", model=model_id, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) generation = generator( input_text, do_sample=True, top_k=10, eos_token_id=tokenizer.eos_token_id, ) print(f"Result: {generation[0]['generated_text']}") ``` ## Limitations and bias At the time of submission, no measures have been taken to estimate the bias and toxicity embedded in the model. However, we are well aware that our models may be biased since the corpora have been collected using crawling techniques on multiple web sources. We intend to conduct research in these areas in the future, and if completed, this model card will be updated. ## Training ### Language adaptation and training The language adaptation technique used to create FLOR-760M requires the vocabulary of the source model to be adapted before continuing its pre-training with data in the target languages. Specifically, we proceeded as follows: 1) We trained our own BPE tokenizer for Catalan, Spanish, and English, and replaced the original BLOOM tokenizer and vocabulary with it. This procedure implied a downsizing of the original BLOOM's embedding layer and, therefore, a model compression from 1.1B parameters to 760M. 2) The embeddings corresponding to tokens that are present in both the original and the target vocabulary (matching tokens) were used for initialization. 3) The embeddings from tokens not present in BLOOM's original vocabulary were initialized as the average of all embeddings. 4) The model was initialized with the weights from BOOM-1.1B, and with our adapted tokenizer (step 1) and embeddings (steps 2-3). 5) The model was then trained on a corpus that contains a mixture of Catalan, Spanish, and English data. ### Training data The training corpus is the same that was used to train [Ǎguila-7B](https://huggingface.co/projecte-aina/aguila-7b). It consists of 26B tokens of several corpora gathered from web crawlings and public domain data. | Dataset | Language | Words (per-epoch) | Epochs | |---------------------|----------|--------------------|--------------| | Wikipedia | en | 2169.97M | 1.428144485 | | C4_es | es | 53709.80M | 0.1049686196 | | Biomedical | es | 455.03M | 0.7140722425 | | Legal | es | 995.70M | 0.7140722425 | | Wikipedia | es | 693.60M | 1.428144485 | | Gutenberg | es | 53.18M | 0.7140722425 | | C4_ca | ca | 2826.00M | 2.142216727 | | Biomedical | ca | 11.80M | 1.428144485 | | RacoCatalà Noticias | ca | 17.16M | 2.142216727 | | RacoCatalà Forums | ca | 333.73M | 2.142216727 | | CaWaC | ca | 57.79M | 2.142216727 | | Wikipedia | ca | 228.01M | 3.570361212 | | Vilaweb | ca | 50.34M | 2.142216727 | ### Languages The training data has the same amount of Catalan and Spanish texts, and a smaller amount of English data. The table below shows the final language distribution: |Language|Percentage| |--------|----------| | English (EN) | 16.84% | | Spanish (ES) | 41.38% | | Catalan (CA) | 41.79% | ### Training hyperparameters - seed: 1 - distributed_type: [WSE-2](https://www.cerebras.net/product-chip/) - num_devices: 1 - train_batch_size: 60 - eval_batch_size: 60 - optimizer: AdamW - betas: (0.9,0.95) - epsilon: 1e-08 - weight_decay_rate: 0.1 - learning_rate: - scheduler: "Linear" initial_learning_rate: 0.0 end_learning_rate: 4.1e-5 steps: 3050 - scheduler: "CosineDecay" initial_learning_rate: 4.1e-5 end_learning_rate: 3.4e-6 steps: 209133 - scheduler: "Constant" learning_rate: 2.2e-6 - num_epochs: 1.0 ### Framework versions The training was conducted in a Cerebras' [CS-2 system](https://www.cerebras.net/product-system/) using the [cs-1.9.1](https://github.com/Cerebras/modelzoo/releases/tag/Release_1.9.1) release of their software. ## Evaluation FLOR-760M has been evaluated on 5-shot, using EleutherAI's Evaluation Harness implementation, on several datasets in Catalan, Spanish, and English, with particular emphasis on Catalan datasets. The tasks were chosen to cover several evaluation areas in order to provide a comprehensive overview of the model's capabilities. The baselines used to compare our results are multilingual and English open-source 1.3B models: mGPT-1.3B, GPT-Neo-1.3B, Pythia-1.4B, OPT-1.3B, Falcon-rw-1.3B, and Cerebras-GPT-1.3B. Our implementation of EleutherAI's *LM Evaluation Harness* can be found [here](https://github.com/langtech-bsc/lm-evaluation-harness/tree/FLOR-eval). The following is a list of evaluation areas and their respective datasets: - Reading Comprehension: [Belebele](https://huggingface.co/datasets/facebook/belebele) - Question Answering: [XQuAD](https://huggingface.co/datasets/xquad), [CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa), [CoQCat](https://huggingface.co/datasets/projecte-aina/CoQCat) - Natural Language Inference: [XNLI](https://huggingface.co/datasets/xnli) and its translation to Catalan ([XNLI-ca](https://huggingface.co/datasets/projecte-aina/xnli-ca)), [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) - Paraphrase Identification: [PAWS-X](https://huggingface.co/datasets/paws-x) and its translation to Catalan ([PAWS-ca](https://huggingface.co/datasets/projecte-aina/PAWS-ca)), [Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) - Commonsense Reasoning: [COPA](https://people.ict.usc.edu/~gordon/copa.html) and its translation to Catalan ([COPA-ca](https://huggingface.co/datasets/projecte-aina/COPA-ca)) - Translation: [FLoRes](https://huggingface.co/datasets/flores) ### Reading Comprehension and Questions Answering | Model | Belebele-ca | Belebele-es | Belebele-en | XQuAD-ca | XQuAD-es | XQuAD-en | CatalanQA | CoQCat | | ------|:-----------:|:-----------:|:-----------:|:--------:|:--------:|:--------:|:---------:|:------:| Random | 25.00 | 25.00 | 25.00 | - | - | - | - | - | mGPT-1.3B | 26.64 | 25.82 | 28.07 | 0.33 | 0.67 | 0.17 | 0.65 | 0.78 | GPT-Neo-1.3B | 39.55 | 37.50 | 42.83 | 19.75 | 29.77 | 51.53 | 22.34 | 23.57 | Pythia-1.4B | 38.32 | 36.89 | 44.26 | 26.19 | 34.13 | 52.98 | 27.47 | 25.38 | OPT-1.3B | 35.86 | 37.09 | 45.49 | 23.53 | 31.85 | 52.95 | 26.58 | 20.18 | Falcon-rw-1.3B | 34.84 | 35.66 | **50.61** | 5.93 | 19.25 | **58.60** | 6.91 | 15.61 | Cerebras-GPT-1.3B | 32.79 | 31.76 | 35.04 | 8.56 | 19.98 | 36.00 | 10.87 | 14.12 | BLOOM-1.1B | 39.34 | 38.32 | 41.19 | 36.81 | 36.98 | 44.10 | 44.65 | 34.57 | FLOR-760M | **41.19** | **39.55** | 36.68 | **41.10** | **41.11** | 40.20 | **51.01** | **41.34** | ### Natural Language Inference and Paraphrase Identification | Model | XNLI-ca | XNLI-es | XNLI-en | TECA-ca | PAWS-X-ca | PAWS-X-es | PAWS-X-en | Parafraseja | | ------|:-------:|:-------:|:-------:|:-------:|:---------:|:---------:|:---------:|:-----------:| Random | 33.33 | 33.33 | 33.33 | 33.33 | 50.00 | 50.00 | 50.00 | 50.00 | mGPT-1.3B | 40.06 | 43.81 | 45.67 | 37.03 | 51.00 | 52.30 | 56.15 | 51.32 | GPT-Neo-1.3B | 41.44 | 45.57 | 49.92 | 35.38 | 54.65 | 53.40 | 54.60 | 51.70 | Pythia-1.4B | 42.46 | 45.61 | 51.00 | 37.46 | 54.15 | 52.50 | **57.70** | 55.23 | OPT-1.3B | 40.08 | 44.53 | **52.48** | 36.14 | 54.10 | 52.55 | 55.90 | 53.23 | Falcon-rw-1.3B | 34.53 | 35.85 | 45.73 | 34.96 | 54.25 | **54.05** | 53.65 | 50.60 | Cerebras-GPT-1.3B | 36.83 | 38.88 | 47.25 | 35.62 | 52.40 | 52.20 | 55.95 | 52.05 | BLOOM-1.1B | **47.19** | **46.39** | 49.44 | 41.38 | **55.05** | 54.05 | 54.75 | 55.65 | FLOR-760M | 46.93 | 46.03 | 46.11 | **42.14** | 52.35 | 52.50 | 54.85 | **56.55** | ### Commonsense Reasoning and Translation | Model | XStoryCloze-es | XStoryCloze-en | COPA-ca | COPA-en | FloRes (ca->es) | FloRes (es->ca) | FloRes (ca->en) | FloRes (en->ca) | FloRes (es->en) | FloRes (en->es) | | ------|:--------------:|:--------------:|:-------:|:-------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:|:---------------:| Random | 50.00 | 50.00 | 50.00 | 50.00 | - | - | - | - | - | - | mGPT-1.3B | 55.33 | 60.09 | 52.20 | 63.40 | 3.25 | 2.96 | 9.25 | 3.79 | 17.75 | 15.34 | GPT-Neo-1.3B | 51.42 | 66.58 | 53.40 | 74.80 | 3.27 | 3.80 | 17.77 | 5.49 | 17.70 | 12.04 | Pythia-1.4B | 54.14 | 68.37 | 52.20 | 78.60 | 9.68 | 5.74 | 24.03 | 11.10 | 21.50 | 15.04 | OPT-1.3B | 53.94 | 69.95 | 52.60 | 76.20 | 3.14 | 3.52 | 15.39 | 2.00 | 16.33 | 6.53 | Falcon-rw-1.3B | 51.09 | **71.34** | 52.40 | **79.60** | 3.03 | 3.59 | 8.89 | 3.01 | 14.17 | 6.50 | Cerebras-GPT-1.3B | 49.11 | 60.62 | 51.40 | 66.80 | 2.42 | 1.81 | 2.69 | 0.82 | 3.36 | 1.77 | BLOOM-1.1B | 57.91 | 62.48 | 62.80 | 66.40 | 21.62 | 15.28 | 31.16 | 21.28 | **20.92** | 16.84 | FLOR-760M | **61.42** | 61.42 | **65.40** | 64.20 | **22.62** | **15.77** | **32.26** | **26.04** | 20.91 | **18.08** | ## Additional information ### Author The Language Technologies Unit from Barcelona Supercomputing Center. ### Contact For further information, please send an email to <[email protected]>. ### Copyright Copyright(c) 2023 by Language Technologies Unit, Barcelona Supercomputing Center. ### License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ### Funding This work was funded by [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ### Disclaimer <details> <summary>Click to expand</summary> The model published in this repository is intended for a generalist purpose and is available to third parties under a permissive Apache License, Version 2.0. Be aware that the model may have biases and/or any other undesirable distortions. When third parties deploy or provide systems and/or services to other parties using this model (or any system based on it) or become users of the model, they should note that it is their responsibility to mitigate the risks arising from its use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the model (Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties. </details>
fatgong/5HeApiVxkbex1RQdUDw31cFurcheu4zs7CgZbvypj1WQEBii_vgg
fatgong
2024-03-27T22:48:19Z
556
0
keras
[ "keras", "region:us" ]
null
2024-03-09T14:16:48Z
Entry not found
llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
llm-jp
2024-04-30T02:38:17Z
556
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:databricks/databricks-dolly-15k", "dataset:llm-jp/databricks-dolly-15k-ja", "dataset:llm-jp/oasst1-21k-en", "dataset:llm-jp/oasst1-21k-ja", "dataset:llm-jp/oasst2-33k-en", "dataset:llm-jp/oasst2-33k-ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-23T03:10:58Z
--- license: apache-2.0 language: - en - ja programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript library_name: transformers pipeline_tag: text-generation inference: false datasets: - databricks/databricks-dolly-15k - llm-jp/databricks-dolly-15k-ja - llm-jp/oasst1-21k-en - llm-jp/oasst1-21k-ja - llm-jp/oasst2-33k-en - llm-jp/oasst2-33k-ja --- # llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0 This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. | Model Variant | | :--- | |**Instruction models**| | [llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | [llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | [llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | | | :--- | |**Pre-trained models**| | [llm-jp-13b-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-v2.0) | Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}, {"role": "user", "content": "自然言語処理とは何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 256B |Model|Params|Layers|Hidden size|Heads|Context length| |:---:|:---:|:---:|:---:|:---:|:---:| |13b model|13b|40|5120|40|4096| ## Training - **Pre-training:** - **Hardware:** 128 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** Megatron-LM - **Instruction tuning:** - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** [TRL](https://github.com/huggingface/trl) and [DeepSpeed](https://github.com/microsoft/DeepSpeed) ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k: code20K_en40K_ja60K.ver2.2)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model - **Training algorithm:** Marging Code/English/Japanese vocabularies constructed with SentencePiece Unigram byte-fallback and reestimating scores with the EM-algorithm. - **Training data:** A subset of the datasets for model pre-training - **Vocabulary size:** 96,867 (mixed vocabulary of Japanese, English, and source code) - The acutal size of vocabulary in the pretrained model is 97,024 due to round-up to multiples of 256. ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.4B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v2)|130.7B |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|4.7B ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|110.3B |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|8.7B ### Instruction tuning The models have been fine-tuned on the following datasets. | Language | Dataset | description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-001](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset | | |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety | | |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL | | |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL | | |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL | |English |[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | - | | |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) | | |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) | ## Evaluation You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) (v1.3.0) for the evaluation. Besides, we used LLM-as-a-judge frameworks, [Japanese Vicuna QA Benchmark](https://github.com/ku-nlp/ja-vicuna-qa-benchmark/) and [Japanese MT Bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge), for evaluation. For details, please refer to [our technical blog](https://llm-jp.nii.ac.jp/blog/2024/04/30/v2.0-release.html) (in Japanese). ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Namgi Han, Tatsuya Hiraoka, Hirokazu Kiyomaru, Takashi Kodama, and Hiroshi Matsuda.
QuantFactory/OpenBioLLM-Llama3-8B-GGUF
QuantFactory
2024-04-29T14:54:39Z
556
0
transformers
[ "transformers", "gguf", "text-generation", "license:llama3", "endpoints_compatible", "region:us" ]
text-generation
2024-04-28T11:28:48Z
--- license: llama3 library_name: transformers pipeline_tag: text-generation --- # Llama3-OpenBioLLM-8B-GGUF This is quantized version of [aaditya/Llama3-OpenBioLLM-8B](https://huggingface.co/aaditya/Llama3-OpenBioLLM-8B) created using llama.cpp ## Available Quants * Q2_K * Q3_K_L * Q3_K_M * Q3_K_S * Q4_0 * Q4_1 * Q4_K_M * Q4_K_S * Q5_0 * Q5_1 * Q5_K_M * Q5_K_S * Q6_K * Q8_0
lmstudio-community/Yi-1.5-6B-Chat-GGUF
lmstudio-community
2024-05-13T02:36:27Z
556
7
null
[ "gguf", "text-generation", "base_model:01-ai/Yi-1.5-6B-Chat", "license:apache-2.0", "region:us" ]
text-generation
2024-05-13T01:07:59Z
--- license: apache-2.0 quantized_by: bartowski pipeline_tag: text-generation base_model: 01-ai/Yi-1.5-6B-Chat lm_studio: param_count: 6B use_case: general release_date: 12-05-2024 model_creator: 01-ai prompt_template: ChatML system_prompt: "You are a helpful assistant." base_model: llama original_repo: 01-ai/Yi-1.5-6B-Chat --- ## 💫 Community Model> Yi 1.5 6B Chat by 01-ai *👾 [LM Studio](https://lmstudio.ai) Community models highlights program. Highlighting new & noteworthy models by the community. Join the conversation on [Discord](https://discord.gg/aPQfnNkxGC)*. **Model creator:** [01-ai](https://huggingface.co/01-ai)<br> **Original model**: [Yi-1.5-6B-Chat](https://huggingface.co/01-ai/Yi-1.5-6B-Chat)<br> **GGUF quantization:** provided by [bartowski](https://huggingface.co/bartowski) based on `llama.cpp` release [b2854](https://github.com/ggerganov/llama.cpp/releases/tag/b2854)<br> ## Model Summary: Yi-1.5 is an upgraded version of Yi. It is continuously pre-trained on Yi with a high-quality corpus of 500B tokens and fine-tuned on 3M diverse fine-tuning samples.<br> This model should perform well on a wide range of tasks, such as coding, math, reasoning, and instruction-following capability, while still maintaining excellent capabilities in language understanding, commonsense reasoning, and reading comprehension.<br> ## Prompt Template: Choose the `ChatML` preset in your LM Studio. Under the hood, the model will see a prompt that's formatted like so: ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant <|im_end|> ``` ## Technical Details No technical details have been released about this model. ## Special thanks 🙏 Special thanks to [Georgi Gerganov](https://github.com/ggerganov) and the whole team working on [llama.cpp](https://github.com/ggerganov/llama.cpp/) for making all of this possible. 🙏 Special thanks to [Kalomaze](https://github.com/kalomaze) for his dataset (linked [here](https://github.com/ggerganov/llama.cpp/discussions/5263)) that was used for calculating the imatrix for the IQ1_M and IQ2_XS quants, which makes them usable even at their tiny size! ## Disclaimers LM Studio is not the creator, originator, or owner of any Model featured in the Community Model Program. Each Community Model is created and provided by third parties. LM Studio does not endorse, support, represent or guarantee the completeness, truthfulness, accuracy, or reliability of any Community Model. You understand that Community Models can produce content that might be offensive, harmful, inaccurate or otherwise inappropriate, or deceptive. Each Community Model is the sole responsibility of the person or entity who originated such Model. LM Studio may not monitor or control the Community Models and cannot, and does not, take responsibility for any such Model. LM Studio disclaims all warranties or guarantees about the accuracy, reliability or benefits of the Community Models. LM Studio further disclaims any warranty that the Community Model will meet your requirements, be secure, uninterrupted or available at any time or location, or error-free, viruses-free, or that any errors will be corrected, or otherwise. You will be solely responsible for any damage resulting from your use of or access to the Community Models, your downloading of any Community Model, or use of any other Community Model provided by or through LM Studio.
hallisky/blog-classifier-roberta-large
hallisky
2024-05-26T08:37:38Z
556
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2024-05-26T06:46:29Z
--- license: apache-2.0 ---
bartowski/Llama-3-11.5B-V2-GGUF
bartowski
2024-05-31T06:02:58Z
556
2
null
[ "gguf", "text-generation", "license:other", "region:us" ]
text-generation
2024-05-31T05:38:50Z
--- license: other license_name: llama-3 license_link: https://llama.meta.com/llama3/license/ quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of Llama-3-11.5B-V2 Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3024">b3024</a> for quantization. Original model: https://huggingface.co/Replete-AI/Llama-3-11.5B-V2 All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8) ## Prompt format No chat template specified so default is used. This may be incorrect, check original model card for details. ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-3-11.5B-V2-Q8_0.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q8_0.gguf) | Q8_0 | 12.24GB | Extremely high quality, generally unneeded but max available quant. | | [Llama-3-11.5B-V2-Q6_K.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q6_K.gguf) | Q6_K | 9.45GB | Very high quality, near perfect, *recommended*. | | [Llama-3-11.5B-V2-Q5_K_M.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q5_K_M.gguf) | Q5_K_M | 8.19GB | High quality, *recommended*. | | [Llama-3-11.5B-V2-Q5_K_S.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q5_K_S.gguf) | Q5_K_S | 7.99GB | High quality, *recommended*. | | [Llama-3-11.5B-V2-Q4_K_M.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q4_K_M.gguf) | Q4_K_M | 7.01GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [Llama-3-11.5B-V2-Q4_K_S.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q4_K_S.gguf) | Q4_K_S | 6.67GB | Slightly lower quality with more space savings, *recommended*. | | [Llama-3-11.5B-V2-IQ4_XS.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ4_XS.gguf) | IQ4_XS | 6.31GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Llama-3-11.5B-V2-Q3_K_L.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q3_K_L.gguf) | Q3_K_L | 6.15GB | Lower quality but usable, good for low RAM availability. | | [Llama-3-11.5B-V2-Q3_K_M.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q3_K_M.gguf) | Q3_K_M | 5.69GB | Even lower quality. | | [Llama-3-11.5B-V2-IQ3_M.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ3_M.gguf) | IQ3_M | 5.34GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Llama-3-11.5B-V2-Q3_K_S.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q3_K_S.gguf) | Q3_K_S | 5.16GB | Low quality, not recommended. | | [Llama-3-11.5B-V2-IQ3_XS.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ3_XS.gguf) | IQ3_XS | 4.94GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Llama-3-11.5B-V2-IQ3_XXS.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ3_XXS.gguf) | IQ3_XXS | 4.61GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Llama-3-11.5B-V2-Q2_K.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-Q2_K.gguf) | Q2_K | 4.46GB | Very low quality but surprisingly usable. | | [Llama-3-11.5B-V2-IQ2_M.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ2_M.gguf) | IQ2_M | 4.12GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [Llama-3-11.5B-V2-IQ2_S.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ2_S.gguf) | IQ2_S | 3.84GB | Very low quality, uses SOTA techniques to be usable. | | [Llama-3-11.5B-V2-IQ2_XS.gguf](https://huggingface.co/bartowski/Llama-3-11.5B-V2-GGUF/blob/main/Llama-3-11.5B-V2-IQ2_XS.gguf) | IQ2_XS | 3.63GB | Very low quality, uses SOTA techniques to be usable. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Llama-3-11.5B-V2-GGUF --include "Llama-3-11.5B-V2-Q4_K_M.gguf" --local-dir ./ ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Llama-3-11.5B-V2-GGUF --include "Llama-3-11.5B-V2-Q8_0.gguf/*" --local-dir Llama-3-11.5B-V2-Q8_0 ``` You can either specify a new local-dir (Llama-3-11.5B-V2-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
mradermacher/IceCaffeLatteRP-7b-GGUF
mradermacher
2024-05-31T10:49:11Z
556
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "alpaca", "mistral", "not-for-all-audiences", "nsfw", "en", "base_model:icefog72/IceCaffeLatteRP-7b", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-05-31T07:37:03Z
--- base_model: icefog72/IceCaffeLatteRP-7b language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - mergekit - merge - alpaca - mistral - not-for-all-audiences - nsfw --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/icefog72/IceCaffeLatteRP-7b <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/IceCaffeLatteRP-7b-GGUF/resolve/main/IceCaffeLatteRP-7b.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
abmorton/wall-standard-2-straight
abmorton
2024-07-01T16:50:28Z
556
0
diffusers
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2024-07-01T16:43:00Z
--- license: creativeml-openrail-m tags: - text-to-image - stable-diffusion --- ### wall-standard-2-straight Dreambooth model trained by abmorton with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
KBLab/bert-base-swedish-lowermix-reallysimple-ner
KBLab
2023-04-19T07:18:42Z
555
3
transformers
[ "transformers", "pytorch", "safetensors", "bert", "token-classification", "sequence-tagger-model", "sv", "dataset:KBLab/sucx3_ner", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2022-03-02T23:29:04Z
--- model: - KB/bert-base-swedish-cased tags: - token-classification - sequence-tagger-model - bert language: sv datasets: - KBLab/sucx3_ner widget: - text: "Emil bor i Lönneberga" --- # KB-BERT for NER ## Mixed cased and uncased data This model is based on [KB-BERT](https://huggingface.co/KB/bert-base-swedish-cased) and was fine-tuned on the [SUCX 3.0 - NER](https://huggingface.co/datasets/KBLab/sucx3_ner) corpus, using the _simple_ tags and partially lowercased data. For this model we used a variation of the data that did **not** use BIO-encoding to differentiate between the beginnings (B), and insides (I) of named entity tags. The model was trained on the training data only, with the best model chosen by its performance on the validation data. You find more information about the model and the performance on our blog: https://kb-labb.github.io/posts/2022-02-07-sucx3_ner
r3dhummingbird/DialoGPT-medium-joshua
r3dhummingbird
2023-03-17T16:58:25Z
555
17
transformers
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
--- thumbnail: https://raw.githubusercontent.com/RuolinZheng08/twewy-discord-chatbot/main/gif-demo/icon.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
uclanlp/visualbert-vcr
uclanlp
2021-05-31T11:12:33Z
555
0
transformers
[ "transformers", "pytorch", "visual_bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05Z
Entry not found
timm/xcit_medium_24_p8_224.fb_in1k
timm
2024-02-10T23:43:28Z
555
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2106.09681", "license:apache-2.0", "region:us" ]
image-classification
2023-04-13T02:16:05Z
--- license: apache-2.0 library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for xcit_medium_24_p8_224.fb_in1k A XCiT (Cross-Covariance Image Transformer) image classification model. Pretrained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 84.3 - GMACs: 63.5 - Activations (M): 121.2 - Image size: 224 x 224 - **Papers:** - XCiT: Cross-Covariance Image Transformers: https://arxiv.org/abs/2106.09681 - **Dataset:** ImageNet-1k - **Original:** https://github.com/facebookresearch/xcit ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('xcit_medium_24_p8_224.fb_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'xcit_medium_24_p8_224.fb_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 785, 512) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{el2021xcit, title={XCiT: Cross-Covariance Image Transformers}, author={El-Nouby, Alaaeldin and Touvron, Hugo and Caron, Mathilde and Bojanowski, Piotr and Douze, Matthijs and Joulin, Armand and Laptev, Ivan and Neverova, Natalia and Synnaeve, Gabriel and Verbeek, Jakob and others}, journal={arXiv preprint arXiv:2106.09681}, year={2021} } ```
timm/res2net50_26w_8s.in1k
timm
2023-04-24T00:06:31Z
555
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1904.01169", "license:unknown", "region:us" ]
image-classification
2023-04-24T00:05:43Z
--- tags: - image-classification - timm library_name: timm license: unknown datasets: - imagenet-1k --- # Model card for res2net50_26w_8s.in1k A Res2Net (Multi-Scale ResNet) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 48.4 - GMACs: 8.4 - Activations (M): 17.9 - Image size: 224 x 224 - **Papers:** - Res2Net: A New Multi-scale Backbone Architecture: https://arxiv.org/abs/1904.01169 - **Dataset:** ImageNet-1k - **Original:** https://github.com/gasvn/Res2Net/ ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('res2net50_26w_8s.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'res2net50_26w_8s.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1024, 14, 14]) # torch.Size([1, 2048, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'res2net50_26w_8s.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{gao2019res2net, title={Res2Net: A New Multi-scale Backbone Architecture}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, journal={IEEE TPAMI}, doi={10.1109/TPAMI.2019.2938758}, } ```
wsj1995/controlnet-models
wsj1995
2023-12-26T12:59:08Z
555
1
diffusers
[ "diffusers", "safetensors", "region:us" ]
null
2023-07-27T07:49:18Z
Entry not found
Mxode/Pythia-70m-Synonym-Sentence-Converter
Mxode
2023-11-18T19:40:03Z
555
0
transformers
[ "transformers", "pytorch", "safetensors", "gpt_neox", "text-generation", "tiny", "small", "synonym", "tool", "converter", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-10-08T17:11:36Z
--- license: apache-2.0 language: - en tags: - tiny - small - synonym - tool - converter --- ## What's this? A **tiny** model that can perform **paraphrasing** or **synonym substitution**. The base model is [pythia-70m](https://huggingface.co/EleutherAI/pythia-70m). This model was fine-tuned with 10 epochs using [Q-Lora](https://github.com/artidoro/qlora) method on my own training set. ## How to use ### quick start First import the model from hf: ```python from transformers import GPTNeoXForCausalLM, AutoTokenizer model_name_or_path = 'Mxode/Pythia-70m-C-Language-KnowledgeExtract' device = 'cuda' model = GPTNeoXForCausalLM.from_pretrained(model_name_or_path).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) # prompt template prompt = '<|prompt|>Convert the following passage into synonymous sentences.<|prompt|>\n' # any text you wish to convert, preferably in complete single sentences. content = 'The theories and methods of systems science are extensively employed in various domains, including biology, economics, and sociology.' text = prompt + content ``` Then generate: ```python inputs = tokenizer(text, return_tensors="pt").to(device) input_ids = inputs.input_ids tokens = model.generate( **inputs, pad_token_id=tokenizer.eos_token_id, max_new_tokens=100, do_sample=True, ) # strip the input response = tokenizer.decode(tokens[0]).replace(text, "").strip('<|endoftext|>') # I call it 'Synonymizer' :) print(f'Synonymizer: {response}') ### output: ### The disciplines of systems science are extensively employed in various domains, including biology, economics, and sociology. ``` Or maybe we'll try some more impossibly trained news? Hmm, get some sports news from espn and try: ```python ### ... content = 'As both teams exited the court for halftime, Baynes and Mayen were shoulder to shoulder.' ### ... print(f'Synonymizer: {response}') ### output: ### As the team neets around the court to ease their shifts, Baynes and Middets were partnerly paryyneen. ### sometimes: ### Begantly mastitatively, Baynes and Mayen staged their team rested the Tywindes rested the Tywindes rested the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid the Tywindes laid ``` WELL, as you can see, this is after all only an **experimental tiny model** and with that in mind I can give it a 7.5 out of 10 for performance. I didn't adjust the hyperparameters, could try [low temperature] + [a bit higher repetition_penalty], the performance might be better. I'll follow up by training more data on a slightly larger model and hopefully supporting multiple languages. While we all know that bigger models have better generalization capabilities - but smaller models are really cool :)
camenduru/DemoFusion
camenduru
2023-12-07T05:22:15Z
555
4
diffusers
[ "diffusers", "safetensors", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionXLPipeline", "region:us" ]
text-to-image
2023-12-07T05:17:30Z
Entry not found
MoritzLaurer/xtremedistil-l6-h256-zeroshot-v1.1-all-33
MoritzLaurer
2024-01-11T17:10:07Z
555
6
transformers
[ "transformers", "pytorch", "onnx", "bert", "text-classification", "zero-shot-classification", "en", "arxiv:2312.17543", "base_model:microsoft/xtremedistil-l6-h256-uncased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
zero-shot-classification
2024-01-10T15:18:34Z
--- base_model: microsoft/xtremedistil-l6-h256-uncased language: - en tags: - text-classification - zero-shot-classification pipeline_tag: zero-shot-classification library_name: transformers license: mit --- # xtremedistil-l6-h256-zeroshot-v1.1-all-33 This model was fine-tuned using the same pipeline as described in the model card for [MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33) and in this [paper](https://arxiv.org/pdf/2312.17543.pdf). The foundation model is [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased). The model only has 22 million backbone parameters and 30 million vocabulary parameters. The backbone parameters are the main parameters active during inference, providing a significant speedup over larger models. The model is 25 MB small. This model was trained to provide a very small and highly efficient zeroshot option, especially for edge devices or in-browser use-cases with transformers.js. ## Usage and other details For usage instructions and other details refer to this model card [MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33](https://huggingface.co/MoritzLaurer/deberta-v3-large-zeroshot-v1.1-all-33) and this [paper](https://arxiv.org/pdf/2312.17543.pdf). ## Metrics: I didn't not do zeroshot evaluation for this model to save time and compute. The table below shows standard accuracy for all datasets the model was trained on (note that the NLI datasets are binary). General takeaway: the model is much more efficient than its larger sisters, but it performs less well. |Datasets|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu| | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |Accuracy|0.894|0.895|0.854|0.629|0.582|0.618|0.772|0.826|0.684|0.794|0.91|0.879|0.935|0.676|0.651|0.521|0.654|0.707|0.369|0.858|0.649|0.876|0.836|0.839|0.849|0.892|0.894|0.525|0.976|0.88|0.901|0.874|0.903|0.886|0.433|0.619| |Inference text/sec (A10G GPU, batch=128)|4117.0|4093.0|1935.0|2984.0|3094.0|2683.0|5788.0|4926.0|9701.0|6359.0|1843.0|692.0|756.0|5561.0|10172.0|9070.0|7511.0|7480.0|2256.0|3942.0|1020.0|4362.0|4034.0|4185.0|5449.0|2606.0|6343.0|931.0|5550.0|864.0|839.0|837.0|832.0|857.0|4418.0|4845.0|
arnavgrg/codellama-70b-instruct-nf4-fp16-upscaled
arnavgrg
2024-02-04T21:52:25Z
555
2
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-02-04T21:34:29Z
--- license: apache-2.0 tags: - text-generation-inference --- This is an upscaled fp16 variant of the original CodeLlama-70b-instruct base model by Meta after it has been loaded with nf4 4-bit quantization via bitsandbytes. The main idea here is to upscale the linear4bit layers to fp16 so that the quantization/dequantization cost doesn't have to paid for each forward pass at inference time. _Note: The quantization operation to nf4 is not lossless, so the model weights for the linear layers are lossy, which means that this model will not work as well as the official base model._ To use this model, you can just load it via `transformers` in fp16: ```python import torch from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "arnavgrg/codellama-70b-instruct-nf4-fp16-upscaled", device_map="auto", torch_dtype=torch.float16, ) ```
ChrisWilson011016/5ED9EcFBnuBdA5J9iXDc7JAS1FnN4CVSSG6gDJiNwyFdotm_vgg
ChrisWilson011016
2024-03-04T18:56:08Z
555
0
keras
[ "keras", "region:us" ]
null
2024-02-24T15:21:54Z
Entry not found
minatolegend0305/5Ekf1rJGHCfiMqeX3VrYy9oBDk5DAdHh5C1i3n4Zn6CFfNT3_vgg
minatolegend0305
2024-03-12T13:11:34Z
555
0
keras
[ "keras", "region:us" ]
null
2024-03-04T19:45:21Z
Entry not found
operator-technology/op-phi-1.5-gguf
operator-technology
2024-04-02T18:51:11Z
555
0
null
[ "gguf", "region:us" ]
null
2024-04-02T13:01:00Z
Entry not found
mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF
mradermacher
2024-05-05T14:54:57Z
555
0
transformers
[ "transformers", "gguf", "en", "base_model:tdrussell/Llama-3-70B-Instruct-Storywriter", "endpoints_compatible", "region:us" ]
null
2024-05-01T23:58:22Z
--- base_model: tdrussell/Llama-3-70B-Instruct-Storywriter language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/tdrussell/Llama-3-70B-Instruct-Storywriter <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q2_K.gguf) | Q2_K | 26.5 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.IQ3_XS.gguf) | IQ3_XS | 29.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.IQ3_S.gguf) | IQ3_S | 31.0 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q3_K_S.gguf) | Q3_K_S | 31.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.IQ3_M.gguf) | IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q3_K_M.gguf) | Q3_K_M | 34.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q3_K_L.gguf) | Q3_K_L | 37.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.IQ4_XS.gguf) | IQ4_XS | 38.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q5_K_S.gguf) | Q5_K_S | 48.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q5_K_M.gguf) | Q5_K_M | 50.0 | | | [PART 1](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality | | [PART 1](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3-70B-Instruct-Storywriter-GGUF/resolve/main/Llama-3-70B-Instruct-Storywriter.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
yzhuang/TinyLlama-1.1B-Chat-v0.1_fictional_arc_challenge_Korean_v1
yzhuang
2024-05-08T09:33:49Z
555
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "dataset:generator", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-08T09:09:50Z
--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-Chat-v0.1 tags: - trl - sft - generated_from_trainer datasets: - generator model-index: - name: TinyLlama-1.1B-Chat-v0.1_fictional_arc_challenge_Korean_v1 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TinyLlama-1.1B-Chat-v0.1_fictional_arc_challenge_Korean_v1 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.1](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.1) on the generator dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 36 ### Training results ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.0a0+32f93b1 - Datasets 2.19.1 - Tokenizers 0.19.1
ukung/Gemma-2B-INDO-V2-GGUF
ukung
2024-05-25T09:42:33Z
555
0
null
[ "gguf", "region:us" ]
null
2024-05-25T09:11:07Z
Entry not found
RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf
RichardErkhov
2024-05-27T11:48:03Z
555
0
null
[ "gguf", "region:us" ]
null
2024-05-27T06:24:57Z
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) h2ogpt-16k-codellama-7b-instruct - GGUF - Model creator: https://huggingface.co/h2oai/ - Original model: https://huggingface.co/h2oai/h2ogpt-16k-codellama-7b-instruct/ | Name | Quant method | Size | | ---- | ---- | ---- | | [h2ogpt-16k-codellama-7b-instruct.Q2_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q2_K.gguf) | Q2_K | 2.36GB | | [h2ogpt-16k-codellama-7b-instruct.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.IQ3_XS.gguf) | IQ3_XS | 2.6GB | | [h2ogpt-16k-codellama-7b-instruct.IQ3_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.IQ3_S.gguf) | IQ3_S | 2.75GB | | [h2ogpt-16k-codellama-7b-instruct.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q3_K_S.gguf) | Q3_K_S | 2.75GB | | [h2ogpt-16k-codellama-7b-instruct.IQ3_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.IQ3_M.gguf) | IQ3_M | 2.9GB | | [h2ogpt-16k-codellama-7b-instruct.Q3_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q3_K.gguf) | Q3_K | 3.07GB | | [h2ogpt-16k-codellama-7b-instruct.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q3_K_M.gguf) | Q3_K_M | 3.07GB | | [h2ogpt-16k-codellama-7b-instruct.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q3_K_L.gguf) | Q3_K_L | 3.35GB | | [h2ogpt-16k-codellama-7b-instruct.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.IQ4_XS.gguf) | IQ4_XS | 3.4GB | | [h2ogpt-16k-codellama-7b-instruct.Q4_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q4_0.gguf) | Q4_0 | 3.56GB | | [h2ogpt-16k-codellama-7b-instruct.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.IQ4_NL.gguf) | IQ4_NL | 3.58GB | | [h2ogpt-16k-codellama-7b-instruct.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q4_K_S.gguf) | Q4_K_S | 2.79GB | | [h2ogpt-16k-codellama-7b-instruct.Q4_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q4_K.gguf) | Q4_K | 3.8GB | | [h2ogpt-16k-codellama-7b-instruct.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q4_K_M.gguf) | Q4_K_M | 3.8GB | | [h2ogpt-16k-codellama-7b-instruct.Q4_1.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q4_1.gguf) | Q4_1 | 3.95GB | | [h2ogpt-16k-codellama-7b-instruct.Q5_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q5_0.gguf) | Q5_0 | 4.33GB | | [h2ogpt-16k-codellama-7b-instruct.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q5_K_S.gguf) | Q5_K_S | 4.33GB | | [h2ogpt-16k-codellama-7b-instruct.Q5_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q5_K.gguf) | Q5_K | 4.45GB | | [h2ogpt-16k-codellama-7b-instruct.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q5_K_M.gguf) | Q5_K_M | 4.45GB | | [h2ogpt-16k-codellama-7b-instruct.Q5_1.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q5_1.gguf) | Q5_1 | 4.72GB | | [h2ogpt-16k-codellama-7b-instruct.Q6_K.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q6_K.gguf) | Q6_K | 5.15GB | | [h2ogpt-16k-codellama-7b-instruct.Q8_0.gguf](https://huggingface.co/RichardErkhov/h2oai_-_h2ogpt-16k-codellama-7b-instruct-gguf/blob/main/h2ogpt-16k-codellama-7b-instruct.Q8_0.gguf) | Q8_0 | 6.67GB | Original model description: --- license: llama2 ---
MY555/tinyllama-colorist-v0
MY555
2024-05-30T13:36:37Z
555
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-30T13:10:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
acen20/Meta-Llama-3-8B-Q2_K-GGUF
acen20
2024-06-22T21:06:06Z
555
0
null
[ "gguf", "facebook", "meta", "pytorch", "llama", "llama-3", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:meta-llama/Meta-Llama-3-8B", "license:llama3", "region:us" ]
text-generation
2024-06-22T21:05:51Z
--- base_model: meta-llama/Meta-Llama-3-8B language: - en license: llama3 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 - llama-cpp - gguf-my-repo extra_gated_prompt: "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version\ \ Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for\ \ use, reproduction, distribution and modification of the Llama Materials set forth\ \ herein.\n\"Documentation\" means the specifications, manuals and documentation\ \ accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\ \"Licensee\" or \"you\" means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf), of\ \ the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama\ \ 3\" means the foundational large language models and software and algorithms,\ \ including machine-learning model code, trained model weights, inference-enabling\ \ code, training-enabling code, fine-tuning enabling code and other elements of\ \ the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\ \"Llama Materials\" means, collectively, Meta’s proprietary Meta Llama 3 and Documentation\ \ (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"\ we\" means Meta Platforms Ireland Limited (if you are located in or, if you are\ \ an entity, your principal place of business is in the EEA or Switzerland) and\ \ Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n\ \ \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted\ \ a non-exclusive, worldwide, non-transferable and royalty-free limited license\ \ under Meta’s intellectual property or other rights owned by Meta embodied in the\ \ Llama Materials to use, reproduce, distribute, copy, create derivative works of,\ \ and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni.\ \ If you distribute or make available the Llama Materials (or any derivative works\ \ thereof), or a product or service that uses any of them, including another AI\ \ model, you shall (A) provide a copy of this Agreement with any such Llama Materials;\ \ and (B) prominently display “Built with Meta Llama 3” on a related website, user\ \ interface, blogpost, about page, or product documentation. If you use the Llama\ \ Materials to create, train, fine tune, or otherwise improve an AI model, which\ \ is distributed or made available, you shall also include “Llama 3” at the beginning\ \ of any such AI model name.\nii. If you receive Llama Materials, or any derivative\ \ works thereof, from a Licensee as part of an integrated end user product, then\ \ Section 2 of this Agreement will not apply to you.\niii. You must retain in all\ \ copies of the Llama Materials that you distribute the following attribution notice\ \ within a “Notice” text file distributed as a part of such copies: “Meta Llama\ \ 3 is licensed under the Meta Llama 3 Community License, Copyright © Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\nv. You will not use the Llama Materials or any output or\ \ results of the Llama Materials to improve any other large language model (excluding\ \ Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If,\ \ on the Meta Llama 3 version release date, the monthly active users of the products\ \ or services made available by or for Licensee, or Licensee’s affiliates, is greater\ \ than 700 million monthly active users in the preceding calendar month, you must\ \ request a license from Meta, which Meta may grant to you in its sole discretion,\ \ and you are not authorized to exercise any of the rights under this Agreement\ \ unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer\ \ of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT\ \ AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF\ \ ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED,\ \ INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY,\ \ OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING\ \ THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME\ \ ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n\ 4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER\ \ ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY,\ \ OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT,\ \ SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META\ \ OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n\ 5. Intellectual Property.\na. No trademark licenses are granted under this Agreement,\ \ and in connection with the Llama Materials, neither Meta nor Licensee may use\ \ any name or mark owned by or associated with the other or any of its affiliates,\ \ except as required for reasonable and customary use in describing and redistributing\ \ the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you\ \ a license to use “Llama 3” (the “Mark”) solely as required to comply with the\ \ last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently\ \ accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All\ \ goodwill arising out of your use of the Mark will inure to the benefit of Meta.\n\ b. Subject to Meta’s ownership of Llama Materials and derivatives made by or for\ \ Meta, with respect to any derivative works and modifications of the Llama Materials\ \ that are made by you, as between you and Meta, you are and will be the owner of\ \ such derivative works and modifications.\nc. If you institute litigation or other\ \ proceedings against Meta or any entity (including a cross-claim or counterclaim\ \ in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results,\ \ or any portion of any of the foregoing, constitutes infringement of intellectual\ \ property or other rights owned or licensable by you, then any licenses granted\ \ to you under this Agreement shall terminate as of the date such litigation or\ \ claim is filed or instituted. You will indemnify and hold harmless Meta from and\ \ against any claim by any third party arising out of or related to your use or\ \ distribution of the Llama Materials.\n6. Term and Termination. The term of this\ \ Agreement will commence upon your acceptance of this Agreement or access to the\ \ Llama Materials and will continue in full force and effect until terminated in\ \ accordance with the terms and conditions herein. Meta may terminate this Agreement\ \ if you are in breach of any term or condition of this Agreement. Upon termination\ \ of this Agreement, you shall delete and cease use of the Llama Materials. Sections\ \ 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law\ \ and Jurisdiction. This Agreement will be governed and construed under the laws\ \ of the State of California without regard to choice of law principles, and the\ \ UN Convention on Contracts for the International Sale of Goods does not apply\ \ to this Agreement. The courts of California shall have exclusive jurisdiction\ \ of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use\ \ Policy\nMeta is committed to promoting safe and fair use of its tools and features,\ \ including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable\ \ Use Policy (“Policy”). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n\ #### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly.\ \ You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 2. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 3. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 4.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 5. Collect, process, disclose, generate, or infer health, demographic,\ \ or other sensitive personal or private information about individuals without rights\ \ and consents required by applicable laws\n 6. Engage in or facilitate any action\ \ or generate any content that infringes, misappropriates, or otherwise violates\ \ any third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 7. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n2. Engage in, promote, incite,\ \ facilitate, or assist in the planning or development of activities that present\ \ a risk of death or bodily harm to individuals, including use of Meta Llama 3 related\ \ to the following:\n 1. Military, warfare, nuclear industries or applications,\ \ espionage, use for materials or activities that are subject to the International\ \ Traffic Arms Regulations (ITAR) maintained by the United States Department of\ \ State\n 2. Guns and illegal weapons (including weapon development)\n 3.\ \ Illegal drugs and regulated/controlled substances\n 4. Operation of critical\ \ infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm\ \ or harm to others, including suicide, cutting, and eating disorders\n 6. Any\ \ content intended to incite or promote violence, abuse, or any infliction of bodily\ \ harm to an individual\n3. Intentionally deceive or mislead others, including use\ \ of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering\ \ fraud or the creation or promotion of disinformation\n 2. Generating, promoting,\ \ or furthering defamatory content, including the creation of defamatory statements,\ \ images, or other content\n 3. Generating, promoting, or further distributing\ \ spam\n 4. Impersonating another individual without consent, authorization,\ \ or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are\ \ human-generated\n 6. Generating or facilitating false online engagement, including\ \ fake reviews and other means of fake online engagement\n4. Fail to appropriately\ \ disclose to end users any known dangers of your AI system\nPlease report any violation\ \ of this Policy, software “bug,” or other problems that could lead to a violation\ \ of this Policy through one of the following means:\n * Reporting issues with\ \ the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n\ \ * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n\ \ * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting\ \ violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- # acen20/Meta-Llama-3-8B-Q2_K-GGUF This model was converted to GGUF format from [`meta-llama/Meta-Llama-3-8B`](https://huggingface.co/meta-llama/Meta-Llama-3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/meta-llama/Meta-Llama-3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo acen20/Meta-Llama-3-8B-Q2_K-GGUF --hf-file meta-llama-3-8b-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo acen20/Meta-Llama-3-8B-Q2_K-GGUF --hf-file meta-llama-3-8b-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo acen20/Meta-Llama-3-8B-Q2_K-GGUF --hf-file meta-llama-3-8b-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo acen20/Meta-Llama-3-8B-Q2_K-GGUF --hf-file meta-llama-3-8b-q2_k.gguf -c 2048 ```
keremberke/yolov5s-valorant
keremberke
2022-12-30T20:49:49Z
554
3
yolov5
[ "yolov5", "tensorboard", "yolo", "vision", "object-detection", "pytorch", "dataset:keremberke/valorant-object-detection", "model-index", "region:us" ]
object-detection
2022-12-28T09:47:44Z
--- tags: - yolov5 - yolo - vision - object-detection - pytorch library_name: yolov5 library_version: 7.0.6 inference: false datasets: - keremberke/valorant-object-detection model-index: - name: keremberke/yolov5s-valorant results: - task: type: object-detection dataset: type: keremberke/valorant-object-detection name: keremberke/valorant-object-detection split: validation metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.9818427788145484 # min: 0.0 - max: 1.0 name: [email protected] --- <div align="center"> <img width="640" alt="keremberke/yolov5s-valorant" src="https://huggingface.co/keremberke/yolov5s-valorant/resolve/main/sample_visuals.jpg"> </div> ### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('keremberke/yolov5s-valorant') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5s-valorant --epochs 10 ``` **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**
AIARTCHAN/AbyssHellHero
AIARTCHAN
2023-03-13T08:44:01Z
554
15
diffusers
[ "diffusers", "stable-diffusion", "aiartchan", "text-to-image", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-02-19T10:23:00Z
--- license: creativeml-openrail-m library_name: diffusers pipeline_tag: text-to-image tags: - stable-diffusion - aiartchan --- # AbyssHellHero [원본글](https://arca.live/b/aiart/70124182) [huggingface](https://huggingface.co/KMAZ/AbyssHell-AbyssMaple) # Download - [Original 7.7GB](https://huggingface.co/KMAZ/TestSamples/resolve/main/AbyssHellHero.ckpt) - [safetensors 4.27GB](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/AbyssHellHero-no-ema.safetensors) - [safetensors fp16 2.13GB](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/AbyssHellHero-fp16.safetensors) AbyssOrangeMix2 + Helltaker 0.27 + HeroAcademia 0.2 레시피로 모델에 LoRA를 직접 병합한 모델. 모델 이름도 그냥 대충 앞글자만 따와서 조합함. [EasyNegative](https://huggingface.co/datasets/gsdf/EasyNegative) 같은 부정 임베딩과 함께 사용하는 것 추천. 태그에 1.1이상 강조두는 것 추천. ![img](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/example/000.png) ![img](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/example/001.png) ![img](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/example/002.png) ![img](https://huggingface.co/AIARTCHAN/AbyssHellHero/resolve/main/example/003.png)
timm/focalnet_small_lrf.ms_in1k
timm
2024-02-10T23:32:01Z
554
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2203.11926", "license:mit", "region:us" ]
image-classification
2023-03-18T04:34:45Z
--- license: mit library_name: timm tags: - image-classification - timm datasets: - imagenet-1k --- # Model card for focalnet_small_lrf.ms_in1k A FocalNet image classification model. Pretrained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 50.3 - GMACs: 8.7 - Activations (M): 28.6 - Image size: 224 x 224 - **Papers:** - Focal Modulation Networks: https://arxiv.org/abs/2203.11926 - **Original:** https://github.com/microsoft/FocalNet - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('focalnet_small_lrf.ms_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'focalnet_small_lrf.ms_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g. for focalnet_base_srf: # torch.Size([1, 128, 56, 56]) # torch.Size([1, 256, 28, 28]) # torch.Size([1, 512, 14, 14]) # torch.Size([1, 1024, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'focalnet_small_lrf.ms_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled (ie.e a (batch_size, num_features, H, W) tensor) output = model.forward_head(output, pre_logits=True) # output is (batch_size, num_features) tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @misc{yang2022focal, title={Focal Modulation Networks}, author={Jianwei Yang and Chunyuan Li and Xiyang Dai and Jianfeng Gao}, journal={Advances in Neural Information Processing Systems (NeurIPS)}, year={2022} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
DeepFloyd/IF-I-L-v1.0
DeepFloyd
2023-06-02T19:04:26Z
554
15
diffusers
[ "diffusers", "pytorch", "safetensors", "if", "text-to-image", "arxiv:2205.11487", "arxiv:2110.02861", "license:deepfloyd-if-license", "diffusers:IFPipeline", "region:us" ]
text-to-image
2023-03-21T19:01:41Z
--- license: deepfloyd-if-license extra_gated_prompt: "DeepFloyd LICENSE AGREEMENT\nThis License Agreement (as may be amended in accordance with this License Agreement, “License”), between you, or your employer or other entity (if you are entering into this agreement on behalf of your employer or other entity) (“Licensee” or “you”) and Stability AI Ltd.. (“Stability AI” or “we”) applies to your use of any computer program, algorithm, source code, object code, or software that is made available by Stability AI under this License (“Software”) and any specifications, manuals, documentation, and other written information provided by Stability AI related to the Software (“Documentation”).\nBy clicking “I Accept” below or by using the Software, you agree to the terms of this License. If you do not agree to this License, then you do not have any rights to use the Software or Documentation (collectively, the “Software Products”), and you must immediately cease using the Software Products. If you are agreeing to be bound by the terms of this License on behalf of your employer or other entity, you represent and warrant to Stability AI that you have full legal authority to bind your employer or such entity to this License. If you do not have the requisite authority, you may not accept the License or access the Software Products on behalf of your employer or other entity.\n1. LICENSE GRANT\n a. Subject to your compliance with the Documentation and Sections 2, 3, and 5, Stability AI grants you a non-exclusive, worldwide, non-transferable, non-sublicensable, revocable, royalty free and limited license under Stability AI’s copyright interests to reproduce, distribute, and create derivative works of the Software solely for your non-commercial research purposes. The foregoing license is personal to you, and you may not assign or sublicense this License or any other rights or obligations under this License without Stability AI’s prior written consent; any such assignment or sublicense will be void and will automatically and immediately terminate this License.\n b. You may make a reasonable number of copies of the Documentation solely for use in connection with the license to the Software granted above.\n c. The grant of rights expressly set forth in this Section 1 (License Grant) are the complete grant of rights to you in the Software Products, and no other licenses are granted, whether by waiver, estoppel, implication, equity or otherwise. Stability AI and its licensors reserve all rights not expressly granted by this License.\L\n2. RESTRICTIONS\n You will not, and will not permit, assist or cause any third party to:\n a. use, modify, copy, reproduce, create derivative works of, or distribute the Software Products (or any derivative works thereof, works incorporating the Software Products, or any data produced by the Software), in whole or in part, for (i) any commercial or production purposes, (ii) military purposes or in the service of nuclear technology, (iii) purposes of surveillance, including any research or development relating to surveillance, (iv) biometric processing, (v) in any manner that infringes, misappropriates, or otherwise violates any third-party rights, or (vi) in any manner that violates any applicable law and violating any privacy or security laws, rules, regulations, directives, or governmental requirements (including the General Data Privacy Regulation (Regulation (EU) 2016/679), the California Consumer Privacy Act, and any and all laws governing the processing of biometric information), as well as all amendments and successor laws to any of the foregoing;\n b. alter or remove copyright and other proprietary notices which appear on or in the Software Products;\n c. utilize any equipment, device, software, or other means to circumvent or remove any security or protection used by Stability AI in connection with the Software, or to circumvent or remove any usage restrictions, or to enable functionality disabled by Stability AI; or\n d. offer or impose any terms on the Software Products that alter, restrict, or are inconsistent with the terms of this License.\n e. 1) violate any applicable U.S. and non-U.S. export control and trade sanctions laws (“Export Laws”); 2) directly or indirectly export, re-export, provide, or otherwise transfer Software Products: (a) to any individual, entity, or country prohibited by Export Laws; (b) to anyone on U.S. or non-U.S. government restricted parties lists; or (c) for any purpose prohibited by Export Laws, including nuclear, chemical or biological weapons, or missile technology applications; 3) use or download Software Products if you or they are: (a) located in a comprehensively sanctioned jurisdiction, (b) currently listed on any U.S. or non-U.S. restricted parties list, or (c) for any purpose prohibited by Export Laws; and (4) will not disguise your location through IP proxying or other methods.\L\n3. ATTRIBUTION\n Together with any copies of the Software Products (as well as derivative works thereof or works incorporating the Software Products) that you distribute, you must provide (i) a copy of this License, and (ii) the following attribution notice: “DeepFloyd is licensed under the DeepFloyd License, Copyright (c) Stability AI Ltd. All Rights Reserved.”\L\n4. DISCLAIMERS\n THE SOFTWARE PRODUCTS ARE PROVIDED “AS IS” and “WITH ALL FAULTS” WITH NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. STABILITY AIEXPRESSLY DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS OR IMPLIED, WHETHER BY STATUTE, CUSTOM, USAGE OR OTHERWISE AS TO ANY MATTERS RELATED TO THE SOFTWARE PRODUCTS, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, SATISFACTORY QUALITY, OR NON-INFRINGEMENT. STABILITY AI MAKES NO WARRANTIES OR REPRESENTATIONS THAT THE SOFTWARE PRODUCTS WILL BE ERROR FREE OR FREE OF VIRUSES OR OTHER HARMFUL COMPONENTS, OR PRODUCE ANY PARTICULAR RESULTS.\L\n5. LIMITATION OF LIABILITY\n TO THE FULLEST EXTENT PERMITTED BY LAW, IN NO EVENT WILL STABILITY AI BE LIABLE TO YOU (A) UNDER ANY THEORY OF LIABILITY, WHETHER BASED IN CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY, WARRANTY, OR OTHERWISE UNDER THIS LICENSE, OR (B) FOR ANY INDIRECT, CONSEQUENTIAL, EXEMPLARY, INCIDENTAL, PUNITIVE OR SPECIAL DAMAGES OR LOST PROFITS, EVEN IF STABILITY AI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE SOFTWARE PRODUCTS, THEIR CONSTITUENT COMPONENTS, AND ANY OUTPUT (COLLECTIVELY, “SOFTWARE MATERIALS”) ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATION OR SITUATION WHERE FAILURE OR FAULT OF THE SOFTWARE MATERIALS COULD REASONABLY BE ANTICIPATED TO LEAD TO SERIOUS INJURY OF ANY PERSON, INCLUDING POTENTIAL DISCRIMINATION OR VIOLATION OF AN INDIVIDUAL’S PRIVACY RIGHTS, OR TO SEVERE PHYSICAL, PROPERTY, OR ENVIRONMENTAL DAMAGE (EACH, A “HIGH-RISK USE”). IF YOU ELECT TO USE ANY OF THE SOFTWARE MATERIALS FOR A HIGH-RISK USE, YOU DO SO AT YOUR OWN RISK. YOU AGREE TO DESIGN AND IMPLEMENT APPROPRIATE DECISION-MAKING AND RISK-MITIGATION PROCEDURES AND POLICIES IN CONNECTION WITH A HIGH-RISK USE SUCH THAT EVEN IF THERE IS A FAILURE OR FAULT IN ANY OF THE SOFTWARE MATERIALS, THE SAFETY OF PERSONS OR PROPERTY AFFECTED BY THE ACTIVITY STAYS AT A LEVEL THAT IS REASONABLE, APPROPRIATE, AND LAWFUL FOR THE FIELD OF THE HIGH-RISK USE.\L\n6. INDEMNIFICATION\n You will indemnify, defend and hold harmless Stability AI and our subsidiaries and affiliates, and each of our respective shareholders, directors, officers, employees, agents, successors, and assigns (collectively, the “Stability AI Parties”) from and against any losses, liabilities, damages, fines, penalties, and expenses (including reasonable attorneys’ fees) incurred by any Stability AI Party in connection with any claim, demand, allegation, lawsuit, proceeding, or investigation (collectively, “Claims”) arising out of or related to: (a) your access to or use of the Software Products (as well as any results or data generated from such access or use), including any High-Risk Use (defined below); (b) your violation of this License; or (c) your violation, misappropriation or infringement of any rights of another (including intellectual property or other proprietary rights and privacy rights). You will promptly notify the Stability AI Parties of any such Claims, and cooperate with Stability AI Parties in defending such Claims. You will also grant the Stability AI Parties sole control of the defense or settlement, at Stability AI’s sole option, of any Claims. This indemnity is in addition to, and not in lieu of, any other indemnities or remedies set forth in a written agreement between you and Stability AI or the other Stability AI Parties.\L\n7. TERMINATION; SURVIVAL\n a. This License will automatically terminate upon any breach by you of the terms of this License.\L\Lb. We may terminate this License, in whole or in part, at any time upon notice (including electronic) to you.\L\Lc. The following sections survive termination of this License: 2 (Restrictions), 3 (Attribution), 4 (Disclaimers), 5 (Limitation on Liability), 6 (Indemnification) 7 (Termination; Survival), 8 (Third Party Materials), 9 (Trademarks), 10 (Applicable Law; Dispute Resolution), and 11 (Miscellaneous).\L\n8. THIRD PARTY MATERIALS\n The Software Products may contain third-party software or other components (including free and open source software) (all of the foregoing, “Third Party Materials”), which are subject to the license terms of the respective third-party licensors. Your dealings or correspondence with third parties and your use of or interaction with any Third Party Materials are solely between you and the third party. Stability AI does not control or endorse, and makes no representations or warranties regarding, any Third Party Materials, and your access to and use of such Third Party Materials are at your own risk.\L\n9. TRADEMARKS\n Licensee has not been granted any trademark license as part of this License and may not use any name or mark associated with Stability AI without the prior written permission of Stability AI, except to the extent necessary to make the reference required by the “ATTRIBUTION” section of this Agreement.\L\n10. APPLICABLE LAW; DISPUTE RESOLUTION\n This License will be governed and construed under the laws of the State of California without regard to conflicts of law provisions. Any suit or proceeding arising out of or relating to this License will be brought in the federal or state courts, as applicable, in San Mateo County, California, and each party irrevocably submits to the jurisdiction and venue of such courts.\L\n11. MISCELLANEOUS\n If any provision or part of a provision of this License is unlawful, void or unenforceable, that provision or part of the provision is deemed severed from this License, and will not affect the validity and enforceability of any remaining provisions. The failure of Stability AI to exercise or enforce any right or provision of this License will not operate as a waiver of such right or provision. This License does not confer any third-party beneficiary rights upon any other person or entity. This License, together with the Documentation, contains the entire understanding between you and Stability AI regarding the subject matter of this License, and supersedes all other written or oral agreements and understandings between you and Stability AI regarding such subject matter. No change or addition to any provision of this License will be binding unless it is in writing and signed by an authorized representative of both you and Stability AI." extra_gated_fields: "Organization /\_Affiliation": text Previously related publications: text I accept the above license agreement, and will use the Software non-commercially and for research purposes only: checkbox tags: - if - text-to-image inference: false --- # IF-I-L-v1.0 DeepFloyd-IF is a pixel-based text-to-image triple-cascaded diffusion model, that can generate pictures with new state-of-the-art for photorealism and language understanding. The result is a highly efficient model that outperforms current state-of-the-art models, achieving a zero-shot FID-30K score of `6.66` on the COCO dataset. *Inspired by* [*Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding*](https://arxiv.org/pdf/2205.11487.pdf) ![](./pics/if_architecture.jpg) ## Model Details - **Developed by:** DeepFloyd, StabilityAI - **Model type:** pixel-based text-to-image cascaded diffusion model - **Cascade Stage:** I - **Num Parameters:** 900M - **Language(s):** primarily English and, to a lesser extent, other Romance languages - **License:** <span style="color:blue"><a href="https://huggingface.co/spaces/DeepFloyd/deepfloyd-if-license">DeepFloyd IF License Agreement</a></span> - **Model Description:** DeepFloyd-IF is modular composed of frozen text mode and three pixel cascaded diffusion modules, each designed to generate images of increasing resolution: 64x64, 256x256, and 1024x1024. All stages of the model utilize a frozen text encoder based on the T5 transformer to extract text embeddings, which are then fed into a UNet architecture enhanced with cross-attention and attention-pooling - **Resources for more information:** [GitHub](https://github.com/deep-floyd/IF), [Website](https://deepfloyd.ai), [All Links](https://linktr.ee/deepfloyd) ## Using with `diffusers` IF is integrated with the 🤗 Hugging Face [🧨 diffusers library](https://github.com/huggingface/diffusers/), which is optimized to run on GPUs with as little as 14 GB of VRAM. Before you can use IF, you need to accept its usage conditions. To do so: 1. Make sure to have a [Hugging Face account](https://huggingface.co/join) and be loggin in 2. Accept the license on the model card of [DeepFloyd/IF-I-L-v1.0](https://huggingface.co/DeepFloyd/IF-I-L-v1.0) 3. Make sure to login locally. Install `huggingface_hub` ```sh pip install huggingface_hub --upgrade ``` run the login function in a Python shell ```py from huggingface_hub import login login() ``` and enter your [Hugging Face Hub access token](https://huggingface.co/docs/hub/security-tokens#what-are-user-access-tokens). Next we install `diffusers` and dependencies: ```sh pip install diffusers accelerate transformers safetensors sentencepiece ``` And we can now run the model locally. By default `diffusers` makes use of [model cpu offloading](https://huggingface.co/docs/diffusers/optimization/fp16#model-offloading-for-fast-inference-and-memory-savings) to run the whole IF pipeline with as little as 14 GB of VRAM. If you are using `torch>=2.0.0`, make sure to **remove all** `enable_xformers_memory_efficient_attention()` functions. * **Load all stages and offload to CPU** ```py from diffusers import DiffusionPipeline from diffusers.utils import pt_to_pil import torch # stage 1 stage_1 = DiffusionPipeline.from_pretrained("DeepFloyd/IF-I-L-v1.0", variant="fp16", torch_dtype=torch.float16) stage_1.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0 stage_1.enable_model_cpu_offload() # stage 2 stage_2 = DiffusionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0", text_encoder=None, variant="fp16", torch_dtype=torch.float16 ) stage_2.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0 stage_2.enable_model_cpu_offload() # stage 3 safety_modules = {"feature_extractor": stage_1.feature_extractor, "safety_checker": stage_1.safety_checker, "watermarker": stage_1.watermarker} stage_3 = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-x4-upscaler", **safety_modules, torch_dtype=torch.float16) stage_3.enable_xformers_memory_efficient_attention() # remove line if torch.__version__ >= 2.0.0 stage_3.enable_model_cpu_offload() ``` * **Retrieve Text Embeddings** ```py prompt = 'a photo of a kangaroo wearing an orange hoodie and blue sunglasses standing in front of the eiffel tower holding a sign that says "very deep learning"' # text embeds prompt_embeds, negative_embeds = stage_1.encode_prompt(prompt) ``` * **Run stage 1** ```py generator = torch.manual_seed(0) image = stage_1(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt").images pt_to_pil(image)[0].save("./if_stage_I.png") ``` * **Run stage 2** ```py image = stage_2( image=image, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_embeds, generator=generator, output_type="pt" ).images pt_to_pil(image)[0].save("./if_stage_II.png") ``` * **Run stage 3** ```py image = stage_3(prompt=prompt, image=image, generator=generator, noise_level=100).images image[0].save("./if_stage_III.png") ``` There are multiple ways to speed up the inference time and lower the memory consumption even more with `diffusers`. To do so, please have a look at the Diffusers docs: - 🚀 [Optimizing for inference time](https://huggingface.co/docs/diffusers/api/pipelines/if#optimizing-for-speed) - ⚙️ [Optimizing for low memory during inference](https://huggingface.co/docs/diffusers/api/pipelines/if#optimizing-for-memory) For more in-detail information about how to use IF, please have a look at [the IF blog post](https://huggingface.co/blog/if) and the [documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/if) 📖. Diffusers dreambooth scripts also supports fine-tuning 🎨 [IF](https://huggingface.co/docs/diffusers/main/en/training/dreambooth#if). With parameter efficient finetuning, you can add new concepts to IF with a single GPU and ~28 GB VRAM. ## Training **Training Data:** 1.2B text-image pairs (based on LAION-A and few additional internal datasets) Test/Valid parts of datasets are not used at any cascade and stage of training. Valid part of COCO helps to demonstrate "online" loss behaviour during training (to catch incident and other problems), but dataset is never used for train. **Training Procedure:** IF-I-L-v1.0 is pixel-based diffusion cascade which uses T5-Encoder embeddings (hidden states) to generate 64px image. During training, - Images are cropped to square via shifted-center-crop augmentation (randomly shift from center up to 0.1 of size) and resized to 64px using `Pillow==9.2.0` BICUBIC resampling with reducing_gap=None (it helps to avoid aliasing) and processed to tensor BxCxHxW - Text prompts are encoded through open-sourced frozen T5-v1_1-xxl text-encoder (that completely was trained by Google team), random 10% of texts are dropped to empty string to add ability for classifier free guidance (CFG) - The non-pooled output of the text encoder is fed into the projection (linear layer without activation) and is used in UNet backbone of the diffusion model via controlled hybrid self- and cross- attention - Also, the output of the text encode is pooled via attention-pooling (64 heads) and is used in time embed as additional features - Diffusion process is limited by 1000 discrete steps, with cosine beta schedule of noising image - The loss is a reconstruction objective between the noise that was added to the image and the prediction made by the UNet - The training process for checkpoint IF-I-L-v1.0 has 2_500_000 steps + 500_000 extra steps at resolution 64x64 on all datasets, OneCycleLR policy, few-bit backward GELU activations, optimizer AdamW8bit + DeepSpeed-Zero1, fully frozen T5-Encoder ![](./pics/loss.jpg) **Hardware:** 20 x 8 x A100 GPUs **Optimizer:** [AdamW8bit](https://arxiv.org/abs/2110.02861) + [DeepSpeed ZeRO-1](https://www.deepspeed.ai/tutorials/zero/) **Batch:** 3200 **Learning rate**: [one-cycle](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html) cosine strategy, warmup 10000 steps, start_lr=4e-6, max_lr=1e-4, final_lr=1e-8; _for extra 500_000 steps:_ [one-cycle](https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html) cosine strategy, warmup 50_000 steps, start_lr=1e-8, max_lr=4e-6, final_lr=4e-8 ![](./pics/lr.jpg) ## Evaluation Results `FID-30K: 8.06` ![](./pics/fid30k_if.jpg) # Uses ## Direct Use The model is released for research purposes. Any attempt to deploy the model in production requires not only that the LICENSE is followed but full liability over the person deploying the model. Possible research areas and tasks include: - Generation of artistic imagery and use in design and other artistic processes. - Safe deployment of models which have the potential to generate harmful content. - Probing and understanding the limitations and biases of generative models. - Applications in educational or creative tools. - Research on generative models. Excluded uses are described below. ### Misuse, Malicious Use, and Out-of-Scope Use _Note: This section is originally taken from the [DALLE-MINI model card](https://huggingface.co/dalle-mini/dalle-mini), was used for Stable Diffusion but applies in the same way for IF_. The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes. #### Out-of-Scope Use The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. #### Misuse and Malicious Use Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to: - Generating demeaning, dehumanizing, or otherwise harmful representations of people or their environments, cultures, religions, etc. - Intentionally promoting or propagating discriminatory content or harmful stereotypes. - Impersonating individuals without their consent. - Sexual content without consent of the people who might see it. - Mis- and disinformation - Representations of egregious violence and gore - Sharing of copyrighted or licensed material in violation of its terms of use. - Sharing content that is an alteration of copyrighted or licensed material in violation of its terms of use. ## Limitations and Bias ### Limitations - The model does not achieve perfect photorealism - The model was trained mainly with English captions and will not work as well in other languages. - The model was trained on a subset of the large-scale dataset [LAION-5B](https://laion.ai/blog/laion-5b/), which contains adult, violent and sexual content. To partially mitigate this, we have... (see Training section). ### Bias While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases. IF was primarily trained on subsets of [LAION-2B(en)](https://laion.ai/blog/laion-5b/), which consists of images that are limited to English descriptions. Texts and images from communities and cultures that use other languages are likely to be insufficiently accounted for. This affects the overall output of the model, as white and western cultures are often set as the default. Further, the ability of the model to generate content with non-English prompts is significantly worse than with English-language prompts. IF mirrors and exacerbates biases to such a degree that viewer discretion must be advised irrespective of the input or its intent. *This model card was written by: DeepFloyd Team and is based on the [StableDiffusion model card](https://huggingface.co/CompVis/stable-diffusion-v1-4).*
Yntec/samaritan3dCartoon2MVAE
Yntec
2023-08-07T11:14:21Z
554
3
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "3D", "art", "style", "checkpoint", "PromptSharingSamaritan", "en", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-08-07T10:18:54Z
--- license: creativeml-openrail-m language: - en library_name: diffusers pipeline_tag: text-to-image thumbnail: https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/0MGXGAxBpd-qDBWPYnWhR.png tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - 3D - art - style - checkpoint - PromptSharingSamaritan - diffusers inference: true --- # samaritan 3d Cartoon 2 This model with the MoistMix VAE baked in. Previews and prompt: ![sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/5xHgcpT11v-EEo12rSM8u.png) ![sample](https://cdn-uploads.huggingface.co/production/uploads/63239b8370edc53f51cd5d42/0MGXGAxBpd-qDBWPYnWhR.png) (lora)0.5 , (amakawa hano)0.5 , 1 girl, ray tracing, {best quality}, {{masterpiece}}, {highres}, original, extremely detailed 8K wallpaper, {an extremely delicate and beautiful}, , incredibly_absurdres, colorful, intricate detail, artbook Original pages: https://civitai.com/models/81270?modelVersionId=113299 https://civitai.com/api/download/models/14459?type=VAE
TheBloke/llama-2-7B-Arguments-GGUF
TheBloke
2023-10-06T00:17:49Z
554
5
transformers
[ "transformers", "gguf", "llama", "base_model:cris177/llama-2-7b-Arguments", "license:llama2", "text-generation-inference", "region:us" ]
null
2023-10-05T22:39:35Z
--- base_model: cris177/llama-2-7b-Arguments inference: false license: llama2 model_creator: Cristian Desivo model_name: Llama 2 7B Arguments model_type: llama prompt_template: '<s>[INST] {prompt} [/INST] ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama 2 7B Arguments - GGUF - Model creator: [Cristian Desivo](https://huggingface.co/cris177) - Original model: [Llama 2 7B Arguments](https://huggingface.co/cris177/llama-2-7b-Arguments) <!-- description start --> ## Description This repo contains GGUF format model files for [Cristian Desivo's Llama 2 7B Arguments](https://huggingface.co/cris177/llama-2-7b-Arguments). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/llama-2-7B-Arguments-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF) * [Cristian Desivo's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/cris177/llama-2-7b-Arguments) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Llama-2-Prompt ``` <s>[INST] {prompt} [/INST] ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [llama-2-7b-arguments.Q2_K.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q2_K.gguf) | Q2_K | 2 | 2.83 GB| 5.33 GB | smallest, significant quality loss - not recommended for most purposes | | [llama-2-7b-arguments.Q3_K_S.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB| 5.45 GB | very small, high quality loss | | [llama-2-7b-arguments.Q3_K_M.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB| 5.80 GB | very small, high quality loss | | [llama-2-7b-arguments.Q3_K_L.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB| 6.10 GB | small, substantial quality loss | | [llama-2-7b-arguments.Q4_0.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB| 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [llama-2-7b-arguments.Q4_K_S.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB| 6.36 GB | small, greater quality loss | | [llama-2-7b-arguments.Q4_K_M.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB| 6.58 GB | medium, balanced quality - recommended | | [llama-2-7b-arguments.Q5_0.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB| 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [llama-2-7b-arguments.Q5_K_S.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB| 7.15 GB | large, low quality loss - recommended | | [llama-2-7b-arguments.Q5_K_M.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB| 7.28 GB | large, very low quality loss - recommended | | [llama-2-7b-arguments.Q6_K.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q6_K.gguf) | Q6_K | 6 | 5.53 GB| 8.03 GB | very large, extremely low quality loss | | [llama-2-7b-arguments.Q8_0.gguf](https://huggingface.co/TheBloke/llama-2-7B-Arguments-GGUF/blob/main/llama-2-7b-arguments.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB| 9.66 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/llama-2-7B-Arguments-GGUF and below it, a specific filename to download, such as: llama-2-7b-arguments.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/llama-2-7B-Arguments-GGUF llama-2-7b-arguments.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/llama-2-7B-Arguments-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/llama-2-7B-Arguments-GGUF llama-2-7b-arguments.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m llama-2-7b-arguments.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<s>[INST] {prompt}\n[/INST]" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/llama-2-7B-Arguments-GGUF", model_file="llama-2-7b-arguments.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Cristian Desivo's Llama 2 7B Arguments This model aims to detect and analyze casual arguments. Model template: ``` <s>[INST] {prompt} [/INST] ``` Example: ``` `<`s`>`[INST] Analize the following argument, identifying premises, conclusion, type of argument, and argument validity: If officer smith found a broken window at the crime scene then the arson occurred on elm street, and officer smith found a broken window at the crime scene, hence the arson occurred on elm street. [/INST] Premise 1: If officer smith found a broken window at the crime scene then the arson occurred on elm street Premise 2: Officer smith found a broken window at the crime scene Conclusion: The arson occurred on Elm Street Type of argument: modus ponen Validity: True `<`/s`>` ``` It was trained on my dataset cris177/Arguments (https://huggingface.co/datasets/cris177/Arguments) <!-- original-model-card end -->
YanweiLi/llama-vid-13b-full-224-video-fps-1
YanweiLi
2023-12-03T06:14:18Z
554
2
transformers
[ "transformers", "pytorch", "llava", "text-generation", "vision-language model", "llama", "video understanding", "arxiv:2311.17043", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2023-11-29T06:13:00Z
--- tags: - vision-language model - llama - video understanding --- # LLaMA-VID Model Card <a href='https://llama-vid.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2311.17043'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> ## Model details LLaMA-VID empowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. **Model type:** LLaMA-VID is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data. LLaMA-VID empowers existing frameworks to support hour-long videos and pushes their upper limit with an extra context token. We build this repo based on LLaVA. **Model date:** llama-vid-13b-full-224-video-fps-1 was trained on 11/2023. ## License Llama 2 is licensed under the LLAMA 2 Community License, Copyright (c) Meta Platforms, Inc. All Rights Reserved. **Where to send questions or comments about the model:** https://github.com/dvlab-research/LLaMA-VID/issues ## Intended use **Primary intended uses:** The primary use of LLaMA-VID is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training data This model is trained based on image data from LLaVA-1.5 dataset, and video data from WebVid and ActivityNet datasets, including - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 450K academic-task-oriented VQA data mixture. - 40K ShareGPT data. - 232K video-caption pairs sampled from the WebVid 2.5M dataset. - 98K videos from ActivityNet with QA pairs from Video-ChatGPT.
Gan1108/electraForCausalLM
Gan1108
2024-03-27T04:12:58Z
554
0
transformers
[ "transformers", "tensorboard", "safetensors", "electra", "text-generation", "generated_from_trainer", "uk", "base_model:lang-uk/electra-base-ukrainian-cased-generator", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-03-25T08:09:41Z
--- license: mit base_model: lang-uk/electra-base-ukrainian-cased-generator tags: - generated_from_trainer model-index: - name: electraForCausalLM results: [] language: - uk widget: - text: "0007347852 - 734785.0 - Підшипник кульковий закритий спеціальний " --- # electraForCausalLM This model is a fine-tuned version of [lang-uk/electra-base-ukrainian-cased-generator](https://huggingface.co/lang-uk/electra-base-ukrainian-cased-generator) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3302 ## Model description The model is trained to generate a text description in Ukrainian of spare parts for agricultural machinery based on their name. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7321 | 1.0 | 2354 | 1.5172 | | 1.4763 | 2.0 | 4708 | 1.3670 | | 1.4006 | 3.0 | 7062 | 1.3302 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2
mradermacher/c4ai-command-r-plus-i1-GGUF
mradermacher
2024-05-06T04:37:22Z
554
1
transformers
[ "transformers", "gguf", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "base_model:CohereForAI/c4ai-command-r-plus", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-21T01:28:20Z
--- base_model: CohereForAI/c4ai-command-r-plus language: - en - fr - de - es - it - pt - ja - ko - zh - ar library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher --- ## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> weighted/imatrix quants of https://huggingface.co/CohereForAI/c4ai-command-r-plus <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/c4ai-command-r-plus-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ1_S.gguf) | i1-IQ1_S | 23.3 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ1_M.gguf) | i1-IQ1_M | 25.3 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 28.7 | | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ2_XS.gguf) | i1-IQ2_XS | 31.7 | | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ2_S.gguf) | i1-IQ2_S | 33.4 | | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ2_M.gguf) | i1-IQ2_M | 36.1 | | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q2_K.gguf) | i1-Q2_K | 39.6 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 40.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ3_XS.gguf) | i1-IQ3_XS | 43.7 | | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q3_K_S.gguf) | i1-Q3_K_S | 46.0 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ3_S.gguf) | i1-IQ3_S | 46.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ3_M.gguf) | i1-IQ3_M | 47.8 | | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q3_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q3_K_M.gguf.part2of2) | i1-Q3_K_M | 51.1 | IQ3_S probably better | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q3_K_L.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q3_K_L.gguf.part2of2) | i1-Q3_K_L | 55.5 | IQ3_M probably better | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ4_XS.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-IQ4_XS.gguf.part2of2) | i1-IQ4_XS | 56.3 | | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_0.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_0.gguf.part2of2) | i1-Q4_0 | 59.5 | fast, low quality | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_K_S.gguf.part2of2) | i1-Q4_K_S | 59.7 | optimal size/speed/quality | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q4_K_M.gguf.part2of2) | i1-Q4_K_M | 62.9 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 71.9 | | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q5_K_M.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q5_K_M.gguf.part2of2) | i1-Q5_K_M | 73.7 | | | [PART 1](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/c4ai-command-r-plus-i1-GGUF/resolve/main/c4ai-command-r-plus.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 85.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF
mradermacher
2024-06-14T03:23:59Z
554
0
transformers
[ "transformers", "gguf", "not-for-all-audiences", "en", "base_model:Envoid/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-06-13T04:31:33Z
--- base_model: Envoid/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - not-for-all-audiences --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/Envoid/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ1_S.gguf) | i1-IQ1_S | 9.9 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ1_M.gguf) | i1-IQ1_M | 10.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 12.7 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 14.0 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ2_S.gguf) | i1-IQ2_S | 14.2 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ2_M.gguf) | i1-IQ2_M | 15.6 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q2_K.gguf) | i1-Q2_K | 17.4 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 18.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 19.5 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ3_S.gguf) | i1-IQ3_S | 20.5 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 20.5 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ3_M.gguf) | i1-IQ3_M | 21.5 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 22.6 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 24.3 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 25.2 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q4_0.gguf) | i1-Q4_0 | 26.7 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 26.8 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 28.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 32.3 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 33.3 | | | [GGUF](https://huggingface.co/mradermacher/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B-i1-GGUF/resolve/main/CATA-LimaRP-Zloss-DT-TaskArithmetic-8x7B.i1-Q6_K.gguf) | i1-Q6_K | 38.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his hardware for calculating the imatrix for these quants. <!-- end -->
janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF
janw23
2024-06-27T15:53:26Z
554
0
null
[ "gguf", "code", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:NTQAI/Nxcode-CQ-7B-orpo", "license:other", "region:us" ]
text-generation
2024-06-27T15:53:06Z
--- base_model: NTQAI/Nxcode-CQ-7B-orpo license: other license_name: tongyi-qianwen-research license_link: https://huggingface.co/Qwen/CodeQwen1.5-7B/blob/main/LICENSE pipeline_tag: text-generation tags: - code - llama-cpp - gguf-my-repo --- # janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF This model was converted to GGUF format from [`NTQAI/Nxcode-CQ-7B-orpo`](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NTQAI/Nxcode-CQ-7B-orpo) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF --hf-file nxcode-cq-7b-orpo-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF --hf-file nxcode-cq-7b-orpo-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF --hf-file nxcode-cq-7b-orpo-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo janw23/Nxcode-CQ-7B-orpo-Q4_K_M-GGUF --hf-file nxcode-cq-7b-orpo-q4_k_m.gguf -c 2048 ```
nazimali/instruction-synthesizer-Q6_K-GGUF
nazimali
2024-07-01T23:48:55Z
554
0
null
[ "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:instruction-pretrain/ft-instruction-synthesizer-collection", "base_model:instruction-pretrain/instruction-synthesizer", "license:apache-2.0", "region:us" ]
null
2024-07-01T23:48:30Z
--- base_model: instruction-pretrain/instruction-synthesizer datasets: - instruction-pretrain/ft-instruction-synthesizer-collection language: - en license: apache-2.0 tags: - llama-cpp - gguf-my-repo --- # nazimali/instruction-synthesizer-Q6_K-GGUF This model was converted to GGUF format from [`instruction-pretrain/instruction-synthesizer`](https://huggingface.co/instruction-pretrain/instruction-synthesizer) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/instruction-pretrain/instruction-synthesizer) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo nazimali/instruction-synthesizer-Q6_K-GGUF --hf-file instruction-synthesizer-q6_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo nazimali/instruction-synthesizer-Q6_K-GGUF --hf-file instruction-synthesizer-q6_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo nazimali/instruction-synthesizer-Q6_K-GGUF --hf-file instruction-synthesizer-q6_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo nazimali/instruction-synthesizer-Q6_K-GGUF --hf-file instruction-synthesizer-q6_k.gguf -c 2048 ```
TheBloke/Genz-70b-GGUF
TheBloke
2023-09-27T12:46:25Z
553
9
transformers
[ "transformers", "gguf", "llama", "text-generation", "en", "base_model:budecosystem/genz-70b", "license:llama2", "text-generation-inference", "region:us" ]
text-generation
2023-08-26T16:37:13Z
--- language: - en license: llama2 library_name: transformers model_name: GenZ 70B base_model: budecosystem/genz-70b inference: false model_creator: Bud model_type: llama pipeline_tag: text-generation prompt_template: '### User: {prompt} ### Assistant: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # GenZ 70B - GGUF - Model creator: [Bud](https://huggingface.co/budecosystem) - Original model: [GenZ 70B](https://huggingface.co/budecosystem/genz-70b) <!-- description start --> ## Description This repo contains GGUF format model files for [Bud's GenZ 70B](https://huggingface.co/budecosystem/genz-70b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Genz-70b-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Genz-70b-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Genz-70b-GGUF) * [Bud's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/budecosystem/genz-70b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: User-Assistant-Newlines ``` ### User: {prompt} ### Assistant: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [genz-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes | | [genz-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss | | [genz-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss | | [genz-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss | | [genz-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [genz-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss | | [genz-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended | | [genz-70b.Q5_0.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [genz-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended | | [genz-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Genz-70b-GGUF/blob/main/genz-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended | | genz-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss | | genz-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ### Q6_K and Q8_0 files are split and require joining **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files. <details> <summary>Click for instructions regarding Q6_K and Q8_0 files</summary> ### q6_K Please download: * `genz-70b.Q6_K.gguf-split-a` * `genz-70b.Q6_K.gguf-split-b` ### q8_0 Please download: * `genz-70b.Q8_0.gguf-split-a` * `genz-70b.Q8_0.gguf-split-b` To join the files, do the following: Linux and macOS: ``` cat genz-70b.Q6_K.gguf-split-* > genz-70b.Q6_K.gguf && rm genz-70b.Q6_K.gguf-split-* cat genz-70b.Q8_0.gguf-split-* > genz-70b.Q8_0.gguf && rm genz-70b.Q8_0.gguf-split-* ``` Windows command line: ``` COPY /B genz-70b.Q6_K.gguf-split-a + genz-70b.Q6_K.gguf-split-b genz-70b.Q6_K.gguf del genz-70b.Q6_K.gguf-split-a genz-70b.Q6_K.gguf-split-b COPY /B genz-70b.Q8_0.gguf-split-a + genz-70b.Q8_0.gguf-split-b genz-70b.Q8_0.gguf del genz-70b.Q8_0.gguf-split-a genz-70b.Q8_0.gguf-split-b ``` </details> <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Genz-70b-GGUF and below it, a specific filename to download, such as: genz-70b.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Genz-70b-GGUF genz-70b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Genz-70b-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Genz-70b-GGUF genz-70b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m genz-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### User:\n{prompt}\n\n### Assistant:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Genz-70b-GGUF", model_file="genz-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Bud's GenZ 70B --- <div align="center"><h1 align="center">~ GenZ ~</h1><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/genz-logo.png" width=150></div> <p align="center"><i>Democratizing access to LLMs for the open-source community.<br>Let's advance AI, together. </i></p> --- ## Introduction 🎉 Welcome to **GenZ**, an advanced Large Language Model (LLM) fine-tuned on the foundation of Meta's open-source Llama V2 70B parameter model. At Bud Ecosystem, we believe in the power of open-source collaboration to drive the advancement of technology at an accelerated pace. Our vision is to democratize access to fine-tuned LLMs, and to that end, we will be releasing a series of models across different parameter counts (7B, 13B, and 70B) and quantizations (32-bit and 4-bit) for the open-source community to use, enhance, and build upon. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_compare.png" width="500"></p> The smaller quantization version of our models makes them more accessible, enabling their use even on personal computers. This opens up a world of possibilities for developers, researchers, and enthusiasts to experiment with these models and contribute to the collective advancement of language model technology. GenZ isn't just a powerful text generator—it's a sophisticated AI assistant, capable of understanding and responding to user prompts with high-quality responses. We've taken the robust capabilities of Llama V2 and fine-tuned them to offer a more user-focused experience. Whether you're seeking informative responses or engaging interactions, GenZ is designed to deliver. And this isn't the end. It's just the beginning of a journey towards creating more advanced, more efficient, and more accessible language models. We invite you to join us on this exciting journey. 🚀 --- <h2>Milestone Releases ️🏁</h2> **[21 August 2023]** [_GenZ-70B_](https://huggingface.co/budecosystem/genz-70b) : We're excited to announce the release of our Genz 70BB model. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-70b). **[27 July 2023]** [_GenZ-13B V2 (ggml)_](https://huggingface.co/budecosystem/genz-13b-v2-ggml) : Announcing our GenZ-13B v2 with ggml. This variant of GenZ can run inferencing using only CPU and without the need of GPU. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-ggml). **[27 July 2023]** [_GenZ-13B V2 (4-bit)_](https://huggingface.co/budecosystem/genz-13b-v2-4bit) : Announcing our GenZ-13B v2 with 4-bit quantisation. Enabling inferencing with much lesser GPU memory than the 32-bit variant. Download the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2-4bit). **[26 July 2023]** [_GenZ-13B V2_](https://huggingface.co/budecosystem/genz-13b-v2) : We're excited to announce the release of our Genz 13B v2 model, a step forward with improved evaluation results compared to v1. Experience the advancements by downloading the model from [HuggingFace](https://huggingface.co/budecosystem/genz-13b-v2). **[20 July 2023]** [_GenZ-13B_](https://huggingface.co/budecosystem/genz-13b) : We marked an important milestone with the release of the Genz 13B model. The journey began here, and you can partake in it by downloading the model from [Hugging Face](https://huggingface.co/budecosystem/genz-13b). --- <h2>Evaluations 🎯</h2> Evaluating our model is a key part of our fine-tuning process. It helps us understand how our model is performing and how it stacks up against other models. Here's a look at some of the key evaluations for GenZ 70B: <h3>Benchmark Comparison</h3> We've compared GenZ models to understand the improvements our fine-tuning has achieved. | Model Name | MT Bench | MMLU | Human Eval | BBH | |:----------:|:--------:|:----:|:----------:|:----:| | Genz 13B | 6.12 | 53.62| 17.68 | 37.76| | Genz 13B v2| 6.79 | 53.68| 21.95 | 38.1 | | Genz 70B | 7.33 | 70.32| 37.8 |54.69 | <h3>MT Bench Score</h3> A key evaluation metric we use is the MT Bench score. This score provides a comprehensive assessment of our model's performance across a range of tasks. <p align="center"><img src="https://raw.githubusercontent.com/BudEcosystem/GenZ/main/assets/mt_bench_score.png" width="500"></p> --- <h2>Getting Started on Hugging Face 🤗</h2> Getting up and running with our models on Hugging Face is a breeze. Follow these steps: <h3>1️⃣ : Import necessary modules</h3> Start by importing the necessary modules from the ‘transformers’ library and ‘torch’. ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("budecosystem/genz-70b", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("budecosystem/genz-70b", torch_dtype=torch.bfloat16, rope_scaling={"type": "dynamic", "factor": 2}) prompt = "### User:\nWrite a python flask code for login management\n\n### Assistant:\n" inputs = tokenizer(prompt, return_tensors="pt") sample = model.generate(**inputs, max_length=128) print(tokenizer.decode(sample[0])) ``` Want to interact with the model in a more intuitive way? We have a Gradio interface set up for that. Head over to our GitHub page, clone the repository, and run the ‘generate.py’ script to try it out. Happy experimenting! 😄 <h2>Why Use GenZ? 💡</h2> You might be wondering, "Why should I choose GenZ over a pretrained model?" The answer lies in the extra mile we've gone to fine-tune our models. While pretrained models are undeniably powerful, GenZ brings something extra to the table. We've fine-tuned it with curated datasets, which means it has additional skills and capabilities beyond what a pretrained model can offer. Whether you need it for a simple task or a complex project, GenZ is up for the challenge. What's more, we are committed to continuously enhancing GenZ. We believe in the power of constant learning and improvement. That's why we'll be regularly fine-tuning our models with various curated datasets to make them even better. Our goal is to reach the state of the art and beyond - and we're committed to staying the course until we get there. But don't just take our word for it. We've provided detailed evaluations and performance details in a later section, so you can see the difference for yourself. Choose GenZ and join us on this journey. Together, we can push the boundaries of what's possible with large language models. --- <h2>Model Card for GenZ 70B 📄</h2> Here's a quick overview of everything you need to know about GenZ 70B. <h3>Model Details:</h3> - Developed by: Bud Ecosystem - Base pretrained model type: Llama V2 70B - Model Architecture: GenZ 70B, fine-tuned on Llama V2 70B, is an auto-regressive language model that employs an optimized transformer architecture. The fine-tuning process for GenZ 70B leveraged Supervised Fine-Tuning (SFT) - License: The model is available for commercial use under a custom commercial license. For more information, please visit: [Meta AI Model and Library Downloads](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) --- <h2>Intended Use 💼</h2> When we created GenZ 70B, we had a clear vision of how it could be used to push the boundaries of what's possible with large language models. We also understand the importance of using such models responsibly. Here's a brief overview of the intended and out-of-scope uses for GenZ 70B. <h3>Direct Use</h3> GenZ 70B is designed to be a powerful tool for research on large language models. It's also an excellent foundation for further specialization and fine-tuning for specific use cases, such as: - Text summarization - Text generation - Chatbot creation - And much more! <h3>Out-of-Scope Use 🚩</h3> While GenZ 70B is versatile, there are certain uses that are out of scope: - Production use without adequate assessment of risks and mitigation - Any use cases which may be considered irresponsible or harmful - Use in any manner that violates applicable laws or regulations, including trade compliance laws - Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2 Remember, GenZ 70B, like any large language model, is trained on a large-scale corpora representative of the web, and therefore, may carry the stereotypes and biases commonly encountered online. <h3>Recommendations 🧠</h3> We recommend users of GenZ 70B to consider fine-tuning it for the specific set of tasks of interest. Appropriate precautions and guardrails should be taken for any production use. Using GenZ 70B responsibly is key to unlocking its full potential while maintaining a safe and respectful environment. --- <h2>Training Details 📚</h2> When fine-tuning GenZ 70B, we took a meticulous approach to ensure we were building on the solid base of the pretrained Llama V2 70B model in the most effective way. Here's a look at the key details of our training process: <h3>Fine-Tuning Training Data</h3> For the fine-tuning process, we used a carefully curated mix of datasets. These included data from OpenAssistant, an instruction fine-tuning dataset, and Thought Source for the Chain Of Thought (CoT) approach. This diverse mix of data sources helped us enhance the model's capabilities across a range of tasks. <h3>Hyperparameters</h3> Here are the hyperparameters we used for fine-tuning: | Hyperparameter | Value | | -------------- | ----- | | Warmup Ratio | 0.04 | | Learning Rate Scheduler Type | Cosine | | Learning Rate | 2e-5 | | Number of Training Epochs | 3 | | Per Device Training Batch Size | 4 | | Gradient Accumulation Steps | 4 | | Precision | FP16 | | Optimizer | AdamW | --- <h2>Looking Ahead 👀</h2> We're excited about the journey ahead with GenZ. We're committed to continuously improving and enhancing our models, and we're excited to see what the open-source community will build with them. We believe in the power of collaboration, and we can't wait to see what we can achieve together. Remember, we're just getting started. This is just the beginning of a journey that we believe will revolutionize the world of large language models. We invite you to join us on this exciting journey. Together, we can push the boundaries of what's possible with AI. 🚀 --- Check the GitHub for the code -> [GenZ](https://raw.githubusercontent.com/BudEcosystem/GenZ) <!-- original-model-card end -->
maddes8cht/gorilla-llm-gorilla-mpt-7b-hf-v0-gguf
maddes8cht
2023-11-22T20:26:15Z
553
1
null
[ "gguf", "api", "en", "dataset:gorilla-llm/APIBench", "license:apache-2.0", "region:us" ]
null
2023-11-03T16:04:26Z
--- license: apache-2.0 language: - en tags: - api datasets: - gorilla-llm/APIBench --- [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]() I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information # gorilla-mpt-7b-hf-v0 - GGUF - Model creator: [gorilla-llm](https://huggingface.co/gorilla-llm) - Original model: [gorilla-mpt-7b-hf-v0](https://huggingface.co/gorilla-llm/gorilla-mpt-7b-hf-v0) MPT-7b and MPT-30B are part of the family of Mosaic Pretrained Transformer (MPT) models, which use a modified transformer architecture optimized for efficient training and inference. # About GGUF format `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library. A growing list of Software is using it and can therefore use this model. The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov # Quantization variants There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you: # Legacy quants Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types. Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants. ## Note: Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions. (This mainly refers to Falcon 7b and Starcoder models) # K-quants K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load. So, if possible, use K-quants. With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences. --- # Original Model Card: license: apache-2.0 --- ***End of original Model File*** --- ## Please consider to support my work **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community. <center> [![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io) [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911) [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht) [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht) [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966) </center>
guishe/span-marker-generic-ner-v1-fewnerd-fine-super
guishe
2024-03-28T20:46:44Z
553
13
span-marker
[ "span-marker", "pytorch", "token-classification", "ner", "named-entity-recognition", "generated_from_span_marker_trainer", "en", "dataset:DFKI-SLT/few-nerd", "base_model:numind/generic-entity_recognition_NER-v1", "license:cc-by-sa-4.0", "model-index", "region:us" ]
token-classification
2023-11-09T18:44:28Z
--- language: en license: cc-by-sa-4.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - DFKI-SLT/few-nerd metrics: - precision - recall - f1 widget: - text: Concern and scepticism surround Niger uranium mining waste storage plans. Towering mounds dot the desert landscape in northern Niger's Arlit region, but they are heaps of partially radioactive waste left from four decades of operations at one of the world's biggest uranium mines. An ambitious 10-year scheme costing $160 million is underway to secure the waste and avoid risks to health and the environment, but many local people are worried or sceptical. France's nuclear giant Areva, now called Orano, worked the area under a subsidiary, the Akouta Mining Company (Cominak). Cominak closed the site in 2021 after extracting 75,000 tonnes of uranium, much of which went to fuelling the scores of nuclear reactors that provide the backbone of France's electricity supply. Cominak's director general Mahaman Sani Abdoulaye showcased the rehabilitation project to the first French journalists to visit the site since 2010, when seven Areva employees were kidnapped by jihadists. - text: SE Michigan counties allege insulin gouging; Localities file lawsuit against pharmaceutical makers. Four metro Detroit counties filed federal lawsuits Wednesday against some of the nation's biggest pharmaceutical manufacturers and pharmacy benefit managers alleging illegal price fixing for insulin products. Macomb, Monroe, Wayne and Washtenaw counties filed the lawsuits in U.S. District Court in New Jersey against more than a dozen companies, including Lilly, Sanofi Aventis, Novo Nordisk, Express Scripts, Optum Rx and CVS Caremark, per their attorneys. "These are the first such lawsuits that have been filed in the state of Michigan and probably more to come," said attorney Melvin Butch Hollowell of the Miller Law Firm. He described the allegations during a news conference, saying that nationally "the pharmacies and manufacturers get together. They control about 90% of the market each, of the insulin market. They talk to each other secretly. And they jack up the prices through anticompetitive means. And what we've seen is over the past 20 years, when we talk about jacking up the prices, they jack them up 1,500% in the last 20 years. 1,500%." - text: Foreign governments may be spying on your smartphone notifications, senator says. Washington (CNN) — Foreign governments have reportedly attempted to spy on iPhone and Android users through the mobile app notifications they receive on their smartphones - and the US government has forced Apple and Google to keep quiet about it, according to a top US senator. Through legal demands sent to the tech giants, governments have allegedly tried to force Apple and Google to turn over sensitive information that could include the contents of a notification - such as previews of a text message displayed on a lock screen, or an update about app activity, Oregon Democratic Sen. Ron Wyden said in a new report. Wyden's report reflects the latest example of long-running tensions between tech companies and governments over law enforcement demands, which have stretched on for more than a decade. Governments around the world have particularly battled with tech companies over encryption, which provides critical protections to users and businesses while in some cases preventing law enforcement from pursuing investigations into messages sent over the internet. - text: Tech giants ‘could severely disable UK spooks from stopping online harms’. Silicon Valley tech giants’ actions could “severely disable” UK spooks from preventing harm caused by online paedophiles and fraudsters, Suella Braverman has suggested. The Conservative former home secretary named Facebook owner Meta , and Apple, and their use of technologies such as end-to-end encryption as a threat to attempts to tackle digital crimes. She claimed the choice to back these technologies without “safeguards” could “enable and indeed facilitate some of the worst atrocities that our brave men and women in law enforcement agencies deal with every day”, as MPs began considering changes to investigatory powers laws. The Investigatory Powers (Amendment) Bill includes measures to make it easier for agencies to examine and retain bulk datasets, such as publicly available online telephone records, and would allow intelligence agencies to use internet connection records to aid detection of their targets. We know that the terrorists, the serious organised criminals, and fraudsters, and the online paedophiles, all take advantage of the dark web and encrypted spaces - text: Camargo Corrêa asks Toffoli to suspend the fine agreed with Lava Jato. The Camargo Corrêa group has asked Justice Dias Toffoli to suspend the R$1.4 billion fine it agreed to pay in its leniency agreement under Operation Car Wash. The company asked for an extension of the minister's decisions that benefited J&F and Odebrecht. Like the other companies, it claimed that it suffered undue pressure from members of the Federal Public Prosecutor's Office (MPF) to close the deal. Much of the request is based on messages exchanged between prosecutors from the Curitiba task force and former judge Sergio Moro - Camargo Corrêa requested full access to the material, seized in Operation Spoofing, which arrested the hackers who broke into cell phones. The dialogues, according to the group's defense, indicate that the executives did not freely agree to the deal, since they were the targets of lawsuits and pre-trial detentions. pipeline_tag: token-classification base_model: numind/generic-entity_recognition_NER-v1 model-index: - name: SpanMarker with numind/generic-entity_recognition-v1 on FewNERD results: - task: type: token-classification name: Named Entity Recognition dataset: name: FewNERD type: DFKI-SLT/few-nerd split: eval metrics: - type: f1 value: 0.7039859923782059 name: F1 - type: precision value: 0.7047408904377952 name: Precision - type: recall value: 0.7032327098380559 name: Recall --- # SpanMarker with numind/generic-entity_recognition-v1 on FewNERD This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [numind/generic-entity_recognition_NER-v1](https://huggingface.co/numind/generic-entity_recognition_NER-v1) as the underlying encoder. ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [numind/generic-entity_recognition_NER-v1](https://huggingface.co/numind/generic-entity_recognition_NER-v1) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [FewNERD](https://huggingface.co/datasets/DFKI-SLT/few-nerd) - **Language:** en - **License:** cc-by-sa-4.0 ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:-----------------------------------------|:---------------------------------------------------------------------------------------------------------| | art-broadcastprogram | "Corazones", "The Gale Storm Show : Oh , Susanna", "Street Cents" | | art-film | "Shawshank Redemption", "L'Atlantide", "Bosch" | | art-music | "Hollywood Studio Symphony", "Atkinson , Danko and Ford ( with Brockie and Hilton )", "Champion Lover" | | art-other | "The Today Show", "Venus de Milo", "Aphrodite of Milos" | | art-painting | "Production/Reproduction", "Touit", "Cofiwch Dryweryn" | | art-writtenart | "The Seven Year Itch", "Imelda de ' Lambertazzi", "Time" | | building-airport | "Sheremetyevo International Airport", "Newark Liberty International Airport", "Luton Airport" | | building-hospital | "Yeungnam University Hospital", "Hokkaido University Hospital", "Memorial Sloan-Kettering Cancer Center" | | building-hotel | "The Standard Hotel", "Flamingo Hotel", "Radisson Blu Sea Plaza Hotel" | | building-library | "British Library", "Bayerische Staatsbibliothek", "Berlin State Library" | | building-other | "Henry Ford Museum", "Alpha Recording Studios", "Communiplex" | | building-restaurant | "Carnegie Deli", "Fatburger", "Trumbull" | | building-sportsfacility | "Boston Garden", "Sports Center", "Glenn Warner Soccer Facility" | | building-theater | "Sanders Theatre", "National Paris Opera", "Pittsburgh Civic Light Opera" | | event-attack/battle/war/militaryconflict | "Easter Offensive", "Jurist", "Vietnam War" | | event-disaster | "the 1912 North Mount Lyell Disaster", "1990s North Korean famine", "1693 Sicily earthquake" | | event-election | "Elections to the European Parliament", "March 1898 elections", "1982 Mitcham and Morden by-election" | | event-other | "Union for a Popular Movement", "Masaryk Democratic Movement", "Eastwood Scoring Stage" | | event-protest | "Iranian Constitutional Revolution", "French Revolution", "Russian Revolution" | | event-sportsevent | "World Cup", "National Champions", "Stanley Cup" | | location-GPE | "Croatian", "Mediterranean Basin", "the Republic of Croatia" | | location-bodiesofwater | "Arthur Kill", "Atatürk Dam Lake", "Norfolk coast" | | location-island | "new Samsat district", "Laccadives", "Staten Island" | | location-mountain | "Salamander Glacier", "Miteirya Ridge", "Ruweisat Ridge" | | location-other | "Victoria line", "Northern City Line", "Cartuther" | | location-park | "Painted Desert Community Complex Historic District", "Gramercy Park", "Shenandoah National Park" | | location-road/railway/highway/transit | "NJT", "Newark-Elizabeth Rail Link", "Friern Barnet Road" | | organization-company | "Texas Chicken", "Dixy Chicken", "Church 's Chicken" | | organization-education | "MIT", "Belfast Royal Academy and the Ulster College of Physical Education", "Barnard College" | | organization-government/governmentagency | "Congregazione dei Nobili", "Diet", "Supreme Court" | | organization-media/newspaper | "Clash", "Al Jazeera", "TimeOut Melbourne" | | organization-other | "Defence Sector C", "IAEA", "4th Army" | | organization-politicalparty | "Al Wafa ' Islamic", "Shimpotō", "Kenseitō" | | organization-religion | "UPCUSA", "Christian", "Jewish" | | organization-showorganization | "Lizzy", "Bochumer Symphoniker", "Mr. Mister" | | organization-sportsleague | "China League One", "NHL", "First Division" | | organization-sportsteam | "Arsenal", "Luc Alphand Aventures", "Tottenham" | | other-astronomything | "Algol", "`` Caput Larvae ''", "Zodiac" | | other-award | "Order of the Republic of Guinea and Nigeria", "Grand Commander of the Order of the Niger", "GCON" | | other-biologything | "N-terminal lipid", "Amphiphysin", "BAR" | | other-chemicalthing | "uranium", "carbon dioxide", "sulfur" | | other-currency | "$", "lac crore", "Travancore Rupee" | | other-disease | "bladder cancer", "French Dysentery Epidemic of 1779", "hypothyroidism" | | other-educationaldegree | "BSc ( Hons ) in physics", "Bachelor", "Master" | | other-god | "Raijin", "Fujin", "El" | | other-language | "Breton-speaking", "Latin", "English" | | other-law | "Leahy–Smith America Invents Act ( AIA", "United States Freedom Support Act", "Thirty Years ' Peace" | | other-livingthing | "monkeys", "patchouli", "insects" | | other-medical | "amitriptyline", "Pediatrics", "pediatrician" | | person-actor | "Tchéky Karyo", "Edmund Payne", "Ellaline Terriss" | | person-artist/author | "Hicks", "Gaetano Donizett", "George Axelrod" | | person-athlete | "Tozawa", "Neville", "Jaguar" | | person-director | "Richard Quine", "Bob Swaim", "Frank Darabont" | | person-other | "Campbell", "Holden", "Richard Benson" | | person-politician | "William", "Rivière", "Emeric" | | person-scholar | "Wurdack", "Stalmine", "Stedman" | | person-soldier | "Joachim Ziegler", "Helmuth Weidling", "Krukenberg" | | product-airplane | "Spey-equipped FGR.2s", "EC135T2 CPDS", "Luton" | | product-car | "Phantom", "100EX", "Corvettes - GT1 C6R" | | product-food | "red grape", "yakiniku", "V. labrusca" | | product-game | "Hardcore RPG", "Splinter Cell", "Airforce Delta" | | product-other | "X11", "PDP-1", "Fairbottom Bobs" | | product-ship | "Essex", "Congress", "HMS `` Chinkara ''" | | product-software | "AmiPDF", "Wikipedia", "Apdf" | | product-train | "55022", "Royal Scots Grey", "High Speed Trains" | | product-weapon | "AR-15 's", "ZU-23-2MR Wróbel II", "ZU-23-2M Wróbel" | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super") # Run inference entities = model.predict("Most of the Steven Seagal movie \"Under Siege \"(co-starring Tommy Lee Jones) was filmed on the, which is docked on Mobile Bay at Battleship Memorial Park and open to the public.") ``` ### Downstream Use You can finetune this model on your own dataset. <details><summary>Click to expand</summary> ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("guishe/span-marker-generic-ner-v1-fewnerd-fine-super") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("guishe/span-marker-generic-ner-v1-fewnerd-fine-super-finetuned") ``` </details> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 1 | 24.4945 | 267 | | Entities per sentence | 0 | 2.5832 | 88 | ### Training Hyperparameters - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.2980 | 3000 | 0.0290 | 0.6503 | 0.6402 | 0.6452 | 0.9109 | | 0.5961 | 6000 | 0.0250 | 0.6749 | 0.6794 | 0.6772 | 0.9202 | | 0.8941 | 9000 | 0.0236 | 0.6908 | 0.6871 | 0.6889 | 0.9229 | | 1.1921 | 12000 | 0.0234 | 0.6853 | 0.7007 | 0.6929 | 0.9239 | | 1.4902 | 15000 | 0.0227 | 0.6966 | 0.6929 | 0.6948 | 0.9241 | | 1.7882 | 18000 | 0.0221 | 0.7073 | 0.6922 | 0.6997 | 0.9250 | | 2.0862 | 21000 | 0.0223 | 0.7003 | 0.6993 | 0.6998 | 0.9252 | | 2.3843 | 24000 | 0.0222 | 0.6971 | 0.7027 | 0.6999 | 0.9254 | | 2.6823 | 27000 | 0.0219 | 0.7044 | 0.7004 | 0.7024 | 0.9259 | | 2.9803 | 30000 | 0.0219 | 0.7047 | 0.7032 | 0.7040 | 0.9261 | ### Framework Versions - Python: 3.10.8 - SpanMarker: 1.5.0 - Transformers: 4.28.0 - PyTorch: 1.13.1+cu117 - Datasets: 2.14.4 - Tokenizers: 0.13.3 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```
nicholasKluge/TeenyTinyLlama-460m
nicholasKluge
2024-06-18T11:59:46Z
553
7
transformers
[ "transformers", "pytorch", "jax", "safetensors", "llama", "text-generation", "text-generation-inference", "pt", "dataset:nicholasKluge/Pt-Corpus-Instruct", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-01-02T13:59:11Z
--- language: - pt license: apache-2.0 library_name: transformers tags: - text-generation-inference datasets: - nicholasKluge/Pt-Corpus-Instruct metrics: - perplexity pipeline_tag: text-generation widget: - text: 'A PUCRS é uma universidade ' example_title: Exemplo - text: A muitos anos atrás, em uma galáxia muito distante, vivia uma raça de example_title: Exemplo - text: Em meio a um escândalo, a frente parlamentar pediu ao Senador Silva para example_title: Exemplo inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 20 top_p: 0.2 max_new_tokens: 150 co2_eq_emissions: emissions: 41100 source: CodeCarbon training_type: pre-training geographical_location: Germany hardware_used: NVIDIA A100-SXM4-40GB model-index: - name: TeenyTinyLlama-460m results: - task: type: text-generation name: Text Generation dataset: name: ENEM Challenge (No Images) type: eduagarcia/enem_challenge split: train args: num_few_shot: 3 metrics: - type: acc value: 20.15 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BLUEX (No Images) type: eduagarcia-temp/BLUEX_without_images split: train args: num_few_shot: 3 metrics: - type: acc value: 25.73 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: OAB Exams type: eduagarcia/oab_exams split: train args: num_few_shot: 3 metrics: - type: acc value: 27.02 name: accuracy source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 RTE type: assin2 split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 53.61 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Assin2 STS type: eduagarcia/portuguese_benchmark split: test args: num_few_shot: 15 metrics: - type: pearson value: 13.0 name: pearson source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: FaQuAD NLI type: ruanchaves/faquad-nli split: test args: num_few_shot: 15 metrics: - type: f1_macro value: 46.41 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HateBR Binary type: ruanchaves/hatebr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 33.59 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: PT Hate Speech Binary type: hate_speech_portuguese split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 22.99 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: tweetSentBR type: eduagarcia-temp/tweetsentbr split: test args: num_few_shot: 25 metrics: - type: f1_macro value: 17.28 name: f1-macro source: url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=nicholasKluge/TeenyTinyLlama-460m name: Open Portuguese LLM Leaderboard --- # TeenyTinyLlama-460m <img src="./logo.png" alt="A curious llama exploring a mushroom forest." height="200"> ## Model Summary Large language models (LLMs) have significantly advanced natural language processing, but their progress has yet to be equal across languages. While most LLMs are trained in high-resource languages like English, multilingual models generally underperform monolingual ones. Additionally, aspects of their multilingual foundation sometimes restrict the byproducts they produce, like computational demands and licensing regimes. Hence, we developed the _TeenyTinyLlama_ pair: two compact models for Brazilian Portuguese text generation. Read our preprint on [Article](https://www.sciencedirect.com/science/article/pii/S2666827024000343). ## Details - **Architecture:** a Transformer-based model pre-trained via causal language modeling - **Size:** 468,239,360 parameters - **Context length:** 2048 tokens - **Dataset:** [Pt-Corpus Instruct](https://huggingface.co/datasets/nicholasKluge/Pt-Corpus-Instruct) (6.2B tokens) - **Language:** Portuguese - **Number of steps:** 1,200,000 - **GPU:** 1 NVIDIA A100-SXM4-40GB - **Training time**: ~ 280 hours - **Emissions:** 41.1 KgCO2 (Germany) - **Total energy consumption:** 115.69 kWh This repository has the [source code](https://github.com/Nkluge-correa/TeenyTinyLlama) used to train this model. The main libraries used are: - [Transformers](https://github.com/huggingface/transformers) - [PyTorch](https://github.com/pytorch/pytorch) - [Datasets](https://github.com/huggingface/datasets) - [Tokenizers](https://github.com/huggingface/tokenizers) - [Sentencepiece](https://github.com/google/sentencepiece) - [Accelerate](https://github.com/huggingface/accelerate) - [FlashAttention](https://github.com/Dao-AILab/flash-attention) - [Codecarbon](https://github.com/mlco2/codecarbon) ## Intended Uses The primary intended use of TeenyTinyLlama is to research the challenges related to developing language models for low-resource languages. Checkpoints saved during training are intended to provide a controlled setting for performing scientific experiments. You may also further fine-tune and adapt TeenyTinyLlama for deployment, as long as your use is following the Apache 2.0 license. If you decide to use pre-trained TeenyTinyLlama as a basis for your fine-tuned model, please conduct your own risk and bias assessment. ## Out-of-scope Use TeenyTinyLlama is not intended for deployment. It is not a product and should not be used for human-facing interactions. TeenyTinyLlama models are Brazilian Portuguese language only and are not suitable for translation or generating text in other languages. TeenyTinyLlama has not been fine-tuned for downstream contexts in which language models are commonly deployed. ## Basic usage Using the `pipeline`: ```python from transformers import pipeline generator = pipeline("text-generation", model="nicholasKluge/TeenyTinyLlama-460m") completions = generator("Astronomia é a ciência", num_return_sequences=2, max_new_tokens=100) for comp in completions: print(f"🤖 {comp['generated_text']}") ``` Using the `AutoTokenizer` and `AutoModelForCausalLM`: ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and the tokenizer tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-460m", revision='main') model = AutoModelForCausalLM.from_pretrained("nicholasKluge/TeenyTinyLlama-460m", revision='main') # Pass the model to your device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.eval() model.to(device) # Tokenize the inputs and pass them to the device inputs = tokenizer("Astronomia é a ciência", return_tensors="pt").to(device) # Generate some text completions = model.generate(**inputs, num_return_sequences=2, max_new_tokens=100) # Print the generated text for i, completion in enumerate(completions): print(f'🤖 {tokenizer.decode(completion)}') ``` ## Limitations Like almost all other language models trained on large text datasets scraped from the web, the TTL pair exhibited behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, nontoxic text generation. Our models are all subject to the following: - **Hallucinations:** This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination. - **Biases and Toxicity:** This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities. - **Unreliable Code:** The model may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions. - **Language Limitations:** The model is primarily designed to understand standard Brazilian Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response. - **Repetition and Verbosity:** The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given. Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on these models if intending to use them for real-world applications and also have humans moderating the outputs of these models in applications where they will interact with an audience, guaranteeing users are always aware they are interacting with a language model. ## Evaluations During our training runs, both models showed consistent convergence. At no point did our evaluation curves show signs of overfitting or saturation. In the case of our 460m parameter model, we intentionally trained past the optimal point by approximately 75,000 steps to assess if there were any signs of saturation, but our evaluations consistently gave better results. We hypothesize that our models are under-trained but can improve if further trained to pass the Chinchilla optimal range. | Processed Tokens | Perplexity | Energy Consumption (kWh) | Emissions (KgCO2eq) | |------------------|------------|---------------------------|----------------------| | 8.1M | 20.49 | 9.40 | 3.34 | | 1.6B | 16.90 | 18.82 | 6.70 | | 2.4B | 15.43 | 28.59 | 10.16 | | 3.2B | 14.64 | 38.20 | 13.57 | | 4.0B | 14.08 | 48.04 | 17.07 | | 4.9B | 13.61 | 57.74 | 20.52 | | 5.7B | 13.25 | 67.32 | 23.92 | | 6.5B | 12.87 | 76.84 | 27.30 | | 7.3B | 12.57 | 86.40 | 30.70 | | 8.1B | 12.27 | 96.19 | 34.18 | | 9.0B | 11.96 | 106.06 | 37.70 | | 9.8B | 11.77 | 115.69 | 41.31 | ## Benchmarks Evaluations on benchmarks were performed using the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) (by [EleutherAI](https://www.eleuther.ai/)). [Laiviet](https://github.com/laiviet/lm-evaluation-harness) translated the tasks from the LM-Evaluation-Harness we used. The results of models marked with an "*" were extracted from the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). | | **ARC** | **HellaSwag** | **MMLU** | **TruthfulQA** | **Average** | |------------------|-----------|---------------|-----------|----------------|-------------| | Pythia-410m | 24.83* | 41.29* | 25.99* | 40.95* | 33.26 | | **TTL-460m** | 29.40 | 33.00 | 28.55 | 41.10 | 33.01 | | Bloom-560m | 24.74* | 37.15* | 24.22* | 42.44* | 32.13 | | Xglm-564M | 25.56 | 34.64* | 25.18* | 42.53 | 31.97 | | OPT-350m | 23.55* | 36.73* | 26.02* | 40.83* | 31.78 | | **TTL-160m** | 26.15 | 29.29 | 28.11 | 41.12 | 31.16 | | Pythia-160m | 24.06* | 31.39* | 24.86* | 44.34* | 31.16 | | OPT-125m | 22.87* | 31.47* | 26.02* | 42.87* | 30.80 | | GPorTuguese-2 | 22.48 | 29.62 | 27.36 | 41.44 | 30.22 | | Gpt2-small | 21.48* | 31.60* | 25.79* | 40.65* | 29.97 | | Multilingual GPT | 23.81 | 26.37* | 25.17* | 39.62 | 28.73 | Evaluations on Brazilian Portuguese benchmarks were performed using a [Portuguese implementation of the EleutherAI LM Evaluation Harness](https://github.com/eduagarcia/lm-evaluation-harness-pt) (created by [Eduardo Garcia](https://github.com/eduagarcia/lm-evaluation-harness-pt)). | | **ASSIN2 RTE** | **ASSIN2 STS** | **BLUEX** | **ENEM** | **FAQUAD NLI** | **HateBR** | **OAB Exams** | **Average** | |----------------|----------------|----------------|-----------|----------|----------------|------------|---------------|-------------| | Qwen-1.8B | 64.83 | 19.53 | 26.15 | 30.23 | 43.97 | 33.33 | 27.20 | 35.03 | | TinyLlama-1.1B | 58.93 | 13.57 | 22.81 | 22.25 | 43.97 | 36.92 | 23.64 | 31.72 | | **TTL-460m** | 53.93 | 12.66 | 22.81 | 19.87 | 49.01 | 33.59 | 27.06 | 31.27 | | XGLM-564m | 49.61 | 22.91 | 19.61 | 19.38 | 43.97 | 33.99 | 23.42 | 30.41 | | Bloom-1b7 | 53.60 | 4.81 | 21.42 | 18.96 | 43.97 | 34.89 | 23.05 | 28.67 | | **TTL-160m** | 53.36 | 2.58 | 21.84 | 18.75 | 43.97 | 36.88 | 22.60 | 28.56 | | OPT-125m | 39.77 | 2.00 | 21.84 | 17.42 | 43.97 | 47.04 | 22.78 | 27.83 | | Pythia-160 | 33.33 | 12.81 | 16.13 | 16.66 | 50.36 | 41.09 | 22.82 | 27.60 | | OLMo-1b | 34.12 | 9.28 | 18.92 | 20.29 | 43.97 | 41.33 | 22.96 | 27.26 | | Bloom-560m | 33.33 | 8.48 | 18.92 | 19.03 | 43.97 | 37.07 | 23.05 | 26.26 | | Pythia-410m | 33.33 | 4.80 | 19.47 | 19.45 | 43.97 | 33.33 | 23.01 | 25.33 | | OPT-350m | 33.33 | 3.65 | 20.72 | 17.35 | 44.71 | 33.33 | 23.01 | 25.15 | | GPT-2 small | 33.26 | 0.00 | 10.43 | 11.20 | 43.52 | 33.68 | 13.12 | 20.74 | | GPorTuguese | 33.33 | 3.85 | 14.74 | 3.01 | 28.81 | 33.33 | 21.23 | 19.75 | | Samba-1.1B | 33.33 | 1.30 | 8.07 | 10.22 | 17.72 | 35.79 | 15.03 | 17.35 | ## Fine-Tuning Comparisons To further evaluate the downstream capabilities of our models, we decided to employ a basic fine-tuning procedure for our TTL pair on a subset of tasks from the Poeta benchmark. We apply the same procedure for comparison purposes on both [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) models, given that they are also LLM trained from scratch in Brazilian Portuguese and have a similar size range to our models. We used these comparisons to assess if our pre-training runs produced LLM capable of producing good results ("good" here means "close to BERTimbau") when utilized for downstream applications. | Models | IMDB | FaQuAD-NLI | HateBr | Assin2 | AgNews | Average | |-----------------|-----------|------------|-----------|-----------|-----------|---------| | BERTimbau-large | **93.58** | 92.26 | 91.57 | **88.97** | 94.11 | 92.10 | | BERTimbau-small | 92.22 | **93.07** | 91.28 | 87.45 | 94.19 | 91.64 | | **TTL-460m** | 91.64 | 91.18 | **92.28** | 86.43 | **94.42** | 91.19 | | **TTL-160m** | 91.14 | 90.00 | 90.71 | 85.78 | 94.05 | 90.34 | All the shown results are the higher accuracy scores achieved on the respective task test sets after fine-tuning the models on the training sets. All fine-tuning runs used the same hyperparameters, and the code implementation can be found in the [model cards](https://huggingface.co/nicholasKluge/TeenyTinyLlama-460m-HateBR) of our fine-tuned models. ## Cite as 🤗 ```latex @misc{correa24ttllama, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={arXiv preprint arXiv:2401.16640}, year={2024} } @misc{correa24ttllama, doi = {10.1016/j.mlwa.2024.100558}, url = {https://www.sciencedirect.com/science/article/pii/S2666827024000343}, title = {TeenyTinyLlama: open-source tiny language models trained in Brazilian Portuguese}, author = {Corr{\^e}a, Nicholas Kluge and Falk, Sophia and Fatimah, Shiza and Sen, Aniket and De Oliveira, Nythamar}, journal={Machine Learning With Applications}, publisher = {Springer}, year={2024} } ``` ## Funding This repository was built as part of the RAIES ([Rede de Inteligência Artificial Ética e Segura](https://www.raies.org/)) initiative, a project supported by FAPERGS - ([Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul](https://fapergs.rs.gov.br/inicial)), Brazil. ## License TeenyTinyLlama-460m is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
vinai/PhoWhisper-base
vinai
2024-02-24T04:27:13Z
553
5
transformers
[ "transformers", "pytorch", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2024-02-18T05:01:16Z
# PhoWhisper: Automatic Speech Recognition for Vietnamese We introduce **PhoWhisper** in five versions for Vietnamese automatic speech recognition. PhoWhisper's robustness is achieved through fine-tuning the multilingual [Whisper](https://github.com/openai/whisper) on an 844-hour dataset that encompasses diverse Vietnamese accents. Our experimental study demonstrates state-of-the-art performances of PhoWhisper on benchmark Vietnamese ASR datasets. Please **cite** our PhoWhisper paper when it is used to help produce published results or is incorporated into other software: ``` @inproceedings{PhoWhisper, title = {{PhoWhisper: Automatic Speech Recognition for Vietnamese}}, author = {Thanh-Thien Le and Linh The Nguyen and Dat Quoc Nguyen}, booktitle = {Proceedings of the ICLR 2024 Tiny Papers track}, year = {2024} } ``` For further information or requests, please go to [PhoWhisper's homepage](https://github.com/VinAIResearch/PhoWhisper)!
Aravindan/gpt2out
Aravindan
2024-06-06T15:58:35Z
553
3
transformers
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:Aravindan/gpt2out", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-02T07:26:12Z
--- license: mit base_model: Aravindan/gpt2out tags: - generated_from_trainer model-index: - name: gpt2coder-8epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gpt2coder-8epochs This model is a fine-tuned version of [Aravindan/gpt2out](https://huggingface.co/Aravindan/gpt2out) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.4708 | 0.9998 | 703 | 1.9618 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.1.2 - Datasets 2.19.1 - Tokenizers 0.19.1
mradermacher/DarkForest-20B-v3.0-i1-GGUF
mradermacher
2024-06-17T07:26:36Z
553
2
transformers
[ "transformers", "gguf", "merge", "not-for-all-audiences", "en", "base_model:TeeZee/DarkForest-20B-v3.0", "license:other", "endpoints_compatible", "region:us" ]
null
2024-06-16T23:52:39Z
--- base_model: TeeZee/DarkForest-20B-v3.0 language: - en library_name: transformers license: other license_name: microsoft-research-license quantized_by: mradermacher tags: - merge - not-for-all-audiences --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TeeZee/DarkForest-20B-v3.0 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/DarkForest-20B-v3.0-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ1_S.gguf) | i1-IQ1_S | 4.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ1_M.gguf) | i1-IQ1_M | 4.9 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.5 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.0 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ2_S.gguf) | i1-IQ2_S | 6.5 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ2_M.gguf) | i1-IQ2_M | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q2_K.gguf) | i1-Q2_K | 7.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 7.7 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ3_XS.gguf) | i1-IQ3_XS | 8.3 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ3_S.gguf) | i1-IQ3_S | 8.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q3_K_S.gguf) | i1-Q3_K_S | 8.8 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ3_M.gguf) | i1-IQ3_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q3_K_M.gguf) | i1-Q3_K_M | 9.8 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q3_K_L.gguf) | i1-Q3_K_L | 10.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-IQ4_XS.gguf) | i1-IQ4_XS | 10.8 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q4_0.gguf) | i1-Q4_0 | 11.4 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q4_K_S.gguf) | i1-Q4_K_S | 11.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q4_K_M.gguf) | i1-Q4_K_M | 12.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q5_K_S.gguf) | i1-Q5_K_S | 13.9 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q5_K_M.gguf) | i1-Q5_K_M | 14.3 | | | [GGUF](https://huggingface.co/mradermacher/DarkForest-20B-v3.0-i1-GGUF/resolve/main/DarkForest-20B-v3.0.i1-Q6_K.gguf) | i1-Q6_K | 16.5 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his hardware for calculating the imatrix for these quants. <!-- end -->
assemblyai/distilbert-base-uncased-sst2
assemblyai
2021-06-14T22:04:03Z
552
2
transformers
[ "transformers", "pytorch", "distilbert", "text-classification", "arxiv:1910.01108", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# DistilBERT-Base-Uncased for Sentiment Analysis This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) originally released in ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108) and trained on the [Stanford Sentiment Treebank v2 (SST2)](https://nlp.stanford.edu/sentiment/); part of the [General Language Understanding Evaluation (GLUE)](https://gluebenchmark.com) benchmark. This model was fine-tuned by the team at [AssemblyAI](https://www.assemblyai.com) and is released with the [corresponding blog post](). ## Usage To download and utilize this model for sentiment analysis please execute the following: ```python import torch.nn.functional as F from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("assemblyai/distilbert-base-uncased-sst2") model = AutoModelForSequenceClassification.from_pretrained("assemblyai/distilbert-base-uncased-sst2") tokenized_segments = tokenizer(["AssemblyAI is the best speech-to-text API for modern developers with performance being second to none!"], return_tensors="pt", padding=True, truncation=True) tokenized_segments_input_ids, tokenized_segments_attention_mask = tokenized_segments.input_ids, tokenized_segments.attention_mask model_predictions = F.softmax(model(input_ids=tokenized_segments_input_ids, attention_mask=tokenized_segments_attention_mask)['logits'], dim=1) print("Positive probability: "+str(model_predictions[0][1].item()*100)+"%") print("Negative probability: "+str(model_predictions[0][0].item()*100)+"%") ``` For questions about how to use this model feel free to contact the team at [AssemblyAI](https://www.assemblyai.com)!
cahya/gpt2-medium-indonesian-story
cahya
2023-08-13T00:33:14Z
552
2
transformers
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2022-03-02T23:29:05Z
Entry not found
axiong/PMC_LLaMA_13B
axiong
2023-08-28T10:26:14Z
552
25
transformers
[ "transformers", "pytorch", "llama", "text-generation", "license:openrail", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2023-08-28T05:38:32Z
--- license: openrail --- # PMC_LLaMA To obtain the foundation model in medical field, we propose [MedLLaMA_13B](https://huggingface.co/chaoyi-wu/MedLLaMA_13B) and PMC_LLaMA_13B. MedLLaMA_13B is initialized from LLaMA-13B and further pretrained with medical corpus. Despite the expert knowledge gained, it lacks instruction-following ability. Hereby we construct a instruction-tuning dataset and evaluate the tuned model. As shown in the table, PMC_LLaMA_13B achieves comparable results to ChatGPT on medical QA benchmarks. ![medical_qa](https://pic4.zhimg.com/80/v2-bf43393cd753018e11fdb1c64a1a87df.png) ## Usage ```python import transformers import torch tokenizer = transformers.LlamaTokenizer.from_pretrained('axiong/PMC_LLaMA_13B') model = transformers.LlamaForCausalLM.from_pretrained('axiong/PMC_LLaMA_13B') sentence = 'Hello, doctor' batch = tokenizer( sentence, return_tensors="pt", add_special_tokens=False ) with torch.no_grad(): generated = model.generate( inputs = batch["input_ids"], max_length=200, do_sample=True, top_k=50 ) print('model predict: ',tokenizer.decode(generated[0])) ```
LoftQ/Llama-2-7b-hf-4bit-64rank
LoftQ
2024-05-03T21:19:15Z
552
1
transformers
[ "transformers", "safetensors", "llama", "text-generation", "quantization ", "lora", "en", "arxiv:2310.08659", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2023-11-21T05:07:49Z
--- license: mit language: - en pipeline_tag: text-generation tags: - 'quantization ' - lora --- # LoftQ Initialization | [Paper](https://arxiv.org/abs/2310.08659) | [Code](https://github.com/yxli2123/LoftQ) | [PEFT Example](https://github.com/huggingface/peft/tree/main/examples/loftq_finetuning) | LoftQ (LoRA-fine-tuning-aware Quantization) provides a quantized backbone Q and LoRA adapters A and B, given a full-precision pre-trained weight W. This model, `Llama-2-7b-hf-4bit-64rank`, is obtained from [LLAMA-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf). The backbone is under `LoftQ/Llama-2-7b-hf-4bit-64rank` and LoRA adapters are under the `subfolder='loftq_init'`. ## Model Info ### Backbone - Stored format: bitsandbytes nf4 - Size: ~ 4.2 GiB - Loaded format: bitsandbytes nf4 - Size loaded on GPU: ~ 4.2 GiB ### LoRA adapters - rank: 64 - lora_alpha: 16 - target_modules: ["down_proj", "up_proj", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj"] ## Usage **Training** Here's an example of loading this model and preparing for the LoRA fine-tuning. ```python import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel MODEL_ID = "LoftQ/Llama-2-7b-hf-4bit-64rank" base_model = AutoModelForCausalLM.from_pretrained(MODEL_ID) peft_model = PeftModel.from_pretrained( base_model, MODEL_ID, subfolder="loftq_init", is_trainable=True, ) # Do training with peft_model ... ``` ## Experiment Results We have conducted experiments on supervised fine-tuning of [GSM8K](https://huggingface.co/datasets/gsm8k) and [WikiText-2](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-raw-v1). | Model | Bits | Rank | LoRA Initial | GSM8K | WikiText-2 | | -------------- | ---- | ---- | -------------------- | ----- | ---------- | | LLAMA-2-7b | 16 | 64 | Gaussian + 0 | 36.9 | 5.08 | | LLAMA-2-7b | 4 | 64 | Gaussian + 0 (QLoRA) | 35.1 | 5.70 | | **LLAMA-2-7b** | 4 | 64 | LoftQ | 35.0 | 5.24 | **Inference** Here is an example code for inference after the model has been fine-tuned on [GSM8K](https://huggingface.co/datasets/gsm8k). ```python import torch from transformers import AutoModelForCausalLM, BitsAndBytesConfig from peft import PeftModel MODEL_ID = "LoftQ/Llama-2-7b-hf-4bit-64rank" base_model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, # you may change it with different models quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, # bfloat16 is recommended bnb_4bit_use_double_quant=False, bnb_4bit_quant_type='nf4', ), ) peft_model = PeftModel.from_pretrained( base_model, MODEL_ID, subfolder="gsm8k", is_trainable=True, ) # Do inference with peft_model ... ``` See the full code at our [Github Repo]((https://github.com/yxli2123/LoftQ)) ## Citation ```bibtex @article{li2023loftq, title={Loftq: Lora-fine-tuning-aware quantization for large language models}, author={Li, Yixiao and Yu, Yifan and Liang, Chen and He, Pengcheng and Karampatziakis, Nikos and Chen, Weizhu and Zhao, Tuo}, journal={arXiv preprint arXiv:2310.08659}, year={2023} } ```
davisonye/cg_pad_mai_cla_conxt_dav_1
davisonye
2024-02-06T20:26:51Z
552
0
transformers
[ "transformers", "safetensors", "convnext", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2024-02-06T20:26:08Z
Entry not found
mradermacher/reverie-7b-GGUF
mradermacher
2024-05-06T05:08:20Z
552
1
transformers
[ "transformers", "gguf", "mergekit", "merge", "en", "base_model:antiven0m/reverie-7b", "license:cc-by-nc-4.0", "endpoints_compatible", "region:us" ]
null
2024-04-08T12:06:00Z
--- base_model: antiven0m/reverie-7b language: - en library_name: transformers license: cc-by-nc-4.0 quantized_by: mradermacher tags: - mergekit - merge --- ## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/antiven0m/reverie-7b <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/reverie-7b-GGUF/resolve/main/reverie-7b.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
qihoo360/360Zhinao-1.8B-Reranking
qihoo360
2024-05-24T03:07:31Z
552
3
transformers
[ "transformers", "pytorch", "zhinao", "text-generation", "mteb", "qihoo360", "奇虎360", "RAG-reranking", "custom_code", "license:apache-2.0", "model-index", "autotrain_compatible", "region:us" ]
text-generation
2024-05-20T03:24:18Z
--- tags: - mteb - qihoo360 - 奇虎360 - RAG-reranking model-index: - name: 360Zhinao-1.8B-reranking results: - task: type: Reranking dataset: type: None name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 86.75017961853382 - type: mrr value: 89.15436507936508 - task: type: Reranking dataset: type: None name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 87.91572151930174 - type: mrr value: 89.98869047619048 - task: type: Reranking dataset: type: None name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 37.28779203409935 - type: mrr value: 36.23730158730159 - task: type: Reranking dataset: type: None name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 68.55153559405632 - type: mrr value: 79.62773774596725 license: apache-2.0 library_name: transformers --- <br> # MTEB Leaderboard Chinese Reranking Results We have validated the performance of our model on the [mteb-chinese-reranking leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Currently, the open-source models on this leaderboard are primarily bidirectional discriminative models (BERT-like models). The only unidirectional generative model (GPT-like model) is gte-Qwen1.5-7B-instruct, which has an average score of 66.38, ranking 25th, with less than ideal results. Our self-developed unidirectional generative model, 360Zhinao-1.8B-reranking, achieved an average score of 70.13, currently ranking first overall and first among open-source models, opening up new possibilities for generative models to undertake discriminative tasks. For more detail, please check [360zhinao](https://github.com/Qihoo360/360zhinao/tree/main). | Model | T2Reranking | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg | |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:| | **360Zhinao-1.8B-Reranking** | **68.55** | **37.29** | **86.75** | **87.92** | **70.13** | | piccolo-large-zh-v2 | 67.15 | 33.39 | 90.14 | 89.31 | 70 | | Baichuan-text-embedding | 67.85 | 34.3 | 88.46 | 88.06 | 69.67 | | stella-mrl-large-zh-v3.5-1792d | 66.43 | 28.85 | 89.18 | 89.33 | 68.45 | | PEG | 69.43 | 33.55 | 86.56 | 84.09 | 68.41 | | bge-reranker-base | 67.28 | 35.46 | 81.27 | 84.1 | 67.03 | | bge-reranker-large | 67.6 | 37.17 | 82.14 | 84.19 | 67.78 | # Requirements ```bash pip install -r requirements.txt ``` If your GPU supports fp16 or bf16 precision, we also recommend installing [flash-attention](https://github.com/Dao-AILab/flash-attention) (**now with support for flash attention 2**) to improve your runtime efficiency and reduce memory usage. (**flash-attention is optional and not required for running this project**) ```bash git clone https://github.com/Dao-AILab/flash-attention cd flash-attention && pip install . # The installation below is optional and might be slow. # pip install csrc/layer_norm # No need to install the following if the flash-attn version is above 2.1.1. # pip install csrc/rotary ``` You can also use the following command to install flash-attention. ```bash FLASH_ATTENTION_FORCE_BUILD=TRUE ./miniconda3/bin/python -m pip install flash-attn==2.3.6 ``` # Model Introduction The **360Zhinao-1.8B-Reranking** model utilizes the self-developed 360Zhinao-1.8b-Base model as its foundation. Through iterative discovery and resolution of the following technical issues, it continuously stimulates the world knowledge inherent in the large model during the pre-training phase, better bridging the gap between generative models and discriminative tasks. ## Data Processing The model training did not utilize world knowledge, meaning it neither continue pre-training with domain-specific data nor fine-tuned datasets outside of the four datasets on the leaderboard. It only used the four datasets within the leaderboard, carefully iterating through data perception, data cleaning and data mining to ensure that the ranking in individual tasks could reach the top three level. ## Resolving Task Conflicts and Catastrophic Forgetting When merging four tasks, due to different data domain distributions, answer patterns, training data volumes, convergence steps, and even sequence lengths, conflicts exist between different tasks. Deeply resolving these conflict issues is crucial to obtaining a universal model with the best comprehensive indicators across different tasks. ## Resolving Training Instability Unlike generative tasks that produce multiple characters, using generative models for discriminative tasks requires the model to output a continuous value. Therefore, there is an oscillation problem during the training process. Deeply analyzing and resolving training instability can result in a model with better generalization and robustness. # Inference Script You can copy the following scripts to [mteb-eval-scripts](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB), then replace FlagReranker with FlagRerankerCustom in [eval_cross_encoder](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/eval_cross_encoder.py) scripts, then run [eval_cross_encoder](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/eval_cross_encoder.py) to reproduce our complete performance on the [mteb-chinese-reranking leaderboard](https://huggingface.co/spaces/mteb/leaderboard). ```python from typing import cast, List, Union, Tuple, Dict, Optional import numpy as np import torch from tqdm import tqdm from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification import transformers from transformers.trainer_pt_utils import LabelSmoother IGNORE_TOKEN_ID = LabelSmoother.ignore_index def preprocess( sources, tokenizer: transformers.PreTrainedTokenizer, max_len: int = 1024, system_message: str = "", device = None, ) -> Dict: roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"} answer_len = 64 im_start = tokenizer.im_start_id im_end = tokenizer.im_end_id nl_tokens = tokenizer('\n').input_ids _system = tokenizer('system').input_ids + nl_tokens _user = tokenizer('user').input_ids + nl_tokens _assistant = tokenizer('assistant').input_ids + nl_tokens # Apply prompt templates input_ids, targets = [], [] for i, source in enumerate(sources): ## system_message input_id, target = [], [] system = [im_start] + _system + tokenizer(system_message, max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens input_id += system target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens assert len(input_id) == len(target) ## query ans source = "\n\n".join(source) role = "<|im_start|>user" _input_id = tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids + nl_tokens + \ tokenizer(source, max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens input_id += _input_id if role == '<|im_start|>user': _target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens elif role == '<|im_start|>assistant': _target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids) + \ _input_id[len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids)+1:-2] + [im_end] + nl_tokens else: raise NotImplementedError target += _target ## label use placeholder 0; It will be masked later in the modeling_zhinao.py role = "<|im_start|>assistant" _input_id = tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids + nl_tokens + \ tokenizer("0", max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens input_id += _input_id if role == '<|im_start|>user': _target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens elif role == '<|im_start|>assistant': _target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids) + \ _input_id[len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids)+1:-2] + [im_end] + nl_tokens else: raise NotImplementedError target += _target assert len(input_id) == len(target) input_id += [tokenizer.pad_token_id] * (max_len - len(input_id)) target += [IGNORE_TOKEN_ID] * (max_len - len(target)) if len(input_id) > max_len: print("max_len_error") print(tokenizer.decode(input_id)) input_ids.append(input_id[:max_len]) targets.append(target[:max_len]) input_ids = torch.tensor(input_ids, dtype=torch.int) targets = torch.tensor(targets, dtype=torch.int) #print(f"input_ids {input_ids.shape}") #print(f"targets {targets.shape}") return dict( input_ids=input_ids.to(device), labels=targets.to(device), attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device), ) class FlagRerankerCustom: def __init__( self, model_name_or_path: str = None, use_fp16: bool = False ) -> None: self.tokenizer = transformers.AutoTokenizer.from_pretrained( model_name_or_path, model_max_length=1024, padding_side="right", use_fast=False, trust_remote_code=True ) self.tokenizer.pad_token_id = self.tokenizer.eod_id config = transformers.AutoConfig.from_pretrained( model_name_or_path, trust_remote_code=True, bf16=True, ) config.use_cache = False self.model = transformers.AutoModelForCausalLM.from_pretrained( model_name_or_path, config=config, trust_remote_code=True, ) self.model.linear.bfloat16() if torch.cuda.is_available(): self.device = torch.device('cuda') elif torch.backends.mps.is_available(): self.device = torch.device('mps') else: self.device = torch.device('cpu') use_fp16 = False if use_fp16: self.model.half() self.model = self.model.to(self.device) self.model.eval() self.num_gpus = torch.cuda.device_count() if self.num_gpus > 1: print(f"----------using {self.num_gpus}*GPUs----------") self.model = torch.nn.DataParallel(self.model) @torch.no_grad() def compute_score(self, sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]], batch_size: int =128, max_length: int = 1024) -> List[float]: if self.num_gpus > 0: batch_size = batch_size * self.num_gpus assert isinstance(sentence_pairs, list) if isinstance(sentence_pairs[0], str): sentence_pairs = [sentence_pairs] all_scores = [] for start_index in tqdm(range(0, len(sentence_pairs), batch_size), desc="Compute Scores", disable=False): sentences_batch = sentence_pairs[start_index:start_index + batch_size] # [[q,ans],[q, ans]...] inputs = preprocess(sources=sentences_batch, tokenizer=self.tokenizer,max_len=1024,device=self.device) scores = self.model(**inputs, return_dict=True).logits.view(-1, ).float() all_scores.extend(scores.cpu().numpy().tolist()) if len(all_scores) == 1: return all_scores[0] return all_scores if __name__ == "__main__": model_name_or_path = "360Zhinao-1.8B-Reranking" model = FlagRerankerCustom(model_name_or_path, use_fp16=False) inputs=[["What Color Is the Sky","Blue"], ["What Color Is the Sky","Pink"],] ret = model.compute_score(inputs) print(ret) ``` ## License The source code of this repository follows the open-source license Apache 2.0. 360​Zhinao open-source models support commercial use. If you wish to use these models or continue training them for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see <<360 Zhinao Open-Source Model License>>.
DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1
DiscoResearch
2024-05-29T11:37:33Z
552
12
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "de", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-24T07:36:23Z
--- license: llama3 language: - de library_name: transformers --- # # Llama3-DiscoLeo-Instruct 8B 32k-context (version 0.1) ## Thanks and Accreditation [DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729) is the result of a joint effort between [DiscoResearch](https://huggingface.co/DiscoResearch) and [Occiglot](https://huggingface.co/occiglot) with support from the [DFKI](https://www.dfki.de/web/) (German Research Center for Artificial Intelligence) and [hessian.Ai](https://hessian.ai). Occiglot kindly handled data preprocessing, filtering, and deduplication as part of their latest [dataset release](https://huggingface.co/datasets/occiglot/occiglot-fineweb-v0.5), as well as sharing their compute allocation at hessian.Ai's 42 Supercomputer. ## Model Overview DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1 is an instruction tuned version of our long-context [Llama3-German-8B-32k](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k). The base model was derived from [Meta's Llama3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) through continuous pretraining on 65 billion high-quality German tokens, similar to previous [LeoLM](https://huggingface.co/LeoLM) or [Occiglot](https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01) models. For the long-context version we trained on an additional 100 million tokens at 32k context length, using a rope_theta value of 1.5e6 and a learning rate of 1.5e-5 with a batch size of 256*8192 and otherwise equal hyperparameters to the base model. We finetuned this checkpoint on the German Instruction dataset from DiscoResearch created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). ## How to use Llama3_DiscoLeo_Instruct_8B_32k_v0.1 uses the [Llama-3 chat template](https://github.com/meta-llama/llama3?tab=readme-ov-file#instruction-tuned-models), which can be easily used with [transformer's chat templating](https://huggingface.co/docs/transformers/main/en/chat_templating). See [below](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1#usage-example) for a usage example. ## Model Training and Hyperparameters The model was full-fintuned with axolotl on the [hessian.Ai 42](hessian.ai) with 32,768 context-length, learning rate 2e-5 and batch size of 16. ## Evaluation and Results We evaluated the model using a suite of common English Benchmarks and their German counterparts with [GermanBench](https://github.com/bjoernpl/GermanBenchmark). In the below image and corresponding table, you can see the benchmark scores for the different instruct models compared to Metas instruct version. All checkpoints are available in this [collection](https://huggingface.co/collections/DiscoResearch/discoleo-8b-llama3-for-german-6650527496c0fafefd4c9729). ![instruct scores](instruct_model_benchmarks.png) | Model | truthful_qa_de | truthfulqa_mc | arc_challenge | arc_challenge_de | hellaswag | hellaswag_de | MMLU | MMLU-DE | mean | |----------------------------------------------------|----------------|---------------|---------------|------------------|-------------|--------------|-------------|-------------|-------------| | meta-llama/Meta-Llama-3-8B-Instruct | 0.47498 | 0.43923 | **0.59642** | 0.47952 | **0.82025** | 0.60008 | **0.66658** | 0.53541 | 0.57656 | | DiscoResearch/Llama3-German-8B | 0.49499 | 0.44838 | 0.55802 | 0.49829 | 0.79924 | 0.65395 | 0.62240 | 0.54413 | 0.57743 | | DiscoResearch/Llama3-German-8B-32k | 0.48920 | 0.45138 | 0.54437 | 0.49232 | 0.79078 | 0.64310 | 0.58774 | 0.47971 | 0.55982 | | DiscoResearch/Llama3-DiscoLeo-Instruct-8B-v0.1 | **0.53042** | 0.52867 | 0.59556 | **0.53839** | 0.80721 | 0.66440 | 0.61898 | 0.56053 | **0.60552** | | **DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1** | 0.52749 | **0.53245** | 0.58788 | 0.53754 | 0.80770 | **0.66709** | 0.62123 | **0.56238** | 0.60547 | ## Model Configurations We release DiscoLeo-8B in the following configurations: 1. [Base model with continued pretraining](https://huggingface.co/DiscoResearch/Llama3-German_8B) 2. [Long-context version (32k context length)](https://huggingface.co/DiscoResearch/Llama3_German_8B_32k) 3. [Instruction-tuned version of the base model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_v0.1) 4. [Instruction-tuned version of the long-context model](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_Instruct_8B_32k_v0.1) (This model) 5. [Experimental `DARE-TIES` Merge with Llama3-Instruct](https://huggingface.co/DiscoResearch/Llama3_DiscoLeo_8B_DARE_Experimental) 6. [Collection of Quantized versions](https://huggingface.co/collections/DiscoResearch/discoleo-8b-quants-6651bcf8f72c9a37ce485d42) ## Usage Example Here's how to use the model with transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch device="cuda" model = AutoModelForCausalLM.from_pretrained( "DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("DiscoResearch/Llama3-DiscoLeo-Instruct-8B-32k-v0.1") prompt = "Schreibe ein Essay über die Bedeutung der Energiewende für Deutschlands Wirtschaft" messages = [ {"role": "system", "content": "Du bist ein hilfreicher Assistent."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## Acknowledgements The model was trained and evaluated by [Björn Plüster](https://huggingface.co/bjoernp) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)) with data preparation and project supervision by [Manuel Brack](http://manuel-brack.eu) ([DFKI](https://www.dfki.de/web/), [TU-Darmstadt](https://www.tu-darmstadt.de/)). Initial work on dataset collection and curation was performed by [Malte Ostendorff](https://ostendorff.org) and [Pedro Ortiz Suarez](https://portizs.eu). Instruction tuning was done with the DiscoLM German dataset created by [Jan-Philipp Harries](https://huggingface.co/jphme) and [Daniel Auras](https://huggingface.co/rasdani) ([DiscoResearch](https://huggingface.co/DiscoResearch), [ellamind](https://ellamind.com)). We extend our gratitude to [LAION](https://laion.ai/) and friends, especially [Christoph Schuhmann](https://entwickler.de/experten/christoph-schuhmann) and [Jenia Jitsev](https://huggingface.co/JJitsev), for initiating this collaboration. The model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)). The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html) through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
jampekka/4chan_out
jampekka
2024-05-24T11:53:37Z
552
0
transformers
[ "transformers", "safetensors", "gpt_neox", "text-generation", "trl", "sft", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-24T11:16:06Z
--- tags: - trl - sft - generated_from_trainer model-index: - name: 4chan_out results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 4chan_out This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.41.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
adamzinebi/gpt2_pad_token
adamzinebi
2024-06-02T10:57:37Z
552
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-02T10:57:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Felladrin/gguf-Aira-2-355M
Felladrin
2024-06-07T09:58:28Z
552
0
null
[ "gguf", "base_model:nicholasKluge/Aira-2-355M", "license:apache-2.0", "region:us" ]
null
2024-06-07T09:49:51Z
--- license: apache-2.0 base_model: nicholasKluge/Aira-2-355M --- GGUF version of [nicholasKluge/Aira-2-355M](https://huggingface.co/nicholasKluge/Aira-2-355M).
sonoisa/t5-base-japanese-title-generation
sonoisa
2022-02-21T13:38:09Z
551
3
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "seq2seq", "ja", "license:cc-by-sa-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2022-03-02T23:29:05Z
--- language: ja tags: - t5 - text2text-generation - seq2seq license: cc-by-sa-4.0 --- # 記事本文からタイトルを生成するモデル SEE: https://qiita.com/sonoisa/items/a9af64ff641f0bbfed44
bigscience/mt0-xxl-mt
bigscience
2024-06-07T09:57:51Z
551
48
transformers
[ "transformers", "pytorch", "safetensors", "mt5", "text2text-generation", "af", "am", "ar", "az", "be", "bg", "bn", "ca", "ceb", "co", "cs", "cy", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fil", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "haw", "hi", "hmn", "ht", "hu", "hy", "ig", "is", "it", "iw", "ja", "jv", "ka", "kk", "km", "kn", "ko", "ku", "ky", "la", "lb", "lo", "lt", "lv", "mg", "mi", "mk", "ml", "mn", "mr", "ms", "mt", "my", "ne", "nl", "no", "ny", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "sm", "sn", "so", "sq", "sr", "st", "su", "sv", "sw", "ta", "te", "tg", "th", "tr", "uk", "und", "ur", "uz", "vi", "xh", "yi", "yo", "zh", "zu", "dataset:bigscience/xP3mt", "dataset:mc4", "arxiv:2211.01786", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2022-10-27T21:21:14Z
--- datasets: - bigscience/xP3mt - mc4 license: apache-2.0 language: - af - am - ar - az - be - bg - bn - ca - ceb - co - cs - cy - da - de - el - en - eo - es - et - eu - fa - fi - fil - fr - fy - ga - gd - gl - gu - ha - haw - hi - hmn - ht - hu - hy - ig - is - it - iw - ja - jv - ka - kk - km - kn - ko - ku - ky - la - lb - lo - lt - lv - mg - mi - mk - ml - mn - mr - ms - mt - my - ne - nl - 'no' - ny - pa - pl - ps - pt - ro - ru - sd - si - sk - sl - sm - sn - so - sq - sr - st - su - sv - sw - ta - te - tg - th - tr - uk - und - ur - uz - vi - xh - yi - yo - zh - zu tags: - text2text-generation widget: - text: Life is beautiful! Translate to Mongolian. example_title: mn-en translation - text: Le mot japonais «憂鬱» veut dire quoi en Odia? example_title: jp-or-fr translation - text: >- Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte stell die Frage auf Norwegisch. example_title: de-nb quiz - text: >- 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative? example_title: zh-en sentiment - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? example_title: zh-zh sentiment - text: Suggest at least five related search terms to "Mạng neural nhân tạo". example_title: vi-en query - text: >- Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». example_title: fr-fr query - text: Explain in a sentence in Telugu what is backpropagation in neural networks. example_title: te-en qa - text: Why is the sky blue? example_title: en-en qa - text: >- Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): example_title: es-en fable - text: >- Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is "Violence is the last refuge of the incompetent". Fable (in Hindi): example_title: hi-en fable model-index: - name: mt0-xxl-mt results: - task: type: Coreference resolution dataset: type: winogrande name: Winogrande XL (xl) config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 62.67 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (en) config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 83.31 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (fr) config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 78.31 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (jp) config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 80.19 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (pt) config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 80.99 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (ru) config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 79.05 - task: type: Coreference resolution dataset: type: Muennighoff/xwinograd name: XWinograd (zh) config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 82.34 - task: type: Natural language inference dataset: type: anli name: ANLI (r1) config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 49.5 - task: type: Natural language inference dataset: type: anli name: ANLI (r2) config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42 - task: type: Natural language inference dataset: type: anli name: ANLI (r3) config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 48.17 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (cb) config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 87.5 - task: type: Natural language inference dataset: type: super_glue name: SuperGLUE (rte) config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 84.84 - task: type: Natural language inference dataset: type: xnli name: XNLI (ar) config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.03 - task: type: Natural language inference dataset: type: xnli name: XNLI (bg) config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 59.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (de) config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 60.16 - task: type: Natural language inference dataset: type: xnli name: XNLI (el) config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 59.2 - task: type: Natural language inference dataset: type: xnli name: XNLI (en) config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 62.25 - task: type: Natural language inference dataset: type: xnli name: XNLI (es) config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 60.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (fr) config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 59.88 - task: type: Natural language inference dataset: type: xnli name: XNLI (hi) config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 57.47 - task: type: Natural language inference dataset: type: xnli name: XNLI (ru) config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (sw) config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 56.79 - task: type: Natural language inference dataset: type: xnli name: XNLI (th) config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.03 - task: type: Natural language inference dataset: type: xnli name: XNLI (tr) config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 57.67 - task: type: Natural language inference dataset: type: xnli name: XNLI (ur) config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.98 - task: type: Natural language inference dataset: type: xnli name: XNLI (vi) config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.92 - task: type: Natural language inference dataset: type: xnli name: XNLI (zh) config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 58.71 - task: type: Sentence completion dataset: type: story_cloze name: StoryCloze (2016) config: '2016' split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 94.66 - task: type: Sentence completion dataset: type: super_glue name: SuperGLUE (copa) config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 88 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (et) config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 81 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ht) config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 79 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (id) config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 90 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (it) config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 88 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (qu) config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 56 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (sw) config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 81 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (ta) config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 81 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (th) config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 76 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (tr) config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 76 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (vi) config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 85 - task: type: Sentence completion dataset: type: xcopa name: XCOPA (zh) config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 87 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ar) config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 91 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (es) config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 93.38 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (eu) config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 91.13 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (hi) config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 90.73 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (id) config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 93.05 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (my) config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 86.7 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (ru) config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 91.66 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (sw) config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 89.61 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (te) config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 90.4 - task: type: Sentence completion dataset: type: Muennighoff/xstory_cloze name: XStoryCloze (zh) config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 93.05 pipeline_tag: text2text-generation --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find our resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:[email protected]) - **Languages:** Refer to [mc4](https://huggingface.co/datasets/mc4) for pretraining & [xP3](https://huggingface.co/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:** <div class="max-w-full overflow-auto"> <table> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English. </tr> <tr> <td>Parameters</td> <td>300M</td> <td>580M</td> <td>1.2B</td> <td>3.7B</td> <td>13B</td> <td>560M</td> <td>1.1B</td> <td>1.7B</td> <td>3B</td> <td>7.1B</td> <td>176B</td> </tr> <tr> <td>Finetuned Model</td> <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td> <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td> <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td> </tr> </tr> <tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td> </tr> <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th> </tr> <tr> <td>Finetuned Model</td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td> <td></td> <td></td> <td></td> <td></td> <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td> <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td> </tr> <th colspan="12">Original pretrained checkpoints. Not recommended.</th> <tr> <td>Pretrained Model</td> <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td> <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td> <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td> <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td> <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td> <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td> <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td> <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td> <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td> </tr> </table> </div> # Use ## Intended use We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper: - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? - Suggest at least five related search terms to "Mạng neural nhân tạo". - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish): - Explain in a sentence in Telugu what is backpropagation in neural networks. **Feel free to share your generations in the Community tab!** ## How to use ### CPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers from transformers import AutoModelForSeq2SeqLM, AutoTokenizer checkpoint = "bigscience/mt0-xxl-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate from transformers import AutoModelForSeq2SeqLM, AutoTokenizer checkpoint = "bigscience/mt0-xxl-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto") inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> ### GPU in 8bit <details> <summary> Click to expand </summary> ```python # pip install -q transformers accelerate bitsandbytes from transformers import AutoModelForSeq2SeqLM, AutoTokenizer checkpoint = "bigscience/mt0-xxl-mt" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True) inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda") outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` </details> <!-- Necessary for whitespace --> ### # Limitations **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*". # Training ## Model - **Architecture:** Same as [mt5-xxl](https://huggingface.co/google/mt5-xxl), also refer to the `config.json` file - **Finetuning steps:** 7000 - **Finetuning tokens:** 1.29 billion - **Precision:** bfloat16 ## Hardware - **TPUs:** TPUv4-256 ## Software - **Orchestration:** [T5X](https://github.com/google-research/t5x) - **Neural networks:** [Jax](https://github.com/google/jax) # Evaluation We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config. # Citation ```bibtex @article{muennighoff2022crosslingual, title={Crosslingual generalization through multitask finetuning}, author={Muennighoff, Niklas and Wang, Thomas and Sutawika, Lintang and Roberts, Adam and Biderman, Stella and Scao, Teven Le and Bari, M Saiful and Shen, Sheng and Yong, Zheng-Xin and Schoelkopf, Hailey and others}, journal={arXiv preprint arXiv:2211.01786}, year={2022} } ```
keremberke/yolov5m-forklift
keremberke
2023-01-01T20:53:42Z
551
1
yolov5
[ "yolov5", "tensorboard", "yolo", "vision", "object-detection", "pytorch", "dataset:keremberke/forklift-object-detection", "model-index", "region:us" ]
object-detection
2023-01-01T20:35:43Z
--- tags: - yolov5 - yolo - vision - object-detection - pytorch library_name: yolov5 library_version: 7.0.6 inference: false datasets: - keremberke/forklift-object-detection model-index: - name: keremberke/yolov5m-forklift results: - task: type: object-detection dataset: type: keremberke/forklift-object-detection name: keremberke/forklift-object-detection split: validation metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.8515819366709647 # min: 0.0 - max: 1.0 name: [email protected] --- <div align="center"> <img width="640" alt="keremberke/yolov5m-forklift" src="https://huggingface.co/keremberke/yolov5m-forklift/resolve/main/sample_visuals.jpg"> </div> ### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('keremberke/yolov5m-forklift') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5m-forklift --epochs 10 ``` **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**
timm/res2net50_26w_6s.in1k
timm
2023-04-24T00:05:41Z
551
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:1904.01169", "license:unknown", "region:us" ]
image-classification
2023-04-24T00:05:04Z
--- tags: - image-classification - timm library_name: timm license: unknown datasets: - imagenet-1k --- # Model card for res2net50_26w_6s.in1k A Res2Net (Multi-Scale ResNet) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 37.1 - GMACs: 6.3 - Activations (M): 15.3 - Image size: 224 x 224 - **Papers:** - Res2Net: A New Multi-scale Backbone Architecture: https://arxiv.org/abs/1904.01169 - **Dataset:** ImageNet-1k - **Original:** https://github.com/gasvn/Res2Net/ ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('res2net50_26w_6s.in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'res2net50_26w_6s.in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 112, 112]) # torch.Size([1, 256, 56, 56]) # torch.Size([1, 512, 28, 28]) # torch.Size([1, 1024, 14, 14]) # torch.Size([1, 2048, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'res2net50_26w_6s.in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 2048, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{gao2019res2net, title={Res2Net: A New Multi-scale Backbone Architecture}, author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang, Ming-Hsuan and Torr, Philip}, journal={IEEE TPAMI}, doi={10.1109/TPAMI.2019.2938758}, } ```
timm/poolformerv2_s36.sail_in1k
timm
2023-05-05T06:20:58Z
551
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2210.13452", "license:apache-2.0", "region:us" ]
image-classification
2023-05-05T06:20:23Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for poolformerv2_s36.sail_in1k A PoolFormer-v2 (a MetaFormer) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 30.8 - GMACs: 5.0 - Activations (M): 15.8 - Image size: 224 x 224 - **Papers:** - Metaformer baselines for vision: https://arxiv.org/abs/2210.13452 - **Original:** https://github.com/sail-sg/metaformer - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('poolformerv2_s36.sail_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'poolformerv2_s36.sail_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 64, 56, 56]) # torch.Size([1, 128, 28, 28]) # torch.Size([1, 320, 14, 14]) # torch.Size([1, 512, 7, 7]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'poolformerv2_s36.sail_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 512, 7, 7) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{yu2022metaformer_baselines, title={Metaformer baselines for vision}, author={Yu, Weihao and Si, Chenyang and Zhou, Pan and Luo, Mi and Zhou, Yichen and Feng, Jiashi and Yan, Shuicheng and Wang, Xinchao}, journal={arXiv preprint arXiv:2210.13452}, year={2022} } ```
davanstrien/chat_topics
davanstrien
2023-06-01T08:10:20Z
551
2
bertopic
[ "bertopic", "text-classification", "en", "dataset:OpenAssistant/oasst1", "license:mit", "region:us" ]
text-classification
2023-05-29T18:39:42Z
--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification license: mit datasets: - OpenAssistant/oasst1 language: - en --- # chat_topics This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("davanstrien/chat_topics") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 75 * Number of training documents: 63530 <details> <summary>Click here for an overview of all topics.</summary> | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | provide - using - information - sure - help | 26 | -1_provide_using_information_sure | | 0 | openai - ai - chatgpt - assistant - language | 7837 | Generative AI | | 1 | anytime - welcome - assistance - helpful - thank | 1342 | 1_anytime_welcome_assistance_helpful | | 2 | quantum - particle - physics - particles - relativity | 778 | Physics | | 3 | story - lived - life - novel - felt | 569 | 3_story_lived_life_novel | | 4 | letter - sincerely - regards - email - dear | 516 | 4_letter_sincerely_regards_email | | 5 | rust - haskell - programming - java - languages | 504 | programming | | 6 | css - html - style - div - js | 494 | web programming | | 7 | linux - ubuntu - debian - fedora - install | 440 | 7_linux_ubuntu_debian_fedora | | 8 | recipe - bake - ingredients - baking - dough | 425 | 8_recipe_bake_ingredients_baking | | 9 | websocket - json - socket - api - discord | 425 | 9_websocket_json_socket_api | | 10 | communism - capitalism - marx - economic - economy | 424 | 10_communism_capitalism_marx_economic | | 11 | dog - pet - breed - breeds - pets | 408 | 11_dog_pet_breed_breeds | | 12 | philosophy - theological - philosophical - beliefs - consciousness | 394 | 12_philosophy_theological_philosophical_beliefs | | 13 | git - github - repository - software - commit | 381 | 13_git_github_repository_software | | 14 | music - songs - musical - lyrics - song | 370 | 14_music_songs_musical_lyrics | | 15 | devops - development - developers - industry - develop | 323 | 15_devops_development_developers_industry | | 16 | pythagorean - hypotenuse - triangle - math - sqrt | 302 | 16_pythagorean_hypotenuse_triangle_math | | 17 | eu - europe - economy - economic - war | 291 | 17_eu_europe_economy_economic | | 18 | sleep - asleep - bedtime - procrastination - depression | 280 | 18_sleep_asleep_bedtime_procrastination | | 19 | kramer - seinfeld - jerry - cafe - elaine | 279 | 19_kramer_seinfeld_jerry_cafe | | 20 | printing - prints - printer - print - printers | 276 | 20_printing_prints_printer_print | | 21 | influenza - flu - panic - symptoms - medical | 251 | 21_influenza_flu_panic_symptoms | | 22 | chess - chessboard - practice - strategy - learn | 242 | 22_chess_chessboard_practice_strategy | | 23 | algorithm - primes - array - integers - python | 240 | 23_algorithm_primes_array_integers | | 24 | youtube - viewers - media - google - streaming | 240 | 24_youtube_viewers_media_google | | 25 | poison - chemicals - powder - turpentine - smoke | 226 | 25_poison_chemicals_powder_turpentine | | 26 | monday - sunday - count_weekend_days - calendar - dates | 216 | 26_monday_sunday_count_weekend_days_calendar | | 27 | colors - colour - color - pigments - blue | 208 | 27_colors_colour_color_pigments | | 28 | roman - attila - rome - empire - warfare | 205 | 28_roman_attila_rome_empire | | 29 | investing - investments - investment - stocks - financial | 204 | 29_investing_investments_investment_stocks | | 30 | vocabulary - wordle - words - scrabble - word | 201 | 30_vocabulary_wordle_words_scrabble | | 31 | planets - sun - earth - planet - pluto | 198 | 31_planets_sun_earth_planet | | 32 | renewable - solar - electricity - energy - electrical | 190 | 32_renewable_solar_electricity_energy | | 33 | pygame - ball_radius - draw - circle - canvas | 181 | 33_pygame_ball_radius_draw_circle | | 34 | fishing - fish - boat - hiking - camping | 176 | 34_fishing_fish_boat_hiking | | 35 | gpus - gpu - motherboard - cpu - hardware | 162 | 35_gpus_gpu_motherboard_cpu | | 36 | hvac - remodeling - energy - kwh - housing | 159 | 36_hvac_remodeling_energy_kwh | | 37 | database - graphql - databases - postgresql - sql | 159 | 37_database_graphql_databases_postgresql | | 38 | información - significado - cómo - como - sistemas | 158 | 38_información_significado_cómo_como | | 39 | motherboard - pcie - gpu - bios - computer | 153 | 39_motherboard_pcie_gpu_bios | | 40 | crops - produce - planting - peppers - plants | 148 | 40_crops_produce_planting_peppers | | 41 | paintings - art - modernist - artists - modern | 148 | 41_paintings_art_modernist_artists | | 42 | workout - exercises - dumbbells - dumbbell - exercise | 147 | 42_workout_exercises_dumbbells_dumbbell | | 43 | climate - warming - pollution - environmental - emissions | 142 | 43_climate_warming_pollution_environmental | | 44 | coffee - espresso - brewing - tea - beans | 137 | 44_coffee_espresso_brewing_tea | | 45 | velocity - drag - acceleration - density - formula | 132 | 45_velocity_drag_acceleration_density | | 46 | woodchuck - woodchucks - units - kilogram - kilograms | 130 | 46_woodchuck_woodchucks_units_kilogram | | 47 | ascii - glyphs - hiragana - art - font | 129 | 47_ascii_glyphs_hiragana_art | | 48 | guitars - guitar - strings - guitarists - instrument | 127 | 48_guitars_guitar_strings_guitarists | | 49 | tallest - buildings - building - burj - khalifa | 114 | 49_tallest_buildings_building_burj | | 50 | flat - earth - curvature - spherical - tectonic | 111 | 50_flat_earth_curvature_spherical | | 51 | essay - awareness - understanding - being - be | 102 | 51_essay_awareness_understanding_being | | 52 | portals - ender - portal - obsidian - netherite | 102 | 52_portals_ender_portal_obsidian | | 53 | android - apple - phones - devices - vehicles | 101 | 53_android_apple_phones_devices | | 54 | fasting - dietary - diet - eating - metabolic | 101 | 54_fasting_dietary_diet_eating | | 55 | meditation - relief - pain - health - nociception | 99 | 55_meditation_relief_pain_health | | 56 | weather - forecast - forecasts - raining - precipitation | 95 | 56_weather_forecast_forecasts_raining | | 57 | president - presidents - presidency - constitution - biden | 94 | 57_president_presidents_presidency_constitution | | 58 | no - nope - yes - not - maybe | 94 | 58_no_nope_yes_not | | 59 | peregrine - airspeed - falcon - speed - bird | 90 | 59_peregrine_airspeed_falcon_speed | | 60 | crontab - cron - myscript - script - bash | 83 | 60_crontab_cron_myscript_script | | 61 | youtuber - streamer - ceo - musk - founder | 83 | 61_youtuber_streamer_ceo_musk | | 62 | layovers - flights - circumnavigate - layover - travel | 83 | 62_layovers_flights_circumnavigate_layover | | 63 | keyboards - keyboard - switches - qwerty - types | 83 | 63_keyboards_keyboard_switches_qwerty | | 64 | file_path_in_dir1 - file_path1 - csv_file - file_path_in_dir2 - file_path2 | 80 | 64_file_path_in_dir1_file_path1_csv_file_file_path_in_dir2 | | 65 | pele - maradona - lebron - ronaldo - nba | 76 | 65_pele_maradona_lebron_ronaldo | | 66 | alopecia - hairstyles - hairstyle - hair - scalp | 66 | 66_alopecia_hairstyles_hairstyle_hair | | 67 | nginx - docker - kubernetes - proxy_pass - nodeport | 65 | 67_nginx_docker_kubernetes_proxy_pass | | 68 | directories - directory - sudo - filesystem - folders | 62 | 68_directories_directory_sudo_filesystem | | 69 | gps - map - geocaching - maps - armenia | 52 | 69_gps_map_geocaching_maps | | 70 | meiosis - mitosis - fertilization - reproduction - ovulation | 51 | 70_meiosis_mitosis_fertilization_reproduction | | 71 | colleges - admissions - universities - campus - university | 43 | 71_colleges_admissions_universities_campus | | 72 | unicorns - unicorn - pony - ponies - mythical | 32 | 72_unicorns_unicorn_pony_ponies | | 73 | superpowers - abilities - superhero - superhuman - powers | 28 | 73_superpowers_abilities_superhero_superhuman | </details> ## Training hyperparameters * calculate_probabilities: False * language: None * low_memory: False * min_topic_size: 20 * n_gram_range: (1, 1) * nr_topics: 75 * seed_topic_list: None * top_n_words: 10 * verbose: True ## Framework versions * Numpy: 1.22.4 * HDBSCAN: 0.8.29 * UMAP: 0.5.3 * Pandas: 1.5.3 * Scikit-Learn: 1.2.2 * Sentence-transformers: 2.2.2 * Transformers: 4.29.2 * Numba: 0.56.4 * Plotly: 5.13.1 * Python: 3.10.11
mradermacher/Uncensored-Frank-Llama-3-8B-GGUF
mradermacher
2024-05-05T14:44:24Z
551
2
transformers
[ "transformers", "gguf", "Uncensored conversation", "Uncensored jokes", "Uncensored romance", "en", "base_model:ajibawa-2023/Uncensored-Frank-Llama-3-8B", "license:llama3", "endpoints_compatible", "region:us" ]
null
2024-05-04T12:46:02Z
--- base_model: ajibawa-2023/Uncensored-Frank-Llama-3-8B language: - en library_name: transformers license: llama3 quantized_by: mradermacher tags: - Uncensored conversation - Uncensored jokes - Uncensored romance --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/ajibawa-2023/Uncensored-Frank-Llama-3-8B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Uncensored-Frank-Llama-3-8B-GGUF/resolve/main/Uncensored-Frank-Llama-3-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
saishf/Aura-Uncensored-OAS-8B-L3
saishf
2024-05-12T14:28:09Z
551
3
transformers
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "conversational", "arxiv:2403.19522", "base_model:Undi95/Llama3-Unholy-8B-OAS", "base_model:ResplendentAI/Theory_of_Mind_Llama3", "base_model:ResplendentAI/Luna_Llama3", "base_model:ResplendentAI/Aura_Llama3", "base_model:ResplendentAI/BlueMoon_Llama3", "base_model:ResplendentAI/RP_Format_QuoteAsterisk_Llama3", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-05-12T14:13:55Z
--- license: cc-by-nc-4.0 base_model: - Undi95/Llama3-Unholy-8B-OAS - ResplendentAI/Theory_of_Mind_Llama3 - Undi95/Llama3-Unholy-8B-OAS - ResplendentAI/Luna_Llama3 - Undi95/Llama3-Unholy-8B-OAS - Undi95/Llama3-Unholy-8B-OAS - ResplendentAI/Aura_Llama3 - Undi95/Llama3-Unholy-8B-OAS - ResplendentAI/BlueMoon_Llama3 - Undi95/Llama3-Unholy-8B-OAS - ResplendentAI/RP_Format_QuoteAsterisk_Llama3 library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details This is a rerun of [ResplendentAI/Aura_Uncensored_l3_8B](https://huggingface.co/ResplendentAI/Aura_Uncensored_l3_8B) using [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) instead of [Undi95/Llama-3-Unholy-8B](https://huggingface.co/Undi95/Llama-3-Unholy-8B) in the hopes it will result in a less censored, uncensored aura. ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) as a base. ### Models Merged The following models were included in the merge: * [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) + [ResplendentAI/Theory_of_Mind_Llama3](https://huggingface.co/ResplendentAI/Theory_of_Mind_Llama3) * [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) + [ResplendentAI/Luna_Llama3](https://huggingface.co/ResplendentAI/Luna_Llama3) * [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) + [ResplendentAI/Aura_Llama3](https://huggingface.co/ResplendentAI/Aura_Llama3) * [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) + [ResplendentAI/BlueMoon_Llama3](https://huggingface.co/ResplendentAI/BlueMoon_Llama3) * [Undi95/Llama3-Unholy-8B-OAS](https://huggingface.co/Undi95/Llama3-Unholy-8B-OAS) + [ResplendentAI/RP_Format_QuoteAsterisk_Llama3](https://huggingface.co/ResplendentAI/RP_Format_QuoteAsterisk_Llama3) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Undi95/Llama3-Unholy-8B-OAS+ResplendentAI/Theory_of_Mind_Llama3 - model: Undi95/Llama3-Unholy-8B-OAS+ResplendentAI/Aura_Llama3 - model: Undi95/Llama3-Unholy-8B-OAS+ResplendentAI/Luna_Llama3 - model: Undi95/Llama3-Unholy-8B-OAS+ResplendentAI/BlueMoon_Llama3 - model: Undi95/Llama3-Unholy-8B-OAS+ResplendentAI/RP_Format_QuoteAsterisk_Llama3 merge_method: model_stock base_model: Undi95/Llama3-Unholy-8B-OAS dtype: float16 ```
bartowski/Quintellect-10.7B-GGUF
bartowski
2024-05-17T13:33:42Z
551
0
null
[ "gguf", "code", "text-generation", "en", "dataset:sahil2801/CodeAlpaca-20k", "license:apache-2.0", "region:us" ]
text-generation
2024-05-17T12:59:27Z
--- license: apache-2.0 tags: - code datasets: - sahil2801/CodeAlpaca-20k language: - en inference: false quantized_by: bartowski pipeline_tag: text-generation --- ## Llamacpp imatrix Quantizations of Quintellect-10.7B Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2901">b2901</a> for quantization. Original model: https://huggingface.co/Walmart-the-bag/Quintellect-10.7B All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/b6ac44691e994344625687afe3263b3a) ## Prompt format ``` {system_prompt} Human: {prompt} Assistant: </s> ``` ## Download a file (not the whole branch) from below: | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Quintellect-10.7B-Q8_0.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q8_0.gguf) | Q8_0 | 11.40GB | Extremely high quality, generally unneeded but max available quant. | | [Quintellect-10.7B-Q6_K.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q6_K.gguf) | Q6_K | 8.80GB | Very high quality, near perfect, *recommended*. | | [Quintellect-10.7B-Q5_K_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q5_K_M.gguf) | Q5_K_M | 7.59GB | High quality, *recommended*. | | [Quintellect-10.7B-Q5_K_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q5_K_S.gguf) | Q5_K_S | 7.39GB | High quality, *recommended*. | | [Quintellect-10.7B-Q4_K_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q4_K_M.gguf) | Q4_K_M | 6.46GB | Good quality, uses about 4.83 bits per weight, *recommended*. | | [Quintellect-10.7B-Q4_K_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q4_K_S.gguf) | Q4_K_S | 6.11GB | Slightly lower quality with more space savings, *recommended*. | | [Quintellect-10.7B-IQ4_NL.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ4_NL.gguf) | IQ4_NL | 6.09GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. | | [Quintellect-10.7B-IQ4_XS.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ4_XS.gguf) | IQ4_XS | 5.77GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. | | [Quintellect-10.7B-Q3_K_L.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q3_K_L.gguf) | Q3_K_L | 5.65GB | Lower quality but usable, good for low RAM availability. | | [Quintellect-10.7B-Q3_K_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q3_K_M.gguf) | Q3_K_M | 5.19GB | Even lower quality. | | [Quintellect-10.7B-IQ3_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ3_M.gguf) | IQ3_M | 4.84GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. | | [Quintellect-10.7B-IQ3_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ3_S.gguf) | IQ3_S | 4.69GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. | | [Quintellect-10.7B-Q3_K_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q3_K_S.gguf) | Q3_K_S | 4.66GB | Low quality, not recommended. | | [Quintellect-10.7B-IQ3_XS.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ3_XS.gguf) | IQ3_XS | 4.44GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. | | [Quintellect-10.7B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ3_XXS.gguf) | IQ3_XXS | 4.16GB | Lower quality, new method with decent performance, comparable to Q3 quants. | | [Quintellect-10.7B-Q2_K.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-Q2_K.gguf) | Q2_K | 4.00GB | Very low quality but surprisingly usable. | | [Quintellect-10.7B-IQ2_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ2_M.gguf) | IQ2_M | 3.67GB | Very low quality, uses SOTA techniques to also be surprisingly usable. | | [Quintellect-10.7B-IQ2_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ2_S.gguf) | IQ2_S | 3.39GB | Very low quality, uses SOTA techniques to be usable. | | [Quintellect-10.7B-IQ2_XS.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ2_XS.gguf) | IQ2_XS | 3.23GB | Very low quality, uses SOTA techniques to be usable. | | [Quintellect-10.7B-IQ2_XXS.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ2_XXS.gguf) | IQ2_XXS | 2.92GB | Lower quality, uses SOTA techniques to be usable. | | [Quintellect-10.7B-IQ1_M.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ1_M.gguf) | IQ1_M | 2.56GB | Extremely low quality, *not* recommended. | | [Quintellect-10.7B-IQ1_S.gguf](https://huggingface.co/bartowski/Quintellect-10.7B-GGUF/blob/main/Quintellect-10.7B-IQ1_S.gguf) | IQ1_S | 2.35GB | Extremely low quality, *not* recommended. | ## Downloading using huggingface-cli First, make sure you have hugginface-cli installed: ``` pip install -U "huggingface_hub[cli]" ``` Then, you can target the specific file you want: ``` huggingface-cli download bartowski/Quintellect-10.7B-GGUF --include "Quintellect-10.7B-Q4_K_M.gguf" --local-dir ./ --local-dir-use-symlinks False ``` If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run: ``` huggingface-cli download bartowski/Quintellect-10.7B-GGUF --include "Quintellect-10.7B-Q8_0.gguf/*" --local-dir Quintellect-10.7B-Q8_0 --local-dir-use-symlinks False ``` You can either specify a new local-dir (Quintellect-10.7B-Q8_0) or download them all in place (./) ## Which file should I choose? A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9) The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have. If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM. If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total. Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'. If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M. If you want to get more into the weeds, you can check out this extremely useful feature chart: [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix) But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size. These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide. The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm. Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
liuch37/controlnet-sd-2-1-base-v1
liuch37
2024-06-27T23:08:50Z
551
0
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "controlnet", "diffusers-training", "base_model:stabilityai/stable-diffusion-2-1-base", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2024-06-26T21:05:48Z
--- base_model: stabilityai/stable-diffusion-2-1-base library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training inference: true --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # controlnet-liuch37/controlnet-sd-2-1-base-v1 These are controlnet weights trained on stabilityai/stable-diffusion-2-1-base with new type of conditioning. ## Intended uses & limitations #### How to use ```python from PIL import Image from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) checkpoint = "liuch37/controlnet-sd-2-1-base-v1" prompt = "YOUR_FAVORITE_PROMPT" control_image = Image.open("YOUR_SEMANTIC_IMAGE") controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float32) pipe = StableDiffusionControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float32 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) generator = torch.manual_seed(0) image = pipe(prompt, num_inference_steps=30, generator=generator, image=control_image).images[0] image.save("YOUR_OUTPUT_IMAGE") ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details Train the ControlNet with semantic maps as the condition. Cityscapes training set is used for training (https://huggingface.co/datasets/liuch37/controlnet-cityscapes). Only 2 epochs are trained for the current version.
microsoft/DialogRPT-human-vs-machine
microsoft
2021-05-23T09:16:47Z
550
5
transformers
[ "transformers", "pytorch", "gpt2", "text-classification", "arxiv:2009.06978", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-classification
2022-03-02T23:29:05Z
# Demo Please try this [➤➤➤ Colab Notebook Demo (click me!)](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) | Context | Response | `human_vs_machine` score | | :------ | :------- | :------------: | | I love NLP! | I'm not sure if it's a good idea. | 0.000 | | I love NLP! | Me too! | 0.605 | The `human_vs_machine` score predicts how likely the response is from a human rather than a machine. # DialogRPT-human-vs-machine ### Dialog Ranking Pretrained Transformers > How likely a dialog response is upvoted 👍 and/or gets replied 💬? This is what [**DialogRPT**](https://github.com/golsun/DialogRPT) is learned to predict. It is a set of dialog response ranking models proposed by [Microsoft Research NLP Group](https://www.microsoft.com/en-us/research/group/natural-language-processing/) trained on 100 + millions of human feedback data. It can be used to improve existing dialog generation model (e.g., [DialoGPT](https://huggingface.co/microsoft/DialoGPT-medium)) by re-ranking the generated response candidates. Quick Links: * [EMNLP'20 Paper](https://arxiv.org/abs/2009.06978/) * [Dataset, training, and evaluation](https://github.com/golsun/DialogRPT) * [Colab Notebook Demo](https://colab.research.google.com/drive/1cAtfkbhqsRsT59y3imjR1APw3MHDMkuV?usp=sharing) We considered the following tasks and provided corresponding pretrained models. |Task | Description | Pretrained model | | :------------- | :----------- | :-----------: | | **Human feedback** | **given a context and its two human responses, predict...**| | `updown` | ... which gets more upvotes? | [model card](https://huggingface.co/microsoft/DialogRPT-updown) | | `width`| ... which gets more direct replies? | [model card](https://huggingface.co/microsoft/DialogRPT-width) | | `depth`| ... which gets longer follow-up thread? | [model card](https://huggingface.co/microsoft/DialogRPT-depth) | | **Human-like** (human vs fake) | **given a context and one human response, distinguish it with...** | | `human_vs_rand`| ... a random human response | [model card](https://huggingface.co/microsoft/DialogRPT-human-vs-rand) | | `human_vs_machine`| ... a machine generated response | this model | ### Contact: Please create an issue on [our repo](https://github.com/golsun/DialogRPT) ### Citation: ``` @inproceedings{gao2020dialogrpt, title={Dialogue Response RankingTraining with Large-Scale Human Feedback Data}, author={Xiang Gao and Yizhe Zhang and Michel Galley and Chris Brockett and Bill Dolan}, year={2020}, booktitle={EMNLP} } ```
pritamdeka/S-Bluebert-snli-multinli-stsb
pritamdeka
2022-09-21T18:58:03Z
550
6
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "autotrain_compatible", "endpoints_compatible", "text-embeddings-inference", "region:us" ]
sentence-similarity
2022-03-02T23:29:05Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # pritamdeka/S-Bluebert-snli-multinli-stsb This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('pritamdeka/S-Bluebert-snli-multinli-stsb') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('pritamdeka/S-Bluebert-snli-multinli-stsb') model = AutoModel.from_pretrained('pritamdeka/S-Bluebert-snli-multinli-stsb') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, max pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 90 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` Parameters of the fit()-Method: ``` { "callback": null, "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 36, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information --> If you use the model kindly cite the following work ``` @inproceedings{deka2021unsupervised, title={Unsupervised Keyword Combination Query Generation from Online Health Related Content for Evidence-Based Fact Checking}, author={Deka, Pritam and Jurek-Loughrey, Anna}, booktitle={The 23rd International Conference on Information Integration and Web Intelligence}, pages={267--277}, year={2021} } ```
jjzha/jobspanbert-base-cased
jjzha
2023-03-16T07:04:47Z
550
10
transformers
[ "transformers", "pytorch", "bert", "continuous pretraining", "job postings", "JobSpanBERT", "en", "endpoints_compatible", "region:us" ]
null
2022-04-12T11:39:56Z
--- language: - en tags: - continuous pretraining - job postings - JobSpanBERT --- # JobSpanBERT This is the JobSpanBERT model from: Mike Zhang, Kristian Nørgaard Jensen, Sif Dam Sonniks, and Barbara Plank. __SkillSpan: Hard and Soft Skill Extraction from Job Postings__. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. This model is continuously pre-trained from a spanbert-base-cased checkpoint (which can also be found in our repository) on ~3.2M sentences from job postings. More information can be found in the paper. If you use this model, please cite the following paper: ``` @inproceedings{zhang-etal-2022-skillspan, title = "{S}kill{S}pan: Hard and Soft Skill Extraction from {E}nglish Job Postings", author = "Zhang, Mike and Jensen, Kristian N{\o}rgaard and Sonniks, Sif and Plank, Barbara", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.366", pages = "4962--4984", abstract = "Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.", } ```
cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all
cardiffnlp
2022-09-30T00:31:18Z
550
7
transformers
[ "transformers", "pytorch", "roberta", "text-classification", "dataset:cardiffnlp/tweet_topic_multi", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2022-09-29T17:01:29Z
--- datasets: - cardiffnlp/tweet_topic_multi metrics: - f1 - accuracy model-index: - name: cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_topic_multi type: cardiffnlp/tweet_topic_multi args: cardiffnlp/tweet_topic_multi split: test_2021 metrics: - name: F1 type: f1 value: 0.7647668393782383 - name: F1 (macro) type: f1_macro value: 0.6187022581213811 - name: Accuracy type: accuracy value: 0.5485407980941036 pipeline_tag: text-classification widget: - text: "I'm sure the {@Tampa Bay Lightning@} would’ve rather faced the Flyers but man does their experience versus the Blue Jackets this year and last help them a lot versus this Islanders team. Another meat grinder upcoming for the good guys" example_title: "Example 1" - text: "Love to take night time bike rides at the jersey shore. Seaside Heights boardwalk. Beautiful weather. Wishing everyone a safe Labor Day weekend in the US." example_title: "Example 2" --- # cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2021](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021) on the [tweet_topic_multi](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi). This model is fine-tuned on `train_all` split and validated on `test_2021` split of tweet_topic. Fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py). It achieves the following results on the test_2021 set: - F1 (micro): 0.7647668393782383 - F1 (macro): 0.6187022581213811 - Accuracy: 0.5485407980941036 ### Usage ```python import math import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer def sigmoid(x): return 1 / (1 + math.exp(-x)) tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all") model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-multi-all", problem_type="multi_label_classification") model.eval() class_mapping = model.config.id2label with torch.no_grad(): text = #NewVideo Cray Dollas- Water- Ft. Charlie Rose- (Official Music Video)- {{URL}} via {@YouTube@} #watchandlearn {{USERNAME}} tokens = tokenizer(text, return_tensors='pt') output = model(**tokens) flags = [sigmoid(s) > 0.5 for s in output[0][0].detach().tolist()] topic = [class_mapping[n] for n, i in enumerate(flags) if i] print(topic) ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```
timm/vit_small_patch32_224.augreg_in21k
timm
2023-05-06T00:29:21Z
550
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-21k", "arxiv:2106.10270", "arxiv:2010.11929", "license:apache-2.0", "region:us" ]
image-classification
2022-12-22T07:55:11Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-21k --- # Model card for vit_small_patch32_224.augreg_in21k A Vision Transformer (ViT) image classification model. Trained on ImageNet-21k (with additional augmentation and regularization) in JAX by paper authors, ported to PyTorch by Ross Wightman. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 30.9 - GMACs: 1.1 - Activations (M): 2.1 - Image size: 224 x 224 - **Papers:** - How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers: https://arxiv.org/abs/2106.10270 - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2 - **Dataset:** ImageNet-21k - **Original:** https://github.com/google-research/vision_transformer ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('vit_small_patch32_224.augreg_in21k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_small_patch32_224.augreg_in21k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 50, 384) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Model Comparison Explore the dataset and runtime metrics of this model in timm [model results](https://github.com/huggingface/pytorch-image-models/tree/main/results). ## Citation ```bibtex @article{steiner2021augreg, title={How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers}, author={Steiner, Andreas and Kolesnikov, Alexander and and Zhai, Xiaohua and Wightman, Ross and Uszkoreit, Jakob and Beyer, Lucas}, journal={arXiv preprint arXiv:2106.10270}, year={2021} } ``` ```bibtex @article{dosovitskiy2020vit, title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale}, author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil}, journal={ICLR}, year={2021} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```
keremberke/yolov5s-forklift
keremberke
2023-01-01T20:54:02Z
550
1
yolov5
[ "yolov5", "tensorboard", "yolo", "vision", "object-detection", "pytorch", "dataset:keremberke/forklift-object-detection", "model-index", "region:us" ]
object-detection
2023-01-01T11:18:11Z
--- tags: - yolov5 - yolo - vision - object-detection - pytorch library_name: yolov5 library_version: 7.0.6 inference: false datasets: - keremberke/forklift-object-detection model-index: - name: keremberke/yolov5s-forklift results: - task: type: object-detection dataset: type: keremberke/forklift-object-detection name: keremberke/forklift-object-detection split: validation metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.8382598267226307 # min: 0.0 - max: 1.0 name: [email protected] --- <div align="center"> <img width="640" alt="keremberke/yolov5s-forklift" src="https://huggingface.co/keremberke/yolov5s-forklift/resolve/main/sample_visuals.jpg"> </div> ### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('keremberke/yolov5s-forklift') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5s-forklift --epochs 10 ``` **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**
UBC-NLP/AraT5v2-base-1024
UBC-NLP
2024-05-16T17:42:03Z
550
19
transformers
[ "transformers", "pytorch", "t5", "Arabic T5", "MSA", "Twitter", "Arabic Dialect", "Arabic Machine Translation", "Arabic Text Summarization", "Arabic News Title and Question Generation", "Arabic Paraphrasing and Transliteration", "Arabic Code-Switched Translation", "ar", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2023-08-15T22:35:15Z
--- language: - ar tags: - Arabic T5 - MSA - Twitter - Arabic Dialect - Arabic Machine Translation - Arabic Text Summarization - Arabic News Title and Question Generation - Arabic Paraphrasing and Transliteration - Arabic Code-Switched Translation --- # AraT5v2-base-1024 ## What's new? - **More Data.** `AraT5v2-base-1024` is trained on large and more diverse Arabic data. - **Larger Sequence Length.** We increase the sequence length from 512 to 1024 in this version. - **Faster Convergence.** On finetuning process, AraT5v2-base-1024 converges ~10x faster than the previous version (AraT5-base). - **Extra IDs.** AraT5v2-base-1024 supports 100 sentinel tokens (a.k.a unique mask tokens). <span style="color:red"><b>We recommend using AraT5v2-base-1024 instead of the previous version (AraT5-base).</b></span> ## An example of predicted masked token ```python from transformers import T5Tokenizer, AutoModelForSeq2SeqLM tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/AraT5v2-base-1024") model = AutoModelForSeq2SeqLM.from_pretrained("UBC-NLP/AraT5v2-base-1024") ar_prompt="عاصمة ألمانيا هي <extra_id_0> " input_ids = tokenizer(ar_prompt, return_tensors="pt").input_ids outputs = model.generate(input_ids) print("Tokenized input:", tokenizer.tokenize(ar_prompt)) print("Decoded output:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Output: ```bash Tokenized input: ['▁عاصمة', '▁ألمانيا', '▁هي', '<extra_id_0>'] Decoded output: برلين ``` # Citation If you use our models for your scientific publication, or if you find the resources in this repository useful, please cite our papers as follows: **(AraT5-base, AraT5-msa-base, AraT5-tweet-base, AraT5-msa-small, or AraT5-tweet-small)** ```bibtex @inproceedings{nagoudi2022_arat5, @inproceedings{nagoudi-etal-2022-arat5, title = "{A}ra{T}5: Text-to-Text Transformers for {A}rabic Language Generation", author = "Nagoudi, El Moatez Billah and Elmadany, AbdelRahim and Abdul-Mageed, Muhammad", booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = may, year = "2022", address = "Dublin, Ireland", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.acl-long.47", pages = "628--647", abstract = "Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects{--}Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with {\textasciitilde}49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5.", } ``` **AraT5v2-base-1024** ``` bibtex @inproceedings{elmadany-etal-2023-octopus, title = "Octopus: A Multitask Model and Toolkit for {A}rabic Natural Language Generation", author = "Elmadany, AbdelRahim and Nagoudi, El Moatez Billah and Abdul-Mageed, Muhammad", booktitle = "Proceedings of ArabicNLP 2023", month = dec, year = "2023", address = "Singapore (Hybrid)", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2023.arabicnlp-1.20", doi = "10.18653/v1/2023.arabicnlp-1.20", pages = "232--243", } ```
TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF
TheBloke
2023-09-27T12:46:52Z
550
8
transformers
[ "transformers", "gguf", "llama", "base_model:jondurbin/airoboros-l2-70b-2.1-creative", "license:llama2", "text-generation-inference", "region:us" ]
null
2023-08-31T12:37:07Z
--- license: llama2 model_name: Airoboros L2 70B 2.1 Creative base_model: jondurbin/airoboros-l2-70b-2.1-creative inference: false model_creator: Jon Durbin model_type: llama prompt_template: "A chat.\nUSER: {prompt}\nASSISTANT: \n" quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Airoboros L2 70B 2.1 Creative - GGUF - Model creator: [Jon Durbin](https://huggingface.co/jondurbin) - Original model: [Airoboros L2 70B 2.1 Creative](https://huggingface.co/jondurbin/airoboros-l2-70b-2.1-creative) <!-- description start --> ## Description This repo contains GGUF format model files for [Jon Durbin's Airoboros L2 70B 2.1 Creative](https://huggingface.co/jondurbin/airoboros-l2-70b-2.1-creative). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF) * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-l2-70b-2.1-creative) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Chat ``` A chat. USER: {prompt} ASSISTANT: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [airoboros-l2-70b-2.1-creative.Q2_K.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes | | [airoboros-l2-70b-2.1-creative.Q3_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss | | [airoboros-l2-70b-2.1-creative.Q3_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss | | [airoboros-l2-70b-2.1-creative.Q3_K_L.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss | | [airoboros-l2-70b-2.1-creative.Q4_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [airoboros-l2-70b-2.1-creative.Q4_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss | | [airoboros-l2-70b-2.1-creative.Q4_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended | | [airoboros-l2-70b-2.1-creative.Q5_0.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [airoboros-l2-70b-2.1-creative.Q5_K_S.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended | | [airoboros-l2-70b-2.1-creative.Q5_K_M.gguf](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF/blob/main/airoboros-l2-70b-2.1-creative.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended | | airoboros-l2-70b-2.1-creative.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss | | airoboros-l2-70b-2.1-creative.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. ### Q6_K and Q8_0 files are split and require joining **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files. <details> <summary>Click for instructions regarding Q6_K and Q8_0 files</summary> ### q6_K Please download: * `airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-a` * `airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-b` ### q8_0 Please download: * `airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-a` * `airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-b` To join the files, do the following: Linux and macOS: ``` cat airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-* > airoboros-l2-70b-2.1-creative.Q6_K.gguf && rm airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-* cat airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-* > airoboros-l2-70b-2.1-creative.Q8_0.gguf && rm airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-* ``` Windows command line: ``` COPY /B airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-a + airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-b airoboros-l2-70b-2.1-creative.Q6_K.gguf del airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-a airoboros-l2-70b-2.1-creative.Q6_K.gguf-split-b COPY /B airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-a + airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-b airoboros-l2-70b-2.1-creative.Q8_0.gguf del airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-a airoboros-l2-70b-2.1-creative.Q8_0.gguf-split-b ``` </details> <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF and below it, a specific filename to download, such as: airoboros-l2-70b-2.1-creative.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF airoboros-l2-70b-2.1-creative.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF airoboros-l2-70b-2.1-creative.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m airoboros-l2-70b-2.1-creative.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat.\nUSER: {prompt}\nASSISTANT:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Airoboros-L2-70B-2.1-Creative-GGUF", model_file="airoboros-l2-70b-2.1-creative.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Jon Durbin's Airoboros L2 70B 2.1 Creative This is a merge of llama-2-70b with the "creative" adapter from https://hf.co/jondurbin/airoboros-lmoe-70b-2.1 Basically, it's using a subset of the airoboros 2.1 training that is specifically focused on creative tasks, such as writing, roleplay, etc. <!-- original-model-card end -->
TheBloke/Chronohermes-Grad-L2-13B-GGUF
TheBloke
2023-09-27T12:47:21Z
550
2
transformers
[ "transformers", "gguf", "llama", "llama-2", "text-generation", "en", "base_model:Doctor-Shotgun/Chronohermes-Grad-L2-13b", "license:other", "text-generation-inference", "region:us" ]
text-generation
2023-09-05T04:14:50Z
--- language: - en license: other library_name: transformers tags: - llama - llama-2 model_name: Chronohermes Grad L2 13B base_model: Doctor-Shotgun/Chronohermes-Grad-L2-13b inference: false model_creator: Doctor Shotgun model_type: llama pipeline_tag: text-generation prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Chronohermes Grad L2 13B - GGUF - Model creator: [Doctor Shotgun](https://huggingface.co/Doctor-Shotgun) - Original model: [Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b) <!-- description start --> ## Description This repo contains GGUF format model files for [Doctor Shotgun's Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF) * [Doctor Shotgun's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `other`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Doctor Shotgun's Chronohermes Grad L2 13B](https://huggingface.co/Doctor-Shotgun/Chronohermes-Grad-L2-13b). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [chronohermes-grad-l2-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [chronohermes-grad-l2-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [chronohermes-grad-l2-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [chronohermes-grad-l2-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [chronohermes-grad-l2-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [chronohermes-grad-l2-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [chronohermes-grad-l2-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [chronohermes-grad-l2-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [chronohermes-grad-l2-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [chronohermes-grad-l2-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [chronohermes-grad-l2-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [chronohermes-grad-l2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGUF/blob/main/chronohermes-grad-l2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Chronohermes-Grad-L2-13B-GGUF and below it, a specific filename to download, such as: chronohermes-grad-l2-13b.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Chronohermes-Grad-L2-13B-GGUF chronohermes-grad-l2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Chronohermes-Grad-L2-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Chronohermes-Grad-L2-13B-GGUF chronohermes-grad-l2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m chronohermes-grad-l2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Chronohermes-Grad-L2-13B-GGUF", model_file="chronohermes-grad-l2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Doctor Shotgun's Chronohermes Grad L2 13B # Model Card: Chronohermes-Grad-L2-13b This is a Llama 2-based model consisting of a gradient merge between: - [Chronos 13b v2](https://huggingface.co/elinas/chronos-13b-v2) - [Nous Hermes Llama2 13b](https://huggingface.co/NousResearch/Nous-Hermes-Llama2-13b) Quantized Models Provided by TheBloke (Thanks!): - [GGML](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GGML) - [GPTQ](https://huggingface.co/TheBloke/Chronohermes-Grad-L2-13B-GPTQ) The merge was performed using [BlockMerge_Gradient](https://github.com/Gryphe/BlockMerge_Gradient) by Gryphe The intended objective was to combine NH2's superior instruction following capabilities with the creativity and response length of Chronos v2. Merge ratios used are identical to those used in [Chronoboros Grad](https://huggingface.co/kingbri/chronoboros-grad-l2-13B), with NH2 starting with a weight of 0.9 at the 1st layer and phasing out by the 25th layer. The method is illustrated in the image below, with green representing NH2 and blue representing Chronos v2: ![hermeboros-illustration](https://files.catbox.moe/18sjej.png) ## Usage: Intended to be prompted with the Alpaca instruction format of the base models: ``` ### Instruction: <prompt> ### Response: <leave a newline blank for model to respond> ``` ## Bias, Risks, and Limitations The model will show biases similar to those exhibited by the base models. It is not intended for supplying factual information or advice in any form. ## Training Details This model is a merge. Please refer to the link repositories of the base models for details. <!-- original-model-card end -->
TheBloke/Stable-Platypus2-13B-GGUF
TheBloke
2023-09-27T12:47:22Z
550
1
transformers
[ "transformers", "gguf", "llama", "en", "dataset:garage-bAInd/Open-Platypus", "arxiv:2308.07317", "arxiv:2307.09288", "base_model:garage-bAInd/Stable-Platypus2-13B", "license:cc-by-nc-sa-4.0", "text-generation-inference", "region:us" ]
null
2023-09-05T05:04:25Z
--- language: - en license: cc-by-nc-sa-4.0 datasets: - garage-bAInd/Open-Platypus model_name: Stable-Platypus2 13B base_model: garage-bAInd/Stable-Platypus2-13B inference: false model_creator: garage-bAInd model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Stable-Platypus2 13B - GGUF - Model creator: [garage-bAInd](https://huggingface.co/garage-bAInd) - Original model: [Stable-Platypus2 13B](https://huggingface.co/garage-bAInd/Stable-Platypus2-13B) <!-- description start --> ## Description This repo contains GGUF format model files for [garage-bAInd's Stable-Platypus2 13B](https://huggingface.co/garage-bAInd/Stable-Platypus2-13B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. GGUF offers numerous advantages over GGML, such as better tokenisation, and support for special tokens. It is also supports metadata, and is designed to be extensible. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Stable-Platypus2-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF) * [garage-bAInd's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/garage-bAInd/Stable-Platypus2-13B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- licensing start --> ## Licensing The creator of the source model has listed its license as `cc-by-nc-sa-4.0`, and this quantization has therefore used that same license. As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly. In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [garage-bAInd's Stable-Platypus2 13B](https://huggingface.co/garage-bAInd/Stable-Platypus2-13B). <!-- licensing end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [stable-platypus2-13b.Q2_K.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [stable-platypus2-13b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [stable-platypus2-13b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [stable-platypus2-13b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [stable-platypus2-13b.Q4_0.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [stable-platypus2-13b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [stable-platypus2-13b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [stable-platypus2-13b.Q5_0.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [stable-platypus2-13b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [stable-platypus2-13b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [stable-platypus2-13b.Q6_K.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [stable-platypus2-13b.Q8_0.gguf](https://huggingface.co/TheBloke/Stable-Platypus2-13B-GGUF/blob/main/stable-platypus2-13b.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Stable-Platypus2-13B-GGUF and below it, a specific filename to download, such as: stable-platypus2-13b.q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Stable-Platypus2-13B-GGUF stable-platypus2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Stable-Platypus2-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Stable-Platypus2-13B-GGUF stable-platypus2-13b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m stable-platypus2-13b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 4096` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model from Python using ctransformers #### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` #### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Stable-Platypus2-13B-GGUF", model_file="stable-platypus2-13b.q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: garage-bAInd's Stable-Platypus2 13B # Stable-Platypus2-13B Stable-Platypus-13B is a merge of [`garage-bAInd/Platypus2-13B`](https://huggingface.co/garage-bAInd/Platypus2-13B) and [`stabilityai/StableBeluga-13B`](https://huggingface.co/stabilityai/StableBeluga-13B). ![Platty](./Best_Platty_small.jpeg) ### Benchmark Metrics | Metric | Value | |-----------------------|-------| | MMLU (5-shot) | 58.30 | | ARC (25-shot) | 62.71 | | HellaSwag (10-shot) | 82.29 | | TruthfulQA (0-shot) | 52.52 | | Avg. | 63.96 | We use state-of-the-art [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as the HuggingFace LLM Leaderboard. Please see below for detailed instructions on reproducing benchmark results. ### Model Details * **Trained by**: **Platypus2-13B** trained by Cole Hunter & Ariel Lee; **StableBeluga-13B** trained by StabilityAI * **Model type:** **Stable-Platypus2-13B** is an auto-regressive language model based on the LLaMA 2 transformer architecture. * **Language(s)**: English * **License for Platypus2-13B base weights**: Non-Commercial Creative Commons license ([CC BY-NC-4.0](https://creativecommons.org/licenses/by-nc/4.0/)) * **License for StableBeluga-13B base weights**: See Notice.txt ### Prompt Template ``` ### Instruction: <prompt> (without the <>) ### Response: ``` ### Training Dataset `garage-bAInd/Platypus2-70B` trained using STEM and logic based dataset [`garage-bAInd/Open-Platypus`](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Please see our [paper](https://arxiv.org/abs/2308.07317) and [project webpage](https://platypus-llm.github.io) for additional information. ### Training Procedure `garage-bAInd/Platypus2-13B` was instruction fine-tuned using LoRA on 1 A100 80GB. For training details and inference instructions please see the [Platypus](https://github.com/arielnlee/Platypus) GitHub repo. ### Reproducing Evaluation Results Install LM Evaluation Harness: ``` # clone repository git clone https://github.com/EleutherAI/lm-evaluation-harness.git # change to repo directory cd lm-evaluation-harness # check out the correct commit git checkout b281b0921b636bc36ad05c0b0b0763bd6dd43463 # install pip install -e . ``` Each task was evaluated on a single A100 80GB GPU. ARC: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Stable-Platypus2-13B --tasks arc_challenge --batch_size 1 --no_cache --write_out --output_path results/Stable-Platypus2-13B/arc_challenge_25shot.json --device cuda --num_fewshot 25 ``` HellaSwag: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Stable-Platypus2-13B --tasks hellaswag --batch_size 1 --no_cache --write_out --output_path results/Stable-Platypus2-13B/hellaswag_10shot.json --device cuda --num_fewshot 10 ``` MMLU: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Stable-Platypus2-13B --tasks hendrycksTest-* --batch_size 1 --no_cache --write_out --output_path results/Stable-Platypus2-13B/mmlu_5shot.json --device cuda --num_fewshot 5 ``` TruthfulQA: ``` python main.py --model hf-causal-experimental --model_args pretrained=garage-bAInd/Stable-Platypus2-13B --tasks truthfulqa_mc --batch_size 1 --no_cache --write_out --output_path results/Stable-Platypus2-13B/truthfulqa_0shot.json --device cuda ``` ### Limitations and bias Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model. Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/ ### Citations ```bibtex @article{platypus2023, title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs}, author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz}, booktitle={arXiv preprint arxiv:2308.07317}, year={2023} } ``` ```bibtex @misc{touvron2023llama, title={Llama 2: Open Foundation and Fine-Tuned Chat Models}, author={Hugo Touvron and Louis Martin and Kevin Stone and Peter Albert and Amjad Almahairi and Yasmine Babaei and Nikolay Bashlykov year={2023}, eprint={2307.09288}, archivePrefix={arXiv}, } ``` ```bibtex @inproceedings{ hu2022lora, title={Lo{RA}: Low-Rank Adaptation of Large Language Models}, author={Edward J Hu and Yelong Shen and Phillip Wallis and Zeyuan Allen-Zhu and Yuanzhi Li and Shean Wang and Lu Wang and Weizhu Chen}, booktitle={International Conference on Learning Representations}, year={2022}, url={https://openreview.net/forum?id=nZeVKeeFYf9} } ``` <!-- original-model-card end -->
fgewfskjfsd/Wizard-Vicuna-13B-Uncensored-SuperHOT-8K-GGUFv2
fgewfskjfsd
2023-10-13T14:42:31Z
550
7
null
[ "gguf", "license:unknown", "region:us" ]
null
2023-10-13T13:43:07Z
--- license: unknown --- Requantization of TheBloke's fp16 version of Wizard-Vicuna 13B with SuperHOT merged to GGUFv2. Original link: https://huggingface.co/TheBloke/Wizard-Vicuna-13B-Uncensored-SuperHOT-8K-fp16
TheBloke/Mistral-7B-SciPhi-32k-GGUF
TheBloke
2023-10-22T18:02:24Z
550
12
transformers
[ "transformers", "gguf", "mistral", "base_model:emrgnt-cmplxty/Mistral-7B-SciPhi-32k", "license:llama2", "text-generation-inference", "region:us" ]
null
2023-10-22T17:56:41Z
--- base_model: emrgnt-cmplxty/Mistral-7B-SciPhi-32k inference: false license: llama2 model_creator: Owen Colegrove model_name: Mistral 7B SciPhi 32K model_type: mistral prompt_template: '{prompt} ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Mistral 7B SciPhi 32K - GGUF - Model creator: [Owen Colegrove](https://huggingface.co/emrgnt-cmplxty) - Original model: [Mistral 7B SciPhi 32K](https://huggingface.co/emrgnt-cmplxty/Mistral-7B-SciPhi-32k) <!-- description start --> ## Description This repo contains GGUF format model files for [Owen Colegrove's Mistral 7B SciPhi 32K](https://huggingface.co/emrgnt-cmplxty/Mistral-7B-SciPhi-32k). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF) * [Owen Colegrove's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/emrgnt-cmplxty/Mistral-7B-SciPhi-32k) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Unknown ``` {prompt} ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [mistral-7b-sciphi-32k.Q2_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral-7b-sciphi-32k.Q3_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [mistral-7b-sciphi-32k.Q3_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [mistral-7b-sciphi-32k.Q3_K_L.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [mistral-7b-sciphi-32k.Q4_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral-7b-sciphi-32k.Q4_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [mistral-7b-sciphi-32k.Q4_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [mistral-7b-sciphi-32k.Q5_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral-7b-sciphi-32k.Q5_K_S.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [mistral-7b-sciphi-32k.Q5_K_M.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [mistral-7b-sciphi-32k.Q6_K.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [mistral-7b-sciphi-32k.Q8_0.gguf](https://huggingface.co/TheBloke/Mistral-7B-SciPhi-32k-GGUF/blob/main/mistral-7b-sciphi-32k.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/Mistral-7B-SciPhi-32k-GGUF and below it, a specific filename to download, such as: mistral-7b-sciphi-32k.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/Mistral-7B-SciPhi-32k-GGUF mistral-7b-sciphi-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/Mistral-7B-SciPhi-32k-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Mistral-7B-SciPhi-32k-GGUF mistral-7b-sciphi-32k.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m mistral-7b-sciphi-32k.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/Mistral-7B-SciPhi-32k-GGUF", model_file="mistral-7b-sciphi-32k.Q4_K_M.gguf", model_type="mistral", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Owen Colegrove's Mistral 7B SciPhi 32K Training is currently still underway, but this is the first epoch of a 32k context fine-tuning run of Mistral-7b over the following datasets: - emrgnt-cmplxty/sciphi-textbooks-are-all-you-need - open-phi/rag-textbook-instruct-full - open-phi/programming_books_llama - open-phi/textbooks - Open-Orca/SlimOrca - WizardLM/WizardLM_evol_instruct_70k <!-- original-model-card end -->
TheBloke/mistral-7B-dpo-v5-GGUF
TheBloke
2023-12-15T13:34:40Z
550
3
transformers
[ "transformers", "gguf", "mistral", "en", "base_model:mncai/mistral-7b-dpo-v5", "license:apache-2.0", "text-generation-inference", "region:us" ]
null
2023-12-15T13:30:34Z
--- base_model: mncai/mistral-7b-dpo-v5 inference: false language: - en license: apache-2.0 model_creator: MindsAndCompany model_name: Mistral 7B DPO V5 model_type: mistral prompt_template: '<|user|> {prompt} <|assistant|> ' quantized_by: TheBloke --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Mistral 7B DPO V5 - GGUF - Model creator: [MindsAndCompany](https://huggingface.co/mncai) - Original model: [Mistral 7B DPO V5](https://huggingface.co/mncai/mistral-7b-dpo-v5) <!-- description start --> ## Description This repo contains GGUF format model files for [MindsAndCompany's Mistral 7B DPO V5](https://huggingface.co/mncai/mistral-7b-dpo-v5). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF) * [MindsAndCompany's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mncai/mistral-7b-dpo-v5) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: ToRA ``` <|user|> {prompt} <|assistant|> ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [mistral-7b-dpo-v5.Q2_K.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [mistral-7b-dpo-v5.Q3_K_S.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q3_K_S.gguf) | Q3_K_S | 3 | 3.17 GB| 5.67 GB | very small, high quality loss | | [mistral-7b-dpo-v5.Q3_K_M.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [mistral-7b-dpo-v5.Q3_K_L.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [mistral-7b-dpo-v5.Q4_0.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [mistral-7b-dpo-v5.Q4_K_S.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [mistral-7b-dpo-v5.Q4_K_M.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [mistral-7b-dpo-v5.Q5_0.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [mistral-7b-dpo-v5.Q5_K_S.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [mistral-7b-dpo-v5.Q5_K_M.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [mistral-7b-dpo-v5.Q6_K.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [mistral-7b-dpo-v5.Q8_0.gguf](https://huggingface.co/TheBloke/mistral-7B-dpo-v5-GGUF/blob/main/mistral-7b-dpo-v5.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/mistral-7B-dpo-v5-GGUF and below it, a specific filename to download, such as: mistral-7b-dpo-v5.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/mistral-7B-dpo-v5-GGUF mistral-7b-dpo-v5.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/mistral-7B-dpo-v5-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/mistral-7B-dpo-v5-GGUF mistral-7b-dpo-v5.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m mistral-7b-dpo-v5.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|user|>\n{prompt}\n<|assistant|>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./mistral-7b-dpo-v5.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<|user|>\n{prompt}\n<|assistant|>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./mistral-7b-dpo-v5.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: MindsAndCompany's Mistral 7B DPO V5 # Model Card for mncai/mistral-7b-dpo-v5 ### Introduction of MindsAndCompany https://mnc.ai/ We create various AI models and develop solutions that can be applied to businesses. And as for generative AI, we are developing products like Code Assistant, TOD Chatbot, LLMOps, and are in the process of developing Enterprise AGI (Artificial General Intelligence). ### Model Summary based mistral, instruction tuned and dpo. ### How to Use Here give some examples of how to use our model. ```python from transformers import AutoConfig, AutoModel, AutoTokenizer import transformers import torch hf_model = 'mncai/mistral-7b-dpo-v5' message = "<|user|>\n두 개의 구가 있는데 각각 지름이 1, 2일때 각 구의 부피는 몇배야? 설명도 같이 해줘.\n<|assistant|>\n" sequences = pipeline( message, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=2048, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ### Contact If you have any questions, please raise an issue or contact us at [email protected] <!-- original-model-card end -->
TheBloke/docsgpt-7B-mistral-GGUF
TheBloke
2023-12-29T15:05:44Z
550
9
transformers
[ "transformers", "gguf", "mistral", "rag", "closed-qa", "context", "base_model:Arc53/docsgpt-7b-mistral", "license:apache-2.0", "text-generation-inference", "region:us" ]
null
2023-12-29T14:41:30Z
--- base_model: Arc53/docsgpt-7b-mistral inference: false license: apache-2.0 model_creator: Arc53 model_name: DocsGPT 7B Mistral model_type: mistral prompt_template: '### Instruction {prompt} ### Context {{context}} ### Answer ' quantized_by: TheBloke tags: - rag - closed-qa - context - mistral --- <!-- markdownlint-disable MD041 --> <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # DocsGPT 7B Mistral - GGUF - Model creator: [Arc53](https://huggingface.co/Arc53) - Original model: [DocsGPT 7B Mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral) <!-- description start --> ## Description This repo contains GGUF format model files for [Arc53's DocsGPT 7B Mistral](https://huggingface.co/Arc53/docsgpt-7b-mistral). These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/docsgpt-7B-mistral-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF) * [Arc53's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Arc53/docsgpt-7b-mistral) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: DocsGPT ``` ### Instruction {prompt} ### Context {{context}} ### Answer ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [docsgpt-7b-mistral.Q2_K.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [docsgpt-7b-mistral.Q3_K_S.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q3_K_S.gguf) | Q3_K_S | 3 | 3.17 GB| 5.67 GB | very small, high quality loss | | [docsgpt-7b-mistral.Q3_K_M.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [docsgpt-7b-mistral.Q3_K_L.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [docsgpt-7b-mistral.Q4_0.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [docsgpt-7b-mistral.Q4_K_S.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [docsgpt-7b-mistral.Q4_K_M.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [docsgpt-7b-mistral.Q5_0.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [docsgpt-7b-mistral.Q5_K_S.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [docsgpt-7b-mistral.Q5_K_M.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [docsgpt-7b-mistral.Q6_K.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [docsgpt-7b-mistral.Q8_0.gguf](https://huggingface.co/TheBloke/docsgpt-7B-mistral-GGUF/blob/main/docsgpt-7b-mistral.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/docsgpt-7B-mistral-GGUF and below it, a specific filename to download, such as: docsgpt-7b-mistral.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/docsgpt-7B-mistral-GGUF docsgpt-7b-mistral.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/docsgpt-7B-mistral-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/docsgpt-7B-mistral-GGUF docsgpt-7b-mistral.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m docsgpt-7b-mistral.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction\n{prompt}\n### Context\n{{context}}\n### Answer" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./docsgpt-7b-mistral.Q4_K_M.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "### Instruction\n{prompt}\n### Context\n{{context}}\n### Answer", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./docsgpt-7b-mistral.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Arc53's DocsGPT 7B Mistral DocsGPT is optimized for Documentation (RAG optimised): Specifically fine-tuned for providing answers that are based on context, making it particularly useful for developers and technical support teams. We used the Lora fine tuning process. This model is fine tuned on top of zephyr-7b-beta It's an apache-2.0 license so you can use it for commercial purposes too. Benchmarks: Bacon: The BACON test is an internal assessment designed to evaluate the capabilities of neural networks in handling questions with substantial content. It focuses on testing the model's understanding of context-driven queries, as well as its tendency for hallucination and attention span. The questions in both parts are carefully crafted, drawing from diverse sources such as scientific papers, complex code problems, and instructional prompts, providing a comprehensive test of the model's ability to process and generate information in various domains. | Model | Score | |------------------------------|-------| | gpt-4 | 8.74 | | DocsGPT-7b-Mistral | 8.64 | | gpt-3.5-turbo | 8.42 | | zephyr-7b-beta | 8.37 | | neural-chat-7b-v3-1 | 7.88 | | Mistral-7B-Instruct-v0.1 | 7.44 | | openinstruct-mistral-7b | 5.86 | | llama-2-13b | 2.29 | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6220f5dfd0351748e114ca53/lWefx5b5uQAt4Uzf_0x-O.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6220f5dfd0351748e114ca53/nAd4icZa2jIer-_JWOpZ0.png) MTbench with llm judge: ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6220f5dfd0351748e114ca53/SOOVW_j908gpB8W804vsG.png) ########## First turn ########## | Model | Turn | Score | |-----------------------|------|----------| | gpt-4 | 1 | 8.956250 | | gpt-3.5-turbo | 1 | 8.075000 | | DocsGPT-7b-Mistral | 1 | 7.593750 | | zephyr-7b-beta | 1 | 7.412500 | | vicuna-13b-v1.3 | 1 | 6.812500 | | alpaca-13b | 1 | 4.975000 | | deepseek-coder-6.7b | 1 | 4.506329 | ########## Second turn ########## | Model | Turn | Score | |-----------------------|------|----------| | gpt-4 | 2 | 9.025000 | | gpt-3.5-turbo | 2 | 7.812500 | | DocsGPT-7b-Mistral | 2 | 6.740000 | | zephyr-7b-beta | 2 | 6.650000 | | vicuna-13b-v1.3 | 2 | 5.962500 | | deepseek-coder-6.7b | 2 | 5.025641 | | alpaca-13b | 2 | 4.087500 | ########## Average ########## | Model | Score | |-----------------------|----------| | gpt-4 | 8.990625 | | gpt-3.5-turbo | 7.943750 | | DocsGPT-7b-Mistral | 7.166875 | | zephyr-7b-beta | 7.031250 | | vicuna-13b-v1.3 | 6.387500 | | deepseek-coder-6.7b | 4.764331 | | alpaca-13b | 4.531250 | To prepare your prompts make sure you keep this format: ``` ### Instruction (where the question goes) ### Context (your document retrieval + system instructions) ### Answer ``` <!-- original-model-card end -->
qwp4w3hyb/zephyr-orpo-141b-A35b-v0.1-iMat-GGUF
qwp4w3hyb
2024-04-17T14:47:14Z
550
0
null
[ "gguf", "license:apache-2.0", "region:us" ]
null
2024-04-16T08:33:26Z
--- license: apache-2.0 ---
MadMarx37/deepseek-coder-1.3b-python-peft
MadMarx37
2024-04-29T18:32:03Z
550
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "code", "en", "dataset:ArtifactAI/arxiv_python_research_code", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-04-29T17:55:13Z
--- library_name: transformers tags: - code license: mit datasets: - ArtifactAI/arxiv_python_research_code language: - en pipeline_tag: text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> A parameter-efficient finetune (using LoRA) of DeepSeek Coder 1.3B finetuned on Python code. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> A finetune of DeepSeek Coder 1.3B finetuned on 1000 examples of Python code from the ArtifactAI/arxiv_python_research_code dataset. - **Model type:** Text Generation - **Language(s) (NLP):** English, Python - **Finetuned from model:** deepseek-ai/deepseek-coder-1.3b-base ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/kevin-v96/python-codecomplete-lm ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> To generate Python code ## How to Get Started with the Model Use the code below to get started with the model. ``` from transformers import pipeline model_name = "MadMarx37/deepseek-coder-1.3b-python-peft" def generate_output(input): # Run text generation pipeline with our next model pipe = pipeline(task="text-generation", model=model_name, tokenizer=model_name, max_length=max_length) result = pipe(input) print(result[0]['generated_text']) ``` ## Training Details #### Training Hyperparameters - Training regime: fp16 mixed-precision with original model loaded in 4bits with bitsandbytes <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> - learning_rate = 2e-3 - lr_scheduler_type = 'cosine_with_restarts' - max_grad_norm = 0.001 - weight_decay = 0.001 - num_train_epochs = 15 - eval_strategy = "steps" - eval_steps = 25 #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> 1.3B parameters. Training time of ~2 hours on an RTX3080. ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> https://huggingface.co/datasets/ArtifactAI/arxiv_python_research_code #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> Standard training and eval loss from the HF SFTTrainer. ### Results Training Loss: 0.074100 Validation Loss: 0.022271 #### Summary The training had some unstability in the gradient norms, but the overall trend in both training and validation loss were downward, and validation loss has almost plateaud, which is ideally where we want our model. The code generation on the same prompts that we tested the original model on also seem better with the finetuned model. A good way to make the model better, if we wanted to increase the finetuning data, would be to also increase the epochs. The training run metrics can be seen here: https://wandb.ai/kevinv3796/python-autocomplete-deepseek/reports/Supervised-Finetuning-run-for-DeepSeek-Coder-1-3B-on-Python-Code--Vmlldzo3NzQ4NjY0?accessToken=bo0rlzp0yj9vxf1xe3fybfv6rbgl97w5kkab478t8f5unbwltdczy63ba9o9kwjp
adamdad/videocrafterv2_diffusers
adamdad
2024-06-24T09:12:02Z
550
2
diffusers
[ "diffusers", "safetensors", "region:us" ]
null
2024-05-03T12:42:39Z
Entry not found
RUNorm/RUNorm-normalizer-big
RUNorm
2024-05-14T00:56:18Z
550
0
transformers
[ "transformers", "pytorch", "t5", "text2text-generation", "ru", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2024-05-05T10:16:44Z
--- license: apache-2.0 language: - ru inference: false --- Используется в https://github.com/Den4ikAI/runorm Вы можете поддержать проект деньгами. Это поможет быстрее разрабатывать более качественные новые версии. CloudTips: https://pay.cloudtips.ru/p/b9d86686
BAAI/Bunny-v1_1-Llama-3-8B-V
BAAI
2024-06-24T14:32:30Z
550
25
transformers
[ "transformers", "safetensors", "bunny-llama", "text-generation", "conversational", "custom_code", "arxiv:2402.11530", "license:apache-2.0", "autotrain_compatible", "region:us" ]
text-generation
2024-05-31T10:25:35Z
--- inference: false license: apache-2.0 --- # Model Card <p align="center"> <img src="./icon.png" alt="Logo" width="350"> </p> 📖 [Technical report](https://arxiv.org/abs/2402.11530) | 🏠 [Code](https://github.com/BAAI-DCAI/Bunny) | 🐰 [Demo](http://bunny.baai.ac.cn) This is Bunny-v1.1-Llama-3-8B-V. Bunny is a family of lightweight but powerful multimodal models. It offers multiple plug-and-play vision encoders, like EVA-CLIP, SigLIP and language backbones, including Llama-3-8B, Phi-1.5, StableLM-2, Qwen1.5, MiniCPM and Phi-2. To compensate for the decrease in model size, we construct more informative training data by curated selection from a broader data source. We provide Bunny-v1.1-Llama-3-8B-V, which is built upon [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) and [Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) with [S \\(^{2}\\)-Wrapper](https://github.com/bfshi/scaling_on_scales), supporting 1152x1152 resolution. More details about this model can be found in [GitHub](https://github.com/BAAI-DCAI/Bunny). ![comparison](comparison.png) # Quickstart Here we show a code snippet to show you how to use the model with transformers. Before running the snippet, you need to install the following dependencies: ```shell pip install torch transformers accelerate pillow ``` If the CUDA memory is enough, it would be faster to execute this snippet by setting `CUDA_VISIBLE_DEVICES=0`. Users especially those in Chinese mainland may want to refer to a HuggingFace [mirror site](https://hf-mirror.com). ```python import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device device = 'cuda' # or cpu torch.set_default_device(device) # create model model = AutoModelForCausalLM.from_pretrained( 'BAAI/Bunny-v1_1-Llama-3-8B-V', torch_dtype=torch.float16, # float32 for cpu device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( 'BAAI/Bunny-v1_1-Llama-3-8B-V', trust_remote_code=True) # text prompt prompt = 'Why is the image funny?' text = f"A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\n{prompt} ASSISTANT:" text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1][1:], dtype=torch.long).unsqueeze(0).to(device) # image, sample images can be found in images folder image = Image.open('example_2.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype, device=device) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=100, use_cache=True, repetition_penalty=1.0 # increase this to avoid chattering )[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip()) ```
hyokwan/hkcode-solar-youtube-merged
hyokwan
2024-06-26T10:18:58Z
550
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "hkcode", "hyokwan", "llama2", "solar", "merge", "merged", "moe", "conversational", "ko", "dataset:hyokwan/llama3data_hkcode", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text-generation
2024-06-06T05:49:15Z
--- license: mit datasets: - hyokwan/llama3data_hkcode language: - ko library_name: transformers pipeline_tag: text-generation tags: - hkcode - hyokwan - llama2 - solar - merge - merged - moe --- Model Details hkcode-solar-youtube-merged hkcode-solar-youtube-merged model is continued pretrained language model based on SOLAR-10.7B This model is trained with specific department of university (Korea Plytechnics Fintech) . License: https://llama.meta.com/llama3/license Intended Use TBD How to use TBD Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our Responsible Use Guide to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including Meta Llama Guard 2 and Code Shield safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a reference implementation to get you started. Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at https://llama.meta.com/llama3/use-policy/. Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating Purple Llama solutions into your workflows and specifically Llama Guard which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at http://llama.meta.com/responsible-use-guide --- license: mit datasets: - hyokwan/llama3data_hkcode language: - ko library_name: transformers pipeline_tag: text-generation tags: - hkcode - llama2 - solar - hyokwan ---
kuleshov-group/mdlm-owt
kuleshov-group
2024-06-18T19:24:00Z
550
6
transformers
[ "transformers", "safetensors", "mdlm", "fill-mask", "custom_code", "en", "dataset:Skylion007/openwebtext", "arxiv:2406.07524", "license:apache-2.0", "autotrain_compatible", "region:us" ]
fill-mask
2024-06-06T18:47:47Z
--- library_name: transformers license: apache-2.0 language: - en datasets: - Skylion007/openwebtext metrics: - perplexity --- ## Using MDLM To use the pre-trained model for masked language modeling, use the following snippet: ```python from transformers import AutoModelForMaskedLM, AutoTokenizer # See the `MDLM` collection page on the hub for list of available models. tokenizer = transformers.AutoTokenizer.from_pretrained('gpt2') model_name = 'kuleshov-group/mdlm-owt' model = AutoModelForMaskedLM.from_pretrained(model_name) ``` For more details, please see our github repository: [MDLM](https://github.com/kuleshov-group/mdlm) ## Model Details The model, which has a context length of `1024` and is similar in size to GPT2-medium with approximately `130 million` non-embedding parameters, was trained using a forward diffusion process that generates inputs varying from fully masked to fully unmasked. Its objective is to reconstruct the original input from these varying levels of masking, outputting logits in the process. The training regimen comprised one million steps on the OpenWebText corpus, involving the processing of a total of `33 billion` tokens. For more details, please see our paper: [Simple and Effective Masked Diffusion Language Models](http://arxiv.org/abs/2406.07524). ## Citation <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> Please cite our work using the bibtex below: **BibTeX:** ``` @misc{sahoo2024simple, title={Simple and Effective Masked Diffusion Language Models}, author={Subham Sekhar Sahoo and Marianne Arriola and Yair Schiff and Aaron Gokaslan and Edgar Marroquin and Justin T Chiu and Alexander Rush and Volodymyr Kuleshov}, year={2024}, eprint={2406.07524}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` **APA:** ``` @software{Sahoo_Simple_and_Effective_2024, author = {Sahoo, Subham Sekhar and Arriola, Marianne and Schiff, Yair and Gokaslan, Aaron and Marroquin, Edgar and Chiu, Justin T and Rush, Alexander and Kuleshov, Volodymyr}, doi = {10.48550/arXiv.2406.07524}, month = jun, title = {{Simple and Effective Masked Diffusion Language Models}}, version = {arXiv:2406.07524v1}, year = {2024} } ``` ## Model Card Contact Subham Sekhar Sahoo ([email protected])
Replete-AI/Replete-Coder-Qwen2-1.5b
Replete-AI
2024-06-24T23:09:49Z
550
20
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "unsloth", "conversational", "dataset:Replete-AI/code_bagel_hermes-2.5", "dataset:Replete-AI/code_bagel", "dataset:Replete-AI/OpenHermes-2.5-Uncensored", "dataset:teknium/OpenHermes-2.5", "dataset:layoric/tiny-codes-alpaca", "dataset:glaiveai/glaive-code-assistant-v3", "dataset:ajibawa-2023/Code-290k-ShareGPT", "dataset:TIGER-Lab/MathInstruct", "dataset:chargoddard/commitpack-ft-instruct-rated", "dataset:iamturun/code_instructions_120k_alpaca", "dataset:ise-uiuc/Magicoder-Evol-Instruct-110K", "dataset:cognitivecomputations/dolphin-coder", "dataset:nickrosh/Evol-Instruct-Code-80k-v1", "dataset:coseal/CodeUltraFeedback_binarized", "dataset:glaiveai/glaive-function-calling-v2", "dataset:CyberNative/Code_Vulnerability_Security_DPO", "dataset:jondurbin/airoboros-2.2", "dataset:camel-ai", "dataset:lmsys/lmsys-chat-1m", "dataset:CollectiveCognition/chats-data-2023-09-22", "dataset:CoT-Alpaca-GPT4", "dataset:WizardLM/WizardLM_evol_instruct_70k", "dataset:WizardLM/WizardLM_evol_instruct_V2_196k", "dataset:teknium/GPT4-LLM-Cleaned", "dataset:GPTeacher", "dataset:OpenGPT", "dataset:meta-math/MetaMathQA", "dataset:Open-Orca/SlimOrca", "dataset:garage-bAInd/Open-Platypus", "dataset:anon8231489123/ShareGPT_Vicuna_unfiltered", "dataset:Unnatural-Instructions-GPT4", "base_model:Qwen/Qwen2-1.5B", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2024-06-23T03:30:08Z
--- license: apache-2.0 base_model: Qwen/Qwen2-1.5B tags: - text-generation-inference - transformers - unsloth - qwen2 datasets: - Replete-AI/code_bagel_hermes-2.5 - Replete-AI/code_bagel - Replete-AI/OpenHermes-2.5-Uncensored - teknium/OpenHermes-2.5 - layoric/tiny-codes-alpaca - glaiveai/glaive-code-assistant-v3 - ajibawa-2023/Code-290k-ShareGPT - TIGER-Lab/MathInstruct - chargoddard/commitpack-ft-instruct-rated - iamturun/code_instructions_120k_alpaca - ise-uiuc/Magicoder-Evol-Instruct-110K - cognitivecomputations/dolphin-coder - nickrosh/Evol-Instruct-Code-80k-v1 - coseal/CodeUltraFeedback_binarized - glaiveai/glaive-function-calling-v2 - CyberNative/Code_Vulnerability_Security_DPO - jondurbin/airoboros-2.2 - camel-ai - lmsys/lmsys-chat-1m - CollectiveCognition/chats-data-2023-09-22 - CoT-Alpaca-GPT4 - WizardLM/WizardLM_evol_instruct_70k - WizardLM/WizardLM_evol_instruct_V2_196k - teknium/GPT4-LLM-Cleaned - GPTeacher - OpenGPT - meta-math/MetaMathQA - Open-Orca/SlimOrca - garage-bAInd/Open-Platypus - anon8231489123/ShareGPT_Vicuna_unfiltered - Unnatural-Instructions-GPT4 model-index: - name: Replete-Coder-llama3-8b results: - task: name: HumanEval type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 0.35365853658536583 verified: True - task: name: AI2 Reasoning Challenge type: text-generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: accuracy value: name: normalized accuracy source: url: https://www.placeholderurl.com name: Open LLM Leaderboard - task: name: Text Generation type: text-generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: accuracy value: name: normalized accuracy source: url: https://www.placeholderurl.com name: Open LLM Leaderboard - task: name: Text Generation type: text-generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: accuracy value: name: accuracy source: url: https://www.placeholderurl.com name: Open LLM Leaderboard - task: name: Text Generation type: text-generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: multiple_choice_accuracy value: source: url: https://www.placeholderurl.com name: Open LLM Leaderboard - task: name: Text Generation type: text-generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: accuracy value: name: accuracy source: url: https://www.placeholderurl.com name: Open LLM Leaderboard - task: name: Text Generation type: text-generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: accuracy value: name: accuracy source: url: https://www.placeholderurl.com name: Open LLM Leaderboard --- # Replete-Coder-Qwen2-1.5b Finetuned by: Rombodawg ### More than just a coding model! Although Replete-Coder has amazing coding capabilities, its trained on vaste amount of non-coding data, fully cleaned and uncensored. Dont just use it for coding, use it for all your needs! We are truly trying to make the GPT killer! ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/-0dERC793D9XeFsJ9uHbx.png) Thank you to TensorDock for sponsoring Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b you can check out their website for cloud compute rental below. - https://tensordock.com __________________________________________________________________________________________________ Replete-Coder-Qwen2-1.5b is a general purpose model that is specially trained in coding in over 100 coding languages. The data used to train the model contains 25% non-code instruction data and 75% coding instruction data totaling up to 3.9 million lines, roughly 1 billion tokens, or 7.27gb of instruct data. The data used to train this model was 100% uncensored, then fully deduplicated, before training happened. The Replete-Coder models (including Replete-Coder-llama3-8b and Replete-Coder-Qwen2-1.5b) feature the following: - Advanced coding capabilities in over 100 coding languages - Advanced code translation (between languages) - Security and vulnerability prevention related coding capabilities - General purpose use - Uncensored use - Function calling - Advanced math use - Use on low end (8b) and mobile (1.5b) platforms Notice: Replete-Coder series of models are fine-tuned on a context window of 8192 tokens. Performance past this context window is not guaranteed. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/642cc1c253e76b4c2286c58e/JNGVmzaZC30xrvLI1D7pp.png) _________________________________________________________________________________________________ You can find the 25% non-coding instruction below: - https://huggingface.co/datasets/Replete-AI/OpenHermes-2.5-Uncensored And the 75% coding specific instruction data below: - https://huggingface.co/datasets/Replete-AI/code_bagel These two datasets were combined to create the final dataset for training, which is linked below: - https://huggingface.co/datasets/Replete-AI/code_bagel_hermes-2.5 __________________________________________________________________________________________________ ## Prompt Template: ChatML ``` <|im_start|>system {}<|im_end|> <|im_start|>user {}<|im_end|> <|im_start|>assistant {} ``` Note: The system prompt varies in training data, but the most commonly used one is: ``` Below is an instruction that describes a task, Write a response that appropriately completes the request. ``` End token: ``` <|endoftext|> ``` __________________________________________________________________________________________________ Thank you to the community for your contributions to the Replete-AI/code_bagel_hermes-2.5 dataset. Without the participation of so many members making their datasets free and open source for any to use, this amazing AI model wouldn't be possible. Extra special thanks to Teknium for the Open-Hermes-2.5 dataset and jondurbin for the bagel dataset and the naming idea for the code_bagel series of datasets. You can find both of their huggingface accounts linked below: - https://huggingface.co/teknium - https://huggingface.co/jondurbin Another special thanks to unsloth for being the main method of training for Replete-Coder. Bellow you can find their github, as well as the special Replete-Ai secret sause (Unsloth + Qlora + Galore) colab code document that was used to train this model. - https://github.com/unslothai/unsloth - https://colab.research.google.com/drive/1eXGqy5M--0yW4u0uRnmNgBka-tDk2Li0?usp=sharing __________________________________________________________________________________________________ ## Join the Replete-Ai discord! We are a great and Loving community! - https://discord.gg/ZZbnsmVnjD
keremberke/yolov5n-nfl
keremberke
2022-12-30T20:47:25Z
549
2
yolov5
[ "yolov5", "tensorboard", "yolo", "vision", "object-detection", "pytorch", "dataset:keremberke/nfl-object-detection", "model-index", "region:us" ]
object-detection
2022-12-30T11:28:56Z
--- tags: - yolov5 - yolo - vision - object-detection - pytorch library_name: yolov5 library_version: 7.0.6 inference: false datasets: - keremberke/nfl-object-detection model-index: - name: keremberke/yolov5n-nfl results: - task: type: object-detection dataset: type: keremberke/nfl-object-detection name: keremberke/nfl-object-detection split: validation metrics: - type: precision # since [email protected] is not available on hf.co/metrics value: 0.2171148618855661 # min: 0.0 - max: 1.0 name: [email protected] --- <div align="center"> <img width="640" alt="keremberke/yolov5n-nfl" src="https://huggingface.co/keremberke/yolov5n-nfl/resolve/main/sample_visuals.jpg"> </div> ### How to use - Install [yolov5](https://github.com/fcakyon/yolov5-pip): ```bash pip install -U yolov5 ``` - Load model and perform prediction: ```python import yolov5 # load model model = yolov5.load('keremberke/yolov5n-nfl') # set model parameters model.conf = 0.25 # NMS confidence threshold model.iou = 0.45 # NMS IoU threshold model.agnostic = False # NMS class-agnostic model.multi_label = False # NMS multiple labels per box model.max_det = 1000 # maximum number of detections per image # set image img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' # perform inference results = model(img, size=640) # inference with test time augmentation results = model(img, augment=True) # parse results predictions = results.pred[0] boxes = predictions[:, :4] # x1, y1, x2, y2 scores = predictions[:, 4] categories = predictions[:, 5] # show detection bounding boxes on image results.show() # save results into "results/" folder results.save(save_dir='results/') ``` - Finetune the model on your custom dataset: ```bash yolov5 train --data data.yaml --img 640 --batch 16 --weights keremberke/yolov5n-nfl --epochs 10 ``` **More models available at: [awesome-yolov5-models](https://github.com/keremberke/awesome-yolov5-models)**
kaiyuy/leandojo-lean3-tacgen-byt5-small
kaiyuy
2024-01-17T20:32:49Z
549
1
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2023-06-17T04:39:19Z
--- license: mit inference: parameters: max_length: 1024 widget: - text: "a b : ℕ\n⊢ a + b = b + a" example_title: "Example" --- [LeanDojo: Theorem Proving with Retrieval-Augmented Language Models](https://arxiv.org/abs/xxxx.xxxxx) Under review, NeurIPS (Datasets and Benchmarks Track), 2023 [Kaiyu Yang](https://yangky11.github.io/), [Aidan Swope](https://aidanswope.com/about), [Alex Gu](https://minimario.github.io/), [Rahul Chalamala](https://www.linkedin.com/in/rchalamala), [Peiyang Song](https://www.linkedin.com/in/peiyang-song-3279b3251/), [Shixing Yu](https://billysx.github.io/), [Saad Godil](https://www.linkedin.com/in/saad-godil-9728353/), [Ryan Prenger](https://www.linkedin.com/in/ryan-prenger-18797ba1/), [Anima Anandkumar](http://tensorlab.cms.caltech.edu/users/anima/) ```bibtex @article{yang2023leandojo, title={{LeanDojo}: Theorem Proving with Retrieval-Augmented Language Models}, author={Yang, Kaiyu and Swope, Aidan and Gu, Alex and Chalamala, Rahul and Song, Peiyang and Yu, Shixing and Godil, Saad and Prenger, Ryan and Anandkumar, Anima}, journal={arXiv preprint arXiv:xxxx.xxxxx}, year={2023} } ``` Please visit [LeanDojo Website](https://leandojo.org/) for details.
timm/efficientvit_b2.r288_in1k
timm
2023-11-21T21:40:08Z
549
0
timm
[ "timm", "pytorch", "safetensors", "image-classification", "dataset:imagenet-1k", "arxiv:2205.14756", "license:apache-2.0", "region:us" ]
image-classification
2023-08-18T22:46:14Z
--- tags: - image-classification - timm library_name: timm license: apache-2.0 datasets: - imagenet-1k --- # Model card for efficientvit_b2.r288_in1k An EfficientViT (MIT) image classification model. Trained on ImageNet-1k by paper authors. ## Model Details - **Model Type:** Image classification / feature backbone - **Model Stats:** - Params (M): 24.3 - GMACs: 2.6 - Activations (M): 24.0 - Image size: 288 x 288 - **Papers:** - EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction: https://arxiv.org/abs/2205.14756 - **Original:** https://github.com/mit-han-lab/efficientvit - **Dataset:** ImageNet-1k ## Model Usage ### Image Classification ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model('efficientvit_b2.r288_in1k', pretrained=True) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) ``` ### Feature Map Extraction ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'efficientvit_b2.r288_in1k', pretrained=True, features_only=True, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1 for o in output: # print shape of each feature map in output # e.g.: # torch.Size([1, 48, 72, 72]) # torch.Size([1, 96, 36, 36]) # torch.Size([1, 192, 18, 18]) # torch.Size([1, 384, 9, 9]) print(o.shape) ``` ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm img = Image.open(urlopen( 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'efficientvit_b2.r288_in1k', pretrained=True, num_classes=0, # remove classifier nn.Linear ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor # or equivalently (without needing to set num_classes=0) output = model.forward_features(transforms(img).unsqueeze(0)) # output is unpooled, a (1, 384, 9, 9) shaped tensor output = model.forward_head(output, pre_logits=True) # output is a (1, num_features) shaped tensor ``` ## Citation ```bibtex @article{cai2022efficientvit, title={EfficientViT: Enhanced linear attention for high-resolution low-computation visual recognition}, author={Cai, Han and Gan, Chuang and Han, Song}, journal={arXiv preprint arXiv:2205.14756}, year={2022} } ```
shaowenchen/chinese-llama-2-7b-gguf
shaowenchen
2023-09-08T12:21:46Z
549
0
null
[ "gguf", "meta", "llama", "llama-2", "chinese", "text-generation", "zh", "license:other", "region:us" ]
text-generation
2023-09-07T10:15:27Z
--- inference: false language: - zh license: other model_creator: ziqingyang model_link: https://huggingface.co/ziqingyang/chinese-llama-2-7b model_name: chinese-llama-2-7b model_type: llama pipeline_tag: text-generation quantized_by: shaowenchen tasks: - text2text-generation tags: - meta - gguf - llama - llama-2 - chinese --- ## Provided files | Name | Quant method | Size | | ------------------------------ | ------------ | ------ | | chinese-llama-2-7b.Q2_K.gguf | Q2_K | 2.7 GB | | chinese-llama-2-7b.Q3_K.gguf | Q3_K | 3.2 GB | | chinese-llama-2-7b.Q3_K_L.gguf | Q3_K_L | 3.5 GB | | chinese-llama-2-7b.Q3_K_S.gguf | Q3_K_S | 2.9 GB | | chinese-llama-2-7b.Q4_0.gguf | Q4_0 | 3.7 GB | | chinese-llama-2-7b.Q4_1.gguf | Q4_1 | 4.1 GB | | chinese-llama-2-7b.Q4_K.gguf | Q4_K | 3.9 GB | | chinese-llama-2-7b.Q4_K_S.gguf | Q4_K_S | 3.7 GB | | chinese-llama-2-7b.Q5_0.gguf | Q5_0 | 4.5 GB | | chinese-llama-2-7b.Q5_1.gguf | Q5_1 | 4.9 GB | | chinese-llama-2-7b.Q5_K.gguf | Q5_K | 4.6 GB | | chinese-llama-2-7b.Q5_K_S.gguf | Q5_K_S | 4.5 GB | | chinese-llama-2-7b.Q6_K.gguf | Q6_K | 5.3 GB | | chinese-llama-2-7b.Q8_0.gguf | Q8_0 | 6.9 GB | | chinese-llama-2-7b.gguf | full | 13 GB | ## Provided images | Name | Quant method | Size | | -------------------------------------------- | ------------ | ------- | | `shaowenchen/chinese-llama-2-7b-gguf:Q2_K` | Q2_K | 3.68 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q3_K` | Q3_K | 4.16 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q3_K_L` | Q3_K_L | 4.46 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q3_K_S` | Q3_K_S | 3.81 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q4_0` | Q4_0 | 4.7 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q4_K` | Q4_K | 4.95 GB | | `shaowenchen/chinese-llama-2-7b-gguf:Q4_K_S` | Q4_K_S | 4.73 GB | ``` docker run --rm -p 8000:8000 shaowenchen/chinese-llama-2-7b-gguf:Q2_K ``` and you can view http://localhost:8000/docs to see the swagger UI.
TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF
TheBloke
2023-10-12T04:41:06Z
549
10
adapter-transformers
[ "adapter-transformers", "gguf", "mistral", "chemistry", "biology", "climate", "science", "philosophy", "nature", "ecology", "biomimicry", "fauna", "flora", "dataset:Severian/Biomimicry", "dataset:emrgnt-cmplxty/sciphi-textbooks-are-all-you-need", "dataset:fmars/wiki_stem", "dataset:fblgit/tree-of-knowledge", "dataset:Severian/Bio-Design-Process", "base_model:Severian/ANIMA-Phi-Neptune-Mistral-7B", "license:mit", "region:us" ]
null
2023-10-12T04:29:57Z
--- base_model: Severian/ANIMA-Phi-Neptune-Mistral-7B datasets: - Severian/Biomimicry - emrgnt-cmplxty/sciphi-textbooks-are-all-you-need - fmars/wiki_stem - fblgit/tree-of-knowledge - Severian/Bio-Design-Process inference: false library_name: adapter-transformers license: mit model_creator: Severian model_name: Anima Phi Neptune Mistral 7B model_type: mistral prompt_template: '[INST] {prompt} [/INST] ' quantized_by: TheBloke tags: - chemistry - biology - climate - science - philosophy - nature - ecology - biomimicry - fauna - flora --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Anima Phi Neptune Mistral 7B - GGUF - Model creator: [Severian](https://huggingface.co/Severian) - Original model: [Anima Phi Neptune Mistral 7B](https://huggingface.co/Severian/ANIMA-Phi-Neptune-Mistral-7B) <!-- description start --> ## Description This repo contains GGUF format model files for [Severian's Anima Phi Neptune Mistral 7B](https://huggingface.co/Severian/ANIMA-Phi-Neptune-Mistral-7B). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF) * [Severian's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Severian/ANIMA-Phi-Neptune-Mistral-7B) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: INST ``` [INST] {prompt} [/INST] ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [anima-phi-neptune-mistral-7b.Q2_K.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q2_K.gguf) | Q2_K | 2 | 3.08 GB| 5.58 GB | smallest, significant quality loss - not recommended for most purposes | | [anima-phi-neptune-mistral-7b.Q3_K_S.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q3_K_S.gguf) | Q3_K_S | 3 | 3.16 GB| 5.66 GB | very small, high quality loss | | [anima-phi-neptune-mistral-7b.Q3_K_M.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [anima-phi-neptune-mistral-7b.Q3_K_L.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q3_K_L.gguf) | Q3_K_L | 3 | 3.82 GB| 6.32 GB | small, substantial quality loss | | [anima-phi-neptune-mistral-7b.Q4_0.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q4_0.gguf) | Q4_0 | 4 | 4.11 GB| 6.61 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [anima-phi-neptune-mistral-7b.Q4_K_S.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q4_K_S.gguf) | Q4_K_S | 4 | 4.14 GB| 6.64 GB | small, greater quality loss | | [anima-phi-neptune-mistral-7b.Q4_K_M.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | | [anima-phi-neptune-mistral-7b.Q5_0.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q5_0.gguf) | Q5_0 | 5 | 5.00 GB| 7.50 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [anima-phi-neptune-mistral-7b.Q5_K_S.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q5_K_S.gguf) | Q5_K_S | 5 | 5.00 GB| 7.50 GB | large, low quality loss - recommended | | [anima-phi-neptune-mistral-7b.Q5_K_M.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | | [anima-phi-neptune-mistral-7b.Q6_K.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q6_K.gguf) | Q6_K | 6 | 5.94 GB| 8.44 GB | very large, extremely low quality loss | | [anima-phi-neptune-mistral-7b.Q8_0.gguf](https://huggingface.co/TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF/blob/main/anima-phi-neptune-mistral-7b.Q8_0.gguf) | Q8_0 | 8 | 7.70 GB| 10.20 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF and below it, a specific filename to download, such as: anima-phi-neptune-mistral-7b.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF anima-phi-neptune-mistral-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF anima-phi-neptune-mistral-7b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m anima-phi-neptune-mistral-7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "[INST] {prompt} [/INST]" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/ANIMA-Phi-Neptune-Mistral-7B-GGUF", model_file="anima-phi-neptune-mistral-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: Severian's Anima Phi Neptune Mistral 7B # ANIMA-Phi-Neptune-Mistral-7B: Biomimicry Enhanced LLM <img src="https://cdn-uploads.huggingface.co/production/uploads/64740cf7485a7c8e1bd51ac9/JZH6p50t_j3-OUph4Wq6y.png" width="500"> ## Overview **ANIMA** (Advanced Nature Inspired Multidisciplinary Assistant) is an expert in various scientific disciplines, including but not limited to biomimicry, biology, and environmental science. --- ## Model Description ANIMA is fine-tuned on a rich dataset encompassing: - 4,000+ Nature-Biomimicry examples - 60k Biomimicry Design Process examples - 600k STEM facts from Wikipedia - Science/Philosophy focused 'All-You-Need-Is-Textbooks' dataset - Additional Tree of Knowledge + Biomimicry data combined fine-tuning The model aims to assist users in solving problems using nature-inspired strategies and concepts. ### Special Features - **Multi-disciplinary Expertise**: Knowledge across various scientific and philosophical domains. - **Biomimicry Design Process**: Incorporates a dataset generated by Mistral and Minotaur-15B. The dataset was then intricately processed by a real person to ensure factuality and grounding. --- ## Datasets - `Severian/Biomimicry` (1st Fine-Tune) - `emrgnt-cmplxty/sciphi-textbooks-are-all-you-need` (2nd Fine-Tune) - `Severian/Bio-Design-Process` & `fmars/wiki_stem` (3rd Fine-Tune) - `fblgit/tree-of-knowledge & `Severian/Biomimicry` (4th Fine-Tune) - Combined all previous datasets into one giant dataset for a quick fine-tuning for a total of 730k data points (5th Fine-Tune) ## Training Stages 1. **Base Model**: `ehartford/dolphin-2.0-mistral-7b` 2. **1st Fine-Tune**: `ANIMA-Echo-Mistral-7B-v1` - 1 Epoch x 5hrs on 1 x T4 Small 3. **2nd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-v1`-: 1 Epoch x 1hr on 1 x A100 4. **3rd Fine-Tune**: `ANIMA-Phi-Neptune-Mistral-7B-v2` - 1 Epoch x 1hr on 1 x A100 5. **4th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v3' - 1 Epoch x 1hr on 1 x A100 6. **5th Fine-Tune**: 'ANIMA-Phi-Neptune-Mistral-7B-v4' - 1 Epoch x 15mins on 1 x A100 --- ## 📝 Usage ANIMA is designed around the Biomimicry Design Process to guide users in solving problems through biomimicry. For more information and examples, please visit [Biomimicry Design Process](https://toolbox.biomimicry.org/methods/process/). ## 🏁 Benchmarks - Average - 62.22 - ARC - 56.83 - HellaSwag - 78.82 - MMLU - 53.84 - TruthfulQA - 59.40 --- - **EXAMPLE OUTPUT** [INST] How can biomimicry help in water purification? [/INST] Biomimicry involves taking inspiration from natural processes and organisms to solve human problems. In the context of water purification, biomimicry can help develop sustainable and efficient methods for cleaning water. One specific example of a nature-inspired strategy to solve this problem is the use of biofiltration, which involves using microorganisms to remove pollutants from water. Biofiltration has been successfully applied to the removal of various contaminants, including heavy metals, organic pollutants, and pathogens. For example, a study by Zhang et al. (2011) demonstrated that a mixed culture of Pseudomonas putida and Bacillus subtilis could effectively remove lead and cadmium from contaminated water. The researchers found that the biofilm formed by the mixed culture had a higher removal efficiency than that formed by either species alone. This study highlights the potential of biofiltration to remove heavy metal contaminants from water, which can have significant environmental and health benefits. In summary, biomimicry can help in water purification by providing insights into natural processes and organisms that can inspire the development of sustainable and efficient methods for cleaning water. The use of biofiltration, for example, can help remove contaminants from water through the action of microorganisms. Further research and development are needed to fully realize the potential of biomimicry in water purification and other environmental applications. --- ## 📜 License This project is licensed under MIT <!-- original-model-card end -->
Exscientia/IgT5
Exscientia
2024-06-14T10:01:49Z
549
1
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "antibody language model", "antibody", "protein language model", "arxiv:2403.17889", "base_model:Exscientia/IgT5_unpaired", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
text2text-generation
2024-03-26T15:58:05Z
--- tags: - antibody language model - antibody - protein language model base_model: Exscientia/IgT5_unpaired license: mit --- # IgT5 model Model pretrained on protein and antibody sequences using a masked language modeling (MLM) objective. It was introduced in the paper [Large scale paired antibody language models](https://arxiv.org/abs/2403.17889). The model is finetuned from IgT5-unpaired using paired antibody sequences from the [Observed Antibody Space](https://opig.stats.ox.ac.uk/webapps/oas/). # Use The encoder part of the model and tokeniser can be loaded using the `transformers` library ```python from transformers import T5EncoderModel, T5Tokenizer tokeniser = T5Tokenizer.from_pretrained("Exscientia/IgT5", do_lower_case=False) model = T5EncoderModel.from_pretrained("Exscientia/IgT5") ``` The tokeniser is used to prepare batch inputs ```python # heavy chain sequences sequences_heavy = [ "VQLAQSGSELRKPGASVKVSCDTSGHSFTSNAIHWVRQAPGQGLEWMGWINTDTGTPTYAQGFTGRFVFSLDTSARTAYLQISSLKADDTAVFYCARERDYSDYFFDYWGQGTLVTVSS", "QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYAMYWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRTEDTAVYYCASGSDYGDYLLVYWGQGTLVTVSS" ] # light chain sequences sequences_light = [ "EVVMTQSPASLSVSPGERATLSCRARASLGISTDLAWYQQRPGQAPRLLIYGASTRATGIPARFSGSGSGTEFTLTISSLQSEDSAVYYCQQYSNWPLTFGGGTKVEIK", "ALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSKRPSGVSNRFSGSKSGNTASLTISGLQSEDEADYYCNSLTSISTWVFGGGTKLTVL" ] # The tokeniser expects input of the form ["V Q ... S S </s> E V ... I K", ...] paired_sequences = [] for sequence_heavy, sequence_light in zip(sequences_heavy, sequences_light): paired_sequences.append(' '.join(sequence_heavy)+' </s> '+' '.join(sequence_light)) tokens = tokeniser.batch_encode_plus( paired_sequences, add_special_tokens=True, pad_to_max_length=True, return_tensors="pt", return_special_tokens_mask=True ) ``` Note that the tokeniser adds a `</s>` token at the end of each paired sequence and pads using the `<pad>` token. For example a batch containing sequences `V Q L </s> E V V`, `Q V </s> A L` will be tokenised to `V Q L </s> E V V </S>` and `Q V </s> A L </s> <pad> <pad>`. Sequence embeddings are generated by feeding tokens through the model ```python output = model( input_ids=tokens['input_ids'], attention_mask=tokens['attention_mask'] ) residue_embeddings = output.last_hidden_state ``` To obtain a sequence representation, the residue tokens can be averaged over like so ```python import torch # mask special tokens before summing over embeddings residue_embeddings[tokens["special_tokens_mask"] == 1] = 0 sequence_embeddings_sum = residue_embeddings.sum(1) # average embedding by dividing sum by sequence lengths sequence_lengths = torch.sum(tokens["special_tokens_mask"] == 0, dim=1) sequence_embeddings = sequence_embeddings_sum / sequence_lengths.unsqueeze(1) ```
LiteLLMs/Phi-3-mini-128k-instruct-GGUF
LiteLLMs
2024-05-23T21:08:31Z
549
0
null
[ "gguf", "nlp", "code", "GGUF", "text-generation", "en", "license:mit", "region:us" ]
text-generation
2024-05-23T12:52:21Z
--- language: - en license: mit tags: - nlp - code - GGUF license_link: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE pipeline_tag: text-generation widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? quantized_by: andrijdavid --- # Phi-3-mini-128k-instruct-GGUF - Original model: [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) <!-- description start --> ## Description This repo contains GGUF format model files for [Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). This is the source project for GGUF, providing both a Command Line Interface (CLI) and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), Known as the most widely used web UI, this project boasts numerous features and powerful extensions, and supports GPU acceleration. * [Ollama](https://github.com/jmorganca/ollama) Ollama is a lightweight and extensible framework designed for building and running language models locally. It features a simple API for creating, managing, and executing models, along with a library of pre-built models for use in various applications​ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), A comprehensive web UI offering GPU acceleration across all platforms and architectures, particularly renowned for storytelling. * [GPT4All](https://gpt4all.io), This is a free and open source GUI that runs locally, supporting Windows, Linux, and macOS with full GPU acceleration. * [LM Studio](https://lmstudio.ai/) An intuitive and powerful local GUI for Windows and macOS (Silicon), featuring GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui). A notable web UI with a variety of unique features, including a comprehensive model library for easy model selection. * [Faraday.dev](https://faraday.dev/), An attractive, user-friendly character-based chat GUI for Windows and macOS (both Silicon and Intel), also offering GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), A Python library equipped with GPU acceleration, LangChain support, and an OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), A Rust-based ML framework focusing on performance, including GPU support, and designed for ease of use. * [ctransformers](https://github.com/marella/ctransformers), A Python library featuring GPU acceleration, LangChain support, and an OpenAI-compatible AI server. * [localGPT](https://github.com/PromtEngineer/localGPT) An open-source initiative enabling private conversations with documents. <!-- README_GGUF.md-about-gguf end --> <!-- compatibility_gguf start --> ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single folder. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: LiteLLMs/Phi-3-mini-128k-instruct-GGUF and below it, a specific filename to download, such as: Q4_0/Q4_0-00001-of-00009.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download LiteLLMs/Phi-3-mini-128k-instruct-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage (click to read)</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download LiteLLMs/Phi-3-mini-128k-instruct-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install huggingface_hub[hf_transfer] ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download LiteLLMs/Phi-3-mini-128k-instruct-GGUF Q4_0/Q4_0-00001-of-00009.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 35 -m Q4_0/Q4_0-00001-of-00009.gguf --color -c 8192 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<PROMPT>" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 8192` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python. ### How to load this model in Python code, using llama-cpp-python For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/). #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install llama-cpp-python # With NVidia CUDA acceleration CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python # Or with OpenBLAS acceleration CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python # Or with CLBLast acceleration CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python # Or with AMD ROCm GPU acceleration (Linux only) CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python # Or with Metal GPU acceleration for macOS systems only CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA: $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on" pip install llama-cpp-python ``` #### Simple llama-cpp-python example code ```python from llama_cpp import Llama # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = Llama( model_path="./Q4_0/Q4_0-00001-of-00009.gguf", # Download the model file first n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) # Simple inference example output = llm( "<PROMPT>", # Prompt max_tokens=512, # Generate up to 512 tokens stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using. echo=True # Whether to echo the prompt ) # Chat Completion API llm = Llama(model_path="./Q4_0/Q4_0-00001-of-00009.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "Write a story about llamas." } ] ) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer end --> <!-- original-model-card start --> # Original model card: Phi-3-mini-128k-instruct ## Model Summary The Phi-3-Mini-128K-Instruct is a 3.8 billion-parameter, lightweight, state-of-the-art open model trained using the Phi-3 datasets. This dataset includes both synthetic data and filtered publicly available website data, with an emphasis on high-quality and reasoning-dense properties. The model belongs to the Phi-3 family with the Mini version in two variants [4K](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [128K](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) which is the context length (in tokens) that it can support. After initial training, the model underwent a post-training process that involved supervised fine-tuning and direct preference optimization to enhance its ability to follow instructions and adhere to safety measures. When evaluated against benchmarks that test common sense, language understanding, mathematics, coding, long-term context, and logical reasoning, the Phi-3 Mini-128K-Instruct demonstrated robust and state-of-the-art performance among models with fewer than 13 billion parameters. Resources and Technical Documentation: + [Phi-3 Microsoft Blog](https://aka.ms/Phi-3Build2024) + [Phi-3 Technical Report](https://aka.ms/phi3-tech-report) + [Phi-3 on Azure AI Studio](https://aka.ms/phi3-azure-ai) + [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook) | | Short Context | Long Context | | | -- | | -- | | ----- | | MMLU <br>5-Shot | 68.1 | 75.3 | 78.2 | 56.3 | 61.7 | 63.6 | 66.5 | 68.4 | 71.4 | | HellaSwag <br> 5-Shot | 74.5 | 78.7 | 83.2 | 53.6 | 58.5 | 49.8 | 71.1 | 70.4 | 78.8 | | ANLI <br> 7-Shot | 52.8 | 55.0 | 58.7 | 42.5 | 47.1 | 48.7 | 57.3 | 55.2 | 58.1 | | GSM-8K <br> 0-Shot; CoT | 83.6 | 86.4 | 90.8 | 61.1 | 46.4 | 59.8 | 77.4 | 64.7 | 78.1 | | MedQA <br> 2-Shot | 55.3 | 58.2 | 69.8 | 40.9 | 49.6 | 50.0 | 60.5 | 62.2 | 63.4 | | AGIEval <br> 0-Shot | 36.9 | 45.0 | 49.7 | 29.8 | 35.1 | 42.1 | 42.0 | 45.2 | 48.4 | | TriviaQA <br> 5-Shot | 57.1 | 59.1 | 73.3 | 45.2 | 72.3 | 75.2 | 67.7 | 82.2 | 85.8 | | Arc-C <br> 10-Shot | 84.0 | 90.7 | 91.9 | 75.9 | 78.6 | 78.3 | 82.8 | 87.3 | 87.4 | | Arc-E <br> 10-Shot | 95.2 | 97.1 | 98.0 | 88.5 | 90.6 | 91.4 | 93.4 | 95.6 | 96.3 | | PIQA <br> 5-Shot | 83.6 | 87.8 | 88.2 | 60.2 | 77.7 | 78.1 | 75.7 | 86.0 | 86.6 | | SociQA <br> 5-Shot | 76.1 | 79.0 | 79.4 | 68.3 | 74.6 | 65.5 | 73.9 | 75.9 | 68.3 | | BigBench-Hard <br> 0-Shot | 71.5 | 75.0 | 82.5 | 59.4 | 57.3 | 59.6 | 51.5 | 69.7 | 68.32 | | WinoGrande <br> 5-Shot | 72.5 | 82.5 | 81.2 | 54.7 | 54.2 | 55.6 | 65.0 | 62.0 | 68.8 | | OpenBookQA <br> 10-Shot | 80.6 | 88.4 | 86.6 | 73.6 | 79.8 | 78.6 | 82.6 | 85.8 | 86.0 | | BoolQ <br> 0-Shot | 78.7 | 82.9 | 86.5 | -- | 72.2 | 66.0 | 80.9 | 77.6 | 79.1 | | CommonSenseQA <br> 10-Shot | 78.0 | 80.3 | 82.6 | 69.3 | 72.6 | 76.2 | 79 | 78.1 | 79.6 | | TruthfulQA <br> 10-Shot | 63.2 | 68.1 | 74.8 | -- | 52.1 | 53.0 | 63.2 | 60.1 | 85.8 | | HumanEval <br> 0-Shot | 57.9 | 59.1 | 54.7 | 47.0 | 28.0 | 34.1 | 60.4 | 37.8 | 62.2 | | MBPP <br> 3-Shot | 62.5 | 71.4 | 73.7 | 60.6 | 50.8 | 51.5 | 67.7 | 60.2 | 77.8 | ## Software * [PyTorch](https://github.com/pytorch/pytorch) * [DeepSpeed](https://github.com/microsoft/DeepSpeed) * [Transformers](https://github.com/huggingface/transformers) * [Flash-Attention](https://github.com/HazyResearch/flash-attention) ## Hardware Note that by default, the Phi-3-mini model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types: * NVIDIA A100 * NVIDIA A6000 * NVIDIA H100 If you want to run the model on: * NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager" * Optimized inference on GPU, CPU, and Mobile: use the **ONNX** models [128K](https://aka.ms/phi3-mini-128k-instruct-onnx) ## Cross Platform Support ONNX runtime ecosystem now supports Phi-3 Mini models across platforms and hardware. You can find the optimized Phi-3 Mini-128K-Instruct ONNX model [here](https://aka.ms/phi3-mini-128k-instruct-onnx). Optimized Phi-3 models are also published here in ONNX format, to run with ONNX Runtime on CPU and GPU across devices, including server platforms, Windows, Linux and Mac desktops, and mobile CPUs, with the precision best suited to each of these targets. DirectML support lets developers bring hardware acceleration to Windows devices at scale across AMD, Intel, and NVIDIA GPUs. Along with DirectML, ONNX Runtime provides cross platform support for Phi-3 across a range of devices CPU, GPU, and mobile. Here are some of the optimized configurations we have added: 1. ONNX models for int4 DML: Quantized to int4 via AWQ 2. ONNX model for fp16 CUDA 3. ONNX model for int4 CUDA: Quantized to int4 via RTN 4. ONNX model for int4 CPU and Mobile: Quantized to int4 via RTN ## License The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-mini-128k/resolve/main/LICENSE). ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies. <!-- original-model-card end -->