hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7943f89ce7024f29af215e2f4e120839cce8c7d7
276
py
Python
Source Code/example/function.py
Amoswuuuu/Python-foundation-HNU
2a30c18fd03f453197c902eeec537d4ab0bdaaad
[ "Apache-2.0" ]
1
2019-05-12T06:02:20.000Z
2019-05-12T06:02:20.000Z
Source Code/example/function.py
Amoswuuuu/Python-foundation-HNU
2a30c18fd03f453197c902eeec537d4ab0bdaaad
[ "Apache-2.0" ]
null
null
null
Source Code/example/function.py
Amoswuuuu/Python-foundation-HNU
2a30c18fd03f453197c902eeec537d4ab0bdaaad
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Author :AmosWu # Date :2019/1/26 # Features : function def func(x): return x*x def main(): num = int(input("Please input a number:")) result = func(num) print(result) if __name__ == '__main__': main()
18.4
46
0.57971
7943f94af3200bbe0a1a6c62342686ef7519482b
5,083
py
Python
deluca/agents/_deep.py
google/deluca
626ade7bfa44afc52e6ffb9a9e6e94258b4dc024
[ "Apache-2.0" ]
105
2020-12-10T05:08:28.000Z
2022-03-17T03:53:10.000Z
deluca/agents/_deep.py
google/deluca
626ade7bfa44afc52e6ffb9a9e6e94258b4dc024
[ "Apache-2.0" ]
36
2020-12-11T11:47:36.000Z
2021-08-25T09:40:07.000Z
deluca/agents/_deep.py
google/deluca
626ade7bfa44afc52e6ffb9a9e6e94258b4dc024
[ "Apache-2.0" ]
16
2020-12-10T16:43:31.000Z
2022-03-17T02:02:18.000Z
# Copyright 2021 The Deluca Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """deluca.agents._deep""" from numbers import Real import jax import jax.numpy as jnp from deluca.agents.core import Agent from deluca.utils import Random class Deep(Agent): """ Generic deep controller that uses zero-order methods to train on an environment. """ def __init__( self, env_state_size, action_space, learning_rate: Real = 0.001, gamma: Real = 0.99, max_episode_length: int = 500, seed: int = 0, ) -> None: """ Description: initializes the Deep agent Args: env (Env): a deluca environment learning_rate (Real): gamma (Real): max_episode_length (int): seed (int): Returns: None """ # Create gym and seed numpy self.env_state_size = int(env_state_size) self.action_space = action_space self.max_episode_length = max_episode_length self.lr = learning_rate self.gamma = gamma self.random = Random(seed) self.reset() def reset(self) -> None: """ Description: reset agent Args: None Returns: None """ # Init weight self.W = jax.random.uniform( self.random.generate_key(), shape=(self.env_state_size, len(self.action_space)), minval=0, maxval=1, ) # Keep stats for final print of graph self.episode_rewards = [] self.current_episode_length = 0 self.current_episode_reward = 0 self.episode_rewards = jnp.zeros(self.max_episode_length) self.episode_grads = jnp.zeros((self.max_episode_length, self.W.shape[0], self.W.shape[1])) # dummy values for attrs, needed to inform scan of traced shapes self.state = jnp.zeros((self.env_state_size,)) self.action = self.action_space[0] ones = jnp.ones((len(self.action_space),)) self.probs = ones * 1 / jnp.sum(ones) def policy(self, state: jnp.ndarray, w: jnp.ndarray) -> jnp.ndarray: """ Description: Policy that maps state to action parameterized by w Args: state (jnp.ndarray): w (jnp.ndarray): """ z = jnp.dot(state, w) exp = jnp.exp(z) return exp / jnp.sum(exp) def softmax_grad(self, softmax: jnp.ndarray) -> jnp.ndarray: """ Description: Vectorized softmax Jacobian Args: softmax (jnp.ndarray) """ s = softmax.reshape(-1, 1) return jnp.diagflat(s) - jnp.dot(s, s.T) def __call__(self, state: jnp.ndarray): """ Description: provide an action given a state Args: state (jnp.ndarray): Returns: jnp.ndarray: action to take """ self.state = state self.probs = self.policy(state, self.W) self.action = jax.random.choice( self.random.generate_key(), a=self.action_space, p=self.probs ) return self.action def feed(self, reward: Real) -> None: """ Description: compute gradient and save with reward in memory for weight updates Args: reward (Real): Returns: None """ dsoftmax = self.softmax_grad(self.probs)[self.action, :] dlog = dsoftmax / self.probs[self.action] grad = self.state.reshape(-1, 1) @ dlog.reshape(1, -1) self.episode_rewards = self.episode_rewards.at[self.current_episode_length].set(reward) self.episode_grads = self.episode_grads.at[self.current_episode_length].set(grad) self.current_episode_length += 1 def update(self) -> None: """ Description: update weights Args: None Returns: None """ for i in range(self.current_episode_length): # Loop through everything that happend in the episode and update # towards the log policy gradient times **FUTURE** reward self.W += self.lr * self.episode_grads[i] + jnp.sum( jnp.array( [ r * (self.gamma ** r) for r in self.episode_rewards[i : self.current_episode_length] ] ) ) # reset episode length self.current_episode_length = 0
28.717514
99
0.577612
7943fafcfb5928444df4af24a274674035c5ec35
5,711
py
Python
pycls/models/nas_bench/graph_util.py
AlbertiPot/unnas
f0df44634ae300a52adc25b7fb24f4b089655680
[ "MIT" ]
93
2020-08-03T01:40:17.000Z
2021-12-14T02:58:09.000Z
pycls/models/nas_bench/graph_util.py
AlbertiPot/unnas
f0df44634ae300a52adc25b7fb24f4b089655680
[ "MIT" ]
4
2020-08-24T10:53:30.000Z
2021-08-12T20:30:47.000Z
pycls/models/nas_bench/graph_util.py
AlbertiPot/unnas
f0df44634ae300a52adc25b7fb24f4b089655680
[ "MIT" ]
11
2020-08-03T20:59:17.000Z
2022-03-03T00:48:01.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utility functions used by generate_graph.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import hashlib import itertools import numpy as np def gen_is_edge_fn(bits): """Generate a boolean function for the edge connectivity. Given a bitstring FEDCBA and a 4x4 matrix, the generated matrix is [[0, A, B, D], [0, 0, C, E], [0, 0, 0, F], [0, 0, 0, 0]] Note that this function is agnostic to the actual matrix dimension due to order in which elements are filled out (column-major, starting from least significant bit). For example, the same FEDCBA bitstring (0-padded) on a 5x5 matrix is [[0, A, B, D, 0], [0, 0, C, E, 0], [0, 0, 0, F, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] Args: bits: integer which will be interpreted as a bit mask. Returns: vectorized function that returns True when an edge is present. """ def is_edge(x, y): """Is there an edge from x to y (0-indexed)?""" if x >= y: return 0 # Map x, y to index into bit string index = x + (y * (y - 1) // 2) return (bits >> index) % 2 == 1 return np.vectorize(is_edge) def is_full_dag(matrix): """Full DAG == all vertices on a path from vert 0 to (V-1). i.e. no disconnected or "hanging" vertices. It is sufficient to check for: 1) no rows of 0 except for row V-1 (only output vertex has no out-edges) 2) no cols of 0 except for col 0 (only input vertex has no in-edges) Args: matrix: V x V upper-triangular adjacency matrix Returns: True if the there are no dangling vertices. """ shape = np.shape(matrix) rows = matrix[:shape[0]-1, :] == 0 rows = np.all(rows, axis=1) # Any row with all 0 will be True rows_bad = np.any(rows) cols = matrix[:, 1:] == 0 cols = np.all(cols, axis=0) # Any col with all 0 will be True cols_bad = np.any(cols) return (not rows_bad) and (not cols_bad) def num_edges(matrix): """Computes number of edges in adjacency matrix.""" return np.sum(matrix) def hash_module(matrix, labeling): """Computes a graph-invariance MD5 hash of the matrix and label pair. Args: matrix: np.ndarray square upper-triangular adjacency matrix. labeling: list of int labels of length equal to both dimensions of matrix. Returns: MD5 hash of the matrix and labeling. """ vertices = np.shape(matrix)[0] in_edges = np.sum(matrix, axis=0).tolist() out_edges = np.sum(matrix, axis=1).tolist() assert len(in_edges) == len(out_edges) == len(labeling) hashes = list(zip(out_edges, in_edges, labeling)) hashes = [hashlib.md5(str(h).encode('utf-8')).hexdigest() for h in hashes] # Computing this up to the diameter is probably sufficient but since the # operation is fast, it is okay to repeat more times. for _ in range(vertices): new_hashes = [] for v in range(vertices): in_neighbors = [hashes[w] for w in range(vertices) if matrix[w, v]] out_neighbors = [hashes[w] for w in range(vertices) if matrix[v, w]] new_hashes.append(hashlib.md5( (''.join(sorted(in_neighbors)) + '|' + ''.join(sorted(out_neighbors)) + '|' + hashes[v]).encode('utf-8')).hexdigest()) hashes = new_hashes fingerprint = hashlib.md5(str(sorted(hashes)).encode('utf-8')).hexdigest() return fingerprint def permute_graph(graph, label, permutation): """Permutes the graph and labels based on permutation. Args: graph: np.ndarray adjacency matrix. label: list of labels of same length as graph dimensions. permutation: a permutation list of ints of same length as graph dimensions. Returns: np.ndarray where vertex permutation[v] is vertex v from the original graph """ # vertex permutation[v] in new graph is vertex v in the old graph forward_perm = zip(permutation, list(range(len(permutation)))) inverse_perm = [x[1] for x in sorted(forward_perm)] edge_fn = lambda x, y: graph[inverse_perm[x], inverse_perm[y]] == 1 new_matrix = np.fromfunction(np.vectorize(edge_fn), (len(label), len(label)), dtype=np.int8) new_label = [label[inverse_perm[i]] for i in range(len(label))] return new_matrix, new_label def is_isomorphic(graph1, graph2): """Exhaustively checks if 2 graphs are isomorphic.""" matrix1, label1 = np.array(graph1[0]), graph1[1] matrix2, label2 = np.array(graph2[0]), graph2[1] assert np.shape(matrix1) == np.shape(matrix2) assert len(label1) == len(label2) vertices = np.shape(matrix1)[0] # Note: input and output in our constrained graphs always map to themselves # but this script does not enforce that. for perm in itertools.permutations(range(0, vertices)): pmatrix1, plabel1 = permute_graph(matrix1, label1, perm) if np.array_equal(pmatrix1, matrix2) and plabel1 == label2: return True return False
33.011561
79
0.67834
7943fc32206562bdcf159c03a25938e52a1b5268
474
py
Python
MIT/600.1x - Introduction to Computer Science and Programming Using Python/Unit 2/4. Functions/gcd_iter.py
henriqueumeda/-Python-study
28e93a377afa4732037a29eb74d4bc7c9e24b62f
[ "MIT" ]
null
null
null
MIT/600.1x - Introduction to Computer Science and Programming Using Python/Unit 2/4. Functions/gcd_iter.py
henriqueumeda/-Python-study
28e93a377afa4732037a29eb74d4bc7c9e24b62f
[ "MIT" ]
null
null
null
MIT/600.1x - Introduction to Computer Science and Programming Using Python/Unit 2/4. Functions/gcd_iter.py
henriqueumeda/-Python-study
28e93a377afa4732037a29eb74d4bc7c9e24b62f
[ "MIT" ]
null
null
null
def gcdIter(a, b): ''' a, b: positive integers returns: a positive integer, the greatest common divisor of a & b. ''' # Your code here gcd = 1 if a > b: for i in range(b, 0, -1): if a % i == 0 and b % i == 0: gcd = i break else: for i in range(a, 0, -1): if a % i == 0 and b % i == 0: gcd = i break return gcd print(gcdIter(2, 12))
21.545455
70
0.415612
7943fc76de95a4a3c2582929c731a6c531f73167
354
py
Python
op_webgui/urls.py
lkmhaqer/gtools-python
cff6d80525b78a4fadfb686566489fbe1687d889
[ "MIT" ]
5
2016-10-31T17:46:17.000Z
2022-02-02T00:40:49.000Z
op_webgui/urls.py
lkmhaqer/gtools-python
cff6d80525b78a4fadfb686566489fbe1687d889
[ "MIT" ]
33
2018-05-09T06:07:50.000Z
2021-09-22T17:39:56.000Z
op_webgui/urls.py
lkmhaqer/gtools-python
cff6d80525b78a4fadfb686566489fbe1687d889
[ "MIT" ]
1
2020-05-14T21:44:25.000Z
2020-05-14T21:44:25.000Z
# file: op_webgui/urls.py from django.conf.urls import url from django.contrib.auth import views as auth_views from op_webgui import views app_name = 'op_webgui' urlpatterns = [ url( r'^$', views.index, name='index' ), url( r'^router/$', views.router_list, name='router_list' ), ]
16.857143
51
0.581921
7943fd2d92e4b7d07753619ad44d1bc7c6f33f6f
215
py
Python
pyf/_has_setuid.py
snoopyjc/pythonizer
6b3683084f41f0aa06b1b4e652a0f00b19cceac1
[ "Artistic-2.0" ]
1
2022-03-13T22:08:25.000Z
2022-03-13T22:08:25.000Z
pyf/_has_setuid.py
snoopyjc/pythonizer
6b3683084f41f0aa06b1b4e652a0f00b19cceac1
[ "Artistic-2.0" ]
21
2022-03-17T16:53:04.000Z
2022-03-31T23:55:24.000Z
pyf/_has_setuid.py
snoopyjc/pythonizer
6b3683084f41f0aa06b1b4e652a0f00b19cceac1
[ "Artistic-2.0" ]
null
null
null
def _has_setuid(path): # -u if not path: return False if hasattr(path, '_mode'): return (path._mode & stat.S_ISUID) != 0 return (os.stat(path).st_mode & stat.S_ISUID) != 0
26.875
55
0.553488
7943fdef7d4903f3a2541ac4f6c43297a3075436
1,900
py
Python
Adelphi Academic Calendar/date_testing.py
EnriqueGambra/Amazon-Alexa-Skill
198ed51bef555eee006041fef0bcbf5c955142d5
[ "MIT" ]
null
null
null
Adelphi Academic Calendar/date_testing.py
EnriqueGambra/Amazon-Alexa-Skill
198ed51bef555eee006041fef0bcbf5c955142d5
[ "MIT" ]
null
null
null
Adelphi Academic Calendar/date_testing.py
EnriqueGambra/Amazon-Alexa-Skill
198ed51bef555eee006041fef0bcbf5c955142d5
[ "MIT" ]
1
2019-10-11T17:15:20.000Z
2019-10-11T17:15:20.000Z
from datetime import date from datetime import timedelta import json filename = "tmp/adelphi_calendar2.json" today = date.today() event = "matriculation day" with open(filename) as f: calendar_info_dict = json.load(f) future_date = calendar_info_dict[event] month_day_year = future_date.split(" ") month_num_dict = { 'january': 1, 'february': 2, 'march': 3, 'april': 4, 'may': 5, 'june': 6, 'july': 7, 'august': 8, 'september': 9, 'october': 10, 'november': 11, 'december': 12 } month = month_num_dict.get(month_day_year[0]) day = month_day_year[1] year = month_day_year[2] # future = date(int(year), month, int(day)) # print(future) # days_until = future - today # print(days_until) # if(str(days_until).find('-')) is not -1: # print("event passed") num_month_dict = { '01': 'january', '02': 'february', '03': 'march', '04': 'april', '05': 'may', '06': 'june', '07': 'july', '08': 'august', '09': 'september', '10': 'october', '11': 'november', '12': 'december' } date_event_dict = dict() for key, value in calendar_info_dict.items(): date_event_dict[value] = key # print(date_event_dict) day_counter = 0 while True: next_date = today + timedelta(days=day_counter) year_month_day = str(next_date).split("-") year = year_month_day[0] month = year_month_day[1] day = year_month_day[2] converted_date = f'{num_month_dict.get(month)} {day} {year}' if converted_date in date_event_dict: next_event = date_event_dict[converted_date] break elif int(year) > 2024: break day_counter += 1 print(next_event) event_date = calendar_info_dict['spring break'] event_date_list = event_date.split('-') month_day = event_date_list[0] year = event_date[len(event_date) - 4:] month_day_year = month_day + " " + year print(month_day_year)
22.093023
64
0.643158
7943fe4554217d9a6da9e719169e7b1be9d1d96b
13,584
py
Python
closed/Alibaba/code/common/system_list.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
12
2021-09-23T08:05:57.000Z
2022-03-21T03:52:11.000Z
closed/Alibaba/code/common/system_list.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
11
2021-09-23T20:34:06.000Z
2022-01-22T07:58:02.000Z
closed/Alibaba/code/common/system_list.py
ctuning/inference_results_v1.1
d9176eca28fcf6d7a05ccb97994362a76a1eb5ab
[ "Apache-2.0" ]
16
2021-09-23T20:26:38.000Z
2022-03-09T12:59:56.000Z
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from enum import Enum, unique from collections import OrderedDict import re import subprocess import os NVIDIA_SMI_GPU_REGEX = re.compile(r"GPU (\d+): ([\w\- ]+) \(UUID: (GPU-[0-9a-f\-]+)\)") """ re.Pattern: Regex to match nvidia-smi output for GPU information match(1) - GPU index match(2) - GPU name match(3) - GPU UUID """ NVIDIA_SMI_MIG_REGEX = re.compile( r"\s+MIG\s+(\d+)g.(\d+)gb\s+Device\s+(\d+):\s+\(UUID:\s+(MIG-[0-9a-f\-]+)\)" ) """ re.Pattern: Regex to match nvidia-smi output for MIG information match(1) - Number of GPCs in the MIG slice match(2) - Allocated video memory capacity in the MIG slice in GB match(3) - MIG device ID match(4) - MIG instance UUID """ @unique class Architecture(Enum): Turing = "Turing" Xavier = "Xavier" Ampere = "Ampere" Intel_CPU_x86_64 = "Intel CPU x86_64" Unknown = "Unknown" class MIGSlice(object): def __init__(self, num_gpcs, mem_gb, device_id=None, uuid=None): """ Describes a MIG instance. If optional arguments are set, then this MIGSlice describes an active MIG instance. If optional arguments are not set, then this MIGSlice describes an uninstantiated, but supported MIG instance. Arguments: num_gpcs: Number of GPCs in this MIG slice mem_gb: Allocated video memory capacity in this MIG slice in GB Optional arguments: device_id: Device ID of the GPU this MIG is a part of uuid: UUID of this MIG instance """ self.num_gpcs = num_gpcs self.mem_gb = mem_gb self.device_id = device_id self.uuid = uuid # One cannot be set without the other. assert (device_id is None) == (uuid is None) def __str__(self): return "{:d}g.{:d}gb".format(self.num_gpcs, self.mem_gb) def __hash__(self): return hash(str(self)) def __eq__(self, other): return str(self) == str(other) def is_active_slice(self): return self.device_id is None def get_gpu_uuid(self): return self.uuid.split("/")[0][4:] # First 4 characters are "MIG-" def get_gpu_instance_id(self): return int(self.uuid.split("/")[1]) def get_compute_instance_id(self): return int(self.uuid.split("/")[2]) class MIGConfiguration(object): def __init__(self, conf): """ Stores information about a system's MIG configuration. conf: An OrderedDict of gpu_id -> { MIGSlice -> Count } """ self.conf = conf def check_compatible(self, valid_mig_slices): """ Given a list of valid MIGSlices, checks if this MIGConfiguration only contains MIGSlices that are described in the list. """ m = {str(mig) for mig in valid_mig_slices} for gpu_id in self.conf: for mig in self.conf[gpu_id]: if str(mig) not in m: return False return True def num_gpus(self): """ Returns the number of GPUs with active MIG instances in this MIGConfiguration. """ return len(self.conf) def num_mig_slices(self): """ Returns the number of total active MIG instances across all GPUs in this MIGConfiguration """ i = 0 for gpu_id in self.conf: for mig in self.conf[gpu_id]: i += self.conf[gpu_id][mig] return i def __str__(self): """ Returns a string that describes this MIG configuration. Examples: - For 1x 1-GPC: 1x1g.10gb - For 1x 1-GPC, 2x 2-GPC, and 3x 3-GPC: 1x1g.10gb_2x2g.20gb_1x3g.30gb """ # Add up the slices on each GPU by MIGSlice flattened = OrderedDict() for gpu_id in self.conf: for mig in self.conf[gpu_id]: if mig not in flattened: flattened[mig] = 0 flattened[mig] += self.conf[gpu_id][mig] return "_".join(sorted(["{}x{}".format(flattened[mig], str(mig))])) @staticmethod def get_gpu_mig_slice_mapping(): """ Returns a dict containing mapping between gpu uuid and list of mig slices on that gpu. """ p = subprocess.Popen("nvidia-smi -L", universal_newlines=True, shell=True, stdout=subprocess.PIPE) gpu_mig_slice_mapping = dict() for line in p.stdout: gpu_match = NVIDIA_SMI_GPU_REGEX.match(line) if gpu_match is not None: gpu_uuid = gpu_match.group(3) gpu_mig_slice_mapping[gpu_uuid] = [] mig_match = NVIDIA_SMI_MIG_REGEX.match(line) if mig_match is not None: gpu_mig_slice_mapping[gpu_uuid].append(MIGSlice( int(mig_match.group(1)), # num_gpcs int(mig_match.group(2)), # mem_gb int(mig_match.group(3)), # device_id mig_match.group(4) # uuid )) return gpu_mig_slice_mapping @staticmethod def from_nvidia_smi(): visible_gpu_instances = set() if os.environ.get("CUDA_VISIBLE_DEVICES"): for g in os.environ.get("CUDA_VISIBLE_DEVICES").split(","): if g.startswith("MIG"): visible_gpu_instances.add(g) gpu_mig_slice_mapping = MIGConfiguration.get_gpu_mig_slice_mapping() conf = OrderedDict() for gpu, mig_slices in gpu_mig_slice_mapping.items(): conf[gpu] = {} for mig_slice in mig_slices: if (not os.environ.get("CUDA_VISIBLE_DEVICES")) or ( mig_slice.uuid in visible_gpu_instances ): if mig_slice not in conf[gpu]: conf[gpu][mig_slice] = 0 conf[gpu][mig_slice] += 1 return MIGConfiguration(conf) class System(object): """ System class contains information on the GPUs used in our submission systems. gpu: ID of the GPU being used pci_id: PCI ID of the GPU arch: Architecture of the GPU count: Number of GPUs used on the system mig_conf: MIG configuration (if applicable) """ def __init__(self, gpu, arch, count, pci_id=None, mig_conf=None): self.gpu = gpu self.arch = arch self.count = count self.mig_conf = mig_conf self.pci_id = pci_id self.uses_mig = mig_conf is not None def get_id(self): sid = f"{self.gpu}x{self.count}" if "Xavier" not in self.gpu else self.gpu if self.mig_conf is not None: sid = "{:}-MIG_{:}".format(self.gpu, str(self.mig_conf)) return sid def __str__(self): return self.get_id() def __hash__(self): return hash(str(self)) def __eq__(self, other): return str(self) == str(other) class SystemClass(object): def __init__(self, gpu, aliases, pci_ids, arch, supported_counts, valid_mig_slices=None): """ SystemClass describes classes of submissions systems with different variations. SystemClass objects are hardcoded as supported systems and must be defined in KnownSystems below to be recognized a valid system for the pipeline. Args: gpu: ID of the GPU being used, usually the name reported by nvidia-smi aliases: Different names of cards reported by nvidia-smi that use the same SKUs, i.e. Titan RTX and Quadro RTX 8000 pci_ids: PCI IDs of cards that match this system configuration that use the same SKUs arch: Architecture of the GPU supported_counts: Counts of GPUs for supported multi-GPU systems, i.e. [1, 2, 4] to support 1x, 2x, and 4x GPU systems valid_mig_slices: List of supported MIGSlices. None if MIG not supported. """ self.gpu = gpu self.aliases = aliases self.pci_ids = pci_ids self.arch = arch self.supported_counts = supported_counts self.valid_mig_slices = valid_mig_slices self.supports_mig = valid_mig_slices is not None def __str__(self): return "SystemClass(gpu={}, aliases={}, pci_ids={}, arch={}, counts={})".format( self.gpu, self.aliases, self.pci_ids, self.arch, self.supported_counts) def get_match(self, name, count, pci_id=None, mig_conf=None): """ Attempts to match a certain GPU configuration with this SystemClass. If the configuration does not match, returns None. Otherwise, returns a System object with metadata about the configuration. mig_conf should be a MIGConfiguration object. """ # PCI ID has precedence over name, as pre-release chips often are not named yet in nvidia-smi gpu_match = False if pci_id is not None and len(self.pci_ids) > 0: gpu_match = pci_id in self.pci_ids # Attempt to match a name if PCI ID is not specified, or if the system has no known PCI IDs # This is an else block, but we explicitly show condition for clarity elif pci_id is None or len(self.pci_ids) == 0: gpu_match = name in self.aliases if not gpu_match: return None # If GPU matches, match the count and mig configs (if applicable) if count not in self.supported_counts: return None if self.supports_mig and mig_conf is not None and not mig_conf.check_compatible(self.valid_mig_slices): return None return System(self.gpu, self.arch, count, pci_id=pci_id, mig_conf=mig_conf) class KnownSystems(object): """ Global List of supported systems """ A100_PCIe_40GB = SystemClass("A100-PCIe", ["A100-PCIE-40GB"], ["20F1", "20BF"], Architecture.Ampere, [1, 2, 8]) A100_PCIe_80GB = SystemClass("A100-PCIe-80GB", ["A100-PCIE-80GB"], ["PLACEHOLDER. REPLACE ME WITH ACTUAL PCI ID"], Architecture.Ampere, [1, 2, 8]) # Placeholder A100_SXM4_40GB = SystemClass("A100-SXM4-40GB", ["A100-SXM4-40GB"], ["20B0"], Architecture.Ampere, [1, 8], valid_mig_slices=[MIGSlice(1, 5), MIGSlice(2, 10), MIGSlice(3, 20)]) A100_SXM_80GB = SystemClass("A100-SXM-80GB", ["A100-SXM-80GB"], ["20B2"], Architecture.Ampere, [1, 4, 8], valid_mig_slices=[MIGSlice(1, 10), MIGSlice(2, 20), MIGSlice(3, 40)]) GeForceRTX_3080 = SystemClass("GeForceRTX3080", ["GeForce RTX 3080"], ["2206"], Architecture.Ampere, [1]) GeForceRTX_3090 = SystemClass("GeForceRTX3090", ["GeForce RTX 3090", "Quadro RTX A6000", "RTX A6000"], ["2204", "2230"], Architecture.Ampere, [1]) A10 = SystemClass("A10", ["A10"], ["2236"], Architecture.Ampere, [1, 8]) T4 = SystemClass("T4", ["Tesla T4", "T4 32GB"], ["1EB8", "1EB9"], Architecture.Turing, [1, 8, 20]) TitanRTX = SystemClass("TitanRTX", ["TITAN RTX", "Quadro RTX 8000", "Quadro RTX 6000"], ["1E02", "1E30", "1E36"], Architecture.Turing, [1, 4]) AGX_Xavier = SystemClass("AGX_Xavier", ["Jetson-AGX"], [], Architecture.Xavier, [1]) Xavier_NX = SystemClass("Xavier_NX", ["Xavier NX"], [], Architecture.Xavier, [1]) A30 = SystemClass("A30", ["A30"], ["20B7"], Architecture.Ampere, [1, 8], valid_mig_slices=[MIGSlice(1, 6), MIGSlice(2, 12), MIGSlice(4, 24)]) # CPU Systems Triton_CPU_2S_6258R = SystemClass("Triton_CPU_2S_6258R", ["2S_6258R"], [], Architecture.Intel_CPU_x86_64, [1]) Triton_CPU_4S_8380H = SystemClass("Triton_CPU_4S_8380H", ["4S_8380H"], [], Architecture.Intel_CPU_x86_64, [1]) @staticmethod def get_all_system_classes(): return [ getattr(KnownSystems, attr) for attr in dir(KnownSystems) if type(getattr(KnownSystems, attr)) == SystemClass ] @staticmethod def get_all_systems(): all_classes = KnownSystems.get_all_system_classes() all_systems = [] for system_class in all_classes: for count in system_class.supported_counts: all_systems.append(System(system_class.gpu, system_class.arch, count)) if count == 1 and system_class.valid_mig_slices is not None: for mig_slice in system_class.valid_mig_slices: conf = {"DummyGPU": {mig_slice: 1}} mig_conf = MIGConfiguration(conf) all_systems.append(System(system_class.gpu, system_class.arch, count, mig_conf=mig_conf)) # Special handling for 56 MIG DGX-A100 all_systems.append( System("A100-SXM-80GB", Architecture.Ampere, 8, mig_conf=MIGConfiguration({"DummyGPU": {MIGSlice(1, 10): 56}})) ) return all_systems
39.034483
165
0.612927
7943ffaee95bdd805e31f28e36ee6508a2e9d1cf
46,325
py
Python
mypy/server/update.py
TV4Fun/mypy
fe6fd1a10cd133fd6833ff64a68a27d0641820dc
[ "PSF-2.0" ]
null
null
null
mypy/server/update.py
TV4Fun/mypy
fe6fd1a10cd133fd6833ff64a68a27d0641820dc
[ "PSF-2.0" ]
null
null
null
mypy/server/update.py
TV4Fun/mypy
fe6fd1a10cd133fd6833ff64a68a27d0641820dc
[ "PSF-2.0" ]
null
null
null
"""Update build by processing changes using fine-grained dependencies. Use fine-grained dependencies to update targets in other modules that may be affected by externally-visible changes in the changed modules. This forms the core of the fine-grained incremental daemon mode. This module is not used at all by the 'classic' (non-daemon) incremental mode. Here is some motivation for this mode: * By keeping program state in memory between incremental runs, we only have to process changed modules, not their dependencies. The classic incremental mode has to deserialize the symbol tables of all dependencies of changed modules, which can be slow for large programs. * Fine-grained dependencies allow processing only the relevant parts of modules indirectly affected by a change. Say, if only one function in a large module is affected by a change in another module, only this function is processed. The classic incremental mode always processes an entire file as a unit, which is typically much slower. * It's possible to independently process individual modules within an import cycle (SCC). Small incremental changes can be fast independent of the size of the related SCC. In classic incremental mode, any change within a SCC requires the entire SCC to be processed, which can slow things down considerably. Some terms: * A *target* is a function/method definition or the top level of a module. We refer to targets using their fully qualified name (e.g. 'mod.Cls.method'). Targets are the smallest units of processing during fine-grained incremental checking. * A *trigger* represents the properties of a part of a program, and it gets triggered/fired when these properties change. For example, '<mod.func>' refers to a module-level function. It gets triggered if the signature of the function changes, or if the function is removed, for example. Some program state is maintained across multiple build increments in memory: * The full ASTs of all modules are stored in memory all the time (this includes the type map). * A fine-grained dependency map is maintained, which maps triggers to affected program locations (these can be targets, triggers, or classes). The latter determine what other parts of a program need to be processed again due to a fired trigger. Here's a summary of how a fine-grained incremental program update happens: * Determine which modules have changes in their source code since the previous update. * Process changed modules one at a time. Perform a separate full update for each changed module, but only report the errors after all modules have been processed, since the intermediate states can generate bogus errors due to only seeing a partial set of changes. * Each changed module is processed in full. We parse the module, and run semantic analysis to create a new AST and symbol table for the module. Reuse the existing ASTs and symbol tables of modules that have no changes in their source code. At the end of this stage, we have two ASTs and symbol tables for the changed module (the old and the new versions). The latter AST has not yet been type checked. * Take a snapshot of the old symbol table. This is used later to determine which properties of the module have changed and which triggers to fire. * Merge the old AST with the new AST, preserving the identities of externally visible AST nodes for which we can find a corresponding node in the new AST. (Look at mypy.server.astmerge for the details.) This way all external references to AST nodes in the changed module will continue to point to the right nodes (assuming they still have a valid target). * Type check the new module. * Take another snapshot of the symbol table of the changed module. Look at the differences between the old and new snapshots to determine which parts of the changed modules have changed. The result is a set of fired triggers. * Using the dependency map and the fired triggers, decide which other targets have become stale and need to be reprocessed. * Create new fine-grained dependencies for the changed module. We don't garbage collect old dependencies, since extra dependencies are relatively harmless (they take some memory and can theoretically slow things down a bit by causing redundant work). This is implemented in mypy.server.deps. * Strip the stale AST nodes that we found above. This returns them to a state resembling the end of semantic analysis pass 1. We'll run semantic analysis again on the existing AST nodes, and since semantic analysis is not idempotent, we need to revert some changes made during semantic analysis. This is implemented in mypy.server.aststrip. * Run semantic analyzer passes 2 and 3 on the stale AST nodes, and type check them. We also need to do the symbol table snapshot comparison dance to find any changes, and we need to merge ASTs to preserve AST node identities. * If some triggers haven been fired, continue processing and repeat the previous steps until no triggers are fired. This is module is tested using end-to-end fine-grained incremental mode test cases (test-data/unit/fine-grained*.test). """ import time from typing import ( Dict, List, Set, Tuple, Iterable, Union, Optional, NamedTuple, Callable, Sequence ) from mypy.build import ( BuildManager, State, BuildSource, BuildResult, Graph, load_graph, process_fresh_modules, DEBUG_FINE_GRAINED, ) from mypy.checker import FineGrainedDeferredNode from mypy.errors import CompileError from mypy.nodes import ( MypyFile, FuncDef, TypeInfo, SymbolNode, Decorator, OverloadedFuncDef, SymbolTable, LambdaExpr ) from mypy.options import Options from mypy.fscache import FileSystemCache from mypy.semanal import apply_semantic_analyzer_patches from mypy.server.astdiff import ( snapshot_symbol_table, compare_symbol_table_snapshots, SnapshotItem ) from mypy.server.astmerge import merge_asts from mypy.server.aststrip import strip_target from mypy.server.deps import get_dependencies_of_target from mypy.server.target import module_prefix, split_target from mypy.server.trigger import make_trigger, WILDCARD_TAG from mypy.typestate import TypeState MYPY = False if MYPY: from typing_extensions import Final MAX_ITER = 1000 # type: Final class FineGrainedBuildManager: def __init__(self, result: BuildResult) -> None: """Initialize fine-grained build based on a batch build. Args: result: Result from the initialized build. The manager and graph will be taken over by this class. manager: State of the build (mutated by this class) graph: Additional state of the build (mutated by this class) """ manager = result.manager self.manager = manager self.graph = result.graph self.previous_modules = get_module_to_path_map(self.graph) self.deps = get_all_dependencies(manager, self.graph) self.previous_targets_with_errors = manager.errors.targets() self.previous_messages = result.errors[:] # Module, if any, that had blocking errors in the last run as (id, path) tuple. self.blocking_error = None # type: Optional[Tuple[str, str]] # Module that we haven't processed yet but that are known to be stale. self.stale = [] # type: List[Tuple[str, str]] # Disable the cache so that load_graph doesn't try going back to disk # for the cache. self.manager.cache_enabled = False # Some hints to the test suite about what is going on: # Active triggers during the last update self.triggered = [] # type: List[str] # Modules passed to update during the last update self.changed_modules = [] # type: List[Tuple[str, str]] # Modules processed during the last update self.updated_modules = [] # type: List[str] def update(self, changed_modules: List[Tuple[str, str]], removed_modules: List[Tuple[str, str]]) -> List[str]: """Update previous build result by processing changed modules. Also propagate changes to other modules as needed, but only process those parts of other modules that are affected by the changes. Retain the existing ASTs and symbol tables of unaffected modules. Reuses original BuildManager and Graph. Args: changed_modules: Modules changed since the previous update/build; each is a (module id, path) tuple. Includes modified and added modules. Assume this is correct; it's not validated here. removed_modules: Modules that have been deleted since the previous update or removed from the build. Returns: A list of errors. """ changed_modules = changed_modules + removed_modules removed_set = {module for module, _ in removed_modules} self.changed_modules = changed_modules if not changed_modules: return self.previous_messages # Reset find_module's caches for the new build. self.manager.find_module_cache.clear() self.triggered = [] self.updated_modules = [] changed_modules = dedupe_modules(changed_modules + self.stale) initial_set = {id for id, _ in changed_modules} self.manager.log_fine_grained('==== update %s ====' % ', '.join( repr(id) for id, _ in changed_modules)) if self.previous_targets_with_errors and is_verbose(self.manager): self.manager.log_fine_grained('previous targets with errors: %s' % sorted(self.previous_targets_with_errors)) if self.blocking_error: # Handle blocking errors first. We'll exit as soon as we find a # module that still has blocking errors. self.manager.log_fine_grained('existing blocker: %s' % self.blocking_error[0]) changed_modules = dedupe_modules([self.blocking_error] + changed_modules) self.blocking_error = None while True: result = self.update_one(changed_modules, initial_set, removed_set) changed_modules, (next_id, next_path), blocker_messages = result if blocker_messages is not None: self.blocking_error = (next_id, next_path) self.stale = changed_modules messages = blocker_messages break # It looks like we are done processing everything, so now # reprocess all targets with errors. We are careful to # support the possibility that reprocessing an errored module # might trigger loading of a module, but I am not sure # if this can really happen. if not changed_modules: # N.B: We just checked next_id, so manager.errors contains # the errors from it. Thus we consider next_id up to date # when propagating changes from the errored targets, # which prevents us from reprocessing errors in it. changed_modules = propagate_changes_using_dependencies( self.manager, self.graph, self.deps, set(), {next_id}, self.previous_targets_with_errors) changed_modules = dedupe_modules(changed_modules) if not changed_modules: # Preserve state needed for the next update. self.previous_targets_with_errors = self.manager.errors.targets() messages = self.manager.errors.new_messages() break self.previous_messages = messages[:] return messages def update_one(self, changed_modules: List[Tuple[str, str]], initial_set: Set[str], removed_set: Set[str]) -> Tuple[List[Tuple[str, str]], Tuple[str, str], Optional[List[str]]]: """Process a module from the list of changed modules. Returns: Tuple with these items: - Updated list of pending changed modules as (module id, path) tuples - Module which was actually processed as (id, path) tuple - If there was a blocking error, the error messages from it """ t0 = time.time() next_id, next_path = changed_modules.pop(0) if next_id not in self.previous_modules and next_id not in initial_set: self.manager.log_fine_grained('skip %r (module not in import graph)' % next_id) return changed_modules, (next_id, next_path), None result = self.update_module(next_id, next_path, next_id in removed_set) remaining, (next_id, next_path), blocker_messages = result changed_modules = [(id, path) for id, path in changed_modules if id != next_id] changed_modules = dedupe_modules(remaining + changed_modules) t1 = time.time() self.manager.log_fine_grained( "update once: {} in {:.3f}s - {} left".format( next_id, t1 - t0, len(changed_modules))) return changed_modules, (next_id, next_path), blocker_messages def update_module(self, module: str, path: str, force_removed: bool) -> Tuple[List[Tuple[str, str]], Tuple[str, str], Optional[List[str]]]: """Update a single modified module. If the module contains imports of previously unseen modules, only process one of the new modules and return the remaining work to be done. Args: module: Id of the module path: File system path of the module force_removed: If True, consider module removed from the build even if path exists (used for removing an existing file from the build) Returns: Tuple with these items: - Remaining modules to process as (module id, path) tuples - Module which was actually processed as (id, path) tuple - If there was a blocking error, the error messages from it """ self.manager.log_fine_grained('--- update single %r ---' % module) self.updated_modules.append(module) manager = self.manager previous_modules = self.previous_modules graph = self.graph # If this is an already existing module, make sure that we have # its tree loaded so that we can snapshot it for comparison. ensure_trees_loaded(manager, graph, [module]) # Record symbol table snapshot of old version the changed module. old_snapshots = {} # type: Dict[str, Dict[str, SnapshotItem]] if module in manager.modules: snapshot = snapshot_symbol_table(module, manager.modules[module].names) old_snapshots[module] = snapshot manager.errors.reset() result = update_module_isolated(module, path, manager, previous_modules, graph, force_removed) if isinstance(result, BlockedUpdate): # Blocking error -- just give up module, path, remaining, errors = result self.previous_modules = get_module_to_path_map(graph) return remaining, (module, path), errors assert isinstance(result, NormalUpdate) # Work around #4124 module, path, remaining, tree = result # TODO: What to do with stale dependencies? triggered = calculate_active_triggers(manager, old_snapshots, {module: tree}) if is_verbose(self.manager): filtered = [trigger for trigger in triggered if not trigger.endswith('__>')] self.manager.log_fine_grained('triggered: %r' % sorted(filtered)) self.triggered.extend(triggered | self.previous_targets_with_errors) collect_dependencies([module], self.deps, graph) remaining += propagate_changes_using_dependencies( manager, graph, self.deps, triggered, {module}, targets_with_errors=set()) # Preserve state needed for the next update. self.previous_targets_with_errors.update(manager.errors.targets()) self.previous_modules = get_module_to_path_map(graph) return remaining, (module, path), None def find_unloaded_deps(manager: BuildManager, graph: Dict[str, State], initial: Sequence[str]) -> List[str]: """Find all the deps of the nodes in initial that haven't had their tree loaded. The key invariant here is that if a module is loaded, so are all of their dependencies. This means that when we encounter a loaded module, we don't need to explore its dependencies. (This invariant is slightly violated when dependencies are added, which can be handled by calling find_unloaded_deps directly on the new dependencies.) """ worklist = list(initial) seen = set() # type: Set[str] unloaded = [] while worklist: node = worklist.pop() if node in seen or node not in graph: continue seen.add(node) if node not in manager.modules: ancestors = graph[node].ancestors or [] worklist.extend(graph[node].dependencies + ancestors) unloaded.append(node) return unloaded def ensure_trees_loaded(manager: BuildManager, graph: Dict[str, State], initial: Sequence[str]) -> None: """Ensure that the modules in initial and their deps have loaded trees.""" to_process = find_unloaded_deps(manager, graph, initial) if to_process: if is_verbose(manager): manager.log_fine_grained("Calling process_fresh_modules on set of size {} ({})".format( len(to_process), sorted(to_process))) process_fresh_modules(graph, to_process, manager) def get_all_dependencies(manager: BuildManager, graph: Dict[str, State]) -> Dict[str, Set[str]]: """Return the fine-grained dependency map for an entire build.""" # Deps for each module were computed during build() or loaded from the cache. deps = {} # type: Dict[str, Set[str]] collect_dependencies(graph, deps, graph) TypeState.add_all_protocol_deps(deps) return deps # The result of update_module_isolated when no blockers, with these items: # # - Id of the changed module (can be different from the module argument) # - Path of the changed module # - New AST for the changed module (None if module was deleted) # - Remaining changed modules that are not processed yet as (module id, path) # tuples (non-empty if the original changed module imported other new # modules) NormalUpdate = NamedTuple('NormalUpdate', [('module', str), ('path', str), ('remaining', List[Tuple[str, str]]), ('tree', Optional[MypyFile])]) # The result of update_module_isolated when there is a blocking error. Items # are similar to NormalUpdate (but there are fewer). BlockedUpdate = NamedTuple('BlockedUpdate', [('module', str), ('path', str), ('remaining', List[Tuple[str, str]]), ('messages', List[str])]) UpdateResult = Union[NormalUpdate, BlockedUpdate] def update_module_isolated(module: str, path: str, manager: BuildManager, previous_modules: Dict[str, str], graph: Graph, force_removed: bool) -> UpdateResult: """Build a new version of one changed module only. Don't propagate changes to elsewhere in the program. Raise CompileError on encountering a blocking error. Args: module: Changed module (modified, created or deleted) path: Path of the changed module manager: Build manager graph: Build graph force_removed: If True, consider the module removed from the build even it the file exists Returns a named tuple describing the result (see above for details). """ if module not in graph: manager.log_fine_grained('new module %r' % module) if not manager.fscache.isfile(path) or force_removed: delete_module(module, path, graph, manager) return NormalUpdate(module, path, [], None) sources = get_sources(manager.fscache, previous_modules, [(module, path)]) if module in manager.missing_modules: manager.missing_modules.remove(module) orig_module = module orig_state = graph.get(module) orig_tree = manager.modules.get(module) def restore(ids: List[str]) -> None: # For each of the modules in ids, restore that id's old # manager.modules and graphs entries. (Except for the original # module, this means deleting them.) for id in ids: if id == orig_module and orig_tree: manager.modules[id] = orig_tree elif id in manager.modules: del manager.modules[id] if id == orig_module and orig_state: graph[id] = orig_state elif id in graph: del graph[id] new_modules = [] # type: List[State] try: if module in graph: del graph[module] load_graph(sources, manager, graph, new_modules) except CompileError as err: # Parse error somewhere in the program -- a blocker assert err.module_with_blocker restore([module] + [st.id for st in new_modules]) return BlockedUpdate(err.module_with_blocker, path, [], err.messages) # Reparsing the file may have brought in dependencies that we # didn't have before. Make sure that they are loaded to restore # the invariant that a module having a loaded tree implies that # its dependencies do as well. ensure_trees_loaded(manager, graph, graph[module].dependencies) # Find any other modules brought in by imports. changed_modules = [(st.id, st.xpath) for st in new_modules] # If there are multiple modules to process, only process one of them and return # the remaining ones to the caller. if len(changed_modules) > 1: # As an optimization, look for a module that imports no other changed modules. module, path = find_relative_leaf_module(changed_modules, graph) changed_modules.remove((module, path)) remaining_modules = changed_modules # The remaining modules haven't been processed yet so drop them. restore([id for id, _ in remaining_modules]) manager.log_fine_grained('--> %r (newly imported)' % module) else: remaining_modules = [] state = graph[module] # Process the changed file. state.parse_file() assert state.tree is not None, "file must be at least parsed" # TODO: state.fix_suppressed_dependencies()? if module == 'typing': # We need to manually add typing aliases to builtins, like we # do in process_stale_scc. Because this can't be done until # builtins is also loaded, there isn't an obvious way to # refactor this. manager.semantic_analyzer.add_builtin_aliases(state.tree) try: state.semantic_analysis() except CompileError as err: # There was a blocking error, so module AST is incomplete. Restore old modules. restore([module]) return BlockedUpdate(module, path, remaining_modules, err.messages) state.semantic_analysis_pass_three() state.semantic_analysis_apply_patches() # Merge old and new ASTs. new_modules_dict = {module: state.tree} # type: Dict[str, Optional[MypyFile]] replace_modules_with_new_variants(manager, graph, {orig_module: orig_tree}, new_modules_dict) # Perform type checking. state.type_checker().reset() state.type_check_first_pass() state.type_check_second_pass() state.compute_fine_grained_deps() state.finish_passes() graph[module] = state return NormalUpdate(module, path, remaining_modules, state.tree) def find_relative_leaf_module(modules: List[Tuple[str, str]], graph: Graph) -> Tuple[str, str]: """Find a module in a list that directly imports no other module in the list. If no such module exists, return the lexicographically first module from the list. Always return one of the items in the modules list. NOTE: If both 'abc' and 'typing' have changed, an effect of the above rule is that we prefer 'abc', even if both are in the same SCC. This works around a false positive in 'typing', at least in tests. Args: modules: List of (module, path) tuples (non-empty) graph: Program import graph that contains all modules in the module list """ assert modules # Sort for repeatable results. modules = sorted(modules) module_set = {module for module, _ in modules} for module, path in modules: state = graph[module] if len(set(state.dependencies) & module_set) == 0: # Found it! return module, path # Could not find any. Just return the first module (by lexicographic order). return modules[0] def delete_module(module_id: str, path: str, graph: Graph, manager: BuildManager) -> None: manager.log_fine_grained('delete module %r' % module_id) # TODO: Remove deps for the module (this only affects memory use, not correctness) if module_id in graph: del graph[module_id] if module_id in manager.modules: del manager.modules[module_id] components = module_id.split('.') if len(components) > 1: # Delete reference to module in parent module. parent_id = '.'.join(components[:-1]) # If parent module is ignored, it won't be included in the modules dictionary. if parent_id in manager.modules: parent = manager.modules[parent_id] if components[-1] in parent.names: del parent.names[components[-1]] # If the module is removed from the build but still exists, then # we mark it as missing so that it will get picked up by import from still. if manager.fscache.isfile(path): manager.missing_modules.add(module_id) def dedupe_modules(modules: List[Tuple[str, str]]) -> List[Tuple[str, str]]: seen = set() # type: Set[str] result = [] for id, path in modules: if id not in seen: seen.add(id) result.append((id, path)) return result def get_module_to_path_map(graph: Graph) -> Dict[str, str]: return {module: node.xpath for module, node in graph.items()} def get_sources(fscache: FileSystemCache, modules: Dict[str, str], changed_modules: List[Tuple[str, str]]) -> List[BuildSource]: sources = [] for id, path in changed_modules: if fscache.isfile(path): sources.append(BuildSource(path, id, None)) return sources def collect_dependencies(new_modules: Iterable[str], deps: Dict[str, Set[str]], graph: Dict[str, State]) -> None: for id in new_modules: if id not in graph: continue for trigger, targets in graph[id].fine_grained_deps.items(): deps.setdefault(trigger, set()).update(targets) # Merge also the newly added protocol deps. TypeState.update_protocol_deps(deps) def calculate_active_triggers(manager: BuildManager, old_snapshots: Dict[str, Dict[str, SnapshotItem]], new_modules: Dict[str, Optional[MypyFile]]) -> Set[str]: """Determine activated triggers by comparing old and new symbol tables. For example, if only the signature of function m.f is different in the new symbol table, return {'<m.f>'}. """ names = set() # type: Set[str] for id in new_modules: snapshot1 = old_snapshots.get(id) if snapshot1 is None: names.add(id) snapshot1 = {} new = new_modules[id] if new is None: snapshot2 = snapshot_symbol_table(id, SymbolTable()) names.add(id) else: snapshot2 = snapshot_symbol_table(id, new.names) diff = compare_symbol_table_snapshots(id, snapshot1, snapshot2) package_nesting_level = id.count('.') for item in diff.copy(): if (item.count('.') <= package_nesting_level + 1 and item.split('.')[-1] not in ('__builtins__', '__file__', '__name__', '__package__', '__doc__')): # Activate catch-all wildcard trigger for top-level module changes (used for # "from m import *"). This also gets triggered by changes to module-private # entries, but as these unneeded dependencies only result in extra processing, # it's a minor problem. # # TODO: Some __* names cause mistriggers. Fix the underlying issue instead of # special casing them here. diff.add(id + WILDCARD_TAG) if item.count('.') > package_nesting_level + 1: # These are for changes within classes, used by protocols. diff.add(item.rsplit('.', 1)[0] + WILDCARD_TAG) names |= diff return {make_trigger(name) for name in names} def replace_modules_with_new_variants( manager: BuildManager, graph: Dict[str, State], old_modules: Dict[str, Optional[MypyFile]], new_modules: Dict[str, Optional[MypyFile]]) -> None: """Replace modules with newly builds versions. Retain the identities of externally visible AST nodes in the old ASTs so that references to the affected modules from other modules will still be valid (unless something was deleted or replaced with an incompatible definition, in which case there will be dangling references that will be handled by propagate_changes_using_dependencies). """ for id in new_modules: preserved_module = old_modules.get(id) new_module = new_modules[id] if preserved_module and new_module is not None: merge_asts(preserved_module, preserved_module.names, new_module, new_module.names) manager.modules[id] = preserved_module graph[id].tree = preserved_module def propagate_changes_using_dependencies( manager: BuildManager, graph: Dict[str, State], deps: Dict[str, Set[str]], triggered: Set[str], up_to_date_modules: Set[str], targets_with_errors: Set[str]) -> List[Tuple[str, str]]: """Transitively rechecks targets based on triggers and the dependency map. Returns a list (module id, path) tuples representing modules that contain a target that needs to be reprocessed but that has not been parsed yet.""" num_iter = 0 remaining_modules = [] # type: List[Tuple[str, str]] # Propagate changes until nothing visible has changed during the last # iteration. while triggered or targets_with_errors: num_iter += 1 if num_iter > MAX_ITER: raise RuntimeError('Max number of iterations (%d) reached (endless loop?)' % MAX_ITER) todo, unloaded, stale_protos = find_targets_recursive(manager, graph, triggered, deps, up_to_date_modules) # TODO: we sort to make it deterministic, but this is *incredibly* ad hoc remaining_modules.extend((id, graph[id].xpath) for id in sorted(unloaded)) # Also process targets that used to have errors, as otherwise some # errors might be lost. for target in targets_with_errors: id = module_prefix(graph, target) if id is not None and id not in up_to_date_modules: if id not in todo: todo[id] = set() manager.log_fine_grained('process target with error: %s' % target) more_nodes, _ = lookup_target(manager, target) todo[id].update(more_nodes) triggered = set() # First invalidate subtype caches in all stale protocols. # We need to do this to avoid false negatives if the protocol itself is # unchanged, but was marked stale because its sub- (or super-) type changed. for info in stale_protos: TypeState.reset_subtype_caches_for(info) # Then fully reprocess all targets. # TODO: Preserve order (set is not optimal) for id, nodes in sorted(todo.items(), key=lambda x: x[0]): assert id not in up_to_date_modules triggered |= reprocess_nodes(manager, graph, id, nodes, deps) # Changes elsewhere may require us to reprocess modules that were # previously considered up to date. For example, there may be a # dependency loop that loops back to an originally processed module. up_to_date_modules = set() targets_with_errors = set() if is_verbose(manager): manager.log_fine_grained('triggered: %r' % list(triggered)) return remaining_modules def find_targets_recursive( manager: BuildManager, graph: Graph, triggers: Set[str], deps: Dict[str, Set[str]], up_to_date_modules: Set[str]) -> Tuple[Dict[str, Set[FineGrainedDeferredNode]], Set[str], Set[TypeInfo]]: """Find names of all targets that need to reprocessed, given some triggers. Returns: A tuple containing a: * Dictionary from module id to a set of stale targets. * A set of module ids for unparsed modules with stale targets. """ result = {} # type: Dict[str, Set[FineGrainedDeferredNode]] worklist = triggers processed = set() # type: Set[str] stale_protos = set() # type: Set[TypeInfo] unloaded_files = set() # type: Set[str] # Find AST nodes corresponding to each target. # # TODO: Don't rely on a set, since the items are in an unpredictable order. while worklist: processed |= worklist current = worklist worklist = set() for target in current: if target.startswith('<'): worklist |= deps.get(target, set()) - processed else: module_id = module_prefix(graph, target) if module_id is None: # Deleted module. continue if module_id in up_to_date_modules: # Already processed. continue if (module_id not in manager.modules or manager.modules[module_id].is_cache_skeleton): # We haven't actually parsed and checked the module, so we don't have # access to the actual nodes. # Add it to the queue of files that need to be processed fully. unloaded_files.add(module_id) continue if module_id not in result: result[module_id] = set() manager.log_fine_grained('process: %s' % target) deferred, stale_proto = lookup_target(manager, target) if stale_proto: stale_protos.add(stale_proto) result[module_id].update(deferred) return result, unloaded_files, stale_protos def reprocess_nodes(manager: BuildManager, graph: Dict[str, State], module_id: str, nodeset: Set[FineGrainedDeferredNode], deps: Dict[str, Set[str]]) -> Set[str]: """Reprocess a set of nodes within a single module. Return fired triggers. """ if module_id not in graph: manager.log_fine_grained('%s not in graph (blocking errors or deleted?)' % module_id) return set() file_node = manager.modules[module_id] old_symbols = find_symbol_tables_recursive(file_node.fullname(), file_node.names) old_symbols = {name: names.copy() for name, names in old_symbols.items()} old_symbols_snapshot = snapshot_symbol_table(file_node.fullname(), file_node.names) def key(node: FineGrainedDeferredNode) -> int: # Unlike modules which are sorted by name within SCC, # nodes within the same module are sorted by line number, because # this is how they are processed in normal mode. return node.node.line nodes = sorted(nodeset, key=key) options = graph[module_id].options manager.errors.set_file_ignored_lines( file_node.path, file_node.ignored_lines, options.ignore_errors) targets = set() for node in nodes: target = target_from_node(module_id, node.node) if target is not None: targets.add(target) manager.errors.clear_errors_in_targets(file_node.path, targets) # Strip semantic analysis information. for deferred in nodes: strip_target(deferred.node) semantic_analyzer = manager.semantic_analyzer patches = [] # type: List[Tuple[int, Callable[[], None]]] # Second pass of semantic analysis. We don't redo the first pass, because it only # does local things that won't go stale. for deferred in nodes: with semantic_analyzer.file_context( file_node=file_node, fnam=file_node.path, options=options, active_type=deferred.active_typeinfo): manager.semantic_analyzer.refresh_partial(deferred.node, patches) # Third pass of semantic analysis. for deferred in nodes: with semantic_analyzer.file_context( file_node=file_node, fnam=file_node.path, options=options, active_type=deferred.active_typeinfo, scope=manager.semantic_analyzer_pass3.scope): manager.semantic_analyzer_pass3.refresh_partial(deferred.node, patches) with semantic_analyzer.file_context( file_node=file_node, fnam=file_node.path, options=options, active_type=None): apply_semantic_analyzer_patches(patches) # Merge symbol tables to preserve identities of AST nodes. The file node will remain # the same, but other nodes may have been recreated with different identities, such as # NamedTuples defined using assignment statements. new_symbols = find_symbol_tables_recursive(file_node.fullname(), file_node.names) for name in old_symbols: if name in new_symbols: merge_asts(file_node, old_symbols[name], file_node, new_symbols[name]) # Type check. checker = graph[module_id].type_checker() checker.reset() # We seem to need additional passes in fine-grained incremental mode. checker.pass_num = 0 checker.last_pass = 3 more = checker.check_second_pass(nodes) while more: more = False if graph[module_id].type_checker().check_second_pass(): more = True new_symbols_snapshot = snapshot_symbol_table(file_node.fullname(), file_node.names) # Check if any attribute types were changed and need to be propagated further. changed = compare_symbol_table_snapshots(file_node.fullname(), old_symbols_snapshot, new_symbols_snapshot) new_triggered = {make_trigger(name) for name in changed} # Dependencies may have changed. update_deps(module_id, nodes, graph, deps, options) # Report missing imports. graph[module_id].verify_dependencies() return new_triggered def find_symbol_tables_recursive(prefix: str, symbols: SymbolTable) -> Dict[str, SymbolTable]: """Find all nested symbol tables. Args: prefix: Full name prefix (used for return value keys and to filter result so that cross references to other modules aren't included) symbols: Root symbol table Returns a dictionary from full name to corresponding symbol table. """ result = {} result[prefix] = symbols for name, node in symbols.items(): if isinstance(node.node, TypeInfo) and node.node.fullname().startswith(prefix + '.'): more = find_symbol_tables_recursive(prefix + '.' + name, node.node.names) result.update(more) return result def update_deps(module_id: str, nodes: List[FineGrainedDeferredNode], graph: Dict[str, State], deps: Dict[str, Set[str]], options: Options) -> None: for deferred in nodes: node = deferred.node type_map = graph[module_id].type_map() tree = graph[module_id].tree assert tree is not None, "Tree must be processed at this stage" new_deps = get_dependencies_of_target(module_id, tree, node, type_map, options.python_version) for trigger, targets in new_deps.items(): deps.setdefault(trigger, set()).update(targets) # Merge also the newly added protocol deps (if any). TypeState.update_protocol_deps(deps) def lookup_target(manager: BuildManager, target: str) -> Tuple[List[FineGrainedDeferredNode], Optional[TypeInfo]]: """Look up a target by fully-qualified name. The first item in the return tuple is a list of deferred nodes that needs to be reprocessed. If the target represents a TypeInfo corresponding to a protocol, return it as a second item in the return tuple, otherwise None. """ def not_found() -> None: manager.log_fine_grained( "Can't find matching target for %s (stale dependency?)" % target) modules = manager.modules items = split_target(modules, target) if items is None: not_found() # Stale dependency return [], None module, rest = items if rest: components = rest.split('.') else: components = [] node = modules[module] # type: Optional[SymbolNode] file = None # type: Optional[MypyFile] active_class = None active_class_name = None for c in components: if isinstance(node, TypeInfo): active_class = node active_class_name = node.name() if isinstance(node, MypyFile): file = node if (not isinstance(node, (MypyFile, TypeInfo)) or c not in node.names): not_found() # Stale dependency return [], None node = node.names[c].node if isinstance(node, TypeInfo): # A ClassDef target covers the body of the class and everything defined # within it. To get the body we include the entire surrounding target, # typically a module top-level, since we don't support processing class # bodies as separate entitites for simplicity. assert file is not None if node.fullname() != target: # This is a reference to a different TypeInfo, likely due to a stale dependency. # Processing them would spell trouble -- for example, we could be refreshing # a deserialized TypeInfo with missing attributes. not_found() return [], None result = [FineGrainedDeferredNode(file, None, None)] stale_info = None # type: Optional[TypeInfo] if node.is_protocol: stale_info = node for name, symnode in node.names.items(): node = symnode.node if isinstance(node, FuncDef): method, _ = lookup_target(manager, target + '.' + name) result.extend(method) return result, stale_info if isinstance(node, Decorator): # Decorator targets actually refer to the function definition only. node = node.func if not isinstance(node, (FuncDef, MypyFile, OverloadedFuncDef)): # The target can't be refreshed. It's possible that the target was # changed to another type and we have a stale dependency pointing to it. not_found() return [], None if node.fullname() != target: # Stale reference points to something unexpected. We shouldn't process since the # context will be wrong and it could be a partially initialized deserialized node. not_found() return [], None return [FineGrainedDeferredNode(node, active_class_name, active_class)], None def is_verbose(manager: BuildManager) -> bool: return manager.options.verbosity >= 1 or DEBUG_FINE_GRAINED def target_from_node(module: str, node: Union[FuncDef, MypyFile, OverloadedFuncDef] ) -> Optional[str]: """Return the target name corresponding to a deferred node. Args: module: Must be module id of the module that defines 'node' Returns the target name, or None if the node is not a valid target in the given module (for example, if it's actually defined in another module). """ if isinstance(node, MypyFile): if module != node.fullname(): # Actually a reference to another module -- likely a stale dependency. return None return module else: # OverloadedFuncDef or FuncDef if node.info: return '%s.%s' % (node.info.fullname(), node.name()) else: return '%s.%s' % (module, node.name())
42.853839
99
0.645764
7943ffc8ab0856d150d1fb00f818988d33b17352
1,031
py
Python
voice100/train_ttsalign.py
kaiidams/voice100-tts
75cbf185ef7ef80a38db382ffe61a1e100474f6c
[ "MIT" ]
6
2021-11-05T17:50:44.000Z
2022-03-07T23:13:15.000Z
voice100/train_ttsalign.py
kaiidams/voice100-tts
75cbf185ef7ef80a38db382ffe61a1e100474f6c
[ "MIT" ]
1
2022-01-18T13:26:22.000Z
2022-03-18T11:23:02.000Z
voice100/train_ttsalign.py
kaiidams/voice100-tts
75cbf185ef7ef80a38db382ffe61a1e100474f6c
[ "MIT" ]
1
2022-01-03T05:20:09.000Z
2022-01-03T05:20:09.000Z
# Copyright (C) 2021 Katsuya Iida. All rights reserved. from argparse import ArgumentParser import pytorch_lightning as pl from pytorch_lightning.callbacks import ModelCheckpoint from .datasets import AlignTextDataModule from .models.tts import TextToAlignTextModel def cli_main(): pl.seed_everything(1234) parser = ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = AlignTextDataModule.add_argparse_args(parser) parser = TextToAlignTextModel.add_model_specific_args(parser) parser.set_defaults(log_every_n_steps=10) args = parser.parse_args() data: AlignTextDataModule = AlignTextDataModule.from_argparse_args(args) model = TextToAlignTextModel.from_argparse_args(args, vocab_size=data.vocab_size) checkpoint_callback = ModelCheckpoint(monitor='val_loss', save_last=True, every_n_epochs=10) trainer = pl.Trainer.from_argparse_args( args, callbacks=[checkpoint_callback]) trainer.fit(model, data) if __name__ == '__main__': cli_main()
33.258065
96
0.777886
7943ffc8c90a633fdfe0c8b3dd369055b0746c72
3,983
py
Python
modeling/smd/evaluate.py
HLTCHKUST/ke-dialogue
cb73237889860adedcfd381b28813feb267cef81
[ "MIT" ]
41
2020-10-05T05:57:08.000Z
2021-12-20T12:07:42.000Z
modeling/smd/evaluate.py
HLTCHKUST/ke-dialogue
cb73237889860adedcfd381b28813feb267cef81
[ "MIT" ]
5
2021-03-15T09:34:39.000Z
2022-02-10T16:02:23.000Z
modeling/smd/evaluate.py
HLTCHKUST/ke-dialogue
cb73237889860adedcfd381b28813feb267cef81
[ "MIT" ]
4
2020-10-19T08:10:43.000Z
2021-11-09T13:06:24.000Z
import os import os.path import sys sys.path.append('../..') from utils.preprocessSMD import load_SMD from transformers import (AdamW,WEIGHTS_NAME, CONFIG_NAME) from utils.hugging_face import load_model,get_parser,top_filtering, SPECIAL_TOKENS, add_special_tokens_, average_distributed_scalar, make_logdir, build_input_from_segments,add_token_bAbI from argparse import ArgumentParser import torch import torch.nn.functional as F from ignite.engine import Engine, Events from ignite.handlers import ModelCheckpoint from ignite.metrics import Accuracy, Loss, MetricsLambda, RunningAverage from ignite.contrib.handlers import ProgressBar, PiecewiseLinear from ignite.contrib.handlers.tensorboard_logger import TensorboardLogger, OutputHandler, OptimizerParamsHandler import math from pprint import pformat import random from utils.eval_metrics import moses_multi_bleu, compute_prf, compute_prf_SMD import numpy as np from tqdm import tqdm import warnings import json import jsonlines from collections import defaultdict def sample_sequence(history, graph,tokenizer, model, args, current_output=None): special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS) padding = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS[-1]) if current_output is None: current_output = [] if(args.flatten_KB): history += graph['edges'] for i in range(args.max_length): instance = build_input_from_segments(args,history,current_output,graph,tokenizer, with_eos=False) input_ids = torch.tensor(instance["input_ids"], device=args.device).unsqueeze(0) token_type_ids = torch.tensor(instance["token_type_ids"], device=args.device).unsqueeze(0) nodes_ids = None if (args.graph or args.edge_list) and len(instance["input_graph_ids"])>0: max_c = max(len(col) for col in instance["input_graph_ids"]) temp = [] for clmn in instance["input_graph_ids"]: temp.append(clmn + [padding] * (max_c - len(clmn))) nodes_ids = torch.tensor([temp], device=args.device) att_mask = None logits = model(input_ids, token_type_ids=token_type_ids, nodes=nodes_ids, attention_mask=att_mask) if isinstance(logits, tuple): # for gpt2 and maybe others logits = logits[0] logits = logits[0, -1, :] / args.temperature logits = top_filtering(logits, top_k=args.top_k, top_p=args.top_p) probs = F.softmax(logits, dim=-1) prev = torch.topk(probs, 1)[1] if args.no_sample else torch.multinomial(probs, 1) if i < args.min_length and prev.item() in special_tokens_ids: while prev.item() in special_tokens_ids: if probs.max().item() == 1: warnings.warn("Warning: model generating special token with probability 1.") break # avoid infinitely looping over special token prev = torch.multinomial(probs, num_samples=1) if prev.item() in special_tokens_ids: break current_output.append(prev.item()) return current_output if __name__ == "__main__": args = get_parser() random.seed(args.seed) torch.random.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) # Get model and tokenizer model, tokenizer = load_model(args,load=True) print("Load Data") test, _ = load_SMD(args, tokenizer, test_flag=True) j_output = defaultdict(list) for i, conv in tqdm(enumerate(test),total=len(test)): for sample in conv['dialogue']: out_ids = sample_sequence(sample['history'],sample["graph"] if args.dataset == "DIALKG" else conv,tokenizer, model, args) out_text = tokenizer.decode(out_ids, skip_special_tokens=True) j_output[conv["id"]].append({"spk":sample['spk'],"text":out_text}) with open(args.model_checkpoint+'/result.json', 'w') as fp: json.dump(j_output, fp, indent=4)
41.061856
186
0.700979
79440198714278fd7eb88e05b352e35fe01e7fd0
1,058
py
Python
cdc/util/json.py
pastly/craps-dice-control
f6f69c9220dffd5f7e2ef07c929b15b4a73bdd13
[ "FSFAP" ]
null
null
null
cdc/util/json.py
pastly/craps-dice-control
f6f69c9220dffd5f7e2ef07c929b15b4a73bdd13
[ "FSFAP" ]
8
2019-03-14T18:46:34.000Z
2019-05-09T02:11:17.000Z
cdc/util/json.py
pastly/craps-dice-control
f6f69c9220dffd5f7e2ef07c929b15b4a73bdd13
[ "FSFAP" ]
null
null
null
import json class NumericKeyDecoder(json.JSONDecoder): ''' Python allows ints to be keys in a dict but JSON doesn't. It's nice to be able to use ints as keys in dicts, so parse numeric-looking keys in the given JSON into their numeric types. ''' def decode(self, s): res = super().decode(s) return self._decode(res) def _decode(self, o): if isinstance(o, dict): d = {} for k, v in o.items(): try: int(k) except ValueError: pass else: d[int(k)] = self._decode(v) continue try: float(k) except ValueError: pass else: d[float(k)] = self._decode(v) continue d[k] = self._decode(v) return d elif isinstance(o, list): return [self._decode(l) for l in o] else: return o
29.388889
78
0.44896
7944022c75b51c0a22a5ed82eb29c63240b69f29
77
py
Python
twilio/__init__.py
soyandreav/twilio-python
9accbc8b0932fdf3d024dc4c5429aa26469d8ac2
[ "MIT" ]
null
null
null
twilio/__init__.py
soyandreav/twilio-python
9accbc8b0932fdf3d024dc4c5429aa26469d8ac2
[ "MIT" ]
null
null
null
twilio/__init__.py
soyandreav/twilio-python
9accbc8b0932fdf3d024dc4c5429aa26469d8ac2
[ "MIT" ]
null
null
null
__version_info__ = ('7', '3', '1') __version__ = '.'.join(__version_info__)
19.25
40
0.649351
79440257968033a2792c9a48342936d27a288a39
247,091
py
Python
blender_bindings/source1/bsp/entities/left4dead2_entity_classes.py
anderlli0053/SourceIO
3c0c4839939ce698439987ac52154f89ee2f5341
[ "MIT" ]
199
2019-04-02T02:30:58.000Z
2022-03-30T21:29:49.000Z
source1/bsp/entities/left4dead2_entity_classes.py
syborg64/SourceIO
e4ba86d801f518e192260af08ef533759c2e1cc3
[ "MIT" ]
113
2019-03-03T19:36:25.000Z
2022-03-31T19:44:05.000Z
source1/bsp/entities/left4dead2_entity_classes.py
syborg64/SourceIO
e4ba86d801f518e192260af08ef533759c2e1cc3
[ "MIT" ]
38
2019-05-15T16:49:30.000Z
2022-03-22T03:40:43.000Z
def parse_source_value(value): if type(value) is str: value: str if value.replace('.', '', 1).replace('-', '', 1).isdecimal(): return float(value) if '.' in value else int(value) return 0 else: return value def parse_int_vector(string): return [parse_source_value(val) for val in string.replace(' ', ' ').split(' ')] def parse_float_vector(string): return [float(val) for val in string.replace(' ', ' ').split(' ')] class Base: hammer_id_counter = 0 def __init__(self, entity_data: dict): self._hammer_id = -1 self._raw_data = entity_data @classmethod def new_hammer_id(cls): new_id = cls.hammer_id_counter cls.hammer_id_counter += 1 return new_id @property def class_name(self): return self._raw_data.get('classname') @property def hammer_id(self): if self._hammer_id == -1: if 'hammerid' in self._raw_data: self._hammer_id = int(self._raw_data.get('hammerid')) else: # Titanfall self._hammer_id = Base.new_hammer_id() return self._hammer_id class Angles(Base): @property def angles(self): return parse_float_vector(self._raw_data.get('angles', "0 0 0")) class Origin(Base): @property def origin(self): return parse_float_vector(self._raw_data.get('origin', None)) class Studiomodel(Base): @property def model(self): return self._raw_data.get('model', None) @property def skin(self): return parse_source_value(self._raw_data.get('skin', 0)) @property def body(self): return parse_source_value(self._raw_data.get('body', 0)) @property def disableshadows(self): return self._raw_data.get('disableshadows', "0") class BasePlat(Base): pass class Targetname(Base): @property def targetname(self): return self._raw_data.get('targetname', None) @property def vscripts(self): return self._raw_data.get('vscripts', "") @property def thinkfunction(self): return self._raw_data.get('thinkfunction', "") class Parentname(Base): @property def parentname(self): return self._raw_data.get('parentname', None) class BaseBrush(Base): pass class EnableDisable(Base): @property def StartDisabled(self): return self._raw_data.get('startdisabled', "0") class RenderFxChoices(Base): @property def renderfx(self): return self._raw_data.get('renderfx', "0") class Shadow(Base): @property def disableshadows(self): return self._raw_data.get('disableshadows', "0") class Glow(Base): @property def glowstate(self): return self._raw_data.get('glowstate', "0") @property def glowrange(self): return parse_source_value(self._raw_data.get('glowrange', 0)) @property def glowrangemin(self): return parse_source_value(self._raw_data.get('glowrangemin', 0)) @property def glowcolor(self): return parse_int_vector(self._raw_data.get('glowcolor', "0 0 0")) class SystemLevelChoice(Base): @property def mincpulevel(self): return self._raw_data.get('mincpulevel', "0") @property def maxcpulevel(self): return self._raw_data.get('maxcpulevel', "0") @property def mingpulevel(self): return self._raw_data.get('mingpulevel', "0") @property def maxgpulevel(self): return self._raw_data.get('maxgpulevel', "0") @property def disableX360(self): return self._raw_data.get('disablex360', "0") class RenderFields(RenderFxChoices, SystemLevelChoice): @property def rendermode(self): return self._raw_data.get('rendermode', "0") @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def disablereceiveshadows(self): return self._raw_data.get('disablereceiveshadows', "0") @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', -1)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 0)) @property def fadescale(self): return parse_source_value(self._raw_data.get('fadescale', 1)) class Inputfilter(Base): @property def InputFilter(self): return self._raw_data.get('inputfilter', "0") class Global(Base): @property def globalname(self): return self._raw_data.get('globalname', "") class EnvGlobal(Targetname): @property def initialstate(self): return self._raw_data.get('initialstate', "0") @property def counter(self): return parse_source_value(self._raw_data.get('counter', 0)) class DamageFilter(Base): @property def damagefilter(self): return self._raw_data.get('damagefilter', "") class ResponseContext(Base): @property def ResponseContext(self): return self._raw_data.get('responsecontext', "") class Breakable(DamageFilter, Shadow, Targetname): @property def ExplodeDamage(self): return parse_source_value(self._raw_data.get('explodedamage', 0)) @property def ExplodeRadius(self): return parse_source_value(self._raw_data.get('exploderadius', 0)) @property def PerformanceMode(self): return self._raw_data.get('performancemode', "0") class BreakableBrush(Breakable, Parentname, Global): @property def propdata(self): return self._raw_data.get('propdata', "0") @property def health(self): return parse_source_value(self._raw_data.get('health', 1)) @property def material(self): return self._raw_data.get('material', "0") @property def explosion(self): return self._raw_data.get('explosion', "0") @property def gibdir(self): return parse_float_vector(self._raw_data.get('gibdir', "0 0 0")) @property def nodamageforces(self): return self._raw_data.get('nodamageforces', "0") @property def gibmodel(self): return self._raw_data.get('gibmodel', "") @property def spawnobject(self): return self._raw_data.get('spawnobject', "0") @property def explodemagnitude(self): return parse_source_value(self._raw_data.get('explodemagnitude', 0)) @property def pressuredelay(self): return parse_source_value(self._raw_data.get('pressuredelay', 0)) class BreakableProp(Breakable): @property def pressuredelay(self): return parse_source_value(self._raw_data.get('pressuredelay', 0)) class BaseNPC(Shadow, DamageFilter, Angles, RenderFields, ResponseContext, Targetname): @property def target(self): return self._raw_data.get('target', None) @property def squadname(self): return self._raw_data.get('squadname', None) @property def hintgroup(self): return self._raw_data.get('hintgroup', "") @property def hintlimiting(self): return self._raw_data.get('hintlimiting', "0") @property def sleepstate(self): return self._raw_data.get('sleepstate', "0") @property def wakeradius(self): return parse_source_value(self._raw_data.get('wakeradius', 0)) @property def wakesquad(self): return self._raw_data.get('wakesquad', "0") @property def enemyfilter(self): return self._raw_data.get('enemyfilter', "") @property def ignoreunseenenemies(self): return self._raw_data.get('ignoreunseenenemies', "0") @property def physdamagescale(self): return parse_source_value(self._raw_data.get('physdamagescale', 1.0)) class info_npc_spawn_destination(Parentname, Angles, Targetname): icon_sprite = "editor/info_target.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def ReuseDelay(self): return parse_source_value(self._raw_data.get('reusedelay', 1)) @property def RenameNPC(self): return self._raw_data.get('renamenpc', "") class BaseNPCMaker(Angles, EnableDisable, Targetname): icon_sprite = "editor/npc_maker.vmt" @property def MaxNPCCount(self): return parse_source_value(self._raw_data.get('maxnpccount', 1)) @property def SpawnFrequency(self): return self._raw_data.get('spawnfrequency', "5") @property def MaxLiveChildren(self): return parse_source_value(self._raw_data.get('maxlivechildren', 5)) class npc_template_maker(BaseNPCMaker): icon_sprite = "editor/npc_maker.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def TemplateName(self): return self._raw_data.get('templatename', "") @property def Radius(self): return parse_source_value(self._raw_data.get('radius', 256)) @property def DestinationGroup(self): return self._raw_data.get('destinationgroup', None) @property def CriterionVisibility(self): return self._raw_data.get('criterionvisibility', "2") @property def CriterionDistance(self): return self._raw_data.get('criteriondistance', "2") @property def MinSpawnDistance(self): return parse_source_value(self._raw_data.get('minspawndistance', 0)) class BaseHelicopter(BaseNPC): @property def InitialSpeed(self): return self._raw_data.get('initialspeed', "0") class PlayerClass(Base): pass class Light(Base): @property def _light(self): return parse_int_vector(self._raw_data.get('_light', "255 255 255 200")) @property def _lightHDR(self): return parse_int_vector(self._raw_data.get('_lighthdr', "-1 -1 -1 1")) @property def _lightscaleHDR(self): return parse_source_value(self._raw_data.get('_lightscalehdr', 0.5)) @property def style(self): return self._raw_data.get('style', "0") @property def pattern(self): return self._raw_data.get('pattern', "") @property def _constant_attn(self): return self._raw_data.get('_constant_attn', "0") @property def _linear_attn(self): return self._raw_data.get('_linear_attn', "0") @property def _quadratic_attn(self): return self._raw_data.get('_quadratic_attn', "1") @property def _fifty_percent_distance(self): return self._raw_data.get('_fifty_percent_distance', "0") @property def _zero_percent_distance(self): return self._raw_data.get('_zero_percent_distance', "0") @property def _hardfalloff(self): return parse_source_value(self._raw_data.get('_hardfalloff', 0)) @property def _castentityshadow(self): return self._raw_data.get('_castentityshadow', "1") @property def _shadoworiginoffset(self): return parse_float_vector(self._raw_data.get('_shadoworiginoffset', "0 0 0")) class Node(Base): @property def nodeid(self): return parse_source_value(self._raw_data.get('nodeid', None)) class HintNode(Node): @property def hinttype(self): return self._raw_data.get('hinttype', "0") @property def hintactivity(self): return self._raw_data.get('hintactivity', "") @property def nodeFOV(self): return self._raw_data.get('nodefov', "180") @property def StartHintDisabled(self): return self._raw_data.get('starthintdisabled', "0") @property def Group(self): return self._raw_data.get('group', "") @property def TargetNode(self): return parse_source_value(self._raw_data.get('targetnode', -1)) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 0)) @property def IgnoreFacing(self): return self._raw_data.get('ignorefacing', "2") @property def MinimumState(self): return self._raw_data.get('minimumstate', "1") @property def MaximumState(self): return self._raw_data.get('maximumstate', "3") class TriggerOnce(Parentname, Global, EnableDisable, Origin, Targetname): @property def filtername(self): return self._raw_data.get('filtername', None) class Trigger(TriggerOnce): pass class worldbase(Base): @property def message(self): return self._raw_data.get('message', None) @property def skyname(self): return self._raw_data.get('skyname', "sky_l4d_rural02_hdr") @property def chaptertitle(self): return self._raw_data.get('chaptertitle', "") @property def startdark(self): return self._raw_data.get('startdark', "0") @property def gametitle(self): return self._raw_data.get('gametitle', "0") @property def newunit(self): return self._raw_data.get('newunit', "0") @property def maxoccludeearea(self): return parse_source_value(self._raw_data.get('maxoccludeearea', 0)) @property def minoccluderarea(self): return parse_source_value(self._raw_data.get('minoccluderarea', 0)) @property def maxoccludeearea_x360(self): return parse_source_value(self._raw_data.get('maxoccludeearea_x360', 0)) @property def minoccluderarea_x360(self): return parse_source_value(self._raw_data.get('minoccluderarea_x360', 0)) @property def maxpropscreenwidth(self): return parse_source_value(self._raw_data.get('maxpropscreenwidth', -1)) @property def minpropscreenwidth(self): return parse_source_value(self._raw_data.get('minpropscreenwidth', 0)) @property def detailvbsp(self): return self._raw_data.get('detailvbsp', "detail.vbsp") @property def detailmaterial(self): return self._raw_data.get('detailmaterial', "detail/detailsprites") @property def coldworld(self): return self._raw_data.get('coldworld', "0") @property def timeofday(self): return self._raw_data.get('timeofday', "0") @property def startmusictype(self): return self._raw_data.get('startmusictype', "0") @property def musicpostfix(self): return self._raw_data.get('musicpostfix', "Waterfront") class worldspawn(ResponseContext, worldbase, Targetname): pass class ambient_generic(Targetname): icon_sprite = "editor/ambient_generic.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', "") @property def health(self): return parse_source_value(self._raw_data.get('health', 10)) @property def preset(self): return self._raw_data.get('preset', "0") @property def volstart(self): return parse_source_value(self._raw_data.get('volstart', 0)) @property def fadeinsecs(self): return parse_source_value(self._raw_data.get('fadeinsecs', 0)) @property def fadeoutsecs(self): return parse_source_value(self._raw_data.get('fadeoutsecs', 0)) @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', 100)) @property def pitchstart(self): return parse_source_value(self._raw_data.get('pitchstart', 100)) @property def spinup(self): return parse_source_value(self._raw_data.get('spinup', 0)) @property def spindown(self): return parse_source_value(self._raw_data.get('spindown', 0)) @property def lfotype(self): return parse_source_value(self._raw_data.get('lfotype', 0)) @property def lforate(self): return parse_source_value(self._raw_data.get('lforate', 0)) @property def lfomodpitch(self): return parse_source_value(self._raw_data.get('lfomodpitch', 0)) @property def lfomodvol(self): return parse_source_value(self._raw_data.get('lfomodvol', 0)) @property def cspinup(self): return parse_source_value(self._raw_data.get('cspinup', 0)) @property def radius(self): return self._raw_data.get('radius', "1250") @property def SourceEntityName(self): return self._raw_data.get('sourceentityname', None) class ambient_music(Targetname): icon_sprite = "editor/ambient_generic.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', "") class sound_mix_layer(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MixLayerName(self): return self._raw_data.get('mixlayername', "") @property def Level(self): return parse_source_value(self._raw_data.get('level', 0.0)) class func_lod(Targetname): @property def DisappearMinDist(self): return parse_source_value(self._raw_data.get('disappearmindist', 2000)) @property def DisappearMaxDist(self): return parse_source_value(self._raw_data.get('disappearmaxdist', 2200)) @property def Solid(self): return self._raw_data.get('solid', "0") class env_zoom(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Rate(self): return parse_source_value(self._raw_data.get('rate', 1.0)) @property def FOV(self): return parse_source_value(self._raw_data.get('fov', 75)) class env_screenoverlay(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def OverlayName1(self): return self._raw_data.get('overlayname1', "") @property def OverlayTime1(self): return parse_source_value(self._raw_data.get('overlaytime1', 1.0)) @property def OverlayName2(self): return self._raw_data.get('overlayname2', "") @property def OverlayTime2(self): return parse_source_value(self._raw_data.get('overlaytime2', 1.0)) @property def OverlayName3(self): return self._raw_data.get('overlayname3', "") @property def OverlayTime3(self): return parse_source_value(self._raw_data.get('overlaytime3', 1.0)) @property def OverlayName4(self): return self._raw_data.get('overlayname4', "") @property def OverlayTime4(self): return parse_source_value(self._raw_data.get('overlaytime4', 1.0)) @property def OverlayName5(self): return self._raw_data.get('overlayname5', "") @property def OverlayTime5(self): return parse_source_value(self._raw_data.get('overlaytime5', 1.0)) @property def OverlayName6(self): return self._raw_data.get('overlayname6', "") @property def OverlayTime6(self): return parse_source_value(self._raw_data.get('overlaytime6', 1.0)) @property def OverlayName7(self): return self._raw_data.get('overlayname7', "") @property def OverlayTime7(self): return parse_source_value(self._raw_data.get('overlaytime7', 1.0)) @property def OverlayName8(self): return self._raw_data.get('overlayname8', "") @property def OverlayTime8(self): return parse_source_value(self._raw_data.get('overlaytime8', 1.0)) @property def OverlayName9(self): return self._raw_data.get('overlayname9', "") @property def OverlayTime9(self): return parse_source_value(self._raw_data.get('overlaytime9', 1.0)) @property def OverlayName10(self): return self._raw_data.get('overlayname10', "") @property def OverlayTime10(self): return parse_source_value(self._raw_data.get('overlaytime10', 1.0)) class env_screeneffect(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def type(self): return self._raw_data.get('type', "0") class env_texturetoggle(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class env_splash(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def scale(self): return parse_source_value(self._raw_data.get('scale', 8.0)) class env_particlelight(Parentname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Color(self): return parse_int_vector(self._raw_data.get('color', "255 0 0")) @property def Intensity(self): return parse_source_value(self._raw_data.get('intensity', 5000)) @property def directional(self): return self._raw_data.get('directional', "0") @property def PSName(self): return self._raw_data.get('psname', "") class env_sun(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def use_angles(self): return self._raw_data.get('use_angles', "0") @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', 0)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "100 80 80")) @property def overlaycolor(self): return parse_int_vector(self._raw_data.get('overlaycolor', "0 0 0")) @property def size(self): return parse_source_value(self._raw_data.get('size', 16)) @property def overlaysize(self): return parse_source_value(self._raw_data.get('overlaysize', -1)) @property def material(self): return self._raw_data.get('material', "sprites/light_glow02_add_noz") @property def overlaymaterial(self): return self._raw_data.get('overlaymaterial', "sprites/light_glow02_add_noz") @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 0.5)) class game_ragdoll_manager(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MaxRagdollCount(self): return parse_source_value(self._raw_data.get('maxragdollcount', -1)) @property def MaxRagdollCountDX8(self): return parse_source_value(self._raw_data.get('maxragdollcountdx8', -1)) @property def SaveImportant(self): return self._raw_data.get('saveimportant', "0") class game_gib_manager(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def maxpieces(self): return parse_source_value(self._raw_data.get('maxpieces', -1)) @property def maxpiecesdx8(self): return parse_source_value(self._raw_data.get('maxpiecesdx8', -1)) @property def allownewgibs(self): return self._raw_data.get('allownewgibs', "0") class env_dof_controller(Targetname): icon_sprite = "editor/env_dof_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_lightglow(Parentname, Angles, Targetname): model_ = "models/editor/axis_helper_thick.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def VerticalGlowSize(self): return parse_source_value(self._raw_data.get('verticalglowsize', 30)) @property def HorizontalGlowSize(self): return parse_source_value(self._raw_data.get('horizontalglowsize', 30)) @property def MinDist(self): return parse_source_value(self._raw_data.get('mindist', 500)) @property def MaxDist(self): return parse_source_value(self._raw_data.get('maxdist', 2000)) @property def OuterMaxDist(self): return parse_source_value(self._raw_data.get('outermaxdist', 0)) @property def GlowProxySize(self): return parse_source_value(self._raw_data.get('glowproxysize', 2.0)) @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 0.5)) class env_smokestack(Parentname, Angles): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def targetname(self): return self._raw_data.get('targetname', None) @property def InitialState(self): return self._raw_data.get('initialstate', "0") @property def BaseSpread(self): return parse_source_value(self._raw_data.get('basespread', 20)) @property def SpreadSpeed(self): return parse_source_value(self._raw_data.get('spreadspeed', 15)) @property def Speed(self): return parse_source_value(self._raw_data.get('speed', 30)) @property def StartSize(self): return parse_source_value(self._raw_data.get('startsize', 20)) @property def EndSize(self): return parse_source_value(self._raw_data.get('endsize', 30)) @property def Rate(self): return parse_source_value(self._raw_data.get('rate', 20)) @property def JetLength(self): return parse_source_value(self._raw_data.get('jetlength', 180)) @property def WindAngle(self): return parse_source_value(self._raw_data.get('windangle', 0)) @property def WindSpeed(self): return parse_source_value(self._raw_data.get('windspeed', 0)) @property def SmokeMaterial(self): return self._raw_data.get('smokematerial', "particle/SmokeStack.vmt") @property def twist(self): return parse_source_value(self._raw_data.get('twist', 0)) @property def roll(self): return parse_source_value(self._raw_data.get('roll', 0)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) class env_fade(Targetname): icon_sprite = "editor/env_fade" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def duration(self): return self._raw_data.get('duration', "2") @property def holdtime(self): return self._raw_data.get('holdtime', "0") @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "0 0 0")) class env_player_surface_trigger(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def gamematerial(self): return self._raw_data.get('gamematerial', "0") class trigger_tonemap(Targetname): @property def TonemapName(self): return self._raw_data.get('tonemapname', None) class env_tonemap_controller(Targetname): icon_sprite = "editor/env_tonemap_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_tonemap_controller_infected(env_tonemap_controller): icon_sprite = "editor/env_tonemap_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_tonemap_controller_ghost(env_tonemap_controller): icon_sprite = "editor/env_tonemap_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class func_useableladder(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def point0(self): return parse_float_vector(self._raw_data.get('point0', None)) @property def point1(self): return parse_float_vector(self._raw_data.get('point1', None)) @property def StartDisabled(self): return self._raw_data.get('startdisabled', "0") @property def ladderSurfaceProperties(self): return self._raw_data.get('laddersurfaceproperties', None) class func_ladderendpoint(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class info_ladder_dismount(Parentname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class func_areaportalwindow(Targetname): @property def target(self): return self._raw_data.get('target', None) @property def FadeStartDist(self): return parse_source_value(self._raw_data.get('fadestartdist', 128)) @property def FadeDist(self): return parse_source_value(self._raw_data.get('fadedist', 512)) @property def TranslucencyLimit(self): return self._raw_data.get('translucencylimit', "0") @property def BackgroundBModel(self): return self._raw_data.get('backgroundbmodel', "") @property def PortalVersion(self): return parse_source_value(self._raw_data.get('portalversion', 1)) class func_wall(RenderFields, Shadow, Global, Targetname): @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_clip_vphysics(EnableDisable, Targetname): @property def filtername(self): return self._raw_data.get('filtername', None) class func_brush(Parentname, Inputfilter, Shadow, Global, EnableDisable, Origin, RenderFields, Targetname): @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def Solidity(self): return self._raw_data.get('solidity', "1") @property def excludednpc(self): return self._raw_data.get('excludednpc', "") @property def invert_exclusion(self): return self._raw_data.get('invert_exclusion', "0") @property def solidbsp(self): return self._raw_data.get('solidbsp', "0") @property def vrad_brush_cast_shadows(self): return self._raw_data.get('vrad_brush_cast_shadows', "0") class vgui_screen_base(Parentname, Angles, Targetname): @property def panelname(self): return self._raw_data.get('panelname', None) @property def overlaymaterial(self): return self._raw_data.get('overlaymaterial', "") @property def width(self): return parse_source_value(self._raw_data.get('width', 32)) @property def height(self): return parse_source_value(self._raw_data.get('height', 32)) class vgui_screen(vgui_screen_base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class vgui_slideshow_display(Parentname, Angles, Targetname): model_ = "models/editor/axis_helper_thick.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def displaytext(self): return self._raw_data.get('displaytext', "") @property def directory(self): return self._raw_data.get('directory', "slideshow") @property def minslidetime(self): return parse_source_value(self._raw_data.get('minslidetime', 0.5)) @property def maxslidetime(self): return parse_source_value(self._raw_data.get('maxslidetime', 0.5)) @property def cycletype(self): return self._raw_data.get('cycletype', "0") @property def nolistrepeat(self): return self._raw_data.get('nolistrepeat', "0") @property def width(self): return parse_source_value(self._raw_data.get('width', 256)) @property def height(self): return parse_source_value(self._raw_data.get('height', 128)) class cycler(Parentname, Angles, RenderFields, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', None) @property def skin(self): return parse_source_value(self._raw_data.get('skin', 0)) @property def sequence(self): return parse_source_value(self._raw_data.get('sequence', 0)) class func_orator(Parentname, Studiomodel, Angles, RenderFields, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def maxThenAnyDispatchDist(self): return parse_source_value(self._raw_data.get('maxthenanydispatchdist', 0)) class gibshooterbase(Parentname, Targetname): @property def angles(self): return self._raw_data.get('angles', "0 0 0") @property def m_iGibs(self): return parse_source_value(self._raw_data.get('m_igibs', 3)) @property def delay(self): return self._raw_data.get('delay', "0") @property def gibangles(self): return self._raw_data.get('gibangles', "0 0 0") @property def gibanglevelocity(self): return self._raw_data.get('gibanglevelocity', "0") @property def m_flVelocity(self): return parse_source_value(self._raw_data.get('m_flvelocity', 200)) @property def m_flVariance(self): return self._raw_data.get('m_flvariance', "0.15") @property def m_flGibLife(self): return self._raw_data.get('m_flgiblife', "4") @property def lightingorigin(self): return self._raw_data.get('lightingorigin', "") class env_beam(Parentname, RenderFxChoices, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 100)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def Radius(self): return parse_source_value(self._raw_data.get('radius', 256)) @property def life(self): return self._raw_data.get('life', "1") @property def BoltWidth(self): return parse_source_value(self._raw_data.get('boltwidth', 2)) @property def NoiseAmplitude(self): return parse_source_value(self._raw_data.get('noiseamplitude', 0)) @property def texture(self): return self._raw_data.get('texture', "sprites/laserbeam.spr") @property def TextureScroll(self): return parse_source_value(self._raw_data.get('texturescroll', 35)) @property def framerate(self): return parse_source_value(self._raw_data.get('framerate', 0)) @property def framestart(self): return parse_source_value(self._raw_data.get('framestart', 0)) @property def StrikeTime(self): return self._raw_data.get('striketime', "1") @property def damage(self): return self._raw_data.get('damage', "0") @property def LightningStart(self): return self._raw_data.get('lightningstart', "") @property def LightningEnd(self): return self._raw_data.get('lightningend', "") @property def decalname(self): return self._raw_data.get('decalname', "Bigshot") @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 1.0)) @property def TouchType(self): return self._raw_data.get('touchtype', "0") @property def filtername(self): return self._raw_data.get('filtername', None) class env_beverage(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def health(self): return parse_source_value(self._raw_data.get('health', 10)) @property def beveragetype(self): return self._raw_data.get('beveragetype', "0") class env_embers(Parentname, Angles, Targetname): @property def particletype(self): return self._raw_data.get('particletype', "0") @property def density(self): return parse_source_value(self._raw_data.get('density', 50)) @property def lifetime(self): return parse_source_value(self._raw_data.get('lifetime', 4)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 32)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) class env_funnel(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_blood(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def spraydir(self): return parse_float_vector(self._raw_data.get('spraydir', "0 0 0")) @property def color(self): return self._raw_data.get('color', "0") @property def amount(self): return self._raw_data.get('amount', "100") class env_bubbles(Parentname, Targetname): @property def density(self): return parse_source_value(self._raw_data.get('density', 2)) @property def frequency(self): return parse_source_value(self._raw_data.get('frequency', 2)) @property def current(self): return parse_source_value(self._raw_data.get('current', 0)) class env_explosion(Parentname, Targetname): icon_sprite = "editor/env_explosion.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def iMagnitude(self): return parse_source_value(self._raw_data.get('imagnitude', 100)) @property def iRadiusOverride(self): return parse_source_value(self._raw_data.get('iradiusoverride', 0)) @property def fireballsprite(self): return self._raw_data.get('fireballsprite', "sprites/zerogxplode.spr") @property def rendermode(self): return self._raw_data.get('rendermode', "5") @property def ignoredEntity(self): return self._raw_data.get('ignoredentity', None) @property def ignoredClass(self): return parse_source_value(self._raw_data.get('ignoredclass', 0)) class env_smoketrail(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def opacity(self): return parse_source_value(self._raw_data.get('opacity', 0.75)) @property def spawnrate(self): return parse_source_value(self._raw_data.get('spawnrate', 20)) @property def lifetime(self): return parse_source_value(self._raw_data.get('lifetime', 5.0)) @property def startcolor(self): return parse_int_vector(self._raw_data.get('startcolor', "192 192 192")) @property def endcolor(self): return parse_int_vector(self._raw_data.get('endcolor', "160 160 160")) @property def emittime(self): return parse_source_value(self._raw_data.get('emittime', 0)) @property def minspeed(self): return parse_source_value(self._raw_data.get('minspeed', 10)) @property def maxspeed(self): return parse_source_value(self._raw_data.get('maxspeed', 20)) @property def mindirectedspeed(self): return parse_source_value(self._raw_data.get('mindirectedspeed', 0)) @property def maxdirectedspeed(self): return parse_source_value(self._raw_data.get('maxdirectedspeed', 0)) @property def startsize(self): return parse_source_value(self._raw_data.get('startsize', 15)) @property def endsize(self): return parse_source_value(self._raw_data.get('endsize', 50)) @property def spawnradius(self): return parse_source_value(self._raw_data.get('spawnradius', 15)) @property def firesprite(self): return self._raw_data.get('firesprite', "sprites/firetrail.spr") @property def smokesprite(self): return self._raw_data.get('smokesprite', "sprites/whitepuff.spr") class env_physexplosion(Parentname, Targetname): icon_sprite = "editor/env_physexplosion.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def magnitude(self): return self._raw_data.get('magnitude', "100") @property def radius(self): return self._raw_data.get('radius', "0") @property def targetentityname(self): return self._raw_data.get('targetentityname', "") @property def inner_radius(self): return parse_source_value(self._raw_data.get('inner_radius', 0)) class env_physimpact(Parentname, Targetname): icon_sprite = "editor/env_physexplosion.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def angles(self): return self._raw_data.get('angles', "0 0 0") @property def magnitude(self): return parse_source_value(self._raw_data.get('magnitude', 100)) @property def distance(self): return parse_source_value(self._raw_data.get('distance', 0)) @property def directionentityname(self): return self._raw_data.get('directionentityname', "") class env_fire(Parentname, EnableDisable, Targetname): icon_sprite = "editor/env_fire" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def health(self): return parse_source_value(self._raw_data.get('health', 30)) @property def firesize(self): return parse_source_value(self._raw_data.get('firesize', 64)) @property def fireattack(self): return parse_source_value(self._raw_data.get('fireattack', 4)) @property def firetype(self): return self._raw_data.get('firetype', "0") @property def ignitionpoint(self): return parse_source_value(self._raw_data.get('ignitionpoint', 32)) @property def damagescale(self): return parse_source_value(self._raw_data.get('damagescale', 1.0)) class env_firesource(Parentname, Targetname): icon_sprite = "editor/env_firesource" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fireradius(self): return parse_source_value(self._raw_data.get('fireradius', 128)) @property def firedamage(self): return parse_source_value(self._raw_data.get('firedamage', 10)) class env_firesensor(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fireradius(self): return parse_source_value(self._raw_data.get('fireradius', 128)) @property def heatlevel(self): return parse_source_value(self._raw_data.get('heatlevel', 32)) @property def heattime(self): return parse_source_value(self._raw_data.get('heattime', 0)) class env_entity_igniter(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def lifetime(self): return parse_source_value(self._raw_data.get('lifetime', 10)) class env_fog_controller(Angles, SystemLevelChoice, Targetname): icon_sprite = "editor/fog_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fogenable(self): return self._raw_data.get('fogenable', "0") @property def fogblend(self): return self._raw_data.get('fogblend', "0") @property def use_angles(self): return self._raw_data.get('use_angles', "0") @property def fogcolor(self): return parse_int_vector(self._raw_data.get('fogcolor', "255 255 255")) @property def fogcolor2(self): return parse_int_vector(self._raw_data.get('fogcolor2', "255 255 255")) @property def fogdir(self): return self._raw_data.get('fogdir', "1 0 0") @property def fogstart(self): return self._raw_data.get('fogstart', "500.0") @property def fogend(self): return self._raw_data.get('fogend', "2000.0") @property def fogmaxdensity(self): return parse_source_value(self._raw_data.get('fogmaxdensity', 1)) @property def foglerptime(self): return parse_source_value(self._raw_data.get('foglerptime', 0)) @property def farz(self): return self._raw_data.get('farz', "-1") @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 1.0)) class postprocess_controller(Targetname): icon_sprite = "editor/fog_controller.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def localcontraststrength(self): return parse_source_value(self._raw_data.get('localcontraststrength', 0)) @property def localcontrastedgestrength(self): return parse_source_value(self._raw_data.get('localcontrastedgestrength', 0)) @property def vignettestart(self): return parse_source_value(self._raw_data.get('vignettestart', 1)) @property def vignetteend(self): return parse_source_value(self._raw_data.get('vignetteend', 2)) @property def vignetteblurstrength(self): return parse_source_value(self._raw_data.get('vignetteblurstrength', 0)) @property def grainstrength(self): return parse_source_value(self._raw_data.get('grainstrength', 1)) @property def topvignettestrength(self): return parse_source_value(self._raw_data.get('topvignettestrength', 1)) @property def fadetime(self): return parse_source_value(self._raw_data.get('fadetime', 2)) class env_steam(Parentname, Angles, Targetname): viewport_model = "models/editor/spot_cone.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def InitialState(self): return self._raw_data.get('initialstate', "0") @property def type(self): return self._raw_data.get('type', "0") @property def SpreadSpeed(self): return parse_source_value(self._raw_data.get('spreadspeed', 15)) @property def Speed(self): return parse_source_value(self._raw_data.get('speed', 120)) @property def StartSize(self): return parse_source_value(self._raw_data.get('startsize', 10)) @property def EndSize(self): return parse_source_value(self._raw_data.get('endsize', 25)) @property def Rate(self): return parse_source_value(self._raw_data.get('rate', 26)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def JetLength(self): return parse_source_value(self._raw_data.get('jetlength', 80)) @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) @property def rollspeed(self): return parse_source_value(self._raw_data.get('rollspeed', 8)) @property def StartNoise(self): return self._raw_data.get('startnoise', "") class env_laser(Parentname, RenderFxChoices, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def LaserTarget(self): return self._raw_data.get('lasertarget', None) @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 100)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def width(self): return parse_source_value(self._raw_data.get('width', 2)) @property def NoiseAmplitude(self): return parse_source_value(self._raw_data.get('noiseamplitude', 0)) @property def texture(self): return self._raw_data.get('texture', "sprites/laserbeam.spr") @property def EndSprite(self): return self._raw_data.get('endsprite', "") @property def TextureScroll(self): return parse_source_value(self._raw_data.get('texturescroll', 35)) @property def framestart(self): return parse_source_value(self._raw_data.get('framestart', 0)) @property def damage(self): return self._raw_data.get('damage', "100") @property def dissolvetype(self): return self._raw_data.get('dissolvetype', "None") class env_message(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', None) @property def messagesound(self): return self._raw_data.get('messagesound', "") @property def messagevolume(self): return self._raw_data.get('messagevolume', "10") @property def messageattenuation(self): return self._raw_data.get('messageattenuation', "0") class env_hudhint(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', "") class env_shake(Parentname, Targetname): icon_sprite = "editor/env_shake.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def amplitude(self): return parse_source_value(self._raw_data.get('amplitude', 4)) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 500)) @property def duration(self): return parse_source_value(self._raw_data.get('duration', 1)) @property def frequency(self): return parse_source_value(self._raw_data.get('frequency', 2.5)) class env_viewpunch(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def punchangle(self): return parse_float_vector(self._raw_data.get('punchangle', "0 0 90")) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 500)) class env_rotorwash_emitter(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def altitude(self): return parse_source_value(self._raw_data.get('altitude', 1024)) class gibshooter(gibshooterbase): icon_sprite = "editor/gibshooter.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_shooter(RenderFields, gibshooterbase): icon_sprite = "editor/env_shooter.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def shootmodel(self): return self._raw_data.get('shootmodel', "") @property def shootsounds(self): return self._raw_data.get('shootsounds', "-1") @property def simulation(self): return self._raw_data.get('simulation', "0") @property def skin(self): return parse_source_value(self._raw_data.get('skin', 0)) @property def nogibshadows(self): return self._raw_data.get('nogibshadows', "0") @property def gibgravityscale(self): return parse_source_value(self._raw_data.get('gibgravityscale', 1)) @property def massoverride(self): return parse_source_value(self._raw_data.get('massoverride', 0)) class env_rotorshooter(RenderFields, gibshooterbase): icon_sprite = "editor/env_shooter.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def shootmodel(self): return self._raw_data.get('shootmodel', "") @property def shootsounds(self): return self._raw_data.get('shootsounds', "-1") @property def simulation(self): return self._raw_data.get('simulation', "0") @property def skin(self): return parse_source_value(self._raw_data.get('skin', 0)) @property def rotortime(self): return parse_source_value(self._raw_data.get('rotortime', 1)) @property def rotortimevariance(self): return parse_source_value(self._raw_data.get('rotortimevariance', 0.3)) class env_soundscape_proxy(Parentname, Targetname): icon_sprite = "editor/env_soundscape.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MainSoundscapeName(self): return self._raw_data.get('mainsoundscapename', "") @property def radius(self): return parse_source_value(self._raw_data.get('radius', 128)) class env_soundscape(Parentname, EnableDisable, Targetname): icon_sprite = "editor/env_soundscape.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 128)) @property def soundscape(self): return self._raw_data.get('soundscape', "Nothing") @property def position0(self): return self._raw_data.get('position0', "") @property def position1(self): return self._raw_data.get('position1', "") @property def position2(self): return self._raw_data.get('position2', "") @property def position3(self): return self._raw_data.get('position3', "") @property def position4(self): return self._raw_data.get('position4', "") @property def position5(self): return self._raw_data.get('position5', "") @property def position6(self): return self._raw_data.get('position6', "") @property def position7(self): return self._raw_data.get('position7', "") class env_soundscape_triggerable(env_soundscape): icon_sprite = "editor/env_soundscape.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_spark(Parentname, Angles, Targetname): icon_sprite = "editor/env_spark.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MaxDelay(self): return self._raw_data.get('maxdelay', "0") @property def Magnitude(self): return self._raw_data.get('magnitude', "1") @property def TrailLength(self): return self._raw_data.get('traillength', "1") class env_sprite(RenderFields, Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def framerate(self): return self._raw_data.get('framerate', "10.0") @property def model(self): return self._raw_data.get('model', "sprites/glow01.spr") @property def scale(self): return self._raw_data.get('scale', "") @property def GlowProxySize(self): return parse_source_value(self._raw_data.get('glowproxysize', 2.0)) @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 0.7)) class env_sprite_oriented(Angles, env_sprite): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_wind(Angles, Targetname): icon_sprite = "editor/env_wind.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def minwind(self): return parse_source_value(self._raw_data.get('minwind', 20)) @property def maxwind(self): return parse_source_value(self._raw_data.get('maxwind', 50)) @property def windradius(self): return parse_source_value(self._raw_data.get('windradius', -1)) @property def mingust(self): return parse_source_value(self._raw_data.get('mingust', 100)) @property def maxgust(self): return parse_source_value(self._raw_data.get('maxgust', 250)) @property def mingustdelay(self): return parse_source_value(self._raw_data.get('mingustdelay', 10)) @property def maxgustdelay(self): return parse_source_value(self._raw_data.get('maxgustdelay', 20)) @property def gustduration(self): return parse_source_value(self._raw_data.get('gustduration', 5)) @property def gustdirchange(self): return parse_source_value(self._raw_data.get('gustdirchange', 20)) class sky_camera(Angles): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def scale(self): return parse_source_value(self._raw_data.get('scale', 16)) @property def fogenable(self): return self._raw_data.get('fogenable', "0") @property def fogblend(self): return self._raw_data.get('fogblend', "0") @property def use_angles(self): return self._raw_data.get('use_angles', "0") @property def clip_3D_skybox_near_to_world_far(self): return self._raw_data.get('clip_3d_skybox_near_to_world_far', "0") @property def clip_3D_skybox_near_to_world_far_offset(self): return self._raw_data.get('clip_3d_skybox_near_to_world_far_offset', "0.0") @property def fogcolor(self): return parse_int_vector(self._raw_data.get('fogcolor', "255 255 255")) @property def fogcolor2(self): return parse_int_vector(self._raw_data.get('fogcolor2', "255 255 255")) @property def fogdir(self): return self._raw_data.get('fogdir', "1 0 0") @property def fogstart(self): return self._raw_data.get('fogstart', "500.0") @property def fogend(self): return self._raw_data.get('fogend', "2000.0") @property def fogmaxdensity(self): return parse_source_value(self._raw_data.get('fogmaxdensity', 1)) @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 1.0)) class BaseSpeaker(ResponseContext, Targetname): @property def delaymin(self): return self._raw_data.get('delaymin', "15") @property def delaymax(self): return self._raw_data.get('delaymax', "135") @property def rulescript(self): return self._raw_data.get('rulescript', "") @property def concept(self): return self._raw_data.get('concept', "") class game_weapon_manager(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def weaponname(self): return self._raw_data.get('weaponname', "") @property def maxpieces(self): return parse_source_value(self._raw_data.get('maxpieces', 0)) @property def ammomod(self): return parse_source_value(self._raw_data.get('ammomod', 1)) class game_end(Targetname): icon_sprite = "editor/game_end.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def master(self): return self._raw_data.get('master', None) class game_player_equip(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def master(self): return self._raw_data.get('master', None) class game_player_team(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def master(self): return self._raw_data.get('master', None) class game_score(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def points(self): return parse_source_value(self._raw_data.get('points', 1)) @property def master(self): return self._raw_data.get('master', None) class game_text(Targetname): icon_sprite = "editor/game_text.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', "") @property def x(self): return self._raw_data.get('x', "-1") @property def y(self): return self._raw_data.get('y', "-1") @property def effect(self): return self._raw_data.get('effect', "0") @property def color(self): return parse_int_vector(self._raw_data.get('color', "100 100 100")) @property def color2(self): return parse_int_vector(self._raw_data.get('color2', "240 110 0")) @property def fadein(self): return self._raw_data.get('fadein', "1.5") @property def fadeout(self): return self._raw_data.get('fadeout', "0.5") @property def holdtime(self): return self._raw_data.get('holdtime', "1.2") @property def fxtime(self): return self._raw_data.get('fxtime', "0.25") @property def channel(self): return self._raw_data.get('channel', "1") @property def master(self): return self._raw_data.get('master', None) class point_enable_motion_fixup(Parentname, Angles): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class point_message(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def message(self): return self._raw_data.get('message', None) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 128)) @property def developeronly(self): return self._raw_data.get('developeronly', "0") class point_spotlight(RenderFields, Parentname, Angles, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def spotlightlength(self): return parse_source_value(self._raw_data.get('spotlightlength', 500)) @property def spotlightwidth(self): return parse_source_value(self._raw_data.get('spotlightwidth', 50)) @property def HaloScale(self): return parse_source_value(self._raw_data.get('haloscale', 60)) @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 0.7)) class point_tesla(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def m_SourceEntityName(self): return self._raw_data.get('m_sourceentityname', "") @property def m_SoundName(self): return self._raw_data.get('m_soundname', "DoSpark") @property def texture(self): return self._raw_data.get('texture', "sprites/physbeam.vmt") @property def m_Color(self): return parse_int_vector(self._raw_data.get('m_color', "255 255 255")) @property def m_flRadius(self): return parse_source_value(self._raw_data.get('m_flradius', 200)) @property def beamcount_min(self): return parse_source_value(self._raw_data.get('beamcount_min', 6)) @property def beamcount_max(self): return parse_source_value(self._raw_data.get('beamcount_max', 8)) @property def thick_min(self): return self._raw_data.get('thick_min', "4") @property def thick_max(self): return self._raw_data.get('thick_max', "5") @property def lifetime_min(self): return self._raw_data.get('lifetime_min', "0.3") @property def lifetime_max(self): return self._raw_data.get('lifetime_max', "0.3") @property def interval_min(self): return self._raw_data.get('interval_min', "0.5") @property def interval_max(self): return self._raw_data.get('interval_max', "2") class point_clientcommand(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class point_servercommand(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class point_broadcastclientcommand(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class point_bonusmaps_accessor(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def filename(self): return self._raw_data.get('filename', "") @property def mapname(self): return self._raw_data.get('mapname', "") class game_ui(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def FieldOfView(self): return parse_source_value(self._raw_data.get('fieldofview', -1.0)) class point_entity_finder(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def filtername(self): return self._raw_data.get('filtername', None) @property def referencename(self): return self._raw_data.get('referencename', "") @property def Method(self): return self._raw_data.get('method', "0") class game_zone_player(Parentname, Targetname): pass class infodecal(Targetname): model_ = "models/editor/axis_helper_thick.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def texture(self): return self._raw_data.get('texture', None) @property def LowPriority(self): return self._raw_data.get('lowpriority', "0") @property def ApplyEntity(self): return self._raw_data.get('applyentity', None) class info_projecteddecal(Angles, Targetname): model_ = "models/editor/axis_helper_thick.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def texture(self): return self._raw_data.get('texture', None) @property def Distance(self): return parse_source_value(self._raw_data.get('distance', 64)) class info_no_dynamic_shadow(Base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def sides(self): return self._raw_data.get('sides', None) class info_player_start(PlayerClass, Angles): model_ = "models/editor/playerstart.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_overlay(SystemLevelChoice, Targetname): model_ = "models/editor/overlay_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def material(self): return self._raw_data.get('material', None) @property def sides(self): return self._raw_data.get('sides', None) @property def RenderOrder(self): return parse_source_value(self._raw_data.get('renderorder', 0)) @property def StartU(self): return parse_source_value(self._raw_data.get('startu', 0.0)) @property def EndU(self): return parse_source_value(self._raw_data.get('endu', 1.0)) @property def StartV(self): return parse_source_value(self._raw_data.get('startv', 0.0)) @property def EndV(self): return parse_source_value(self._raw_data.get('endv', 1.0)) @property def BasisOrigin(self): return parse_float_vector(self._raw_data.get('basisorigin', None)) @property def BasisU(self): return parse_float_vector(self._raw_data.get('basisu', None)) @property def BasisV(self): return parse_float_vector(self._raw_data.get('basisv', None)) @property def BasisNormal(self): return parse_float_vector(self._raw_data.get('basisnormal', None)) @property def uv0(self): return parse_float_vector(self._raw_data.get('uv0', None)) @property def uv1(self): return parse_float_vector(self._raw_data.get('uv1', None)) @property def uv2(self): return parse_float_vector(self._raw_data.get('uv2', None)) @property def uv3(self): return parse_float_vector(self._raw_data.get('uv3', None)) @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', -1)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 0)) class info_overlay_transition(Base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def material(self): return self._raw_data.get('material', None) @property def sides(self): return self._raw_data.get('sides', None) @property def sides2(self): return self._raw_data.get('sides2', None) @property def LengthTexcoordStart(self): return parse_source_value(self._raw_data.get('lengthtexcoordstart', 0.0)) @property def LengthTexcoordEnd(self): return parse_source_value(self._raw_data.get('lengthtexcoordend', 1.0)) @property def WidthTexcoordStart(self): return parse_source_value(self._raw_data.get('widthtexcoordstart', 0.0)) @property def WidthTexcoordEnd(self): return parse_source_value(self._raw_data.get('widthtexcoordend', 1.0)) @property def Width1(self): return parse_source_value(self._raw_data.get('width1', 25.0)) @property def Width2(self): return parse_source_value(self._raw_data.get('width2', 25.0)) @property def DebugDraw(self): return parse_source_value(self._raw_data.get('debugdraw', 0)) class info_intermission(Base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class info_landmark(Targetname): icon_sprite = "editor/info_landmark" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_null(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_target(Parentname, Angles, Targetname): icon_sprite = "editor/info_target.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_particle_target(Parentname, Angles, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_particle_system(Parentname, Angles, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def effect_name(self): return self._raw_data.get('effect_name', None) @property def start_active(self): return self._raw_data.get('start_active', "0") @property def render_in_front(self): return self._raw_data.get('render_in_front', "0") @property def cpoint1(self): return self._raw_data.get('cpoint1', None) @property def cpoint2(self): return self._raw_data.get('cpoint2', None) @property def cpoint3(self): return self._raw_data.get('cpoint3', None) @property def cpoint4(self): return self._raw_data.get('cpoint4', None) @property def cpoint5(self): return self._raw_data.get('cpoint5', None) @property def cpoint6(self): return self._raw_data.get('cpoint6', None) @property def cpoint7(self): return self._raw_data.get('cpoint7', None) @property def cpoint8(self): return self._raw_data.get('cpoint8', None) @property def cpoint9(self): return self._raw_data.get('cpoint9', None) @property def cpoint10(self): return self._raw_data.get('cpoint10', None) @property def cpoint11(self): return self._raw_data.get('cpoint11', None) @property def cpoint12(self): return self._raw_data.get('cpoint12', None) @property def cpoint13(self): return self._raw_data.get('cpoint13', None) @property def cpoint14(self): return self._raw_data.get('cpoint14', None) @property def cpoint15(self): return self._raw_data.get('cpoint15', None) @property def cpoint16(self): return self._raw_data.get('cpoint16', None) @property def cpoint17(self): return self._raw_data.get('cpoint17', None) @property def cpoint18(self): return self._raw_data.get('cpoint18', None) @property def cpoint19(self): return self._raw_data.get('cpoint19', None) @property def cpoint20(self): return self._raw_data.get('cpoint20', None) @property def cpoint21(self): return self._raw_data.get('cpoint21', None) @property def cpoint22(self): return self._raw_data.get('cpoint22', None) @property def cpoint23(self): return self._raw_data.get('cpoint23', None) @property def cpoint24(self): return self._raw_data.get('cpoint24', None) @property def cpoint25(self): return self._raw_data.get('cpoint25', None) @property def cpoint26(self): return self._raw_data.get('cpoint26', None) @property def cpoint27(self): return self._raw_data.get('cpoint27', None) @property def cpoint28(self): return self._raw_data.get('cpoint28', None) @property def cpoint29(self): return self._raw_data.get('cpoint29', None) @property def cpoint30(self): return self._raw_data.get('cpoint30', None) @property def cpoint31(self): return self._raw_data.get('cpoint31', None) @property def cpoint32(self): return self._raw_data.get('cpoint32', None) @property def cpoint33(self): return self._raw_data.get('cpoint33', None) @property def cpoint34(self): return self._raw_data.get('cpoint34', None) @property def cpoint35(self): return self._raw_data.get('cpoint35', None) @property def cpoint36(self): return self._raw_data.get('cpoint36', None) @property def cpoint37(self): return self._raw_data.get('cpoint37', None) @property def cpoint38(self): return self._raw_data.get('cpoint38', None) @property def cpoint39(self): return self._raw_data.get('cpoint39', None) @property def cpoint40(self): return self._raw_data.get('cpoint40', None) @property def cpoint41(self): return self._raw_data.get('cpoint41', None) @property def cpoint42(self): return self._raw_data.get('cpoint42', None) @property def cpoint43(self): return self._raw_data.get('cpoint43', None) @property def cpoint44(self): return self._raw_data.get('cpoint44', None) @property def cpoint45(self): return self._raw_data.get('cpoint45', None) @property def cpoint46(self): return self._raw_data.get('cpoint46', None) @property def cpoint47(self): return self._raw_data.get('cpoint47', None) @property def cpoint48(self): return self._raw_data.get('cpoint48', None) @property def cpoint49(self): return self._raw_data.get('cpoint49', None) @property def cpoint50(self): return self._raw_data.get('cpoint50', None) @property def cpoint51(self): return self._raw_data.get('cpoint51', None) @property def cpoint52(self): return self._raw_data.get('cpoint52', None) @property def cpoint53(self): return self._raw_data.get('cpoint53', None) @property def cpoint54(self): return self._raw_data.get('cpoint54', None) @property def cpoint55(self): return self._raw_data.get('cpoint55', None) @property def cpoint56(self): return self._raw_data.get('cpoint56', None) @property def cpoint57(self): return self._raw_data.get('cpoint57', None) @property def cpoint58(self): return self._raw_data.get('cpoint58', None) @property def cpoint59(self): return self._raw_data.get('cpoint59', None) @property def cpoint60(self): return self._raw_data.get('cpoint60', None) @property def cpoint61(self): return self._raw_data.get('cpoint61', None) @property def cpoint62(self): return self._raw_data.get('cpoint62', None) @property def cpoint63(self): return self._raw_data.get('cpoint63', None) @property def cpoint1_parent(self): return parse_source_value(self._raw_data.get('cpoint1_parent', 0)) @property def cpoint2_parent(self): return parse_source_value(self._raw_data.get('cpoint2_parent', 0)) @property def cpoint3_parent(self): return parse_source_value(self._raw_data.get('cpoint3_parent', 0)) @property def cpoint4_parent(self): return parse_source_value(self._raw_data.get('cpoint4_parent', 0)) @property def cpoint5_parent(self): return parse_source_value(self._raw_data.get('cpoint5_parent', 0)) @property def cpoint6_parent(self): return parse_source_value(self._raw_data.get('cpoint6_parent', 0)) @property def cpoint7_parent(self): return parse_source_value(self._raw_data.get('cpoint7_parent', 0)) class phys_ragdollmagnet(Parentname, Angles, EnableDisable, Targetname): icon_sprite = "editor/info_target.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def axis(self): return self._raw_data.get('axis', None) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 512)) @property def force(self): return parse_source_value(self._raw_data.get('force', 5000)) @property def target(self): return self._raw_data.get('target', "") class info_lighting(Targetname): icon_sprite = "editor/info_lighting.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_teleport_destination(PlayerClass, Parentname, Angles, Targetname): model_ = "models/editor/playerstart.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_node(Node): model_ = "models/editor/ground_node.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_node_hint(Angles, HintNode, Targetname): model_ = "models/editor/ground_node_hint.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_node_air(Node): model_ = "models/editor/air_node.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def nodeheight(self): return parse_source_value(self._raw_data.get('nodeheight', 0)) class info_node_air_hint(Angles, HintNode, Targetname): model_ = "models/editor/air_node_hint.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def nodeheight(self): return parse_source_value(self._raw_data.get('nodeheight', 0)) class info_hint(Angles, HintNode, Targetname): model_ = "models/editor/node_hint.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_node_link(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def StartNode(self): return parse_source_value(self._raw_data.get('startnode', None)) @property def EndNode(self): return parse_source_value(self._raw_data.get('endnode', None)) @property def initialstate(self): return self._raw_data.get('initialstate', "1") @property def linktype(self): return self._raw_data.get('linktype', "1") @property def AllowUse(self): return self._raw_data.get('allowuse', None) @property def InvertAllow(self): return self._raw_data.get('invertallow', "0") class info_node_link_controller(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def mins(self): return parse_float_vector(self._raw_data.get('mins', "-8 -32 -36")) @property def maxs(self): return parse_float_vector(self._raw_data.get('maxs', "8 32 36")) @property def initialstate(self): return self._raw_data.get('initialstate', "1") @property def useairlinkradius(self): return self._raw_data.get('useairlinkradius', "0") @property def AllowUse(self): return self._raw_data.get('allowuse', None) @property def InvertAllow(self): return self._raw_data.get('invertallow', "0") class info_radial_link_controller(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 120)) class info_node_climb(Angles, HintNode, Targetname): model_ = "models/editor/climb_node.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class light(Light, Targetname): icon_sprite = "editor/light.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def _distance(self): return parse_source_value(self._raw_data.get('_distance', 0)) class light_environment(Angles): icon_sprite = "editor/light_env.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', 0)) @property def _light(self): return parse_int_vector(self._raw_data.get('_light', "255 255 255 200")) @property def _ambient(self): return parse_int_vector(self._raw_data.get('_ambient', "255 255 255 20")) @property def _lightHDR(self): return parse_int_vector(self._raw_data.get('_lighthdr', "-1 -1 -1 1")) @property def _lightscaleHDR(self): return parse_source_value(self._raw_data.get('_lightscalehdr', 0.7)) @property def _ambientHDR(self): return parse_int_vector(self._raw_data.get('_ambienthdr', "-1 -1 -1 1")) @property def _AmbientScaleHDR(self): return parse_source_value(self._raw_data.get('_ambientscalehdr', 0.7)) @property def SunSpreadAngle(self): return parse_source_value(self._raw_data.get('sunspreadangle', 0)) class light_directional(Angles): icon_sprite = "editor/light_env.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', 0)) @property def _light(self): return parse_int_vector(self._raw_data.get('_light', "255 255 255 200")) @property def _lightHDR(self): return parse_int_vector(self._raw_data.get('_lighthdr', "-1 -1 -1 1")) @property def _lightscaleHDR(self): return parse_source_value(self._raw_data.get('_lightscalehdr', 0.7)) @property def SunSpreadAngle(self): return parse_source_value(self._raw_data.get('sunspreadangle', 0)) class light_spot(Light, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def _inner_cone(self): return parse_source_value(self._raw_data.get('_inner_cone', 30)) @property def _cone(self): return parse_source_value(self._raw_data.get('_cone', 45)) @property def _exponent(self): return parse_source_value(self._raw_data.get('_exponent', 1)) @property def _distance(self): return parse_source_value(self._raw_data.get('_distance', 0)) @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', -90)) class light_dynamic(Parentname, Angles, Targetname): icon_sprite = "editor/light.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def _light(self): return parse_int_vector(self._raw_data.get('_light', "255 255 255 200")) @property def brightness(self): return parse_source_value(self._raw_data.get('brightness', 0)) @property def _inner_cone(self): return parse_source_value(self._raw_data.get('_inner_cone', 30)) @property def _cone(self): return parse_source_value(self._raw_data.get('_cone', 45)) @property def pitch(self): return parse_source_value(self._raw_data.get('pitch', -90)) @property def distance(self): return parse_source_value(self._raw_data.get('distance', 120)) @property def spotlight_radius(self): return parse_source_value(self._raw_data.get('spotlight_radius', 80)) @property def style(self): return self._raw_data.get('style', "0") class shadow_control(Targetname): icon_sprite = "editor/shadow_control.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def angles(self): return self._raw_data.get('angles', "80 30 0") @property def color(self): return parse_int_vector(self._raw_data.get('color', "128 128 128")) @property def distance(self): return parse_source_value(self._raw_data.get('distance', 75)) @property def disableallshadows(self): return self._raw_data.get('disableallshadows', "0") @property def enableshadowsfromlocallights(self): return self._raw_data.get('enableshadowsfromlocallights', "0") class color_correction(EnableDisable, Targetname): icon_sprite = "editor/color_correction.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def minfalloff(self): return parse_source_value(self._raw_data.get('minfalloff', 0.0)) @property def maxfalloff(self): return parse_source_value(self._raw_data.get('maxfalloff', 200.0)) @property def maxweight(self): return parse_source_value(self._raw_data.get('maxweight', 1.0)) @property def filename(self): return self._raw_data.get('filename', "") @property def fadeInDuration(self): return parse_source_value(self._raw_data.get('fadeinduration', 0.0)) @property def fadeOutDuration(self): return parse_source_value(self._raw_data.get('fadeoutduration', 0.0)) @property def exclusive(self): return self._raw_data.get('exclusive', "0") class color_correction_volume(EnableDisable, Targetname): @property def fadeDuration(self): return parse_source_value(self._raw_data.get('fadeduration', 10.0)) @property def maxweight(self): return parse_source_value(self._raw_data.get('maxweight', 1.0)) @property def filename(self): return self._raw_data.get('filename', "") class KeyFrame(Base): @property def NextKey(self): return self._raw_data.get('nextkey', None) @property def MoveSpeed(self): return parse_source_value(self._raw_data.get('movespeed', 64)) class Mover(Base): @property def PositionInterpolator(self): return self._raw_data.get('positioninterpolator', "0") class func_movelinear(RenderFields, Parentname, Origin, Targetname): @property def movedir(self): return parse_float_vector(self._raw_data.get('movedir', "0 0 0")) @property def startposition(self): return parse_source_value(self._raw_data.get('startposition', 0)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 100)) @property def movedistance(self): return parse_source_value(self._raw_data.get('movedistance', 100)) @property def blockdamage(self): return parse_source_value(self._raw_data.get('blockdamage', 0)) @property def startsound(self): return self._raw_data.get('startsound', None) @property def stopsound(self): return self._raw_data.get('stopsound', None) class func_water_analog(Parentname, Origin, Targetname): @property def movedir(self): return parse_float_vector(self._raw_data.get('movedir', "0 0 0")) @property def startposition(self): return parse_source_value(self._raw_data.get('startposition', 0)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 100)) @property def movedistance(self): return parse_source_value(self._raw_data.get('movedistance', 100)) @property def startsound(self): return self._raw_data.get('startsound', None) @property def stopsound(self): return self._raw_data.get('stopsound', None) @property def WaveHeight(self): return self._raw_data.get('waveheight', "3.0") class func_rotating(Parentname, Shadow, Angles, Origin, RenderFields, Targetname): @property def maxspeed(self): return parse_source_value(self._raw_data.get('maxspeed', 100)) @property def fanfriction(self): return parse_source_value(self._raw_data.get('fanfriction', 20)) @property def message(self): return self._raw_data.get('message', None) @property def volume(self): return parse_source_value(self._raw_data.get('volume', 10)) @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def dmg(self): return parse_source_value(self._raw_data.get('dmg', 0)) @property def solidbsp(self): return self._raw_data.get('solidbsp', "0") class func_platrot(Parentname, Shadow, Angles, BasePlat, Origin, RenderFields, Targetname): @property def noise1(self): return self._raw_data.get('noise1', None) @property def noise2(self): return self._raw_data.get('noise2', None) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 50)) @property def height(self): return parse_source_value(self._raw_data.get('height', 0)) @property def rotation(self): return parse_source_value(self._raw_data.get('rotation', 0)) @property def _minlight(self): return self._raw_data.get('_minlight', None) class keyframe_track(KeyFrame, Parentname, Angles, Targetname): pass class move_keyframed(KeyFrame, Parentname, Mover, Targetname): pass class move_track(KeyFrame, Parentname, Mover, Targetname): @property def WheelBaseLength(self): return parse_source_value(self._raw_data.get('wheelbaselength', 50)) @property def Damage(self): return parse_source_value(self._raw_data.get('damage', 0)) @property def NoRotate(self): return self._raw_data.get('norotate', "0") class RopeKeyFrame(SystemLevelChoice): @property def Slack(self): return parse_source_value(self._raw_data.get('slack', 25)) @property def Type(self): return self._raw_data.get('type', "0") @property def Subdiv(self): return parse_source_value(self._raw_data.get('subdiv', 2)) @property def Barbed(self): return self._raw_data.get('barbed', "0") @property def Width(self): return self._raw_data.get('width', "2") @property def TextureScale(self): return self._raw_data.get('texturescale', "1") @property def Collide(self): return self._raw_data.get('collide', "0") @property def Dangling(self): return self._raw_data.get('dangling', "0") @property def Breakable(self): return self._raw_data.get('breakable', "0") @property def UseWind(self): return self._raw_data.get('usewind', "0") @property def RopeMaterial(self): return self._raw_data.get('ropematerial', "cable/cable.vmt") class keyframe_rope(KeyFrame, Parentname, RopeKeyFrame, Targetname): model_ = "models/editor/axis_helper_thick.mdl" pass class move_rope(KeyFrame, Parentname, RopeKeyFrame, Targetname): model_ = "models/editor/axis_helper.mdl" @property def PositionInterpolator(self): return self._raw_data.get('positioninterpolator', "2") class Button(Base): pass class func_button(Parentname, DamageFilter, Button, Origin, RenderFields, Targetname): @property def movedir(self): return parse_float_vector(self._raw_data.get('movedir', "0 0 0")) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 5)) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) @property def lip(self): return parse_source_value(self._raw_data.get('lip', 0)) @property def master(self): return self._raw_data.get('master', None) @property def glow(self): return self._raw_data.get('glow', None) @property def sounds(self): return self._raw_data.get('sounds', "0") @property def wait(self): return parse_source_value(self._raw_data.get('wait', 3)) @property def locked_sound(self): return self._raw_data.get('locked_sound', "0") @property def unlocked_sound(self): return self._raw_data.get('unlocked_sound', "0") @property def locked_sentence(self): return self._raw_data.get('locked_sentence', "0") @property def unlocked_sentence(self): return self._raw_data.get('unlocked_sentence', "0") @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_rot_button(Parentname, Button, Angles, Global, EnableDisable, Origin, Targetname): @property def master(self): return self._raw_data.get('master', None) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 50)) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) @property def sounds(self): return self._raw_data.get('sounds', "21") @property def wait(self): return parse_source_value(self._raw_data.get('wait', 3)) @property def distance(self): return parse_source_value(self._raw_data.get('distance', 90)) @property def _minlight(self): return self._raw_data.get('_minlight', None) class momentary_rot_button(Parentname, Angles, Origin, RenderFields, Targetname): @property def speed(self): return parse_source_value(self._raw_data.get('speed', 50)) @property def master(self): return self._raw_data.get('master', None) @property def glow(self): return self._raw_data.get('glow', None) @property def sounds(self): return self._raw_data.get('sounds', "0") @property def distance(self): return parse_source_value(self._raw_data.get('distance', 90)) @property def returnspeed(self): return parse_source_value(self._raw_data.get('returnspeed', 0)) @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def startposition(self): return parse_source_value(self._raw_data.get('startposition', 0)) @property def startdirection(self): return self._raw_data.get('startdirection', "Forward") @property def solidbsp(self): return self._raw_data.get('solidbsp', "0") class Door(Parentname, Shadow, Global, RenderFields, Targetname): @property def speed(self): return parse_source_value(self._raw_data.get('speed', 100)) @property def master(self): return self._raw_data.get('master', None) @property def noise1(self): return self._raw_data.get('noise1', None) @property def noise2(self): return self._raw_data.get('noise2', None) @property def startclosesound(self): return self._raw_data.get('startclosesound', None) @property def closesound(self): return self._raw_data.get('closesound', None) @property def wait(self): return parse_source_value(self._raw_data.get('wait', 4)) @property def lip(self): return parse_source_value(self._raw_data.get('lip', 0)) @property def dmg(self): return parse_source_value(self._raw_data.get('dmg', 0)) @property def forceclosed(self): return self._raw_data.get('forceclosed', "0") @property def ignoredebris(self): return self._raw_data.get('ignoredebris', "0") @property def message(self): return self._raw_data.get('message', None) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) @property def locked_sound(self): return self._raw_data.get('locked_sound', None) @property def unlocked_sound(self): return self._raw_data.get('unlocked_sound', None) @property def spawnpos(self): return self._raw_data.get('spawnpos', "0") @property def locked_sentence(self): return self._raw_data.get('locked_sentence', "0") @property def unlocked_sentence(self): return self._raw_data.get('unlocked_sentence', "0") @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def loopmovesound(self): return self._raw_data.get('loopmovesound', "0") class func_door(Door, Origin): @property def movedir(self): return parse_float_vector(self._raw_data.get('movedir', "0 0 0")) @property def filtername(self): return self._raw_data.get('filtername', None) class func_door_rotating(Door, Angles, Origin): @property def distance(self): return parse_source_value(self._raw_data.get('distance', 90)) @property def always_fire_blocked_outputs(self): return self._raw_data.get('always_fire_blocked_outputs', "0") @property def solidbsp(self): return self._raw_data.get('solidbsp', "0") class BaseFadeProp(Base): @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', -1)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 0)) @property def fadescale(self): return parse_source_value(self._raw_data.get('fadescale', 1)) class prop_door_rotating(Parentname, Glow, Studiomodel, Angles, Global, BaseFadeProp, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def slavename(self): return self._raw_data.get('slavename', None) @property def hardware(self): return self._raw_data.get('hardware', "1") @property def ajarangles(self): return parse_float_vector(self._raw_data.get('ajarangles', "0 0 0")) @property def spawnpos(self): return self._raw_data.get('spawnpos', "0") @property def axis(self): return self._raw_data.get('axis', None) @property def distance(self): return parse_source_value(self._raw_data.get('distance', 90)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 200)) @property def soundopenoverride(self): return self._raw_data.get('soundopenoverride', None) @property def soundcloseoverride(self): return self._raw_data.get('soundcloseoverride', None) @property def soundmoveoverride(self): return self._raw_data.get('soundmoveoverride', None) @property def returndelay(self): return parse_source_value(self._raw_data.get('returndelay', -1)) @property def dmg(self): return parse_source_value(self._raw_data.get('dmg', 0)) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) @property def soundlockedoverride(self): return self._raw_data.get('soundlockedoverride', None) @property def soundunlockedoverride(self): return self._raw_data.get('soundunlockedoverride', None) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def forceclosed(self): return self._raw_data.get('forceclosed', "0") @property def opendir(self): return self._raw_data.get('opendir', "0") class prop_wall_breakable(Parentname, Studiomodel, Angles, Global, BaseFadeProp, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_cubemap(Base): icon_sprite = "editor/env_cubemap.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def cubemapsize(self): return self._raw_data.get('cubemapsize', "0") @property def sides(self): return self._raw_data.get('sides', None) class BModelParticleSpawner(Base): @property def StartDisabled(self): return self._raw_data.get('startdisabled', "0") @property def Color(self): return parse_int_vector(self._raw_data.get('color', "255 255 255")) @property def SpawnRate(self): return parse_source_value(self._raw_data.get('spawnrate', 40)) @property def SpeedMax(self): return self._raw_data.get('speedmax', "13") @property def LifetimeMin(self): return self._raw_data.get('lifetimemin', "3") @property def LifetimeMax(self): return self._raw_data.get('lifetimemax', "5") @property def DistMax(self): return parse_source_value(self._raw_data.get('distmax', 1024)) @property def Frozen(self): return self._raw_data.get('frozen', "0") class func_dustmotes(BModelParticleSpawner, Targetname): @property def SizeMin(self): return self._raw_data.get('sizemin', "10") @property def SizeMax(self): return self._raw_data.get('sizemax', "20") @property def Alpha(self): return parse_source_value(self._raw_data.get('alpha', 255)) class func_smokevolume(Targetname): @property def Color1(self): return parse_int_vector(self._raw_data.get('color1', "255 255 255")) @property def Color2(self): return parse_int_vector(self._raw_data.get('color2', "255 255 255")) @property def material(self): return self._raw_data.get('material', "particle/particle_smokegrenade") @property def ParticleDrawWidth(self): return parse_source_value(self._raw_data.get('particledrawwidth', 120)) @property def ParticleSpacingDistance(self): return parse_source_value(self._raw_data.get('particlespacingdistance', 80)) @property def DensityRampSpeed(self): return parse_source_value(self._raw_data.get('densityrampspeed', 1)) @property def RotationSpeed(self): return parse_source_value(self._raw_data.get('rotationspeed', 10)) @property def MovementSpeed(self): return parse_source_value(self._raw_data.get('movementspeed', 10)) @property def Density(self): return parse_source_value(self._raw_data.get('density', 1)) @property def MaxDrawDistance(self): return parse_source_value(self._raw_data.get('maxdrawdistance', 0)) class func_dustcloud(BModelParticleSpawner, Targetname): @property def Alpha(self): return parse_source_value(self._raw_data.get('alpha', 30)) @property def SizeMin(self): return self._raw_data.get('sizemin', "100") @property def SizeMax(self): return self._raw_data.get('sizemax', "200") class env_dustpuff(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def scale(self): return parse_source_value(self._raw_data.get('scale', 8)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 16)) @property def color(self): return parse_int_vector(self._raw_data.get('color', "128 128 128")) class env_particlescript(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/Ambient_citadel_paths.mdl") class env_effectscript(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/Effects/teleporttrail.mdl") @property def scriptfile(self): return self._raw_data.get('scriptfile', "scripts/effects/testeffect.txt") class logic_auto(Base): icon_sprite = "editor/logic_auto.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def globalstate(self): return self._raw_data.get('globalstate', None) class point_viewcontrol(Parentname, Angles, Targetname): viewport_model = "models/editor/camera.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fov(self): return parse_source_value(self._raw_data.get('fov', 90)) @property def fov_rate(self): return parse_source_value(self._raw_data.get('fov_rate', 1.0)) @property def target(self): return self._raw_data.get('target', None) @property def targetattachment(self): return self._raw_data.get('targetattachment', None) @property def wait(self): return parse_source_value(self._raw_data.get('wait', 10)) @property def moveto(self): return self._raw_data.get('moveto', None) @property def interpolatepositiontoplayer(self): return self._raw_data.get('interpolatepositiontoplayer', "0") @property def speed(self): return self._raw_data.get('speed', "0") @property def acceleration(self): return self._raw_data.get('acceleration', "500") @property def deceleration(self): return self._raw_data.get('deceleration', "500") class point_posecontroller(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def PropName(self): return self._raw_data.get('propname', None) @property def PoseParameterName(self): return self._raw_data.get('poseparametername', None) @property def PoseValue(self): return parse_source_value(self._raw_data.get('posevalue', 0.0)) @property def InterpolationTime(self): return parse_source_value(self._raw_data.get('interpolationtime', 0.0)) @property def InterpolationWrap(self): return self._raw_data.get('interpolationwrap', "0") @property def CycleFrequency(self): return parse_source_value(self._raw_data.get('cyclefrequency', 0.0)) @property def FModulationType(self): return self._raw_data.get('fmodulationtype', "0") @property def FModTimeOffset(self): return parse_source_value(self._raw_data.get('fmodtimeoffset', 0.0)) @property def FModRate(self): return parse_source_value(self._raw_data.get('fmodrate', 0.0)) @property def FModAmplitude(self): return parse_source_value(self._raw_data.get('fmodamplitude', 0.0)) class logic_compare(Targetname): icon_sprite = "editor/logic_compare.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def InitialValue(self): return parse_source_value(self._raw_data.get('initialvalue', None)) @property def CompareValue(self): return parse_source_value(self._raw_data.get('comparevalue', None)) class logic_branch(Targetname): icon_sprite = "editor/logic_branch.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def InitialValue(self): return parse_source_value(self._raw_data.get('initialvalue', None)) class logic_branch_listener(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Branch01(self): return self._raw_data.get('branch01', None) @property def Branch02(self): return self._raw_data.get('branch02', None) @property def Branch03(self): return self._raw_data.get('branch03', None) @property def Branch04(self): return self._raw_data.get('branch04', None) @property def Branch05(self): return self._raw_data.get('branch05', None) @property def Branch06(self): return self._raw_data.get('branch06', None) @property def Branch07(self): return self._raw_data.get('branch07', None) @property def Branch08(self): return self._raw_data.get('branch08', None) @property def Branch09(self): return self._raw_data.get('branch09', None) @property def Branch10(self): return self._raw_data.get('branch10', None) @property def Branch11(self): return self._raw_data.get('branch11', None) @property def Branch12(self): return self._raw_data.get('branch12', None) @property def Branch13(self): return self._raw_data.get('branch13', None) @property def Branch14(self): return self._raw_data.get('branch14', None) @property def Branch15(self): return self._raw_data.get('branch15', None) @property def Branch16(self): return self._raw_data.get('branch16', None) class logic_case(Targetname): icon_sprite = "editor/logic_case.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Case01(self): return self._raw_data.get('case01', None) @property def Case02(self): return self._raw_data.get('case02', None) @property def Case03(self): return self._raw_data.get('case03', None) @property def Case04(self): return self._raw_data.get('case04', None) @property def Case05(self): return self._raw_data.get('case05', None) @property def Case06(self): return self._raw_data.get('case06', None) @property def Case07(self): return self._raw_data.get('case07', None) @property def Case08(self): return self._raw_data.get('case08', None) @property def Case09(self): return self._raw_data.get('case09', None) @property def Case10(self): return self._raw_data.get('case10', None) @property def Case11(self): return self._raw_data.get('case11', None) @property def Case12(self): return self._raw_data.get('case12', None) @property def Case13(self): return self._raw_data.get('case13', None) @property def Case14(self): return self._raw_data.get('case14', None) @property def Case15(self): return self._raw_data.get('case15', None) @property def Case16(self): return self._raw_data.get('case16', None) class logic_multicompare(Targetname): icon_sprite = "editor/logic_multicompare.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def IntegerValue(self): return parse_source_value(self._raw_data.get('integervalue', None)) @property def ShouldComparetoValue(self): return self._raw_data.get('shouldcomparetovalue', "0") class logic_relay(EnableDisable, Targetname): icon_sprite = "editor/logic_relay.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class logic_timer(EnableDisable, Targetname): icon_sprite = "editor/logic_timer.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def UseRandomTime(self): return self._raw_data.get('userandomtime', "0") @property def LowerRandomBound(self): return self._raw_data.get('lowerrandombound', None) @property def UpperRandomBound(self): return self._raw_data.get('upperrandombound', None) @property def RefireTime(self): return self._raw_data.get('refiretime', None) class hammer_updateignorelist(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def IgnoredName01(self): return self._raw_data.get('ignoredname01', "") @property def IgnoredName02(self): return self._raw_data.get('ignoredname02', "") @property def IgnoredName03(self): return self._raw_data.get('ignoredname03', "") @property def IgnoredName04(self): return self._raw_data.get('ignoredname04', "") @property def IgnoredName05(self): return self._raw_data.get('ignoredname05', "") @property def IgnoredName06(self): return self._raw_data.get('ignoredname06', "") @property def IgnoredName07(self): return self._raw_data.get('ignoredname07', "") @property def IgnoredName08(self): return self._raw_data.get('ignoredname08', "") @property def IgnoredName09(self): return self._raw_data.get('ignoredname09', "") @property def IgnoredName10(self): return self._raw_data.get('ignoredname10', "") @property def IgnoredName11(self): return self._raw_data.get('ignoredname11', "") @property def IgnoredName12(self): return self._raw_data.get('ignoredname12', "") @property def IgnoredName13(self): return self._raw_data.get('ignoredname13', "") @property def IgnoredName14(self): return self._raw_data.get('ignoredname14', "") @property def IgnoredName15(self): return self._raw_data.get('ignoredname15', "") @property def IgnoredName16(self): return self._raw_data.get('ignoredname16', "") class logic_collision_pair(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def attach1(self): return self._raw_data.get('attach1', "") @property def attach2(self): return self._raw_data.get('attach2', "") @property def startdisabled(self): return self._raw_data.get('startdisabled', "1") class env_microphone(Parentname, EnableDisable, Targetname): icon_sprite = "editor/env_microphone.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def SpeakerName(self): return self._raw_data.get('speakername', "") @property def ListenFilter(self): return self._raw_data.get('listenfilter', "") @property def speaker_dsp_preset(self): return self._raw_data.get('speaker_dsp_preset', "0") @property def Sensitivity(self): return parse_source_value(self._raw_data.get('sensitivity', 1)) @property def SmoothFactor(self): return parse_source_value(self._raw_data.get('smoothfactor', 0)) @property def MaxRange(self): return parse_source_value(self._raw_data.get('maxrange', 240)) class math_remap(EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def in1(self): return parse_source_value(self._raw_data.get('in1', 0)) @property def in2(self): return parse_source_value(self._raw_data.get('in2', 1)) @property def out1(self): return parse_source_value(self._raw_data.get('out1', None)) @property def out2(self): return parse_source_value(self._raw_data.get('out2', None)) class math_colorblend(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def inmin(self): return parse_source_value(self._raw_data.get('inmin', 0)) @property def inmax(self): return parse_source_value(self._raw_data.get('inmax', 1)) @property def colormin(self): return parse_int_vector(self._raw_data.get('colormin', "0 0 0")) @property def colormax(self): return parse_int_vector(self._raw_data.get('colormax', "255 255 255")) class math_counter(EnableDisable, Targetname): icon_sprite = "editor/math_counter.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def startvalue(self): return parse_source_value(self._raw_data.get('startvalue', 0)) @property def min(self): return parse_source_value(self._raw_data.get('min', 0)) @property def max(self): return parse_source_value(self._raw_data.get('max', 0)) class logic_lineto(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def source(self): return self._raw_data.get('source', None) @property def target(self): return self._raw_data.get('target', None) class logic_navigation(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) # Set to none due to bug in BlackMesa base.fgd file @property def navprop(self): return self._raw_data.get('navprop', "Ignore") class logic_autosave(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def NewLevelUnit(self): return self._raw_data.get('newlevelunit', "0") @property def MinimumHitPoints(self): return parse_source_value(self._raw_data.get('minimumhitpoints', 0)) @property def MinHitPointsToCommit(self): return parse_source_value(self._raw_data.get('minhitpointstocommit', 0)) class logic_active_autosave(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MinimumHitPoints(self): return parse_source_value(self._raw_data.get('minimumhitpoints', 30)) @property def TriggerHitPoints(self): return parse_source_value(self._raw_data.get('triggerhitpoints', 75)) @property def TimeToTrigget(self): return parse_source_value(self._raw_data.get('timetotrigget', 0)) @property def DangerousTime(self): return parse_source_value(self._raw_data.get('dangeroustime', 10)) class point_template(Targetname): icon_sprite = "editor/point_template.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Template01(self): return self._raw_data.get('template01', None) @property def Template02(self): return self._raw_data.get('template02', None) @property def Template03(self): return self._raw_data.get('template03', None) @property def Template04(self): return self._raw_data.get('template04', None) @property def Template05(self): return self._raw_data.get('template05', None) @property def Template06(self): return self._raw_data.get('template06', None) @property def Template07(self): return self._raw_data.get('template07', None) @property def Template08(self): return self._raw_data.get('template08', None) @property def Template09(self): return self._raw_data.get('template09', None) @property def Template10(self): return self._raw_data.get('template10', None) @property def Template11(self): return self._raw_data.get('template11', None) @property def Template12(self): return self._raw_data.get('template12', None) @property def Template13(self): return self._raw_data.get('template13', None) @property def Template14(self): return self._raw_data.get('template14', None) @property def Template15(self): return self._raw_data.get('template15', None) @property def Template16(self): return self._raw_data.get('template16', None) class env_entity_maker(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def EntityTemplate(self): return self._raw_data.get('entitytemplate', "") @property def PostSpawnSpeed(self): return parse_source_value(self._raw_data.get('postspawnspeed', 0)) @property def PostSpawnDirection(self): return parse_float_vector(self._raw_data.get('postspawndirection', "0 0 0")) @property def PostSpawnDirectionVariance(self): return parse_source_value(self._raw_data.get('postspawndirectionvariance', 0.15)) @property def PostSpawnInheritAngles(self): return self._raw_data.get('postspawninheritangles', "0") class BaseFilter(Targetname): @property def Negated(self): return self._raw_data.get('negated', "Allow entities that match criteria") class filter_multi(BaseFilter): icon_sprite = "editor/filter_multiple.vmt" @property def filtertype(self): return self._raw_data.get('filtertype', "0") @property def Filter01(self): return self._raw_data.get('filter01', None) @property def Filter02(self): return self._raw_data.get('filter02', None) @property def Filter03(self): return self._raw_data.get('filter03', None) @property def Filter04(self): return self._raw_data.get('filter04', None) @property def Filter05(self): return self._raw_data.get('filter05', None) @property def Filter06(self): return self._raw_data.get('filter06', None) @property def Filter07(self): return self._raw_data.get('filter07', None) @property def Filter08(self): return self._raw_data.get('filter08', None) @property def Filter09(self): return self._raw_data.get('filter09', None) @property def Filter10(self): return self._raw_data.get('filter10', None) class filter_activator_name(BaseFilter): icon_sprite = "editor/filter_name.vmt" @property def filtername(self): return self._raw_data.get('filtername', None) class filter_activator_model(BaseFilter): icon_sprite = "editor/filter_name.vmt" @property def model(self): return self._raw_data.get('model', None) class filter_activator_context(BaseFilter): icon_sprite = "editor/filter_name.vmt" @property def ResponseContext(self): return self._raw_data.get('responsecontext', None) class filter_activator_class(BaseFilter): icon_sprite = "editor/filter_class.vmt" @property def filterclass(self): return self._raw_data.get('filterclass', None) class filter_activator_mass_greater(BaseFilter): icon_sprite = "editor/filter_class.vmt" @property def filtermass(self): return parse_source_value(self._raw_data.get('filtermass', None)) class filter_damage_type(BaseFilter): @property def damagetype(self): return self._raw_data.get('damagetype', "64") class filter_enemy(BaseFilter): icon_sprite = "editor/filter_class.vmt" @property def filtername(self): return self._raw_data.get('filtername', None) @property def filter_radius(self): return parse_source_value(self._raw_data.get('filter_radius', 0)) @property def filter_outer_radius(self): return parse_source_value(self._raw_data.get('filter_outer_radius', 0)) @property def filter_max_per_enemy(self): return parse_source_value(self._raw_data.get('filter_max_per_enemy', 0)) class point_anglesensor(Parentname, EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def lookatname(self): return self._raw_data.get('lookatname', None) @property def duration(self): return parse_source_value(self._raw_data.get('duration', None)) @property def tolerance(self): return parse_source_value(self._raw_data.get('tolerance', None)) class point_angularvelocitysensor(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def threshold(self): return parse_source_value(self._raw_data.get('threshold', 0)) @property def fireinterval(self): return parse_source_value(self._raw_data.get('fireinterval', 0.2)) @property def axis(self): return self._raw_data.get('axis', None) @property def usehelper(self): return self._raw_data.get('usehelper', "0") class point_velocitysensor(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def axis(self): return self._raw_data.get('axis', None) @property def enabled(self): return self._raw_data.get('enabled', "1") class point_proximity_sensor(Parentname, Angles, EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class point_teleport(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) class point_hurt(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def DamageTarget(self): return self._raw_data.get('damagetarget', "") @property def DamageRadius(self): return parse_source_value(self._raw_data.get('damageradius', 256)) @property def Damage(self): return parse_source_value(self._raw_data.get('damage', 5)) @property def DamageDelay(self): return parse_source_value(self._raw_data.get('damagedelay', 1)) @property def DamageType(self): return self._raw_data.get('damagetype', "0") class point_playermoveconstraint(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 256)) @property def width(self): return parse_source_value(self._raw_data.get('width', 75.0)) @property def speedfactor(self): return parse_source_value(self._raw_data.get('speedfactor', 0.15)) class point_push(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def enabled(self): return self._raw_data.get('enabled', "1") @property def magnitude(self): return parse_source_value(self._raw_data.get('magnitude', 100)) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 128)) @property def inner_radius(self): return parse_source_value(self._raw_data.get('inner_radius', 0)) @property def influence_cone(self): return parse_source_value(self._raw_data.get('influence_cone', 0)) class func_physbox(BreakableBrush, Origin, RenderFields): @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def Damagetype(self): return self._raw_data.get('damagetype', "0") @property def massScale(self): return parse_source_value(self._raw_data.get('massscale', 0)) @property def overridescript(self): return self._raw_data.get('overridescript', "") @property def damagetoenablemotion(self): return parse_source_value(self._raw_data.get('damagetoenablemotion', 0)) @property def forcetoenablemotion(self): return parse_source_value(self._raw_data.get('forcetoenablemotion', 0)) @property def preferredcarryangles(self): return parse_float_vector(self._raw_data.get('preferredcarryangles', "0 0 0")) @property def notsolid(self): return self._raw_data.get('notsolid', "0") class TwoObjectPhysics(Targetname): @property def attach1(self): return self._raw_data.get('attach1', "") @property def attach2(self): return self._raw_data.get('attach2', "") @property def constraintsystem(self): return self._raw_data.get('constraintsystem', "") @property def forcelimit(self): return parse_source_value(self._raw_data.get('forcelimit', 0)) @property def torquelimit(self): return parse_source_value(self._raw_data.get('torquelimit', 0)) @property def breaksound(self): return self._raw_data.get('breaksound', "") @property def teleportfollowdistance(self): return parse_source_value(self._raw_data.get('teleportfollowdistance', 0)) class phys_constraintsystem(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def additionaliterations(self): return parse_source_value(self._raw_data.get('additionaliterations', 0)) class phys_keepupright(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def attach1(self): return self._raw_data.get('attach1', "") @property def angularlimit(self): return parse_source_value(self._raw_data.get('angularlimit', 15)) class physics_cannister(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/fire_equipment/w_weldtank.mdl") @property def expdamage(self): return self._raw_data.get('expdamage', "200.0") @property def expradius(self): return self._raw_data.get('expradius', "250.0") @property def health(self): return parse_source_value(self._raw_data.get('health', 25)) @property def thrust(self): return self._raw_data.get('thrust', "3000.0") @property def fuel(self): return self._raw_data.get('fuel', "12.0") @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 128)) @property def gassound(self): return self._raw_data.get('gassound', "ambient/objects/cannister_loop.wav") class info_constraint_anchor(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def massScale(self): return parse_source_value(self._raw_data.get('massscale', 1)) class info_mass_center(Base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', "") class phys_spring(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def attach1(self): return self._raw_data.get('attach1', "") @property def attach2(self): return self._raw_data.get('attach2', "") @property def springaxis(self): return self._raw_data.get('springaxis', "") @property def length(self): return self._raw_data.get('length', "0") @property def constant(self): return self._raw_data.get('constant', "50") @property def damping(self): return self._raw_data.get('damping', "2.0") @property def relativedamping(self): return self._raw_data.get('relativedamping', "0.1") @property def breaklength(self): return self._raw_data.get('breaklength', "0") class phys_hinge(TwoObjectPhysics): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def hingefriction(self): return parse_source_value(self._raw_data.get('hingefriction', 0)) @property def hingeaxis(self): return self._raw_data.get('hingeaxis', None) @property def SystemLoadScale(self): return parse_source_value(self._raw_data.get('systemloadscale', 1)) @property def minSoundThreshold(self): return parse_source_value(self._raw_data.get('minsoundthreshold', 6)) @property def maxSoundThreshold(self): return parse_source_value(self._raw_data.get('maxsoundthreshold', 80)) @property def slidesoundfwd(self): return self._raw_data.get('slidesoundfwd', "") @property def slidesoundback(self): return self._raw_data.get('slidesoundback', "") @property def reversalsoundthresholdSmall(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdsmall', 0)) @property def reversalsoundthresholdMedium(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdmedium', 0)) @property def reversalsoundthresholdLarge(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdlarge', 0)) @property def reversalsoundSmall(self): return self._raw_data.get('reversalsoundsmall', "") @property def reversalsoundMedium(self): return self._raw_data.get('reversalsoundmedium', "") @property def reversalsoundLarge(self): return self._raw_data.get('reversalsoundlarge', "") class phys_ballsocket(TwoObjectPhysics): icon_sprite = "editor/phys_ballsocket.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class phys_constraint(TwoObjectPhysics): model_ = "models/editor/axis_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class phys_pulleyconstraint(TwoObjectPhysics): model_ = "models/editor/axis_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def addlength(self): return parse_source_value(self._raw_data.get('addlength', 0)) @property def gearratio(self): return parse_source_value(self._raw_data.get('gearratio', 1)) @property def position2(self): return self._raw_data.get('position2', None) class phys_slideconstraint(TwoObjectPhysics): model_ = "models/editor/axis_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def slideaxis(self): return self._raw_data.get('slideaxis', None) @property def slidefriction(self): return parse_source_value(self._raw_data.get('slidefriction', 0)) @property def SystemLoadScale(self): return parse_source_value(self._raw_data.get('systemloadscale', 1)) @property def minSoundThreshold(self): return parse_source_value(self._raw_data.get('minsoundthreshold', 6)) @property def maxSoundThreshold(self): return parse_source_value(self._raw_data.get('maxsoundthreshold', 80)) @property def slidesoundfwd(self): return self._raw_data.get('slidesoundfwd', "") @property def slidesoundback(self): return self._raw_data.get('slidesoundback', "") @property def reversalsoundthresholdSmall(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdsmall', 0)) @property def reversalsoundthresholdMedium(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdmedium', 0)) @property def reversalsoundthresholdLarge(self): return parse_source_value(self._raw_data.get('reversalsoundthresholdlarge', 0)) @property def reversalsoundSmall(self): return self._raw_data.get('reversalsoundsmall', "") @property def reversalsoundMedium(self): return self._raw_data.get('reversalsoundmedium', "") @property def reversalsoundLarge(self): return self._raw_data.get('reversalsoundlarge', "") class phys_lengthconstraint(TwoObjectPhysics): model_ = "models/editor/axis_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def addlength(self): return parse_source_value(self._raw_data.get('addlength', 0)) @property def minlength(self): return parse_source_value(self._raw_data.get('minlength', 0)) @property def attachpoint(self): return self._raw_data.get('attachpoint', None) # Set to none due to bug in BlackMesa base.fgd file class phys_ragdollconstraint(TwoObjectPhysics): model_ = "models/editor/axis_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def xmin(self): return parse_source_value(self._raw_data.get('xmin', -90)) @property def xmax(self): return parse_source_value(self._raw_data.get('xmax', 90)) @property def ymin(self): return parse_source_value(self._raw_data.get('ymin', 0)) @property def ymax(self): return parse_source_value(self._raw_data.get('ymax', 0)) @property def zmin(self): return parse_source_value(self._raw_data.get('zmin', 0)) @property def zmax(self): return parse_source_value(self._raw_data.get('zmax', 0)) @property def xfriction(self): return parse_source_value(self._raw_data.get('xfriction', 0)) @property def yfriction(self): return parse_source_value(self._raw_data.get('yfriction', 0)) @property def zfriction(self): return parse_source_value(self._raw_data.get('zfriction', 0)) class phys_convert(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def swapmodel(self): return self._raw_data.get('swapmodel', None) @property def massoverride(self): return parse_source_value(self._raw_data.get('massoverride', 0)) class ForceController(Targetname): @property def attach1(self): return self._raw_data.get('attach1', "") @property def forcetime(self): return self._raw_data.get('forcetime', "0") class phys_thruster(Angles, ForceController): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def force(self): return self._raw_data.get('force', "0") class phys_torque(ForceController): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def force(self): return self._raw_data.get('force', "0") @property def axis(self): return self._raw_data.get('axis', "") class phys_motor(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def speed(self): return self._raw_data.get('speed', "0") @property def spinup(self): return self._raw_data.get('spinup', "1") @property def inertiafactor(self): return parse_source_value(self._raw_data.get('inertiafactor', 1.0)) @property def axis(self): return self._raw_data.get('axis', "") @property def attach1(self): return self._raw_data.get('attach1', "") class phys_magnet(Studiomodel, Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def forcelimit(self): return parse_source_value(self._raw_data.get('forcelimit', 0)) @property def torquelimit(self): return parse_source_value(self._raw_data.get('torquelimit', 0)) @property def massScale(self): return parse_source_value(self._raw_data.get('massscale', 0)) @property def overridescript(self): return self._raw_data.get('overridescript', "") @property def maxobjects(self): return parse_source_value(self._raw_data.get('maxobjects', 0)) class prop_detail_base(Base): @property def model(self): return self._raw_data.get('model', None) class prop_static_base(Angles, SystemLevelChoice): @property def model(self): return self._raw_data.get('model', None) @property def skin(self): return parse_source_value(self._raw_data.get('skin', 0)) @property def solid(self): return self._raw_data.get('solid', "6") @property def disableshadows(self): return self._raw_data.get('disableshadows', "0") @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', -1)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 0)) @property def fadescale(self): return parse_source_value(self._raw_data.get('fadescale', 1)) @property def lightingorigin(self): return self._raw_data.get('lightingorigin', "") @property def disablevertexlighting(self): return self._raw_data.get('disablevertexlighting', "1") @property def disableselfshadowing(self): return self._raw_data.get('disableselfshadowing', "1") @property def ignorenormals(self): return self._raw_data.get('ignorenormals', "0") @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) class prop_dynamic_base(Parentname, Glow, Studiomodel, Angles, BreakableProp, Global, RenderFields): @property def solid(self): return self._raw_data.get('solid', "6") @property def DefaultAnim(self): return self._raw_data.get('defaultanim', "") @property def RandomAnimation(self): return self._raw_data.get('randomanimation', "0") @property def MinAnimTime(self): return parse_source_value(self._raw_data.get('minanimtime', 5)) @property def MaxAnimTime(self): return parse_source_value(self._raw_data.get('maxanimtime', 10)) @property def SetBodyGroup(self): return parse_source_value(self._raw_data.get('setbodygroup', 0)) @property def LagCompensate(self): return self._raw_data.get('lagcompensate', "0") @property def glowbackfacemult(self): return parse_source_value(self._raw_data.get('glowbackfacemult', 1.0)) @property def lightingorigin(self): return self._raw_data.get('lightingorigin', "") @property def updatechildren(self): return self._raw_data.get('updatechildren', "0") class prop_detail(prop_detail_base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class prop_static(prop_static_base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class prop_dynamic(prop_dynamic_base, EnableDisable): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class prop_dynamic_override(prop_dynamic_base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) class BasePropPhysics(Glow, Studiomodel, Angles, BreakableProp, Global, SystemLevelChoice): @property def minhealthdmg(self): return parse_source_value(self._raw_data.get('minhealthdmg', 0)) @property def shadowcastdist(self): return parse_source_value(self._raw_data.get('shadowcastdist', 0)) @property def physdamagescale(self): return parse_source_value(self._raw_data.get('physdamagescale', 0.1)) @property def Damagetype(self): return self._raw_data.get('damagetype', "0") @property def nodamageforces(self): return self._raw_data.get('nodamageforces', "0") @property def inertiaScale(self): return parse_source_value(self._raw_data.get('inertiascale', 1.0)) @property def massScale(self): return parse_source_value(self._raw_data.get('massscale', 0)) @property def overridescript(self): return self._raw_data.get('overridescript', "") @property def damagetoenablemotion(self): return parse_source_value(self._raw_data.get('damagetoenablemotion', 0)) @property def forcetoenablemotion(self): return parse_source_value(self._raw_data.get('forcetoenablemotion', 0)) @property def puntsound(self): return self._raw_data.get('puntsound', None) class prop_physics_override(BasePropPhysics, BaseFadeProp): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) class prop_physics(RenderFields, BasePropPhysics): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def BreakableType(self): return self._raw_data.get('breakabletype', "0") class prop_physics_multiplayer(prop_physics): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def physicsmode(self): return self._raw_data.get('physicsmode', "0") class prop_ragdoll(Studiomodel, Angles, SystemLevelChoice, EnableDisable, BaseFadeProp, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def angleOverride(self): return self._raw_data.get('angleoverride', "") class prop_dynamic_ornament(prop_dynamic_base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def InitialOwner(self): return self._raw_data.get('initialowner', None) class func_areaportal(Targetname): @property def target(self): return self._raw_data.get('target', None) @property def StartOpen(self): return self._raw_data.get('startopen', "1") @property def PortalVersion(self): return parse_source_value(self._raw_data.get('portalversion', 1)) class func_occluder(Targetname): @property def StartActive(self): return self._raw_data.get('startactive', "1") class func_breakable(RenderFields, BreakableBrush, Origin): @property def minhealthdmg(self): return parse_source_value(self._raw_data.get('minhealthdmg', 0)) @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def physdamagescale(self): return parse_source_value(self._raw_data.get('physdamagescale', 1.0)) @property def BreakableType(self): return self._raw_data.get('breakabletype', "0") class func_breakable_surf(RenderFields, BreakableBrush): @property def fragility(self): return parse_source_value(self._raw_data.get('fragility', 100)) @property def surfacetype(self): return self._raw_data.get('surfacetype', "0") class func_conveyor(RenderFields, Parentname, Shadow, Targetname): @property def movedir(self): return parse_float_vector(self._raw_data.get('movedir', "0 0 0")) @property def speed(self): return self._raw_data.get('speed', "100") @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_detail(Base): pass class func_viscluster(Base): pass class func_illusionary(Parentname, Shadow, Origin, RenderFields, Targetname): @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_precipitation(Parentname, Targetname): @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 100)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "100 100 100")) @property def preciptype(self): return self._raw_data.get('preciptype', "0") @property def minSpeed(self): return parse_source_value(self._raw_data.get('minspeed', 25)) @property def maxSpeed(self): return parse_source_value(self._raw_data.get('maxspeed', 35)) class func_precipitation_blocker(Parentname, Targetname): pass class func_detail_blocker(Parentname, Targetname): pass class func_wall_toggle(func_wall): pass class func_guntarget(RenderFields, Parentname, Global, Targetname): @property def speed(self): return parse_source_value(self._raw_data.get('speed', 100)) @property def target(self): return self._raw_data.get('target', None) @property def health(self): return parse_source_value(self._raw_data.get('health', 0)) @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_fish_pool(Base): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/Junkola.mdl") @property def fish_count(self): return parse_source_value(self._raw_data.get('fish_count', 10)) @property def max_range(self): return parse_source_value(self._raw_data.get('max_range', 150)) class PlatSounds(Base): @property def movesnd(self): return self._raw_data.get('movesnd', "0") @property def stopsnd(self): return self._raw_data.get('stopsnd', "0") @property def volume(self): return self._raw_data.get('volume', "0.85") class Trackchange(Parentname, PlatSounds, Global, RenderFields, Targetname): @property def height(self): return parse_source_value(self._raw_data.get('height', 0)) @property def rotation(self): return parse_source_value(self._raw_data.get('rotation', 0)) @property def train(self): return self._raw_data.get('train', None) @property def toptrack(self): return self._raw_data.get('toptrack', None) @property def bottomtrack(self): return self._raw_data.get('bottomtrack', None) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 0)) class BaseTrain(Parentname, Shadow, Global, Origin, RenderFields, Targetname): @property def target(self): return self._raw_data.get('target', "") @property def startspeed(self): return parse_source_value(self._raw_data.get('startspeed', 100)) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 0)) @property def velocitytype(self): return self._raw_data.get('velocitytype', "0") @property def orientationtype(self): return self._raw_data.get('orientationtype', "1") @property def wheels(self): return parse_source_value(self._raw_data.get('wheels', 50)) @property def height(self): return parse_source_value(self._raw_data.get('height', 4)) @property def bank(self): return self._raw_data.get('bank', "0") @property def dmg(self): return parse_source_value(self._raw_data.get('dmg', 0)) @property def _minlight(self): return self._raw_data.get('_minlight', None) @property def MoveSound(self): return self._raw_data.get('movesound', "") @property def MovePingSound(self): return self._raw_data.get('movepingsound', "") @property def StartSound(self): return self._raw_data.get('startsound', "") @property def StopSound(self): return self._raw_data.get('stopsound', "") @property def volume(self): return parse_source_value(self._raw_data.get('volume', 10)) @property def MoveSoundMinPitch(self): return parse_source_value(self._raw_data.get('movesoundminpitch', 60)) @property def MoveSoundMaxPitch(self): return parse_source_value(self._raw_data.get('movesoundmaxpitch', 200)) @property def MoveSoundMinTime(self): return parse_source_value(self._raw_data.get('movesoundmintime', 0)) @property def MoveSoundMaxTime(self): return parse_source_value(self._raw_data.get('movesoundmaxtime', 0)) class func_trackautochange(Trackchange): @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_trackchange(Trackchange): @property def _minlight(self): return self._raw_data.get('_minlight', None) class func_tracktrain(BaseTrain): pass class func_tanktrain(BaseTrain): @property def health(self): return parse_source_value(self._raw_data.get('health', 100)) class func_traincontrols(Parentname, Global): @property def target(self): return self._raw_data.get('target', None) class tanktrain_aitarget(Targetname): icon_sprite = "editor/tanktrain_aitarget.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def newtarget(self): return self._raw_data.get('newtarget', None) class tanktrain_ai(Targetname): icon_sprite = "editor/tanktrain_ai.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def startsound(self): return self._raw_data.get('startsound', "vehicles/diesel_start1.wav") @property def enginesound(self): return self._raw_data.get('enginesound', "vehicles/diesel_turbo_loop1.wav") @property def movementsound(self): return self._raw_data.get('movementsound', "vehicles/tank_treads_loop1.wav") class path_track(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def altpath(self): return self._raw_data.get('altpath', None) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 0)) @property def radius(self): return parse_source_value(self._raw_data.get('radius', 0)) @property def orientationtype(self): return self._raw_data.get('orientationtype', "1") class test_traceline(Angles): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class trigger_autosave(Targetname): @property def master(self): return self._raw_data.get('master', None) @property def NewLevelUnit(self): return self._raw_data.get('newlevelunit', "0") @property def DangerousTimer(self): return parse_source_value(self._raw_data.get('dangeroustimer', 0)) @property def MinimumHitPoints(self): return parse_source_value(self._raw_data.get('minimumhitpoints', 0)) class trigger_changelevel(EnableDisable): @property def targetname(self): return self._raw_data.get('targetname', None) @property def map(self): return self._raw_data.get('map', None) @property def landmark(self): return self._raw_data.get('landmark', None) class trigger_gravity(Trigger): @property def gravity(self): return parse_source_value(self._raw_data.get('gravity', 1)) class trigger_playermovement(Trigger): pass class trigger_soundscape(Trigger): @property def soundscape(self): return self._raw_data.get('soundscape', None) class trigger_hurt(Trigger): @property def master(self): return self._raw_data.get('master', None) @property def damage(self): return parse_source_value(self._raw_data.get('damage', 10)) @property def damagecap(self): return parse_source_value(self._raw_data.get('damagecap', 20)) @property def damagetype(self): return self._raw_data.get('damagetype', "0") @property def damagemodel(self): return self._raw_data.get('damagemodel', "0") @property def nodmgforce(self): return self._raw_data.get('nodmgforce', "0") @property def damageforce(self): return parse_float_vector(self._raw_data.get('damageforce', None)) @property def thinkalways(self): return self._raw_data.get('thinkalways', "0") class trigger_remove(Trigger): pass class trigger_multiple(Trigger): @property def wait(self): return parse_source_value(self._raw_data.get('wait', 1)) @property def entireteam(self): return self._raw_data.get('entireteam', "0") @property def allowincap(self): return self._raw_data.get('allowincap', "0") @property def allowghost(self): return self._raw_data.get('allowghost', "0") class trigger_once(TriggerOnce): pass class trigger_look(Trigger): @property def target(self): return self._raw_data.get('target', None) @property def LookTime(self): return self._raw_data.get('looktime', "0.5") @property def FieldOfView(self): return self._raw_data.get('fieldofview', "0.9") @property def Timeout(self): return parse_source_value(self._raw_data.get('timeout', 0)) class trigger_push(Trigger): @property def pushdir(self): return parse_float_vector(self._raw_data.get('pushdir', "0 0 0")) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 40)) @property def alternateticksfix(self): return parse_source_value(self._raw_data.get('alternateticksfix', 0)) @property def triggeronstarttouch(self): return self._raw_data.get('triggeronstarttouch', "0") class trigger_wind(Angles, Trigger): @property def Speed(self): return parse_source_value(self._raw_data.get('speed', 200)) @property def SpeedNoise(self): return parse_source_value(self._raw_data.get('speednoise', 0)) @property def DirectionNoise(self): return parse_source_value(self._raw_data.get('directionnoise', 10)) @property def HoldTime(self): return parse_source_value(self._raw_data.get('holdtime', 0)) @property def HoldNoise(self): return parse_source_value(self._raw_data.get('holdnoise', 0)) class trigger_impact(Angles, Origin, Targetname): @property def Magnitude(self): return parse_source_value(self._raw_data.get('magnitude', 200)) @property def noise(self): return parse_source_value(self._raw_data.get('noise', 0.1)) @property def viewkick(self): return parse_source_value(self._raw_data.get('viewkick', 0.05)) class trigger_proximity(Trigger): @property def measuretarget(self): return self._raw_data.get('measuretarget', None) @property def radius(self): return self._raw_data.get('radius', "256") class trigger_teleport(Trigger): @property def target(self): return self._raw_data.get('target', None) @property def landmark(self): return self._raw_data.get('landmark', None) class trigger_transition(Targetname): pass class trigger_serverragdoll(Targetname): pass class ai_speechfilter(ResponseContext, EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def subject(self): return self._raw_data.get('subject', "") @property def IdleModifier(self): return parse_source_value(self._raw_data.get('idlemodifier', 1.0)) @property def NeverSayHello(self): return self._raw_data.get('neversayhello', "0") class water_lod_control(Targetname): icon_sprite = "editor/waterlodcontrol.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def cheapwaterstartdistance(self): return parse_source_value(self._raw_data.get('cheapwaterstartdistance', 1000)) @property def cheapwaterenddistance(self): return parse_source_value(self._raw_data.get('cheapwaterenddistance', 2000)) class info_camera_link(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def PointCamera(self): return self._raw_data.get('pointcamera', None) class logic_measure_movement(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MeasureTarget(self): return self._raw_data.get('measuretarget', "") @property def MeasureReference(self): return self._raw_data.get('measurereference', "") @property def Target(self): return self._raw_data.get('target', "") @property def TargetReference(self): return self._raw_data.get('targetreference', "") @property def TargetScale(self): return parse_source_value(self._raw_data.get('targetscale', 1)) @property def MeasureType(self): return self._raw_data.get('measuretype', "0") class npc_furniture(Parentname, BaseNPC): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', None) class env_credits(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class material_modify_control(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def materialName(self): return self._raw_data.get('materialname', None) @property def materialVar(self): return self._raw_data.get('materialvar', None) class point_devshot_camera(Angles): viewport_model = "models/editor/camera.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def cameraname(self): return self._raw_data.get('cameraname', "") @property def FOV(self): return parse_source_value(self._raw_data.get('fov', 75)) class logic_playerproxy(DamageFilter, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_spritetrail(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def lifetime(self): return parse_source_value(self._raw_data.get('lifetime', 0.5)) @property def startwidth(self): return parse_source_value(self._raw_data.get('startwidth', 8.0)) @property def endwidth(self): return parse_source_value(self._raw_data.get('endwidth', 1.0)) @property def spritename(self): return self._raw_data.get('spritename', "sprites/bluelaser1.vmt") @property def renderamt(self): return parse_source_value(self._raw_data.get('renderamt', 255)) @property def rendercolor(self): return parse_int_vector(self._raw_data.get('rendercolor', "255 255 255")) @property def rendermode(self): return self._raw_data.get('rendermode', "5") class env_projectedtexture(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def target(self): return self._raw_data.get('target', None) @property def lightfov(self): return parse_source_value(self._raw_data.get('lightfov', 90.0)) @property def nearz(self): return parse_source_value(self._raw_data.get('nearz', 4.0)) @property def farz(self): return parse_source_value(self._raw_data.get('farz', 750.0)) @property def enableshadows(self): return self._raw_data.get('enableshadows', "0") @property def shadowquality(self): return self._raw_data.get('shadowquality', "1") @property def lightonlytarget(self): return self._raw_data.get('lightonlytarget', "0") @property def lightworld(self): return self._raw_data.get('lightworld', "1") @property def lightcolor(self): return parse_int_vector(self._raw_data.get('lightcolor', "255 255 255 200")) @property def cameraspace(self): return parse_source_value(self._raw_data.get('cameraspace', 0)) class func_reflective_glass(func_brush): pass class env_particle_performance_monitor(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class npc_puppet(Studiomodel, Parentname, BaseNPC): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def animationtarget(self): return self._raw_data.get('animationtarget', "") @property def attachmentname(self): return self._raw_data.get('attachmentname', "") class point_gamestats_counter(Targetname, EnableDisable, Origin): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Name(self): return self._raw_data.get('name', None) class func_instance(Angles): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def targetname(self): return self._raw_data.get('targetname', None) @property def spawnpositionname(self): return self._raw_data.get('spawnpositionname', None) @property def file(self): return self._raw_data.get('file', None) @property def fixup_style(self): return self._raw_data.get('fixup_style', "0") @property def propagate_fixup(self): return self._raw_data.get('propagate_fixup', "0") @property def replace01(self): return self._raw_data.get('replace01', None) @property def replace02(self): return self._raw_data.get('replace02', None) @property def replace03(self): return self._raw_data.get('replace03', None) @property def replace04(self): return self._raw_data.get('replace04', None) @property def replace05(self): return self._raw_data.get('replace05', None) @property def replace06(self): return self._raw_data.get('replace06', None) @property def replace07(self): return self._raw_data.get('replace07', None) @property def replace08(self): return self._raw_data.get('replace08', None) @property def replace09(self): return self._raw_data.get('replace09', None) @property def replace10(self): return self._raw_data.get('replace10', None) class func_instance_parms(Base): icon_sprite = "editor/func_instance_parms.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def parm1(self): return self._raw_data.get('parm1', None) @property def parm2(self): return self._raw_data.get('parm2', None) @property def parm3(self): return self._raw_data.get('parm3', None) @property def parm4(self): return self._raw_data.get('parm4', None) @property def parm5(self): return self._raw_data.get('parm5', None) @property def parm6(self): return self._raw_data.get('parm6', None) @property def parm7(self): return self._raw_data.get('parm7', None) @property def parm8(self): return self._raw_data.get('parm8', None) @property def parm9(self): return self._raw_data.get('parm9', None) @property def parm10(self): return self._raw_data.get('parm10', None) class env_instructor_hint(Targetname): icon_sprite = "editor/env_instructor_hint.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def hint_target(self): return self._raw_data.get('hint_target', None) @property def hint_name(self): return self._raw_data.get('hint_name', None) @property def hint_static(self): return self._raw_data.get('hint_static', "0") @property def hint_allow_nodraw_target(self): return self._raw_data.get('hint_allow_nodraw_target', "1") @property def hint_caption(self): return self._raw_data.get('hint_caption', None) @property def hint_color(self): return parse_int_vector(self._raw_data.get('hint_color', "255 255 255")) @property def hint_forcecaption(self): return self._raw_data.get('hint_forcecaption', "0") @property def hint_icon_onscreen(self): return self._raw_data.get('hint_icon_onscreen', "icon_tip") @property def hint_icon_offscreen(self): return self._raw_data.get('hint_icon_offscreen', "icon_tip") @property def hint_nooffscreen(self): return self._raw_data.get('hint_nooffscreen', "0") @property def hint_binding(self): return self._raw_data.get('hint_binding', None) @property def hint_icon_offset(self): return parse_source_value(self._raw_data.get('hint_icon_offset', 0)) @property def hint_pulseoption(self): return self._raw_data.get('hint_pulseoption', "0") @property def hint_alphaoption(self): return self._raw_data.get('hint_alphaoption', "0") @property def hint_shakeoption(self): return self._raw_data.get('hint_shakeoption', "0") @property def hint_timeout(self): return parse_source_value(self._raw_data.get('hint_timeout', 0)) @property def hint_display_limit(self): return parse_source_value(self._raw_data.get('hint_display_limit', 0)) @property def hint_range(self): return parse_source_value(self._raw_data.get('hint_range', 0)) @property def hint_instance_type(self): return self._raw_data.get('hint_instance_type', "2") @property def hint_auto_start(self): return self._raw_data.get('hint_auto_start', "1") @property def hint_suppress_rest(self): return self._raw_data.get('hint_suppress_rest', "0") class info_target_instructor_hint(Parentname, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class logic_script(Targetname): icon_sprite = "editor/logic_script.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Group00(self): return self._raw_data.get('group00', None) @property def Group01(self): return self._raw_data.get('group01', None) @property def Group02(self): return self._raw_data.get('group02', None) @property def Group03(self): return self._raw_data.get('group03', None) @property def Group04(self): return self._raw_data.get('group04', None) @property def Group05(self): return self._raw_data.get('group05', None) @property def Group06(self): return self._raw_data.get('group06', None) @property def Group07(self): return self._raw_data.get('group07', None) @property def Group08(self): return self._raw_data.get('group08', None) @property def Group09(self): return self._raw_data.get('group09', None) @property def Group10(self): return self._raw_data.get('group10', None) @property def Group11(self): return self._raw_data.get('group11', None) @property def Group12(self): return self._raw_data.get('group12', None) @property def Group13(self): return self._raw_data.get('group13', None) @property def Group14(self): return self._raw_data.get('group14', None) @property def Group15(self): return self._raw_data.get('group15', None) class func_timescale(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def desiredTimescale(self): return parse_source_value(self._raw_data.get('desiredtimescale', 1.0)) @property def acceleration(self): return parse_source_value(self._raw_data.get('acceleration', 0.05)) @property def minBlendRate(self): return parse_source_value(self._raw_data.get('minblendrate', 0.1)) @property def blendDeltaMultiplier(self): return parse_source_value(self._raw_data.get('blenddeltamultiplier', 3.0)) class func_block_charge(func_brush): pass class info_ambient_mob_start(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_ambient_mob_end(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_ambient_mob(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_item_position(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', None) @property def group(self): return parse_source_value(self._raw_data.get('group', 0)) @property def rarity(self): return self._raw_data.get('rarity', "0") @property def replace01(self): return self._raw_data.get('replace01', None) @property def replace02(self): return self._raw_data.get('replace02', None) @property def replace03(self): return self._raw_data.get('replace03', None) @property def replace04(self): return self._raw_data.get('replace04', None) @property def replace05(self): return self._raw_data.get('replace05', None) @property def replace06(self): return self._raw_data.get('replace06', None) @property def replace07(self): return self._raw_data.get('replace07', None) @property def replace08(self): return self._raw_data.get('replace08', None) @property def replace09(self): return self._raw_data.get('replace09', None) @property def replace10(self): return self._raw_data.get('replace10', None) class info_l4d1_survivor_spawn(Targetname): model_ = "models/survivors/survivor_biker.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def character(self): return self._raw_data.get('character', "5") class env_airstrike_indoors(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def height(self): return self._raw_data.get('height', "-1") class env_airstrike_outdoors(Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/props_destruction/general_dest_roof_set.mdl") @property def modelgroup(self): return self._raw_data.get('modelgroup', "") @property def sequence1(self): return self._raw_data.get('sequence1', "") @property def sequence2(self): return self._raw_data.get('sequence2', "") class point_viewcontrol_multiplayer(Parentname, Angles, Targetname): viewport_model = "models/editor/camera.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fov(self): return parse_source_value(self._raw_data.get('fov', 90)) @property def fov_rate(self): return parse_source_value(self._raw_data.get('fov_rate', 1.0)) @property def target_entity(self): return self._raw_data.get('target_entity', "") @property def interp_time(self): return parse_source_value(self._raw_data.get('interp_time', 1.0)) class point_viewcontrol_survivor(Parentname, Angles, Targetname): viewport_model = "models/editor/camera.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fov(self): return parse_source_value(self._raw_data.get('fov', 90)) @property def fov_rate(self): return parse_source_value(self._raw_data.get('fov_rate', 1.0)) class point_deathfall_camera(Parentname, Angles, Targetname): viewport_model = "models/editor/camera.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fov(self): return parse_source_value(self._raw_data.get('fov', 90)) @property def fov_rate(self): return parse_source_value(self._raw_data.get('fov_rate', 1.0)) class logic_choreographed_scene(Targetname): icon_sprite = "editor/choreo_scene.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def SceneFile(self): return self._raw_data.get('scenefile', None) @property def target1(self): return self._raw_data.get('target1', None) @property def target2(self): return self._raw_data.get('target2', None) @property def target3(self): return self._raw_data.get('target3', None) @property def target4(self): return self._raw_data.get('target4', None) @property def target5(self): return self._raw_data.get('target5', None) @property def target6(self): return self._raw_data.get('target6', None) @property def target7(self): return self._raw_data.get('target7', None) @property def target8(self): return self._raw_data.get('target8', None) @property def busyactor(self): return self._raw_data.get('busyactor', "1") @property def onplayerdeath(self): return self._raw_data.get('onplayerdeath', "0") class logic_scene_list_manager(Targetname): icon_sprite = "editor/choreo_manager.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def scene0(self): return self._raw_data.get('scene0', "") @property def scene1(self): return self._raw_data.get('scene1', "") @property def scene2(self): return self._raw_data.get('scene2', "") @property def scene3(self): return self._raw_data.get('scene3', "") @property def scene4(self): return self._raw_data.get('scene4', "") @property def scene5(self): return self._raw_data.get('scene5', "") @property def scene6(self): return self._raw_data.get('scene6', "") @property def scene7(self): return self._raw_data.get('scene7', "") @property def scene8(self): return self._raw_data.get('scene8', "") @property def scene9(self): return self._raw_data.get('scene9', "") @property def scene10(self): return self._raw_data.get('scene10', "") @property def scene11(self): return self._raw_data.get('scene11', "") @property def scene12(self): return self._raw_data.get('scene12', "") @property def scene13(self): return self._raw_data.get('scene13', "") @property def scene14(self): return self._raw_data.get('scene14', "") @property def scene15(self): return self._raw_data.get('scene15', "") class generic_actor(Parentname, BaseNPC): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', None) @property def hull_name(self): return self._raw_data.get('hull_name', "Human") class prop_car_glass(prop_dynamic): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class prop_car_alarm(prop_physics, EnableDisable): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class func_ladder(Base): pass class trigger_auto_crouch(Trigger): pass class trigger_active_weapon_detect(Trigger): @property def weaponclassname(self): return self._raw_data.get('weaponclassname', "weapon_dieselcan") class player_weaponstrip(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class NavBlocker(Base): @property def teamToBlock(self): return self._raw_data.get('teamtoblock', "-1") @property def affectsFlow(self): return self._raw_data.get('affectsflow', "0") class func_nav_blocker(NavBlocker, Targetname): pass class func_nav_avoidance_obstacle(EnableDisable, Targetname): pass class NavAttributeRegion(Base): @property def precise(self): return self._raw_data.get('precise', "0") @property def crouch(self): return self._raw_data.get('crouch', "0") @property def stairs(self): return self._raw_data.get('stairs', "0") @property def remove_attributes(self): return parse_source_value(self._raw_data.get('remove_attributes', 0)) @property def tank_only(self): return self._raw_data.get('tank_only', "0") @property def mob_only(self): return self._raw_data.get('mob_only', "0") class func_nav_attribute_region(NavAttributeRegion, Targetname): pass class point_nav_attribute_region(NavAttributeRegion, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def mins(self): return parse_float_vector(self._raw_data.get('mins', "-4 -128 -80")) @property def maxs(self): return parse_float_vector(self._raw_data.get('maxs', "4 128 80")) class func_elevator(RenderFields, Parentname, Origin, Targetname): @property def top(self): return self._raw_data.get('top', None) @property def bottom(self): return self._raw_data.get('bottom', None) @property def speed(self): return parse_source_value(self._raw_data.get('speed', 100)) @property def acceleration(self): return parse_source_value(self._raw_data.get('acceleration', 100)) @property def blockdamage(self): return parse_source_value(self._raw_data.get('blockdamage', 0)) @property def startsound(self): return self._raw_data.get('startsound', None) @property def stopsound(self): return self._raw_data.get('stopsound', None) @property def disablesound(self): return self._raw_data.get('disablesound', None) class info_elevator_floor(Parentname, Angles, Targetname): icon_sprite = "editor/info_target.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class logic_director_query(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def minAngerRange(self): return parse_source_value(self._raw_data.get('minangerrange', 1)) @property def maxAngerRange(self): return parse_source_value(self._raw_data.get('maxangerrange', 10)) @property def noise(self): return self._raw_data.get('noise', "0") class info_director(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_game_event_proxy(Targetname): icon_sprite = "editor/info_game_event_proxy.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def event_name(self): return self._raw_data.get('event_name', None) @property def range(self): return parse_source_value(self._raw_data.get('range', 50)) class game_scavenge_progress_display(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Max(self): return parse_source_value(self._raw_data.get('max', 0)) class fog_volume(EnableDisable, Targetname): @property def FogName(self): return self._raw_data.get('fogname', None) @property def PostProcessName(self): return self._raw_data.get('postprocessname', None) @property def ColorCorrectionName(self): return self._raw_data.get('colorcorrectionname', None) class filter_activator_team(BaseFilter): icon_sprite = "editor/filter_team.vmt" @property def filterteam(self): return self._raw_data.get('filterteam', "2") class filter_activator_infected_class(BaseFilter): icon_sprite = "editor/filter_team.vmt" @property def filterinfectedclass(self): return self._raw_data.get('filterinfectedclass', "2") class filter_melee_damage(BaseFilter): @property def damagetype(self): return self._raw_data.get('damagetype', "64") class filter_health(BaseFilter): @property def adrenalinepresence(self): return self._raw_data.get('adrenalinepresence', "1") @property def healthmin(self): return parse_source_value(self._raw_data.get('healthmin', 0)) @property def healthmax(self): return parse_source_value(self._raw_data.get('healthmax', 100)) class prop_minigun(prop_dynamic_base, EnableDisable): viewport_model = "models/w_models/weapons/w_minigun.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MaxYaw(self): return parse_source_value(self._raw_data.get('maxyaw', 90)) @property def MaxPitch(self): return parse_source_value(self._raw_data.get('maxpitch', 60)) @property def MinPitch(self): return parse_source_value(self._raw_data.get('minpitch', -30)) class prop_mounted_machine_gun(prop_dynamic_base, EnableDisable): viewport_model = "models/w_models/weapons/50cal.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MaxYaw(self): return parse_source_value(self._raw_data.get('maxyaw', 90)) @property def MaxPitch(self): return parse_source_value(self._raw_data.get('maxpitch', 60)) @property def MinPitch(self): return parse_source_value(self._raw_data.get('minpitch', -30)) class prop_health_cabinet(prop_dynamic_base, EnableDisable): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def HealthCount(self): return parse_source_value(self._raw_data.get('healthcount', 1)) class info_survivor_position(Parentname, Angles, Targetname): model_ = "models/survivors/survivor_coach.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def Order(self): return parse_source_value(self._raw_data.get('order', 1)) @property def SurvivorName(self): return self._raw_data.get('survivorname', "") @property def SurvivorIntroSequence(self): return self._raw_data.get('survivorintrosequence', "") @property def GameMode(self): return self._raw_data.get('gamemode', "") @property def SurvivorConcept(self): return self._raw_data.get('survivorconcept', "") @property def HideWeapons(self): return self._raw_data.get('hideweapons', "0") class info_survivor_rescue(PlayerClass, Angles, Targetname): model_ = "models/survivors/survivor_coach.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def rescueEyePos(self): return self._raw_data.get('rescueeyepos', None) @property def model(self): return self._raw_data.get('model', "models/editor/playerstart.mdl") class trigger_finale(Angles, EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/props_misc/german_radio.mdl") @property def disableshadows(self): return self._raw_data.get('disableshadows', "0") @property def FirstUseDelay(self): return parse_source_value(self._raw_data.get('firstusedelay', 0)) @property def UseDelay(self): return parse_source_value(self._raw_data.get('usedelay', 0)) @property def type(self): return self._raw_data.get('type', "0") @property def ScriptFile(self): return self._raw_data.get('scriptfile', None) @property def VersusTravelCompletion(self): return parse_source_value(self._raw_data.get('versustravelcompletion', 0.2)) @property def IsSacrificeFinale(self): return self._raw_data.get('issacrificefinale', "0") class trigger_standoff(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', "models/props_misc/german_radio.mdl") @property def disableshadows(self): return self._raw_data.get('disableshadows', "0") @property def UseDuration(self): return parse_source_value(self._raw_data.get('useduration', 0)) @property def UseDelay(self): return parse_source_value(self._raw_data.get('usedelay', 0)) class info_changelevel(Base): @property def targetname(self): return self._raw_data.get('targetname', None) @property def map(self): return self._raw_data.get('map', None) @property def landmark(self): return self._raw_data.get('landmark', None) class prop_door_rotating_checkpoint(prop_door_rotating): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_zombie_spawn(Parentname, Angles, Targetname): model_ = "models/infected/common_male01.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def population(self): return self._raw_data.get('population', "default") @property def offer_tank(self): return self._raw_data.get('offer_tank', "0") class info_zombie_border(Parentname, Angles, EnableDisable, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_remarkable(Targetname, Origin): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def contextsubject(self): return self._raw_data.get('contextsubject', "") class Weapon(Angles, Targetname): pass class WeaponSpawnSingle(Parentname, Studiomodel, Angles, Global, Targetname): @property def weaponskin(self): return parse_source_value(self._raw_data.get('weaponskin', -1)) @property def glowrange(self): return parse_source_value(self._raw_data.get('glowrange', 0)) @property def solid(self): return self._raw_data.get('solid', "6") class WeaponSpawn(WeaponSpawnSingle): @property def count(self): return parse_source_value(self._raw_data.get('count', 5)) class weapon_item_spawn(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def weaponskin(self): return parse_source_value(self._raw_data.get('weaponskin', -1)) @property def glowrange(self): return parse_source_value(self._raw_data.get('glowrange', 0)) @property def item1(self): return parse_source_value(self._raw_data.get('item1', 1)) @property def item2(self): return parse_source_value(self._raw_data.get('item2', 0)) @property def item3(self): return parse_source_value(self._raw_data.get('item3', 1)) @property def item4(self): return parse_source_value(self._raw_data.get('item4', 1)) @property def item5(self): return parse_source_value(self._raw_data.get('item5', 1)) @property def item6(self): return parse_source_value(self._raw_data.get('item6', 0)) @property def item7(self): return parse_source_value(self._raw_data.get('item7', 0)) @property def item8(self): return parse_source_value(self._raw_data.get('item8', 0)) @property def item11(self): return parse_source_value(self._raw_data.get('item11', 1)) @property def item12(self): return parse_source_value(self._raw_data.get('item12', 0)) @property def item13(self): return parse_source_value(self._raw_data.get('item13', 0)) @property def item16(self): return parse_source_value(self._raw_data.get('item16', 0)) @property def item17(self): return parse_source_value(self._raw_data.get('item17', 0)) @property def item18(self): return parse_source_value(self._raw_data.get('item18', 0)) @property def melee_weapon(self): return self._raw_data.get('melee_weapon', "") class upgrade_spawn(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def laser_sight(self): return parse_source_value(self._raw_data.get('laser_sight', 1)) @property def upgradepack_incendiary(self): return parse_source_value(self._raw_data.get('upgradepack_incendiary', 1)) @property def upgradepack_explosive(self): return parse_source_value(self._raw_data.get('upgradepack_explosive', 1)) class upgrade_ammo_explosive(Angles, Targetname): viewport_model = "models/props/terror/exploding_ammo.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def count(self): return parse_source_value(self._raw_data.get('count', 4)) class upgrade_ammo_incendiary(Angles, Targetname): viewport_model = "models/props/terror/incendiary_ammo.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def count(self): return parse_source_value(self._raw_data.get('count', 4)) class upgrade_laser_sight(Angles, Targetname): viewport_model = "models/w_models/Weapons/w_laser_sights.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_pistol_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_pistol_a.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_pistol_magnum_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_desert_eagle.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_smg_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_smg_uzi.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_pumpshotgun_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_shotgun.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_autoshotgun_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_autoshot_m4super.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_rifle_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_rifle_m16a2.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_hunting_rifle_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_sniper_mini14.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_smg_silenced_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_smg_a.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_shotgun_chrome_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_pumpshotgun_A.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_shotgun_spas_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_shotgun_spas.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_rifle_desert_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_rifle_B.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_rifle_ak47_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_rifle_ak47.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_sniper_military_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_sniper_military.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_chainsaw_spawn(WeaponSpawn): viewport_model = "models/weapons/melee/w_chainsaw.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_grenade_launcher_spawn(WeaponSpawn): viewport_model = "models/w_models/weapons/w_grenade_launcher.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_rifle_m60_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_m60.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_smg_mp5_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_smg_mp5.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_rifle_sg552_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_rifle_sg552.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_sniper_awp_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_sniper_awp.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_sniper_scout_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_sniper_scout.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_pipe_bomb_spawn(WeaponSpawn): viewport_model = "models/w_models/weapons/w_eq_pipebomb.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_molotov_spawn(WeaponSpawn): viewport_model = "models/w_models/weapons/w_eq_molotov.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_vomitjar_spawn(WeaponSpawn): viewport_model = "models/w_models/weapons/w_eq_bile_flask.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_first_aid_kit_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_Medkit.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_pain_pills_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_painpills.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_adrenaline_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_adrenaline.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_defibrillator_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_defibrillator.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_gascan_spawn(WeaponSpawnSingle): viewport_model = "models/props_junk/gascan001a.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_upgradepack_incendiary_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_incendiary_ammopack.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_upgradepack_explosive_spawn(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_explosive_ammopack.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_first_aid_kit(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_eq_Medkit.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_grenade_launcher(WeaponSpawnSingle): viewport_model = "models/w_models/weapons/w_grenade_launcher.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class weapon_melee_spawn(WeaponSpawn): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def melee_weapon(self): return self._raw_data.get('melee_weapon', "any") class weapon_scavenge_item_spawn(WeaponSpawnSingle): viewport_model = "models/props_junk/gascan001a.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def glowstate(self): return self._raw_data.get('glowstate', "3") class point_prop_use_target(Targetname, Origin): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def nozzle(self): return self._raw_data.get('nozzle', None) class weapon_spawn(WeaponSpawn): viewport_model = "models/w_models/Weapons/w_rifle_m16a2.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def weapon_selection(self): return self._raw_data.get('weapon_selection', "any_primary") @property def spawn_without_director(self): return self._raw_data.get('spawn_without_director', "0") @property def no_cs_weapons(self): return self._raw_data.get('no_cs_weapons', "0") class weapon_ammo_spawn(WeaponSpawn): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class info_map_parameters(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def AmmoDensity(self): return parse_source_value(self._raw_data.get('ammodensity', 6.48)) @property def PainPillDensity(self): return parse_source_value(self._raw_data.get('painpilldensity', 6.48)) @property def MolotovDensity(self): return parse_source_value(self._raw_data.get('molotovdensity', 6.48)) @property def PipeBombDensity(self): return parse_source_value(self._raw_data.get('pipebombdensity', 6.48)) @property def PistolDensity(self): return parse_source_value(self._raw_data.get('pistoldensity', 6.48)) @property def GasCanDensity(self): return parse_source_value(self._raw_data.get('gascandensity', 6.48)) @property def OxygenTankDensity(self): return parse_source_value(self._raw_data.get('oxygentankdensity', 6.48)) @property def PropaneTankDensity(self): return parse_source_value(self._raw_data.get('propanetankdensity', 6.48)) @property def MeleeWeaponDensity(self): return parse_source_value(self._raw_data.get('meleeweapondensity', 6.48)) @property def AdrenalineDensity(self): return parse_source_value(self._raw_data.get('adrenalinedensity', 6.48)) @property def DefibrillatorDensity(self): return parse_source_value(self._raw_data.get('defibrillatordensity', 3.0)) @property def VomitJarDensity(self): return parse_source_value(self._raw_data.get('vomitjardensity', 6.48)) @property def UpgradepackDensity(self): return parse_source_value(self._raw_data.get('upgradepackdensity', 1.0)) @property def ChainsawDensity(self): return parse_source_value(self._raw_data.get('chainsawdensity', 1.0)) @property def ConfigurableWeaponDensity(self): return parse_source_value(self._raw_data.get('configurableweapondensity', -1.0)) @property def ConfigurableWeaponClusterRange(self): return parse_source_value(self._raw_data.get('configurableweaponclusterrange', 100)) @property def MagnumDensity(self): return parse_source_value(self._raw_data.get('magnumdensity', -1.0)) @property def ItemClusterRange(self): return parse_source_value(self._raw_data.get('itemclusterrange', 50)) @property def FinaleItemClusterCount(self): return parse_source_value(self._raw_data.get('finaleitemclustercount', 3)) class info_map_parameters_versus(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def AmmoDensity(self): return parse_source_value(self._raw_data.get('ammodensity', 6.48)) @property def PainPillDensity(self): return parse_source_value(self._raw_data.get('painpilldensity', 6.48)) @property def MolotovDensity(self): return parse_source_value(self._raw_data.get('molotovdensity', 6.48)) @property def PipeBombDensity(self): return parse_source_value(self._raw_data.get('pipebombdensity', 6.48)) @property def PistolDensity(self): return parse_source_value(self._raw_data.get('pistoldensity', 6.48)) @property def GasCanDensity(self): return parse_source_value(self._raw_data.get('gascandensity', 6.48)) @property def OxygenTankDensity(self): return parse_source_value(self._raw_data.get('oxygentankdensity', 6.48)) @property def PropaneTankDensity(self): return parse_source_value(self._raw_data.get('propanetankdensity', 6.48)) @property def MeleeWeaponDensity(self): return parse_source_value(self._raw_data.get('meleeweapondensity', 6.48)) @property def AdrenalineDensity(self): return parse_source_value(self._raw_data.get('adrenalinedensity', 6.48)) @property def DefibrillatorDensity(self): return parse_source_value(self._raw_data.get('defibrillatordensity', 2.50)) @property def VomitJarDensity(self): return parse_source_value(self._raw_data.get('vomitjardensity', 6.48)) @property def UpgradepackDensity(self): return parse_source_value(self._raw_data.get('upgradepackdensity', 1.0)) @property def ChainsawDensity(self): return parse_source_value(self._raw_data.get('chainsawdensity', 1.0)) @property def ConfigurableWeaponDensity(self): return parse_source_value(self._raw_data.get('configurableweapondensity', -1.0)) @property def ConfigurableWeaponClusterRange(self): return parse_source_value(self._raw_data.get('configurableweaponclusterrange', 100)) @property def MagnumDensity(self): return parse_source_value(self._raw_data.get('magnumdensity', -1.0)) @property def ItemClusterRange(self): return parse_source_value(self._raw_data.get('itemclusterrange', 50)) @property def FinaleItemClusterCount(self): return parse_source_value(self._raw_data.get('finaleitemclustercount', 3)) class info_gamemode(Angles, Targetname): icon_sprite = "editor/info_gamemode.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class beam_spotlight(RenderFields, Parentname, Angles, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def maxspeed(self): return parse_source_value(self._raw_data.get('maxspeed', 100)) @property def spotlightlength(self): return parse_source_value(self._raw_data.get('spotlightlength', 500)) @property def spotlightwidth(self): return parse_source_value(self._raw_data.get('spotlightwidth', 50)) @property def HDRColorScale(self): return parse_source_value(self._raw_data.get('hdrcolorscale', 0.7)) class env_detail_controller(Angles): icon_sprite = "editor/env_particles.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', 512)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 1024)) class info_goal_infected_chase(Parentname, Targetname): icon_sprite = "editor/info_target.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class func_playerinfected_clip(Parentname, Inputfilter, Shadow, Global, EnableDisable, RenderFields, Targetname): @property def Solidity(self): return self._raw_data.get('solidity', "2") @property def vrad_brush_cast_shadows(self): return self._raw_data.get('vrad_brush_cast_shadows', "0") class func_playerghostinfected_clip(Parentname, Inputfilter, Shadow, Global, EnableDisable, RenderFields, Targetname): @property def Solidity(self): return self._raw_data.get('solidity', "2") @property def vrad_brush_cast_shadows(self): return self._raw_data.get('vrad_brush_cast_shadows', "0") class commentary_dummy(Angles, Targetname): @property def model(self): return self._raw_data.get('model', "models/survivors/survivor_coach.mdl") @property def EyeHeight(self): return parse_source_value(self._raw_data.get('eyeheight', 64)) @property def StartingAnim(self): return self._raw_data.get('startinganim', "Idle_Calm_Pistol") @property def StartingWeapons(self): return self._raw_data.get('startingweapons', "weapon_pistol") @property def LookAtPlayers(self): return self._raw_data.get('lookatplayers', "0") @property def HeadYawPoseParam(self): return self._raw_data.get('headyawposeparam', "Head_Yaw") @property def HeadPitchPoseParam(self): return self._raw_data.get('headpitchposeparam', "Head_Pitch") class commentary_zombie_spawner(Parentname, Angles, Targetname): model_ = "models/infected/smoker.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_outtro_stats(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class trigger_hurt_ghost(Trigger): @property def master(self): return self._raw_data.get('master', None) @property def damage(self): return parse_source_value(self._raw_data.get('damage', 10)) @property def damagecap(self): return parse_source_value(self._raw_data.get('damagecap', 20)) @property def damagetype(self): return self._raw_data.get('damagetype', "0") @property def damagemodel(self): return self._raw_data.get('damagemodel', "0") @property def nodmgforce(self): return self._raw_data.get('nodmgforce', "0") class func_nav_connection_blocker(Parentname, Targetname): pass class env_player_blocker(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def mins(self): return parse_float_vector(self._raw_data.get('mins', "-4 -128 -80")) @property def maxs(self): return parse_float_vector(self._raw_data.get('maxs', "4 128 80")) @property def initialstate(self): return self._raw_data.get('initialstate', "1") @property def BlockType(self): return self._raw_data.get('blocktype', "0") class env_physics_blocker(Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def boxmins(self): return parse_float_vector(self._raw_data.get('boxmins', "-8 -8 -8")) @property def boxmaxs(self): return parse_float_vector(self._raw_data.get('boxmaxs', "8 8 8")) @property def initialstate(self): return self._raw_data.get('initialstate', "1") @property def BlockType(self): return self._raw_data.get('blocktype', "0") class trigger_upgrade_laser_sight(Trigger): pass class logic_game_event(Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def eventName(self): return self._raw_data.get('eventname', "") class func_button_timed(Parentname, DamageFilter, Origin, RenderFields, Targetname): @property def use_time(self): return parse_source_value(self._raw_data.get('use_time', 5)) @property def use_string(self): return self._raw_data.get('use_string', "Using....") @property def use_sub_string(self): return self._raw_data.get('use_sub_string', "") @property def glow(self): return self._raw_data.get('glow', None) @property def auto_disable(self): return self._raw_data.get('auto_disable', "1") @property def locked_sound(self): return self._raw_data.get('locked_sound', "0") class prop_fuel_barrel(Studiomodel, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def fademindist(self): return parse_source_value(self._raw_data.get('fademindist', -1)) @property def fademaxdist(self): return parse_source_value(self._raw_data.get('fademaxdist', 0)) @property def fadescale(self): return parse_source_value(self._raw_data.get('fadescale', 1)) @property def BasePiece(self): return self._raw_data.get('basepiece', "models/props_industrial/barrel_fuel_partb.mdl") @property def FlyingPiece01(self): return self._raw_data.get('flyingpiece01', "models/props_industrial/barrel_fuel_parta.mdl") @property def FlyingPiece02(self): return self._raw_data.get('flyingpiece02', "") @property def FlyingPiece03(self): return self._raw_data.get('flyingpiece03', "") @property def FlyingPiece04(self): return self._raw_data.get('flyingpiece04', "") @property def DetonateParticles(self): return self._raw_data.get('detonateparticles', "weapon_pipebomb") @property def FlyingParticles(self): return self._raw_data.get('flyingparticles', "barrel_fly") @property def DetonateSound(self): return self._raw_data.get('detonatesound', "BaseGrenade.Explode") class logic_versus_random(Targetname): icon_sprite = "editor/logic_auto.vmt" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass class env_weaponfire(Parentname, Angles, EnableDisable, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def TargetArc(self): return parse_source_value(self._raw_data.get('targetarc', 40)) @property def TargetRange(self): return parse_source_value(self._raw_data.get('targetrange', 3600)) @property def filtername(self): return self._raw_data.get('filtername', None) @property def DamageMod(self): return parse_source_value(self._raw_data.get('damagemod', 1.0)) @property def WeaponType(self): return self._raw_data.get('weapontype', "1") @property def TargetTeam(self): return self._raw_data.get('targetteam', "3") @property def IgnorePlayers(self): return self._raw_data.get('ignoreplayers', "0") class env_rock_launcher(Angles, Targetname): model_ = "models/editor/cone_helper.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def RockTargetName(self): return self._raw_data.get('rocktargetname', None) @property def RockDamageOverride(self): return parse_source_value(self._raw_data.get('rockdamageoverride', 0)) class func_extinguisher(EnableDisable, Targetname): pass class func_ragdoll_fader(EnableDisable, Targetname): pass class prop_minigun_l4d1(prop_dynamic_base, EnableDisable): viewport_model = "models/w_models/weapons/w_minigun.mdl" @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def MaxYaw(self): return parse_source_value(self._raw_data.get('maxyaw', 90)) @property def MaxPitch(self): return parse_source_value(self._raw_data.get('maxpitch', 60)) @property def MinPitch(self): return parse_source_value(self._raw_data.get('minpitch', -30)) class trigger_escape(Trigger): pass class func_buildable_button(Parentname, Origin, Targetname): @property def is_cumulative_use(self): return self._raw_data.get('is_cumulative_use', "0") class point_script_use_target(Targetname, Origin): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) @property def model(self): return self._raw_data.get('model', None) class scripted_item_drop(Studiomodel, Parentname, Angles, Targetname): @property def origin(self): return parse_int_vector(self._raw_data.get('origin', "0 0 0")) pass entity_class_handle = { 'Angles': Angles, 'Origin': Origin, 'Studiomodel': Studiomodel, 'BasePlat': BasePlat, 'Targetname': Targetname, 'Parentname': Parentname, 'BaseBrush': BaseBrush, 'EnableDisable': EnableDisable, 'RenderFxChoices': RenderFxChoices, 'Shadow': Shadow, 'Glow': Glow, 'SystemLevelChoice': SystemLevelChoice, 'RenderFields': RenderFields, 'Inputfilter': Inputfilter, 'Global': Global, 'EnvGlobal': EnvGlobal, 'DamageFilter': DamageFilter, 'ResponseContext': ResponseContext, 'Breakable': Breakable, 'BreakableBrush': BreakableBrush, 'BreakableProp': BreakableProp, 'BaseNPC': BaseNPC, 'info_npc_spawn_destination': info_npc_spawn_destination, 'BaseNPCMaker': BaseNPCMaker, 'npc_template_maker': npc_template_maker, 'BaseHelicopter': BaseHelicopter, 'PlayerClass': PlayerClass, 'Light': Light, 'Node': Node, 'HintNode': HintNode, 'TriggerOnce': TriggerOnce, 'Trigger': Trigger, 'worldbase': worldbase, 'worldspawn': worldspawn, 'ambient_generic': ambient_generic, 'ambient_music': ambient_music, 'sound_mix_layer': sound_mix_layer, 'func_lod': func_lod, 'env_zoom': env_zoom, 'env_screenoverlay': env_screenoverlay, 'env_screeneffect': env_screeneffect, 'env_texturetoggle': env_texturetoggle, 'env_splash': env_splash, 'env_particlelight': env_particlelight, 'env_sun': env_sun, 'game_ragdoll_manager': game_ragdoll_manager, 'game_gib_manager': game_gib_manager, 'env_dof_controller': env_dof_controller, 'env_lightglow': env_lightglow, 'env_smokestack': env_smokestack, 'env_fade': env_fade, 'env_player_surface_trigger': env_player_surface_trigger, 'trigger_tonemap': trigger_tonemap, 'env_tonemap_controller': env_tonemap_controller, 'env_tonemap_controller_infected': env_tonemap_controller_infected, 'env_tonemap_controller_ghost': env_tonemap_controller_ghost, 'func_useableladder': func_useableladder, 'func_ladderendpoint': func_ladderendpoint, 'info_ladder_dismount': info_ladder_dismount, 'func_areaportalwindow': func_areaportalwindow, 'func_wall': func_wall, 'func_clip_vphysics': func_clip_vphysics, 'func_brush': func_brush, 'vgui_screen_base': vgui_screen_base, 'vgui_screen': vgui_screen, 'vgui_slideshow_display': vgui_slideshow_display, 'cycler': cycler, 'func_orator': func_orator, 'gibshooterbase': gibshooterbase, 'env_beam': env_beam, 'env_beverage': env_beverage, 'env_embers': env_embers, 'env_funnel': env_funnel, 'env_blood': env_blood, 'env_bubbles': env_bubbles, 'env_explosion': env_explosion, 'env_smoketrail': env_smoketrail, 'env_physexplosion': env_physexplosion, 'env_physimpact': env_physimpact, 'env_fire': env_fire, 'env_firesource': env_firesource, 'env_firesensor': env_firesensor, 'env_entity_igniter': env_entity_igniter, 'env_fog_controller': env_fog_controller, 'postprocess_controller': postprocess_controller, 'env_steam': env_steam, 'env_laser': env_laser, 'env_message': env_message, 'env_hudhint': env_hudhint, 'env_shake': env_shake, 'env_viewpunch': env_viewpunch, 'env_rotorwash_emitter': env_rotorwash_emitter, 'gibshooter': gibshooter, 'env_shooter': env_shooter, 'env_rotorshooter': env_rotorshooter, 'env_soundscape_proxy': env_soundscape_proxy, 'env_soundscape': env_soundscape, 'env_soundscape_triggerable': env_soundscape_triggerable, 'env_spark': env_spark, 'env_sprite': env_sprite, 'env_sprite_oriented': env_sprite_oriented, 'env_wind': env_wind, 'sky_camera': sky_camera, 'BaseSpeaker': BaseSpeaker, 'game_weapon_manager': game_weapon_manager, 'game_end': game_end, 'game_player_equip': game_player_equip, 'game_player_team': game_player_team, 'game_score': game_score, 'game_text': game_text, 'point_enable_motion_fixup': point_enable_motion_fixup, 'point_message': point_message, 'point_spotlight': point_spotlight, 'point_tesla': point_tesla, 'point_clientcommand': point_clientcommand, 'point_servercommand': point_servercommand, 'point_broadcastclientcommand': point_broadcastclientcommand, 'point_bonusmaps_accessor': point_bonusmaps_accessor, 'game_ui': game_ui, 'point_entity_finder': point_entity_finder, 'game_zone_player': game_zone_player, 'infodecal': infodecal, 'info_projecteddecal': info_projecteddecal, 'info_no_dynamic_shadow': info_no_dynamic_shadow, 'info_player_start': info_player_start, 'info_overlay': info_overlay, 'info_overlay_transition': info_overlay_transition, 'info_intermission': info_intermission, 'info_landmark': info_landmark, 'info_null': info_null, 'info_target': info_target, 'info_particle_target': info_particle_target, 'info_particle_system': info_particle_system, 'phys_ragdollmagnet': phys_ragdollmagnet, 'info_lighting': info_lighting, 'info_teleport_destination': info_teleport_destination, 'info_node': info_node, 'info_node_hint': info_node_hint, 'info_node_air': info_node_air, 'info_node_air_hint': info_node_air_hint, 'info_hint': info_hint, 'info_node_link': info_node_link, 'info_node_link_controller': info_node_link_controller, 'info_radial_link_controller': info_radial_link_controller, 'info_node_climb': info_node_climb, 'light': light, 'light_environment': light_environment, 'light_directional': light_directional, 'light_spot': light_spot, 'light_dynamic': light_dynamic, 'shadow_control': shadow_control, 'color_correction': color_correction, 'color_correction_volume': color_correction_volume, 'KeyFrame': KeyFrame, 'Mover': Mover, 'func_movelinear': func_movelinear, 'func_water_analog': func_water_analog, 'func_rotating': func_rotating, 'func_platrot': func_platrot, 'keyframe_track': keyframe_track, 'move_keyframed': move_keyframed, 'move_track': move_track, 'RopeKeyFrame': RopeKeyFrame, 'keyframe_rope': keyframe_rope, 'move_rope': move_rope, 'Button': Button, 'func_button': func_button, 'func_rot_button': func_rot_button, 'momentary_rot_button': momentary_rot_button, 'Door': Door, 'func_door': func_door, 'func_door_rotating': func_door_rotating, 'BaseFadeProp': BaseFadeProp, 'prop_door_rotating': prop_door_rotating, 'prop_wall_breakable': prop_wall_breakable, 'env_cubemap': env_cubemap, 'BModelParticleSpawner': BModelParticleSpawner, 'func_dustmotes': func_dustmotes, 'func_smokevolume': func_smokevolume, 'func_dustcloud': func_dustcloud, 'env_dustpuff': env_dustpuff, 'env_particlescript': env_particlescript, 'env_effectscript': env_effectscript, 'logic_auto': logic_auto, 'point_viewcontrol': point_viewcontrol, 'point_posecontroller': point_posecontroller, 'logic_compare': logic_compare, 'logic_branch': logic_branch, 'logic_branch_listener': logic_branch_listener, 'logic_case': logic_case, 'logic_multicompare': logic_multicompare, 'logic_relay': logic_relay, 'logic_timer': logic_timer, 'hammer_updateignorelist': hammer_updateignorelist, 'logic_collision_pair': logic_collision_pair, 'env_microphone': env_microphone, 'math_remap': math_remap, 'math_colorblend': math_colorblend, 'math_counter': math_counter, 'logic_lineto': logic_lineto, 'logic_navigation': logic_navigation, 'logic_autosave': logic_autosave, 'logic_active_autosave': logic_active_autosave, 'point_template': point_template, 'env_entity_maker': env_entity_maker, 'BaseFilter': BaseFilter, 'filter_multi': filter_multi, 'filter_activator_name': filter_activator_name, 'filter_activator_model': filter_activator_model, 'filter_activator_context': filter_activator_context, 'filter_activator_class': filter_activator_class, 'filter_activator_mass_greater': filter_activator_mass_greater, 'filter_damage_type': filter_damage_type, 'filter_enemy': filter_enemy, 'point_anglesensor': point_anglesensor, 'point_angularvelocitysensor': point_angularvelocitysensor, 'point_velocitysensor': point_velocitysensor, 'point_proximity_sensor': point_proximity_sensor, 'point_teleport': point_teleport, 'point_hurt': point_hurt, 'point_playermoveconstraint': point_playermoveconstraint, 'point_push': point_push, 'func_physbox': func_physbox, 'TwoObjectPhysics': TwoObjectPhysics, 'phys_constraintsystem': phys_constraintsystem, 'phys_keepupright': phys_keepupright, 'physics_cannister': physics_cannister, 'info_constraint_anchor': info_constraint_anchor, 'info_mass_center': info_mass_center, 'phys_spring': phys_spring, 'phys_hinge': phys_hinge, 'phys_ballsocket': phys_ballsocket, 'phys_constraint': phys_constraint, 'phys_pulleyconstraint': phys_pulleyconstraint, 'phys_slideconstraint': phys_slideconstraint, 'phys_lengthconstraint': phys_lengthconstraint, 'phys_ragdollconstraint': phys_ragdollconstraint, 'phys_convert': phys_convert, 'ForceController': ForceController, 'phys_thruster': phys_thruster, 'phys_torque': phys_torque, 'phys_motor': phys_motor, 'phys_magnet': phys_magnet, 'prop_detail_base': prop_detail_base, 'prop_static_base': prop_static_base, 'prop_dynamic_base': prop_dynamic_base, 'prop_detail': prop_detail, 'prop_static': prop_static, 'prop_dynamic': prop_dynamic, 'prop_dynamic_override': prop_dynamic_override, 'BasePropPhysics': BasePropPhysics, 'prop_physics_override': prop_physics_override, 'prop_physics': prop_physics, 'prop_physics_multiplayer': prop_physics_multiplayer, 'prop_ragdoll': prop_ragdoll, 'prop_dynamic_ornament': prop_dynamic_ornament, 'func_areaportal': func_areaportal, 'func_occluder': func_occluder, 'func_breakable': func_breakable, 'func_breakable_surf': func_breakable_surf, 'func_conveyor': func_conveyor, 'func_detail': func_detail, 'func_viscluster': func_viscluster, 'func_illusionary': func_illusionary, 'func_precipitation': func_precipitation, 'func_precipitation_blocker': func_precipitation_blocker, 'func_detail_blocker': func_detail_blocker, 'func_wall_toggle': func_wall_toggle, 'func_guntarget': func_guntarget, 'func_fish_pool': func_fish_pool, 'PlatSounds': PlatSounds, 'Trackchange': Trackchange, 'BaseTrain': BaseTrain, 'func_trackautochange': func_trackautochange, 'func_trackchange': func_trackchange, 'func_tracktrain': func_tracktrain, 'func_tanktrain': func_tanktrain, 'func_traincontrols': func_traincontrols, 'tanktrain_aitarget': tanktrain_aitarget, 'tanktrain_ai': tanktrain_ai, 'path_track': path_track, 'test_traceline': test_traceline, 'trigger_autosave': trigger_autosave, 'trigger_changelevel': trigger_changelevel, 'trigger_gravity': trigger_gravity, 'trigger_playermovement': trigger_playermovement, 'trigger_soundscape': trigger_soundscape, 'trigger_hurt': trigger_hurt, 'trigger_remove': trigger_remove, 'trigger_multiple': trigger_multiple, 'trigger_once': trigger_once, 'trigger_look': trigger_look, 'trigger_push': trigger_push, 'trigger_wind': trigger_wind, 'trigger_impact': trigger_impact, 'trigger_proximity': trigger_proximity, 'trigger_teleport': trigger_teleport, 'trigger_transition': trigger_transition, 'trigger_serverragdoll': trigger_serverragdoll, 'ai_speechfilter': ai_speechfilter, 'water_lod_control': water_lod_control, 'info_camera_link': info_camera_link, 'logic_measure_movement': logic_measure_movement, 'npc_furniture': npc_furniture, 'env_credits': env_credits, 'material_modify_control': material_modify_control, 'point_devshot_camera': point_devshot_camera, 'logic_playerproxy': logic_playerproxy, 'env_spritetrail': env_spritetrail, 'env_projectedtexture': env_projectedtexture, 'func_reflective_glass': func_reflective_glass, 'env_particle_performance_monitor': env_particle_performance_monitor, 'npc_puppet': npc_puppet, 'point_gamestats_counter': point_gamestats_counter, 'func_instance': func_instance, 'func_instance_parms': func_instance_parms, 'env_instructor_hint': env_instructor_hint, 'info_target_instructor_hint': info_target_instructor_hint, 'logic_script': logic_script, 'func_timescale': func_timescale, 'func_block_charge': func_block_charge, 'info_ambient_mob_start': info_ambient_mob_start, 'info_ambient_mob_end': info_ambient_mob_end, 'info_ambient_mob': info_ambient_mob, 'info_item_position': info_item_position, 'info_l4d1_survivor_spawn': info_l4d1_survivor_spawn, 'env_airstrike_indoors': env_airstrike_indoors, 'env_airstrike_outdoors': env_airstrike_outdoors, 'point_viewcontrol_multiplayer': point_viewcontrol_multiplayer, 'point_viewcontrol_survivor': point_viewcontrol_survivor, 'point_deathfall_camera': point_deathfall_camera, 'logic_choreographed_scene': logic_choreographed_scene, 'logic_scene_list_manager': logic_scene_list_manager, 'generic_actor': generic_actor, 'prop_car_glass': prop_car_glass, 'prop_car_alarm': prop_car_alarm, 'func_ladder': func_ladder, 'trigger_auto_crouch': trigger_auto_crouch, 'trigger_active_weapon_detect': trigger_active_weapon_detect, 'player_weaponstrip': player_weaponstrip, 'NavBlocker': NavBlocker, 'func_nav_blocker': func_nav_blocker, 'func_nav_avoidance_obstacle': func_nav_avoidance_obstacle, 'NavAttributeRegion': NavAttributeRegion, 'func_nav_attribute_region': func_nav_attribute_region, 'point_nav_attribute_region': point_nav_attribute_region, 'func_elevator': func_elevator, 'info_elevator_floor': info_elevator_floor, 'logic_director_query': logic_director_query, 'info_director': info_director, 'info_game_event_proxy': info_game_event_proxy, 'game_scavenge_progress_display': game_scavenge_progress_display, 'fog_volume': fog_volume, 'filter_activator_team': filter_activator_team, 'filter_activator_infected_class': filter_activator_infected_class, 'filter_melee_damage': filter_melee_damage, 'filter_health': filter_health, 'prop_minigun': prop_minigun, 'prop_mounted_machine_gun': prop_mounted_machine_gun, 'prop_health_cabinet': prop_health_cabinet, 'info_survivor_position': info_survivor_position, 'info_survivor_rescue': info_survivor_rescue, 'trigger_finale': trigger_finale, 'trigger_standoff': trigger_standoff, 'info_changelevel': info_changelevel, 'prop_door_rotating_checkpoint': prop_door_rotating_checkpoint, 'info_zombie_spawn': info_zombie_spawn, 'info_zombie_border': info_zombie_border, 'info_remarkable': info_remarkable, 'Weapon': Weapon, 'WeaponSpawnSingle': WeaponSpawnSingle, 'WeaponSpawn': WeaponSpawn, 'weapon_item_spawn': weapon_item_spawn, 'upgrade_spawn': upgrade_spawn, 'upgrade_ammo_explosive': upgrade_ammo_explosive, 'upgrade_ammo_incendiary': upgrade_ammo_incendiary, 'upgrade_laser_sight': upgrade_laser_sight, 'weapon_pistol_spawn': weapon_pistol_spawn, 'weapon_pistol_magnum_spawn': weapon_pistol_magnum_spawn, 'weapon_smg_spawn': weapon_smg_spawn, 'weapon_pumpshotgun_spawn': weapon_pumpshotgun_spawn, 'weapon_autoshotgun_spawn': weapon_autoshotgun_spawn, 'weapon_rifle_spawn': weapon_rifle_spawn, 'weapon_hunting_rifle_spawn': weapon_hunting_rifle_spawn, 'weapon_smg_silenced_spawn': weapon_smg_silenced_spawn, 'weapon_shotgun_chrome_spawn': weapon_shotgun_chrome_spawn, 'weapon_shotgun_spas_spawn': weapon_shotgun_spas_spawn, 'weapon_rifle_desert_spawn': weapon_rifle_desert_spawn, 'weapon_rifle_ak47_spawn': weapon_rifle_ak47_spawn, 'weapon_sniper_military_spawn': weapon_sniper_military_spawn, 'weapon_chainsaw_spawn': weapon_chainsaw_spawn, 'weapon_grenade_launcher_spawn': weapon_grenade_launcher_spawn, 'weapon_rifle_m60_spawn': weapon_rifle_m60_spawn, 'weapon_smg_mp5_spawn': weapon_smg_mp5_spawn, 'weapon_rifle_sg552_spawn': weapon_rifle_sg552_spawn, 'weapon_sniper_awp_spawn': weapon_sniper_awp_spawn, 'weapon_sniper_scout_spawn': weapon_sniper_scout_spawn, 'weapon_pipe_bomb_spawn': weapon_pipe_bomb_spawn, 'weapon_molotov_spawn': weapon_molotov_spawn, 'weapon_vomitjar_spawn': weapon_vomitjar_spawn, 'weapon_first_aid_kit_spawn': weapon_first_aid_kit_spawn, 'weapon_pain_pills_spawn': weapon_pain_pills_spawn, 'weapon_adrenaline_spawn': weapon_adrenaline_spawn, 'weapon_defibrillator_spawn': weapon_defibrillator_spawn, 'weapon_gascan_spawn': weapon_gascan_spawn, 'weapon_upgradepack_incendiary_spawn': weapon_upgradepack_incendiary_spawn, 'weapon_upgradepack_explosive_spawn': weapon_upgradepack_explosive_spawn, 'weapon_first_aid_kit': weapon_first_aid_kit, 'weapon_grenade_launcher': weapon_grenade_launcher, 'weapon_melee_spawn': weapon_melee_spawn, 'weapon_scavenge_item_spawn': weapon_scavenge_item_spawn, 'point_prop_use_target': point_prop_use_target, 'weapon_spawn': weapon_spawn, 'weapon_ammo_spawn': weapon_ammo_spawn, 'info_map_parameters': info_map_parameters, 'info_map_parameters_versus': info_map_parameters_versus, 'info_gamemode': info_gamemode, 'beam_spotlight': beam_spotlight, 'env_detail_controller': env_detail_controller, 'info_goal_infected_chase': info_goal_infected_chase, 'func_playerinfected_clip': func_playerinfected_clip, 'func_playerghostinfected_clip': func_playerghostinfected_clip, 'commentary_dummy': commentary_dummy, 'commentary_zombie_spawner': commentary_zombie_spawner, 'env_outtro_stats': env_outtro_stats, 'trigger_hurt_ghost': trigger_hurt_ghost, 'func_nav_connection_blocker': func_nav_connection_blocker, 'env_player_blocker': env_player_blocker, 'env_physics_blocker': env_physics_blocker, 'trigger_upgrade_laser_sight': trigger_upgrade_laser_sight, 'logic_game_event': logic_game_event, 'func_button_timed': func_button_timed, 'prop_fuel_barrel': prop_fuel_barrel, 'logic_versus_random': logic_versus_random, 'env_weaponfire': env_weaponfire, 'env_rock_launcher': env_rock_launcher, 'func_extinguisher': func_extinguisher, 'func_ragdoll_fader': func_ragdoll_fader, 'prop_minigun_l4d1': prop_minigun_l4d1, 'trigger_escape': trigger_escape, 'func_buildable_button': func_buildable_button, 'point_script_use_target': point_script_use_target, 'scripted_item_drop': scripted_item_drop, }
25.502219
118
0.674537
7944026a4bb6969e78236a9208d9fb93543bbca3
15,408
py
Python
billforward/apis/emails_api.py
billforward/bf-python
d2b812329ca3ed1fd94364d7f46f69ad74665596
[ "Apache-2.0" ]
2
2016-11-23T17:32:37.000Z
2022-02-24T05:13:20.000Z
billforward/apis/emails_api.py
billforward/bf-python
d2b812329ca3ed1fd94364d7f46f69ad74665596
[ "Apache-2.0" ]
null
null
null
billforward/apis/emails_api.py
billforward/bf-python
d2b812329ca3ed1fd94364d7f46f69ad74665596
[ "Apache-2.0" ]
1
2016-12-30T20:02:48.000Z
2016-12-30T20:02:48.000Z
# coding: utf-8 """ BillForward REST API OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import absolute_import import sys import os import re # python 2 and python 3 compatibility library from six import iteritems from ..configuration import Configuration from ..api_client import ApiClient class EmailsApi(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. Ref: https://github.com/swagger-api/swagger-codegen """ def __init__(self, api_client=None): config = Configuration() if api_client: self.api_client = api_client else: if not config.api_client: config.api_client = ApiClient() self.api_client = config.api_client def get_email_by_id(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_by_id(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: EmailPagedMetadata If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_email_by_id_with_http_info(email_id, **kwargs) else: (data) = self.get_email_by_id_with_http_info(email_id, **kwargs) return data def get_email_by_id_with_http_info(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_by_id_with_http_info(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: EmailPagedMetadata If the method is called asynchronously, returns the request thread. """ all_params = ['email_id', 'organizations'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_email_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email_id' is set if ('email_id' not in params) or (params['email_id'] is None): raise ValueError("Missing the required parameter `email_id` when calling `get_email_by_id`") resource_path = '/emails/{email-ID}'.replace('{format}', 'json') path_params = {} if 'email_id' in params: path_params['email-ID'] = params['email_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['application/json', 'text/xml']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='EmailPagedMetadata', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_email_html_by_id(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_html_by_id(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_email_html_by_id_with_http_info(email_id, **kwargs) else: (data) = self.get_email_html_by_id_with_http_info(email_id, **kwargs) return data def get_email_html_by_id_with_http_info(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_html_by_id_with_http_info(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['email_id', 'organizations'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_email_html_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email_id' is set if ('email_id' not in params) or (params['email_id'] is None): raise ValueError("Missing the required parameter `email_id` when calling `get_email_html_by_id`") resource_path = '/emails/{email-ID}.html'.replace('{format}', 'json') path_params = {} if 'email_id' in params: path_params['email-ID'] = params['email_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['text/html']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='str', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only')) def get_email_text_by_id(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_text_by_id(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: str If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.get_email_text_by_id_with_http_info(email_id, **kwargs) else: (data) = self.get_email_text_by_id_with_http_info(email_id, **kwargs) return data def get_email_text_by_id_with_http_info(self, email_id, **kwargs): """ Retrieves a single invoice, specified by the version-ID parameter. { \"nickname\" : \"Retrieve by version\",\"response\" : \"getEmailByID.html\"} This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.get_email_text_by_id_with_http_info(email_id, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str email_id: (required) :param list[str] organizations: A list of organization-IDs used to restrict the scope of API calls. :return: str If the method is called asynchronously, returns the request thread. """ all_params = ['email_id', 'organizations'] all_params.append('callback') all_params.append('_return_http_data_only') params = locals() for key, val in iteritems(params['kwargs']): if key not in all_params: raise TypeError( "Got an unexpected keyword argument '%s'" " to method get_email_text_by_id" % key ) params[key] = val del params['kwargs'] # verify the required parameter 'email_id' is set if ('email_id' not in params) or (params['email_id'] is None): raise ValueError("Missing the required parameter `email_id` when calling `get_email_text_by_id`") resource_path = '/emails/{email-ID}.txt'.replace('{format}', 'json') path_params = {} if 'email_id' in params: path_params['email-ID'] = params['email_id'] query_params = {} if 'organizations' in params: query_params['organizations'] = params['organizations'] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.\ select_header_accept(['text/plain']) if not header_params['Accept']: del header_params['Accept'] # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.\ select_header_content_type(['text/plain']) # Authentication setting auth_settings = [] return self.api_client.call_api(resource_path, 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='str', auth_settings=auth_settings, callback=params.get('callback'), _return_http_data_only=params.get('_return_http_data_only'))
40.978723
109
0.580802
7944029fe67360695f7e7e7d732ef9a7d83601a6
4,525
py
Python
bin/txt2params.py
haampie/rocprofiler
9b7edb39207cb040093ffdd7d99c9d6e56807c95
[ "MIT" ]
44
2018-12-21T14:09:30.000Z
2022-03-18T15:11:32.000Z
bin/txt2params.py
haampie/rocprofiler
9b7edb39207cb040093ffdd7d99c9d6e56807c95
[ "MIT" ]
61
2019-01-22T00:35:06.000Z
2022-03-31T13:33:28.000Z
bin/txt2params.py
haampie/rocprofiler
9b7edb39207cb040093ffdd7d99c9d6e56807c95
[ "MIT" ]
26
2019-06-04T16:38:39.000Z
2022-01-21T21:29:55.000Z
################################################################################ # Copyright (c) 2018 Advanced Micro Devices, Inc. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ################################################################################ import os, sys, re # gen_params() takes a text file like the output of rocminfo cmd and parses it into a map {key,value} # where key is the param and value is the value of this param # for example: Threadmodel : "posix" # it also processes encompasing sections to generate a full param name such as (section names separated by '_'): # "Agent2_PoolInfo_ISAInfo_ISA1_WorkgroupMaxSizeperDimension_x": "1024(0x400)", def gen_params(txtfile): fields = {} counter = 0 parent_field = '' nbr_indent = 0 nbr_indent_prev = 0 check_for_dims = False with open(txtfile) as fp: for line in fp: me = re.match(r'\*\*\* Done \*\*\*',line) #Marks the end of cmd if me: parent_field = '' nbr_indent = 0 nbr_indent_prev = 0 check_for_dims = False continue mv = re.match(r'HCC clang version\s+(.*)',line) # outlier: only line with a version number and no ':', special case if mv: key = 'HCCclangversion' val = mv.group(1) counter = counter + 1 fields[(counter,key)] = val continue # Variable 'check_for_dims' is True for text like this: # Workgroup Max Size per Dimension: # x 1024(0x400) # y 1024(0x400) # z 1024(0x400) if check_for_dims == True: mc = re.match(r'\s*([x|y|z])\s+(.*)',line) if mc: key_sav = mc.group(1) if parent_field != '': key = parent_field + '.' + mc.group(1) else: key = mc.group(1) val = re.sub(r"\s+", "", mc.group(2)) counter = counter + 1 fields[(counter,key)] = val if key_sav == 'z': check_for_dims = False nbr_indent_prev = nbr_indent mi = re.search(r'^(\s+)\w+.*', line) md = re.search(':', line) if mi: nbr_indent = int(len(mi.group(1)) / 2) #indentation cnt else: if not md: tmp = re.sub(r"\s+", "", line) if tmp.isalnum(): parent_field = tmp if nbr_indent < nbr_indent_prev: go_back_parent = (nbr_indent_prev - nbr_indent) for i in range(go_back_parent): #decrease as many levels up as needed pos = parent_field.rfind('.') if pos != -1: parent_field = parent_field[:pos] # Process lines such as : # Segment: GLOBAL; FLAGS: KERNARG, FINE GRAINED # Size: 131897644(0x7dc992c) KB for lin in line.split(';'): lin = re.sub(r"\s+", "", lin) m = re.match(r'(.*):(.*)', lin) if m: key, val = m.group(1), m.group(2) if parent_field != '': key = parent_field + '.' + key if val == '': mk = re.match(r'.*Dimension',key) if mk: # expect x,y,z on next 3 lines check_for_dims = True parent_field = key else: counter = counter + 1 fields[(counter,key)] = val else: if nbr_indent != nbr_indent_prev and not check_for_dims : parent_field = parent_field + '.' + lin.replace(':','') return fields
40.765766
121
0.572597
794402ad6492a51c0113a437713d34d947e05b2c
246
py
Python
src/tensor/op/geometric/combine/stack/horizontal.py
jedhsu/tensor
3b2fe21029fa7c50b034190e77d79d1a94ea5e8f
[ "Apache-2.0" ]
null
null
null
src/tensor/op/geometric/combine/stack/horizontal.py
jedhsu/tensor
3b2fe21029fa7c50b034190e77d79d1a94ea5e8f
[ "Apache-2.0" ]
null
null
null
src/tensor/op/geometric/combine/stack/horizontal.py
jedhsu/tensor
3b2fe21029fa7c50b034190e77d79d1a94ea5e8f
[ "Apache-2.0" ]
null
null
null
""" *Horizontal Stack* """ from dataclasses import dataclass import jax.numpy as jnp from ._operator import StackOperator __all__ = ["HorizontalStack"] @dataclass class HorizontalStack( StackOperator, ): operator = jnp.hstack
11.714286
36
0.719512
79440360c20c72e28e3d685d89cbd83e3ec28359
3,084
py
Python
PYTHON/11.py
guikingma/project_euler
e4deffc63f39a304e449c12ee1fa1233c6f70e91
[ "WTFPL" ]
1
2015-11-06T07:04:22.000Z
2015-11-06T07:04:22.000Z
PYTHON/11.py
guikingma/project_euler
e4deffc63f39a304e449c12ee1fa1233c6f70e91
[ "WTFPL" ]
null
null
null
PYTHON/11.py
guikingma/project_euler
e4deffc63f39a304e449c12ee1fa1233c6f70e91
[ "WTFPL" ]
null
null
null
''' 11: In the 20x20 grid below, four numbers along a diagonal line have been marked in red. The product of these numbers is 26 * 63 * 78 * 14 = 1788696. What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20x20 grid? ''' a = [""] * 20 # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 a[0] = "08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08".split(" ") a[1] = "49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00".split(" ") a[2] = "81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65".split(" ") a[3] = "52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91".split(" ") a[4] = "22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80".split(" ") a[5] = "24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50".split(" ") a[6] = "32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70".split(" ") a[7] = "67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21".split(" ") a[8] = "24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72".split(" ") a[9] = "21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95".split(" ") a[10] ="78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92".split(" ") a[11] ="16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57".split(" ") a[12] ="86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58".split(" ") a[13] ="19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40".split(" ") a[14] ="04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66".split(" ") a[15] ="88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69".split(" ") a[16] ="04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36".split(" ") a[17] ="20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16".split(" ") a[18] ="20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54".split(" ") a[19] ="01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48".split(" ") def pri_diagonal(): ret = 0 for i in range(0,17): for j in range(0,17): resp = int(a[i][j])*int(a[i+1][j+1])*int(a[i+2][j+2])*int(a[i+3][j+3]) #print "(%s, %s) = %s - mult = %s" %(i, j, a[i][j], resp) if resp > ret: ret = resp return ret def sec_diagonal(): ret = 0 for i in range(0,17): for j in range(3,20): resp = int(a[i][j])*int(a[i+1][j-1])*int(a[i+2][j-2])*int(a[i+3][j-3]) #print "(%s, %s) = %s - mult = %s" %(i, j, a[i][j], resp) if resp > ret: ret = resp return ret def left_right(): ret = 0 for i in range(0,20): for j in range(0,17): resp = int(a[i][j])*int(a[i][j+1])*int(a[i][j+2])*int(a[i][j+3]) #print "(%s, %s) = %s - mult = %s" %(i, j, a[i][j], resp) if resp > ret: ret = resp return ret def up_down(): ret = 0 for i in range(0,17): for j in range(0,20): resp = int(a[i][j])*int(a[i+1][j])*int(a[i+2][j])*int(a[i+3][j]) #print "(%s, %s) = %s - mult = %s" %(i, j, a[i][j], resp) if resp > ret: ret = resp return ret def execute(): print max(pri_diagonal(), sec_diagonal(), left_right(), up_down()) execute()
40.578947
133
0.571336
794405b82081e98a9a20255c237f162966b23b6f
2,830
py
Python
start.py
Seamooo/nn-chess
38c3e54ab34af54d650240d35d0372689ff104bf
[ "MIT" ]
null
null
null
start.py
Seamooo/nn-chess
38c3e54ab34af54d650240d35d0372689ff104bf
[ "MIT" ]
null
null
null
start.py
Seamooo/nn-chess
38c3e54ab34af54d650240d35d0372689ff104bf
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 from flask import Flask, url_for, send_from_directory, request, jsonify from chess import Board import random app = Flask(__name__, static_url_path='', static_folder='public') @app.route('/', methods=['GET']) def get_index(): return app.send_static_file('index.html') @app.route('/img/<path:path>') def send_img(path): return send_from_directory('img', path) def score(state): return random.random() # not really mcts at the moment # closer to randomised minimax def dfs(state, num_searches, isplayer): comp = max if isplayer else min board = Board(state) if(board.is_checkmate()): return 0.0 if isplayer else 1.0 if(board.is_stalemate()): return 0.5 if(board.can_claim_draw()): return 0.5 rv = 0.0 if isplayer else 1.0 moves = list(board.legal_moves) # if number of nodes to search exceeds the search limit provided # score all nodes if(len(moves) > num_searches): for move in moves: board.push(move) rv = comp(rv,score(board.fen())) board.pop() return rv search_move = [False for _ in range(len(moves))] search_count = 0 i = 0 while i < len(moves): inc = min(60, len(moves)-i) # gives 50% chance for all nodes to be searched # TODO make an adjustable probability parameter tp = random.randrange(1<<inc) while tp > 0: if(tp&1): search_move[i] = True search_count += 1 tp >>= 1 i += inc score_count = len(moves) - search_count nodes_per_search = 0 if(search_count != 0): nodes_per_search = (num_searches - score_count) // search_count vals = [] for i in range(len(moves)): move = moves[i] if search_move[i]: board.push(move) rv = comp(rv,dfs(board.fen(), nodes_per_search, not isplayer)) board.pop() else: board.push(move) rv = comp(rv, score(move)) board.pop() return rv def get_move(state): #assume both players play the best moves #states where you play, take the maximum calculated as rv #states where opponent plays, take the min calculated as rv #limit number of searches artificially for now #choose better numbers later print('started search over state', state) search_limit = 1000 board = Board(state) mx = 0 rv = None vals = [] for move in board.legal_moves: board.push(move) val = dfs(board.fen(), search_limit, False) if(val > mx): rv = move mx = val board.pop() vals.append((str(move), val)) print(vals) print('found move', rv) return rv @app.route('/ai', methods=['POST']) def ai_move(): data = request.json if 'state' not in data: return 'bad request', 400 try: move = get_move(data['state']) except Exception as e: print(e) return 'bad request', 400 rv = str(move) return jsonify({ 'from':rv[:2], 'to':rv[2:4], 'promote':'' if len(rv) < 5 else rv[5] }) #server running on port 4444 if __name__ == '__main__': app.run(port=4444)
24.396552
71
0.681272
7944075947846574d9101e0589c934cb6d7f7051
2,073
py
Python
fucking-awesome.py
Correia-jpv/fu-awe-readme
39ec3912859e6840642ab4b627055fa2ab1c5ca3
[ "MIT" ]
null
null
null
fucking-awesome.py
Correia-jpv/fu-awe-readme
39ec3912859e6840642ab4b627055fa2ab1c5ca3
[ "MIT" ]
null
null
null
fucking-awesome.py
Correia-jpv/fu-awe-readme
39ec3912859e6840642ab4b627055fa2ab1c5ca3
[ "MIT" ]
null
null
null
import os import re import time import requests from requests.adapters import HTTPAdapter from dotenv import load_dotenv load_dotenv() PAT = os.getenv("PAT") ORIGIN_REPO = os.getenv("ORIGIN_REPO") originRepoURL = f'https://raw.githubusercontent.com/correia-jpv/fucking-{ORIGIN_REPO}/main/readme.md' # Session HEADERS = { "Authorization": 'token ' + PAT } session = requests.session() session.mount("https://", HTTPAdapter()) session.headers.update(HEADERS) md = session.get(originRepoURL) if int(md.headers['Content-Length']) <= 35: originRepoURL = re.sub('readme', 'README', originRepoURL) md = session.get(originRepoURL) md = md.content.decode("utf-8") externalLinks = "(?:[^\!]|^)\[([^\[\]]+)\]\((?!https://github.com/|#)([^()]+)\)" internalGithubRepos = "(?:[^\!]|^)\[([^\[\]]+)\]\((?=https://github.com/)([^()]+)\)" def grabStats(repo): head, sep, tail = repo.group(2).partition('/tree/') repoUrl = re.sub('https://github.com', 'https://api.github.com/repos', head) r = session.get(repoUrl) while (r.status_code == 403): print('waiting') for second in range(0, 600): time.sleep(1) r = session.get(repoUrl) data = r.json() repoStars = str(data['stargazers_count'] if 'stargazers_count' in data else '?') repoForks = str(data['forks'] if 'forks' in data else '?') for n in range(6-len(repoStars)): repoStars = '&nbsp;' + repoStars for n in range(6-len(repoForks)): repoForks = '&nbsp;' + repoForks repoStars = '<b><code>' + repoStars + '⭐</code></b>' repoForks = '<b><code>' + repoForks + '🍴</code></b>' return f' {repoStars} {repoForks} [' + repo.group(1) + '](' + repo.group(2) + ')' # curl requests with github matches md = re.sub(externalLinks, r""" 🌎 [\1](\2)""", md) md = re.sub(internalGithubRepos, grabStats, md) # Write users to be followed to file filename = f'./results/readme-{ORIGIN_REPO}.md' os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w+", encoding='utf-8') as f: f.write(md)
30.485294
101
0.623734
794409152085b270bec6b796b2e2a58d2e295bef
3,341
py
Python
rdr_service/cloud_utils/gcp_cloud_tasks.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
39
2017-10-13T19:16:27.000Z
2021-09-24T16:58:21.000Z
rdr_service/cloud_utils/gcp_cloud_tasks.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
312
2017-09-08T15:42:13.000Z
2022-03-23T18:21:40.000Z
rdr_service/cloud_utils/gcp_cloud_tasks.py
all-of-us/raw-data-repository
d28ad957557587b03ff9c63d55dd55e0508f91d8
[ "BSD-3-Clause" ]
19
2017-09-15T13:58:00.000Z
2022-02-07T18:33:20.000Z
from datetime import datetime, timedelta, date import json import logging from time import sleep from google.api_core.exceptions import InternalServerError, GoogleAPICallError from google.cloud import tasks_v2 from google.protobuf import timestamp_pb2 from rdr_service.config import GAE_PROJECT from rdr_service.services.flask import TASK_PREFIX class GCPCloudTask(object): """ Use the GCP Cloud Tasks API to run a task later. """ # Create a client. _client = None def execute(self, endpoint: str, payload: (dict, list)=None, in_seconds: int = 0, project_id: str = GAE_PROJECT, location: str = 'us-central1', queue: str = 'default', quiet=False): """ Make GCP Cloud Task API request to run task later. :param endpoint: Flask API endpoint to call. :param payload: dict containing data to send to task. :param in_seconds: delay before starting task in seconds, default to run immediately. :param project_id: target project id. :param location: target location. :param queue: target cloud task queue. :param quiet: suppress logging. """ if not project_id or project_id == 'localhost': raise ValueError('Invalid GCP project id') if not self._client: self._client = tasks_v2.CloudTasksClient() if not endpoint: raise ValueError('endpoint value must be provided.') if payload and not isinstance(payload, dict): raise TypeError('payload must be a dict object.') from rdr_service.resource.main import app if endpoint not in app.url_map._rules_by_endpoint: raise ValueError('endpoint is not registered in app.') res = app.url_map._rules_by_endpoint[endpoint][0] if not res.rule.startswith(TASK_PREFIX): raise ValueError('endpoint is not configured using the task prefix.') def json_serial(obj): """JSON serializer for objects not serializable by default json code""" if isinstance(obj, (datetime, date)): return obj.isoformat() return obj.__repr__() if payload: payload = json.dumps(payload, default=json_serial).encode() # Construct the fully qualified queue name. parent = self._client.queue_path(project_id, location, queue) task = { "app_engine_http_request": { "http_method": "POST", "relative_uri": res.rule } } if payload: task['app_engine_http_request']['body'] = payload if in_seconds: run_ts = datetime.utcnow() + timedelta(seconds=in_seconds) timestamp = timestamp_pb2.Timestamp() timestamp.FromDatetime(run_ts) task['schedule_time'] = timestamp # Use the client to build and send the task. retry = 5 while retry: retry -= 1 try: response = self._client.create_task(parent=parent, task=task) if not quiet: logging.info('Created task {0}'.format(response.name)) return except (InternalServerError, GoogleAPICallError): sleep(0.25) logging.error('Create Cloud Task Failed.')
36.714286
116
0.624963
7944092618b4f0c08ccd4276d263571e05b58a04
1,722
py
Python
Code Implementations/rail_fence_cipher.py
GalacticGlum/CryptographyResearchPaper
b538ba91fcee47995b2bf102affa9425badafc0c
[ "Unlicense" ]
null
null
null
Code Implementations/rail_fence_cipher.py
GalacticGlum/CryptographyResearchPaper
b538ba91fcee47995b2bf102affa9425badafc0c
[ "Unlicense" ]
null
null
null
Code Implementations/rail_fence_cipher.py
GalacticGlum/CryptographyResearchPaper
b538ba91fcee47995b2bf102affa9425badafc0c
[ "Unlicense" ]
null
null
null
def encrypt(plain_text, rails): cipher_text = str() cycle = max((rails - 1) * 2, 1) # 1 is special case for 1 rail for rail in range(rails): ptr = rail character_distance = cycle - 2 * rail # Both the bottom and top rails have a (same) character distance of the cycle. if rail == rails - 1: character_distance = cycle # While we have *something* to write while ptr < len(plain_text): cipher_text += plain_text[ptr] ptr += character_distance # If this is not the top or bottom rail, alternate between two distance patterns # (one for going up a cycle and one for going down a cycle). if rail != 0 and rail != rails - 1: character_distance = cycle - character_distance return cipher_text def decrypt(cipher_text, rails): plain_text = [''] * len(cipher_text) cipher_index = 0 cycle = max((rails - 1) * 2, 1) # 1 is special case for 1 rail for rail in range(rails): ptr = rail character_distance = cycle - 2 * rail if rail == rails - 1: character_distance = cycle while ptr < len(plain_text): plain_text[ptr] = cipher_text[cipher_index] cipher_index += 1 ptr += character_distance if rail != 0 and rail != rails - 1: character_distance = cycle - character_distance return ''.join(plain_text) rails = int(input('How many rails should I encrypt with?\n')) cipher_text = encrypt(input('What should I encrypt?\n'), rails) print('\nEncrypted: ' + cipher_text) print('Decrypted: ' + decrypt(cipher_text, rails))
33.764706
93
0.592334
7944099f339e6bd586e07429710afcfec84afdb9
368
py
Python
test/dummy.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
null
null
null
test/dummy.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
null
null
null
test/dummy.py
uliana291/the-zoo
a15a4162c39553abe91224f4feff5d3b66f9413e
[ "MIT" ]
null
null
null
repo_files = { "readme.md": "Hello world!", "requirements.txt": "django==2.3.4", "package.json": '{"dependencies": {"webpack": "~0.0.0-rc14"}}', } def check_found(context): yield context.Result("check:found", True, {"answer": 42}) def check_passing(context): yield context.Result("check:passing", False) CHECKS = [check_found, check_passing]
21.647059
67
0.646739
794409bd586aaf4690914dd1a7f0b1eef4a35ead
3,202
py
Python
lta/log_format.py
jnbellinger/lta
b7cb3c65e0f167e56abb67f8283083aafd700e42
[ "MIT" ]
1
2019-07-30T16:03:26.000Z
2019-07-30T16:03:26.000Z
lta/log_format.py
jnbellinger/lta
b7cb3c65e0f167e56abb67f8283083aafd700e42
[ "MIT" ]
80
2019-01-10T21:46:43.000Z
2022-03-24T22:40:54.000Z
lta/log_format.py
jnbellinger/lta
b7cb3c65e0f167e56abb67f8283083aafd700e42
[ "MIT" ]
1
2018-12-10T21:13:11.000Z
2018-12-10T21:13:11.000Z
# log_format.py """ Module to provide support for structured logging. Example code to enable structured logging might look as follows: structured_formatter = StructuredFormatter( component_type='Transmogrifier', component_name='transmog-node-1', ndjson=True) stream_handler = logging.StreamHandler(sys.stdout) stream_handler.setFormatter(structured_formatter) root_logger = logging.getLogger(None) root_logger.setLevel(logging.NOTSET) root_logger.addHandler(stream_handler) """ from datetime import datetime import json from logging import Formatter, LogRecord import traceback from typing import Dict, List, Optional, Union class StructuredFormatter(Formatter): """ StructuredFormatter is a Formatter for structured logging. LogRecord objects are formatted as JSON. Under the default configuration, a StructuredFormatter will render these as NDJSON (http://ndjson.org/) """ def __init__(self, component_name: Optional[str] = None, component_type: Optional[str] = None, ndjson: bool = True) -> None: """ Create a StructuredFormatter object. component_name: Optional[str] - The name of the software component component_type: Optional[str] - The type of the software component ndjson: bool - Output as NDJSON; defaults to True. """ self.component_name = component_name self.component_type = component_type self.indent = None if ndjson else 4 self.separators = (',', ':') if ndjson else (', ', ': ') super(StructuredFormatter, self).__init__() def format(self, record: LogRecord) -> str: """ Format a LogRecord object as a log message. record - LogRecord object to be formatted Returns a log message as a str. In the default configuration, this is JSON on a single line (NDJSON). If the StructuredFormatter is created with ndjson=False, then each log message will become a pretty-printed block of JSON. """ # ensure our log message has an ISO 8601 timestamp data: Dict[str, Union[str, List[str]]] = { 'timestamp': datetime.utcnow().isoformat(), 'message': record.getMessage() } # copy everything provided to us in the LogRecord object record_dict = vars(record) for key in record_dict: data[key] = record_dict[key] # if the LogRecord contained an Exception Tuple, format it if "exc_info" in record_dict: if record_dict["exc_info"]: exc_type, exc_value, exc_tb = record_dict["exc_info"] data["exc_info"] = traceback.format_exception(exc_type, exc_value, exc_tb) # add the component type if it was configured if self.component_type: data['component_type'] = self.component_type # add the component name if it was configured if self.component_name: data['component_name'] = self.component_name # format the data dictionary as JSON return json.dumps(data, indent=self.indent, separators=self.separators)
39.04878
90
0.661462
794409cfaa3d05a1f2885a2e3a6b8370e6a0a916
3,992
py
Python
task_set/train_inner_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
23,901
2018-10-04T19:48:53.000Z
2022-03-31T21:27:42.000Z
task_set/train_inner_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
891
2018-11-10T06:16:13.000Z
2022-03-31T10:42:34.000Z
task_set/train_inner_test.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
6,047
2018-10-12T06:31:02.000Z
2022-03-31T13:59:28.000Z
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # python3 """Tests for task_set.train_inner.""" import json import os import tempfile import numpy as np from task_set import datasets from task_set import train_inner from task_set.tasks import base import tensorflow.compat.v1 as tf class DummyTask(base.BaseTask): """Dummy task used for tests.""" def call_split(self, params, split, with_metrics=False): r = tf.random_normal(shape=[], dtype=tf.float32) offset = { datasets.Split.TRAIN: 1.0, datasets.Split.VALID_INNER: 2.0, datasets.Split.VALID_OUTER: 3.0, datasets.Split.TEST: 4.0, } loss = offset[split] + r if with_metrics: return loss, {"metric": -1 * loss} else: return loss def get_batch(self, split): return None def current_params(self): return {} def gradients(self, loss): return {} def initial_params(self): return {} def get_variables(self): return [] class TrainInnerTest(tf.test.TestCase): def test_compute_averaged_loss(self): task = DummyTask() params = task.initial_params() losses, _ = train_inner.compute_averaged_loss( task, params, num_batches=100, with_metrics=False) with self.test_session() as sess: all_np_losses = [] for _ in range(10): all_np_losses.append(sess.run(losses)) tr, vai, vao, te = zip(*all_np_losses) # We are averaging over 100 with 10 replications evaluatons. # This means the std. error of the mean should be 1/sqrt(1000) or 0.03. # We use a threshold of 0.15, corresponding to a 5-sigma test. self.assertNear(np.mean(tr), 1.0, 0.15) self.assertNear(np.mean(vai), 2.0, 0.15) self.assertNear(np.mean(vao), 3.0, 0.15) self.assertNear(np.mean(te), 4.0, 0.15) # ensure that each sample is also different. self.assertLess(1e-5, np.var(tr), 0.5) self.assertLess(1e-5, np.var(vai), 0.5) self.assertLess(1e-5, np.var(vao), 0.5) self.assertLess(1e-5, np.var(te), 0.5) losses, metrics = train_inner.compute_averaged_loss( task, params, num_batches=100, with_metrics=True) tr_metrics, vai_metrics, vao_metrics, te_metrics = metrics with self.test_session() as sess: # this std. error is 1/sqrt(100), or 0.1. 5 std out is 0.5 self.assertNear(sess.run(tr_metrics["metric"]), -1.0, 0.5) self.assertNear(sess.run(vai_metrics["metric"]), -2.0, 0.5) self.assertNear(sess.run(vao_metrics["metric"]), -3.0, 0.5) self.assertNear(sess.run(te_metrics["metric"]), -4.0, 0.5) def test_train(self): tmp_dir = tempfile.mkdtemp() # TODO(lmetz) when toy tasks are done, switch this away from an mlp. train_inner.train( tmp_dir, task_name="mlp_family_seed12", optimizer_name="adam8p_wide_grid_seed21", training_steps=10, eval_every_n=5) with tf.gfile.Open(os.path.join(tmp_dir, "result")) as f: result_data = json.loads(f.read()) self.assertEqual(len(result_data), 3) # 4 losses logged out per timestep self.assertEqual(len(result_data["5"]), 4) with tf.gfile.Open(os.path.join(tmp_dir, "time_per_step")) as f: time_per_step_data = json.loads(f.read()) self.assertIn("mean_last_half", time_per_step_data) self.assertIn("mean_time", time_per_step_data) self.assertIn("median_time", time_per_step_data) if __name__ == "__main__": tf.test.main()
30.945736
75
0.682365
794409ea24b35d8312a8db6931f0c60cd31f57c6
10,865
py
Python
extras/client/alpaca_discovery.py
jamessynge/TinyAlpacaServer
12cffca15542be418cd42322e2150ba432eeb945
[ "MIT" ]
1
2021-10-07T04:35:05.000Z
2021-10-07T04:35:05.000Z
extras/client/alpaca_discovery.py
jamessynge/TinyAlpacaServer
12cffca15542be418cd42322e2150ba432eeb945
[ "MIT" ]
null
null
null
extras/client/alpaca_discovery.py
jamessynge/TinyAlpacaServer
12cffca15542be418cd42322e2150ba432eeb945
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 """Provides the ability to find IPv4 ASCOM Alpaca servers on the local networks. Uses the netifaces library to find the broadcast IPs that can be used for sending the UDP discovery message. Some functions accept **kwargs (i.e. unspecified keyword arguments) so that they can be passed arguments that originated from argparse, which may well include arguments not of interested to the methods here. Note that I've chosen to omit support for IPv6 because I don't need it for testing Tiny Alpaca Server. TODO(jamessynge): Figure out if I can NOT use netifaces to get the network interface information. """ import argparse import dataclasses import json import queue import socket import sys import threading import time from typing import Callable, Dict, Generator, List, Optional import install_advice try: import netifaces # pylint: disable=g-import-not-at-top except ImportError: install_advice.install_advice('netifaces') # build_cleaner doesn't find imports that aren't at the top level, so we repeat # the import here. import netifaces # pylint: disable=g-import-not-at-top,g-bad-import-order # Daniel VanNoord selected UDP port 32227 for the Alpaca Discovery protocol, but # that port is not officially assigned to the protocol, so it may change some # day. An Alpaca Server can confirm that the packet is intended for it by # looking for the string 'alpacadiscovery1' as the entire body of the UDP packet # it receives at that port, and an Alpaca Discovery client can confirm that a # response is from an Alpaca Server by checking that the response body can be # parsed as JSON and has a property 'alpacaport' whose value is an integer that # can be a TCP port number (e.g. 1 to 65535). ALPACA_DISCOVERY_PORT = 32227 DISCOVERY_REQUEST_BODY = 'alpacadiscovery1' ALPACA_SERVER_PORT_PROPERTY = 'alpacaport' DEFAULT_DISCOVERY_SECS = 2.0 @dataclasses.dataclass class DiscoverySource: """Addresses from and to which to send ASCOM Alpaca discovery packets.""" interface_name: str src_address: str dst_address: str dst_is_broadcast: bool def get_name(self) -> str: return f'{self.dst_address} via {self.interface_name}' def create_bound_udp_socket(self) -> socket.socket: """Create UDP port for sending to dst_address.""" # -------------------------------- sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if self.dst_is_broadcast: sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) try: sock.bind((self.src_address, 0)) # listen to any on a temporary port except: print(f'failure to bind {self}', file=sys.stderr, flush=True) sock.close() raise # sock.setblocking(0) return sock def send_discovery_packet(self, sock: socket.socket, verbose=False): """Writes an Alpaca Discovery UDP Packet to sock.""" if verbose: action = 'Broadcasting' if self.dst_is_broadcast else 'Sending' # Appending a \n explicitly because multiple threads will output strings, # and I've found that the default end value is output as a separate # operation that can come after the "Collected..." string from another # thread. print( f'{action} from {self.src_address} to {self.dst_address}\n', flush=True, end='') sock.sendto( DISCOVERY_REQUEST_BODY.encode(encoding='ascii'), (self.dst_address, ALPACA_DISCOVERY_PORT)) @dataclasses.dataclass class DiscoveryResponse: """Represents an Alpaca Discovery Protocol Response from an Alpaca Server.""" source: DiscoverySource data_bytes: bytes recvfrom_addr: str recvfrom_port: int # The discovery port. def get_alpaca_server_addr(self) -> str: return f'{self.recvfrom_addr}:{self.get_port()}' def get_port(self) -> int: data_str = str(self.data_bytes, 'ascii') jsondata = json.loads(data_str) return int(jsondata[ALPACA_SERVER_PORT_PROPERTY]) def generate_addresses(address_family) -> Generator[Dict[str, str], None, None]: """docstring.""" # netifaces.interfaces returns a list of interface names. for name in netifaces.interfaces(): # netifaces.ifaddresses(interface_name) returns a dictionary mapping an # address family (e.g. netifaces.AF_INET for IPv4) to a list of address # groups (dictionaries) provided by that interface. Note that a single # interface may have multiple addresses, even for a single address family. for addr_family, addr_groups in netifaces.ifaddresses(name).items(): if address_family == addr_family: for address_group in addr_groups: if 'addr' not in address_group: # Note that I'm assuming continue result = dict(interface_name=name) result.update(address_group) yield result def generate_discovery_sources() -> Generator[DiscoverySource, None, None]: """docstring.""" for address_group in generate_addresses(netifaces.AF_INET): if 'broadcast' in address_group: yield DiscoverySource( interface_name=address_group['interface_name'], src_address=address_group['addr'], dst_address=address_group['broadcast'], dst_is_broadcast=True) elif 'peer' in address_group: yield DiscoverySource( interface_name=address_group['interface_name'], src_address=address_group['addr'], dst_address=address_group['peer'], dst_is_broadcast=False) def receiver(sock: socket.socket, max_discovery_secs: float, response_queue: queue.Queue) -> None: sock.settimeout(max_discovery_secs) while True: try: data_bytes, addr = sock.recvfrom(1024) except socket.timeout: return # For AF_INET sockets, addr is a pair, (host, port). response_queue.put((data_bytes, addr[0], addr[1])) class Discoverer(object): """Performs Alpaca Discovery for a single DiscoverySource.""" def __init__(self, source: DiscoverySource): self.source = source def perform_discovery(self, response_queue: queue.Queue, max_discovery_secs: float = DEFAULT_DISCOVERY_SECS, verbose=False) -> threading.Thread: """Returns a thread which writes DiscoveryResponses to response_queue.""" def worker(): for r in self.generate_responses( max_discovery_secs=max_discovery_secs, verbose=verbose): response_queue.put(r) t = threading.Thread(target=worker, name=self.source.get_name()) t.start() return t def generate_responses( self, max_discovery_secs: float = DEFAULT_DISCOVERY_SECS, verbose=False) -> Generator[DiscoveryResponse, None, None]: """Yields DiscoveryResponses after sending from the source address.""" sock = self.source.create_bound_udp_socket() q = queue.Queue(maxsize=1000) t = threading.Thread(target=receiver, args=(sock, max_discovery_secs, q)) t.start() iota = max(0.001, min(0.05, max_discovery_secs / 100.0)) time.sleep(iota) self.source.send_discovery_packet(sock, verbose=verbose) count = 0 while t.is_alive(): try: data_bytes, addr, port = q.get(block=True, timeout=iota) except queue.Empty: continue yield DiscoveryResponse( source=self.source, data_bytes=data_bytes, recvfrom_addr=addr, recvfrom_port=port) count += 1 t.join() while not q.empty(): data_bytes, addr, port = q.get(block=False) yield DiscoveryResponse( source=self.source, data_bytes=data_bytes, recvfrom_addr=addr, recvfrom_port=port) if verbose: # Appending a \n explicitly because multiple threads will output strings, # and I've found that the default end value is output as a separate # operation that can come after the "Collected..." string from another # thread. print( f'Collected {count} responses for source {self.source.get_name()}\n', flush=True, end='') def perform_discovery(discovery_response_handler: Callable[[DiscoveryResponse], None], sources: Optional[List[DiscoverySource]] = None, max_discovery_secs: float = DEFAULT_DISCOVERY_SECS, verbose=False, **kwargs) -> None: """Sends a discovery packet from all sources, passes results to handler.""" del kwargs # Unused. if sources is None: if verbose: print('Finding network interfaces to use for discovery.') sources = list(generate_discovery_sources()) discoverers = [Discoverer(source) for source in sources] q = queue.Queue(maxsize=1000) threads = [] for d in discoverers: threads.append( d.perform_discovery( response_queue=q, max_discovery_secs=max_discovery_secs, verbose=verbose)) start_secs = time.time() while threads: if not threads[0].is_alive(): t = threads.pop(0) if verbose: print('Thread %r is done' % t.name, flush=True) t.join() while not q.empty(): dr = q.get(block=False) discovery_response_handler(dr) time.sleep(0.01) end_secs = time.time() if verbose: elapsed_secs = end_secs - start_secs print(f'perform_discovery: elapsed_secs={elapsed_secs}') if elapsed_secs < max_discovery_secs: print( f'perform_discovery: ended {max_discovery_secs - elapsed_secs}s early' ) def find_first_server(**kwargs) -> Optional[DiscoveryResponse]: """Return the first server to respond, else None.""" result = None def discovery_response_handler(dr: DiscoveryResponse) -> None: nonlocal result if result is not None: return result = dr perform_discovery(discovery_response_handler, **kwargs) return result def make_discovery_parser() -> argparse.ArgumentParser: """Returns a parser for discovery operations.""" parser = argparse.ArgumentParser(add_help=False) parser.add_argument( '--max_discovery_secs', metavar='SECONDS', type=float, default=DEFAULT_DISCOVERY_SECS, help='Time to wait (seconds) for Alpaca Discovery responses.') parser.add_argument( '--verbose', '-v', action='store_true', help='Print more messages about what the program is doing.') return parser def main(): parser = argparse.ArgumentParser( description='Find Alpaca servers.', parents=[make_discovery_parser()]) cli_args = parser.parse_args() cli_kwargs = vars(cli_args) def discovery_response_handler(dr: DiscoveryResponse) -> None: print('Found a server at', dr.get_alpaca_server_addr()) perform_discovery(discovery_response_handler, **cli_kwargs) if __name__ == '__main__': main()
34.823718
80
0.688909
79440b0b8dec8b1db765e967a0ce138b1b4939b9
11,263
py
Python
sha256/core/ubitarray_32.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
sha256/core/ubitarray_32.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
sha256/core/ubitarray_32.py
greysonDEV/SHA-256
512de78a7261728316f79de5be2ca8b6eddebbb6
[ "MIT" ]
null
null
null
# ============================================================================ # # Author: Greyson Murray ([email protected]) # # Description: This file contains UBitArray32 and other auxiliary methods that # deal with various bit computations. # # LICENSE: MIT # ============================================================================ # from __future__ import annotations from typing import List, Union from collections.abc import Iterator from functools import reduce from sha256.core.bitops import binary, prepad, twos, add from sha256.const.tables import HEX class UBitArray32: """ (Unsigned 32-Bit Array) This class is responsible for handling much of the bit computations in the hash function. Being an unsigned 32-bit array, the maximum integer value that this array should hold is (2**32)-1, or 4294967295. Negative numbers will also be converted into their unsigned counterpart. """ def __init__(self, bits: List[int]) -> None: """ Args: bits: (List[int]) The list of bits to create a UBitArray32 object from. """ if not bits: raise ValueError(f"cannot create empty {self.__class__.__name__}") elif len(bits) > 32: # only take first 32 bits bits = bits[-32:] elif len(bits) < 32: # pad with zeros to 32 bits bits = [0]*(32-len(bits)) + bits self.bits = bits @classmethod def fromint(cls, n: int) -> UBitArray32: """ Creates a UBitArray32 object from an integer. The integer is converted into its binary representation and fed back into the UBitArray32.__init__ method to create the object. Args: n: (int) The integer to create a UBitArray32 object from. Returns: (bits): (UBitArray32) The resulting UBitArray32 object. Raises: (ValueError) The largest number that can be represented in 32-bit is (2**32)-1, or 4294967295. For this reason a ValueError is raised if and when a number larger than (2**32)-1 is passed to this method. """ if n > (2**32)-1: raise ValueError(f"maximum value of (2**32)-1, or 4294967295, exceeded") elif n < 0: bits = binary(n*-1) bits = twos(prepad(bits)) else: bits = binary(n) bits = prepad(bits) return cls(bits) def toint(self) -> int: """ Converts the UBitArray32 object back into its (unsigned) integer representation. Returns: (int) The integer representation of the UBitArray32 object. """ # create backwards range for powers pows = range(len(self)-1,-1,-1) n = 0 for bit,_pow in zip(self, pows): n += bit*(2**_pow) return n def tohex(self) -> str: """ Converts the UBitArray32 object into its hexadecimal representation. Returns: (str) The hexadecimal representation of the UBitArray32 object. """ chunks = [self[i:i+4] for i in range(0, len(self), 4)] result = "" for chunk in chunks: hex_value = HEX[chunk.toint()] result += hex_value return result def rshift(self, n: int) -> UBitArray32: """ Computes a new UBitArray32 object resulting from shifting the bits 'n' positions rightwards. Args: n: (int) The amount to shift by. Returns: (UBitArray32) The resulting UBitArray32 object. """ if n >= len(self): return self.__class__([0]*len(self)) else: # chop last n bits, prepend n '0's result = [0]*n + self.bits[:-n] return self.__class__(result) def rotr(self, n: int) -> UBitArray32: """ Computes a new UBitArray32 object resulting from rotating the bits 'n' positions rightwards. Args: n: (int) The amount to rotate by. Returns: (UBitArray32) The resulting UBitArray32 object. """ n %= len(self) # chop last n bits, prepend them result = self.bits[-n:] + self.bits[:-n] return self.__class__(result) def __xor__(self, other: UBitArray32) -> UBitArray32: """ Computes the bitwise XOR operation with another instance of UBitArray32. Args: other: (UBitArray32) The other instance to compute XOR with. Returns: (UBitArray32) The resulting UBitArray32 object. """ result = [] for x,y in zip(self.bits, other.bits): result.append((x + y) % 2) return self.__class__(result) def __add__(self, other: UBitArray32) -> UBitArray32: """ Computes the bitwise addition operation with another instance of UBitArray32. Args: other: (UBitArray32) The other instance to add to. Returns: (UBitArray32) The resulting UBitArray32 object. """ return self.__class__(add(self, other)) def __eq__(self, other: UBitArray32) -> bool: """ Computes the bitwise addition operation with another instance of UBitArray32. Args: other: (UBitArray32) The other instance to compare to. Returns: (bool) True if both 'self' and 'other' have equal bits; otherwise False. """ return self.bits == other.bits def __getitem__(self, i) -> Union[int, UBitArray32]: """ Gets the bit at the 'i'th index and supports slicing. Args: i: (int or slice) The index or slice to retrieve. Returns: (int) The bit at the 'i'th postiion (either 0 or 1) (UBitArray32) The set of bits retrieved from the slicing operation. """ if isinstance(i, int): return self.bits[i] elif isinstance(i, slice): if not self.bits[i]: raise ValueError(f"slice results in empty {self.__class__.__name__}") return self.__class__(self.bits[i]) def __iter__(self) -> Iterator[int]: """ Supports iteration over instances of UBitArray32. Returns: (list_iterator): An iterator of the set of bits contained by the instance of UBitArray32. """ return iter(self.bits) def __len__(self) -> int: """ Returns: (int) The length of bits. """ return len(self.bits) def __str__(self) -> str: """ Returns: (str) A simple string representation, for example: '00011011110000111000001000110000' """ return "".join([str(bit) for bit in self.bits]) def __repr__(self) -> str: """ Returns: (str) A string representation for debugging, for example: 'UBitArray32[0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0]' """ cls_name = self.__class__.__name__ bit_repr = " ".join([str(bit) for bit in self.bits]) return f"{cls_name}[{bit_repr}]" def xor(*bitarrays: UBitArray32) -> UBitArray32: """ Computes the bitwise XOR of the input sets of bits. Args: *bit_arrays: (UBitArray32) The sets of bits to XOR. Returns: (UBitArray32) The result of the XOR operation. """ result = reduce(UBitArray32.__xor__, bitarrays) return result def ch(a: UBitArray32, b: UBitArray32, c: UBitArray32) -> UBitArray32: """ Takes the 'choice' of two sets of bits ('b' and 'c') based off of the bits in 'a'. Example: a: 00010110 b: 11001010 c: 01111000 -> 01101010 Args: a: (UBitArray32) The model set of bits. b: (UBitArray32) The bits chosen if the model bit is 1. c: (UBitArray32) The bits chosen if the model bit is 0. Returns: (UBitArray32) The result of the choice operation. """ result = [] for model, y, z in zip(a, b, c): result.append(y if model else z) return UBitArray32(result) def maj(a: UBitArray32, b: UBitArray32, c: UBitArray32) -> UBitArray32: """ Takes the 'majority' of three sets of bits. The bits in each set are consecutively iterated over, and the resulting bit is the bit that appears most across the current bit. Example: a: 00010110 b: 11001010 c: 01111000 -> 01011010 Args: a: (UBitArray32) b: (UBitArray32) c: (UBitArray32) Returns: (UBitArray32) The result of the majority operation. """ result = [] for bits in zip(a,b,c): result.append(max(bits, key=bits.count)) return UBitArray32(result) def lsig0(bitarray: UBitArray32) -> UBitArray32: """ (lowercase sigma 0) Computes the XOR of three sets of bits which result from rotating the input set rightwards by 7, then 18, and then right-shifts by 3. Args: bitarray: (UBitArray32) The set of bits to operate on. Returns: (UBitArray32) The XOR of the three sets that result from rotating/shifting the input set.. """ a = bitarray.rotr(7) b = bitarray.rotr(18) c = bitarray.rshift(3) return xor(a,b,c) def lsig1(bitarray: UBitArray32) -> UBitArray32: """ (lowercase sigma 1) Computes the XOR of three sets of bits which result from rotating the input set rightwards by 17, then 19, and then right-shifts by 10. Args: bitarray: (UBitArray32) The set of bits to operate on. Returns: (UBitArray32) The XOR of the three sets that result from rotating/shifting the input set.. """ a = bitarray.rotr(17) b = bitarray.rotr(19) c = bitarray.rshift(10) return xor(a,b,c) def usig0(bitarray: UBitArray32) -> UBitArray32: """ (uppercase sigma 0) Computes the XOR of three sets of bits which result from rotating the input set rightwards by 2, then 13, and then 22. Args: bitarray: (UBitArray32) The set of bits to operate on. Returns: (UBitArray32) The XOR of the three sets that result from rotating the input set.. """ a = bitarray.rotr(2) b = bitarray.rotr(13) c = bitarray.rotr(22) return xor(a,b,c) def usig1(bitarray: UBitArray32) -> UBitArray32: """ (uppercase sigma 1) Computes the XOR of three sets of bits which result from rotating the input set rightwards by 6, then 11, and then 25. Args: bitarray: (UBitArray32) The set of bits to operate on. Returns: (UBitArray32) The XOR of the three sets that result from rotating the input set.. """ a = bitarray.rotr(6) b = bitarray.rotr(11) c = bitarray.rotr(25) return xor(a,b,c)
26.880668
94
0.568765
79440b906143141713b2cffaf7f77a336cff33cc
18,791
py
Python
venv/lib/python3.6/site-packages/ansible_collections/community/network/plugins/modules/voss_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
1
2020-01-22T13:11:23.000Z
2020-01-22T13:11:23.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/network/plugins/modules/voss_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
12
2020-02-21T07:24:52.000Z
2020-04-14T09:54:32.000Z
venv/lib/python3.6/site-packages/ansible_collections/community/network/plugins/modules/voss_config.py
usegalaxy-no/usegalaxy
75dad095769fe918eb39677f2c887e681a747f3a
[ "MIT" ]
null
null
null
#!/usr/bin/python # Copyright: (c) 2018, Extreme Networks Inc. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' --- module: voss_config author: "Lindsay Hill (@LindsayHill)" short_description: Manage Extreme VOSS configuration sections description: - Extreme VOSS configurations use a simple flat text file syntax. This module provides an implementation for working with EXOS configuration lines in a deterministic way. notes: - Tested against VOSS 7.0.0 - Abbreviated commands are NOT idempotent, see L(Network FAQ,../network/user_guide/faq.html#why-do-the-config-modules-always-return-changed-true-with-abbreviated-commands). options: lines: description: - The ordered set of commands that should be configured in the section. The commands must be the exact same commands as found in the device running-config. Be sure to note the configuration command syntax as some commands are automatically modified by the device config parser. aliases: ['commands'] parents: description: - The parent line that uniquely identifies the section the commands should be checked against. If this argument is omitted, the commands are checked against the set of top level or global commands. Note that VOSS configurations only support one level of nested commands. src: description: - Specifies the source path to the file that contains the configuration or configuration template to load. The path to the source file can either be the full path on the Ansible control host or a relative path from the playbook or role root directory. This argument is mutually exclusive with I(lines), I(parents). before: description: - The ordered set of commands to push on to the command stack if a change needs to be made. This allows the playbook designer the opportunity to perform configuration commands prior to pushing any changes without affecting how the set of commands are matched against the system. after: description: - The ordered set of commands to append to the end of the command stack if a change needs to be made. Just like with I(before) this allows the playbook designer to append a set of commands to be executed after the command set. match: description: - Instructs the module on the way to perform the matching of the set of commands against the current device config. If match is set to I(line), commands are matched line by line. If match is set to I(strict), command lines are matched with respect to position. If match is set to I(exact), command lines must be an equal match. Finally, if match is set to I(none), the module will not attempt to compare the source configuration with the running configuration on the remote device. choices: ['line', 'strict', 'exact', 'none'] default: line replace: description: - Instructs the module on the way to perform the configuration on the device. If the replace argument is set to I(line) then the modified lines are pushed to the device in configuration mode. If the replace argument is set to I(block) then the entire command block is pushed to the device in configuration mode if any line is not correct. default: line choices: ['line', 'block'] backup: description: - This argument will cause the module to create a full backup of the current C(running-config) from the remote device before any changes are made. If the C(backup_options) value is not given, the backup file is written to the C(backup) folder in the playbook root directory or role root directory, if playbook is part of an ansible role. If the directory does not exist, it is created. type: bool default: 'no' running_config: description: - The module, by default, will connect to the remote device and retrieve the current running-config to use as a base for comparing against the contents of source. There are times when it is not desirable to have the task get the current running-config for every task in a playbook. The I(running_config) argument allows the implementer to pass in the configuration to use as the base config for comparison. aliases: ['config'] defaults: description: - This argument specifies whether or not to collect all defaults when getting the remote device running config. When enabled, the module will get the current config by issuing the command C(show running-config verbose). type: bool default: 'no' save_when: description: - When changes are made to the device running-configuration, the changes are not copied to non-volatile storage by default. Using this argument will change that behavior. If the argument is set to I(always), then the running-config will always be saved and the I(modified) flag will always be set to True. If the argument is set to I(modified), then the running-config will only be saved if it has changed since the last save to startup-config. If the argument is set to I(never), the running-config will never be saved. If the argument is set to I(changed), then the running-config will only be saved if the task has made a change. default: never choices: ['always', 'never', 'modified', 'changed'] diff_against: description: - When using the C(ansible-playbook --diff) command line argument the module can generate diffs against different sources. - When this option is configure as I(startup), the module will return the diff of the running-config against the startup-config. - When this option is configured as I(intended), the module will return the diff of the running-config against the configuration provided in the C(intended_config) argument. - When this option is configured as I(running), the module will return the before and after diff of the running-config with respect to any changes made to the device configuration. choices: ['running', 'startup', 'intended'] diff_ignore_lines: description: - Use this argument to specify one or more lines that should be ignored during the diff. This is used for lines in the configuration that are automatically updated by the system. This argument takes a list of regular expressions or exact line matches. intended_config: description: - The C(intended_config) provides the master configuration that the node should conform to and is used to check the final running-config against. This argument will not modify any settings on the remote device and is strictly used to check the compliance of the current device's configuration against. When specifying this argument, the task should also modify the C(diff_against) value and set it to I(intended). backup_options: description: - This is a dict object containing configurable options related to backup file path. The value of this option is read only when C(backup) is set to I(yes), if C(backup) is set to I(no) this option will be silently ignored. suboptions: filename: description: - The filename to be used to store the backup configuration. If the filename is not given it will be generated based on the hostname, current time and date in format defined by <hostname>_config.<current-date>@<current-time> dir_path: description: - This option provides the path ending with directory name in which the backup configuration file will be stored. If the directory does not exist it will be first created and the filename is either the value of C(filename) or default filename as described in C(filename) options description. If the path value is not given in that case a I(backup) directory will be created in the current working directory and backup configuration will be copied in C(filename) within I(backup) directory. type: path type: dict ''' EXAMPLES = """ - name: Configure system name community.network.voss_config: lines: prompt "{{ inventory_hostname }}" - name: Configure interface settings community.network.voss_config: lines: - name "ServerA" backup: yes parents: interface GigabitEthernet 1/1 - name: Check the running-config against master config community.network.voss_config: diff_against: intended intended_config: "{{ lookup('file', 'master.cfg') }}" - name: Check the startup-config against the running-config community.network.voss_config: diff_against: startup diff_ignore_lines: - qos queue-profile .* - name: Save running to startup when modified community.network.voss_config: save_when: modified - name: Configurable backup path community.network.voss_config: backup: yes backup_options: filename: backup.cfg dir_path: /home/user """ RETURN = """ updates: description: The set of commands that will be pushed to the remote device returned: always type: list sample: ['prompt "VSP200"'] commands: description: The set of commands that will be pushed to the remote device returned: always type: list sample: ['interface GigabitEthernet 1/1', 'name "ServerA"', 'exit'] backup_path: description: The full path to the backup file returned: when backup is yes type: str sample: /playbooks/ansible/backup/vsp200_config.2018-08-21@15:00:21 """ from ansible.module_utils._text import to_text from ansible.module_utils.connection import ConnectionError from ansible_collections.community.network.plugins.module_utils.network.voss.voss import run_commands, get_config from ansible_collections.community.network.plugins.module_utils.network.voss.voss import get_defaults_flag, get_connection from ansible_collections.community.network.plugins.module_utils.network.voss.voss import get_sublevel_config, VossNetworkConfig from ansible.module_utils.basic import AnsibleModule from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.config import dumps def get_candidate_config(module): candidate = VossNetworkConfig(indent=0) if module.params['src']: candidate.load(module.params['src']) elif module.params['lines']: parents = module.params['parents'] or list() commands = module.params['lines'][0] if (isinstance(commands, dict)) and (isinstance(commands['command'], list)): candidate.add(commands['command'], parents=parents) elif (isinstance(commands, dict)) and (isinstance(commands['command'], str)): candidate.add([commands['command']], parents=parents) else: candidate.add(module.params['lines'], parents=parents) return candidate def get_running_config(module, current_config=None, flags=None): running = module.params['running_config'] if not running: if not module.params['defaults'] and current_config: running = current_config else: running = get_config(module, flags=flags) return running def save_config(module, result): result['changed'] = True if not module.check_mode: run_commands(module, 'save config\r') else: module.warn('Skipping command `save config` ' 'due to check_mode. Configuration not copied to ' 'non-volatile storage') def main(): """ main entry point for module execution """ backup_spec = dict( filename=dict(), dir_path=dict(type='path') ) argument_spec = dict( src=dict(type='path'), lines=dict(aliases=['commands'], type='list'), parents=dict(type='list'), before=dict(type='list'), after=dict(type='list'), match=dict(default='line', choices=['line', 'strict', 'exact', 'none']), replace=dict(default='line', choices=['line', 'block']), running_config=dict(aliases=['config']), intended_config=dict(), defaults=dict(type='bool', default=False), backup=dict(type='bool', default=False), backup_options=dict(type='dict', options=backup_spec), save_when=dict(choices=['always', 'never', 'modified', 'changed'], default='never'), diff_against=dict(choices=['startup', 'intended', 'running']), diff_ignore_lines=dict(type='list'), ) mutually_exclusive = [('lines', 'src'), ('parents', 'src')] required_if = [('match', 'strict', ['lines']), ('match', 'exact', ['lines']), ('replace', 'block', ['lines']), ('diff_against', 'intended', ['intended_config'])] module = AnsibleModule(argument_spec=argument_spec, mutually_exclusive=mutually_exclusive, required_if=required_if, supports_check_mode=True) result = {'changed': False} parents = module.params['parents'] or list() match = module.params['match'] replace = module.params['replace'] warnings = list() result['warnings'] = warnings diff_ignore_lines = module.params['diff_ignore_lines'] config = None contents = None flags = get_defaults_flag(module) if module.params['defaults'] else [] connection = get_connection(module) if module.params['backup'] or (module._diff and module.params['diff_against'] == 'running'): contents = get_config(module, flags=flags) config = VossNetworkConfig(indent=0, contents=contents) if module.params['backup']: result['__backup__'] = contents if any((module.params['lines'], module.params['src'])): candidate = get_candidate_config(module) if match != 'none': config = get_running_config(module) config = VossNetworkConfig(contents=config, indent=0) if parents: config = get_sublevel_config(config, module) configobjs = candidate.difference(config, match=match, replace=replace) else: configobjs = candidate.items if configobjs: commands = dumps(configobjs, 'commands') commands = commands.split('\n') if module.params['before']: commands[:0] = module.params['before'] if module.params['after']: commands.extend(module.params['after']) result['commands'] = commands result['updates'] = commands # send the configuration commands to the device and merge # them with the current running config if not module.check_mode: if commands: try: connection.edit_config(candidate=commands) except ConnectionError as exc: module.fail_json(msg=to_text(commands, errors='surrogate_then_replace')) result['changed'] = True running_config = module.params['running_config'] startup = None if module.params['save_when'] == 'always': save_config(module, result) elif module.params['save_when'] == 'modified': match = module.params['match'] replace = module.params['replace'] try: # Note we need to re-retrieve running config, not use cached version running = connection.get_config(source='running') startup = connection.get_config(source='startup') response = connection.get_diff(candidate=startup, running=running, diff_match=match, diff_ignore_lines=diff_ignore_lines, path=None, diff_replace=replace) except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) config_diff = response['config_diff'] if config_diff: save_config(module, result) elif module.params['save_when'] == 'changed' and result['changed']: save_config(module, result) if module._diff: if not running_config: try: # Note we need to re-retrieve running config, not use cached version contents = connection.get_config(source='running') except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) else: contents = running_config # recreate the object in order to process diff_ignore_lines running_config = VossNetworkConfig(indent=0, contents=contents, ignore_lines=diff_ignore_lines) if module.params['diff_against'] == 'running': if module.check_mode: module.warn("unable to perform diff against running-config due to check mode") contents = None else: contents = config.config_text elif module.params['diff_against'] == 'startup': if not startup: try: contents = connection.get_config(source='startup') except ConnectionError as exc: module.fail_json(msg=to_text(exc, errors='surrogate_then_replace')) else: contents = startup elif module.params['diff_against'] == 'intended': contents = module.params['intended_config'] if contents is not None: base_config = VossNetworkConfig(indent=0, contents=contents, ignore_lines=diff_ignore_lines) if running_config.sha1 != base_config.sha1: if module.params['diff_against'] == 'intended': before = running_config after = base_config elif module.params['diff_against'] in ('startup', 'running'): before = base_config after = running_config result.update({ 'changed': True, 'diff': {'before': str(before), 'after': str(after)} }) module.exit_json(**result) if __name__ == '__main__': main()
41.573009
129
0.65707
79440c1684e8cd9185325689d9bdc263f9f75510
5,304
py
Python
jtop/core/tegrastats.py
alx/jetson_stats
a55d5d67bf268bb47fe75a9a0b15598e99bfe9ea
[ "MIT" ]
null
null
null
jtop/core/tegrastats.py
alx/jetson_stats
a55d5d67bf268bb47fe75a9a0b15598e99bfe9ea
[ "MIT" ]
null
null
null
jtop/core/tegrastats.py
alx/jetson_stats
a55d5d67bf268bb47fe75a9a0b15598e99bfe9ea
[ "MIT" ]
null
null
null
# -*- coding: UTF-8 -*- # Copyright (C) 2019, Raffaello Bonghi <[email protected]> # All rights reserved # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, # BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # Logging import logging # Launch command import subprocess as sp # Threading from threading import Thread # Tegrastats parser from .tegra_parse import VALS, MTS, RAM, SWAP, IRAM, CPUS, TEMPS, VOLTS # Create logger for jplotlib logger = logging.getLogger(__name__) class Tegrastats(Thread): """ - Subprocess read: https://stackoverflow.com/questions/375427/non-blocking-read-on-a-subprocess-pipe-in-python/4896288#4896288 - Property https://www.programiz.com/python-programming/property """ class TegrastatsException(Exception): pass def __init__(self, path, interval): Thread.__init__(self) # Set interval tegrastats self.interval = interval # Initialize jetson stats self._stats = {} # Start process tegrastats self.path = path # Define Tegrastats process self.p = None # Initialize observer self._observers = set() def run(self): try: while self.p.poll() is None: out = self.p.stdout if out is not None: # Read line process output line = out.readline() # Decode line in UTF-8 tegrastats_data = line.decode("utf-8") # Decode and store self._stats = self._decode(tegrastats_data) # Notifiy all observers for observer in self._observers: observer.update(self._stats) except SystemExit: logger.error("System exit", exc_info=True) except AttributeError: logger.error("Attribute error", exc_info=True) @property def stats(self): # Return dictionary parsed return self._stats def attach(self, observer): self._observers.add(observer) def detach(self, observer): self._observers.discard(observer) def open(self, callback=None): try: # Launch subprocess or raise and exception self.p = sp.Popen([self.path, '--interval', str(self.interval)], stdout=sp.PIPE) # Start himself like file self.daemon = True self.start() # Wait first value not empty while not self._stats: pass # If callback is defined after each decode will be send the updates by function if callback is not None: self.attach(callback) return True except OSError: logger.error("Tegrastats not in list!") raise Tegrastats.TegrastatsException("Tegrastats is not available on this hardware") return False def close(self): if self.p is not None: self.p.kill() return True else: return False def __enter__(self): self.open() return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def _decode(self, text): # Find and parse all single values stats = VALS(text) # Parse if exist MTS mts = MTS(text) if mts: stats['MTS'] = mts # Parse RAM stats['RAM'] = RAM(text) # If exists parse SWAP swap = SWAP(text) if swap: stats['SWAP'] = swap # If exists parse IRAM iram = IRAM(text) if iram: stats['IRAM'] = iram # Parse CPU status stats['CPU'] = CPUS(text) # Parse temperatures stats['TEMP'] = TEMPS(text) # Parse voltages stats['VOLT'] = VOLTS(text) return stats # EOF
34.219355
115
0.625
79440c302f15194637e767cbd4116cade302422a
140,196
py
Python
tests/test_temporal.py
jasonb5/xcdat
4a35d6a6131fe3fec22593f54a9e48b640ceac4f
[ "Apache-2.0" ]
null
null
null
tests/test_temporal.py
jasonb5/xcdat
4a35d6a6131fe3fec22593f54a9e48b640ceac4f
[ "Apache-2.0" ]
null
null
null
tests/test_temporal.py
jasonb5/xcdat
4a35d6a6131fe3fec22593f54a9e48b640ceac4f
[ "Apache-2.0" ]
null
null
null
from datetime import datetime import cftime import numpy as np import pandas as pd import pytest import xarray as xr from xarray.tests import requires_dask from tests.fixtures import generate_dataset from xcdat.temporal import TemporalAccessor class TestTemporalAccessor: def test__init__(self): ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) obj = TemporalAccessor(ds) assert obj._dataset.identical(ds) def test_decorator(self): ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) obj = ds.temporal assert obj._dataset.identical(ds) class TestAverage: def test_weighted_annual_avg(self): ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) result = ds.temporal.average("ts", "year") expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( ["2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000"], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((2, 4, 4)), coords={ "lat": ds.lat, "lon": ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "year", "weighted": "True", "center_times": "False", }, ) # For some reason, there is a very small floating point difference # between both for ts so we have to use floating point comparison xr.testing.assert_allclose(result, expected) assert result.ts.attrs == expected.ts.attrs class TestClimatology: def test_weighted_seasonal_climatology_with_DJF(self): ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) result = ds.temporal.climatology( "ts", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={"lat": ds.lat, "lon": ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) class TestDepartures: # TODO: Update TestDepartures tests to use other numbers rather than 1's for # better test reliability and accuracy. This may require subsetting. @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) self.seasons = ["JJA", "MAM", "SON", "DJF"] def test_weighted_seasonal_departures_with_DJF(self): # Create a post-climatology dataset. ds = self.ds.copy() # Drop incomplete DJF seasons ds = ds.isel(time=slice(2, -1)) # Compare result of the method against the expected. result = ds.temporal.departures( "ts", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() expected["ts"] = xr.DataArray( data=np.zeros((12, 4, 4)), coords={ "lat": ds.lat, "lon": ds.lon, "time": ds.time, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "departures", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) def test_unweighted_seasonal_departures_with_DJF(self): ds = self.ds.copy() # Drop incomplete DJF seasons ds = ds.isel(time=slice(2, -1)) # Compare result of the method against the expected. result = ds.temporal.departures( "ts", "season", weighted=False, season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() expected["ts"] = xr.DataArray( data=np.zeros((12, 4, 4)), coords={ "lat": ds.lat, "lon": ds.lon, "time": ds.time, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "departures", "freq": "season", "weighted": "False", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) def test_unweighted_seasonal_departures_with_JFD(self): ds = self.ds.copy() # Compare result of the method against the expected. result = ds.temporal.departures( "ts", "season", weighted=False, season_config={"dec_mode": "JFD"}, ) expected = ds.copy() expected["ts"] = xr.DataArray( data=np.zeros((15, 4, 4)), coords={ "lat": ds.lat, "lon": ds.lon, "time": ds.time, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "departures", "freq": "season", "weighted": "False", "center_times": "False", "dec_mode": "JFD", }, ) assert result.identical(expected) class TestCenterTimes: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_raises_error_if_time_dimension_does_not_exist_in_dataset(self): ds = self.ds.copy() ds = ds.drop_dims("time") with pytest.raises(KeyError): ds.temporal.center_times(ds) def test_gets_time_as_the_midpoint_between_time_bounds(self): ds = self.ds.copy() # Make the time coordinates uncentered. uncentered_time = np.array( [ "2000-01-31T12:00:00.000000000", "2000-02-29T12:00:00.000000000", "2000-03-31T12:00:00.000000000", "2000-04-30T00:00:00.000000000", "2000-05-31T12:00:00.000000000", "2000-06-30T00:00:00.000000000", "2000-07-31T12:00:00.000000000", "2000-08-31T12:00:00.000000000", "2000-09-30T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-30T00:00:00.000000000", "2000-12-31T12:00:00.000000000", "2001-01-31T12:00:00.000000000", "2001-02-28T00:00:00.000000000", "2001-12-31T12:00:00.000000000", ], dtype="datetime64[ns]", ) ds.time.data[:] = uncentered_time # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() # Compare result of the method against the expected. expected = ds.copy() expected_time_data = np.array( [ "2000-01-16T12:00:00.000000000", "2000-02-15T12:00:00.000000000", "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T12:00:00.000000000", ], dtype="datetime64[ns]", ) expected = expected.assign_coords( { "time": xr.DataArray( name="time", data=expected_time_data, coords={"time": expected_time_data}, dims="time", attrs={ "long_name": "time", "standard_name": "time", "axis": "T", "bounds": "time_bnds", }, ) } ) # Update time bounds with centered time coordinates. time_bounds = ds.time_bnds.copy() time_bounds["time"] = expected.time expected["time_bnds"] = time_bounds result = ds.temporal.center_times(ds) assert result.identical(expected) class TestTemporalAvg: # TODO: Update TestTimeSeries tests to use other numbers rather than 1's # for better test reliability and accuracy. This may require subsetting. class TestTimeSeries: @pytest.fixture(autouse=True) def setup(self): # FIXME: Update test this so that it is accurate, rather than 1's # for averages # May involve subsetting self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) def test_weighted_annual_avg(self): ds = self.ds.copy() result = ds.temporal._temporal_avg("ts", "time_series", "year") expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( ["2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000"], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((2, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "year", "weighted": "True", "center_times": "False", }, ) # For some reason, there is a very small floating point difference # between both for ts so we have to use floating point comparison xr.testing.assert_allclose(result, expected) assert result.ts.attrs == expected.ts.attrs @requires_dask def test_weighted_annual_avg_with_chunking(self): ds = self.ds.copy().chunk({"time": 2}) result = ds.temporal._temporal_avg("ts", "time_series", "year") expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( ["2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000"], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((2, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "year", "weighted": "True", "center_times": "False", }, ) # For some reason, there is a very small floating point difference # between both for ts so we have to use floating point comparison xr.testing.assert_allclose(result, expected) assert result.ts.attrs == expected.ts.attrs def test_weighted_annual_avg_with_centering_time(self): ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "time_series", "year", center_times=True ) expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( ["2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000"], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((2, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "year", "weighted": "True", "center_times": "True", }, ) # For some reason, there is a floating point difference between both # for ts so we have to use floating point comparison xr.testing.assert_allclose(result, expected) assert result.ts.attrs == expected.ts.attrs def test_weighted_seasonal_avg_with_DJF(self): ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "time_series", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() # Drop the incomplete DJF seasons expected = expected.isel(time=slice(2, -1)) expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) def test_weighted_seasonal_avg_with_DJF_without_dropping_incomplete_seasons( self, ): ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "time_series", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": False}, ) expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((6, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "False", }, ) assert result.identical(expected) def test_weighted_seasonal_avg_with_JFD(self): ds = self.ds.copy() ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "time_series", "season", season_config={"dec_mode": "JFD"}, ) expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((5, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "JFD", }, ) assert result.identical(expected) def test_weighted_custom_season_avg(self): ds = self.ds.copy() custom_seasons = [ ["Jan", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] result = ds.temporal._temporal_avg( "ts", "time_series", "season", season_config={"custom_seasons": custom_seasons}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ "2000-02-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2001-11-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-02-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2001-11-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((6, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "season", "custom_seasons": [ "JanFebMar", "AprMayJun", "JulAugSep", "OctNovDec", ], "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) def test_weighted_monthly_avg(self): ds = self.ds.copy() result = ds.temporal._temporal_avg("ts", "time_series", "month") expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-02-01T00:00:00.000000000", "2000-03-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-06-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-09-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2000-12-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2001-12-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-01T00:00:00.000000000", "2000-02-01T00:00:00.000000000", "2000-03-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-06-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-09-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2000-12-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2001-12-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((15, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "month", "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) def test_weighted_daily_avg(self): ds = self.ds.copy() result = ds.temporal._temporal_avg("ts", "time_series", "day") expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-01-16T00:00:00.000000000", "2000-02-15T00:00:00.000000000", "2000-03-16T00:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T00:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T00:00:00.000000000", "2000-08-16T00:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T00:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T00:00:00.000000000", "2001-01-16T00:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-16T00:00:00.000000000", "2000-02-15T00:00:00.000000000", "2000-03-16T00:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T00:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T00:00:00.000000000", "2000-08-16T00:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T00:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T00:00:00.000000000", "2001-01-16T00:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T00:00:00.000000000", ], dtype="datetime64[ns]", ), }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((15, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "day", "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) def test_weighted_hourly_avg(self): ds = self.ds.copy() ds.coords["time"].attrs["bounds"] = "time_bnds" result = ds.temporal._temporal_avg("ts", "time_series", "hour") expected = ds.copy() expected["ts_original"] = ds.ts.copy() expected["ts"] = xr.DataArray( name="ts", data=np.ones((15, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "year_month_day_hour": pd.MultiIndex.from_tuples( [ (2000, 1, 16, 12), (2000, 2, 15, 12), (2000, 3, 16, 12), (2000, 4, 16, 0), (2000, 5, 16, 12), (2000, 6, 16, 0), (2000, 7, 16, 12), (2000, 8, 16, 12), (2000, 9, 16, 0), (2000, 10, 16, 12), (2000, 11, 16, 0), (2000, 12, 16, 12), (2001, 1, 16, 12), (2001, 2, 15, 0), (2001, 12, 16, 12), ] ), }, dims=["year_month_day_hour", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "hour", "weighted": "True", "center_times": "False", }, ) expected = ds.copy() expected = expected.drop_dims("time") time_new = xr.DataArray( data=np.array( [ "2000-01-16T12:00:00.000000000", "2000-02-15T12:00:00.000000000", "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T12:00:00.000000000", ], dtype="datetime64[ns]", ), coords={ "time": np.array( [ "2000-01-16T12:00:00.000000000", "2000-02-15T12:00:00.000000000", "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T12:00:00.000000000", ], dtype="datetime64[ns]", ), }, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((15, 4, 4)), coords={ "lat": self.ds.lat, "lon": self.ds.lon, "time": time_new, }, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "time_series", "freq": "hour", "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) class TestClimatology: # TODO: Update TestClimatology tests to use other numbers rather than 1's # for better test reliability and accuracy. This may require subsetting. @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) def test_raises_error_without_time_dimension(self): ds = self.ds.copy() ds = ds.drop_dims("time") with pytest.raises(KeyError): ds.temporal._temporal_avg("climatology", "season", "ts") def test_raises_error_with_incorrect_freq_arg(self): with pytest.raises(ValueError): self.ds.temporal._temporal_avg( "ts", "climatology", "incorrect_freq", ) def test_raises_error_with_incorrect_dec_mode_arg(self): with pytest.raises(ValueError): self.ds.temporal._temporal_avg( "ts", "climatology", freq="season", season_config={"dec_mode": "incorrect"}, ) def test_raises_error_if_data_var_does_not_exist_in_dataset(self): with pytest.raises(KeyError): self.ds.temporal._temporal_avg( "nonexistent_var", "climatology", freq="season" ) def test_weighted_seasonal_climatology_with_DJF(self): ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "climatology", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) @requires_dask def test_chunked_weighted_seasonal_climatology_with_DJF(self): ds = self.ds.copy().chunk({"time": 2}) result = ds.temporal._temporal_avg( "ts", "climatology", "season", season_config={"dec_mode": "DJF", "drop_incomplete_djf": True}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "DJF", "drop_incomplete_djf": "True", }, ) assert result.identical(expected) def test_weighted_seasonal_climatology_with_JFD(self): ds = self.ds.copy() result = ds.temporal._temporal_avg( "ts", "climatology", "season", season_config={"dec_mode": "JFD"}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "season", "weighted": "True", "center_times": "False", "dec_mode": "JFD", }, ) assert result.identical(expected) def test_weighted_custom_seasonal_climatology(self): # FIXME: Fix this test ds = self.ds.copy() custom_seasons = [ ["Jan", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] result = ds.temporal._temporal_avg( "ts", "climatology", "season", season_config={"custom_seasons": custom_seasons}, ) expected = ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 2, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 11, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 2, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 11, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((4, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "season", "weighted": "True", "center_times": "False", "custom_seasons": [ "JanFebMar", "AprMayJun", "JulAugSep", "OctNovDec", ], }, ) assert result.identical(expected) def test_weighted_monthly_climatology(self): result = self.ds.temporal._temporal_avg("ts", "climatology", "month") expected = self.ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "month", "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) def test_unweighted_monthly_climatology(self): result = self.ds.temporal._temporal_avg( "ts", "climatology", "month", weighted=False ) expected = self.ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "month", "weighted": "False", "center_times": "False", }, ) assert result.identical(expected) def test_weighted_daily_climatology(self): result = self.ds.temporal._temporal_avg( "ts", "climatology", "day", weighted=True ) expected = self.ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 16), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 16), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "day", "weighted": "True", "center_times": "False", }, ) assert result.identical(expected) def test_unweighted_daily_climatology(self): result = self.ds.temporal._temporal_avg( "ts", "climatology", "day", weighted=False ) expected = self.ds.copy() expected = expected.drop_dims("time") expected_time = xr.DataArray( data=np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 16), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), ], ), coords={ "time": np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 16), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), ], ), }, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) expected["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"lat": self.ds.lat, "lon": self.ds.lon, "time": expected_time}, dims=["time", "lat", "lon"], attrs={ "operation": "temporal_avg", "mode": "climatology", "freq": "day", "weighted": "False", "center_times": "False", }, ) assert result.identical(expected) class TestSetObjAttrs: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_raises_error_if_operation_is_not_supported(self): with pytest.raises(ValueError): self.ds.temporal._set_obj_attrs( "unsupported", freq="season", weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) def test_raises_error_if_freq_arg_is_not_supported_by_operation(self): ds = self.ds.copy() with pytest.raises(ValueError): ds.temporal._set_obj_attrs( "time_series", freq="unsupported", weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) with pytest.raises(ValueError): ds.temporal._set_obj_attrs( "climatology", freq="unsupported", weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) with pytest.raises(ValueError): ds.temporal._set_obj_attrs( "departures", freq="unsupported", weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) def test_does_not_raise_error_if_freq_arg_is_supported_by_operation(self): ds = self.ds.copy() climatology_freqs = ["season", "month", "day"] departure_freqs = ["season", "month", "day"] time_series_freqs = ["year", "season", "month", "day", "hour"] for freq in time_series_freqs: ds.temporal._set_obj_attrs( "time_series", freq=freq, weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) for freq in climatology_freqs: ds.temporal._set_obj_attrs( "climatology", freq=freq, weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) for freq in departure_freqs: ds.temporal._set_obj_attrs( "departures", freq=freq, weighted=True, center_times=True, season_config={ "dec_mode": "DJF", "drop_incomplete_djf": False, "custom_seasons": None, }, ) def test_raises_error_if_season_config_key_is_not_supported(self): with pytest.raises(KeyError): self.ds.temporal._set_obj_attrs( "climatology", freq="season", weighted=True, center_times=True, season_config={ "not_supported": "invalid", }, ) def test_raises_error_if_december_mode_is_not_supported(self): with pytest.raises(ValueError): self.ds.temporal._set_obj_attrs( "climatology", freq="season", weighted=True, center_times=True, season_config={ "dec_mode": "unsupported", "drop_incomplete_djf": False, "custom_seasons": None, }, ) def test_sets_object_attributes(self): ds = self.ds.copy() ds.temporal._set_obj_attrs( "climatology", freq="season", weighted=True, center_times=True, season_config={"dec_mode": "JFD"}, ) assert ds.temporal._mode == "climatology" assert ds.temporal._freq == "season" assert ds.temporal._center_times assert ds.temporal._weighted assert ds.temporal._season_config == {"dec_mode": "JFD"} ds.temporal._set_obj_attrs( "climatology", freq="season", weighted=True, center_times=True, season_config={ "custom_seasons": [ ["Jan", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ], }, ) assert ds.temporal._season_config == { "custom_seasons": { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJun": ["Apr", "May", "Jun"], "JulAugSep": ["Jul", "Aug", "Sep"], "OctNovDec": ["Oct", "Nov", "Dec"], } } class TestCustomSeasons: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) self.expected = [ "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec", ] def test_raises_error_if_month_str_not_supported(self): # Incorrect str "J". with pytest.raises(ValueError): self.ds.temporal._form_seasons( custom_seasons=[ ["J", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] ) # Incorrect str "January". with pytest.raises(ValueError): self.ds.temporal._form_seasons( custom_seasons=[ ["January", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] ) def test_raises_error_if_missing_months(self): with pytest.raises(ValueError): # "Jan" is missing. self.ds.temporal._form_seasons( custom_seasons=[ ["Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] ) def test_raises_error_if_duplicate_months_were_found(self): with pytest.raises(ValueError): # "Jan" is duplicated. self.ds.temporal._form_seasons( custom_seasons=[ ["Jan", "Jan", "Feb"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] ) def test_does_not_raise_error(self): result = self.ds.temporal._form_seasons( custom_seasons=[ ["Jan", "Feb", "Mar"], ["Apr", "May", "Jun"], ["Jul", "Aug", "Sep"], ["Oct", "Nov", "Dec"], ] ) expected = { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJun": ["Apr", "May", "Jun"], "JulAugSep": ["Jul", "Aug", "Sep"], "OctNovDec": ["Oct", "Nov", "Dec"], } assert result == expected result = self.ds.temporal._form_seasons( custom_seasons=[ ["Jan", "Feb", "Mar", "Apr", "May", "Jun"], ["Jul", "Aug", "Sep", "Oct", "Nov", "Dec"], ] ) expected = { "JanFebMarAprMayJun": ["Jan", "Feb", "Mar", "Apr", "May", "Jun"], "JulAugSepOctNovDec": ["Jul", "Aug", "Sep", "Oct", "Nov", "Dec"], } assert result == expected result = self.ds.temporal._form_seasons( custom_seasons=[ ["Jan", "Feb", "Mar"], ["Apr", "May", "Jun", "Jul"], ["Aug", "Sep", "Oct", "Nov", "Dec"], ] ) expected = { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJunJul": ["Apr", "May", "Jun", "Jul"], "AugSepOctNovDec": ["Aug", "Sep", "Oct", "Nov", "Dec"], } assert result == expected class TestAverager: # FIXME: Update test this so that it is accurate, rather than 1's # for averages # May involve subsetting @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) self.ds.attrs.update({"operation_type": "climatology"}) def test_weighted_by_month_day(self): ds = self.ds.copy() # Set object attrs required to test the method ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "day" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._time_grouped = xr.DataArray( name="month_day", data=np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 6), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 12, 16), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. ts_result = ds.temporal._averager(ds["ts"]) ts_expected = np.ones((12, 4, 4)) assert np.allclose(ts_result, ts_expected) def test_unweighted_daily_climatology(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "day" ds.temporal._weighted = False ds.temporal._center_times = True ds.temporal._time_grouped = xr.DataArray( name="month_day", data=np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 6), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 12, 16), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. ts_result = ds.temporal._averager(ds["ts"]) ts_expected = np.ones((12, 4, 4)) assert np.allclose(ts_result, ts_expected) def test_weighted_annual_climatology(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "month" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._time_grouped = xr.DataArray( name="month", data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 12, 1), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. # Check non-bounds variables were properly grouped and averaged ts_result = ds.temporal._averager(ds["ts"]) ts_expected = np.ones((12, 4, 4)) assert np.allclose(ts_result, ts_expected) def test_weighted_seasonal_climatology_with_DJF_and_drop_incomplete_DJF(self): ds = self.ds.copy() # Drop the incomplete seasons ds = ds.isel(time=slice(2, -1)) # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._season_config = { "dec_mode": "DJF", "drop_incomplete_djf": True, } ds.temporal._time_grouped = xr.DataArray( name="season", data=np.array( [ # MAM cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), # JJA cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), # SON cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), # DJF cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. # Check non-bounds variables were properly grouped and averaged ts_result = ds.temporal._averager(ds["ts"]) ts_expected = np.ones((4, 4, 4)) assert np.allclose(ts_result, ts_expected) def test_weighted_seasonal_climatology_with_JFD(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._season_config = {"dec_mode": "JFD"} ds.temporal._time_grouped = xr.DataArray( name="season", data=np.array( [ # JFD cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), # MAM cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), # JJA cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), # SON cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), # JFD cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. ts_result = ds.temporal._averager(ds["ts"]) ts_expected = np.ones((4, 4, 4)) assert np.allclose(ts_result, ts_expected) class TestDropIncompleteDJF: @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) def test_incomplete_DJF_seasons_are_dropped(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() # Define method inputs. ds["ts"] = xr.DataArray( data=np.ones(5), coords={ "time": [ datetime(2000, 1, 1), datetime(2000, 2, 1), datetime(2000, 3, 1), datetime(2000, 4, 1), datetime(2001, 12, 1), ] }, dims=["time"], ) # Compare result of the method against the expected. result = ds.temporal._drop_incomplete_djf(ds) expected = ds.copy() # Drop the incomplete DJF seasons expected = expected.isel(time=slice(2, -1)) expected["ts"] = xr.DataArray( data=np.ones(2), coords={"time": [datetime(2000, 3, 1), datetime(2000, 4, 1)]}, dims=["time"], ) assert result.identical(expected) def test_does_not_drop_incomplete_DJF_seasons_since_if_dont_exist(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() # Update time coordinate points so that the months don't fall in # incomplete seasons. ds.time.values[0] = datetime(1999, 3, 1) ds.time.values[1] = datetime(1999, 4, 1) ds.time.values[-1] = datetime(1999, 5, 1) # Compare result of the method against the expected. result = ds.temporal._drop_incomplete_djf(ds) expected = ds assert result.identical(expected) class TestGroupTimeCoords: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_groups_time_coords_for_time_series_season_freq(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "time_series" ds.temporal._freq = "season" ds.temporal._season_config = {"dec_mode": "DJF", "drop_incomplete_djf": False} # Compare result of the method against the expected. result = ds.temporal._group_time_coords(ds.ts) expected = xr.DataArray( name="year_month", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) assert result.identical(expected) def test_groups_time_coords_for_climatology_season_freq(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._season_config = {"dec_mode": "DJF", "drop_incomplete_djf": False} # Compare result of the method against the expected. result = ds.temporal._group_time_coords(ds.ts) expected = xr.DataArray( name="month", data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) assert result.identical(expected) class TestProcessSeasonDataFrame: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) self.df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "MAM", 3), (2000, "MAM", 4), (2000, "MAM", 5), (2000, "JJA", 6), (2000, "JJA", 7), (2000, "JJA", 8), (2000, "SON", 9), (2000, "SON", 10), (2000, "SON", 11), (2000, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) def test_maps_custom_seasons_if_custom_seasons_specified_and_drops_columns(self): ds = self.ds.copy() df = self.df.copy() # Set object attrs required to test the method. ds.temporal._mode = "time_series" ds.temporal._season_config = { "custom_seasons": { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJun": ["Apr", "May", "Jun"], "JulAugSep": ["Jul", "Aug", "Sep"], "OctNovDec": ["Oct", "Nov", "Dec"], } } # Compare result of the method against the expected. result = ds.temporal._process_season_dataframe(df) expected = pd.DataFrame( data=np.array( [ (2000, 2), (2000, 2), (2000, 2), (2000, 5), (2000, 5), (2000, 5), (2000, 8), (2000, 8), (2000, 8), (2000, 11), (2000, 11), (2000, 11), ], dtype=object, ), columns=["year", "month"], ) expected["month"] = expected.month.astype("int64") assert result.equals(expected) def test_shifts_decembers_for_DJF_if_DJF_is_specified(self): ds = self.ds.copy() df = self.df.copy() # Set object attrs required to test the method. ds.temporal._mode = "climatology" ds.temporal._season_config = { "dec_mode": "DJF", "drop_incomplete_djf": True, } # Compare result of the method against the expected. result = ds.temporal._process_season_dataframe(df) expected = pd.DataFrame( data=np.array( [1, 1, 4, 4, 4, 7, 7, 7, 10, 10, 10, 1], dtype="int64", ), columns=["month"], ) assert result.equals(expected) class TestConvertDFtoDT: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_converts_dataframe_to_datetime_for_seasonal_time_series(self): ds = self.ds.copy() df = pd.DataFrame( data=[(2000, 1), (2000, 4), (2000, 7)], columns=["year", "month"], ) ds.temporal._mode = "time_series" result = ds.temporal._convert_df_to_dt(df) expected = np.array( [ "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", ], dtype="datetime64[ns]", ) assert np.array_equal(result, expected) def test_converts_dataframe_to_datetime_for_seasonal_climatology(self): ds = self.ds.copy() df = pd.DataFrame(data=[1, 4, 7], columns=["month"]) ds.temporal._mode = "climatology" result = ds.temporal._convert_df_to_dt(df) expected = np.array( [ cftime.datetime(1, 1, 1, 0), cftime.datetime(1, 4, 1, 0), cftime.datetime(1, 7, 1, 0), ] ) assert np.array_equal(result, expected) def test_converts_dataframe_to_datetime_for_seasonal_departures(self): ds = self.ds.copy() df = pd.DataFrame(data=[1, 4, 7], columns=["month"]) ds.temporal._mode = "departures" result = ds.temporal._convert_df_to_dt(df) expected = np.array( [ cftime.datetime(1, 1, 1, 0), cftime.datetime(1, 4, 1, 0), cftime.datetime(1, 7, 1, 0), ] ) assert np.array_equal(result, expected) class TestMapMonthsToCustomSeasons: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_raises_error_if_custom_seasons_are_not_mapped(self): ds = self.ds.copy() ds.temporal._season_config = {"custom_seasons": None} df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "MAM", 3), (2000, "MAM", 4), (2000, "MAM", 5), (2000, "JJA", 6), (2000, "JJA", 7), (2000, "JJA", 8), (2000, "SON", 9), (2000, "SON", 10), (2000, "SON", 11), (2000, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) with pytest.raises(ValueError): ds.temporal._map_months_to_custom_seasons(df) def test_maps_three_month_custom_seasons(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._season_config = { "custom_seasons": [ "JanFebMar", "AprMayJun", "JulAugSep", "OctNovDec", ] } # Define method inputs. # Includes default seasons. df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "MAM", 3), (2000, "MAM", 4), (2000, "MAM", 5), (2000, "JJA", 6), (2000, "JJA", 7), (2000, "JJA", 8), (2000, "SON", 9), (2000, "SON", 10), (2000, "SON", 11), (2000, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) # Compare result of the method against the expected. result = ds.temporal._map_months_to_custom_seasons(df) expected = pd.DataFrame( data=np.array( [ (2000, "JanFebMar", 1), (2000, "JanFebMar", 2), (2000, "JanFebMar", 3), (2000, "AprMayJun", 4), (2000, "AprMayJun", 5), (2000, "AprMayJun", 6), (2000, "JulAugSep", 7), (2000, "JulAugSep", 8), (2000, "JulAugSep", 9), (2000, "OctNovDec", 10), (2000, "OctNovDec", 11), (2000, "OctNovDec", 12), ], dtype=object, ), columns=["year", "season", "month"], ) assert result.equals(expected) def test_maps_six_month_custom_seasons(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._season_config = { "custom_seasons": [ "JanFebMarAprMayJun", "JulAugSepOctNovDec", ] } # Define method inputs. # Includes default seasons. df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "MAM", 3), (2000, "MAM", 4), (2000, "MAM", 5), (2000, "JJA", 6), (2000, "JJA", 7), (2000, "JJA", 8), (2000, "SON", 9), (2000, "SON", 10), (2000, "SON", 11), (2000, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) # Compare result of the method against the expected. result = ds.temporal._map_months_to_custom_seasons(df) expected = pd.DataFrame( data=np.array( [ (2000, "JanFebMarAprMayJun", 1), (2000, "JanFebMarAprMayJun", 2), (2000, "JanFebMarAprMayJun", 3), (2000, "JanFebMarAprMayJun", 4), (2000, "JanFebMarAprMayJun", 5), (2000, "JanFebMarAprMayJun", 6), (2000, "JulAugSepOctNovDec", 7), (2000, "JulAugSepOctNovDec", 8), (2000, "JulAugSepOctNovDec", 9), (2000, "JulAugSepOctNovDec", 10), (2000, "JulAugSepOctNovDec", 11), (2000, "JulAugSepOctNovDec", 12), ], dtype=object, ), columns=["year", "season", "month"], ) assert result.equals(expected) def test_maps_three_month_custom_seasons_random_order(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._season_config = { "custom_seasons": [ # Swapped Jan and Dec "DecFebMar", "AprMayJun", "JulAugSep", "OctNovJan", ] } # Define method inputs. # Includes default seasons. df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "MAM", 3), (2000, "MAM", 4), (2000, "MAM", 5), (2000, "JJA", 6), (2000, "JJA", 7), (2000, "JJA", 8), (2000, "SON", 9), (2000, "SON", 10), (2000, "SON", 11), (2000, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) # Compare result of the method against the expected. result = ds.temporal._map_months_to_custom_seasons(df) expected = pd.DataFrame( data=np.array( [ (2000, "OctNovJan", 1), (2000, "DecFebMar", 2), (2000, "DecFebMar", 3), (2000, "AprMayJun", 4), (2000, "AprMayJun", 5), (2000, "AprMayJun", 6), (2000, "JulAugSep", 7), (2000, "JulAugSep", 8), (2000, "JulAugSep", 9), (2000, "OctNovJan", 10), (2000, "OctNovJan", 11), (2000, "DecFebMar", 12), ], dtype=object, ), columns=["year", "season", "month"], ) assert result.equals(expected) class TestMapSeasonstoMidMonths: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_maps_predefined_seasons_to_middle_months(self): ds = self.ds.copy() ds.temporal._season_config = {"custom_seasons": None} df = pd.DataFrame({"season": ["DJF", "MAM", "JJA", "SON"]}) result = ds.temporal._map_seasons_to_mid_months(df) expected = pd.DataFrame({"month": [1, 4, 7, 10]}) assert result.equals(expected) def test_maps_custom_seasons_with_odd_months_to_middle_months(self): ds = self.ds.copy() ds.temporal._season_config = { "custom_seasons": { "FebMarApr": ["Feb", "Mar", "Apr"], "MayJunJul": ["May", "Jun", "Jul"], "AugSepOct": ["Aug", "Sep", "Oct"], "NovDecJan": ["Nov", "Dec", "Jan"], } } df = pd.DataFrame( {"season": ["FebMarApr", "MayJunJul", "AugSepOct", "NovDecJan"]} ) result = ds.temporal._map_seasons_to_mid_months(df) expected = pd.DataFrame({"month": [3, 6, 9, 12]}) assert result.equals(expected) def test_maps_custom_seasons_with_even_months_to_middle_months(self): ds = self.ds.copy() ds.temporal._season_config = { "custom_seasons": { "FebMarAprMay": ["Feb", "Mar", "Apr", "May"], "JunJulAugSep": ["Jun", "Jul", "Aug", "Sep"], "OctNovDecJan": ["Oct", "Nov", "Dec", "Jan"], } } df = pd.DataFrame({"season": ["FebMarAprMay", "JunJulAugSep", "OctNovDecJan"]}) result = ds.temporal._map_seasons_to_mid_months(df) expected = pd.DataFrame({"month": [4, 8, 12]}) assert result.equals(expected) class TestShiftDecembers: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_decembers_shift_for_all_years(self): ds = self.ds.copy() # Define method inputs. df = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2000, "DJF", 12), (2001, "DJF", 1), (2001, "DJF", 2), (2001, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) # Compare result of the method against the expected. result = ds.temporal._shift_decembers(df) expected = pd.DataFrame( data=np.array( [ (2000, "DJF", 1), (2000, "DJF", 2), (2001, "DJF", 12), (2001, "DJF", 1), (2001, "DJF", 2), (2002, "DJF", 12), ], dtype=object, ), columns=["year", "season", "month"], ) assert result.equals(expected) class TestDropObsoleteColumns: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_drops_month_col_for_time_series_operations(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "time_series" # Define method inputs. df = pd.DataFrame(columns=["year", "season", "month"]) # Compare result of the method against the expected. result = ds.temporal._drop_obsolete_columns(df) expected = pd.DataFrame(columns=["year", "season"]) assert result.equals(expected) def test_drops_year_and_month_cols_for_climatology_and_departure_operations(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "climatology" # Define method inputs. df = pd.DataFrame(columns=["year", "season", "month"]) # Compare result of the method against the expected. result = ds.temporal._drop_obsolete_columns(df) expected = pd.DataFrame(columns=["season"]) assert result.equals(expected) def test_raises_error_with_unsupported_operation(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "unsupported_operation" df = pd.DataFrame(columns=["year", "season", "month"]) with pytest.raises(ValueError): ds.temporal._drop_obsolete_columns(df) class TestCalculateWeights: class TestClimatology: @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) def test_weights_for_seasonal_climatology_with_DJF(self): ds = self.ds.copy() # Replace time and time bounds with incomplete seasons removed ds = ds.drop_dims("time") ds.coords["time"] = xr.DataArray( data=np.array( [ "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", ], dtype="datetime64[ns]", ), dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", }, ) ds["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"time": ds.time, "lat": ds.lat, "lon": ds.lon}, dims=["time", "lat", "lon"], ) ds["time_bnds"] = xr.DataArray( name="time_bnds", data=np.array( [ [ "2000-03-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", ], [ "2000-04-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", ], [ "2000-05-01T00:00:00.000000000", "2000-06-01T00:00:00.000000000", ], [ "2000-06-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", ], [ "2000-07-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", ], [ "2000-08-01T00:00:00.000000000", "2000-09-01T00:00:00.000000000", ], [ "2000-09-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", ], [ "2000-10-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", ], [ "2000-11-01T00:00:00.000000000", "2000-12-01T00:00:00.000000000", ], [ "2000-12-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], [ "2001-01-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", ], [ "2001-02-01T00:00:00.000000000", "2001-03-01T00:00:00.000000000", ], ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time", "bnds"], attrs={ "is_generated": "True", }, ) # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "DJF"} ds.temporal._time_grouped = xr.DataArray( name="season", data=np.array( [ cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(ds["ts"]) expected = np.array( [ 0.33695652, 0.32608696, 0.33695652, 0.32608696, 0.33695652, 0.33695652, 0.32967033, 0.34065934, 0.32967033, 0.34444444, 0.34444444, 0.31111111, ] ) assert np.allclose(result, expected, equal_nan=True) def test_weights_for_seasonal_climatology_with_JFD(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "JDF"} ds.temporal._time_grouped = xr.DataArray( name="season", data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(ds["ts"]) expected = np.array( [ [ 0.17127072, 0.16022099, 0.33695652, 0.32608696, 0.33695652, 0.32608696, 0.33695652, 0.33695652, 0.32967033, 0.34065934, 0.32967033, 0.17127072, 0.17127072, 0.15469613, 0.17127072, ] ] ) assert np.allclose(result, expected, equal_nan=True) def test_weights_for_annual_climatology(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "month" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "DJF"} ds.temporal._time_grouped = xr.DataArray( name="month", data=np.array( [ cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 4, 1), cftime.datetime(1, 5, 1), cftime.datetime(1, 6, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 8, 1), cftime.datetime(1, 9, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 11, 1), cftime.datetime(1, 12, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 2, 1), cftime.datetime(1, 12, 1), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.array( [ [ 0.5, 0.50877193, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.49122807, 0.5, ] ] ) assert np.allclose(result, expected) def test_weights_for_daily_climatology(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "climatology" ds.temporal._freq = "day" ds.temporal._weighted = "True" ds.temporal._season_config = { "dec_mode": "DJF", "drop_incomplete_djf": True, } ds.temporal._time_grouped = xr.DataArray( name="month_day", data=np.array( [ cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 3, 16), cftime.datetime(1, 4, 16), cftime.datetime(1, 5, 6), cftime.datetime(1, 6, 16), cftime.datetime(1, 7, 16), cftime.datetime(1, 8, 16), cftime.datetime(1, 9, 16), cftime.datetime(1, 10, 16), cftime.datetime(1, 11, 16), cftime.datetime(1, 12, 16), cftime.datetime(1, 1, 16), cftime.datetime(1, 2, 15), cftime.datetime(1, 12, 16), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.array( [ 0.5, 0.50877193, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 0.49122807, 0.5, ] ) assert np.allclose(result, expected) class TestTimeSeries: @pytest.fixture(autouse=True) def setup(self): self.ds: xr.Dataset = generate_dataset(cf_compliant=True, has_bounds=True) def test_weights_for_yearly_averages(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "year" ds.temporal._weighted = "True" ds.temporal._time_grouped = xr.DataArray( name="year", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.array( [ 0.08469945, 0.07923497, 0.08469945, 0.08196721, 0.08469945, 0.08196721, 0.08469945, 0.08469945, 0.08196721, 0.08469945, 0.08196721, 0.08469945, 0.34444444, 0.31111111, 0.34444444, ] ) assert np.allclose(result, expected) def test_weights_for_monthly_averages(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "month" ds.temporal._weighted = "True" ds.temporal._time_grouped = xr.DataArray( name="year_month", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-02-01T00:00:00.000000000", "2000-03-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-06-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-09-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2000-12-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "20012-12-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.ones(15) assert np.allclose(result, expected) def test_weights_for_seasonal_averages_with_DJF_and_drop_incomplete_seasons( self, ): ds = self.ds.copy() # Replace time and time bounds with incomplete seasons removed ds = ds.drop_dims("time") ds.coords["time"] = xr.DataArray( data=np.array( [ "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", ], dtype="datetime64[ns]", ), dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", }, ) ds["ts"] = xr.DataArray( name="ts", data=np.ones((12, 4, 4)), coords={"time": ds.time, "lat": ds.lat, "lon": ds.lon}, dims=["time", "lat", "lon"], ) ds["time_bnds"] = xr.DataArray( name="time_bnds", data=np.array( [ [ "2000-03-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", ], [ "2000-04-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", ], [ "2000-05-01T00:00:00.000000000", "2000-06-01T00:00:00.000000000", ], [ "2000-06-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", ], [ "2000-07-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", ], [ "2000-08-01T00:00:00.000000000", "2000-09-01T00:00:00.000000000", ], [ "2000-09-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", ], [ "2000-10-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", ], [ "2000-11-01T00:00:00.000000000", "2000-12-01T00:00:00.000000000", ], [ "2000-12-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], [ "2001-01-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", ], [ "2001-02-01T00:00:00.000000000", "2001-03-01T00:00:00.000000000", ], ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time", "bnds"], attrs={ "is_generated": "True", }, ) # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "season" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "DJF"} ds.temporal._time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(ds["ts"]) expected = np.array( [ 0.33695652, 0.32608696, 0.33695652, 0.32608696, 0.33695652, 0.33695652, 0.32967033, 0.34065934, 0.32967033, 0.34444444, 0.34444444, 0.31111111, ] ) assert np.allclose(result, expected, equal_nan=True) def test_weights_for_seasonal_averages_with_JFD(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "season" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "JDF"} ds.temporal._time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", # This month is included in the JFD season "2000-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.array( [ 0.34065934, 0.31868132, 0.33695652, 0.32608696, 0.33695652, 0.32608696, 0.33695652, 0.33695652, 0.32967033, 0.34065934, 0.32967033, 0.34065934, 0.52542373, 0.47457627, 1.0, ] ) assert np.allclose(result, expected) def test_custom_season_time_series_weights(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "season" ds.temporal._weighted = "True" ds.temporal._season_config = { "custom_seasons": { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJun": ["Apr", "May", "Jun"], "JulAugSep": ["Jul", "Aug", "Sep"], "OctNovDec": ["Oct", "Nov", "Dec"], } } ds.temporal._time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-02-01T00:00:00.000000000", "2000-02-01T00:00:00.000000000", "2000-02-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-05-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-08-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2000-11-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2001-02-01T00:00:00.000000000", "2002-02-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.array( [ 0.34065934, 0.31868132, 0.34065934, 0.32967033, 0.34065934, 0.32967033, 0.33695652, 0.33695652, 0.32608696, 0.33695652, 0.32608696, 0.33695652, 0.52542373, 0.47457627, 1.0, ] ) assert np.allclose(result, expected) def test_weights_for_daily_averages(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "daily" ds.temporal._weighted = "True" ds.temporal._time_grouped = xr.DataArray( name="year_month_day", data=np.array( [ "2000-01-16T00:00:00.000000000", "2000-02-15T00:00:00.000000000", "2000-03-16T00:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T00:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T00:00:00.000000000", "2000-08-16T00:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T00:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T00:00:00.000000000", "2001-01-16T00:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.ones(15) assert np.allclose(result, expected) def test_weights_for_hourly_averages(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._time_bounds = ds.time_bnds.copy() ds.temporal._mode = "time_series" ds.temporal._freq = "hour" ds.temporal._weighted = "True" ds.temporal.season_config = {"dec_mode": "JDF"} ds.temporal._time_grouped = xr.DataArray( name="year_month_day_hour", data=np.array( [ "2000-01-16T12:00:00.000000000", "2000-02-15T12:00:00.000000000", "2000-03-16T12:00:00.000000000", "2000-04-16T00:00:00.000000000", "2000-05-16T12:00:00.000000000", "2000-06-16T00:00:00.000000000", "2000-07-16T12:00:00.000000000", "2000-08-16T12:00:00.000000000", "2000-09-16T00:00:00.000000000", "2000-10-16T12:00:00.000000000", "2000-11-16T00:00:00.000000000", "2000-12-16T12:00:00.000000000", "2001-01-16T12:00:00.000000000", "2001-02-15T00:00:00.000000000", "2001-12-16T12:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._get_weights(self.ds["ts"]) expected = np.ones(15) assert np.allclose(result, expected) class TestGroupByFreq: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_groups_data_var_for_seasonal_averaging_with_JFD(self): ds = self.ds.copy() # Set object attrs required to test the method. time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) ds.temporal._time_grouped = time_grouped ts = ds.ts.copy() expected = ts.copy() expected.coords["year_season"] = time_grouped expected = expected.groupby("year_season") result = ds.temporal._groupby_freq(ts) assert result.groups == expected.groups def test_groups_data_var_for_seasonal_climatology_with_DJF(self): ds = self.ds.copy() # Set object attrs required to test the method. time_grouped = xr.DataArray( name="season", data=np.array( [ # JFD cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), # MAM cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), cftime.datetime(1, 3, 1), # JJA cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), cftime.datetime(1, 7, 1), # SON cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), cftime.datetime(1, 10, 1), # JFD cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), cftime.datetime(1, 1, 1), ], ), coords={"time": ds.time}, attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) ds.temporal._time_grouped = time_grouped ts = ds.ts.copy() expected = ts.copy() expected.coords["season"] = time_grouped expected = expected.groupby("season") result = ds.temporal._groupby_freq(ts) assert result.groups == expected.groups class TestAddOperationAttributes: @pytest.fixture(autouse=True) def setup(self): self.ds = generate_dataset(cf_compliant=True, has_bounds=True) def test_adds_attrs_to_data_var_with_DJF(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._season_config = { "dec_mode": "DJF", "drop_incomplete_djf": "True", } ds.temporal._time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._add_operation_attrs(ds.ts) expected = ds.ts.copy() expected.attrs.update( { "operation": "temporal_avg", "mode": ds.temporal._mode, "freq": ds.temporal._freq, "weighted": "True", "center_times": "True", "dec_mode": "DJF", "drop_incomplete_djf": "True", } ) assert result.identical(expected) def test_adds_attrs_to_data_var_with_custom_seasons(self): ds = self.ds.copy() # Set object attrs required to test the method. ds.temporal._mode = "climatology" ds.temporal._freq = "season" ds.temporal._weighted = True ds.temporal._center_times = True ds.temporal._season_config = { "custom_seasons": { "JanFebMar": ["Jan", "Feb", "Mar"], "AprMayJun": ["Apr", "May", "Jun"], "JulAugSep": ["Jul", "Aug", "Sep"], "OctNovDec": ["Oct", "Nov", "Dec"], } } ds.temporal._time_grouped = xr.DataArray( name="year_season", data=np.array( [ "2000-01-01T00:00:00.000000000", "2000-01-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-04-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-07-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2000-10-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2001-01-01T00:00:00.000000000", "2002-01-01T00:00:00.000000000", ], dtype="datetime64[ns]", ), coords={"time": ds.time}, dims=["time"], attrs={ "axis": "T", "long_name": "time", "standard_name": "time", "bounds": "time_bnds", }, ) # Compare result of the method against the expected. result = ds.temporal._add_operation_attrs(ds.ts) expected = ds.ts.copy() expected.attrs.update( { "operation": "temporal_avg", "mode": ds.temporal._mode, "freq": ds.temporal._freq, "weighted": "True", "center_times": "True", "custom_seasons": ["JanFebMar", "AprMayJun", "JulAugSep", "OctNovDec"], } ) assert result.identical(expected)
36.748624
87
0.40835
79440ce7082c50c78c2002448ef125c872d6cce1
21,770
py
Python
parser/fase2/team03/parse/expressions/expressions_base.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team03/parse/expressions/expressions_base.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
null
null
null
parser/fase2/team03/parse/expressions/expressions_base.py
webdev188/tytus
847071edb17b218f51bb969d335a8ec093d13f94
[ "MIT" ]
4
2020-12-19T17:12:13.000Z
2021-01-07T20:29:53.000Z
from .expression_enum import OpArithmetic, OpRelational, OpLogic, OpPredicate from datetime import date, datetime from parse.errors import Error, ErrorType from parse.ast_node import ASTNode import hashlib from TAC.quadruple import Quadruple from TAC.tac_enum import * from parse.symbol_table import generate_tmp class Numeric(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return self.val def generate(self, table, tree): super().generate(table, tree) return str(self.val) class NumericPositive(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) self.val = self.val.execute(table, tree) print(type(self.val)) if type(self.val) == int or type(self.val) == float: return self.val * 1 else: raise Error(self.line, self.column, ErrorType.SEMANTIC, 'TypeError: must be number') def generate(self, table, tree): super().generate(table, tree) return f'+{self.val.generate(table, tree)}' class NumericNegative(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.graph_ref = graph_ref def execute(self, table, tree): self.val = self.val.execute(table, tree) if type(self.val) == int or type(self.val) == float: return self.val * -1 else: raise Error(self.line, self.column, ErrorType.SEMANTIC, 'TypeError: must be number') def generate(self, table, tree): super().generate(table, tree) return f'-{self.val.generate(table, tree)}' class Text(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return self.val def generate(self, table, tree): super().generate(table, tree) return f"'{self.val}'" class BoolAST(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = (str(val).upper() == "TRUE") self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return self.val def generate(self, table, tree): super().generate(table, tree) return 'TRUE' if self.val else 'FALSE' class DateAST(ASTNode): def __init__(self, val, option, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.option = option self.graph_ref = graph_ref try: self.val = datetime.strptime(val, '%Y-%m-%d %H:%M:%S') if self.option == 'YEAR': self.result = self.val.year elif self.option == 'HOUR': self.result = self.val.hour elif self.option == 'MINUTE': self.result = self.val.minute elif self.option == 'SECOND': self.result = self.val.second elif self.option == 'MONTH': self.result = self.val.month elif self.option == 'DAY': self.result = self.val.day except: self.result = None raise Error(self.line, self.column, ErrorType.SEMANTIC, 'it is not a date time format') def execute(self, table, tree): super().execute(table, tree) return self.option + ' ' + str(self.result) def generate(self, table, tree): super().generate(table, tree) return f'EXTRACT ({self.option.generate(table, tree)} {self.val})' class DateAST_2(ASTNode): def __init__(self, option, line, column, graph_ref): ASTNode.__init__(self, line, column) self.option = option self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return str(self.option) def generate(self, table, tree): super().generate(table, tree) return f'{str(self.option)} FROM TIMESTAMP' class ColumnName(ASTNode): def __init__(self, tName, cName, line, column, graph_ref): ASTNode.__init__(self, line, column) self.tName = tName self.cName = cName self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) fullname = '' if self.tName is None or self.tName == "": fullname = self.cName else: fullname = self.tName + "." + self.cName # TODO check if is necesary go to symbol table to get the value or check if the object exists # yes we have to get the value of colname # if this AST have tree == list it means the execute have to search for the value of colunn # in this case table have a row to evaluate where exp and tree has the columns header if isinstance(tree, list): try: index = tree.index(fullname) return table[index] except: raise Error(self.line, self.column, ErrorType.RUNTIME, f'[AST] the name {fullname} is not belong of the selected table(s)') else: return fullname def generate(self, table, tree): super().generate(table, tree) fullname = self.cName if self.tName is not None and self.tName != "": fullname = f'{self.tName}.{fullname}' return fullname class Now(ASTNode): def __init__(self, line, column, graph_ref): ASTNode.__init__(self, line, column) self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return datetime.now() def generate(self, table, tree): super().generate(table, tree) return 'NOW()' class NowDate(ASTNode): def __init__(self, line, column, graph_ref): ASTNode.__init__(self, line, column) self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return str(date.today()) def generate(self, table, tree): super().generate(table, tree) return 'CURRENT_DATE' class NowTime(ASTNode): def __init__(self, line, column, graph_ref): ASTNode.__init__(self, line, column) self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) now = datetime.now() return now.strftime("%H:%M:%S") def generate(self, table, tree): super().generate(table, tree) return 'CURRENT_TIME' class BinaryExpression(ASTNode): # Class that handles every arithmetic expression def __init__(self, exp1, exp2, operator, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp1 = exp1 self.exp2 = exp2 self.operator = operator self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) # TODO: Validate type if self.operator is None: # 'Number' or 'artirmetic function' production for example return self.exp1.execute(table, tree) if self.operator == OpArithmetic.PLUS: return self.exp1.execute(table, tree) + self.exp2.execute(table, tree) if self.operator == OpArithmetic.MINUS: return self.exp1.execute(table, tree) - self.exp2.execute(table, tree) if self.operator == OpArithmetic.TIMES: return self.exp1.execute(table, tree) * self.exp2.execute(table, tree) if self.operator == OpArithmetic.DIVIDE: return self.exp1.execute(table, tree) / self.exp2.execute(table, tree) if self.operator == OpArithmetic.MODULE: return self.exp1.execute(table, tree) % self.exp2.execute(table, tree) if self.operator == OpArithmetic.POWER: return pow(self.exp1, self.exp2) def generate(self, table, tree): super().generate(table, tree) if tree: if self.operator is None: # 'Number' or 'artirmetic function' production for example return self.exp1.generate(table, tree) if self.operator == OpArithmetic.PLUS: return f'{self.exp1.execute(table, tree)} + {self.exp2.execute(table, tree)}' if self.operator == OpArithmetic.MINUS: return f'{self.exp1.execute(table, tree)} - {self.exp2.execute(table, tree)}' if self.operator == OpArithmetic.TIMES: return f'{self.exp1.execute(table, tree)} * {self.exp2.execute(table, tree)}' if self.operator == OpArithmetic.DIVIDE: return f'{self.exp1.execute(table, tree)} / {self.exp2.execute(table, tree)}' if self.operator == OpArithmetic.MODULE: return f'{self.exp1.execute(table, tree)} % {self.exp2.execute(table, tree)}' if self.operator == OpArithmetic.POWER: return f'{self.exp1.execute(table, tree)} ^ {self.exp2.execute(table, tree)}' else:#TAC #Classes who return scalar values NOT expressions: Numeric, Text, BoolAST, ColumnName for ID's, expressions_math.py, expressions_trig.py arg1 = None arg2 = None gen_exp1 = self.exp1.generate(table, tree) if isinstance(gen_exp1,Quadruple): arg1 = gen_exp1.res else: arg1 = gen_exp1 #if isn´t Cuadrupe must be scallar value such as 1,45,'OLC2 100 pts', False #same as arg2 but with ternary operator syntax ;) gen_exp2 = self.exp2.generate(table, tree) arg2 = gen_exp2.res if isinstance(gen_exp2,Quadruple) else gen_exp2 this_tac = Quadruple(self.operator, arg1, arg2, generate_tmp(), OpTAC.ASSIGNMENT) tree.append(this_tac) return this_tac class RelationalExpression(ASTNode): # Class that handles every relational expression def __init__(self, exp1, exp2, operator, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp1 = exp1 self.exp2 = exp2 self.operator = operator self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) if self.operator == OpRelational.GREATER: return self.exp1.execute(table, tree) > self.exp2.execute(table, tree) if self.operator == OpRelational.LESS: return self.exp1.execute(table, tree) < self.exp2.execute(table, tree) if self.operator == OpRelational.EQUALS: return self.exp1.execute(table, tree) == self.exp2.execute(table, tree) if self.operator == OpRelational.NOT_EQUALS: return self.exp1.execute(table, tree) != self.exp2.execute(table, tree) if self.operator == OpRelational.GREATER_EQUALS: return self.exp1.execute(table, tree) >= self.exp2.execute(table, tree) if self.operator == OpRelational.LESS_EQUALS: return self.exp1.execute(table, tree) <= self.exp2.execute(table, tree) if self.operator == OpRelational.LIKE: # TODO add execution to [NOT] LIKE, Regex maybe? return self.exp1.execute(table, tree) == self.exp2.execute(table, tree) if self.operator == OpRelational.NOT_LIKE: return self.exp1.execute(table, tree) != self.exp2.execute(table, tree) def generate(self, table, tree): super().generate(table, tree) if tree is None: if self.operator == OpRelational.GREATER: return f'{self.exp1.generate(table, tree)} > {self.exp2.execute(table, tree)}' if self.operator == OpRelational.LESS: return f'{self.exp1.generate(table, tree)} < {self.exp2.execute(table, tree)}' if self.operator == OpRelational.EQUALS: return f'{self.exp1.generate(table, tree)} = {self.exp2.execute(table, tree)}' if self.operator == OpRelational.NOT_EQUALS: return f'{self.exp1.generate(table, tree)} != {self.exp2.execute(table, tree)}' if self.operator == OpRelational.GREATER_EQUALS: return f'{self.exp1.generate(table, tree)} >= {self.exp2.execute(table, tree)}' if self.operator == OpRelational.LESS_EQUALS: return f'{self.exp1.generate(table, tree)} <= {self.exp2.execute(table, tree)}' if self.operator == OpRelational.LIKE: return f'{self.exp1.generate(table, tree)} LIKE {self.exp2.execute(table, tree)}' if self.operator == OpRelational.NOT_LIKE: return f'{self.exp1.generate(table, tree)} NOT LIKE {self.exp2.execute(table, tree)}' else: arg1 = None arg2 = None gen_exp1 = self.exp1.generate(table, tree) arg1 = gen_exp1.res if isinstance(gen_exp1,Quadruple) else gen_exp1 gen_exp2 = self.exp2.generate(table, tree) arg2 = gen_exp2.res if isinstance(gen_exp2,Quadruple) else gen_exp2 this_tac = Quadruple(self.operator, arg1, arg2, generate_tmp(), OpTAC.ASSIGNMENT) tree.append(this_tac) return this_tac class PredicateExpression(ASTNode): # TODO check operations and call to exceute function # Class that handles every logic expression def __init__(self, exp1, exp2, operator, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp1 = exp1 self.exp2 = exp2 self.operator = operator self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) if self.operator == OpPredicate.NULL: return self.exp1.execute(table, tree) is None if self.operator == OpPredicate.NOT_NULL: return self.exp1.execute(table, tree) is not None if self.operator == OpPredicate.DISTINCT: # Improve logic in order to allow null and 0 to be the same return self.exp1.execute(table, tree) != self.exp2.execute(table, tree) if self.operator == OpPredicate.NOT_DISTINCT: # Improve logic in order to allow null and 0 to be the same return self.exp1.execute(table, tree) == self.exp2.execute(table, tree) if self.operator == OpPredicate.TRUE: return self.exp1.execute(table, tree) is True if self.operator == OpPredicate.NOT_TRUE: return self.exp1.execute(table, tree) is False if self.operator == OpPredicate.FALSE: return self.exp1.execute(table, tree) is False if self.operator == OpPredicate.NOT_FALSE: return self.exp1.execute(table, tree) is True if self.operator == OpPredicate.UNKNOWN: # TODO do actual comparison to Unknown... No ideas right now return False if self.operator == OpPredicate.NOT_UNKNOWN: # Same as previous comment about Unknown return False def generate(self, table, tree): super().generate(table, tree) if tree is None: if self.operator == OpPredicate.NULL: return f'{self.exp1.generate(table, tree)} IS NULL' if self.operator == OpPredicate.NOT_NULL: return f'{self.exp1.generate(table, tree)} IS NOT NULL' if self.operator == OpPredicate.DISTINCT: return f'{self.exp1.generate(table, tree)} IS DISTINCT FROM {self.exp1.generate(table, tree)}' if self.operator == OpPredicate.NOT_DISTINCT: return f'{self.exp1.generate(table, tree)} IS NOT DISTINCT FROM {self.exp1.generate(table, tree)}' if self.operator == OpPredicate.TRUE: return f'{self.exp1.generate(table, tree)} IS TRUE' if self.operator == OpPredicate.NOT_TRUE: return f'{self.exp1.generate(table, tree)} IS NOT TRUE' if self.operator == OpPredicate.FALSE: return f'{self.exp1.generate(table, tree)} IS FALSE' if self.operator == OpPredicate.NOT_FALSE: return f'{self.exp1.generate(table, tree)} IS NOT FALSE' if self.operator == OpPredicate.UNKNOWN: return f'{self.exp1.generate(table, tree)} IS UNKNOWN' if self.operator == OpPredicate.NOT_UNKNOWN: return f'{self.exp1.generate(table, tree)} IS NOT UNKNOWN' else: pass class BoolExpression(ASTNode): def __init__(self, exp1, exp2, operator, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp1 = exp1 self.exp2 = exp2 self.operator = operator self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) exec1 = self.exp1.execute(table, tree) exec2 = self.exp2.execute(table, tree) if isinstance(exec1, bool) and isinstance(exec2, bool): if self.operator == OpLogic.AND: return exec1 and exec2 if self.operator == OpLogic.OR: return exec1 or exec2 else: raise Exception("The result of operation isn't boolean value") def generate(self, table, tree): super().generate(table, tree) exec1 = self.exp1.generate(table, tree) exec2 = self.exp2.generate(table, tree) if tree is None: if self.operator == OpLogic.AND: return f'{exec1} AND {exec2}' if self.operator == OpLogic.OR: return f'{exec1} OR {exec2}' else: arg1 = None arg2 = None arg1 = exec1.res if isinstance(exec1,Quadruple) else exec1 arg2 = exec2.res if isinstance(exec2,Quadruple) else exec2 this_tac = Quadruple(self.operator, arg1, arg2, generate_tmp(), OpTAC.ASSIGNMENT) tree.append(this_tac) return this_tac class Negation(ASTNode): def __init__(self, exp1, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp1 = exp1 self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) exec1 = self.exp1.execute(table, tree) if isinstance(exec1, bool): return not exec1 else: raise Exception("The result of operation isn't boolean value") def generate(self, table, tree): super().generate(table, tree) exec1 = self.exp1.generate(table, tree) if tree is None: if exec1 != 'TRUE' and exec1 != 'FALSE': raise Exception("The result of operation isn't boolean value") return 'TRUE' if exec1 == 'FALSE' else 'FALSE' else: arg1 = exec1.res if isinstance(exec1,Quadruple) else exec1 this_tac = Quadruple(OpLogic.NOT, arg1, None, generate_tmp(), OpTAC.ASSIGNMENT) tree.append(this_tac) return this_tac class Identifier(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val self.graph_ref = graph_ref # Must return lexeme of ID def execute(self, table, tree): super().execute(table, tree) return self.val def executeSTVal(self, table, tree): # TODO: Symbol value from ST :S super().execute(table, tree) return self.val def generate(self, table, tree): super().generate(table, tree) return self.val class TypeDef(ASTNode): def __init__(self, val, min_size, max_size, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val # token name: CHAR, INTEGER,... self.min_size = min_size, self.max_size = max_size, self.graph_ref = graph_ref # Must return lexeme of ID def execute(self, table, tree): super().execute(table, tree) return self.val def minSize(self, table, tree): super().execute(table, tree) return self.min_size def maxSize(self, table, tree): super().execute(table, tree) return self.max_size def generate(self, table, tree): super().generate(table, tree) return self.val class Nullable(ASTNode): def __init__(self, val, line, column, graph_ref): ASTNode.__init__(self, line, column) self.val = val # True: accept null values other wise False self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) return self.val def generate(self, table, tree): super().generate(table, tree) return self.val class MD5_(ASTNode): def __init__(self, exp, line, column, graph_ref): ASTNode.__init__(self, line, column) self.exp = exp self.graph_ref = graph_ref def execute(self, table, tree): super().execute(table, tree) exp = self.exp.execute(table, tree) try: return hashlib.md5(exp.encode('utf-8')).hexdigest() except: raise (Error(self.line, self.column, ErrorType.SEMANTIC, 'MD5 error')) def generate(self, table, tree): super().generate(table, tree) return f'MD5({self.exp.generate(table, tree)})'
39.653916
156
0.609095
79440d65095cdd6b74878b17a2d58b4b076407a5
6,810
py
Python
nevergrad/instrumentation/core.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
nevergrad/instrumentation/core.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
nevergrad/instrumentation/core.py
enthought/nevergrad
2a0f778aa316264e785d0e6305a897679b3b97f7
[ "MIT" ]
null
null
null
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import uuid import copy from typing import Any, Tuple, Optional, Dict, Set, TypeVar import typing as tp import numpy as np from nevergrad.common.typetools import ArrayLike from ..parametrization.utils import Descriptors from ..parametrization import parameter as p # pylint: disable=no-value-for-parameter,too-many-ancestors, too-many-instance-attributes ArgsKwargs = Tuple[Tuple[Any, ...], Dict[str, Any]] T = TypeVar('T', bound="Variable") class VarSpecs: # pylint: disable=too-many-arguments, unused-argument def __init__(self) -> None: self.dimension = -1 self.nargs = 1 self.kwargs_keys: Set[str] = set() self.continuous = True self.noisy = False self.name: Optional[str] = None def update(self, dimension: Optional[int] = None, nargs: Optional[int] = None, kwargs_keys: Optional[Set[str]] = None, continuous: Optional[bool] = None, noisy: Optional[bool] = None, name: Optional[str] = None ) -> None: for key, value in locals().items(): if key != "self" and value is not None: setattr(self, key, value) def _default_checker(*args: Any, **kwargs: Any) -> bool: # pylint: disable=unused-argument return True class Variable(p.Instrumentation): def __init__(self) -> None: super().__init__() self._specs = VarSpecs() # compatibility self._data: tp.Optional[np.ndarray] = None self._value: tp.Optional[ArgsKwargs] = None @property def data(self) -> np.ndarray: if self._data is None: self._data = np.zeros((self.dimension,)) return self._data def _set_random_state(self, random_state: np.random.RandomState) -> None: self._random_state = random_state def _get_name(self) -> str: if self._specs.name is not None: return self._specs.name return repr(self) def with_name(self: T, name: str) -> T: """Sets a name and return the current instrumentation (for chaining) """ return self.set_name(name) def copy(self: T) -> T: # TODO, use deepcopy directly in the code if it works? """Return a new instrumentation with the same variable and same name (but a different random state) """ instru = copy.deepcopy(self) instru._random_state = None return instru @property def dimension(self) -> int: return self._specs.dimension @property def nargs(self) -> int: return self._specs.nargs @property def kwargs_keys(self) -> Set[str]: return self._specs.kwargs_keys @property def continuous(self) -> bool: return self._specs.continuous @property def noisy(self) -> bool: return self._specs.noisy def arguments_to_data(self, *args: Any, **kwargs: Any) -> np.ndarray: """Converts args and kwargs into data in np.ndarray format """ if len(args) != self.nargs: raise TypeError(f"Expected {self.nargs} arguments ({len(args)} given: {args})") if self.kwargs_keys != set(kwargs.keys()): raise TypeError(f"Expected arguments {self.kwargs_keys} ({set(kwargs.keys())} given: {kwargs})") return self._arguments_to_data(*args, **kwargs) def _arguments_to_data(self, *args: Any, **kwargs: Any) -> np.ndarray: raise RuntimeError(f"arguments_to_data is not defined for {self.__class__.__name__}") def data_to_arguments(self, data: ArrayLike, deterministic: bool = False) -> ArgsKwargs: """Converts data to arguments Parameters ---------- data: ArrayLike (list/tuple of floats, np.ndarray) the data in the optimization space deterministic: bool whether the conversion should be deterministic (some variables can be stochastic, if deterministic=True the most likely output will be used) Returns ------- args: Tuple[Any] the positional arguments corresponding to the instance initialization positional arguments kwargs: Dict[str, Any] the keyword arguments corresponding to the instance initialization keyword arguments """ # trigger random_state creation (may require to be propagated to sub-variables assert self.random_state is not None array = np.array(data, copy=False) if array.shape != (self.dimension,): raise ValueError(f"Unexpected shape {array.shape} of {array} for {self} with dimension {self.dimension}") return self._data_to_arguments(array, deterministic) def _data_to_arguments(self, data: np.ndarray, deterministic: bool) -> ArgsKwargs: raise NotImplementedError def get_summary(self, data: ArrayLike) -> str: # pylint: disable=unused-argument output = self.data_to_arguments(np.array(data, copy=False), deterministic=True) return f"Value {output[0][0]}, from data: {data}" # compatibility @property def value(self) -> tp.Any: if self._value is None: self._value = self.data_to_arguments(self.data) return self._value[0][0] @value.setter def value(self, value: tp.Any) -> None: self._value = (value,), {} self._data = self.arguments_to_data(value) @property def args(self) -> tp.Tuple[tp.Any, ...]: return (self.value,) @property def kwargs(self) -> tp.Dict[str, tp.Any]: return {} def _internal_get_standardized_data(self: T, reference: T) -> np.ndarray: # pylint: disable=unused-argument return self.data - reference.data # type: ignore def _internal_set_standardized_data(self: T, data: np.ndarray, reference: T, deterministic: bool = False) -> None: self._data = data + reference.data self._value = self.data_to_arguments(self.data, deterministic=deterministic) def _internal_spawn_child(self: T) -> T: child = copy.deepcopy(self) child._frozen = False child.uid = uuid.uuid4().hex child.parents_uids = [] return child def _compute_descriptors(self) -> Descriptors: return Descriptors(continuous=self.continuous, deterministic=not self.noisy) def mutate(self) -> None: raise p.NotSupportedError("Please port your code to new parametrization") def recombine(self: T, *others: T) -> None: # type: ignore raise p.NotSupportedError("Please port your code to new parametrization")
35.842105
118
0.640822
79440e72a7f66fc79afbb6da8c13ae85e03ef714
1,108
py
Python
examples/html-test/app.py
anokidev/hasta
570f3e35197c3370a0c8f7cc77d81640c8022165
[ "MIT" ]
1
2022-01-01T18:38:57.000Z
2022-01-01T18:38:57.000Z
examples/html-test/app.py
anokidev/hasta
570f3e35197c3370a0c8f7cc77d81640c8022165
[ "MIT" ]
8
2021-12-31T10:21:42.000Z
2022-01-02T16:57:14.000Z
examples/html-test/app.py
anokidev/hasta
570f3e35197c3370a0c8f7cc77d81640c8022165
[ "MIT" ]
null
null
null
''' This file is used for examples only. In this case, a class with 2 functions, __init__ and html_application. When the class is initialized, __init__ is called. Which reads the content inside index.html, which is located inside html folder. The result is stored inside self.response_body . After that, self.response_body is encoded into bytes, which is decoded back to utf-8 when returned. html_application functions as the app function aka the web framework / Python application. ''' from hasta.http.init import Init class Apps: def __init__(self, path): f = open(path) self.response_body_html = f.read() def html_application(self, start_response, environ): response_body = self.response_body_html.encode() status = "200 OK" response_headers = [ ('Content-type', 'text/html') ] start_response(status, response_headers) return response_body.decode("utf-8") apps = Apps('./html/index.html') run = Init() run('0.0.0.0', 8443, app = apps.html_application)
22.16
60
0.665162
79440e73ef82d04f6c616dae71c9771e1cbeedd2
4,392
py
Python
CIFAR10_evaluation/lbp/linear_classifier.py
ncos/hometasks
9504ef7ed8fe30b5bc78ca1e423a2b85e46734a1
[ "MIT" ]
3
2019-02-19T21:21:02.000Z
2020-01-30T19:49:01.000Z
CIFAR10_evaluation/lbp/linear_classifier.py
ncos/hometasks
9504ef7ed8fe30b5bc78ca1e423a2b85e46734a1
[ "MIT" ]
null
null
null
CIFAR10_evaluation/lbp/linear_classifier.py
ncos/hometasks
9504ef7ed8fe30b5bc78ca1e423a2b85e46734a1
[ "MIT" ]
null
null
null
import numpy as np from loss_grad_logistic import * from loss_grad_softmax import * from loss_grad_svm import * class LinearClassifier: def __init__(self): self.W = None # set up the weight matrix def train(self, X, y, method='sgd', batch_size=200, learning_rate=1e-4, reg = 1e3, num_iters=1000, verbose=False, vectorized=True): """ Train linear classifer using batch gradient descent or stochastic gradient descent Parameters ---------- X: (D x N) array of training data, each column is a training sample with D-dimension. y: (N, ) 1-dimension array of target data with length N. method: (string) determine whether using 'bgd' or 'sgd'. batch_size: (integer) number of training examples to use at each step. learning_rate: (float) learning rate for optimization. reg: (float) regularization strength for optimization. num_iters: (integer) number of steps to take when optimization. verbose: (boolean) if True, print out the progress (loss) when optimization. Returns ------- losses_history: (list) of losses at each training iteration """ dim, num_train = X.shape num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes if self.W is None: # initialize the weights with small values if num_classes == 2: # just need weights for one class self.W = np.random.randn(1, dim) * 0.001 else: # weigths for each class self.W = np.random.randn(num_classes, dim) * 0.001 losses_history = [] for i in xrange(num_iters): if method == 'bgd': loss, grad = self.loss_grad(X, y, reg, vectorized) else: # randomly choose a min-batch of samples idxs = np.random.choice(num_train, batch_size, replace=False) loss, grad = self.loss_grad(X[:, idxs], y[idxs], reg, vectorized) # grad => [K x D] losses_history.append(loss) # update weights self.W -= learning_rate * grad # [K x D] # print self.W # print 'dsfad', grad.shape if verbose and (i % 100 == 0): print 'iteration %d/%d: loss %f' % (i, num_iters, loss) return losses_history def predict(self, X): """ Predict value of y using trained weights Parameters ---------- X: (D x N) array of data, each column is a sample with D-dimension. Returns ------- pred_ys: (N, ) 1-dimension array of y for N sampels h_x_mat: Normalized scores """ pred_ys = np.zeros(X.shape[1]) f_x_mat = self.W.dot(X) if self.__class__.__name__ == 'Logistic': pred_ys = f_x_mat.squeeze() >=0 else: # multiclassification pred_ys = np.argmax(f_x_mat, axis=0) # normalized score h_x_mat = 1.0 / (1.0 + np.exp(-f_x_mat)) # [1, N] h_x_mat = h_x_mat.squeeze() return pred_ys, h_x_mat def loss_grad(self, X, y, reg, vectorized=True): """ Compute the loss and gradients. Parameters ---------- The same as self.train() Returns ------- a tuple of two items (loss, grad) loss: (float) grad: (array) with respect to self.W """ pass # Subclasses of linear classifier class Logistic(LinearClassifier): """A subclass for binary classification using logistic function""" def loss_grad(self, X, y, reg, vectorized=True): if vectorized: return loss_grad_logistic_vectorized(self.W, X, y, reg) else: return loss_grad_logistic_naive(self.W, X, y, reg) class Softmax(LinearClassifier): """A subclass for multi-classicication using Softmax function""" def loss_grad(self, X, y, reg, vectorized=True): if vectorized: return loss_grad_softmax_vectorized(self.W, X, y, reg) else: return loss_grad_softmax_naive(self.W, X, y, reg) class SVM(LinearClassifier): """A subclass for multi-classicication using SVM function""" def loss_grad(self, X, y, reg, vectorized=True): return loss_grad_svm_vectorized(self.W, X, y, reg)
34.3125
99
0.589253
79440e877996a9620501cd2f769d437ce9c60c44
5,950
py
Python
nintendo/nex/service.py
Cuyler36/NintendoClients
d38986674ecc4dec624694649361f1f334901020
[ "MIT" ]
null
null
null
nintendo/nex/service.py
Cuyler36/NintendoClients
d38986674ecc4dec624694649361f1f334901020
[ "MIT" ]
null
null
null
nintendo/nex/service.py
Cuyler36/NintendoClients
d38986674ecc4dec624694649361f1f334901020
[ "MIT" ]
null
null
null
from nintendo.common import scheduler from nintendo.nex import prudp, streams, kerberos, common import random import struct import time import logging logger = logging.getLogger(__name__) class RMCClient: def __init__(self, settings, sock=None): self.settings = settings self.sock = sock if not self.sock: self.sock = prudp.RVSecureClient(settings) if not isinstance(self.sock, prudp.RVSecureClient): raise TypeError("RMC protocol must lie on top of RVSecure client") self.servers = {} self.pid = None self.call_id = 0 self.responses = {} self.socket_event = None def register_server(self, server): if server.PROTOCOL_ID in self.servers: raise ValueError("Server with protocol id 0x%X already exists" %server.PROTOCOL_ID) self.servers[server.PROTOCOL_ID] = server def connect(self, host, port, stream_id, ticket=None): if not self.sock.connect(host, port, stream_id, ticket): return False self.socket_event = scheduler.add_socket(self.handle_recv, self.sock) return True def accept(self): if self.sock.server_ticket: self.pid = self.sock.server_ticket.source_pid self.socket_event = scheduler.add_socket(self.handle_recv, self.sock) return True def close(self): if self.socket_event: scheduler.remove(self.socket_event) self.sock.close() def stream_id(self): return self.sock.local_port def is_connected(self): return self.sock.is_connected() def local_address(self): return self.sock.local_address() def remote_address(self): return self.sock.remote_address() def handle_recv(self, data): if not data: logger.debug("Connection was closed") scheduler.remove(self.socket_event) return stream = streams.StreamIn(data, self.settings) length = stream.u32() protocol_id = stream.u8() if protocol_id & 0x80: self.handle_request(protocol_id & 0x7F, stream) else: self.handle_response(protocol_id, stream) def init_request(self, protocol_id, method_id): self.call_id += 1 stream = streams.StreamOut(self.settings) stream.u8(protocol_id | 0x80) stream.u32(self.call_id) stream.u32(method_id) return stream, self.call_id def init_response(self, protocol_id, call_id, method_id, error=None): stream = streams.StreamOut(self.settings) stream.u8(protocol_id) if error: stream.u8(0) stream.result(error) stream.u32(call_id) else: stream.u8(1) stream.u32(call_id) stream.u32(method_id | 0x8000) return stream def send_message(self, stream): if self.sock.is_connected(): self.sock.send(struct.pack("I", len(stream.get())) + stream.get()) else: raise RuntimeError("Can't send message on disconnected service client") def handle_request(self, protocol_id, stream): call_id = stream.u32() method_id = stream.u32() logger.debug("Received RMC request: protocol=%i, call=%i, method=%i", protocol_id, call_id, method_id) if protocol_id in self.servers: response = self.init_response(protocol_id, call_id, method_id) try: result = self.servers[protocol_id].handle(self.pid, method_id, stream, response) except common.RMCError as e: logger.info("RMC failed with error 0x%08X (%s)" %(e.error_code, e.error_name)) result = common.Result(e.error_code) except Exception as e: logger.error("Exception occurred while handling method call") import traceback traceback.print_exc() if isinstance(e, TypeError): result = common.Result("PythonCore::TypeError") elif isinstance(e, IndexError): result = common.Result("PythonCore::IndexError") elif isinstance(e, MemoryError): result = common.Result("PythonCore::MemoryError") elif isinstance(e, KeyError): result = common.Result("PythonCore::KeyError") else: result = common.Result("PythonCore::Exception") else: logger.warning("Received RMC request with unsupported protocol id: 0x%X", protocol_id) result = common.Result("Core::NotImplemented") if result and result.is_error(): response = self.init_response(protocol_id, call_id, method_id, result) self.send_message(response) def handle_response(self, protocol_id, stream): success = stream.u8() if not success: result = stream.result() call_id = stream.u32() logger.warning("RMC failed with error code 0x%08X", result.code()) self.responses[call_id] = (result, None) else: call_id = stream.u32() method_id = stream.u32() & 0x7FFF logger.debug("Received RMC response: protocol=%i, call=%i, method=%i", protocol_id, call_id, method_id) self.responses[call_id] = (None, stream) def get_response(self, call_id, timeout=5): start = time.monotonic() while call_id not in self.responses: if not self.sock.is_connected(): raise ConnectionError("RMC failed because the PRUDP connection was closed") scheduler.update() now = time.monotonic() if now - start >= timeout: raise RuntimeError("RMC request timed out") result, stream = self.responses.pop(call_id) if result: result.raise_if_error() return stream class RMCServer: def __init__(self, settings, server=None): self.settings = settings self.server = server if not self.server: self.server = prudp.RVSecureServer(settings) if not isinstance(self.server, prudp.RVSecureServer): raise TypeError("RMC server must lie on top of RVSecure server") self.protocols = {} def register_protocol(self, protocol): if protocol.PROTOCOL_ID in self.protocols: raise ValueError("Server protocol with id 0x%X already exists" %protocol.PROTOCOL_ID) self.protocols[protocol.PROTOCOL_ID] = protocol def start(self, host, port, stream_id=1, key=None): self.server.start(host, port, stream_id, key) scheduler.add_server(self.handle, self.server) def handle(self, socket): client = RMCClient(self.settings, socket) if client.accept(): for protocol in self.protocols.values(): client.register_server(protocol)
30.670103
106
0.723361
79440f0342f24e95effb95e8b92cefa04f0d2503
4,259
py
Python
test/functional/rpc_net.py
nhoussay/groom
87e69a80c1e15e4683ef64c55ac65547910b1c97
[ "MIT" ]
null
null
null
test/functional/rpc_net.py
nhoussay/groom
87e69a80c1e15e4683ef64c55ac65547910b1c97
[ "MIT" ]
null
null
null
test/functional/rpc_net.py
nhoussay/groom
87e69a80c1e15e4683ef64c55ac65547910b1c97
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test RPC calls related to net. Tests correspond to code in rpc/net.cpp. """ from test_framework.test_framework import groomTestFramework from test_framework.util import ( assert_equal, assert_greater_than_or_equal, assert_raises_rpc_error, connect_nodes, disconnect_nodes, p2p_port, wait_until, ) class NetTest(groomTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 2 def run_test(self): self.log.info("Connect nodes both way") connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[1], 0) self._test_connection_count() self._test_getnettotals() self._test_getnetworkinginfo() self._test_getaddednodeinfo() #self._test_getpeerinfo() def _test_connection_count(self): assert_equal(self.nodes[0].getconnectioncount(), 2) def _test_getnettotals(self): # getnettotals totalbytesrecv and totalbytessent should be # consistent with getpeerinfo. Since the RPC calls are not atomic, # and messages might have been recvd or sent between RPC calls, call # getnettotals before and after and verify that the returned values # from getpeerinfo are bounded by those values. net_totals_before = self.nodes[0].getnettotals() peer_info = self.nodes[0].getpeerinfo() net_totals_after = self.nodes[0].getnettotals() assert_equal(len(peer_info), 2) peers_recv = sum([peer['bytesrecv'] for peer in peer_info]) peers_sent = sum([peer['bytessent'] for peer in peer_info]) assert_greater_than_or_equal(peers_recv, net_totals_before['totalbytesrecv']) assert_greater_than_or_equal(net_totals_after['totalbytesrecv'], peers_recv) assert_greater_than_or_equal(peers_sent, net_totals_before['totalbytessent']) assert_greater_than_or_equal(net_totals_after['totalbytessent'], peers_sent) # test getnettotals and getpeerinfo by doing a ping # the bytes sent/received should change # note ping and pong are 32 bytes each self.nodes[0].ping() wait_until(lambda: (self.nodes[0].getnettotals()['totalbytessent'] >= net_totals_after['totalbytessent'] + 32 * 2), timeout=1) wait_until(lambda: (self.nodes[0].getnettotals()['totalbytesrecv'] >= net_totals_after['totalbytesrecv'] + 32 * 2), timeout=1) peer_info_after_ping = self.nodes[0].getpeerinfo() def _test_getnetworkinginfo(self): assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) disconnect_nodes(self.nodes[0], 1) # Wait a bit for all sockets to close wait_until(lambda: self.nodes[0].getnetworkinfo()['connections'] == 0, timeout=3) self.log.info("Connect nodes both way") connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[1], 0) assert_equal(self.nodes[0].getnetworkinfo()['connections'], 2) def _test_getaddednodeinfo(self): assert_equal(self.nodes[0].getaddednodeinfo(True), []) # add a node (node2) to node0 ip_port = "127.0.0.1:{}".format(p2p_port(2)) self.nodes[0].addnode(ip_port, 'add') # check that the node has indeed been added added_nodes = self.nodes[0].getaddednodeinfo(True, ip_port) assert_equal(len(added_nodes), 1) assert_equal(added_nodes[0]['addednode'], ip_port) # check that a non-existent node returns an error assert_raises_rpc_error(-24, "Node has not been added", self.nodes[0].getaddednodeinfo, True, '1.1.1.1') def _test_getpeerinfo(self): peer_info = [x.getpeerinfo() for x in self.nodes] # check both sides of bidirectional connection between nodes # the address bound to on one side will be the source address for the other node assert_equal(peer_info[0][0]['addrbind'], peer_info[1][0]['addr']) assert_equal(peer_info[1][0]['addrbind'], peer_info[0][0]['addr']) if __name__ == '__main__': NetTest().main()
42.59
134
0.687955
79440fb40a5e2e678b5cd229cb1435717c866b01
8,886
py
Python
src/PlugIns/PE/CertficatePlug.py
codexgigassys/codex-backend
1e6b946f05e2fd9ce80b207046fe168f49cc2db2
[ "MIT" ]
161
2016-08-03T14:25:20.000Z
2021-08-11T03:18:35.000Z
src/PlugIns/PE/CertficatePlug.py
codexgigassys/codex-backend
1e6b946f05e2fd9ce80b207046fe168f49cc2db2
[ "MIT" ]
115
2016-08-08T09:24:08.000Z
2020-03-07T06:48:02.000Z
src/PlugIns/PE/CertficatePlug.py
codexgigassys/codex-backend
1e6b946f05e2fd9ce80b207046fe168f49cc2db2
[ "MIT" ]
46
2016-08-04T08:25:28.000Z
2021-09-05T23:46:55.000Z
# Copyright (C) 2016 Deloitte Argentina. # This file is part of CodexGigas - https://github.com/codexgigassys/ # See the file 'LICENSE' for copying permission. import pathmagic from Sample import Sample from subprocess import check_output import binascii from PlugIns.PlugIn import PlugIn from Modules.PEFileModule import PEFileModule import pefile from pyasn1.codec.der import encoder, decoder from pyasn1_modules import rfc2315 import logging class CertficatePlug(PlugIn): def __init__(self, sample=None): PlugIn.__init__(self, sample) def getPath(self): return "particular_header.certificate" def getName(self): return "certificate" def getVersion(self): return 2 def process(self): raw_certificate_file = "./certPlug.temp" pelib = self._getLibrary(PEFileModule().getName()) if(pelib is None): return "" # reset the offset to the table containing the signature sigoff = 0 # reset the lenght of the table siglen = 0 # search for the 'IMAGE_DIRECTORY_ENTRY_SECURITY' directory # probably there is a direct way to find that directory # but I am not aware of it at the moment found = False for s in pelib.__structures__: if s.name == 'IMAGE_DIRECTORY_ENTRY_SECURITY': # set the offset to the signature table sigoff = s.VirtualAddress # set the length of the table siglen = s.Size # print(siglen) if (siglen >= 8): found = True if not found: return {} bin_data = self.sample.getBinary() totsize = len(bin_data) if sigoff < totsize: # hmmm, okay we could possibly read this from the PE object # but is straightforward to just open the file again # as a file object # f = open(a,'rb') # move to the beginning of signature table # f.seek(sigoff) # read the signature table # thesig = f.read(siglen) thesig = bin_data[sigoff:(sigoff + siglen)] # close the file # f.close() # now the 'thesig' variable should contain the table with # the following structure # DWORD dwLength - this is the length of bCertificate # WORD wRevision # WORD wCertificateType # BYTE bCertificate[dwLength] - this contains the PKCS7 signature # with all the # lets dump only the PKCS7 signature (without checking the lenght # with dwLength) res = {} length_raw = thesig[:4] revision_raw = thesig[4:6] type_raw = thesig[6:8] raw_certificate = thesig[8:] res["length"] = int(binascii.hexlify(length_raw), 16) res["revision"] = int(binascii.hexlify(revision_raw), 16) res["type"] = int(binascii.hexlify(type_raw), 16) res["signed"] = True fd = open(raw_certificate_file, "w") fd.write(raw_certificate) fd.close() cmd = ["openssl", "pkcs7", "-inform", "DER", "-print_certs", "-text", "-in", raw_certificate_file] try: output = check_output(cmd) except Exception, e: logging.exception("Plugins: Cert") return {} # print(output) certificates = [] one_cert = {} iterator = iter(output.split('\n')) while True: try: actual = iterator.next().strip() # print(actual) except Exception, e: break if(actual.find("Certificate:") == 0): if(len(one_cert) > 0): certificates.append(one_cert) one_cert = {} elif(actual.find("Serial Number:") == 0): if(len(actual) > len("Serial Number:") + 2): hasta = actual.find("(") serial = actual[len("Serial Number:"):hasta] serial = serial.strip() else: serial = iterator.next().strip() # print("##%s##"%serial) one_cert["serial"] = serial.lower() elif(actual.find("Issuer:") == 0): s_pos = actual.find(", O=") if(s_pos >= 0): f_pos = actual.find(',', s_pos + 1) if(f_pos < 0): f_pos = None issuer_o = actual[s_pos + 4:f_pos] else: issuer_o = "" one_cert["issuer"] = issuer_o.lower() elif(actual.find("Validity") == 0): val_in = iterator.next().strip() val_fin = iterator.next().strip() one_cert["validity_beg"] = val_in[12:].lower() one_cert["validity_end"] = val_fin[12:].lower() elif(actual.find("Subject:") == 0): s_pos = actual.find(", O=") if(s_pos >= 0): f_pos = actual.find(',', s_pos + 1) if(f_pos < 0): f_pos = None subject_o = actual[s_pos + 4:f_pos] else: subject_o = "" one_cert["subject"] = subject_o.lower() if(len(one_cert) > 0): certificates.append(one_cert) res["certificates"] = certificates return res else: return {} def process2(self): pe = self._getLibrary(PEFileModule().getName()) if(pe is None): return "" # get the security directory entry address = pe.OPTIONAL_HEADER.DATA_DIRECTORY[ pefile.DIRECTORY_ENTRY['IMAGE_DIRECTORY_ENTRY_SECURITY']].VirtualAddress if address > 0: # Always in DER format AFAIK derData = pe.write()[address + 8:] else: logging.debug("address 0") return (contentInfo, rest) = decoder.decode( derData, asn1Spec=rfc2315.ContentInfo()) contentType = contentInfo.getComponentByName('contentType') if contentType == rfc2315.signedData: signedData = decode(contentInfo.getComponentByName( 'content'), asn1Spec=rfc2315.SignedData()) for sd in signedData: if sd == '': continue signerInfos = sd.getComponentByName('signerInfos') for si in signerInfos: issuerAndSerial = si.getComponentByName( 'issuerAndSerialNumber') issuer = issuerAndSerial.getComponentByName( 'issuer').getComponent() for i in issuer: for r in i: at = r.getComponentByName('type') if rfc2459.id_at_countryName == at: cn = decode(r.getComponentByName( 'value'), asn1Spec=rfc2459.X520countryName()) print(cn[0]) elif rfc2459.id_at_organizationName == at: on = decode(r.getComponentByName( 'value'), asn1Spec=rfc2459.X520OrganizationName()) print(on[0].getComponent()) elif rfc2459.id_at_organizationalUnitName == at: ou = decode(r.getComponentByName( 'value'), asn1Spec=rfc2459.X520OrganizationalUnitName()) print(ou[0].getComponent()) elif rfc2459.id_at_commonName == at: cn = decode(r.getComponentByName( 'value'), asn1Spec=rfc2459.X520CommonName()) print(cn[0].getComponent()) else: print at if __name__ == "__main__": data = open(source_path + "/Test_files/certificate5.codex", "rb").read() sample = Sample() sample.setBinary(data) modules = {} pfm = PEFileModule() modules[pfm.getName()] = pfm plug = CertficatePlug() plug.setModules(modules) plug.setSample(sample) res = plug.process() print(res) # fd=open("certficado.out","wb") # fd.write(res["bCertificate"]) # fd.close()
37.179916
88
0.497524
79440fdf9b15ff0d7a89ce5bc2174b8549ddee52
61,336
py
Python
src/policy_makers/ipmi_over_lan_policy_maker/ipmi_over_lan_policy_maker.py
ugo-emekauwa/cisco-imm-automation-tools
67b1e752c32ca08b1acb928e68b697b60a62836f
[ "Apache-2.0" ]
null
null
null
src/policy_makers/ipmi_over_lan_policy_maker/ipmi_over_lan_policy_maker.py
ugo-emekauwa/cisco-imm-automation-tools
67b1e752c32ca08b1acb928e68b697b60a62836f
[ "Apache-2.0" ]
null
null
null
src/policy_makers/ipmi_over_lan_policy_maker/ipmi_over_lan_policy_maker.py
ugo-emekauwa/cisco-imm-automation-tools
67b1e752c32ca08b1acb928e68b697b60a62836f
[ "Apache-2.0" ]
1
2022-01-07T11:03:13.000Z
2022-01-07T11:03:13.000Z
""" IPMI Over LAN Policy Maker for Cisco Intersight, v2.0 Author: Ugo Emekauwa Contact: [email protected], [email protected] Summary: The IPMI Over LAN Policy Maker for Cisco Intersight automates the creation of IPMI Over LAN Policies. GitHub Repository: https://github.com/ugo-emekauwa/cisco-imm-automation-tools """ ######################## # MODULE REQUIREMENT 1 # ######################## """ For the following variable below named key_id, please fill in between the quotes your Intersight API Key ID. Here is an example: key_id = "5c89885075646127773ec143/5c82fc477577712d3088eb2f/5c8987b17577712d302eaaff" """ key_id = "" ######################## # MODULE REQUIREMENT 2 # ######################## """ For the following variable below named key, please fill in between the quotes your system's file path to your Intersight API key "SecretKey.txt" file. Here is an example: key = "C:\\Users\\demouser\\Documents\\SecretKey.txt" """ key = "" ######################## # MODULE REQUIREMENT 3 # ######################## """ Provide the required configuration settings to create the IPMI Over LAN Policy on Cisco Intersight. Remove the sample values and replace them with your own, where applicable. """ ####### Start Configuration Settings - Provide values for the variables listed below. ####### # General Settings ipmi_over_lan_policy_name = "IPMI-Over-LAN-Policy-1" ipmi_over_lan_policy_description = "A Cisco Intersight IPMI Over LAN Policy generated by the IPMI Over LAN Policy Maker." ipmi_over_lan_policy_organization = "default" ipmi_over_lan_policy_tags = {"Org": "IT", "Dept": "DevOps"} # Empty the ipmi_over_lan_policy_tags dictionary if no tags are needed, for example: ipmi_over_lan_policy_tags = {} # Policy Detail Settings enable_ipmi_over_lan = True privilege_level = "admin" # Options: "admin", "user", and "read-only" encryption_key = "" # Intersight Base URL Setting (Change only if using the Intersight Virtual Appliance) intersight_base_url = "https://www.intersight.com/api/v1" # UCS Server Profile Attachment Settings ucs_server_profile_name = "" ####### Finish Configuration Settings - The required value entries are complete. ####### ############################################################################################################################# ############################################################################################################################# import sys import traceback import json import copy import intersight import re # Function to get Intersight API client as specified in the Intersight Python SDK documentation for OpenAPI 3.x ## Modified to align with overall formatting and try/except blocks added for additional error handling def get_api_client(api_key_id, api_secret_file, endpoint="https://intersight.com" ): try: with open(api_secret_file, 'r') as f: api_key = f.read() if re.search('BEGIN RSA PRIVATE KEY', api_key): # API Key v2 format signing_algorithm = intersight.signing.ALGORITHM_RSASSA_PKCS1v15 signing_scheme = intersight.signing.SCHEME_RSA_SHA256 hash_algorithm = intersight.signing.HASH_SHA256 elif re.search('BEGIN EC PRIVATE KEY', api_key): # API Key v3 format signing_algorithm = intersight.signing.ALGORITHM_ECDSA_MODE_DETERMINISTIC_RFC6979 signing_scheme = intersight.signing.SCHEME_HS2019 hash_algorithm = intersight.signing.HASH_SHA256 configuration = intersight.Configuration( host=endpoint, signing_info=intersight.signing.HttpSigningConfiguration( key_id=api_key_id, private_key_path=api_secret_file, signing_scheme=signing_scheme, signing_algorithm=signing_algorithm, hash_algorithm=hash_algorithm, signed_headers=[ intersight.signing.HEADER_REQUEST_TARGET, intersight.signing.HEADER_HOST, intersight.signing.HEADER_DATE, intersight.signing.HEADER_DIGEST, ] ) ) except Exception: print("\nA configuration error has occurred!\n") print("Unable to access the Intersight API Key.") print("Exiting due to the Intersight API Key being unavailable.\n") print("Please verify that the correct API Key ID and API Key have " "been entered, then re-attempt execution.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) return intersight.ApiClient(configuration) # Establish function to test for the availability of the Intersight API and Intersight account def test_intersight_api_service(intersight_api_key_id, intersight_api_key, intersight_base_url="https://www.intersight.com/api/v1", preconfigured_api_client=None ): """This is a function to test the availability of the Intersight API and Intersight account. The tested Intersight account contains the user who is the owner of the provided Intersight API Key and Key ID. Args: intersight_api_key_id (str): The ID of the Intersight API key. intersight_api_key (str): The system file path of the Intersight API key. intersight_base_url (str): Optional; The base URL for Intersight API paths. The default value is "https://www.intersight.com/api/v1". This value typically only needs to be changed if using the Intersight Virtual Appliance. The default value is "https://www.intersight.com/api/v1". preconfigured_api_client ("ApiClient"): Optional; An ApiClient class instance which handles Intersight client-server communication through the use of API keys. The default value is None. If a preconfigured_api_client argument is provided, empty strings ("") or None can be provided for the intersight_api_key_id, intersight_api_key, and intersight_base_url arguments. Returns: A string of the name for the Intersight account tested, verifying the Intersight API service is up and the Intersight account is accessible. Raises: Exception: An exception occurred due to an issue with the provided API Key and/or API Key ID. """ # Define Intersight SDK ApiClient variable if preconfigured_api_client is None: api_client = get_api_client(api_key_id=intersight_api_key_id, api_secret_file=intersight_api_key, endpoint=intersight_base_url ) else: api_client = preconfigured_api_client try: # Check that Intersight Account is accessible print("Testing access to the Intersight API by verifying the " "Intersight account information...") api_client.call_api(resource_path="/iam/Accounts", method="GET", auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) response = api_client.last_response.data iam_account = json.loads(response) if api_client.last_response.status != 200: print("\nThe Intersight API and Account Availability Test did not " "pass.") print("The Intersight account information could not be verified.") print("Exiting due to the Intersight account being unavailable.\n") print("Please verify that the correct API Key ID and API Key have " "been entered, then re-attempt execution.\n") sys.exit(0) else: intersight_account_name = iam_account["Results"][0]["Name"] print("The Intersight API and Account Availability Test has " "passed.\n") print(f"The Intersight account named '{intersight_account_name}' " "has been found.") return intersight_account_name except Exception: print("\nA configuration error has occurred!\n") print("Unable to access the Intersight API.") print("Exiting due to the Intersight API being unavailable.\n") print("Please verify that the correct API Key ID and API Key have " "been entered, then re-attempt execution.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) # Establish function to retrieve the MOID of a specific Intersight API object by name def intersight_object_moid_retriever(intersight_api_key_id, intersight_api_key, object_name, intersight_api_path, object_type="object", organization="default", intersight_base_url="https://www.intersight.com/api/v1", preconfigured_api_client=None ): """This is a function to retrieve the MOID of Intersight objects using the Intersight API. Args: intersight_api_key_id (str): The ID of the Intersight API key. intersight_api_key (str): The system file path of the Intersight API key. object_name (str): The name of the Intersight object. intersight_api_path (str): The Intersight API path of the Intersight object. object_type (str): Optional; The type of Intersight object. The default value is "object". organization (str): Optional; The Intersight organization of the Intersight object. The default value is "default". intersight_base_url (str): Optional; The base URL for Intersight API paths. The default value is "https://www.intersight.com/api/v1". This value typically only needs to be changed if using the Intersight Virtual Appliance. preconfigured_api_client ("ApiClient"): Optional; An ApiClient class instance which handles Intersight client-server communication through the use of API keys. The default value is None. If a preconfigured_api_client argument is provided, empty strings ("") or None can be provided for the intersight_api_key_id, intersight_api_key, and intersight_base_url arguments. Returns: A string of the MOID for the provided Intersight object. Raises: Exception: An exception occurred due to an issue accessing the Intersight API path. The status code or error message will be specified. """ # Define Intersight SDK ApiClient variable if preconfigured_api_client is None: api_client = get_api_client(api_key_id=intersight_api_key_id, api_secret_file=intersight_api_key, endpoint=intersight_base_url ) else: api_client = preconfigured_api_client try: # Retrieve the Intersight Account name api_client.call_api(resource_path="/iam/Accounts", method="GET", auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) response = api_client.last_response.data iam_account = json.loads(response) if api_client.last_response.status != 200: print("The provided Intersight account information could not be " "accessed.") print("Exiting due to the Intersight account being unavailable.\n") print("Please verify that the correct API Key ID and API Key have " "been entered, then re-attempt execution.\n") sys.exit(0) else: intersight_account_name = iam_account["Results"][0]["Name"] except Exception: print("\nA configuration error has occurred!\n") print("Unable to access the Intersight API.") print("Exiting due to the Intersight API being unavailable.\n") print("Please verify that the correct API Key ID and API Key have " "been entered, then re-attempt execution.\n") sys.exit(0) # Retrieving the provided object from Intersight... full_intersight_api_path = f"/{intersight_api_path}" try: api_client.call_api(resource_path=full_intersight_api_path, method="GET", auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) response = api_client.last_response.data intersight_objects = json.loads(response) # The Intersight API resource path has been accessed successfully. except Exception: print("\nA configuration error has occurred!\n") print("There was an issue retrieving the " f"{object_type} from Intersight.") print("Unable to access the provided Intersight API resource path " f"'{intersight_api_path}'.") print("Please review and resolve any error messages, then re-attempt " "execution.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) if intersight_objects.get("Results"): for intersight_object in intersight_objects.get("Results"): if intersight_object.get("Organization"): provided_organization_moid = intersight_object_moid_retriever(intersight_api_key_id=None, intersight_api_key=None, object_name=organization, intersight_api_path="organization/Organizations", object_type="Organization", preconfigured_api_client=api_client ) if intersight_object.get("Organization", {}).get("Moid") == provided_organization_moid: if intersight_object.get("Name") == object_name: intersight_object_moid = intersight_object.get("Moid") # The provided object and MOID has been identified and retrieved. return intersight_object_moid else: if intersight_object.get("Name") == object_name: intersight_object_moid = intersight_object.get("Moid") # The provided object and MOID has been identified and retrieved. return intersight_object_moid else: print("\nA configuration error has occurred!\n") print(f"The provided {object_type} named '{object_name}' was not " "found.") print("Please check the Intersight Account named " f"{intersight_account_name}.") print("Verify through the API or GUI that the needed " f"{object_type} is present.") print(f"If the needed {object_type} is missing, please create it.") print("Once the issue has been resolved, re-attempt execution.\n") sys.exit(0) else: print("\nA configuration error has occurred!\n") print(f"The provided {object_type} named '{object_name}' was not " "found.") print(f"No requested {object_type} instance is currently available in " f"the Intersight account named {intersight_account_name}.") print("Please check the Intersight Account named " f"{intersight_account_name}.") print(f"Verify through the API or GUI that the needed {object_type} " "is present.") print(f"If the needed {object_type} is missing, please create it.") print("Once the issue has been resolved, re-attempt execution.\n") sys.exit(0) # Establish function to retrieve all instances of a particular Intersight API object type def get_intersight_objects(intersight_api_key_id, intersight_api_key, intersight_api_path, object_type="object", intersight_base_url="https://www.intersight.com/api/v1", preconfigured_api_client=None ): """This is a function to perform an HTTP GET on all objects under an available Intersight API type. Args: intersight_api_key_id (str): The ID of the Intersight API key. intersight_api_key (str): The system file path of the Intersight API key. intersight_api_path (str): The path to the targeted Intersight API object type. For example, to specify the Intersight API type for adapter configuration policies, enter "adapter/ConfigPolicies". More API types can be found in the Intersight API reference library at https://intersight.com/apidocs/introduction/overview/. object_type (str): Optional; The type of Intersight object. The default value is "object". intersight_base_url (str): Optional; The base URL for Intersight API paths. The default value is "https://www.intersight.com/api/v1". This value typically only needs to be changed if using the Intersight Virtual Appliance. preconfigured_api_client ("ApiClient"): Optional; An ApiClient class instance which handles Intersight client-server communication through the use of API keys. The default value is None. If a preconfigured_api_client argument is provided, empty strings ("") or None can be provided for the intersight_api_key_id, intersight_api_key, and intersight_base_url arguments. Returns: A dictionary containing all objects of the specified API type. If the API type is inaccessible, an implicit value of None will be returned. Raises: Exception: An exception occurred due to an issue accessing the Intersight API path. The status code or error message will be specified. """ # Define Intersight SDK ApiClient variable if preconfigured_api_client is None: api_client = get_api_client(api_key_id=intersight_api_key_id, api_secret_file=intersight_api_key, endpoint=intersight_base_url ) else: api_client = preconfigured_api_client # Retrieving the provided object from Intersight... full_intersight_api_path = f"/{intersight_api_path}" try: api_client.call_api(resource_path=full_intersight_api_path, method="GET", auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) response = api_client.last_response.data intersight_objects = json.loads(response) # The Intersight API resource path has been accessed successfully. return intersight_objects except Exception: print("\nA configuration error has occurred!\n") print(f"There was an issue retrieving the requested {object_type} " "instances from Intersight.") print("Unable to access the provided Intersight API resource path " f"'{intersight_api_path}'.") print("Please review and resolve any error messages, then re-attempt " "execution.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) # Establish function to retrieve a particular instance of a particular Intersight API object type def get_single_intersight_object(intersight_api_key_id, intersight_api_key, intersight_api_path, object_moid, object_type="object", intersight_base_url="https://www.intersight.com/api/v1", preconfigured_api_client=None ): """This is a function to perform an HTTP GET on a single object under an available Intersight API type. Args: intersight_api_key_id (str): The ID of the Intersight API key. intersight_api_key (str): The system file path of the Intersight API key. intersight_api_path (str): The path to the targeted Intersight API object type. For example, to specify the Intersight API type for adapter configuration policies, enter "adapter/ConfigPolicies". More API types can be found in the Intersight API reference library at https://intersight.com/apidocs/introduction/overview/. object_moid (str): The MOID of the single Intersight object. object_type (str): Optional; The type of Intersight object. The default value is "object". intersight_base_url (str): Optional; The base URL for Intersight API paths. The default value is "https://www.intersight.com/api/v1". This value typically only needs to be changed if using the Intersight Virtual Appliance. preconfigured_api_client ("ApiClient"): Optional; An ApiClient class instance which handles Intersight client-server communication through the use of API keys. The default value is None. If a preconfigured_api_client argument is provided, empty strings ("") or None can be provided for the intersight_api_key_id, intersight_api_key, and intersight_base_url arguments. Returns: A dictionary containing all objects of the specified API type. If the API type is inaccessible, an implicit value of None will be returned. Raises: Exception: An exception occurred due to an issue accessing the Intersight API path. The status code or error message will be specified. """ # Define Intersight SDK ApiClient variable if preconfigured_api_client is None: api_client = get_api_client(api_key_id=intersight_api_key_id, api_secret_file=intersight_api_key, endpoint=intersight_base_url ) else: api_client = preconfigured_api_client # Retrieving the provided object from Intersight... full_intersight_api_path = f"/{intersight_api_path}/{object_moid}" try: api_client.call_api(resource_path=full_intersight_api_path, method="GET", auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) response = api_client.last_response.data single_intersight_object = json.loads(response) # The Intersight API resource path has been accessed successfully. return single_intersight_object except Exception: print("\nA configuration error has occurred!\n") print(f"There was an issue retrieving the requested {object_type} " "instance from Intersight.") print("Unable to access the provided Intersight API resource path " f"'{intersight_api_path}'.") print("Please review and resolve any error messages, then re-attempt " "execution.\n") print("Exception Message: ") traceback.print_exc() sys.exit(0) # Establish Maker specific classes and functions class UcsPolicy: """This class is used to configure a UCS Policy in Intersight. """ object_type = "UCS Policy" intersight_api_path = None subobject_types = None subobject_attribute_maps = None object_variable_value_maps = None def __init__(self, intersight_api_key_id, intersight_api_key, policy_name, policy_description="", organization="default", intersight_base_url="https://www.intersight.com/api/v1", tags=None, preconfigured_api_client=None ): self.intersight_api_key_id = intersight_api_key_id self.intersight_api_key = intersight_api_key self.policy_name = policy_name self.policy_description = policy_description self.organization = organization self.intersight_base_url = intersight_base_url if tags is None: self.tags = {} else: self.tags = tags if preconfigured_api_client is None: self.api_client = get_api_client(api_key_id=intersight_api_key_id, api_secret_file=intersight_api_key, endpoint=intersight_base_url ) else: self.api_client = preconfigured_api_client self.intersight_api_body = { "Name": self.policy_name, "Description": self.policy_description } def __repr__(self): return ( f"{self.__class__.__name__}" f"('{self.intersight_api_key_id}', " f"'{self.intersight_api_key}', " f"'{self.policy_name}', " f"'{self.policy_description}', " f"'{self.organization}', " f"'{self.intersight_base_url}', " f"{self.tags}, " f"{self.api_client})" ) def __str__(self): return f"{self.__class__.__name__} class object for '{self.policy_name}'" def _post_intersight_object(self): """This is a function to configure an Intersight object by performing a POST through the Intersight API. Returns: A string with a statement indicating whether the POST method was successful or failed. Raises: Exception: An exception occurred while performing the API call. The status code or error message will be specified. """ full_intersight_api_path = f"/{self.intersight_api_path}" try: self.api_client.call_api(resource_path=full_intersight_api_path, method="POST", body=self.intersight_api_body, auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) print(f"The configuration of the base {self.object_type} " "has completed.") return "The POST method was successful." except intersight.exceptions.ApiException as error: if error.status == 409: existing_intersight_object_name = self.intersight_api_body.get("Name", "object") print(f"The targeted {self.object_type} appears to already " "exist.") print("An attempt will be made to update the pre-existing " f"{existing_intersight_object_name}...") try: existing_intersight_object_moid = intersight_object_moid_retriever(intersight_api_key_id=None, intersight_api_key=None, object_name=existing_intersight_object_name, intersight_api_path=self.intersight_api_path, object_type=self.object_type, preconfigured_api_client=self.api_client ) # Update full Intersight API path with the MOID of the existing object full_intersight_api_path_with_moid = f"/{self.intersight_api_path}/{existing_intersight_object_moid}" self.api_client.call_api(resource_path=full_intersight_api_path_with_moid, method="POST", body=self.intersight_api_body, auth_settings=['cookieAuth', 'http_signature', 'oAuth2', 'oAuth2'] ) print(f"The update of the {self.object_type} has " "completed.") print(f"The pre-existing {existing_intersight_object_name} " "has been updated.") return "The POST method was successful." except Exception: print("\nA configuration error has occurred!\n") print(f"Unable to update the {self.object_type} under the " "Intersight API resource path " f"'{full_intersight_api_path_with_moid}'.\n") print(f"The pre-existing {existing_intersight_object_name} " "could not be updated.") print("Exception Message: ") traceback.print_exc() return "The POST method failed." else: print("\nA configuration error has occurred!\n") print(f"Unable to configure the {self.object_type} under the " "Intersight API resource path " f"'{full_intersight_api_path}'.\n") print("Exception Message: ") traceback.print_exc() return "The POST method failed." except Exception: print("\nA configuration error has occurred!\n") print(f"Unable to configure the {self.object_type} under the " "Intersight API resource path " f"'{full_intersight_api_path}'.\n") print("Exception Message: ") traceback.print_exc() return "The POST method failed." def _update_api_body_general_attributes(self): """This function updates the Intersight API body with general attributes for the Intersight object. """ # Retrieve the Intersight Organization MOID policy_organization_moid = intersight_object_moid_retriever(intersight_api_key_id=None, intersight_api_key=None, object_name=self.organization, intersight_api_path="organization/Organizations", object_type="Organization", preconfigured_api_client=self.api_client ) # Update the API body with the Intersight Organization MOID self.intersight_api_body["Organization"] = {"Moid": policy_organization_moid} # Create the Intersight Tags dictionary list tags_dictionary_list = [] if self.tags: for key in self.tags: tags_dictionary_list_entry = { "Key": key, "Value": self.tags.get(key) } tags_dictionary_list.append(tags_dictionary_list_entry) # Update the API body with the Intersight Tags dictionary list self.intersight_api_body["Tags"] = tags_dictionary_list def _update_api_body_subobject_attributes(self): """This function updates the Intersight API body with individual attributes for subobjects of the Intersight object. Raises: Exception: An exception occurred while reformatting a provided value for an attribute. The issue will likely be due to the provided value not being in string format. Changing the value to string format should resolve the exception. """ def attribute_map_handler(attribute_map_dictionary): """This is a function to handle attributes with a mismatch in the Front-End Name and Back-End Name. Args: attribute_map_dictionary (dict): A dictionary containing attribute data, including front-end (GUI) to back-end (API) mapped values. """ # Establish default automatic insertion status of current attribute automatic_insertion_of_attribute_value_performed = False # Check if current attribute is mandatory if attribute_map_dictionary.get("Mandatory"): if not any( attribute_name_key in staged_subobject_dictionary for attribute_name_key in (attribute_map_dictionary["FrontEndName"], attribute_map_dictionary["BackEndName"] ) ): if attribute_map_dictionary.get("AutomaticInsertion"): staged_subobject_dictionary[attribute_map_dictionary["BackEndName"]] = attribute_map_dictionary.get("AutomaticInsertionValue") automatic_insertion_of_attribute_value_performed = True else: print("\nA configuration error has occurred!\n") print("During the configuration of the " f"{subobject_type_dictionary['Description']} " f"settings for the {self.object_type} named " f"{self.policy_name}, there was an issue " "accessing the value for the " f"{attribute_map_dictionary['Description']}.") print("Please verify the following key exists in the " "appropriate dictionary of the " f"{subobject_type_dictionary['Description']} " f"list variable for the {self.object_type}, then " "re-attempt execution:\n") if attribute_map_dictionary['FrontEndName']: print(f"'{attribute_map_dictionary['FrontEndName']}'\n") else: print(f"'{attribute_map_dictionary['BackEndName']}'\n") sys.exit(0) # Check for attribute front-end name key in the dictionary if attribute_map_dictionary["FrontEndName"] in staged_subobject_dictionary: # If the attribute back-end name key is not present in the dictionary, insert the back-end name key with the front-end name key value if attribute_map_dictionary["BackEndName"] not in staged_subobject_dictionary: staged_subobject_dictionary[attribute_map_dictionary["BackEndName"]] = staged_subobject_dictionary.get(attribute_map_dictionary["FrontEndName"]) # Remove the front-end name key from the dictionary staged_subobject_dictionary.pop(attribute_map_dictionary["FrontEndName"]) # Check for front-end to back-end value mapping if attribute_map_dictionary.get("FronttoBackEndValueMaps"): if ( attribute_map_dictionary["BackEndName"] in staged_subobject_dictionary and not automatic_insertion_of_attribute_value_performed ): # Retrieve the provided attribute value provided_attribute_value = staged_subobject_dictionary.get(attribute_map_dictionary["BackEndName"]) # Reformat the provided attribute value to lowercase and remove spaces to prevent potential format issues try: provided_attribute_value_reformatted = "".join(provided_attribute_value.lower().split()) except Exception: print("\nA configuration error has occurred!\n") print("During the configuration of the " f"{subobject_type_dictionary['Description']} " f"settings for the {self.object_type} named " f"{self.policy_name}, there was an issue with " "the value for the " f"{attribute_map_dictionary['Description']}.") print("The value provided was " f"{provided_attribute_value}.") print("Please verify that the value has been provided " "in an accepted string format.") print("Please review and resolve any error messages, " "then re-attempt execution.\n") sys.exit(0) # Create list of known and mapped front-end to back-end values front_to_backend_value_maps_key_list = list(attribute_map_dictionary["FronttoBackEndValueMaps"]) # Replace known and reformatted front-end value with known and mapped back-end value if provided_attribute_value_reformatted in front_to_backend_value_maps_key_list: provided_attribute_value_mapped = attribute_map_dictionary["FronttoBackEndValueMaps"][provided_attribute_value_reformatted] staged_subobject_dictionary[attribute_map_dictionary["BackEndName"]] = provided_attribute_value_mapped else: print("\nWARNING: An unknown " f"{attribute_map_dictionary['Description']} " f"value of '{provided_attribute_value}' has been " "provided for the " f"{subobject_type_dictionary['Description']} " "settings!") print("An attempt will be made to configure the " "unknown " f"{attribute_map_dictionary['Description']} " "value.") print("If there is an error, please use one of the " "following known values for the " f"{attribute_map_dictionary['Description']}, " "then re-attempt execution:\n") print(*attribute_map_dictionary["FixedFrontEndValues"], sep=", " ) # Check for subobject types that may need configuration if self.subobject_types: for subobject_type_dictionary in self.subobject_types: subobject_list = getattr(self, subobject_type_dictionary.get("SubobjectList") ) if subobject_list: converted_subobject_list = [] for subobject_dictionary in subobject_list: staged_subobject_dictionary = copy.deepcopy(subobject_dictionary) returned_subobject_type = subobject_type_dictionary["SubobjectType"] # Set 'ClassId' attribute staged_subobject_dictionary["ClassId"] = returned_subobject_type # Set 'ObjectType' attribute staged_subobject_dictionary["ObjectType"] = returned_subobject_type # Handle setting of attributes which have mismatched Front-End and Back-End names for attribute_map_dictionary in self.subobject_attribute_maps.get(returned_subobject_type): attribute_map_handler(attribute_map_dictionary) converted_subobject_dictionary = staged_subobject_dictionary converted_subobject_list.append(converted_subobject_dictionary) # Update Intersight API body with the converted sub-objects list self.intersight_api_body[subobject_type_dictionary["AttributeName"]] = converted_subobject_list def _update_api_body_mapped_object_attributes(self): """This function updates the Intersight API body with individual attributes that require mapping frontend to backend values for compatibility with the Intersight API. Raises: Exception: An exception occurred while reformatting a provided value for an attribute. The issue will likely be due to the provided value not being in string format. Changing the value to string format should resolve the exception. """ # Check for object variables with value maps that need configuration if self.object_variable_value_maps: for object_variable in self.object_variable_value_maps: # Create list of all known and accepted frontend values all_known_and_accepted_frontend_values = (object_variable_value["FrontEndValue"] for object_variable_value in object_variable["Values"] ) # Retrieve the user provided object variable value provided_object_variable_value = getattr(self, object_variable["VariableName"] ) # Reformat the user provided object variable value to lowercase and remove spaces to prevent potential format issues try: reformatted_object_variable_value = "".join(provided_object_variable_value.lower().split()) except Exception: print("\nA configuration error has occurred!\n") print(f"During the configuration of the {self.object_type} named " f"{self.policy_name}, there was an issue with the value " f"provided for the {object_variable['Description']} setting.") print(f"The value provided was {provided_object_variable_value}.") print("To proceed, the value provided for the " f"{object_variable['Description']} setting should be updated to " "an accepted string format.") print("The recommended values are the following:\n") # Print list of all known and accepted frontend values for user print(*all_known_and_accepted_frontend_values, sep=", " ) print("\nPlease update the configuration, then re-attempt " "execution.\n") sys.exit(0) # Cycle through known values and match provided object variable value to backend value for object_variable_value in object_variable["Values"]: # Create list of all known and accepted frontend and backend values current_known_frontend_and_backend_value_options = (object_variable_value.values()) # Retrieve the current known backend value current_known_backend_value = object_variable_value["BackEndValue"] if ( reformatted_object_variable_value in ("".join(current_known_frontend_or_backend_value.lower().split()) for current_known_frontend_or_backend_value in current_known_frontend_and_backend_value_options ) ): backend_object_variable_value = current_known_backend_value break else: # If no backend match is found with the user provided object variable value, pass on the user provided object variable value to Intersight to decide print(f"\nWARNING: An unknown {self.object_type} value of " f"'{provided_object_variable_value}' has been " f"provided for the {object_variable['Description']} " "settings!") print("An attempt will be made to configure the unknown " f"{object_variable['Description']} value.") print("If there is an error, please use one of the " "following known values for the " f"{object_variable['Description']} settings, then " "re-attempt execution:\n") print(*all_known_and_accepted_frontend_values, sep=", " ) backend_object_variable_value = provided_object_variable_value # Update Intersight API body with the converted object variable value self.intersight_api_body[object_variable["AttributeName"]] = backend_object_variable_value def object_maker(self): """This function makes the targeted policy object. """ print(f"\nConfiguring the {self.object_type} named " f"{self.policy_name}...") # Update the API body with general attributes self._update_api_body_general_attributes() # Update the API body with individual subobject attributes self._update_api_body_subobject_attributes() # Update the API body with individual mapped object attributes self._update_api_body_mapped_object_attributes() # POST the API body to Intersight self._post_intersight_object() class DirectlyAttachedUcsServerPolicy(UcsPolicy): """This class is used to configure a UCS Server Policy in Intersight that is logically directly attached to UCS Servers through UCS Server Profiles. """ object_type = "Directly Attached UCS Server Policy" intersight_api_path = None def __init__(self, intersight_api_key_id, intersight_api_key, policy_name, policy_description="", organization="default", intersight_base_url="https://www.intersight.com/api/v1", tags=None, preconfigured_api_client=None, ucs_server_profile_name="" ): super().__init__(intersight_api_key_id, intersight_api_key, policy_name, policy_description, organization, intersight_base_url, tags, preconfigured_api_client ) self.ucs_server_profile_name = ucs_server_profile_name def __repr__(self): return ( f"{self.__class__.__name__}" f"('{self.intersight_api_key_id}', " f"'{self.intersight_api_key}', " f"'{self.policy_name}', " f"'{self.policy_description}', " f"'{self.organization}', " f"'{self.intersight_base_url}', " f"{self.tags}, " f"{self.api_client}, " f"'{self.ucs_server_profile_name}')" ) def _attach_ucs_server_profile(self): """This is a function to attach an Intersight UCS Server Profile to an Intersight Policy. Returns: A dictionary for the API body of the policy object to be posted on Intersight. """ # Attach UCS Server Profile if self.ucs_server_profile_name: print("Attaching the UCS Server Profile named " f"{self.ucs_server_profile_name}...") # Get UCS Server Profile MOID ucs_server_profile_moid = intersight_object_moid_retriever(intersight_api_key_id=None, intersight_api_key=None, object_name=self.ucs_server_profile_name, intersight_api_path="server/Profiles", object_type="UCS Server Profile", organization=self.organization, preconfigured_api_client=self.api_client ) # Update the API body with the appropriate Server Profile MOID self.intersight_api_body["Profiles"] = [ {"Moid": ucs_server_profile_moid, "ObjectType": "server.Profile"} ] def object_maker(self): """This function makes the targeted policy object. """ print(f"\nConfiguring the {self.object_type} named " f"{self.policy_name}...") # Update the API body with general attributes self._update_api_body_general_attributes() # Update the API body with individual subobject attributes self._update_api_body_subobject_attributes() # Update the API body with individual mapped object attributes self._update_api_body_mapped_object_attributes() # Update the API body with a UCS Server Profile attached, if specified self._attach_ucs_server_profile() # POST the API body to Intersight self._post_intersight_object() class IpmiOverLanPolicy(DirectlyAttachedUcsServerPolicy): """This class is used to configure a IPMI Over LAN Policy in Intersight. """ object_type = "IPMI Over LAN Policy" intersight_api_path = "ipmioverlan/Policies" def __init__(self, intersight_api_key_id, intersight_api_key, policy_name, policy_description="", organization="default", intersight_base_url="https://www.intersight.com/api/v1", tags=None, preconfigured_api_client=None, ucs_server_profile_name="", enable_ipmi_over_lan=True, privilege_level="admin", encryption_key="" ): super().__init__(intersight_api_key_id, intersight_api_key, policy_name, policy_description, organization, intersight_base_url, tags, preconfigured_api_client, ucs_server_profile_name ) self.enable_ipmi_over_lan = enable_ipmi_over_lan self.privilege_level = privilege_level self.encryption_key = encryption_key self.intersight_api_body = { "Name": self.policy_name, "Description": self.policy_description, "Enabled": self.enable_ipmi_over_lan, "Privilege": self.privilege_level, "EncryptionKey": self.encryption_key } def __repr__(self): return ( f"{self.__class__.__name__}" f"('{self.intersight_api_key_id}', " f"'{self.intersight_api_key}', " f"'{self.policy_name}', " f"'{self.policy_description}', " f"'{self.organization}', " f"'{self.intersight_base_url}', " f"{self.tags}, " f"{self.api_client}, " f"'{self.ucs_server_profile_name}', " f"{self.enable_ipmi_over_lan}, " f"{self.privilege_level}, " f"'{self.encryption_key}')" ) # Establish function to make Policy def ipmi_over_lan_policy_maker( intersight_api_key_id, intersight_api_key, policy_name, enable_ipmi_over_lan=True, privilege_level="admin", encryption_key="", policy_description="", organization="default", intersight_base_url="https://www.intersight.com/api/v1", tags=None, preconfigured_api_client=None, ucs_server_profile_name="" ): """This is a function used to make a IPMI Over LAN Policy on Cisco Intersight. Args: intersight_api_key_id (str): The ID of the Intersight API key. intersight_api_key (str): The system file path of the Intersight API key. policy_name (str): The name of the policy to be created. enable_ipmi_over_lan (bool): Optional; The setting to enable the IPMI Over LAN service. The default value is True. privilege_level (str): Optional; The highest privilege level assignable to an IPMI Over LAN session. The accepted values are "admin", "user", and "read-only". The default value is "admin". encryption_key (str): Optional; The encryption key for IPMI Over LAN sessions. The encryption key should have an even number of hexadecimal characters that does not exceed 40 total characters. The default value is (""). policy_description (str): Optional; The description of the policy to be created. The default value is an empty string (""). organization (str): Optional; The Intersight account organization of the policy. The default value is "default". intersight_base_url (str): Optional; The base URL for Intersight API paths. The default value is "https://www.intersight.com/api/v1". This value typically only needs to be changed if using the Intersight Virtual Appliance. tags (dict): Optional; The Intersight account tags that will be assigned to the policy. The default value is None. preconfigured_api_client ("ApiClient"): Optional; An ApiClient class instance which handles Intersight client-server communication through the use of API keys. The default value is None. If a preconfigured_api_client argument is provided, empty strings ("") or None can be provided for the intersight_api_key_id, intersight_api_key, and intersight_base_url arguments. ucs_server_profile_name (str): Optional; The UCS Server Profile the policy should be attached to. The default value is an empty string (""). """ def builder(target_object): """This is a function used to build the objects that are components of an overarching pool or policy on Cisco Intersight. Args: target_object (class): The class representing the object to be built on Intersight. Raises: Exception: An exception occurred due to an issue accessing the Intersight API path. The status code or error message will be specified. """ try: target_object.object_maker() except Exception: print("\nA configuration error has occurred!\n") print("The builder function failed to configure the " f"{target_object.object_type} settings.") print("Please check the provided arguments for the " f"{target_object.object_type} settings.\n") print("Exception Message: ") traceback.print_exc() # Define and create IPMI Over LAN Policy object in Intersight builder( IpmiOverLanPolicy( intersight_api_key_id=intersight_api_key_id, intersight_api_key=intersight_api_key, policy_name=policy_name, policy_description=policy_description, organization=organization, intersight_base_url=intersight_base_url, tags=tags, preconfigured_api_client=preconfigured_api_client, ucs_server_profile_name=ucs_server_profile_name, enable_ipmi_over_lan=enable_ipmi_over_lan, privilege_level=privilege_level, encryption_key=encryption_key )) def main(): # Establish Maker specific variables maker_type = "Intersight IPMI Over LAN Policy Maker" # Establish Intersight SDK for Python API client instance main_intersight_api_client = get_api_client(api_key_id=key_id, api_secret_file=key, endpoint=intersight_base_url ) # Starting the Policy Maker for Cisco Intersight print(f"\nStarting the {maker_type} for Cisco Intersight.\n") # Run the Intersight API and Account Availability Test print("Running the Intersight API and Account Availability Test.") test_intersight_api_service( intersight_api_key_id=None, intersight_api_key=None, preconfigured_api_client=main_intersight_api_client ) # Create the Policy in Intersight ipmi_over_lan_policy_maker( intersight_api_key_id=None, intersight_api_key=None, policy_name=ipmi_over_lan_policy_name, enable_ipmi_over_lan=enable_ipmi_over_lan, privilege_level=privilege_level, encryption_key=encryption_key, policy_description=ipmi_over_lan_policy_description, organization=ipmi_over_lan_policy_organization, intersight_base_url=intersight_base_url, tags=ipmi_over_lan_policy_tags, preconfigured_api_client=main_intersight_api_client, ucs_server_profile_name=ucs_server_profile_name ) # Policy Maker completion print(f"\nThe {maker_type} has completed.\n") if __name__ == "__main__": main() # Exiting the Policy Maker for Cisco Intersight sys.exit(0)
50.774834
177
0.564253
794410c504054c2f3d8ce66dc822043d43725bb7
102
py
Python
automatic_card/apps.py
One-Xiao-Yi/class_schedule_card
b9aa917576f9e27a882d54c036dbfc0fbd8538fa
[ "Apache-2.0" ]
1
2019-10-24T10:23:44.000Z
2019-10-24T10:23:44.000Z
automatic_card/apps.py
One-Xiao-Yi/class_schedule_card
b9aa917576f9e27a882d54c036dbfc0fbd8538fa
[ "Apache-2.0" ]
6
2020-06-05T23:36:36.000Z
2022-02-10T09:28:33.000Z
automatic_card/apps.py
One-Xiao-Yi/class_schedule_card
b9aa917576f9e27a882d54c036dbfc0fbd8538fa
[ "Apache-2.0" ]
2
2019-11-20T09:05:23.000Z
2020-02-17T16:41:38.000Z
from django.apps import AppConfig class AutomaticCardConfig(AppConfig): name = 'automatic_card'
17
37
0.784314
794410cf2a31b366f08fa801a58b51478394d4fc
11,201
py
Python
docs/conf.py
spavuluri/watchmaker
a448e6a7ead1af7bcff23f0099540ce395b7eb4f
[ "Apache-2.0" ]
null
null
null
docs/conf.py
spavuluri/watchmaker
a448e6a7ead1af7bcff23f0099540ce395b7eb4f
[ "Apache-2.0" ]
8
2018-02-02T17:14:28.000Z
2018-05-22T00:11:37.000Z
docs/conf.py
YakDriver/watchmaker
e7df44637c82b092bd413c54abc8eb472b7eb876
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """Configure Watchmaker documentation.""" from __future__ import (absolute_import, division, print_function, unicode_literals, with_statement) import os import sys from recommonmark.transform import AutoStructify # # Created by sphinx-quickstart on Thu Jun 30 20:11:36 2016. # # This file is execfile()d with the current directory set to its # containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('../src/')) rtd = os.environ.get('READTHEDOCS', None) == 'True' # -- General configuration ------------------------------------------------ # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. # extensions = [] extensions = [ 'recommonmark', 'sphinx.ext.autodoc', 'sphinx.ext.autosectionlabel', 'sphinx.ext.coverage', 'sphinx.ext.doctest', 'sphinx.ext.intersphinx', 'sphinx.ext.napoleon', 'sphinx.ext.viewcode', ] intersphinx_mapping = { 'python': ('https://docs.python.org/3', None), } autoclass_content = 'class' autodoc_member_order = 'bysource' autodoc_default_options = {'members': True, 'show-inheritance': True} napoleon_use_param = False # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffixes as a map of suffix => parser: # # source_suffix = { # '.md': 'markdown', # '.rst': 'restructuredtext', # } # The encoding of source files. # # source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Watchmaker' copyright = u'2016, Plus3 IT Systems' # noqa: A001 author = u'Plus3 IT Systems' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. # version = u'0.1' # The full version, including alpha/beta/rc tags. # release = u'0.1' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # # today = '' # # Else, today_fmt is used as the format for a strftime call. # # today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This patterns also effect to html_static_path and html_extra_path exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # The reST default role (used for this markup: `text`) to use for all # documents. # # default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # If true, keep warnings as "system message" paragraphs in the built documents. # keep_warnings = False # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = False # -- Options for HTML output ---------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme # Add any paths that contain custom themes here, relative to this directory. # # html_them_path if not rtd: import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # The name for this set of Sphinx documents. # "<project> v<release> documentation" by default. # # html_title = u'MothBall v0.1' # A shorter title for the navigation bar. Default is the same as html_title. # # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # # html_logo = None # The name of an image file (relative to this directory) to use as a favicon of # the docs. This file should be a Windows icon file (.ico) being 16x16 or # 32x32 pixels large. # # html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any extra paths that contain custom files (such as robots.txt or # .htaccess) here, relative to this directory. These files are copied # directly to the root of the documentation. # # html_extra_path = [] # If not None, a 'Last updated on:' timestamp is inserted at every page # bottom, using the given strftime format. # The empty string is equivalent to '%b %d, %Y'. # # html_last_updated_fmt = None # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # # html_additional_pages = {} # If false, no module index is generated. # # html_domain_indices = True # If false, no index is generated. # # html_use_index = True # If true, the index is split into individual pages for each letter. # # html_split_index = False # If true, links to the reST sources are added to the pages. # # html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. # # html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. # # html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # # html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = None # Language to be used for generating the HTML full-text search index. # Sphinx supports the following languages: # 'da', 'de', 'en', 'es', 'fi', 'fr', 'hu', 'it', 'ja' # 'nl', 'no', 'pt', 'ro', 'ru', 'sv', 'tr', 'zh' # # html_search_language = 'en' # A dictionary with options for the search language support, empty by default. # 'ja' uses this config value. # 'zh' user can custom change `jieba` dictionary path. # # html_search_options = {'type': 'default'} # The name of a javascript file (relative to the configuration directory) that # implements a search results scorer. If empty, the default will be used. # # html_search_scorer = 'scorer.js' # Output file base name for HTML help builder. htmlhelp_basename = 'Watchmaker' # -- Options for LaTeX output --------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Watchmaker.tex', u'Watchmaker Documentation', u'Plus3 IT Systems', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # # latex_use_parts = False # If true, show page references after internal links. # # latex_show_pagerefs = False # If true, show URL addresses after external links. # # latex_show_urls = False # Documents to append as an appendix to all manuals. # # latex_appendices = [] # If false, no module index is generated. # # latex_domain_indices = True # -- Options for manual page output --------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'watchmaker', u'Watchmaker Documentation', [author], 1) ] # If true, show URL addresses after external links. # # man_show_urls = False # -- Options for Texinfo output ------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Watchmaker', u'Watchmaker Documentation', author, 'Watchmaker', 'Applied Configuration Management.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. # # texinfo_appendices = [] # If false, no module index is generated. # # texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. # # texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. # # texinfo_no_detailmenu = False # Prefix document path to section labels, otherwise autogenerated labels would # look like 'heading' rather than 'path/to/file:heading' autosectionlabel_prefix_document = True linkcheck_ignore = [ r'https://github.com/plus3it/watchmaker/compare/(\d+\.){3}\.(\.\d+){3}', r'https://github.com/plus3it/watchmaker/compare/(\d+\.){3}\.(\.x){3}', r'https://watchmaker.cloudarmor.io/releases/(.*)$', r'https://docs\.saltstack\.com/en/latest/ref/modules/all/[a-z\.]*#[a-z\.]*' ] def setup(app): # noqa: D103 app.add_stylesheet("theme_overrides.css") app.add_config_value( 'recommonmark_config', { 'enable_eval_rst': True, }, True, ) app.add_transform(AutoStructify)
28.57398
79
0.698688
7944115783846a4d235ffe88f298017e03d3d314
3,695
py
Python
test/functional/zerocoin_valid_public_spend.py
AtomicLemon/bitcoinflex
fe02bd48be01e08a047ef8d5821eb247a0681306
[ "MIT" ]
null
null
null
test/functional/zerocoin_valid_public_spend.py
AtomicLemon/bitcoinflex
fe02bd48be01e08a047ef8d5821eb247a0681306
[ "MIT" ]
null
null
null
test/functional/zerocoin_valid_public_spend.py
AtomicLemon/bitcoinflex
fe02bd48be01e08a047ef8d5821eb247a0681306
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2019 The PIVX developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. ''' Covers the 'Wrapped Serials Attack' scenario ''' import random from time import sleep from test_framework.authproxy import JSONRPCException from test_framework.util import assert_equal, assert_greater_than from fake_stake.base_test import BitcoinFlex_FakeStakeTest class zBCXValidCoinSpendTest(BitcoinFlex_FakeStakeTest): def run_test(self): self.description = "Covers the 'valid publicCoinSpend spend' scenario." self.init_test() INITAL_MINED_BLOCKS = 301 # Blocks mined before minting MORE_MINED_BLOCKS = 52 # Blocks mined after minting (before spending) DENOM_TO_USE = 1 # zc denomination used for double spending attack # 1) Start mining blocks self.log.info("Mining %d first blocks..." % INITAL_MINED_BLOCKS) self.node.generate(INITAL_MINED_BLOCKS) sleep(2) # 2) Mint zerocoins self.log.info("Minting %d-denom zBCXs..." % DENOM_TO_USE) self.node.mintzerocoin(DENOM_TO_USE) self.node.generate(1) sleep(2) self.node.mintzerocoin(DENOM_TO_USE) sleep(2) # 3) Mine more blocks and collect the mint self.log.info("Mining %d more blocks..." % MORE_MINED_BLOCKS) self.node.generate(MORE_MINED_BLOCKS) sleep(2) list = self.node.listmintedzerocoins(True, True) mint = list[0] # 4) Get the raw zerocoin data exported_zerocoins = self.node.exportzerocoins(False) zc = [x for x in exported_zerocoins if mint["serial hash"] == x["id"]] if len(zc) == 0: raise AssertionError("mint not found") # 5) Spend the minted coin (mine six more blocks) self.log.info("Spending the minted coin with serial %s and mining six more blocks..." % zc[0]["s"]) txid = self.node.spendzerocoinmints([mint["serial hash"]])['txid'] self.log.info("Spent on tx %s" % txid) self.node.generate(6) sleep(2) rawTx = self.node.getrawtransaction(txid, 1) if rawTx is None: self.log.warning("rawTx is: %s" % rawTx) raise AssertionError("TEST FAILED") else: assert (rawTx["confirmations"] == 6) self.log.info("%s VALID PUBLIC COIN SPEND PASSED" % self.__class__.__name__) self.log.info("%s Trying to spend the serial twice now" % self.__class__.__name__) serial = zc[0]["s"] randomness = zc[0]["r"] privkey = zc[0]["k"] tx = None try: tx = self.node.spendrawzerocoin(serial, randomness, DENOM_TO_USE, privkey) except JSONRPCException as e: self.log.info("GOOD: Transaction did not verify") if tx is not None: self.log.warning("Tx is: %s" % tx) raise AssertionError("TEST FAILED") self.log.info("%s DOUBLE SPENT SERIAL NOT VERIFIED, TEST PASSED" % self.__class__.__name__) self.log.info("%s Trying to spend using the old coin spend method.." % self.__class__.__name__) tx = None try: tx = self.node.spendzerocoin(DENOM_TO_USE, False, False, "", False) raise AssertionError("TEST FAILED, old coinSpend spent") except JSONRPCException as e: self.log.info("GOOD: spendzerocoin old spend did not verify") self.log.info("%s OLD COIN SPEND NON USABLE ANYMORE, TEST PASSED" % self.__class__.__name__) if __name__ == '__main__': zBCXValidCoinSpendTest().main()
35.873786
107
0.64249
794411bb543d6d82c2c2d89a0688cdc2010457a1
13,284
py
Python
reviewboard/webapi/base.py
znick/reviewboard
f32320b267efcdf2feff1661eabe57f99ef490a7
[ "MIT" ]
null
null
null
reviewboard/webapi/base.py
znick/reviewboard
f32320b267efcdf2feff1661eabe57f99ef490a7
[ "MIT" ]
null
null
null
reviewboard/webapi/base.py
znick/reviewboard
f32320b267efcdf2feff1661eabe57f99ef490a7
[ "MIT" ]
1
2021-11-23T15:25:44.000Z
2021-11-23T15:25:44.000Z
from __future__ import unicode_literals from django.contrib import auth from django.db.models import Q from django.utils import six from django.utils.encoding import force_unicode from djblets.util.decorators import augment_method_from from djblets.webapi.decorators import (webapi_login_required, webapi_request_fields) from djblets.webapi.errors import NOT_LOGGED_IN, PERMISSION_DENIED from djblets.webapi.resources import WebAPIResource as DjbletsWebAPIResource from reviewboard.site.models import LocalSite from reviewboard.site.urlresolvers import local_site_reverse from reviewboard.webapi.decorators import (webapi_check_local_site, webapi_check_login_required) from reviewboard.webapi.models import WebAPIToken CUSTOM_MIMETYPE_BASE = 'application/vnd.reviewboard.org' EXTRA_DATA_LEN = len('extra_data.') class WebAPIResource(DjbletsWebAPIResource): """A specialization of the Djblets WebAPIResource for Review Board.""" mimetype_vendor = 'reviewboard.org' api_token_access_allowed = True @property def policy_id(self): """Returns the ID used for access policies. This defaults to the name of the resource, but can be overridden in case the name is not specific enough or there's a conflict. """ return self.name def call_method_view(self, request, method, view, *args, **kwargs): # This will associate the token, if any, with the request. webapi_token = self._get_api_token_for_request(request) if webapi_token: if not self.api_token_access_allowed: return PERMISSION_DENIED policy = webapi_token.policy resources_policy = policy.get('resources') if resources_policy: resource_id = kwargs.get(self.uri_object_key) if not self.is_resource_method_allowed(resources_policy, method, resource_id): # The token's policies disallow access to this resource. return PERMISSION_DENIED return view(request, *args, **kwargs) def has_access_permissions(self, *args, **kwargs): # By default, raise an exception if this is called. Specific resources # will have to explicitly override this and opt-in to access. raise NotImplementedError( '%s must provide a has_access_permissions method' % self.__class__.__name__) @webapi_check_login_required @webapi_check_local_site @augment_method_from(DjbletsWebAPIResource) def get(self, *args, **kwargs): """Returns the serialized object for the resource. This will require login if anonymous access isn't enabled on the site. """ pass @webapi_check_login_required @webapi_check_local_site @webapi_request_fields( optional=dict({ 'counts-only': { 'type': bool, 'description': 'If specified, a single ``count`` field is ' 'returned with the number of results, instead ' 'of the results themselves.', }, }, **DjbletsWebAPIResource.get_list.optional_fields), required=DjbletsWebAPIResource.get_list.required_fields, allow_unknown=True ) def get_list(self, request, *args, **kwargs): """Returns a list of objects. This will require login if anonymous access isn't enabled on the site. If ``?counts-only=1`` is passed on the URL, then this will return only a ``count`` field with the number of entries, instead of the serialized objects. """ if self.model and request.GET.get('counts-only', False): return 200, { 'count': self.get_queryset(request, is_list=True, *args, **kwargs).count() } else: return self._get_list_impl(request, *args, **kwargs) @webapi_login_required @webapi_check_local_site @augment_method_from(DjbletsWebAPIResource) def delete(self, *args, **kwargs): pass def _get_list_impl(self, request, *args, **kwargs): """Actual implementation to return the list of results. This by default calls the parent WebAPIResource.get_list, but this can be overridden by subclasses to provide a more custom implementation while still retaining the ?counts-only=1 functionality. """ return super(WebAPIResource, self).get_list(request, *args, **kwargs) def get_href(self, obj, request, *args, **kwargs): """Returns the URL for this object. This is an override of get_href, which takes into account our local_site_name namespacing in order to get the right prefix on URLs. """ if not self.uri_object_key: return None href_kwargs = { self.uri_object_key: getattr(obj, self.model_object_key), } href_kwargs.update(self.get_href_parent_ids(obj, **kwargs)) return request.build_absolute_uri( self.get_item_url(request=request, **href_kwargs)) def get_list_url(self, **kwargs): """Returns the URL to the list version of this resource. This will generate a URL for the resource, given the provided arguments for the URL pattern. """ return self._get_resource_url(self.name_plural, **kwargs) def get_item_url(self, **kwargs): """Returns the URL to the item version of this resource. This will generate a URL for the resource, given the provided arguments for the URL pattern. """ return self._get_resource_url(self.name, **kwargs) def build_queries_for_int_field(self, request, field_name, query_param_name=None): """Builds queries based on request parameters for an int field. get_queryset() implementations can use this to allow callers to filter results through range matches. Callers can search for exact matches, or can do <, <=, >, or >= matches. """ if not query_param_name: query_param_name = field_name.replace('_', '-') q = Q() if query_param_name in request.GET: q = q & Q(**{field_name: request.GET[query_param_name]}) for op in ('gt', 'gte', 'lt', 'lte'): param = '%s-%s' % (query_param_name, op) if param in request.GET: query_field = '%s__%s' % (field_name, op) q = q & Q(**{query_field: request.GET[param]}) return q def is_resource_method_allowed(self, resources_policy, method, resource_id): """Returns whether a method can be performed on a resource. A method can be performed if a specific per-resource policy allows it, and the global policy also allows it. The per-resource policy takes precedence over the global policy. If, for instance, the global policy blocks and the resource policies allows, the method will be allowed. If no policies apply to this, then the default is to allow. """ # First check the resource policy. For this, we'll want to look in # both the resource ID and the '*' wildcard. resource_policy = resources_policy.get(self.policy_id) if resource_policy: permission = self._check_resource_policy( resource_policy, method, [resource_id, '*']) if permission is not None: return permission # Nothing was found there. Now check in the global policy. Note that # there isn't a sub-key of 'resources.*', so we'll check based on # resources_policy. if '*' in resources_policy: permission = self._check_resource_policy( resources_policy, method, ['*']) if permission is not None: return permission return True def _check_resource_policy(self, policy, method, keys): """Checks the policy for a specific resource and method. This will grab the resource policy for the given policy ID, and see if a given method can be performed on that resource, without factoring in any global policy rules. If the method is allowed and restrict_ids is True, this will then check if the resource should be blocked based on the ID. In case of a conflict, blocked policies always trump allowed policies. """ for key in keys: sub_policy = policy.get(key) if sub_policy: # We first want to check the specific values, to see if they've # been singled out. If not found, we'll check the wildcards. # # Blocked values always take precedence over allowed values. allowed = sub_policy.get('allow', []) blocked = sub_policy.get('block', []) if method in blocked: return False elif method in allowed: return True elif '*' in blocked: return False elif '*' in allowed: return True return None def _get_api_token_for_request(self, request): webapi_token = getattr(request, '_webapi_token', None) if not webapi_token: webapi_token_id = request.session.get('webapi_token_id') if webapi_token_id: try: webapi_token = WebAPIToken.objects.get(pk=webapi_token_id, user=request.user) except WebAPIToken.DoesNotExist: # This token is no longer valid. Log the user out. auth.logout(request) request._webapi_token = webapi_token return webapi_token def _get_queryset(self, request, is_list=False, *args, **kwargs): """Returns the queryset for the resource. This is a specialization of the Djblets WebAPIResource._get_queryset(), which imposes further restrictions on the queryset results if using a WebAPIToken for authentication that defines a policy. Any items in the queryset that are denied by the policy will be excluded from the results. """ queryset = super(WebAPIResource, self)._get_queryset( request, is_list=is_list, *args, **kwargs) if is_list: # We'll need to filter the list of results down to exclude any # that are blocked for GET access by the token policy. webapi_token = self._get_api_token_for_request(request) if webapi_token: resources_policy = webapi_token.policy.get('resources', {}) resource_policy = resources_policy.get(self.policy_id) if resource_policy: resource_ids = [ resource_id for resource_id in six.iterkeys(resource_policy) if (resource_id != '*' and not self._check_resource_policy( resources_policy, self.policy_id, 'GET', resource_id, True)) ] if resource_ids: queryset = queryset.exclude(**{ self.model_object_key + '__in': resource_ids, }) return queryset def _get_resource_url(self, name, local_site_name=None, request=None, **kwargs): return local_site_reverse( self._build_named_url(name), local_site_name=local_site_name, request=request, kwargs=kwargs) def _get_local_site(self, local_site_name): if local_site_name: return LocalSite.objects.get(name=local_site_name) else: return None def _get_form_errors(self, form): fields = {} for field in form.errors: fields[field] = [force_unicode(e) for e in form.errors[field]] return fields def _no_access_error(self, user): """Returns a WebAPIError indicating the user has no access. Which error this returns depends on whether or not the user is logged in. If logged in, this will return _no_access_error(request.user). Otherwise, it will return NOT_LOGGED_IN. """ if user.is_authenticated(): return PERMISSION_DENIED else: return NOT_LOGGED_IN def _import_extra_data(self, extra_data, fields): for key, value in six.iteritems(fields): if key.startswith('extra_data.'): key = key[EXTRA_DATA_LEN:] if value != '': extra_data[key] = value elif key in extra_data: del extra_data[key]
37.419718
79
0.606143
794411f77bab229866674303c054955dd00b1c5e
262
py
Python
plugins/NetQuery/FalseQuery/__init__.py
madfordmac/pircons
1eea5e46e7ea89984d69da2817a86e14f8155202
[ "MIT" ]
null
null
null
plugins/NetQuery/FalseQuery/__init__.py
madfordmac/pircons
1eea5e46e7ea89984d69da2817a86e14f8155202
[ "MIT" ]
null
null
null
plugins/NetQuery/FalseQuery/__init__.py
madfordmac/pircons
1eea5e46e7ea89984d69da2817a86e14f8155202
[ "MIT" ]
null
null
null
from .. import NetQuery class FalseQuery(NetQuery): """Always unsuccessful query.""" def __init__(self, cfg): super(FalseQuery, self).__init__(cfg) def query(self): """Always return offline. Intended for debugging. :return: False """ return False
20.153846
51
0.706107
7944138a496e0c1db5bb1a605e15b6989a763296
9,414
py
Python
p3/management/commands/attendify_schedule_xlsx.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
p3/management/commands/attendify_schedule_xlsx.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
p3/management/commands/attendify_schedule_xlsx.py
malemburg/epcon
1edec493ac1258950dcabdc9f9ee8b97c24f96c5
[ "BSD-2-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Update an Attendify schedule XLSX file with the currently accepted talks. Usage: manage.py attendify_schedule_xlsx ep2016 schedule.xlsx Note that for Attendify you have to download the schedule before running this script, since they add meta data to the downloaded file which has to be kept around when uploading it again. The script updates schedule.xlsx in place. Unfortunately, Attendify currently has a bug in that it doesn't accept the file format generated by openpyxl. Opening the file in LibreOffice and saving it (without changes) fixes this as work-around. Attendify Worksheet "Schedule" format ------------------------------------- Row A4: Session Title, Date (MM/DD/YYYY), Start Time (HH:MM), End Time (HH:MM), Description (Optional), Location (Optional), Track Title (Optional), UID (do not delete) Row A6: Start of data """ from django.core.management.base import BaseCommand, CommandError from django.core import urlresolvers from django.utils.html import strip_tags from conference import models from conference import utils import datetime from collections import defaultdict from optparse import make_option import operator import markdown2 import openpyxl ### Globals # Debug output ? _debug = 0 # These must match the talk .type or .admin_type from accepted_talks import TYPE_NAMES # Special handling of poster sessions if 0: # Poster sessions don't have events associated with them, so use # these defaults ADJUST_POSTER_SESSIONS = True POSTER_START = datetime.datetime(2016,7,19,15,15) # TBD POSTER_DURATION = datetime.timedelta(minutes=90) POSTER_ROOM = u'Exhibition Hall' else: ADJUST_POSTER_SESSIONS = False ### Helpers def profile_url(user): return urlresolvers.reverse('conference-profile', args=[user.attendeeprofile.slug]) def speaker_listing(talk): return u', '.join( u'<i>%s %s</i>' % ( speaker.user.first_name, speaker.user.last_name) for speaker in talk.get_all_speakers()) def format_text(text, remove_tags=False, output_html=True): # Remove whitespace text = text.strip() if not text: return text # Remove links, tags, etc. if remove_tags: text = strip_tags(text) # Remove quotes if text[0] == '"' and text[-1] == '"': text = text[1:-1] # Convert markdown markup to HTML if output_html: text = markdown2.markdown(text) return text def talk_title(talk): title = format_text(talk.title, remove_tags=True, output_html=False) if not title: return title return title def talk_abstract(talk): return '<p>By %s</p>\n\n%s' % ( speaker_listing(talk), format_text(talk.getAbstract().body)) def event_title(event): title = format_text(event.custom, remove_tags=True, output_html=False) if not title: return title return title def event_abstract(event): return format_text(event.abstract) def add_event(data, talk=None, event=None, session_type='', talk_events=None): # Determine title and abstract title = '' abstract = '' if talk is None: if event is None: raise TypeError('need either talk or event given') title = event_title(event) abstract = event_abstract(event) else: title = talk_title(talk) abstract = talk_abstract(talk) if event is None: event = talk.get_event() # Determine time_range and room if event is None: if talk.type and talk.type[:1] == 'p' and ADJUST_POSTER_SESSIONS: # Poster session time_range = (POSTER_START, POSTER_START + POSTER_DURATION) room = POSTER_ROOM else: print ('Talk %r (type %r) does not have an event ' 'associated with it; skipping' % (title, talk.type)) return else: time_range = event.get_time_range() tracks = event.tracks.all() if tracks: room = tracks[0].title else: room = u'' if talk_events is not None: talk_events[event.pk] = event # Don't add entries for events without title if not title: return # Format time entries date = time_range[0].strftime('%m/%d/%Y') start_time = time_range[0].strftime('%H:%M') stop_time = time_range[1].strftime('%H:%M') # UID uid = u'' data.append(( title, date, start_time, stop_time, abstract, room, session_type, uid, )) # Start row of data in spreadsheet (Python 0-based index) SCHEDULE_WS_START_DATA = 5 # Column number of UID columns (Python 0-based index) SCHEDULE_UID_COLUMN = 7 # Number of columns to make row unique (title, date, start, end) SCHEDULE_UNIQUE_COLS = 4 def update_schedule(schedule_xlsx, new_data, updated_xlsx=None): # Load workbook wb = openpyxl.load_workbook(schedule_xlsx) assert wb.sheetnames == [u'Instructions', u'Schedule', u'System'] ws = wb['Schedule'] # Extract data values ws_data = list(ws.values)[SCHEDULE_WS_START_DATA:] print ('read %i data lines' % len(ws_data)) print ('first line: %r' % ws_data[:1]) print ('last line: %r' % ws_data[-1:]) # Reconcile UIDs / talks uids = {} for line in ws_data: uid = line[SCHEDULE_UID_COLUMN] if not uid: continue uids[tuple(line[:SCHEDULE_UNIQUE_COLS])] = uid # Add UID to new data new_schedule = [] for line in new_data: key = tuple(line[:SCHEDULE_UNIQUE_COLS]) if key not in uids: print ('New or rescheduled talk %s found' % (key,)) uid = u'' else: uid = uids[key] line = tuple(line[:SCHEDULE_UID_COLUMN]) + (uid,) new_schedule.append(line) new_data = new_schedule # Replace old data with new data old_data_rows = len(ws_data) new_data_rows = len(new_data) print ('new data: %i data lines' % new_data_rows) offset = SCHEDULE_WS_START_DATA + 1 print ('new_data = %i rows' % len(new_data)) for j, row in enumerate(ws[offset: offset + new_data_rows - 1]): new_row = new_data[j] if _debug: print ('updating row %i with %r' % (j, new_row)) if len(row) > len(new_row): row = row[:len(new_row)] for i, cell in enumerate(row): cell.value = new_row[i] # Overwrite unused cells with None if new_data_rows < old_data_rows: for j, row in enumerate(ws[offset + new_data_rows + 1: offset + old_data_rows + 1]): if _debug: print ('clearing row %i' % (j,)) for i, cell in enumerate(row): cell.value = None # Write updated data if updated_xlsx is None: updated_xlsx = schedule_xlsx wb.save(updated_xlsx) ### class Command(BaseCommand): option_list = BaseCommand.option_list + ( # make_option('--option', # action='store', # dest='option_attr', # default=0, # type='int', # help='Help text', # ), ) args = '<conference> <xlsx-file>' def handle(self, *args, **options): try: conference = args[0] except IndexError: raise CommandError('conference not specified') try: schedule_xlsx = args[1] except IndexError: raise CommandError('XLSX file not specified') talks = (models.Talk.objects .filter(conference=conference, status='accepted')) # Group by types talk_types = {} for talk in talks: talk_type = talk.type[:1] admin_type = talk.admin_type[:1] if admin_type == 'm': type = 'm' elif admin_type == 'k': type = 'k' else: type = talk_type if type in talk_types: talk_types[type].append(talk) else: talk_types[type] = [talk] # Build data for updating the spreadsheet data = [] talk_events = {} for type, type_name, description in TYPE_NAMES: # Get bag with talks bag = talk_types.get(type, []) if not bag: continue # Sort by talk title using title case bag.sort(key=lambda talk: talk_title(talk).title()) # Add talks from bag to data for talk in bag: add_event(data, talk=talk, talk_events=talk_events, session_type=type_name) # Add events which are not talks for schedule in models.Schedule.objects.filter(conference=conference): for event in models.Event.objects.filter(schedule=schedule): if event.pk in talk_events: continue add_event(data, event=event) # Update spreadsheet with new data update_schedule(schedule_xlsx, data)
28.966154
78
0.589654
794414b11d3ef77ab5505d2f8a324cdf3b5aebfb
2,238
py
Python
examples/ad_manager/v201908/creative_set_service/create_creative_set.py
ale180192/googleads-python-lib
783a2d40a49956fb16ed73280708f6f9e322aa09
[ "Apache-2.0" ]
1
2019-09-30T06:36:07.000Z
2019-09-30T06:36:07.000Z
examples/ad_manager/v201908/creative_set_service/create_creative_set.py
ale180192/googleads-python-lib
783a2d40a49956fb16ed73280708f6f9e322aa09
[ "Apache-2.0" ]
null
null
null
examples/ad_manager/v201908/creative_set_service/create_creative_set.py
ale180192/googleads-python-lib
783a2d40a49956fb16ed73280708f6f9e322aa09
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example creates new creative sets. To determine which creative sets exist, run get_all_creative_sets.py. The LoadFromStorage method is pulling credentials and properties from a "googleads.yaml" file. By default, it looks for this file in your home directory. For more information, see the "Caching authentication information" section of our README. """ import uuid # Import appropriate modules from the client library. from googleads import ad_manager MASTER_CREATIVE_ID = 'INSERT_MASTER_CREATIVE_ID_HERE' COMPANION_CREATIVE_ID = 'INSERT_COMPANION_CREATIVE_ID_HERE' def main(client, master_creative_id, companion_creative_id): # Initialize appropriate service. creative_set_service = client.GetService('CreativeSetService', version='v201908') # Create creative set objects. creative_set = {'name': 'Creative set #%s' % uuid.uuid4(), 'masterCreativeId': master_creative_id, 'companionCreativeIds': [companion_creative_id]} # Add creative sets. creative_set = creative_set_service.createCreativeSet(creative_set) # Display results. if creative_set: print(('Creative set with ID "%s", master creative ID "%s", and ' 'companion creative IDs {%s} was created.') % (creative_set['id'], creative_set['masterCreativeId'], ','.join(creative_set['companionCreativeIds']))) if __name__ == '__main__': # Initialize client object. ad_manager_client = ad_manager.AdManagerClient.LoadFromStorage() main(ad_manager_client, MASTER_CREATIVE_ID, COMPANION_CREATIVE_ID)
36.096774
77
0.735925
79441544ca91d5ea849c1c3246bee4a92e42276d
579
py
Python
mongodb_subjects_storage/test_storage_atomic_ops.py
airspot-dev/krules-subjects-storage-mongodb
4b9814a39abb7bb2e14e1006f59e8bcfcb4dd0e6
[ "Apache-2.0" ]
10
2021-02-26T13:00:22.000Z
2022-03-31T11:38:28.000Z
mongodb_subjects_storage/test_storage_atomic_ops.py
airspot-dev/krules-subjects-storage-mongodb
4b9814a39abb7bb2e14e1006f59e8bcfcb4dd0e6
[ "Apache-2.0" ]
1
2021-08-03T10:21:12.000Z
2021-08-03T10:21:12.000Z
subjects_storages/mongodb/mongodb_subjects_storage/test_storage_atomic_ops.py
airspot-dev/krules
0e402feef51c6189a163a62912480cfac0c438bb
[ "Apache-2.0" ]
null
null
null
import os from dependency_injector import providers from krules_core.providers import subject_storage_factory from .storage_impl import SubjectsMongoStorage mongodb_url = os.environ.get("TEST_MONGODB_SUBJECTS_STORAGE_URL", "mongodb://localhost:27017/admin") database = os.environ.get("TEST_MONGODB_SUBJECTS_STORAGE_DATABASE", "test") subject_storage_factory.override( providers.Factory( lambda x: SubjectsMongoStorage(x, database, "test-subjects-atomic-ops", client_args=(mongodb_url,), use_atomic_ops_collection=True)) )
32.166667
107
0.759931
794415d53fac8584fa23f47ebffdd7c2e8bd7e3f
1,202
py
Python
var/spack/repos/builtin/packages/leptonica/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
11
2015-10-04T02:17:46.000Z
2018-02-07T18:23:00.000Z
var/spack/repos/builtin/packages/leptonica/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
22
2017-08-01T22:45:10.000Z
2022-03-10T07:46:31.000Z
var/spack/repos/builtin/packages/leptonica/package.py
player1537-forks/spack
822b7632222ec5a91dc7b7cda5fc0e08715bd47c
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
4
2016-06-10T17:57:39.000Z
2018-09-11T04:59:38.000Z
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class Leptonica(CMakePackage): """Leptonica is an open source library containing software that is broadly useful for image processing and image analysis applications.""" homepage = "http://www.leptonica.org/" url = "https://github.com/DanBloomberg/leptonica/archive/1.80.0.tar.gz" version('1.81.0', sha256='70ebc04ff8b9684205bd1d01843c635a8521255b74813bf7cce9a33368f7952c') version('1.80.0', sha256='3952b974ec057d24267aae48c54bca68ead8275604bf084a73a4b953ff79196e') version('1.79.0', sha256='bf9716f91a4844c2682a07ef21eaf68b6f1077af1f63f27c438394fd66218e17') version('1.78.0', sha256='f8ac4d93cc76b524c2c81d27850bfc342e68b91368aa7a1f7d69e34ce13adbb4') depends_on('giflib') depends_on('jpeg') depends_on('libpng') depends_on('libtiff') depends_on('zlib') depends_on('libwebp+libwebpmux+libwebpdemux') depends_on('openjpeg') def cmake_args(self): args = ['-DBUILD_SHARED_LIBS=ON'] return args
36.424242
96
0.747088
794416df479daef93c1bab0a7691d36a756f96da
2,809
py
Python
test/testBigrandom.py
turkeydonkey/nzmath3
a48ae9efcf0d9ad1485c2e9863c948a7f1b20311
[ "BSD-3-Clause" ]
1
2021-05-26T19:22:17.000Z
2021-05-26T19:22:17.000Z
test/testBigrandom.py
turkeydonkey/nzmath3
a48ae9efcf0d9ad1485c2e9863c948a7f1b20311
[ "BSD-3-Clause" ]
null
null
null
test/testBigrandom.py
turkeydonkey/nzmath3
a48ae9efcf0d9ad1485c2e9863c948a7f1b20311
[ "BSD-3-Clause" ]
null
null
null
import unittest import random import nzmath.bigrandom as bigrandom class BigrandomTest(unittest.TestCase): def testUniform(self): trial_times = 100000 error_range = 0.03 dist = {} for i in range(5, 100, 10): dist[i] = 0 for i in range(trial_times): rnd = bigrandom.randrange(5, 100, 10) dist[rnd] += 1 for i in range(5, 100, 10): self.assertTrue(abs(0.1 - dist[i]/float(trial_times)) < error_range) dist = {} for i in range(trial_times): rnd = bigrandom.randrange(-1, 255) dist[rnd] = dist.get(rnd, 0) + 1 distkeys = list(dist.keys()) distkeys.sort() self.assertEqual(distkeys, list(range(-1, 255))) def testRange(self): for i in range(10000): start = random.randrange(-5000, 1)**3 stop = random.randrange(1, 5000)**3 step = random.randrange(1, 200) d = bigrandom.randrange(start, stop, step) self.assertEqual(0, (d - start) % step) self.assertTrue(start <= d < stop) d = bigrandom.randrange(start**2, -stop**2, -step) self.assertEqual(0, (d - start**2) % step) self.assertTrue(start**2 >= d > -stop**2) def testHugeRange(self): self.assertTrue(2 <= bigrandom.randrange(2, 10**500) < 10**500) def testValueError(self): self.assertRaises(ValueError, bigrandom.randrange, 1, 50, 0) self.assertRaises(ValueError, bigrandom.randrange, 0.5) self.assertRaises(ValueError, bigrandom.randrange, 3, 4.5) self.assertRaises(ValueError, bigrandom.randrange, 3, 20, 1.5) self.assertRaises(ValueError, bigrandom.randrange, 3, 2) self.assertRaises(ValueError, bigrandom.randrange, 3, 3) class ChoiceTest (unittest.TestCase): """ tests for bigrandom.map_choice """ def testidentity(self): i = lambda x: x self.assertTrue(0 <= bigrandom.map_choice(i, 2**100) < 2**100) def testeven(self): double = lambda x: x + x self.assertTrue(0 <= bigrandom.map_choice(double, 2**100) < 2**101) self.assertEqual(0, bigrandom.map_choice(double, 2**100) % 2) def testpartial(self): def odd(n): """ Return None for even numbers. """ if n % 2: return n self.assertEqual(1, bigrandom.map_choice(odd, 2**100) % 2) def suite(suffix="Test"): suite = unittest.TestSuite() all_names = globals() for name in all_names: if name.endswith(suffix): suite.addTest(unittest.makeSuite(all_names[name], "test")) return suite if __name__ == '__main__': runner = unittest.TextTestRunner() runner.run(suite())
32.662791
80
0.583838
79441890239767e34e3e7fb73b5ae643540904bd
6,386
py
Python
supplier/views.py
AntInso/GreaterWMS
9eabb1b9b0f5376dcccd89ed86dd76995955a8ec
[ "Apache-2.0" ]
1
2021-02-17T14:04:29.000Z
2021-02-17T14:04:29.000Z
supplier/views.py
AntInso/GreaterWMS
9eabb1b9b0f5376dcccd89ed86dd76995955a8ec
[ "Apache-2.0" ]
null
null
null
supplier/views.py
AntInso/GreaterWMS
9eabb1b9b0f5376dcccd89ed86dd76995955a8ec
[ "Apache-2.0" ]
null
null
null
from rest_framework import viewsets from .models import ListModel from . import serializers from utils.page import MyPageNumberPagination from rest_framework.filters import OrderingFilter from django_filters.rest_framework import DjangoFilterBackend from rest_framework.response import Response from .filter import Filter from rest_framework.exceptions import APIException from .serializers import FileRenderSerializer from django.http import StreamingHttpResponse from .files import FileRenderCN, FileRenderEN from rest_framework.settings import api_settings class APIViewSet(viewsets.ModelViewSet): """ retrieve: Response a data list(get) list: Response a data list(all) create: Create a data line(post) delete: Delete a data line(delete) partial_update: Partial_update a data(patch:partial_update) update: Update a data(put:update) """ queryset = ListModel.objects.all() serializer_class = serializers.SupplierGetSerializer pagination_class = MyPageNumberPagination filter_backends = [DjangoFilterBackend, OrderingFilter, ] ordering_fields = ['id', "create_time", "update_time", ] filter_class = Filter def get_project(self): try: id = self.kwargs.get('pk') return id except: return None def get_queryset(self): id = self.get_project() if self.request.user: if id is None: return self.queryset.filter(openid=self.request.auth.openid, is_delete=False) else: return self.queryset.filter(openid=self.request.auth.openid, id=id, is_delete=False) else: return self.queryset.none() def get_serializer_class(self): if self.action == 'list': return serializers.SupplierGetSerializer elif self.action == 'retrieve': return serializers.SupplierGetSerializer elif self.action == 'create': return serializers.SupplierPostSerializer elif self.action == 'update': return serializers.SupplierUpdateSerializer elif self.action == 'partial_update': return serializers.SupplierPartialUpdateSerializer elif self.action == 'destroy': return serializers.SupplierGetSerializer else: return self.http_method_not_allowed(request=self.request) def create(self, request, *args, **kwargs): data = request.data data['openid'] = request.auth.openid if self.queryset.filter(openid=data['openid'], supplier_name=data['supplier_name'], is_delete=False).exists(): raise APIException({"detail": "Data exists"}) else: serializer = self.get_serializer(data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def update(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot update data which not yours"}) else: data = request.data serializer = self.get_serializer(qs, data=data) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def partial_update(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot partial_update data which not yours"}) else: data = request.data serializer = self.get_serializer(qs, data=data, partial=True) serializer.is_valid(raise_exception=True) serializer.save() headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) def destroy(self, request, pk): qs = self.get_object() if qs.openid != request.auth.openid: raise APIException({"detail": "Cannot delete data which not yours"}) else: qs.is_delete = True qs.save() serializer = self.get_serializer(qs, many=False) headers = self.get_success_headers(serializer.data) return Response(serializer.data, status=200, headers=headers) class FileDownloadView(viewsets.ModelViewSet): queryset = ListModel.objects.all() serializer_class = serializers.FileRenderSerializer renderer_classes = (FileRenderCN, ) + tuple(api_settings.DEFAULT_RENDERER_CLASSES) filter_backends = [DjangoFilterBackend, OrderingFilter, ] ordering_fields = ['id', "create_time", "update_time", ] filter_class = Filter def get_project(self): try: id = self.kwargs.get('pk') return id except: return None def get_queryset(self): id = self.get_project() if self.request.user: if id is None: return self.queryset.filter(openid=self.request.auth.openid, is_delete=False) else: return self.queryset.filter(openid=self.request.auth.openid, id=id, is_delete=False) else: return self.queryset.none() def get_serializer_class(self): if self.action == 'list': return serializers.FileRenderSerializer else: return self.http_method_not_allowed(request=self.request) def list(self, request, *args, **kwargs): from datetime import datetime dt = datetime.now() data = ( FileRenderSerializer(instance).data for instance in self.get_queryset() ) if self.request.GET.get('lang', '') == 'zh-hans': renderer = FileRenderCN().render(data) else: renderer = FileRenderEN().render(data) response = StreamingHttpResponse( renderer, content_type="text/csv" ) response['Content-Disposition'] = "attachment; filename='supplier_{}.csv'".format(str(dt.strftime('%Y%m%d%H%M%S%f'))) return response
37.564706
125
0.638898
794418e81e9309e19899863cd7000b5f651591fd
3,024
py
Python
jes/jes-v5.020-linux/jes/python/jes/gui/explorers.py
utv-teaching/foundations-computer-science
568e19fd83a3355dab2814229f335abf31bfd7e9
[ "MIT" ]
null
null
null
jes/jes-v5.020-linux/jes/python/jes/gui/explorers.py
utv-teaching/foundations-computer-science
568e19fd83a3355dab2814229f335abf31bfd7e9
[ "MIT" ]
null
null
null
jes/jes-v5.020-linux/jes/python/jes/gui/explorers.py
utv-teaching/foundations-computer-science
568e19fd83a3355dab2814229f335abf31bfd7e9
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ jes.gui.explorers ================= This contains menu actions for launching the explorers. :copyright: (C) 2014 Matthew Frazier and Mark Guzdial :license: GNU GPL v2 or later, see jes/help/JESCopyright.txt for details """ import media from javax.swing import JOptionPane from jes.gui.components.actions import methodAction class Explorers(object): def __init__(self, parent, interpreter): self.parentWindow = parent self.interpreter = interpreter self.actions = [ self.loadSoundTool, self.loadPictureTool, self.loadFrameSequencerTool ] @methodAction(name="Sound Tool...") def loadSoundTool(self): """ Examines the user namespace for sounds, and presents a list for the user to pick from. Then, the sound is opened in the sound tool. """ self._openExplorer("Sound Tool", media.openSoundTool, "Sound", "sound", "sounds") @methodAction(name="Picture Tool...") def loadPictureTool(self): """ Examines the user namespace for pictures, and presents a list for the user to pick from. Then, the picture is opened in the picture tool. """ self._openExplorer("Picture Tool", media.openPictureTool, "Picture", "picture", "pictures") @methodAction(name="Movie Tool...") def loadFrameSequencerTool(self): """ Examines the user namespace for movies, and presents a list for the user to pick from. Then, the movie is opened in the frame sequencer tool. """ self._openExplorer("Frame Sequencer Tool", media.openFrameSequencerTool, "Movie", "movie", "movies") ### ### Internals ### def _openExplorer(self, toolName, explorer, cls, singular, plural): variables = self._findVariablesOfClass(cls) if len(variables) > 0: varname = self._showChoiceDialog( "Open %s" % toolName, "Choose a %s to examine: " % singular, variables.keys() ) if varname is not None: explorer(variables[varname]) else: self._showErrorDialog( "No %s" % plural, "There are no %s to examine." % plural ) def _findVariablesOfClass(self, cls): variables = {} for name, obj in self.interpreter.namespace.items(): if getattr(type(obj), '__name__', None) == cls: variables[name] = obj return variables def _showChoiceDialog(self, title, text, choices): return JOptionPane.showInputDialog( self.parentWindow, text, title, JOptionPane.INFORMATION_MESSAGE, None, choices, choices[0] ) def _showErrorDialog(self, title, text): JOptionPane.showMessageDialog( self.parentWindow, text, title, JOptionPane.ERROR_MESSAGE )
31.831579
80
0.59623
794418f285825356842c85de08d0bfa9e42a69f8
688
py
Python
setup.py
td2014/pkg_project
58778613ceb818e09bdd09764fb918dd132edebe
[ "MIT" ]
null
null
null
setup.py
td2014/pkg_project
58778613ceb818e09bdd09764fb918dd132edebe
[ "MIT" ]
null
null
null
setup.py
td2014/pkg_project
58778613ceb818e09bdd09764fb918dd132edebe
[ "MIT" ]
null
null
null
from setuptools import setup setup( # Needed to silence warnings (and to be a worthwhile package) name='Testpkg', url='https://github.com/td2014/pkg_project', author='Anthony Daniell', author_email='[email protected]', # Needed to actually package something packages=['testfuncpkg'], # Needed for dependencies install_requires=[''], # *strongly* suggested for sharing version='0.2', # The license can be anything you like license='MIT', description='An example of a python package from pre-existing code', # We will also need a readme eventually (there will be a warning) long_description=open('README.txt').read(), )
32.761905
72
0.693314
794418f41b4b9fbf3b17a8180aa363aec250ebe4
12,636
py
Python
UMLRT2Kiltera_MM/Properties/Multiplicity/models/New1orMoreNamePart2_Complete_MDL.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
3
2017-06-02T19:26:27.000Z
2021-06-14T04:25:45.000Z
UMLRT2Kiltera_MM/Properties/Multiplicity/models/New1orMoreNamePart2_Complete_MDL.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
8
2016-08-24T07:04:07.000Z
2017-05-26T16:22:47.000Z
UMLRT2Kiltera_MM/Properties/Multiplicity/models/New1orMoreNamePart2_Complete_MDL.py
levilucio/SyVOLT
7526ec794d21565e3efcc925a7b08ae8db27d46a
[ "MIT" ]
1
2019-10-31T06:00:23.000Z
2019-10-31T06:00:23.000Z
""" __New1orMoreNamePart2_Complete_MDL.py_____________________________________________________ Automatically generated AToM3 Model File (Do not modify directly) Author: gehan Modified: Mon Mar 2 13:56:28 2015 __________________________________________________________________________________________ """ from stickylink import * from widthXfillXdecoration import * from LHS import * from MT_pre__Name import * from MT_pre__New import * from MT_pre__directLink_T import * from graph_MT_pre__directLink_T import * from graph_LHS import * from graph_MT_pre__New import * from graph_MT_pre__Name import * from ATOM3Enum import * from ATOM3String import * from ATOM3BottomType import * from ATOM3Constraint import * from ATOM3Attribute import * from ATOM3Float import * from ATOM3List import * from ATOM3Link import * from ATOM3Connection import * from ATOM3Boolean import * from ATOM3Appearance import * from ATOM3Text import * from ATOM3Action import * from ATOM3Integer import * from ATOM3Port import * from ATOM3MSEnum import * def New1orMoreNamePart2_Complete_MDL(self, rootNode, MT_pre__UMLRT2Kiltera_MMRootNode=None, MoTifRuleRootNode=None): # --- Generating attributes code for ASG MT_pre__UMLRT2Kiltera_MM --- if( MT_pre__UMLRT2Kiltera_MMRootNode ): # author MT_pre__UMLRT2Kiltera_MMRootNode.author.setValue('Annonymous') # description MT_pre__UMLRT2Kiltera_MMRootNode.description.setValue('\n') MT_pre__UMLRT2Kiltera_MMRootNode.description.setHeight(15) # name MT_pre__UMLRT2Kiltera_MMRootNode.name.setValue('') MT_pre__UMLRT2Kiltera_MMRootNode.name.setNone() # --- ASG attributes over --- # --- Generating attributes code for ASG MoTifRule --- if( MoTifRuleRootNode ): # author MoTifRuleRootNode.author.setValue('Annonymous') # description MoTifRuleRootNode.description.setValue('\n') MoTifRuleRootNode.description.setHeight(15) # name MoTifRuleRootNode.name.setValue('New1orMoreNamePart2_Complete') # --- ASG attributes over --- self.obj123=LHS(self) self.obj123.isGraphObjectVisual = True if(hasattr(self.obj123, '_setHierarchicalLink')): self.obj123._setHierarchicalLink(False) # constraint self.obj123.constraint.setValue('#===============================================================================\n# This code is executed after the nodes in the LHS have been matched.\n# You can access a matched node labelled n by: PreNode(\'n\').\n# To access attribute x of node n, use: PreNode(\'n\')[\'x\'].\n# The given constraint must evaluate to a boolean expression:\n# returning True enables the rule to be applied,\n# returning False forbids the rule from being applied.\n#===============================================================================\n\nreturn True\n') self.obj123.constraint.setHeight(15) self.obj123.graphClass_= graph_LHS if self.genGraphics: new_obj = graph_LHS(20.0,40.0,self.obj123) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("LHS", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj123.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj123) self.globalAndLocalPostcondition(self.obj123, rootNode) self.obj123.postAction( rootNode.CREATE ) self.obj21147=MT_pre__Name(self) self.obj21147.isGraphObjectVisual = True if(hasattr(self.obj21147, '_setHierarchicalLink')): self.obj21147._setHierarchicalLink(False) # MT_pivotOut__ self.obj21147.MT_pivotOut__.setValue('') self.obj21147.MT_pivotOut__.setNone() # MT_subtypeMatching__ self.obj21147.MT_subtypeMatching__.setValue(('True', 0)) self.obj21147.MT_subtypeMatching__.config = 0 # MT_pre__classtype self.obj21147.MT_pre__classtype.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21147.MT_pre__classtype.setHeight(15) # MT_pivotIn__ self.obj21147.MT_pivotIn__.setValue('') self.obj21147.MT_pivotIn__.setNone() # MT_label__ self.obj21147.MT_label__.setValue('2') # MT_pre__cardinality self.obj21147.MT_pre__cardinality.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21147.MT_pre__cardinality.setHeight(15) # MT_pre__name self.obj21147.MT_pre__name.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21147.MT_pre__name.setHeight(15) self.obj21147.graphClass_= graph_MT_pre__Name if self.genGraphics: new_obj = graph_MT_pre__Name(160.0,220.0,self.obj21147) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__Name", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj21147.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj21147) self.globalAndLocalPostcondition(self.obj21147, rootNode) self.obj21147.postAction( rootNode.CREATE ) self.obj124=MT_pre__New(self) self.obj124.isGraphObjectVisual = True if(hasattr(self.obj124, '_setHierarchicalLink')): self.obj124._setHierarchicalLink(False) # MT_label__ self.obj124.MT_label__.setValue('1') # MT_pivotOut__ self.obj124.MT_pivotOut__.setValue('') self.obj124.MT_pivotOut__.setNone() # MT_subtypeMatching__ self.obj124.MT_subtypeMatching__.setValue(('True', 0)) self.obj124.MT_subtypeMatching__.config = 0 # MT_pre__classtype self.obj124.MT_pre__classtype.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj124.MT_pre__classtype.setHeight(15) # MT_pre__cardinality self.obj124.MT_pre__cardinality.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj124.MT_pre__cardinality.setHeight(15) # MT_pre__name self.obj124.MT_pre__name.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj124.MT_pre__name.setHeight(15) # MT_pivotIn__ self.obj124.MT_pivotIn__.setValue('element1') self.obj124.graphClass_= graph_MT_pre__New if self.genGraphics: new_obj = graph_MT_pre__New(40.0,60.0,self.obj124) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__New", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj124.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj124) self.globalAndLocalPostcondition(self.obj124, rootNode) self.obj124.postAction( rootNode.CREATE ) self.obj21148=MT_pre__directLink_T(self) self.obj21148.isGraphObjectVisual = True if(hasattr(self.obj21148, '_setHierarchicalLink')): self.obj21148._setHierarchicalLink(False) # MT_label__ self.obj21148.MT_label__.setValue('3') # MT_pivotOut__ self.obj21148.MT_pivotOut__.setValue('') self.obj21148.MT_pivotOut__.setNone() # MT_subtypeMatching__ self.obj21148.MT_subtypeMatching__.setValue(('True', 0)) self.obj21148.MT_subtypeMatching__.config = 0 # MT_pivotIn__ self.obj21148.MT_pivotIn__.setValue('') self.obj21148.MT_pivotIn__.setNone() # MT_pre__associationType self.obj21148.MT_pre__associationType.setValue('\n#===============================================================================\n# This code is executed when evaluating if a node shall be matched by this rule.\n# You can access the value of the current node\'s attribute value by: attr_value.\n# You can access any attribute x of this node by: this[\'x\'].\n# If the constraint relies on attribute values from other nodes,\n# use the LHS/NAC constraint instead.\n# The given constraint must evaluate to a boolean expression.\n#===============================================================================\n\nreturn True\n') self.obj21148.MT_pre__associationType.setHeight(15) self.obj21148.graphClass_= graph_MT_pre__directLink_T if self.genGraphics: new_obj = graph_MT_pre__directLink_T(317.0,241.0,self.obj21148) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MT_pre__directLink_T", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj21148.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj21148) self.globalAndLocalPostcondition(self.obj21148, rootNode) self.obj21148.postAction( rootNode.CREATE ) # Connections for obj123 (graphObject_: Obj0) of type LHS self.drawConnections( ) # Connections for obj21147 (graphObject_: Obj2) of type MT_pre__Name self.drawConnections( ) # Connections for obj124 (graphObject_: Obj1) of type MT_pre__New self.drawConnections( (self.obj124,self.obj21148,[257.0, 161.0, 317.0, 241.0],"true", 2) ) # Connections for obj21148 (graphObject_: Obj3) of type MT_pre__directLink_T self.drawConnections( (self.obj21148,self.obj21147,[317.0, 241.0, 377.0, 321.0],"true", 2) ) newfunction = New1orMoreNamePart2_Complete_MDL loadedMMName = ['MT_pre__UMLRT2Kiltera_MM_META', 'MoTifRule_META'] atom3version = '0.3'
51.786885
632
0.670149
794418f9e3885c53d962d39ad98998d30c4940e9
5,203
py
Python
litex_boards/targets/litefury.py
piotr-binkowski/litex-boards
bee71da7746c6fda0d4e1942452510e11f06c14a
[ "BSD-2-Clause" ]
1
2022-02-20T00:06:32.000Z
2022-02-20T00:06:32.000Z
litex_boards/targets/litefury.py
piotr-binkowski/litex-boards
bee71da7746c6fda0d4e1942452510e11f06c14a
[ "BSD-2-Clause" ]
null
null
null
litex_boards/targets/litefury.py
piotr-binkowski/litex-boards
bee71da7746c6fda0d4e1942452510e11f06c14a
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python3 # # This file is part of LiteX-Boards. # # Copyright (c) 2018-2019 Rohit Singh <[email protected]> # Copyright (c) 2019-2020 Florent Kermarrec <[email protected]> # SPDX-License-Identifier: BSD-2-Clause import os import argparse import sys from migen import * from litex_boards.platforms import litefury from litex.soc.interconnect.csr import * from litex.soc.integration.soc_core import * from litex.soc.integration.soc_sdram import * from litex.soc.integration.builder import * from litex.soc.cores.clock import * from litex.soc.cores.led import LedChaser from litedram.modules import AS4C256M16D3A from litedram.phy import s7ddrphy from litepcie.phy.s7pciephy import S7PCIEPHY from litepcie.software import generate_litepcie_software # CRG ---------------------------------------------------------------------------------------------- class CRG(Module): def __init__(self, platform, sys_clk_freq): self.rst = Signal() self.clock_domains.cd_sys = ClockDomain() self.clock_domains.cd_sys4x = ClockDomain(reset_less=True) self.clock_domains.cd_sys4x_dqs = ClockDomain(reset_less=True) self.clock_domains.cd_idelay = ClockDomain() # Clk/Rst clk200 = platform.request("clk200") # PLL self.submodules.pll = pll = S7PLL() self.comb += pll.reset.eq(self.rst) pll.register_clkin(clk200, 200e6) pll.create_clkout(self.cd_sys, sys_clk_freq) pll.create_clkout(self.cd_sys4x, 4*sys_clk_freq) pll.create_clkout(self.cd_sys4x_dqs, 4*sys_clk_freq, phase=90) pll.create_clkout(self.cd_idelay, 200e6) platform.add_false_path_constraints(self.cd_sys.clk, pll.clkin) # Ignore sys_clk to pll.clkin path created by SoC's rst. self.submodules.idelayctrl = S7IDELAYCTRL(self.cd_idelay) # BaseSoC ----------------------------------------------------------------------------------------- class BaseSoC(SoCCore): def __init__(self, sys_clk_freq=int(100e6), with_pcie=False, **kwargs): platform = litefury.Platform() # SoCCore ---------------------------------------------------------------------------------- SoCCore.__init__(self, platform, sys_clk_freq, ident = "LiteX SoC on LiteFury", ident_version = True, **kwargs) # CRG -------------------------------------------------------------------------------------- self.submodules.crg = CRG(platform, sys_clk_freq) # DDR3 SDRAM ------------------------------------------------------------------------------- if not self.integrated_main_ram_size: self.submodules.ddrphy = s7ddrphy.A7DDRPHY(platform.request("ddram"), memtype = "DDR3", nphases = 4, sys_clk_freq = sys_clk_freq, iodelay_clk_freq = 200e6) self.add_csr("ddrphy") self.add_sdram("sdram", phy = self.ddrphy, module = AS4C256M16D3A(sys_clk_freq, "1:4"), origin = self.mem_map["main_ram"], size = kwargs.get("max_sdram_size", 0x20000000), l2_cache_size = kwargs.get("l2_size", 8192), l2_cache_min_data_width = kwargs.get("min_l2_data_width", 128), l2_cache_reverse = True ) # PCIe ------------------------------------------------------------------------------------- if with_pcie: self.submodules.pcie_phy = S7PCIEPHY(platform, platform.request("pcie_x4"), data_width = 64, bar0_size = 0x20000) self.add_csr("pcie_phy") self.add_pcie(phy=self.pcie_phy, ndmas=1) # Leds ------------------------------------------------------------------------------------- self.submodules.leds = LedChaser( pads = platform.request_all("user_led"), sys_clk_freq = sys_clk_freq) self.add_csr("leds") # Build -------------------------------------------------------------------------------------------- def main(): parser = argparse.ArgumentParser(description="LiteX SoC on Aller") parser.add_argument("--build", action="store_true", help="Build bitstream") parser.add_argument("--sys-clk-freq", default=100e6, help="System clock frequency (default: 100MHz)") parser.add_argument("--with-pcie", action="store_true", help="Enable PCIe support") parser.add_argument("--driver", action="store_true", help="Generate LitePCIe driver") builder_args(parser) soc_sdram_args(parser) args = parser.parse_args() soc = BaseSoC( sys_clk_freq = int(float(args.sys_clk_freq)), with_pcie = args.with_pcie, **soc_sdram_argdict(args) ) builder = Builder(soc, **builder_argdict(args)) builder.build(run=args.build) if args.driver: generate_litepcie_software(soc, os.path.join(builder.output_dir, "driver")) if __name__ == "__main__": main()
40.333333
128
0.543917
794418fe354c4cb248aacb86012294e3cd555102
1,407
py
Python
test/SegOptRoadTest.py
YCaptain/MapWorld-pred
12f35cd0744cabe1303321e0256b17967fe43da9
[ "MIT" ]
null
null
null
test/SegOptRoadTest.py
YCaptain/MapWorld-pred
12f35cd0744cabe1303321e0256b17967fe43da9
[ "MIT" ]
null
null
null
test/SegOptRoadTest.py
YCaptain/MapWorld-pred
12f35cd0744cabe1303321e0256b17967fe43da9
[ "MIT" ]
null
null
null
import unittest import os import sys import cv2 import numpy as np from PIL import Image root_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) src_dir = os.path.join(root_dir, "src") sys.path.insert(0, src_dir) # change cwd to root dir os.chdir(root_dir) from utils.seg_opt import SegmentOutputUtil class SegOptTest(unittest.TestCase): @classmethod def setUpClass(self): pred = SegmentOutputUtil.load_img("tmp/results/a00d13ba_Road-Deeplab_0.png") w, h = pred.shape self.meta = { "w": w, "h": h } self.util = SegmentOutputUtil(pred, self.meta, "Road") self.pred = self.util.f_augment(pred) def test_road_postprocess(self): skel = self.pred for i in range(2): skel = self.util.get_skeleton(skel) kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) for i in range(4): skel = cv2.dilate(skel, kernel, iterations=5) skel = SegmentOutputUtil.connect_line(skel, 10, 1) mid_line = self.util.get_skeleton(skel) img = np.zeros(skel.shape).astype(np.uint8) img[skel == 255] = [50] img[mid_line == 255] = [255] alpha = Image.fromarray(skel) img = Image.merge('LA', [Image.fromarray(img), alpha]) img.show() if __name__ == '__main__': unittest.main()
26.055556
84
0.617626
79441986de492436d6bfae8ef3918d3f3e660314
4,022
py
Python
src/nsupdate/main/forms.py
mirzazulfan/nsupdate.info
fdd12e8f47d084969e23517fce4b8efa3212dd9e
[ "BSD-3-Clause" ]
774
2015-01-01T23:24:50.000Z
2022-03-29T01:40:41.000Z
src/nsupdate/main/forms.py
mirzazulfan/nsupdate.info
fdd12e8f47d084969e23517fce4b8efa3212dd9e
[ "BSD-3-Clause" ]
272
2015-01-02T12:23:41.000Z
2022-02-21T14:18:11.000Z
src/nsupdate/main/forms.py
mirzazulfan/nsupdate.info
fdd12e8f47d084969e23517fce4b8efa3212dd9e
[ "BSD-3-Clause" ]
100
2015-03-05T15:11:09.000Z
2022-03-09T18:39:39.000Z
# -*- coding: utf-8 -*- """ form definitions (which fields are available, order, autofocus, ...) """ import binascii from django import forms from django.utils.translation import ugettext_lazy as _ from .models import Host, RelatedHost, Domain, ServiceUpdaterHostConfig from .dnstools import check_domain, NameServerNotAvailable class CreateHostForm(forms.ModelForm): class Meta(object): model = Host fields = ['name', 'domain', 'comment'] widgets = { 'name': forms.widgets.TextInput(attrs=dict(autofocus=None)), } class EditHostForm(forms.ModelForm): class Meta(object): model = Host fields = ['comment', 'available', 'abuse', 'netmask_ipv4', 'netmask_ipv6'] netmask_ipv4 = forms.IntegerField(min_value=0, max_value=32) netmask_ipv6 = forms.IntegerField(min_value=0, max_value=64) class CreateRelatedHostForm(forms.ModelForm): class Meta(object): model = RelatedHost fields = ['name', 'comment', 'available', 'interface_id_ipv4', 'interface_id_ipv6'] widgets = { 'name': forms.widgets.TextInput(attrs=dict(autofocus=None)), } class EditRelatedHostForm(forms.ModelForm): class Meta(object): model = RelatedHost fields = ['name', 'comment', 'available', 'interface_id_ipv4', 'interface_id_ipv6'] class CreateDomainForm(forms.ModelForm): def clean_nameserver_update_secret(self): secret = self.cleaned_data['nameserver_update_secret'] try: binascii.a2b_base64(secret.encode(encoding="ascii", errors="strict")) except (binascii.Error, UnicodeEncodeError): raise forms.ValidationError(_("Enter a valid secret in base64 format."), code='invalid') return secret class Meta(object): model = Domain fields = ['name', 'nameserver_ip', 'nameserver2_ip', 'nameserver_update_algorithm', 'comment'] widgets = { 'name': forms.widgets.TextInput(attrs=dict(autofocus=None)), } class EditDomainForm(forms.ModelForm): def clean_nameserver_update_secret(self): secret = self.cleaned_data['nameserver_update_secret'] try: binascii.a2b_base64(secret.encode(encoding="ascii", errors="strict")) except (binascii.Error, UnicodeEncodeError): raise forms.ValidationError(_("Enter a valid secret in base64 format."), code='invalid') return secret def clean(self): cleaned_data = super(EditDomainForm, self).clean() if self.cleaned_data['available']: try: check_domain(self.instance.name) except (NameServerNotAvailable, ): raise forms.ValidationError( _("Failed to add/delete host connectivity-test.%(domain)s, check your DNS server configuration. " "This is a requirement for setting the available flag."), code='invalid', params={'domain': self.instance.name} ) if cleaned_data['public'] and not cleaned_data['available']: raise forms.ValidationError( _("Domain must be available to be public"), code='invalid') class Meta(object): model = Domain fields = ['comment', 'nameserver_ip', 'nameserver2_ip', 'public', 'available', 'nameserver_update_algorithm', 'nameserver_update_secret'] class CreateUpdaterHostConfigForm(forms.ModelForm): class Meta(object): model = ServiceUpdaterHostConfig fields = ['service', 'hostname', 'name', 'password', 'give_ipv4', 'give_ipv6', 'comment'] widgets = { 'hostname': forms.widgets.TextInput(attrs=dict(autofocus=None)), } class EditUpdaterHostConfigForm(forms.ModelForm): class Meta(object): model = ServiceUpdaterHostConfig fields = ['hostname', 'comment', 'name', 'password', 'give_ipv4', 'give_ipv6']
34.973913
117
0.636748
79441b1e0bd62fbb44e5f4005e7d63ea5562bc7f
4,381
py
Python
test_2_spin/activityTest.py
NoOneZero/Neuro
a3cf1e2a701ee0096f093d332237dc30f8f83a50
[ "Apache-2.0" ]
null
null
null
test_2_spin/activityTest.py
NoOneZero/Neuro
a3cf1e2a701ee0096f093d332237dc30f8f83a50
[ "Apache-2.0" ]
null
null
null
test_2_spin/activityTest.py
NoOneZero/Neuro
a3cf1e2a701ee0096f093d332237dc30f8f83a50
[ "Apache-2.0" ]
null
null
null
from common.activity import Activity from common.dataWriter import DataWriter from common.geneticAlgorithmParams import GeneticAlgorithmParams from common.monitor import Monitor from common.character import Character from test_2_spin.personTest import PersonTest from test_2_spin.characterTest import CharacterTest from test_2_spin.geneticAlgorithmParamsTest import GeneticAlgorithmParamsTest import datetime class ActivityTest(Activity): # test2 spin def __init__(self, monitor: Monitor = None, genetic_algorithm_params: GeneticAlgorithmParams = None, data_writer: DataWriter = None): super(ActivityTest, self).__init__(monitor, genetic_algorithm_params, data_writer) self.init(monitor, genetic_algorithm_params, data_writer) def init(self, monitor: Monitor = None, genetic_algorithm_params: GeneticAlgorithmParams = None, data_writer: DataWriter = None): self._system_init(monitor) self._simulation_params_init(genetic_algorithm_params) self._character_init() self._enemy_init() self._environment_init() self._data_writer_init(data_writer) def _system_init(self, monitor: Monitor = None) -> None: self.monitor = monitor or Monitor() def _simulation_params_init(self, genetic_algorithm_params: GeneticAlgorithmParams = None) -> None: self.epoch = 0 self.iteration = 0 self.is_epoch_work: bool = True self.is_iteration_work: bool = True self.start_time = datetime.datetime.now() self.genetic_algorithm_params = genetic_algorithm_params or GeneticAlgorithmParams() def _character_init(self) -> None: self.character = [] for i in range(self.genetic_algorithm_params._start_population): self.character.append(Character()) def _enemy_init(self) -> None: pass def _environment_init(self) -> None: pass def _data_writer_init(self, data_writer: DataWriter = None) -> None: self.data_writer = data_writer or DataWriter() def loop(self) -> None: while self.is_epoch_work: self._run_iteration_cycle() self._calculate_fitness_function_epoch() self._save_character_data() self._create_new_population() self._check_loop_epoch_condition() def _run_iteration_cycle(self) -> None: while self.is_iteration_work: self._control_input() self._move_environment() self._collide_environment() self._move_enemies() self._collide_enemies() self._kill_enemies() self._move_character() self._collide_character() self._kill_character() self._calculate_fitness_function_iteration() self._draw_all() self._write_data_on_screen() self._check_loop_iteration_condition() def _control_input(self): self.monitor.control_input() def _move_environment(self): pass def _collide_environment(self): pass def _move_enemies(self): pass def _collide_enemies(self): pass def _kill_enemies(self): pass def _move_character(self): pass def _collide_character(self): pass def _kill_character(self): pass def _calculate_fitness_function_iteration(self): pass def _draw_all(self): self.monitor.draw(environment=[], enemies=[], character=self.character) def _write_data_on_screen(self): self.monitor.write_data_on_screen("Test e:{}, i:{}".format(self.epoch, self.iteration)) def _check_loop_iteration_condition(self): self.iteration += 1 if self.iteration >= self.genetic_algorithm_params.get_max_iteration(): self.is_iteration_work = False def _calculate_fitness_function_epoch(self): pass def _save_character_data(self) -> None:pass def _create_new_population(self) -> None: pass def _check_loop_epoch_condition(self) -> None: self._count_epoch() self._check_stop_epoch_condition() def _count_epoch(self) -> None: self.epoch += 1 def _check_stop_epoch_condition(self) -> None: if self.epoch >= self.genetic_algorithm_params.get_max_epoch(): self.is_epoch_work = False else: self.is_iteration_work = True self.iteration = 0
34.769841
103
0.692079
79441b232333dac519c67804b8e816b2608ecf04
691
py
Python
var/spack/repos/builtin/packages/r-splancs/package.py
jameshclrk/spack
1f8fcb36091e1d5ae63a2279a958ca3ff57088bf
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2021-03-19T13:12:47.000Z
2021-03-19T13:12:47.000Z
var/spack/repos/builtin/packages/r-splancs/package.py
jameshclrk/spack
1f8fcb36091e1d5ae63a2279a958ca3ff57088bf
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2019-01-11T20:11:52.000Z
2019-01-11T20:11:52.000Z
var/spack/repos/builtin/packages/r-splancs/package.py
jameshclrk/spack
1f8fcb36091e1d5ae63a2279a958ca3ff57088bf
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2020-10-14T14:20:17.000Z
2020-10-14T14:20:17.000Z
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RSplancs(RPackage): """Spatial and Space-Time Point Pattern Analysis""" homepage = "https://cran.r-project.org/web/packages/splancs/index.html" url = "https://cran.r-project.org/src/contrib/splancs_2.01-40.tar.gz" list_url = "https://cran.r-project.org/src/contrib/Archive/splancs" version('2.01-40', 'dc08a5c9a1fd2098d78459152f4917ce') depends_on('[email protected]:', type=('build', 'run')) depends_on('[email protected]:', type=('build', 'run'))
34.55
78
0.700434
79441bab58a27e0ddf9b50eea20b4b45964154a9
738
py
Python
molsysmt/item/string_pdb_id/to_file_msmpk.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
molsysmt/item/string_pdb_id/to_file_msmpk.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
molsysmt/item/string_pdb_id/to_file_msmpk.py
uibcdf/MolModMTs
4f6b6f671a9fa3e73008d1e9c48686d5f20a6573
[ "MIT" ]
null
null
null
from molsysmt._private.exceptions import * from molsysmt._private.digestion import * def to_file_msmpk(item, atom_indices='all', structure_indices='all', output_filename=None, check=True): if check: digest_item(item, 'string:pdb_id') atom_indices = digest_atom_indices(atom_indices) structure_indices = digest_structure_indices(structure_indices) from . import to_molsysmt_MolSys from ..molsysmt_MolSys import to_file_msmpk as molsysmt_MolSys_to_file_msmpk tmp_item = to_molsysmt_MolSys(item, atom_indices=atom_indices, structure_indices=structure_indices, check=False) tmp_item = molsysmt_MolSys_to_file_msmpk(tmp_item, output_filename=output_filename, check=False) return tmp_item
36.9
116
0.789973
79441c96878079111a3e18f23aba2127ced1c309
45,590
py
Python
discord/channel.py
LetsChill/discord.py
7e373441fc8502f30e60272737c0074d424373d0
[ "MIT" ]
null
null
null
discord/channel.py
LetsChill/discord.py
7e373441fc8502f30e60272737c0074d424373d0
[ "MIT" ]
null
null
null
discord/channel.py
LetsChill/discord.py
7e373441fc8502f30e60272737c0074d424373d0
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import time import asyncio import discord.abc from .permissions import Permissions from .enums import ChannelType, try_enum, VoiceRegion from .mixins import Hashable from . import utils from .asset import Asset from .errors import ClientException, NoMoreItems, InvalidArgument __all__ = ( 'TextChannel', 'VoiceChannel', 'DMChannel', 'CategoryChannel', 'StoreChannel', 'GroupChannel', '_channel_factory', ) async def _single_delete_strategy(messages): for m in messages: await m.delete() class TextChannel(discord.abc.Messageable, discord.abc.GuildChannel, Hashable): """Represents a Discord guild text channel. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the channel's hash. .. describe:: str(x) Returns the channel's name. Attributes ----------- name: :class:`str` The channel name. guild: :class:`Guild` The guild the channel belongs to. id: :class:`int` The channel ID. category_id: Optional[:class:`int`] The category channel ID this channel belongs to, if applicable. topic: Optional[:class:`str`] The channel's topic. ``None`` if it doesn't exist. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. last_message_id: Optional[:class:`int`] The last message ID of the message sent to this channel. It may *not* point to an existing or valid message. slowmode_delay: :class:`int` The number of seconds a member must wait between sending messages in this channel. A value of `0` denotes that it is disabled. Bots and users with :attr:`~Permissions.manage_channels` or :attr:`~Permissions.manage_messages` bypass slowmode. """ __slots__ = ('name', 'id', 'guild', 'topic', '_state', 'nsfw', 'category_id', 'position', 'slowmode_delay', '_overwrites', '_type', 'last_message_id') def __init__(self, *, state, guild, data): self._state = state self.id = int(data['id']) self._type = data['type'] self._update(guild, data) def __repr__(self): attrs = [ ('id', self.id), ('name', self.name), ('position', self.position), ('nsfw', self.nsfw), ('news', self.is_news()), ('category_id', self.category_id) ] return '<%s %s>' % (self.__class__.__name__, ' '.join('%s=%r' % t for t in attrs)) def _update(self, guild, data): self.guild = guild self.name = data['name'] self.category_id = utils._get_as_snowflake(data, 'parent_id') self.topic = data.get('topic') self.position = data['position'] self.nsfw = data.get('nsfw', False) # Does this need coercion into `int`? No idea yet. self.slowmode_delay = data.get('rate_limit_per_user', 0) self._type = data.get('type', self._type) self.last_message_id = utils._get_as_snowflake(data, 'last_message_id') self._fill_overwrites(data) async def _get_channel(self): return self @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return try_enum(ChannelType, self._type) @property def _sorting_bucket(self): return ChannelType.text.value @utils.copy_doc(discord.abc.GuildChannel.permissions_for) def permissions_for(self, member): base = super().permissions_for(member) # text channels do not have voice related permissions denied = Permissions.voice() base.value &= ~denied.value return base @property def members(self): """List[:class:`Member`]: Returns all members that can see this channel.""" return [m for m in self.guild.members if self.permissions_for(m).read_messages] def is_nsfw(self): """:class:`bool`: Checks if the channel is NSFW.""" return self.nsfw def is_news(self): """:class:`bool`: Checks if the channel is a news channel.""" return self._type == ChannelType.news.value @property def last_message(self): """Fetches the last message from this channel in cache. The message might not be valid or point to an existing message. .. admonition:: Reliable Fetching :class: helpful For a slightly more reliable method of fetching the last message, consider using either :meth:`history` or :meth:`fetch_message` with the :attr:`last_message_id` attribute. Returns --------- Optional[:class:`Message`] The last message in this channel or ``None`` if not found. """ return self._state._get_message(self.last_message_id) if self.last_message_id else None async def edit(self, *, reason=None, **options): """|coro| Edits the channel. You must have the :attr:`~Permissions.manage_channels` permission to use this. .. versionchanged:: 1.3 The ``overwrites`` keyword-only parameter was added. .. versionchanged:: 1.4 The ``type`` keyword-only parameter was added. Parameters ---------- name: :class:`str` The new channel name. topic: :class:`str` The new channel's topic. position: :class:`int` The new channel's position. nsfw: :class:`bool` To mark the channel as NSFW or not. sync_permissions: :class:`bool` Whether to sync permissions with the channel's new or pre-existing category. Defaults to ``False``. category: Optional[:class:`CategoryChannel`] The new category for this channel. Can be ``None`` to remove the category. slowmode_delay: :class:`int` Specifies the slowmode rate limit for user in this channel, in seconds. A value of `0` disables slowmode. The maximum value possible is `21600`. type: :class:`ChannelType` Change the type of this text channel. Currently, only conversion between :attr:`ChannelType.text` and :attr:`ChannelType.news` is supported. This is only available to guilds that contain ``NEWS`` in :attr:`Guild.features`. reason: Optional[:class:`str`] The reason for editing this channel. Shows up on the audit log. overwrites: :class:`dict` A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply to the channel. Raises ------ InvalidArgument If position is less than 0 or greater than the number of channels, or if the permission overwrite information is not in proper form. Forbidden You do not have permissions to edit the channel. HTTPException Editing the channel failed. """ await self._edit(options, reason=reason) @utils.copy_doc(discord.abc.GuildChannel.clone) async def clone(self, *, name=None, reason=None): return await self._clone_impl({ 'topic': self.topic, 'nsfw': self.nsfw, 'rate_limit_per_user': self.slowmode_delay }, name=name, reason=reason) async def delete_messages(self, messages): """|coro| Deletes a list of messages. This is similar to :meth:`Message.delete` except it bulk deletes multiple messages. As a special case, if the number of messages is 0, then nothing is done. If the number of messages is 1 then single message delete is done. If it's more than two, then bulk delete is used. You cannot bulk delete more than 100 messages or messages that are older than 14 days old. You must have the :attr:`~Permissions.manage_messages` permission to use this. Usable only by bot accounts. Parameters ----------- messages: Iterable[:class:`abc.Snowflake`] An iterable of messages denoting which ones to bulk delete. Raises ------ ClientException The number of messages to delete was more than 100. Forbidden You do not have proper permissions to delete the messages or you're not using a bot account. NotFound If single delete, then the message was already deleted. HTTPException Deleting the messages failed. """ if not isinstance(messages, (list, tuple)): messages = list(messages) if len(messages) == 0: return # do nothing if len(messages) == 1: message_id = messages[0].id await self._state.http.delete_message(self.id, message_id) return if len(messages) > 100: raise ClientException('Can only bulk delete messages up to 100 messages') message_ids = [m.id for m in messages] await self._state.http.delete_messages(self.id, message_ids) async def purge(self, *, limit=100, check=None, before=None, after=None, around=None, oldest_first=False, bulk=True): """|coro| Purges a list of messages that meet the criteria given by the predicate ``check``. If a ``check`` is not provided then all messages are deleted without discrimination. You must have the :attr:`~Permissions.manage_messages` permission to delete messages even if they are your own (unless you are a user account). The :attr:`~Permissions.read_message_history` permission is also needed to retrieve message history. Internally, this employs a different number of strategies depending on the conditions met such as if a bulk delete is possible or if the account is a user bot or not. Examples --------- Deleting bot's messages :: def is_me(m): return m.author == client.user deleted = await channel.purge(limit=100, check=is_me) await channel.send('Deleted {} message(s)'.format(len(deleted))) Parameters ----------- limit: Optional[:class:`int`] The number of messages to search through. This is not the number of messages that will be deleted, though it can be. check: Callable[[:class:`Message`], :class:`bool`] The function used to check if a message should be deleted. It must take a :class:`Message` as its sole parameter. before: Optional[Union[:class:`abc.Snowflake`, :class:`datetime.datetime`]] Same as ``before`` in :meth:`history`. after: Optional[Union[:class:`abc.Snowflake`, :class:`datetime.datetime`]] Same as ``after`` in :meth:`history`. around: Optional[Union[:class:`abc.Snowflake`, :class:`datetime.datetime`]] Same as ``around`` in :meth:`history`. oldest_first: Optional[:class:`bool`] Same as ``oldest_first`` in :meth:`history`. bulk: :class:`bool` If ``True``, use bulk delete. Setting this to ``False`` is useful for mass-deleting a bot's own messages without :attr:`Permissions.manage_messages`. When ``True``, will fall back to single delete if current account is a user bot (now deprecated), or if messages are older than two weeks. Raises ------- Forbidden You do not have proper permissions to do the actions required. HTTPException Purging the messages failed. Returns -------- List[:class:`.Message`] The list of messages that were deleted. """ if check is None: check = lambda m: True iterator = self.history(limit=limit, before=before, after=after, oldest_first=oldest_first, around=around) ret = [] count = 0 minimum_time = int((time.time() - 14 * 24 * 60 * 60) * 1000.0 - 1420070400000) << 22 strategy = self.delete_messages if self._state.is_bot and bulk else _single_delete_strategy while True: try: msg = await iterator.next() except NoMoreItems: # no more messages to poll if count >= 2: # more than 2 messages -> bulk delete to_delete = ret[-count:] await strategy(to_delete) elif count == 1: # delete a single message await ret[-1].delete() return ret else: if count == 100: # we've reached a full 'queue' to_delete = ret[-100:] await strategy(to_delete) count = 0 await asyncio.sleep(1) if check(msg): if msg.id < minimum_time: # older than 14 days old if count == 1: await ret[-1].delete() elif count >= 2: to_delete = ret[-count:] await strategy(to_delete) count = 0 strategy = _single_delete_strategy count += 1 ret.append(msg) async def webhooks(self): """|coro| Gets the list of webhooks from this channel. Requires :attr:`~.Permissions.manage_webhooks` permissions. Raises ------- Forbidden You don't have permissions to get the webhooks. Returns -------- List[:class:`Webhook`] The webhooks for this channel. """ from .webhook import Webhook data = await self._state.http.channel_webhooks(self.id) return [Webhook.from_state(d, state=self._state) for d in data] async def create_webhook(self, *, name, avatar=None, reason=None): """|coro| Creates a webhook for this channel. Requires :attr:`~.Permissions.manage_webhooks` permissions. .. versionchanged:: 1.1 Added the ``reason`` keyword-only parameter. Parameters ------------- name: :class:`str` The webhook's name. avatar: Optional[:class:`bytes`] A :term:`py:bytes-like object` representing the webhook's default avatar. This operates similarly to :meth:`~ClientUser.edit`. reason: Optional[:class:`str`] The reason for creating this webhook. Shows up in the audit logs. Raises ------- HTTPException Creating the webhook failed. Forbidden You do not have permissions to create a webhook. Returns -------- :class:`Webhook` The created webhook. """ from .webhook import Webhook if avatar is not None: avatar = utils._bytes_to_base64_data(avatar) data = await self._state.http.create_webhook(self.id, name=str(name), avatar=avatar, reason=reason) return Webhook.from_state(data, state=self._state) async def follow(self, *, destination, reason=None): """ Follows a channel using a webhook. Only news channels can be followed. .. note:: The webhook returned will not provide a token to do webhook actions, as Discord does not provide it. .. versionadded:: 1.3 Parameters ----------- destination: :class:`TextChannel` The channel you would like to follow from. reason: Optional[:class:`str`] The reason for following the channel. Shows up on the destination guild's audit log. .. versionadded:: 1.4 Raises ------- HTTPException Following the channel failed. Forbidden You do not have the permissions to create a webhook. Returns -------- :class:`Webhook` The created webhook. """ if not self.is_news(): raise ClientException('The channel must be a news channel.') if not isinstance(destination, TextChannel): raise InvalidArgument('Expected TextChannel received {0.__name__}'.format(type(destination))) from .webhook import Webhook data = await self._state.http.follow_webhook(self.id, webhook_channel_id=destination.id, reason=reason) return Webhook._as_follower(data, channel=destination, user=self._state.user) def get_partial_message(self, message_id): """Creates a :class:`PartialMessage` from the message ID. This is useful if you want to work with a message and only have its ID without doing an unnecessary API call. .. versionadded:: 1.6 Parameters ------------ message_id: :class:`int` The message ID to create a partial message for. Returns --------- :class:`PartialMessage` The partial message. """ from .message import PartialMessage return PartialMessage(channel=self, id=message_id) class VoiceChannel(discord.abc.Connectable, discord.abc.GuildChannel, Hashable): """Represents a Discord guild voice channel. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the channel's hash. .. describe:: str(x) Returns the channel's name. Attributes ----------- name: :class:`str` The channel name. guild: :class:`Guild` The guild the channel belongs to. id: :class:`int` The channel ID. category_id: Optional[:class:`int`] The category channel ID this channel belongs to, if applicable. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. bitrate: :class:`int` The channel's preferred audio bitrate in bits per second. user_limit: :class:`int` The channel's limit for number of members that can be in a voice channel. rtc_region: Optional[:class:`VoiceRegion`] The region for the voice channel's voice communication. A value of ``None`` indicates automatic voice region detection. .. versionadded:: 1.7 """ __slots__ = ('name', 'id', 'guild', 'bitrate', 'user_limit', '_state', 'position', '_overwrites', 'category_id', 'rtc_region') def __init__(self, *, state, guild, data): self._state = state self.id = int(data['id']) self._update(guild, data) def __repr__(self): attrs = [ ('id', self.id), ('name', self.name), ('rtc_region', self.rtc_region), ('position', self.position), ('bitrate', self.bitrate), ('user_limit', self.user_limit), ('category_id', self.category_id) ] return '<%s %s>' % (self.__class__.__name__, ' '.join('%s=%r' % t for t in attrs)) def _get_voice_client_key(self): return self.guild.id, 'guild_id' def _get_voice_state_pair(self): return self.guild.id, self.id @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return ChannelType.voice def _update(self, guild, data): self.guild = guild self.name = data['name'] self.rtc_region = data.get('rtc_region') if self.rtc_region: self.rtc_region = try_enum(VoiceRegion, self.rtc_region) self.category_id = utils._get_as_snowflake(data, 'parent_id') self.position = data['position'] self.bitrate = data.get('bitrate') self.user_limit = data.get('user_limit') self._fill_overwrites(data) @property def _sorting_bucket(self): return ChannelType.voice.value @property def members(self): """List[:class:`Member`]: Returns all members that are currently inside this voice channel.""" ret = [] for user_id, state in self.guild._voice_states.items(): if state.channel.id == self.id: member = self.guild.get_member(user_id) if member is not None: ret.append(member) return ret @property def voice_states(self): """Returns a mapping of member IDs who have voice states in this channel. .. versionadded:: 1.3 .. note:: This function is intentionally low level to replace :attr:`members` when the member cache is unavailable. Returns -------- Mapping[:class:`int`, :class:`VoiceState`] The mapping of member ID to a voice state. """ return {key: value for key, value in self.guild._voice_states.items() if value.channel.id == self.id} @utils.copy_doc(discord.abc.GuildChannel.permissions_for) def permissions_for(self, member): base = super().permissions_for(member) # voice channels cannot be edited by people who can't connect to them # It also implicitly denies all other voice perms if not base.connect: denied = Permissions.voice() denied.update(manage_channels=True, manage_roles=True) base.value &= ~denied.value return base @utils.copy_doc(discord.abc.GuildChannel.clone) async def clone(self, *, name=None, reason=None): return await self._clone_impl({ 'bitrate': self.bitrate, 'user_limit': self.user_limit }, name=name, reason=reason) async def edit(self, *, reason=None, **options): """|coro| Edits the channel. You must have the :attr:`~Permissions.manage_channels` permission to use this. .. versionchanged:: 1.3 The ``overwrites`` keyword-only parameter was added. Parameters ---------- name: :class:`str` The new channel's name. bitrate: :class:`int` The new channel's bitrate. user_limit: :class:`int` The new channel's user limit. position: :class:`int` The new channel's position. sync_permissions: :class:`bool` Whether to sync permissions with the channel's new or pre-existing category. Defaults to ``False``. category: Optional[:class:`CategoryChannel`] The new category for this channel. Can be ``None`` to remove the category. reason: Optional[:class:`str`] The reason for editing this channel. Shows up on the audit log. overwrites: :class:`dict` A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply to the channel. rtc_region: Optional[:class:`VoiceRegion`] The new region for the voice channel's voice communication. A value of ``None`` indicates automatic voice region detection. .. versionadded:: 1.7 Raises ------ InvalidArgument If the permission overwrite information is not in proper form. Forbidden You do not have permissions to edit the channel. HTTPException Editing the channel failed. """ await self._edit(options, reason=reason) class CategoryChannel(discord.abc.GuildChannel, Hashable): """Represents a Discord channel category. These are useful to group channels to logical compartments. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the category's hash. .. describe:: str(x) Returns the category's name. Attributes ----------- name: :class:`str` The category name. guild: :class:`Guild` The guild the category belongs to. id: :class:`int` The category channel ID. position: :class:`int` The position in the category list. This is a number that starts at 0. e.g. the top category is position 0. """ __slots__ = ('name', 'id', 'guild', 'nsfw', '_state', 'position', '_overwrites', 'category_id') def __init__(self, *, state, guild, data): self._state = state self.id = int(data['id']) self._update(guild, data) def __repr__(self): return '<CategoryChannel id={0.id} name={0.name!r} position={0.position} nsfw={0.nsfw}>'.format(self) def _update(self, guild, data): self.guild = guild self.name = data['name'] self.category_id = utils._get_as_snowflake(data, 'parent_id') self.nsfw = data.get('nsfw', False) self.position = data['position'] self._fill_overwrites(data) @property def _sorting_bucket(self): return ChannelType.category.value @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return ChannelType.category def is_nsfw(self): """:class:`bool`: Checks if the category is NSFW.""" return self.nsfw @utils.copy_doc(discord.abc.GuildChannel.clone) async def clone(self, *, name=None, reason=None): return await self._clone_impl({ 'nsfw': self.nsfw }, name=name, reason=reason) async def edit(self, *, reason=None, **options): """|coro| Edits the channel. You must have the :attr:`~Permissions.manage_channels` permission to use this. .. versionchanged:: 1.3 The ``overwrites`` keyword-only parameter was added. Parameters ---------- name: :class:`str` The new category's name. position: :class:`int` The new category's position. nsfw: :class:`bool` To mark the category as NSFW or not. reason: Optional[:class:`str`] The reason for editing this category. Shows up on the audit log. overwrites: :class:`dict` A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply to the channel. Raises ------ InvalidArgument If position is less than 0 or greater than the number of categories. Forbidden You do not have permissions to edit the category. HTTPException Editing the category failed. """ await self._edit(options=options, reason=reason) @utils.copy_doc(discord.abc.GuildChannel.move) async def move(self, **kwargs): kwargs.pop('category', None) await super().move(**kwargs) @property def channels(self): """List[:class:`abc.GuildChannel`]: Returns the channels that are under this category. These are sorted by the official Discord UI, which places voice channels below the text channels. """ def comparator(channel): return (not isinstance(channel, TextChannel), channel.position) ret = [c for c in self.guild.channels if c.category_id == self.id] ret.sort(key=comparator) return ret @property def text_channels(self): """List[:class:`TextChannel`]: Returns the text channels that are under this category.""" ret = [c for c in self.guild.channels if c.category_id == self.id and isinstance(c, TextChannel)] ret.sort(key=lambda c: (c.position, c.id)) return ret @property def voice_channels(self): """List[:class:`VoiceChannel`]: Returns the voice channels that are under this category.""" ret = [c for c in self.guild.channels if c.category_id == self.id and isinstance(c, VoiceChannel)] ret.sort(key=lambda c: (c.position, c.id)) return ret async def create_text_channel(self, name, *, overwrites=None, reason=None, **options): """|coro| A shortcut method to :meth:`Guild.create_text_channel` to create a :class:`TextChannel` in the category. Returns ------- :class:`TextChannel` The channel that was just created. """ return await self.guild.create_text_channel(name, overwrites=overwrites, category=self, reason=reason, **options) async def create_voice_channel(self, name, *, overwrites=None, reason=None, **options): """|coro| A shortcut method to :meth:`Guild.create_voice_channel` to create a :class:`VoiceChannel` in the category. Returns ------- :class:`VoiceChannel` The channel that was just created. """ return await self.guild.create_voice_channel(name, overwrites=overwrites, category=self, reason=reason, **options) class StoreChannel(discord.abc.GuildChannel, Hashable): """Represents a Discord guild store channel. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the channel's hash. .. describe:: str(x) Returns the channel's name. Attributes ----------- name: :class:`str` The channel name. guild: :class:`Guild` The guild the channel belongs to. id: :class:`int` The channel ID. category_id: :class:`int` The category channel ID this channel belongs to. position: :class:`int` The position in the channel list. This is a number that starts at 0. e.g. the top channel is position 0. """ __slots__ = ('name', 'id', 'guild', '_state', 'nsfw', 'category_id', 'position', '_overwrites',) def __init__(self, *, state, guild, data): self._state = state self.id = int(data['id']) self._update(guild, data) def __repr__(self): return '<StoreChannel id={0.id} name={0.name!r} position={0.position} nsfw={0.nsfw}>'.format(self) def _update(self, guild, data): self.guild = guild self.name = data['name'] self.category_id = utils._get_as_snowflake(data, 'parent_id') self.position = data['position'] self.nsfw = data.get('nsfw', False) self._fill_overwrites(data) @property def _sorting_bucket(self): return ChannelType.text.value @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return ChannelType.store @utils.copy_doc(discord.abc.GuildChannel.permissions_for) def permissions_for(self, member): base = super().permissions_for(member) # store channels do not have voice related permissions denied = Permissions.voice() base.value &= ~denied.value return base def is_nsfw(self): """:class:`bool`: Checks if the channel is NSFW.""" return self.nsfw @utils.copy_doc(discord.abc.GuildChannel.clone) async def clone(self, *, name=None, reason=None): return await self._clone_impl({ 'nsfw': self.nsfw }, name=name, reason=reason) async def edit(self, *, reason=None, **options): """|coro| Edits the channel. You must have the :attr:`~Permissions.manage_channels` permission to use this. Parameters ---------- name: :class:`str` The new channel name. position: :class:`int` The new channel's position. nsfw: :class:`bool` To mark the channel as NSFW or not. sync_permissions: :class:`bool` Whether to sync permissions with the channel's new or pre-existing category. Defaults to ``False``. category: Optional[:class:`CategoryChannel`] The new category for this channel. Can be ``None`` to remove the category. reason: Optional[:class:`str`] The reason for editing this channel. Shows up on the audit log. overwrites: :class:`dict` A :class:`dict` of target (either a role or a member) to :class:`PermissionOverwrite` to apply to the channel. .. versionadded:: 1.3 Raises ------ InvalidArgument If position is less than 0 or greater than the number of channels, or if the permission overwrite information is not in proper form. Forbidden You do not have permissions to edit the channel. HTTPException Editing the channel failed. """ await self._edit(options, reason=reason) class DMChannel(discord.abc.Messageable, Hashable): """Represents a Discord direct message channel. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the channel's hash. .. describe:: str(x) Returns a string representation of the channel Attributes ---------- recipient: :class:`User` The user you are participating with in the direct message channel. me: :class:`ClientUser` The user presenting yourself. id: :class:`int` The direct message channel ID. """ __slots__ = ('id', 'recipient', 'me', '_state') def __init__(self, *, me, state, data): self._state = state self.recipient = state.store_user(data['recipients'][0]) self.me = me self.id = int(data['id']) async def _get_channel(self): return self def __str__(self): return 'Direct Message with %s' % self.recipient def __repr__(self): return '<DMChannel id={0.id} recipient={0.recipient!r}>'.format(self) @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return ChannelType.private @property def created_at(self): """:class:`datetime.datetime`: Returns the direct message channel's creation time in UTC.""" return utils.snowflake_time(self.id) def permissions_for(self, user=None): """Handles permission resolution for a :class:`User`. This function is there for compatibility with other channel types. Actual direct messages do not really have the concept of permissions. This returns all the Text related permissions set to ``True`` except: - :attr:`~Permissions.send_tts_messages`: You cannot send TTS messages in a DM. - :attr:`~Permissions.manage_messages`: You cannot delete others messages in a DM. Parameters ----------- user: :class:`User` The user to check permissions for. This parameter is ignored but kept for compatibility. Returns -------- :class:`Permissions` The resolved permissions. """ base = Permissions.text() base.send_tts_messages = False base.manage_messages = False return base def get_partial_message(self, message_id): """Creates a :class:`PartialMessage` from the message ID. This is useful if you want to work with a message and only have its ID without doing an unnecessary API call. .. versionadded:: 1.6 Parameters ------------ message_id: :class:`int` The message ID to create a partial message for. Returns --------- :class:`PartialMessage` The partial message. """ from .message import PartialMessage return PartialMessage(channel=self, id=message_id) class GroupChannel(discord.abc.Messageable, Hashable): """Represents a Discord group channel. .. container:: operations .. describe:: x == y Checks if two channels are equal. .. describe:: x != y Checks if two channels are not equal. .. describe:: hash(x) Returns the channel's hash. .. describe:: str(x) Returns a string representation of the channel Attributes ---------- recipients: List[:class:`User`] The users you are participating with in the group channel. me: :class:`ClientUser` The user presenting yourself. id: :class:`int` The group channel ID. owner: :class:`User` The user that owns the group channel. icon: Optional[:class:`str`] The group channel's icon hash if provided. name: Optional[:class:`str`] The group channel's name if provided. """ __slots__ = ('id', 'recipients', 'owner', 'icon', 'name', 'me', '_state') def __init__(self, *, me, state, data): self._state = state self.id = int(data['id']) self.me = me self._update_group(data) def _update_group(self, data): owner_id = utils._get_as_snowflake(data, 'owner_id') self.icon = data.get('icon') self.name = data.get('name') try: self.recipients = [self._state.store_user(u) for u in data['recipients']] except KeyError: pass if owner_id == self.me.id: self.owner = self.me else: self.owner = utils.find(lambda u: u.id == owner_id, self.recipients) async def _get_channel(self): return self def __str__(self): if self.name: return self.name if len(self.recipients) == 0: return 'Unnamed' return ', '.join(map(lambda x: x.name, self.recipients)) def __repr__(self): return '<GroupChannel id={0.id} name={0.name!r}>'.format(self) @property def type(self): """:class:`ChannelType`: The channel's Discord type.""" return ChannelType.group @property def icon_url(self): """:class:`Asset`: Returns the channel's icon asset if available. This is equivalent to calling :meth:`icon_url_as` with the default parameters ('webp' format and a size of 1024). """ return self.icon_url_as() def icon_url_as(self, *, format='webp', size=1024): """Returns an :class:`Asset` for the icon the channel has. The format must be one of 'webp', 'jpeg', 'jpg' or 'png'. The size must be a power of 2 between 16 and 4096. .. versionadded:: 2.0 Parameters ----------- format: :class:`str` The format to attempt to convert the icon to. Defaults to 'webp'. size: :class:`int` The size of the image to display. Raises ------ InvalidArgument Bad image format passed to ``format`` or invalid ``size``. Returns -------- :class:`Asset` The resulting CDN asset. """ return Asset._from_icon(self._state, self, 'channel', format=format, size=size) @property def created_at(self): """:class:`datetime.datetime`: Returns the channel's creation time in UTC.""" return utils.snowflake_time(self.id) def permissions_for(self, user): """Handles permission resolution for a :class:`User`. This function is there for compatibility with other channel types. Actual direct messages do not really have the concept of permissions. This returns all the Text related permissions set to ``True`` except: - :attr:`~Permissions.send_tts_messages`: You cannot send TTS messages in a DM. - :attr:`~Permissions.manage_messages`: You cannot delete others messages in a DM. This also checks the kick_members permission if the user is the owner. Parameters ----------- user: :class:`User` The user to check permissions for. Returns -------- :class:`Permissions` The resolved permissions for the user. """ base = Permissions.text() base.send_tts_messages = False base.manage_messages = False base.mention_everyone = True if user.id == self.owner.id: base.kick_members = True return base @utils.deprecated() async def add_recipients(self, *recipients): r"""|coro| Adds recipients to this group. A group can only have a maximum of 10 members. Attempting to add more ends up in an exception. To add a recipient to the group, you must have a relationship with the user of type :attr:`RelationshipType.friend`. .. deprecated:: 1.7 Parameters ----------- \*recipients: :class:`User` An argument list of users to add to this group. Raises ------- HTTPException Adding a recipient to this group failed. """ # TODO: wait for the corresponding WS event req = self._state.http.add_group_recipient for recipient in recipients: await req(self.id, recipient.id) @utils.deprecated() async def remove_recipients(self, *recipients): r"""|coro| Removes recipients from this group. .. deprecated:: 1.7 Parameters ----------- \*recipients: :class:`User` An argument list of users to remove from this group. Raises ------- HTTPException Removing a recipient from this group failed. """ # TODO: wait for the corresponding WS event req = self._state.http.remove_group_recipient for recipient in recipients: await req(self.id, recipient.id) @utils.deprecated() async def edit(self, **fields): """|coro| Edits the group. .. deprecated:: 1.7 Parameters ----------- name: Optional[:class:`str`] The new name to change the group to. Could be ``None`` to remove the name. icon: Optional[:class:`bytes`] A :term:`py:bytes-like object` representing the new icon. Could be ``None`` to remove the icon. Raises ------- HTTPException Editing the group failed. """ try: icon_bytes = fields['icon'] except KeyError: pass else: if icon_bytes is not None: fields['icon'] = utils._bytes_to_base64_data(icon_bytes) data = await self._state.http.edit_group(self.id, **fields) self._update_group(data) async def leave(self): """|coro| Leave the group. If you are the only one in the group, this deletes it as well. Raises ------- HTTPException Leaving the group failed. """ await self._state.http.leave_group(self.id) def _channel_factory(channel_type): value = try_enum(ChannelType, channel_type) if value is ChannelType.text: return TextChannel, value elif value is ChannelType.voice: return VoiceChannel, value elif value is ChannelType.private: return DMChannel, value elif value is ChannelType.category: return CategoryChannel, value elif value is ChannelType.group: return GroupChannel, value elif value is ChannelType.news: return TextChannel, value elif value is ChannelType.store: return StoreChannel, value else: return None, value
32.287535
122
0.594494
79441de90b7e221371f7f7b0a944999b83d7b907
2,222
py
Python
pur_beurre/urls.py
NicolasFlandrois/Pure-Beurre
b64db344e3eabed8b123a6127fe0d038da53ff6e
[ "MIT" ]
null
null
null
pur_beurre/urls.py
NicolasFlandrois/Pure-Beurre
b64db344e3eabed8b123a6127fe0d038da53ff6e
[ "MIT" ]
7
2020-02-12T03:27:56.000Z
2022-03-12T00:12:09.000Z
pur_beurre/urls.py
NicolasFlandrois/PurBeurre-LinuxDeploy
de0a6677647fd6df5f4856dc6ac42275dae6aff4
[ "MIT" ]
2
2020-01-17T11:23:27.000Z
2021-02-15T10:54:19.000Z
"""pur_beurre URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.contrib.auth import views as auth_views from django.urls import path, include from users import views as user_views urlpatterns = [ path('admin/', admin.site.urls), path('register/', user_views.register, name='register'), path('profile/', user_views.profile, name='profile'), path('login/', auth_views.LoginView.as_view(template_name='users/login.html'), name='login'), path('logout/', auth_views.LogoutView.as_view( template_name='users/logout.html'), name='logout'), path('password-reset/', auth_views.PasswordResetView.as_view( template_name='users/password_reset.html'), name='password_reset'), path('password-reset/done/', auth_views.PasswordResetDoneView.as_view( template_name='users/password_reset_done.html'), name='password_reset_done'), path('password-reset-confirm/<uidb64>/<token>/', auth_views.PasswordResetConfirmView.as_view( template_name='users/password_reset_confirm.html'), name='password_reset_confirm'), path('password-reset-complete/', auth_views.PasswordResetCompleteView.as_view( template_name='users/password_reset_complete.html'), name='password_reset_complete'), path('snacks/', include('snacks.urls')), path('', include('home.urls')), ] if settings.DEBUG: urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
35.83871
77
0.69622
79441fdcef6acdc19af3bdef58942f4ee3737ae0
1,653
py
Python
mysite1/urls.py
mohsenbjp/mysite1
8a8b8b4009bf16fe391fc64c8bf9d41f7f2e32a4
[ "MIT" ]
null
null
null
mysite1/urls.py
mohsenbjp/mysite1
8a8b8b4009bf16fe391fc64c8bf9d41f7f2e32a4
[ "MIT" ]
null
null
null
mysite1/urls.py
mohsenbjp/mysite1
8a8b8b4009bf16fe391fc64c8bf9d41f7f2e32a4
[ "MIT" ]
null
null
null
from django.conf import settings from django.conf.urls.static import static from django.contrib import admin from django.urls import path,include, re_path from .views import * from django.contrib.sitemaps.views import sitemap from .sitemaps import StaticViewSitemap from blog.sitemaps import BlogSitemap from django.contrib.auth import views as auth_views sitemaps={'static':StaticViewSitemap,'blog':BlogSitemap,} app_name="mysite1" urlpatterns = [ path('admin/', admin.site.urls), path('',index,name='index'), path('about/',about,name='about'), path('elements/',elements,name='elements'), path('contact/',contact,name='contact'), path('blog/',include('blog.urls')), path('summernote/',include('django_summernote.urls')), path('sitemap.xml',sitemap,{'sitemaps':sitemaps},name='django.contrib.sitemaps.views.sitemap'), path('robots.txt',include('robots.urls')), path('accounts/', include('allauth.urls')), # re_path(r"^.*",maintenance), re_path(r'^password-reset/$', auth_views.PasswordResetView.as_view(), name='password_reset'), re_path(r'^password-reset/done/$', auth_views.PasswordResetDoneView.as_view(), name='password_reset_done'), re_path(r'^password-reset/confirm/(?P<uidb64>[-\w]+)/(?P<token>[-\w]+)/$', auth_views.PasswordResetConfirmView.as_view(), name='password_reset_confirm'), re_path(r'^password-reset/complete/$', auth_views.PasswordResetCompleteView.as_view(), name='password_reset_complete'), ] urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
45.916667
111
0.733817
79442011bbb74a04f1407311593e82ee84c6d4b0
298
py
Python
Task1F.py
myrsinisem/python
0ce7a5d1f174252aaff542e955416f8203facf63
[ "MIT" ]
null
null
null
Task1F.py
myrsinisem/python
0ce7a5d1f174252aaff542e955416f8203facf63
[ "MIT" ]
null
null
null
Task1F.py
myrsinisem/python
0ce7a5d1f174252aaff542e955416f8203facf63
[ "MIT" ]
null
null
null
from floodsystem.stationdata import build_station_list from floodsystem.station import inconsistent_typical_range_stations stations=build_station_list() inconsistent_stations=inconsistent_typical_range_stations(stations) sorted_stations=sorted(inconsistent_stations) print(sorted_stations)
37.25
68
0.889262
794420437de53d647c65dade6ec8304a0558dc36
8,329
py
Python
qiskit/aqua/components/neural_networks/pytorch_discriminator.py
MartenSkogh/qiskit-aqua
4a997e6328e06e250212ef82c9414ad16834b7c6
[ "Apache-2.0" ]
2
2020-04-09T17:27:41.000Z
2021-01-15T04:27:07.000Z
qiskit/aqua/components/neural_networks/pytorch_discriminator.py
MartenSkogh/qiskit-aqua
4a997e6328e06e250212ef82c9414ad16834b7c6
[ "Apache-2.0" ]
2
2020-04-21T19:59:47.000Z
2020-04-26T21:36:47.000Z
qiskit/aqua/components/neural_networks/pytorch_discriminator.py
MartenSkogh/qiskit-aqua
4a997e6328e06e250212ef82c9414ad16834b7c6
[ "Apache-2.0" ]
1
2021-01-17T16:29:26.000Z
2021-01-17T16:29:26.000Z
# This code is part of Qiskit. # # (C) Copyright IBM 2019, 2020. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """ PyTorch Discriminator Neural Network """ from typing import Dict, Any import os import logging import numpy as np from qiskit.aqua import MissingOptionalLibraryError from .discriminative_network import DiscriminativeNetwork logger = logging.getLogger(__name__) try: import torch from torch import nn, optim from torch.autograd.variable import Variable _HAS_TORCH = True except ImportError: _HAS_TORCH = False class PyTorchDiscriminator(DiscriminativeNetwork): """ Discriminator based on PyTorch """ def __init__(self, n_features: int = 1, n_out: int = 1) -> None: """ Args: n_features: Dimension of input data vector. n_out: Dimension of the discriminator's output vector. Raises: MissingOptionalLibraryError: Pytorch not installed """ super().__init__() if not _HAS_TORCH: raise MissingOptionalLibraryError( libname='Pytorch', name='PyTorchDiscriminator', pip_install='pip install qiskit-aqua[torch]') self._n_features = n_features self._n_out = n_out # discriminator_net: torch.nn.Module or None, Discriminator network. # pylint: disable=import-outside-toplevel from ._pytorch_discriminator_net import DiscriminatorNet self._discriminator = DiscriminatorNet(self._n_features, self._n_out) # optimizer: torch.optim.Optimizer or None, Optimizer initialized w.r.t # discriminator network parameters. self._optimizer = optim.Adam(self._discriminator.parameters(), lr=1e-5, amsgrad=True) self._ret = {} # type: Dict[str, Any] def set_seed(self, seed: int): """ Set seed. Args: seed: seed """ torch.manual_seed(seed) def save_model(self, snapshot_dir: str): """ Save discriminator model Args: snapshot_dir: directory path for saving the model """ torch.save(self._discriminator, os.path.join(snapshot_dir, 'discriminator.pt')) def load_model(self, load_dir: str): """ Load discriminator model Args: load_dir: file with stored pytorch discriminator model to be loaded """ torch.load(load_dir) @property def discriminator_net(self): """ Get discriminator Returns: object: discriminator object """ return self._discriminator @discriminator_net.setter def discriminator_net(self, net): self._discriminator = net def get_label(self, x, detach=False): # pylint: disable=arguments-differ """ Get data sample labels, i.e. true or fake. Args: x (Union(numpy.ndarray, torch.Tensor)): Discriminator input, i.e. data sample. detach (bool): if None detach from torch tensor variable (optional) Returns: torch.Tensor: Discriminator output, i.e. data label """ # pylint: disable=not-callable, no-member if isinstance(x, torch.Tensor): pass else: x = torch.tensor(x, dtype=torch.float32) x = Variable(x) if detach: return self._discriminator.forward(x).detach().numpy() else: return self._discriminator.forward(x) def loss(self, x, y, weights=None): """ Loss function Args: x (torch.Tensor): Discriminator output. y (torch.Tensor): Label of the data point weights (torch.Tensor): Data weights. Returns: torch.Tensor: Loss w.r.t to the generated data points. """ if weights is not None: loss_funct = nn.BCELoss(weight=weights, reduction='sum') else: loss_funct = nn.BCELoss() return loss_funct(x, y) def gradient_penalty(self, x, lambda_=5., k=0.01, c=1.): """ Compute gradient penalty for discriminator optimization Args: x (numpy.ndarray): Generated data sample. lambda_ (float): Gradient penalty coefficient 1. k (float): Gradient penalty coefficient 2. c (float): Gradient penalty coefficient 3. Returns: torch.Tensor: Gradient penalty. """ # pylint: disable=not-callable, no-member if isinstance(x, torch.Tensor): pass else: x = torch.tensor(x, dtype=torch.float32) x = Variable(x) # pylint: disable=no-member delta_ = torch.rand(x.size()) * c z = Variable(x + delta_, requires_grad=True) o_l = self.get_label(z) # pylint: disable=no-member d_g = torch.autograd.grad(o_l, z, grad_outputs=torch.ones(o_l.size()), create_graph=True)[0].view(z.size(0), -1) return lambda_ * ((d_g.norm(p=2, dim=1) - k)**2).mean() def train(self, data, weights, penalty=True, quantum_instance=None, shots=None) -> Dict[str, Any]: """ Perform one training step w.r.t. to the discriminator's parameters Args: data (tuple): real_batch: torch.Tensor, Training data batch. generated_batch: numpy array, Generated data batch. weights (tuple): real problem, generated problem penalty (bool): Indicate whether or not penalty function is applied to the loss function. quantum_instance (QuantumInstance): Quantum Instance (depreciated) shots (int): Number of shots for hardware or qasm execution. Not used for classical network (only quantum ones) Returns: dict: with Discriminator loss (torch.Tensor) and updated parameters (array). """ # pylint: disable=E1101 # pylint: disable=E1102 # Reset gradients self._optimizer.zero_grad() real_batch = data[0] real_prob = weights[0] generated_batch = data[1] generated_prob = weights[1] real_batch = np.reshape(real_batch, (len(real_batch), 1)) real_batch = torch.tensor(real_batch, dtype=torch.float32) real_batch = Variable(real_batch) real_prob = np.reshape(real_prob, (len(real_prob), 1)) real_prob = torch.tensor(real_prob, dtype=torch.float32) # Train on Real Data prediction_real = self.get_label(real_batch) # Calculate error and back propagate error_real = self.loss(prediction_real, torch.ones(len(prediction_real), 1), real_prob) error_real.backward() # Train on Generated Data generated_batch = np.reshape(generated_batch, (len(generated_batch), self._n_features)) generated_prob = np.reshape(generated_prob, (len(generated_prob), 1)) generated_prob = torch.tensor(generated_prob, dtype=torch.float32) prediction_fake = self.get_label(generated_batch) # Calculate error and back propagate error_fake = self.loss(prediction_fake, torch.zeros(len(prediction_fake), 1), generated_prob) error_fake.backward() if penalty: self.gradient_penalty(real_batch).backward() # pylint: enable=E1101 # pylint: enable=E1102 # Update weights with gradients self._optimizer.step() # Return error and predictions for real and fake inputs loss_ret = 0.5 * (error_real + error_fake) self._ret['loss'] = loss_ret.detach().numpy() params = [] for param in self._discriminator.parameters(): params.append(param.data.detach().numpy()) self._ret['params'] = params return self._ret
33.316
95
0.616521
79442084adbdda8063cb80ec1f604cb8cebe05c3
5,303
py
Python
src/dirbs/api/common/apidoc.py
nealmadhu/DIRBS-Core
5afac86233c56d28e1c76d1291c2a1fec302be6f
[ "BSD-3-Clause-Clear" ]
null
null
null
src/dirbs/api/common/apidoc.py
nealmadhu/DIRBS-Core
5afac86233c56d28e1c76d1291c2a1fec302be6f
[ "BSD-3-Clause-Clear" ]
null
null
null
src/dirbs/api/common/apidoc.py
nealmadhu/DIRBS-Core
5afac86233c56d28e1c76d1291c2a1fec302be6f
[ "BSD-3-Clause-Clear" ]
1
2022-02-09T10:55:13.000Z
2022-02-09T10:55:13.000Z
""" Subclass FlaskApiSpec to add support for documenting multiple API versions. Copyright (c) 2018 Qualcomm Technologies, Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted (subject to the limitations in the disclaimer below) provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Qualcomm Technologies, Inc. nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ from apispec import APISpec from flask import Blueprint, url_for from flask_apispec.extension import FlaskApiSpec from flask_apispec.apidoc import ViewConverter, ResourceConverter class ApiDoc(FlaskApiSpec): """Override base FlaskApiSpec constructor.""" def __init__(self, app, *, version): """Constructor.""" self.title = 'DIRBS Core' self.version = version self.apidoc_ui_url = '/apidocs/{0}/'.format(self.version) self.apidoc_json_url = '/apidocs-json/{0}/'.format(self.version) self._deferred = [] self.app = app self.view_converter = None self.resource_converter = None self.spec = None self.app = app self.init_app() def init_app(self): """Override base init_app method.""" self.view_converter = ViewConverter(self.app) self.resource_converter = ResourceConverter(self.app) self.spec = APISpec( title=self.title, version=self.version, info={'description': self.top_level_description}, plugins=['apispec.ext.marshmallow'] ) self.add_swagger_routes() for deferred in self._deferred: deferred() def add_swagger_routes(self): """Override base add_swagger_routes method. Define blueprint for the OpenAPI spec to be served. """ spec_blueprint = Blueprint( 'flask-apispec-{0}'.format(self.version), FlaskApiSpec.__module__, static_folder='./static', template_folder='./templates', static_url_path='/flask-apispec/static', ) @spec_blueprint.context_processor def override_url_for(): return dict(url_for=custom_url_for) def custom_url_for(endpoint, **values): endpoint = endpoint.replace('flask-apispec', 'flask-apispec-{0}'.format(self.version)) return url_for(endpoint, **values) spec_blueprint.add_url_rule(self.apidoc_json_url, 'swagger-json', self.swagger_json) spec_blueprint.add_url_rule(self.apidoc_ui_url, 'swagger-ui', self.swagger_ui) self.app.register_blueprint(spec_blueprint) @property def top_level_description(self): """Generate text for top level API document description.""" description = 'The document lists the APIs exposed by DIRBS Core system. ' \ 'The APIs provide programmatic access to read data from DIRBS Core. ' \ 'This documentation was built using Swagger UI. ' \ 'Swagger UI allows users to visualize and interact with the API\'s resources ' \ 'without having any of the implementation logic in place. ' \ '\n' \ '## MIME Types ' \ '\n' \ 'The Core API supports [RFC 6838](https://tools.ietf.org/html/rfc6838) ' \ 'compliant media types:' \ '\n\t * application/json' \ '\n' \ '## HTML Status Codes and Error Handling ' \ '\n' \ 'The Core API will attempt to send the appropriate HTML status codes. ' \ 'On error, the request response will contain details about the error cause when possible.' \ '\n\n' \ 'Copyright \xA9 2018 Qualcomm Technologies, Inc. All rights reserved.' return description
44.191667
118
0.659815
7944215484f01c0cc7e88804d849097b4e5338ed
542
py
Python
ctapipe/instrument/__init__.py
chaimain/ctapipe
ff80cff2daaf56e1d05ea6501c68fd83a9cf79d5
[ "BSD-3-Clause" ]
53
2015-06-23T15:24:20.000Z
2021-09-23T22:30:58.000Z
ctapipe/instrument/__init__.py
chaimain/ctapipe
ff80cff2daaf56e1d05ea6501c68fd83a9cf79d5
[ "BSD-3-Clause" ]
1,537
2015-06-24T11:27:16.000Z
2022-03-31T16:17:08.000Z
ctapipe/instrument/__init__.py
chaimain/ctapipe
ff80cff2daaf56e1d05ea6501c68fd83a9cf79d5
[ "BSD-3-Clause" ]
275
2015-07-09T14:09:28.000Z
2022-03-17T22:25:51.000Z
from .camera import CameraDescription, CameraGeometry, CameraReadout, PixelShape from .atmosphere import get_atmosphere_profile_functions from .telescope import TelescopeDescription from .optics import OpticsDescription from .subarray import SubarrayDescription from .guess import guess_telescope __all__ = [ "CameraDescription", "CameraGeometry", "CameraReadout", "get_atmosphere_profile_functions", "TelescopeDescription", "OpticsDescription", "SubarrayDescription", "guess_telescope", "PixelShape", ]
27.1
80
0.784133
7944220a2dc51977c32494a25b813c0b851840b2
2,772
py
Python
web_console_v2/api/fedlearner_webconsole/rpc/client.py
zhenv5/fedlearner
a8ff0eaef48e174d432a40d23d12c1f57e842ebd
[ "Apache-2.0" ]
null
null
null
web_console_v2/api/fedlearner_webconsole/rpc/client.py
zhenv5/fedlearner
a8ff0eaef48e174d432a40d23d12c1f57e842ebd
[ "Apache-2.0" ]
null
null
null
web_console_v2/api/fedlearner_webconsole/rpc/client.py
zhenv5/fedlearner
a8ff0eaef48e174d432a40d23d12c1f57e842ebd
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 The FedLearner Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf-8 # pylint: disable=broad-except import grpc from fedlearner_webconsole.proto import ( service_pb2, service_pb2_grpc, common_pb2 ) from fedlearner_webconsole.project.models import Project def _build_channel(url, authority): """A helper function to build gRPC channel for easy testing.""" return grpc.insecure_channel( target=url, # options defined at # https://github.com/grpc/grpc/blob/master/include/grpc/impl/codegen/grpc_types.h options={ 'grpc.default_authority': authority, }) class RpcClient(object): def __init__(self, project_name, receiver_name): project = Project.query.filter_by( name=project_name).first() assert project is not None, \ 'project {} not found'.format(project_name) self._project = project.get_config() assert receiver_name in self._project.participants, \ 'receiver {} not found'.format(receiver_name) self._receiver = self._project.participants[receiver_name] self._client = service_pb2_grpc.WebConsoleV2ServiceStub(_build_channel( self._receiver.grpc_spec.url, self._receiver.grpc_spec.authority )) def _get_metadata(self): metadata = [] for key, value in self._receiver.grpc_spec.extra_headers.items(): metadata.append((key, value)) # metadata is a tuple of tuples return tuple(metadata) def check_connection(self): msg = service_pb2.CheckConnectionRequest( auth_info=service_pb2.ProjAuthInfo( project_name=self._project.project_name, sender_name=self._project.self_name, receiver_name=self._receiver.name, auth_token=self._receiver.sender_auth_token)) try: response = self._client.CheckConnection( request=msg, metadata=self._get_metadata()) return response.status except Exception as e: return common_pb2.Status( code=common_pb2.STATUS_UNKNOWN_ERROR, msg=repr(e))
37.459459
93
0.669192
794425cdbeb8519eb234565a8d18ef5955bec7ba
2,549
py
Python
opsrest/handlers/login.py
chinhtle/ops-restd
ab3599a0b8b4df99c35b3f99de6948b2c41630d5
[ "Apache-2.0" ]
null
null
null
opsrest/handlers/login.py
chinhtle/ops-restd
ab3599a0b8b4df99c35b3f99de6948b2c41630d5
[ "Apache-2.0" ]
null
null
null
opsrest/handlers/login.py
chinhtle/ops-restd
ab3599a0b8b4df99c35b3f99de6948b2c41630d5
[ "Apache-2.0" ]
null
null
null
# Copyright (C) 2015-2016 Hewlett Packard Enterprise Development LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tornado import gen from tornado.log import app_log import re import httplib import userauth from opsrest.handlers import base from opsrest.exceptions import APIException, AuthenticationFailed from opsrest.constants import USERNAME_KEY from opsrest.utils.userutils import check_user_login_authorization from opsrest.utils.utils import redirect_http_to_https class LoginHandler(base.BaseHandler): # pass the application reference to the handlers def initialize(self, ref_object): self.error_message = None # Overwrite BaseHandler's prepare, as LoginHandler does not # require authentication check prior to other operations def prepare(self): try: redirect_http_to_https(self) except Exception as e: self.on_exception(e) @gen.coroutine def get(self): try: app_log.debug("Executing Login GET...") is_authenticated = userauth.is_user_authenticated(self) if not is_authenticated: raise AuthenticationFailed else: self.set_status(httplib.OK) except APIException as e: self.on_exception(e) except Exception as e: self.on_exception(e) self.finish() @gen.coroutine def post(self): try: app_log.debug("Executing Login POST...") username = self.get_argument(USERNAME_KEY) check_user_login_authorization(username) login_success = userauth.handle_user_login(self) if not login_success: raise AuthenticationFailed('invalid username/password ' 'combination') else: self.set_status(httplib.OK) except APIException as e: self.on_exception(e) except Exception as e: self.on_exception(e) self.finish()
29.639535
76
0.667713
7944266b51bda6fcf8d4ad047a250d21fe76b746
376
py
Python
lib/util.py
underc0de/reaper
ec74c8de08a57edfd4df745aad9c8c216c57f9d8
[ "MIT" ]
null
null
null
lib/util.py
underc0de/reaper
ec74c8de08a57edfd4df745aad9c8c216c57f9d8
[ "MIT" ]
null
null
null
lib/util.py
underc0de/reaper
ec74c8de08a57edfd4df745aad9c8c216c57f9d8
[ "MIT" ]
null
null
null
from time import strftime, localtime, time def get_time(): """ Return the time """ return strftime("%H:%M:%S", localtime(time())) def read_file(file_name): """ Return the content of a File """ with open(file_name, 'rb') as f: return f.read() def write_file(file_name): """ Write content to a File """ with open(file_name, 'w+b') as f: return f
16.347826
50
0.62766
79442671dd7f8fbef8d98188d73e50cba0635592
34,188
py
Python
pandas/io/excel/_base.py
Alvinwuzw/pandas
2d4372111e1a79058faa5ddd6bc0a9a73648a33a
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/io/excel/_base.py
Alvinwuzw/pandas
2d4372111e1a79058faa5ddd6bc0a9a73648a33a
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/io/excel/_base.py
Alvinwuzw/pandas
2d4372111e1a79058faa5ddd6bc0a9a73648a33a
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
import abc import datetime from io import BufferedIOBase, BytesIO, RawIOBase import os from textwrap import fill from typing import Any, Mapping, Union from pandas._config import config from pandas._libs.parsers import STR_NA_VALUES from pandas._typing import StorageOptions from pandas.errors import EmptyDataError from pandas.util._decorators import Appender, deprecate_nonkeyword_arguments from pandas.core.dtypes.common import is_bool, is_float, is_integer, is_list_like from pandas.core.frame import DataFrame from pandas.io.common import ( IOArgs, get_filepath_or_buffer, is_url, stringify_path, urlopen, validate_header_arg, ) from pandas.io.excel._util import ( fill_mi_header, get_default_writer, get_writer, maybe_convert_usecols, pop_header_name, ) from pandas.io.parsers import TextParser _read_excel_doc = ( """ Read an Excel file into a pandas DataFrame. Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions read from a local filesystem or URL. Supports an option to read a single sheet or a list of sheets. Parameters ---------- io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.xlsx``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sheet_name : str, int, list, or None, default 0 Strings are used for sheet names. Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. Available cases: * Defaults to ``0``: 1st sheet as a `DataFrame` * ``1``: 2nd sheet as a `DataFrame` * ``"Sheet1"``: Load sheet with name "Sheet1" * ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5" as a dict of `DataFrame` * None: All sheets. header : int, list of int, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a ``MultiIndex``. Use None if there is no header. names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None. index_col : int, list of int, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a ``MultiIndex``. If a subset of data is selected with ``usecols``, index_col is based on the subset. usecols : int, str, list-like, or callable default None * If None, then parse all columns. * If str, then indicates comma separated list of Excel column letters and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of both sides. * If list of int, then indicates list of column numbers to be parsed. * If list of string, then indicates list of column names to be parsed. .. versionadded:: 0.24.0 * If callable, then evaluate each column name against it and parse the column if the callable returns ``True``. Returns a subset of the columns according to behavior above. .. versionadded:: 0.24.0 squeeze : bool, default False If the parsed data only contains one column then return a Series. dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} Use `object` to preserve data as stored in Excel and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : str, default None If io is not a buffer or path, this must be set to identify io. Supported engines: "xlrd", "openpyxl", "odf", "pyxlsb", default "xlrd". Engine compatibility : - "xlrd" supports most old/new Excel file formats. - "openpyxl" supports newer Excel file formats. - "odf" supports OpenDocument file formats (.odf, .ods, .odt). - "pyxlsb" supports Binary Excel files. converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True. false_values : list, default None Values to consider as False. skiprows : list-like, int, or callable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. nrows : int, default None Number of rows to parse. na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. parse_dates : bool, list-like, or dict, default False The behavior is as follows: * bool. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call result 'foo' If a column or index contains an unparseable date, the entire column or index will be returned unaltered as an object data type. If you don`t want to parse some cells as date just change their type in Excel to "Text". For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``. Note: A fast-path exists for iso8601-formatted dates. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skipfooter : int, default 0 Rows at the end to skip (0-indexed). convert_float : bool, default True Convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally. mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. storage_options : dict, optional Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc., if using a URL that will be parsed by ``fsspec``, e.g., starting "s3://", "gcs://". An error will be raised if providing this argument with a local path or a file-like buffer. See the fsspec and backend storage implementation docs for the set of allowed keys and values. .. versionadded:: 1.2.0 Returns ------- DataFrame or dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a dict of DataFrames is returned. See Also -------- DataFrame.to_excel : Write DataFrame to an Excel file. DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- The file can be read using the file name as string or an open file object: >>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP Name Value 0 string1 1 1 string2 2 2 #Comment 3 >>> pd.read_excel(open('tmp.xlsx', 'rb'), ... sheet_name='Sheet3') # doctest: +SKIP Unnamed: 0 Name Value 0 0 string1 1 1 1 string2 2 2 2 #Comment 3 Index and header can be specified via the `index_col` and `header` arguments >>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP 0 1 2 0 NaN Name Value 1 0.0 string1 1 2 1.0 string2 2 3 2.0 #Comment 3 Column types are inferred but can be explicitly specified >>> pd.read_excel('tmp.xlsx', index_col=0, ... dtype={'Name': str, 'Value': float}) # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 #Comment 3.0 True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings! >>> pd.read_excel('tmp.xlsx', index_col=0, ... na_values=['string1', 'string2']) # doctest: +SKIP Name Value 0 NaN 1 1 NaN 2 2 #Comment 3 Comment lines in the excel input file can be skipped using the `comment` kwarg >>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP Name Value 0 string1 1.0 1 string2 2.0 2 None NaN """ ) @deprecate_nonkeyword_arguments(allowed_args=2, version="2.0") @Appender(_read_excel_doc) def read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, storage_options: StorageOptions = None, ): if not isinstance(io, ExcelFile): io = ExcelFile(io, storage_options=storage_options, engine=engine) elif engine and engine != io.engine: raise ValueError( "Engine should not be specified when passing " "an ExcelFile - ExcelFile already has the engine set" ) return io.parse( sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, dtype=dtype, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, keep_default_na=keep_default_na, na_filter=na_filter, verbose=verbose, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, ) class BaseExcelReader(metaclass=abc.ABCMeta): def __init__(self, filepath_or_buffer, storage_options: StorageOptions = None): self.ioargs = IOArgs( filepath_or_buffer=filepath_or_buffer, encoding=None, mode=None, compression={"method": None}, ) # If filepath_or_buffer is a url, load the data into a BytesIO if is_url(filepath_or_buffer): self.ioargs = IOArgs( filepath_or_buffer=BytesIO(urlopen(filepath_or_buffer).read()), should_close=True, encoding=None, mode=None, compression={"method": None}, ) elif not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)): self.ioargs = get_filepath_or_buffer( filepath_or_buffer, storage_options=storage_options ) if isinstance(self.ioargs.filepath_or_buffer, self._workbook_class): self.book = self.ioargs.filepath_or_buffer elif hasattr(self.ioargs.filepath_or_buffer, "read"): # N.B. xlrd.Book has a read attribute too assert not isinstance(self.ioargs.filepath_or_buffer, str) self.ioargs.filepath_or_buffer.seek(0) self.book = self.load_workbook(self.ioargs.filepath_or_buffer) elif isinstance(self.ioargs.filepath_or_buffer, str): self.book = self.load_workbook(self.ioargs.filepath_or_buffer) elif isinstance(self.ioargs.filepath_or_buffer, bytes): self.book = self.load_workbook(BytesIO(self.ioargs.filepath_or_buffer)) else: raise ValueError( "Must explicitly set engine if not passing in buffer or path for io." ) @property @abc.abstractmethod def _workbook_class(self): pass @abc.abstractmethod def load_workbook(self, filepath_or_buffer): pass def close(self): self.ioargs.close() @property @abc.abstractmethod def sheet_names(self): pass @abc.abstractmethod def get_sheet_by_name(self, name): pass @abc.abstractmethod def get_sheet_by_index(self, index): pass @abc.abstractmethod def get_sheet_data(self, sheet, convert_float): pass def parse( self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, verbose=False, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds, ): validate_header_arg(header) ret_dict = False # Keep sheetname to maintain backwards compatibility. if isinstance(sheet_name, list): sheets = sheet_name ret_dict = True elif sheet_name is None: sheets = self.sheet_names ret_dict = True else: sheets = [sheet_name] # handle same-type duplicates. sheets = list(dict.fromkeys(sheets).keys()) output = {} header_input = header for asheetname in sheets: if verbose: print(f"Reading sheet {asheetname}") if isinstance(asheetname, str): sheet = self.get_sheet_by_name(asheetname) else: # assume an integer if not a string sheet = self.get_sheet_by_index(asheetname) data = self.get_sheet_data(sheet, convert_float) usecols = maybe_convert_usecols(usecols) if not data: output[asheetname] = DataFrame() continue if isinstance(header_input, dict): header = header_input[asheetname] elif is_list_like(header) and len(header) == 1: header = header[0] # forward fill and pull out names for MultiIndex column header_names = None if header is not None and is_list_like(header): header_names = [] control_row = [True] * len(data[0]) for row in header: if is_integer(skiprows): row += skiprows # the line we changed if row: data[row], control_row = fill_mi_header(data[row], control_row) if index_col is not None: header_name, _ = pop_header_name(data[row], index_col) header_names.append(header_name) if is_list_like(index_col): # Forward fill values for MultiIndex index. if header is None: offset = 0 elif not is_list_like(header): offset = 1 + header else: offset = 1 + max(header) # Check if we have an empty dataset # before trying to collect data. if offset < len(data): for col in index_col: last = data[offset][col] for row in range(offset + 1, len(data)): if data[row][col] == "" or data[row][col] is None: data[row][col] = last else: last = data[row][col] has_index_names = is_list_like(header) and len(header) > 1 # GH 12292 : error when read one empty column from excel file try: parser = TextParser( data, names=names, header=header, index_col=index_col, has_index_names=has_index_names, squeeze=squeeze, dtype=dtype, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, usecols=usecols, mangle_dupe_cols=mangle_dupe_cols, **kwds, ) output[asheetname] = parser.read(nrows=nrows) if not squeeze or isinstance(output[asheetname], DataFrame): if header_names: output[asheetname].columns = output[ asheetname ].columns.set_names(header_names) except EmptyDataError: # No Data, return an empty DataFrame output[asheetname] = DataFrame() if ret_dict: return output else: return output[asheetname] class ExcelWriter(metaclass=abc.ABCMeta): """ Class for writing DataFrame objects into excel sheets. Default is to use xlwt for xls, openpyxl for xlsx, odf for ods. See DataFrame.to_excel for typical usage. Parameters ---------- path : str or typing.BinaryIO Path to xls or xlsx or ods file. engine : str (optional) Engine to use for writing. If None, defaults to ``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword argument. date_format : str, default None Format string for dates written into Excel files (e.g. 'YYYY-MM-DD'). datetime_format : str, default None Format string for datetime objects written into Excel files. (e.g. 'YYYY-MM-DD HH:MM:SS'). mode : {'w', 'a'}, default 'w' File mode to use (write or append). .. versionadded:: 0.24.0 Attributes ---------- None Methods ------- None Notes ----- None of the methods and properties are considered public. For compatibility with CSV writers, ExcelWriter serializes lists and dicts to strings before writing. Examples -------- Default usage: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... df.to_excel(writer) To write to separate sheets in a single file: >>> with ExcelWriter('path_to_file.xlsx') as writer: ... df1.to_excel(writer, sheet_name='Sheet1') ... df2.to_excel(writer, sheet_name='Sheet2') You can set the date format or datetime format: >>> with ExcelWriter('path_to_file.xlsx', ... date_format='YYYY-MM-DD', ... datetime_format='YYYY-MM-DD HH:MM:SS') as writer: ... df.to_excel(writer) You can also append to an existing Excel file: >>> with ExcelWriter('path_to_file.xlsx', mode='a') as writer: ... df.to_excel(writer, sheet_name='Sheet3') You can store Excel file in RAM: >>> import io >>> buffer = io.BytesIO() >>> with pd.ExcelWriter(buffer) as writer: ... df.to_excel(writer) You can pack Excel file into zip archive: >>> import zipfile >>> with zipfile.ZipFile('path_to_file.zip', 'w') as zf: ... with zf.open('filename.xlsx', 'w') as buffer: ... with pd.ExcelWriter(buffer) as writer: ... df.to_excel(writer) """ # Defining an ExcelWriter implementation (see abstract methods for more...) # - Mandatory # - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)`` # --> called to write additional DataFrames to disk # - ``supported_extensions`` (tuple of supported extensions), used to # check that engine supports the given extension. # - ``engine`` - string that gives the engine name. Necessary to # instantiate class directly and bypass ``ExcelWriterMeta`` engine # lookup. # - ``save(self)`` --> called to save file to disk # - Mostly mandatory (i.e. should at least exist) # - book, cur_sheet, path # - Optional: # - ``__init__(self, path, engine=None, **kwargs)`` --> always called # with path as first argument. # You also need to register the class with ``register_writer()``. # Technically, ExcelWriter implementations don't need to subclass # ExcelWriter. def __new__(cls, path, engine=None, **kwargs): # only switch class if generic(ExcelWriter) if cls is ExcelWriter: if engine is None or (isinstance(engine, str) and engine == "auto"): if isinstance(path, str): ext = os.path.splitext(path)[-1][1:] else: ext = "xlsx" try: engine = config.get_option(f"io.excel.{ext}.writer") if engine == "auto": engine = get_default_writer(ext) except KeyError as err: raise ValueError(f"No engine for filetype: '{ext}'") from err cls = get_writer(engine) return object.__new__(cls) # declare external properties you can count on curr_sheet = None path = None @property @abc.abstractmethod def supported_extensions(self): """Extensions that writer engine supports.""" pass @property @abc.abstractmethod def engine(self): """Name of engine.""" pass @abc.abstractmethod def write_cells( self, cells, sheet_name=None, startrow=0, startcol=0, freeze_panes=None ): """ Write given formatted cells into Excel an excel sheet Parameters ---------- cells : generator cell of formatted data to save to Excel sheet sheet_name : str, default None Name of Excel sheet, if None, then use self.cur_sheet startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame freeze_panes: int tuple of length 2 contains the bottom-most row and right-most column to freeze """ pass @abc.abstractmethod def save(self): """ Save workbook to disk. """ pass def __init__( self, path, engine=None, date_format=None, datetime_format=None, mode="w", **engine_kwargs, ): # validate that this engine can handle the extension if isinstance(path, str): ext = os.path.splitext(path)[-1] self.check_extension(ext) self.path = path self.sheets = {} self.cur_sheet = None if date_format is None: self.date_format = "YYYY-MM-DD" else: self.date_format = date_format if datetime_format is None: self.datetime_format = "YYYY-MM-DD HH:MM:SS" else: self.datetime_format = datetime_format self.mode = mode def __fspath__(self): # pandas\io\excel\_base.py:744: error: Argument 1 to "stringify_path" # has incompatible type "Optional[Any]"; expected "Union[str, Path, # IO[Any], IOBase]" [arg-type] return stringify_path(self.path) # type: ignore[arg-type] def _get_sheet_name(self, sheet_name): if sheet_name is None: sheet_name = self.cur_sheet if sheet_name is None: # pragma: no cover raise ValueError("Must pass explicit sheet_name or set cur_sheet property") return sheet_name def _value_with_fmt(self, val): """ Convert numpy types to Python types for the Excel writers. Parameters ---------- val : object Value to be written into cells Returns ------- Tuple with the first element being the converted value and the second being an optional format """ fmt = None if is_integer(val): val = int(val) elif is_float(val): val = float(val) elif is_bool(val): val = bool(val) elif isinstance(val, datetime.datetime): fmt = self.datetime_format elif isinstance(val, datetime.date): fmt = self.date_format elif isinstance(val, datetime.timedelta): val = val.total_seconds() / float(86400) fmt = "0" else: val = str(val) return val, fmt @classmethod def check_extension(cls, ext: str): """ checks that path's extension against the Writer's supported extensions. If it isn't supported, raises UnsupportedFiletypeError. """ if ext.startswith("."): ext = ext[1:] # error: "Callable[[ExcelWriter], Any]" has no attribute "__iter__" # (not iterable) [attr-defined] if not any( ext in extension for extension in cls.supported_extensions # type: ignore[attr-defined] ): raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'") else: return True # Allow use as a contextmanager def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def close(self): """synonym for save, to make it more file-like""" return self.save() def _is_ods_stream(stream: Union[BufferedIOBase, RawIOBase]) -> bool: """ Check if the stream is an OpenDocument Spreadsheet (.ods) file It uses magic values inside the stream Parameters ---------- stream : Union[BufferedIOBase, RawIOBase] IO stream with data which might be an ODS file Returns ------- is_ods : bool Boolean indication that this is indeed an ODS file or not """ stream.seek(0) is_ods = False if stream.read(4) == b"PK\003\004": stream.seek(30) is_ods = ( stream.read(54) == b"mimetype" b"application/vnd.oasis.opendocument.spreadsheet" ) stream.seek(0) return is_ods class ExcelFile: """ Class for parsing tabular excel sheets into DataFrame objects. Uses xlrd engine by default. See read_excel for more documentation Parameters ---------- path_or_buffer : str, path object (pathlib.Path or py._path.local.LocalPath), a file-like object, xlrd workbook or openpypl workbook. If a string or path object, expected to be a path to a .xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file. engine : str, default None If io is not a buffer or path, this must be set to identify io. Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``, default ``xlrd``. Engine compatibility : - ``xlrd`` supports most old/new Excel file formats. - ``openpyxl`` supports newer Excel file formats. - ``odf`` supports OpenDocument file formats (.odf, .ods, .odt). - ``pyxlsb`` supports Binary Excel files. """ from pandas.io.excel._odfreader import ODFReader from pandas.io.excel._openpyxl import OpenpyxlReader from pandas.io.excel._pyxlsb import PyxlsbReader from pandas.io.excel._xlrd import XlrdReader _engines: Mapping[str, Any] = { "xlrd": XlrdReader, "openpyxl": OpenpyxlReader, "odf": ODFReader, "pyxlsb": PyxlsbReader, } def __init__( self, path_or_buffer, engine=None, storage_options: StorageOptions = None ): if engine is None: engine = "xlrd" if isinstance(path_or_buffer, (BufferedIOBase, RawIOBase)): if _is_ods_stream(path_or_buffer): engine = "odf" else: ext = os.path.splitext(str(path_or_buffer))[-1] if ext == ".ods": engine = "odf" if engine not in self._engines: raise ValueError(f"Unknown engine: {engine}") self.engine = engine self.storage_options = storage_options # Could be a str, ExcelFile, Book, etc. self.io = path_or_buffer # Always a string self._io = stringify_path(path_or_buffer) self._reader = self._engines[engine](self._io, storage_options=storage_options) def __fspath__(self): return self._io def parse( self, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, mangle_dupe_cols=True, **kwds, ): """ Parse specified sheet(s) into a DataFrame. Equivalent to read_excel(ExcelFile, ...) See the read_excel docstring for more info on accepted parameters. Returns ------- DataFrame or dict of DataFrames DataFrame from the passed in Excel file. """ return self._reader.parse( sheet_name=sheet_name, header=header, names=names, index_col=index_col, usecols=usecols, squeeze=squeeze, converters=converters, true_values=true_values, false_values=false_values, skiprows=skiprows, nrows=nrows, na_values=na_values, parse_dates=parse_dates, date_parser=date_parser, thousands=thousands, comment=comment, skipfooter=skipfooter, convert_float=convert_float, mangle_dupe_cols=mangle_dupe_cols, **kwds, ) @property def book(self): return self._reader.book @property def sheet_names(self): return self._reader.sheet_names def close(self): """close io if necessary""" self._reader.close() def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def __del__(self): # Ensure we don't leak file descriptors, but put in try/except in case # attributes are already deleted try: self.close() except AttributeError: pass
33.816024
87
0.614163
79442688528877f19538302cd834c0bc231e8349
959
py
Python
leetcode/two_numbers_sum.py
clnFind/DayDayAlgorithm
5644a666a3d84547d8cf00031fc2e30273cc0e9a
[ "Apache-2.0" ]
null
null
null
leetcode/two_numbers_sum.py
clnFind/DayDayAlgorithm
5644a666a3d84547d8cf00031fc2e30273cc0e9a
[ "Apache-2.0" ]
null
null
null
leetcode/two_numbers_sum.py
clnFind/DayDayAlgorithm
5644a666a3d84547d8cf00031fc2e30273cc0e9a
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import copy class Solution(object): """ 给定 nums = [2, 7, 11, 15], target = 9 因为 nums[0] + nums[1] = 2 + 7 = 9 所以返回 [0, 1] """ def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ for i in range(len(nums)): nums_copy = copy.copy(nums) nums_copy.remove(nums[i]) for j in nums_copy: if nums[i] + j == target: return i, nums.index(j) return None def two_sum(self, nums, target): for num in nums: val = target - num if val in nums: return nums.index(num), nums.index(val) return None if __name__ == '__main__': l = [3, 4, 10, 2, 7] target = 9 result = Solution().twoSum(l, target) print(result) result1 = Solution().two_sum(l, target) print(result1)
21.795455
55
0.486966
794427628dbd2c3568043014d78159e949d60936
1,813
py
Python
src/azure-cli/azure/cli/command_modules/acr/_client_factory.py
shinilm/azure-cli
7c5f44151010b4b64d822f8cbe3e725f3525a448
[ "MIT" ]
1
2019-06-21T05:07:38.000Z
2019-06-21T05:07:38.000Z
src/azure-cli/azure/cli/command_modules/acr/_client_factory.py
shinilm/azure-cli
7c5f44151010b4b64d822f8cbe3e725f3525a448
[ "MIT" ]
null
null
null
src/azure-cli/azure/cli/command_modules/acr/_client_factory.py
shinilm/azure-cli
7c5f44151010b4b64d822f8cbe3e725f3525a448
[ "MIT" ]
1
2019-06-21T05:08:09.000Z
2019-06-21T05:08:09.000Z
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.commands.client_factory import get_mgmt_service_client VERSION_2017_10_GA = "2017-10-01" def get_arm_service_client(cli_ctx): """Returns the client for managing ARM resources. """ from azure.mgmt.resource import ResourceManagementClient return get_mgmt_service_client(cli_ctx, ResourceManagementClient) def get_storage_service_client(cli_ctx): """Returns the client for managing storage accounts. """ from azure.cli.core.profiles import ResourceType return get_mgmt_service_client(cli_ctx, ResourceType.MGMT_STORAGE) def get_acr_service_client(cli_ctx, api_version=None): """Returns the client for managing container registries. """ from azure.mgmt.containerregistry import ContainerRegistryManagementClient return get_mgmt_service_client(cli_ctx, ContainerRegistryManagementClient, api_version=api_version) def cf_acr_registries(cli_ctx, *_): return get_acr_service_client(cli_ctx, VERSION_2017_10_GA).registries def cf_acr_registries_tasks(cli_ctx, *_): return get_acr_service_client(cli_ctx).registries def cf_acr_replications(cli_ctx, *_): return get_acr_service_client(cli_ctx, VERSION_2017_10_GA).replications def cf_acr_webhooks(cli_ctx, *_): return get_acr_service_client(cli_ctx, VERSION_2017_10_GA).webhooks def cf_acr_tasks(cli_ctx, *_): return get_acr_service_client(cli_ctx).tasks def cf_acr_runs(cli_ctx, *_): return get_acr_service_client(cli_ctx).runs
35.54902
103
0.720905
794427d27d892dcc7bb62e77d9eda676c3c64985
4,376
py
Python
face_recognition_cam/recognition.py
andreaconti/face_recognition_cam
2f9d95d982bb12dadbe8d933c6548244745aa2af
[ "MIT" ]
null
null
null
face_recognition_cam/recognition.py
andreaconti/face_recognition_cam
2f9d95d982bb12dadbe8d933c6548244745aa2af
[ "MIT" ]
null
null
null
face_recognition_cam/recognition.py
andreaconti/face_recognition_cam
2f9d95d982bb12dadbe8d933c6548244745aa2af
[ "MIT" ]
null
null
null
""" Module containing person recognition """ from typing import Dict, List, Tuple import mxnet as mx # type: ignore import numpy as np # type: ignore from numpy import ndarray from pkg_resources import resource_filename from scipy.spatial.distance import cdist # type: ignore class FaceRecognizer: """ Class for face embedding and recognizing """ def __init__(self): # find file path params_path = resource_filename( "face_recognition_cam.resources.models", "mobileFaceNet-0000.params" ) symbols_path = resource_filename( "face_recognition_cam.resources.models", "mobileFaceNet-symbol.json" ) # load model ctx = mx.cpu() sym = mx.sym.load_json(open(symbols_path, "r").read()) model = mx.gluon.nn.SymbolBlock(outputs=sym, inputs=mx.sym.var("data")) model.load_parameters(params_path, ctx=ctx) self._model = model def embed_faces(self, faces: ndarray) -> ndarray: """ Performs face embedding given a list of faces in a ndarray. Parameters ---------- faces: array_like faces parameter must have [N, 112, 112, 3] shape, images must be RGB. Returns ------- array_like of shape [N, 192] where each row is a face embedded """ if len(faces.shape) == 3: faces = faces[None, :, :, :] elif len(faces.shape) == 4: _, h, w, c = faces.shape if c != 3 or h != 112 or w != 112: raise ValueError("expected images of shape 3x112x112") else: raise ValueError("shape must be 3 or 4 (a batch)") # embed faces = np.moveaxis(faces, -1, 1) faces_embedded = self._model(mx.nd.array(faces)) faces_embedded = faces_embedded.asnumpy() return faces_embedded def generate_dataset(self, people: Dict[str, ndarray]) -> Dict[str, ndarray]: """ Takes as input a dictionary containing as key the name of each person and as value a ndarray representing a batch of images of that person and returns another dictionary 'name': embedding. Parameters ---------- people: Dict[str, ndarray] a dictionary containing for each name a ndarray containing images of that person. each ndarray must be of shape [N, 112, 112, 3] Returns ------- Dict[str, ndarray] where each ndarray is the embedding """ result: Dict[str, ndarray] = {} for name, imgs in people.items(): result[name] = self.embed_faces(imgs) return result def assign_names( self, dataset: Dict[str, ndarray], faces: ndarray, min_confidence: float = 0.5 ) -> List[Tuple[str, float]]: """ Assign a name to each face in `faces`. Parameters ---------- dataset: Dict[str, ndarray] a dictionary in which each name is associated to many embeddings. It can be generated with `generate_dataset` method. faces: ndarray a numpy ndarray of shape [N,112, 112, 3] where each [112, 112, 3] is a face. min_confidence: float, default 0.6 if among people the maximum found confidence is less than `min_confidence` such face is labeled as 'unknown' Returns ------- List[str] the name associated to each face, can be 'unknown' if the maximum confidence found is less than `min_confidence` """ people_emb = self.embed_faces(faces) # compute confidence matrix confidence_matrix = np.zeros((len(dataset), people_emb.shape[0])) names = np.empty((len(dataset),), dtype=object) for i, (name, emb) in enumerate(dataset.items()): names[i] = name confidence_matrix[i, :] = np.max( 1 - cdist(emb, people_emb, metric="cosine"), axis=0 ) # find best matches best = np.argmax(confidence_matrix, axis=0) confidences = confidence_matrix[best, np.arange(confidence_matrix.shape[1])] names = names[best] names[confidences < min_confidence] = "unknown" result = list(zip(names, confidences)) return result
33.151515
88
0.589122
794428d17f831d3b7989f3fec9411c37f1a34ae9
77,808
py
Python
pstem/stem-random-walk-nin-20-74/stem-random-walk-nin-20-74_examples.py
Jeffrey-Ede/partial-STEM
916766091b81b54cacde85a319f34a47d50bce48
[ "MIT" ]
10
2019-06-12T00:24:37.000Z
2021-11-23T12:58:02.000Z
pstem/stem-random-walk-nin-20-74/stem-random-walk-nin-20-74_examples.py
Jeffrey-Ede/partial-STEM
916766091b81b54cacde85a319f34a47d50bce48
[ "MIT" ]
null
null
null
pstem/stem-random-walk-nin-20-74/stem-random-walk-nin-20-74_examples.py
Jeffrey-Ede/partial-STEM
916766091b81b54cacde85a319f34a47d50bce48
[ "MIT" ]
5
2019-06-11T05:49:10.000Z
2021-11-12T15:55:22.000Z
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import argparse import numpy as np import tensorflow as tf import cv2 from scipy.misc import imread from scipy import ndimage as nd import time import os, random from PIL import Image from PIL import ImageDraw import functools import itertools import collections import six from tensorflow.python.platform import tf_logging as logging from tensorflow.core.framework import node_def_pb2 from tensorflow.python.framework import device as pydev from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import session_run_hook from tensorflow.python.training import training_util from tensorflow.python.training import device_setter from tensorflow.contrib.learn.python.learn import run_config from tensorflow.contrib.framework.python.ops import add_arg_scope slim = tf.contrib.slim tf.logging.set_verbosity(tf.logging.DEBUG) tf.set_random_seed(1234) scale = 0 #Make scale large to spped up initial testing gen_features0 = 32 if not scale else 1 gen_features1 = 64 if not scale else 1 gen_features2 = 64 if not scale else 1 gen_features3 = 32 if not scale else 1 nin_features1 = 128 if not scale else 1 nin_features2 = 256 if not scale else 1 nin_features3 = 512 if not scale else 1 nin_features4 = 768 if not scale else 1 features1 = 64 if not scale else 1 features2 = 128 if not scale else 1 features3 = 256 if not scale else 1 features4 = 512 if not scale else 1 features5 = features4 if not scale else 1 num_global_enhancer_blocks = 6 num_local_enhancer_blocks = 3 data_dir = "//Desktop-sa1evjv/f/ARM_scans-crops/" modelSavePeriod = 4. #Train timestep in hours modelSavePeriod *= 3600 #Convert to s model_dir = "//ads.warwick.ac.uk/shared/HCSS6/Shared305/Microscopy/Jeffrey-Ede/models/stem-random-walk-nin-20-74/" shuffle_buffer_size = 5000 num_parallel_calls = 6 num_parallel_readers = 6 prefetch_buffer_size = 12 batch_size = 1 num_gpus = 1 #batch_size = 8 #Batch size to use during training num_epochs = 1000000 #Dataset repeats indefinitely logDir = "C:/dump/train/" log_file = model_dir+"log.txt" val_log_file = model_dir+"val_log.txt" discr_pred_file = model_dir+"discr_pred.txt" log_every = 1 #Log every _ examples cumProbs = np.array([]) #Indices of the distribution plus 1 will be correspond to means numMeans = 64 // batch_size scaleMean = 4 #Each means array index increment corresponds to this increase in the mean numDynamicGrad = 1 #Number of gradients to calculate for each possible mean when dynamically updating training lossSmoothingBoxcarSize = 5 channels = 1 #Greyscale input image #Sidelength of images to feed the neural network cropsize = 512 use_mask = False #If true, supply mask to network as additional information generator_input_size = cropsize height_crop = width_crop = cropsize discr_size = 70 weight_decay = 0.0 batch_decay_gen = 0.999 batch_decay_discr = 0.999 initial_learning_rate = 0.001 initial_discriminator_learning_rate = 0.001 num_workers = 1 increase_batch_size_by_factor = 1 effective_batch_size = increase_batch_size_by_factor*batch_size save_result_every_n_batches = 25000 val_skip_n = 50 trainee_switch_skip_n = 1 max_num_since_training_change = 0 disp_select = False #Display selelected pixels upon startup def int_shape(x): return list(map(int, x.get_shape())) def spectral_norm(w, iteration=1, count=0): w0 = w w_shape = w.shape.as_list() w = tf.reshape(w, [-1, w_shape[-1]]) u = tf.get_variable("u"+str(count), [1, w_shape[-1]], initializer=tf.random_normal_initializer(mean=0.,stddev=0.03), trainable=False) u_hat = u v_hat = None for i in range(iteration): """ power iteration Usually iteration = 1 will be enough """ v_ = tf.matmul(u_hat, tf.transpose(w)) v_hat = tf.nn.l2_normalize(v_) u_ = tf.matmul(v_hat, w) u_hat = tf.nn.l2_normalize(u_) u_hat = tf.stop_gradient(u_hat) v_hat = tf.stop_gradient(v_hat) sigma = tf.matmul(tf.matmul(v_hat, w), tf.transpose(u_hat)) with tf.control_dependencies([u.assign(u_hat)]): w_norm = w / sigma w_norm = tf.reshape(w_norm, w_shape) return w_norm adjusted_mse_counter = 0 def adjusted_mse(img1, img2): return tf.losses.mean_squared_error(img1, img2) def pad(tensor, size): d1_pad = size[0] d2_pad = size[1] paddings = tf.constant([[0, 0], [d1_pad, d1_pad], [d2_pad, d2_pad], [0, 0]], dtype=tf.int32) padded = tf.pad(tensor, paddings, mode="REFLECT") return padded def gaussian_kernel(size: int, mean: float, std: float, ): """Makes 2D gaussian Kernel for convolution.""" d = tf.distributions.Normal(mean, std) vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32)) gauss_kernel = tf.einsum('i,j->ij', vals, vals) return gauss_kernel / tf.reduce_sum(gauss_kernel) def blur(image): gauss_kernel = gaussian_kernel( 1, 0., 1.5 ) #Expand dimensions of `gauss_kernel` for `tf.nn.conv2d` signature gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis] #Convolve image = pad(image, (1,1)) return tf.nn.conv2d(image, gauss_kernel, strides=[1, 1, 1, 1], padding="VALID") #Track average MSEs adjusted_mse_counter += 1 avg = tf.get_variable( name=f"avg-{adjusted_mse_counter}", shape=img1.get_shape(), initializer=3*tf.ones(img1.get_shape())) squared_errors = (img1 - img2)**2 update_avg = tf.assign(avg, 0.999*avg + 0.001*squared_errors) with tf.control_dependencies([update_avg]): #Errors for px with systematically higher MSEs are increased scale = blur(avg) scale /= tf.reduce_mean(scale) mse = tf.reduce_mean( scale*squared_errors ) return mse alrc_counter = 0 def alrc(loss, num_stddev=3, decay=0.999, mu1_start=25, mu2_start=30**2): global alrc_counter; alrc_counter += 1 #Varables to track first two raw moments of the loss mu = tf.get_variable( f"mu-{alrc_counter}", initializer=tf.constant(mu1_start, dtype=tf.float32)) mu2 = tf.get_variable( f"mu2-{alrc_counter}", initializer=tf.constant(mu2_start, dtype=tf.float32)) #Use capped loss for moment updates to limit the effect of extreme losses on the threshold sigma = tf.sqrt(mu2 - mu**2+1.e-8) loss = tf.where(loss < mu+num_stddev*sigma, loss, loss/tf.stop_gradient(loss/(mu+num_stddev*sigma))) #Update moments with tf.control_dependencies([mu.assign(decay*mu+(1-decay)*loss), mu2.assign(decay*mu2+(1-decay)*loss**2)]): return tf.identity(loss) capper_counter = 0 def capper_fn(x): return alrc(x) global capper_counter; capper_counter += 1 mu = tf.get_variable(f"mu-{capper_counter}", initializer=tf.constant(25, dtype=tf.float32)) mu2 = tf.get_variable(f"mu2-{capper_counter}", initializer=tf.constant(30**2, dtype=tf.float32)) def cap(x): sigma = tf.sqrt(mu2 - mu**2+1.e-8) capped_x = tf.cond(x < mu+3*sigma, lambda: x, lambda: x/tf.stop_gradient(x/(mu+3*sigma))) return capped_x x = cap(x) with tf.control_dependencies([mu.assign(0.999*mu+0.001*x), mu2.assign(0.999*mu2+0.001*x**2)]): return tf.cond(x <= 1, lambda: x, lambda: tf.sqrt(x + 1.e-8)) def generator_architecture(inputs, small_inputs, mask, small_mask, norm_decay, init_pass): """Generates fake data to try and fool the discrimator""" with tf.variable_scope("Network", reuse=not init_pass): def gaussian_noise(x, sigma=0.3, deterministic=False, name=''): with tf.variable_scope(name): if deterministic: return x else: noise = tf.random_normal(shape=tf.shape(x), mean=0.0, stddev=sigma, dtype=tf.float32) return x + noise concat_axis = 3 def int_shape(x): return list(map(int, x.get_shape())) mu_counter = 0 def mean_only_batch_norm(input, decay=norm_decay, reuse_counter=None, init=init_pass): mu = tf.reduce_mean(input, keepdims=True) shape = int_shape(mu) if not reuse_counter and init_pass: #Variable not being reused nonlocal mu_counter mu_counter += 1 running_mean = tf.get_variable("mu"+str(mu_counter), dtype=tf.float32, initializer=tf.constant(np.zeros(shape, dtype=np.float32)), trainable=False) else: running_mean = tf.get_variable("mu"+str(mu_counter)) running_mean = decay*running_mean + (1-decay)*mu mean_only_norm = input - running_mean return mean_only_norm def _actv_func(x, slope=0.01): x = tf.nn.leaky_relu(x, slope) return x def get_var_maybe_avg(var_name, ema, **kwargs): ''' utility for retrieving polyak averaged params ''' v = tf.get_variable(var_name, **kwargs) if ema is not None: v = ema.average(v) return v def get_vars_maybe_avg(var_names, ema, **kwargs): ''' utility for retrieving polyak averaged params ''' vars = [] for vn in var_names: vars.append(get_var_maybe_avg(vn, ema, **kwargs)) return vars def mean_only_batch_norm_impl(x, pop_mean, b, is_conv_out=True, deterministic=False, decay=norm_decay, name='meanOnlyBatchNormalization'): ''' input comes in which is t=(g*V/||V||)*x deterministic : separates training and testing phases ''' with tf.variable_scope(name): if deterministic: # testing phase, return the result with the accumulated batch mean return x - pop_mean + b else: # compute the current minibatch mean if is_conv_out: # using convolutional layer as input m, _ = tf.nn.moments(x, [0,1,2]) else: # using fully connected layer as input m, _ = tf.nn.moments(x, [0]) # update minibatch mean variable pop_mean_op = tf.assign(pop_mean, tf.scalar_mul(0.99, pop_mean) + tf.scalar_mul(1-0.99, m)) with tf.control_dependencies([pop_mean_op]): return x - m + b def batch_norm_impl(x,is_conv_out=True, deterministic=False, decay=norm_decay, name='BatchNormalization'): with tf.variable_scope(name): scale = tf.get_variable('scale',shape=x.get_shape()[-1], dtype=tf.float32,initializer=tf.ones_initializer(),trainable=True) beta = tf.get_variable('beta',shape=x.get_shape()[-1], dtype=tf.float32,initializer=tf.zeros_initializer(),trainable=True) pop_mean = tf.get_variable('pop_mean',shape=x.get_shape()[-1], dtype=tf.float32,initializer=tf.zeros_initializer(), trainable=False) pop_var = tf.get_variable('pop_var',shape=x.get_shape()[-1], dtype=tf.float32,initializer=tf.ones_initializer(), trainable=False) if deterministic: return tf.nn.batch_normalization(x,pop_mean,pop_var,beta,scale,0.001) else: if is_conv_out: batch_mean, batch_var = tf.nn.moments(x,[0,1,2]) else: batch_mean, batch_var = tf.nn.moments(x,[0]) pop_mean_op = tf.assign(pop_mean, pop_mean * 0.99 + batch_mean * (1 - 0.99)) pop_var_op = tf.assign(pop_var, pop_var * 0.99 + batch_var * (1 - 0.99)) with tf.control_dependencies([pop_mean_op, pop_var_op]): return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, 0.001) conv2d_counter = 0 def conv2d(x, num_filters, stride=1, filter_size=3, pad='SAME', nonlinearity=_actv_func, init_scale=1., init=init_pass, use_weight_normalization=True, use_batch_normalization=False, mean_only_norm=False, deterministic=False, slope=0.01): filter_size = [filter_size,filter_size] stride = [stride,stride] ''' deterministic : used for batch normalizations (separates the training and testing phases) ''' nonlocal conv2d_counter conv2d_counter += 1 name = 'conv'+str(conv2d_counter) with tf.variable_scope(name): V = tf.get_variable('V', shape=filter_size+[int(x.get_shape()[-1]),num_filters], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) if use_batch_normalization is False: # not using bias term when doing batch normalization, avoid indefinit growing of the bias, according to BN2015 paper b = tf.get_variable('b', shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(0.), trainable=True) if mean_only_norm: pop_mean = tf.get_variable('meanOnlyBatchNormalization/pop_mean',shape=[num_filters], dtype=tf.float32, initializer=tf.zeros_initializer(),trainable=False) if use_weight_normalization: g = tf.get_variable('g', shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) if init: v_norm = tf.nn.l2_normalize(V,[0,1,2]) x = tf.nn.conv2d(x, v_norm, strides=[1] + stride + [1],padding=pad) m_init, v_init = tf.nn.moments(x, [0,1,2]) scale_init=init_scale/tf.sqrt(v_init + 1e-08) g = g.assign(scale_init) b = b.assign(-m_init*scale_init) x = tf.reshape(scale_init,[1,1,1,num_filters])*(x-tf.reshape(m_init,[1,1,1,num_filters])) else: W = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(V, [0, 1, 2]) if mean_only_norm: # use weight-normalization combined with mean-only-batch-normalization x = tf.nn.conv2d(x,W,strides=[1]+stride+[1],padding=pad) x = mean_only_batch_norm_impl(x,pop_mean,b,is_conv_out=True, deterministic=deterministic) else: # use just weight-normalization x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + stride + [1], pad), b) elif use_batch_normalization: x = tf.nn.conv2d(x,V,[1]+stride+[1],pad) x = batch_norm_impl(x,is_conv_out=True,deterministic=deterministic) else: x = tf.nn.bias_add(tf.nn.conv2d(x,V,strides=[1]+stride+[1],padding=pad),b) # apply nonlinearity if nonlinearity is not None: x = nonlinearity(x, slope) return x deconv2d_counter = 0 def deconv2d(x, num_filters, stride=1, filter_size=3, pad='SAME', nonlinearity=_actv_func, init_scale=1., init=init_pass, use_weight_normalization=True, use_batch_normalization=False, mean_only_norm=True, deterministic=False, name='', slope=0.01): filter_size = [filter_size,filter_size] stride = [stride,stride] ''' deterministic : used for batch normalizations (separates the training and testing phases) ''' nonlocal deconv2d_counter deconv2d_counter += 1 name = 'deconv'+str(deconv2d_counter) xs = int_shape(x) if pad=='SAME': target_shape = [xs[0], xs[1]*stride[0], xs[2]*stride[1], num_filters] else: target_shape = [xs[0], xs[1]*stride[0] + filter_size[0]-1, xs[2]*stride[1] + filter_size[1]-1, num_filters] with tf.variable_scope(name): V = tf.get_variable('V', shape=filter_size+[num_filters,int(x.get_shape()[-1])], dtype=tf.float32, initializer=tf.random_normal_initializer(0, 0.05), trainable=True) #V = tf.get_variable('V', shape=filter_size+[int(x.get_shape()[-1]), num_filters], dtype=tf.float32, # initializer=tf.random_normal_initializer(0, 0.05), trainable=True) if use_batch_normalization is False: # not using bias term when doing batch normalization, avoid indefinit growing of the bias, according to BN2015 paper b = tf.get_variable('b', shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(0.), trainable=True) if mean_only_norm: pop_mean = tf.get_variable('meanOnlyBatchNormalization/pop_mean',shape=[num_filters], dtype=tf.float32, initializer=tf.zeros_initializer(),trainable=False) if use_weight_normalization: g = tf.get_variable('g', shape=[num_filters], dtype=tf.float32, initializer=tf.constant_initializer(1.), trainable=True) if init: v_norm = tf.nn.l2_normalize(V,[0,1,2]) x = tf.nn.conv2d_transpose(x, v_norm, target_shape, strides=[1] + stride + [1],padding=pad) m_init, v_init = tf.nn.moments(x, [0,1,2]) scale_init=init_scale/tf.sqrt(v_init + 1e-08) g = g.assign(scale_init) b = b.assign(-m_init*scale_init) x = tf.reshape(scale_init,[1,1,1,num_filters])*(x-tf.reshape(m_init,[1,1,1,num_filters])) else: W = tf.reshape(g, [1, 1, num_filters, 1]) * tf.nn.l2_normalize(V, [0, 1, 2]) if mean_only_norm: # use weight-normalization combined with mean-only-batch-normalization x = tf.nn.conv2d_transpose(x,W,target_shape,strides=[1]+stride+[1],padding=pad) x = mean_only_batch_norm_impl(x,pop_mean,b,is_conv_out=True, deterministic=deterministic) else: # use just weight-normalization x = tf.nn.bias_add(tf.nn.conv2d(x, W, [1] + stride + [1], pad), b) elif use_batch_normalization: x = tf.nn.conv2d(x,V,[1]+stride+[1],pad) x = batch_norm_impl(x,is_conv_out=True,deterministic=deterministic) else: x = tf.nn.bias_add(tf.nn.conv2d(x,V,strides=[1]+stride+[1],padding=pad),b) # apply nonlinearity if nonlinearity is not None: x = nonlinearity(x, slope) return x def xception_middle_block(input, features): main_flow = conv2d( x=input, num_filters=features, stride=1) main_flow = conv2d( x=main_flow, num_filters=features, stride=1) main_flow = conv2d( x=main_flow, num_filters=features, stride=1) return main_flow + input def init_batch_norm(x): batch_mean, batch_var = tf.nn.moments(x,[0]) return (x - batch_mean) / np.sqrt( batch_var + 0.001 ) def network_in_network(input, nin_features_out, mask=None): if use_mask: concatenation = tf.concat(values=[input, mask], axis=concat_axis) else: concatenation = input with tf.variable_scope("Inner"): nin = conv2d(concatenation, 64, 1, filter_size=5, mean_only_norm=True, use_weight_normalization=not use_mask, slope=0.1) residuals = False if residuals: nin = conv2d(nin, nin_features1, 2, slope=0.1) nin1 = nin nin = conv2d(nin, nin_features2, 2, slope=0.1) nin2 = nin nin = conv2d(nin, nin_features3, 2, slope=0.1) nin3 = nin nin = conv2d(nin, nin_features4, 2, slope=0.1) for _ in range(num_global_enhancer_blocks): nin = xception_middle_block(nin, nin_features4) nin = deconv2d(nin, nin_features3, 2) nin += nin3 nin = deconv2d(nin, nin_features2, 2) nin += nin2 nin = deconv2d(nin, nin_features1, 2) nin += nin1 nin = deconv2d(nin, nin_features_out, 2) else: nin = conv2d(nin, nin_features1, 2) nin = conv2d(nin, nin_features2, 2) nin = conv2d(nin, nin_features3, 2) nin = conv2d(nin, nin_features4, 2) for _ in range(num_global_enhancer_blocks): nin = xception_middle_block(nin, nin_features4) nin = deconv2d(nin, nin_features3, 2) nin = deconv2d(nin, nin_features2, 2) nin = deconv2d(nin, nin_features1, 2) nin = deconv2d(nin, nin_features_out, 2) with tf.variable_scope("Trainer"): inner = conv2d(nin, 64, 1) inner = conv2d(inner, 1, 1, mean_only_norm=False, nonlinearity=None) return nin, inner ##Model building if not init_pass: input = inputs small_input = small_inputs else: input = tf.random_uniform(shape=int_shape(inputs), minval=-0.8, maxval=0.8) input *= mask small_input = tf.image.resize_images(input, (cropsize//2, cropsize//2)) with tf.variable_scope("Inner"): if not use_mask: nin, inner = network_in_network(small_input, gen_features1) else: nin, inner = network_in_network(small_input, gen_features1, small_mask) with tf.variable_scope("Outer"): if use_mask: concatenation = tf.concat(values=[input, mask], axis=concat_axis) else: concatenation = input enc = conv2d(x=concatenation, num_filters=gen_features0, stride=1, filter_size=5, mean_only_norm=not use_mask, slope=0.1) enc = conv2d(enc, gen_features1, 2, slope=0.1) enc = enc + nin for _ in range(num_local_enhancer_blocks): enc = xception_middle_block(enc, gen_features2) enc = deconv2d(enc, gen_features3, 2) enc = conv2d(enc, gen_features3, 1) outer = conv2d(enc, 1, 1, mean_only_norm=False, nonlinearity=None) return inner, outer def discriminator_architecture(inputs, second_input=None, phase=False, params=None, gen_loss=0., reuse=False): """Three discriminators to discriminate between two data discributions""" with tf.variable_scope("GAN/Discr", reuse=reuse): def int_shape(x): return list(map(int, x.get_shape())) #phase = mode == tf.estimator.ModeKeys.TRAIN #phase is true during training concat_axis = 3 def _instance_norm(net, train=phase): batch, rows, cols, channels = [i.value for i in net.get_shape()] var_shape = [channels] mu, sigma_sq = tf.nn.moments(net, [1,2], keep_dims=True) shift = tf.Variable(tf.zeros(var_shape), trainable=False) scale = tf.Variable(tf.ones(var_shape), trainable=False) epsilon = 1.e-3 normalized = (net - mu) / (sigma_sq + epsilon)**(.5) return scale*normalized + shift def instance_then_activ(input): batch_then_activ = _instance_norm(input) batch_then_activ = tf.nn.relu(batch_then_activ) return batch_then_activ ##Reusable blocks def _batch_norm_fn(input): batch_norm = tf.contrib.layers.batch_norm( input, epsilon=0.001, decay=0.999, center=True, scale=True, is_training=phase, fused=True, zero_debias_moving_mean=False, renorm=False) return batch_norm def batch_then_activ(input): #Changed to instance norm for stability batch_then_activ = input#_instance_norm(input) batch_then_activ = tf.nn.leaky_relu(batch_then_activ, alpha=0.2) return batch_then_activ def conv_block_not_sep(input, filters, kernel_size=3, phase=phase, batch_and_activ=True): """ Convolution -> batch normalisation -> leaky relu phase defaults to true, meaning that the network is being trained """ conv_block = slim.conv2d( inputs=input, num_outputs=filters, kernel_size=kernel_size, padding="SAME", activation_fn=None) if batch_and_activ: conv_block = batch_then_activ(conv_block) return conv_block def conv_block(input, filters, phase=phase): """ Convolution -> batch normalisation -> leaky relu phase defaults to true, meaning that the network is being trained """ conv_block = strided_conv_block(input, filters, 1, 1) return conv_block count = 0 def discr_conv_block(input, filters, stride, rate=1, phase=phase, kernel_size=3, actv=True): nonlocal count count += 1 w = tf.get_variable("kernel"+str(count), shape=[kernel_size, kernel_size, input.get_shape()[-1], filters]) b = tf.get_variable("bias"+str(count), [filters], initializer=tf.constant_initializer(0.0)) x = tf.nn.conv2d(input=input, filter=spectral_norm(w, count=count), strides=[1, stride, stride, 1], padding='VALID') + b if actv: x = batch_then_activ(x) return x def residual_conv(input, filters): residual = slim.conv2d( inputs=input, num_outputs=filters, kernel_size=1, stride=2, padding="SAME", activation_fn=None) residual = batch_then_activ(residual) return residual def xception_encoding_block(input, features): cnn = conv_block( input=input, filters=features) cnn = conv_block( input=cnn, filters=features) cnn = strided_conv_block( input=cnn, filters=features, stride=2) residual = residual_conv(input, features) cnn += residual return cnn def xception_encoding_block_diff(input, features_start, features_end): cnn = conv_block( input=input, filters=features_start) cnn = conv_block( input=cnn, filters=features_start) cnn = strided_conv_block( input=cnn, filters=features_end, stride=2) residual = residual_conv(input, features_end) cnn += residual return cnn def xception_middle_block(input, features): main_flow = strided_conv_block( input=input, filters=features, stride=1) main_flow = strided_conv_block( input=main_flow, filters=features, stride=1) main_flow = strided_conv_block( input=main_flow, filters=features, stride=1) return main_flow + input def shared_flow(input, layers): shared = xception_encoding_block_diff(input, features2, features3) layers.append(shared) shared = xception_encoding_block_diff(shared, features3, features4) layers.append(shared) shared = xception_encoding_block(shared, features5) layers.append(shared) shared = xception_middle_block(shared, features5) layers.append(shared) shared = xception_middle_block(shared, features5) layers.append(shared) shared = xception_middle_block(shared, features5) layers.append(shared) shared = xception_middle_block(shared, features5) layers.append(shared) return shared, layers def terminating_fc(input): fc = tf.reduce_mean(input, [1,2]) fc = tf.reshape(fc, (-1, features5)) fc = tf.contrib.layers.fully_connected(inputs=fc, num_outputs=1, activation_fn=None) return fc def max_pool(input, size=2, stride=2): pool = tf.contrib.layers.max_pool2d(inputs=input, kernel_size=size, stride=stride, padding='SAME') return pool testing_scale = 1 features1 = 64 // testing_scale features2 = 128 // testing_scale features3 = 256 // testing_scale features4 = 512 // testing_scale def discriminate(x): """Discriminator architecture""" x = discr_conv_block(x, features1, 2, 1, kernel_size=4) x = discr_conv_block(x, features2, 2, 1, kernel_size=4) x = discr_conv_block(x, features3, 2, 1, kernel_size=4) #x = discr_conv_block(x, features3, 1, 1, kernel_size=4) x = discr_conv_block(x, features4, 2, 1, kernel_size=4) x = tf.reduce_sum(x, axis=[1,2,3]) #shape = int_shape(x) #x = tf.reshape(x, (-1, shape[1]*shape[2]*shape[3])) #x = tf.contrib.layers.fully_connected( # inputs=x, num_outputs=1, biases_initializer=None, activation_fn=None) return x '''Model building''' with tf.variable_scope("small", reuse=reuse) as small_scope: small = inputs[0] small = discriminate(small) with tf.variable_scope("medium", reuse=reuse) as medium_scope: medium = inputs[1] medium = discriminate(medium) with tf.variable_scope("large", reuse=reuse) as large_scope: large = inputs[2] large = discriminate(large) discriminations = [] for x in [small, medium, large]: clipped = x#tf.clip_by_value(x, clip_value_min=0, clip_value_max=1000) #5*l2_norm discriminations.append( clipped ) return discriminations def experiment(feature, ground_truth, mask, learning_rate_ph, discr_lr_ph, beta1_ph, discr_beta1_ph, norm_decay, train_outer_ph, ramp_ph, initialize): def pad(tensor, size): d1_pad = size[0] d2_pad = size[1] paddings = tf.constant([[0, 0], [d1_pad, d1_pad], [d2_pad, d2_pad], [0, 0]], dtype=tf.int32) padded = tf.pad(tensor, paddings, mode="REFLECT") return padded def gaussian_kernel(size: int, mean: float, std: float, ): """Makes 2D gaussian Kernel for convolution.""" d = tf.distributions.Normal(mean, std) vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32)) gauss_kernel = tf.einsum('i,j->ij', vals, vals) return gauss_kernel / tf.reduce_sum(gauss_kernel) def blur(image): gauss_kernel = gaussian_kernel( 2, 0., 2.5 ) #Expand dimensions of `gauss_kernel` for `tf.nn.conv2d` signature gauss_kernel = gauss_kernel[:, :, tf.newaxis, tf.newaxis] #Convolve image = pad(image, (2,2)) return tf.nn.conv2d(image, gauss_kernel, strides=[1, 1, 1, 1], padding="VALID") def get_multiscale_crops(input, multiscale_channels=1): """Assumes square inputs""" input = pad(input, (2*discr_size, 2*discr_size)) #Extra padding to reduce periodic artefacts s = int_shape(input) small = tf.random_crop( input, size=(batch_size, discr_size, discr_size, multiscale_channels)) small = tf.image.resize_images(small, (discr_size, discr_size)) medium = tf.random_crop( input, size=(batch_size, 2*discr_size, 2*discr_size, multiscale_channels)) medium = tf.image.resize_images(medium, (discr_size, discr_size)) large = tf.random_crop( input, size=(batch_size, 4*discr_size, 4*discr_size, multiscale_channels)) large = tf.image.resize_images(large, (discr_size, discr_size)) return small, medium, large #Generator feature = tf.reshape(feature, [-1, cropsize, cropsize, channels]) feature_small = tf.image.resize_images(feature, (cropsize//2, cropsize//2)) truth = tf.reshape(ground_truth, [-1, cropsize, cropsize, channels]) truth_small = tf.image.resize_images(truth, (cropsize//2, cropsize//2)) small_mask = tf.image.resize_images(mask, (cropsize//2, cropsize//2)) if initialize: print("Started initialization") _, _ = generator_architecture( feature, feature_small, mask, small_mask, norm_decay, init_pass=True) print("Initialized") output_inner, output_outer = generator_architecture( feature, feature_small, mask, small_mask, norm_decay, init_pass=False) print("Architecture ready") #Blurred images blur_truth_small = blur(truth_small) blur_output_inner = blur(output_inner) blur_truth = blur(truth) blur_output_outer = blur(output_outer) #Trainable parameters model_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Network") model_params_inner = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Network/Inner/Inner") model_params_trainer = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Network/Inner/Trainer") model_params_outer = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="Network/Outer") ##Discriminators #Intermediate image for gradient penalty calculation epsilon = tf.random_uniform( shape=[2, 1, 1, 1, 1], minval=0., maxval=1.) X_hat_outer = (1-epsilon[0])*truth + epsilon[0]*output_outer X_hat_inner = (1-epsilon[1])*blur_truth_small + epsilon[1]*output_inner discr_inputs_outer = [output_outer, truth, X_hat_outer] discr_inputs_inner = [output_inner, blur_truth_small, X_hat_inner] #Crop images at multiple scales at the same places for each scale concat_outer = tf.concat(discr_inputs_outer, axis=3) concat_inner = tf.concat(discr_inputs_inner, axis=3) num_channels_outer = len(discr_inputs_outer) num_channels_inner = len(discr_inputs_inner) multiscale_crops_outer = get_multiscale_crops(concat_outer, multiscale_channels=num_channels_outer) multiscale_crops_inner = get_multiscale_crops(concat_inner, multiscale_channels=num_channels_inner) multiscale_crops_outer = [tf.unstack(crop, axis=3) for crop in multiscale_crops_outer] multiscale_crops_inner = [tf.unstack(crop, axis=3) for crop in multiscale_crops_inner] #Sort crops into categories shape = (batch_size, discr_size, discr_size, channels) crops_set_outer = [] for crops in multiscale_crops_outer: crops_set_outer.append( [tf.reshape(unstacked, shape) for unstacked in crops] ) crops_set_inner = [] for crops in multiscale_crops_inner: crops_set_inner.append( [tf.reshape(unstacked, shape) for unstacked in crops] ) #Get intermediate representations multiscale_xhat_outer = [m[2] for m in crops_set_outer] multiscale_xhat_inner = [m[2] for m in crops_set_inner] #Concatenate so the crops can be processed as a single batch multiscale_outer = [] for crops in crops_set_outer: multiscale_outer.append( tf.concat(crops, axis=0) ) multiscale_inner = [] for crops in crops_set_inner: multiscale_inner.append( tf.concat(crops, axis=0) ) _discrimination_outer = discriminator_architecture( multiscale_outer ) _discrimination_inner = discriminator_architecture( multiscale_inner, reuse=True ) model_params_discr_small = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="GAN/Discr/small") model_params_discr_medium = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="GAN/Discr/medium") model_params_discr_large = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="GAN/Discr/large") model_params_discrs = [model_params_discr_small, model_params_discr_medium, model_params_discr_large] #Separate batch into discrimination categories discr_of_output_outer = [d[0] for d in _discrimination_outer] discr_of_truth = [d[1] for d in _discrimination_outer] discr_of_X_hat_outer = [d[2] for d in _discrimination_outer] discr_of_output_inner = [d[0] for d in _discrimination_inner] discr_of_truth_small = [d[1] for d in _discrimination_inner] discr_of_X_hat_inner = [d[2] for d in _discrimination_inner] pred_real_outer = 0. pred_fake_outer = 0. avg_d_grads_outer = 0. d_losses_outer = [] pred_real_inner = 0. pred_fake_inner = 0. avg_d_grads_inner = 0. d_losses_inner = [] wass_weight = 1. gradient_penalty_weight = 10. l2_inner_weight = 5.e-5 l2_outer_weight = 5.e-5 def get_gradient_penalty(_discr_of_X_hat, _multiscale_xhat): grad_D_X_hat = tf.gradients(_discr_of_X_hat, [_multiscale_xhat])[0] red_idx = [i for i in range(2, _multiscale_xhat.shape.ndims)] slopes = tf.sqrt(1.e-8+tf.reduce_sum(tf.square(grad_D_X_hat), axis=red_idx)) gradient_penalty = tf.reduce_mean((slopes - 1.) ** 2) return gradient_penalty ##Losses and train ops wass_loss_for_gen_outer = 0. wass_loss_for_gen_inner = 0. wass_loss_for_discr_outer = 0. wass_loss_for_discr_inner = 0. for i in range(3): #Discrimination is on 3 scales #wasserstein_loss_outer = discr_of_output_outer[i] - discr_of_truth[i] #wasserstein_loss_inner = discr_of_output_inner[i] - discr_of_truth_small[i] #wass_loss_for_discr_outer += wasserstein_loss_outer #wass_loss_for_discr_inner += wasserstein_loss_inner #wass_loss_for_gen_outer += -discr_of_output_outer[i] #wass_loss_for_gen_inner += -discr_of_output_inner[i] gradient_penalty_outer = 0.#get_gradient_penalty(discr_of_X_hat_outer[i], multiscale_xhat_outer[i]) gradient_penalty_inner = 0.#get_gradient_penalty(discr_of_X_hat_inner[i], multiscale_xhat_inner[i]) wasserstein_loss_outer = tf.pow(discr_of_truth[i]-1., 2) + tf.pow(discr_of_output_outer[i], 2) wasserstein_loss_inner = tf.pow(discr_of_truth_small[i]-1., 2) + tf.pow(discr_of_output_inner[i], 2) wass_loss_for_discr_outer += wasserstein_loss_outer wass_loss_for_discr_inner += wasserstein_loss_inner wass_loss_for_gen_outer += tf.pow(discr_of_output_outer[i]-1., 2) wass_loss_for_gen_inner += tf.pow(discr_of_output_inner[i]-1, 2) pred_real_outer += discr_of_truth[i] pred_fake_outer += discr_of_output_outer[i] avg_d_grads_outer += gradient_penalty_outer pred_real_inner += discr_of_truth_small[i] pred_fake_inner += discr_of_output_inner[i] avg_d_grads_inner += gradient_penalty_inner d_loss_outer = wass_weight*wasserstein_loss_outer + gradient_penalty_weight*gradient_penalty_outer d_loss_inner = wass_weight*wasserstein_loss_inner + gradient_penalty_weight*gradient_penalty_inner d_losses_outer.append(d_loss_outer) d_losses_inner.append(d_loss_inner) mse_inner = 200*adjusted_mse(blur_truth_small, output_inner) mse_inner = capper_fn(mse_inner) #mse_inner = 2.*tf.cond( mse_inner < 1, lambda: mse_inner, lambda: tf.sqrt(mse_inner+1.e-8) ) #mse_inner = tf.minimum(mse_inner, 50) mse_outer = 200*adjusted_mse(blur_truth, output_outer) mse0 = tf.reduce_mean( (blur_truth - output_outer)**2 ) mse_outer = capper_fn(mse_outer) #mse_outer = 2.*tf.cond( mse_outer < 1, lambda: mse_outer, lambda: tf.sqrt(mse_outer+1.e-8) ) #mse_outer = tf.minimum(mse_outer, 50) #Safegaurd against error spikes mse_outer_together = 200*adjusted_mse(blur_truth, blur_output_outer) mse_outer_together = capper_fn(mse_outer_together) #mse_outer_together = 2.*tf.cond( mse_outer < 1, lambda: mse_outer, lambda: tf.sqrt(mse_outer+1.e-8) ) #mse_inner = 10*tf.reduce_mean(tf.abs( blur_truth_small - blur_output_inner )) #mse_outer = 10*tf.reduce_mean(tf.abs( blur_truth - blur_output_outer )) loss = mse_outer_together + wass_loss_for_gen_outer loss_inner = mse_inner loss_outer = mse_outer train_ops_discr = [] for i in range(3): d_loss = tf.cond( train_outer_ph, lambda: d_losses_outer[i], lambda: d_losses_inner[i] ) d_train_op = tf.train.AdamOptimizer(discr_lr_ph, 0.9).minimize( d_loss, var_list=model_params_discrs[i]) train_ops_discr.append(d_train_op) #Provision inner network with an ancillary loss tower train_op_trainer = tf.train.AdamOptimizer(learning_rate_ph, 0.9).minimize( 2*loss_inner, var_list=model_params_trainer) train_op_inner_start = tf.train.AdamOptimizer(learning_rate_ph, 0.9).minimize( loss_inner+loss_outer, var_list=model_params_inner) train_op_inner_end = tf.train.AdamOptimizer(learning_rate_ph, 0.9).minimize( loss_inner+loss, var_list=model_params_inner) train_op_outer_start = tf.train.AdamOptimizer(learning_rate_ph, 0.9).minimize( loss_outer, var_list=model_params_outer) train_op_outer_end = tf.train.AdamOptimizer(learning_rate_ph, 0.9).minimize( loss, var_list=model_params_outer) start_train_ops = [train_op_inner_start, train_op_outer_start, train_op_trainer] end_train_ops = [train_op_inner_end, train_op_outer_end, train_op_trainer] errors = tf.to_double((100*blur_truth - 100*output_outer)**2) return {'start_train_ops': start_train_ops, 'end_train_ops': end_train_ops, 'train_ops_discr': train_ops_discr, 'output_inner': output_inner, 'output_outer': output_outer, 'mse_inner': mse_inner, 'mse_outer': mse_outer, 'wass_loss_inner': wass_loss_for_gen_inner, 'wass_loss_outer': wass_loss_for_gen_outer, 'wass_loss_d_inner': wass_loss_for_discr_inner, 'wass_loss_d_outer': wass_loss_for_discr_outer, 'errors': errors, "mse0": mse0 } def flip_rotate(img): """Applies a random flip || rotation to the image, possibly leaving it unchanged""" choice = np.random.randint(0, 8) if choice == 0: return img if choice == 1: return np.rot90(img, 1) if choice == 2: return np.rot90(img, 2) if choice == 3: return np.rot90(img, 3) if choice == 4: return np.flip(img, 0) if choice == 5: return np.flip(img, 1) if choice == 6: return np.flip(np.rot90(img, 1), 0) if choice == 7: return np.flip(np.rot90(img, 1), 1) def load_image(addr, resize_size=cropsize, img_type=np.float32): """Read an image and make sure it is of the correct type. Optionally resize it""" #addr = "Z:/Jeffrey-Ede/models/stem-random-walk-nin-20-1/truth-1000.tif" try: img = imread(addr, mode='F') except: img = np.zeros((cropsize,cropsize)) print("Image read failed") if resize_size and resize_size != cropsize: img = cv2.resize(img, (resize_size, resize_size), interpolation=cv2.INTER_AREA) return img.astype(img_type) def scale0to1(img): """Rescale image between 0 and 1""" img = img.astype(np.float32) min = np.min(img) max = np.max(img) if np.absolute(min-max) < 1.e-6: img.fill(0.5) else: img = (img-min) / (max-min) return img.astype(np.float32) def norm_img(img): min = np.min(img) max = np.max(img) if np.absolute(min-max) < 1.e-6: img.fill(0.) else: a = 0.5*(min+max) b = 0.5*(max-min) img = (img-a) / b return img.astype(np.float32) def preprocess(img): img[np.isnan(img)] = 0. img[np.isinf(img)] = 0. img = norm_img(img) return img def gen_random_walk(channel_width, channel_height=cropsize, amplitude=1, beta1=0., shift=0., steps=10): walk = np.zeros((int(np.ceil(channel_width+shift)), channel_height)) halfway = (channel_width-1)/2 center = halfway+shift size = int(np.ceil(channel_width+shift)) mom = 0. y = 0. for i in range(channel_height): y1 = y #Get new position and adjust momentum step_y = random.randint(0, 1) if step_y == 1: mom = beta1*mom + (1-beta1)*amplitude*(1 + np.random.normal()) y += mom else: y = amplitude*(-1 + np.random.normal()) if y < -halfway: y = -halfway mom = -mom elif y > halfway: y = halfway mom = -mom #Move to position in steps y2 = y scale = np.sqrt(1+(y2-y1)**2) for j in range(steps): x = (j+1)/steps y = (y2-y1)*x + y1 y_idx = center+y if y_idx != np.ceil(y_idx): if int(y_idx) < size: walk[int(y_idx), i] += scale*(np.ceil(y_idx) - y_idx)/steps if int(y_idx)+1 < size: walk[int(y_idx)+1, i] += scale*(1.-(np.ceil(y_idx) - y_idx))/steps else: walk[int(y_idx), i] = scale*1 return walk, size #def make_mask(use_frac, amp, steps): # channel_size = (2+np.sqrt(4-4*4*use_frac)) / (2*use_frac) # num_channels = cropsize / channel_size # mask = np.zeros( (cropsize, cropsize) ) # for i in range( int(num_channels) ): # shift = i*channel_size - np.floor(i*channel_size) # walk, size = gen_random_walk(channel_width=channel_size, amplitude=amp, beta1=0.5, shift=shift, steps=steps) # lower_idx = np.floor(i*channel_size) # upper_idx = int(lower_idx)+size # if upper_idx < cropsize: # mask[int(lower_idx):upper_idx, :] = walk # else: # diff = int(upper_idx)-int(cropsize) # mask[int(lower_idx):int(upper_idx)-diff, :] = walk[0:(size-diff), :] # return mask def make_mask(use_frac): mask = inspiral(use_frac, cropsize) return mask def fill(data, invalid=None): """ Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell Input: data: numpy array of any dimension invalid: a binary array of same shape as 'data'. True cells set where data value should be replaced. If None (default), use: invalid = np.isnan(data) Output: Return a filled array. """ #import numpy as np #import scipy.ndimage as nd if invalid is None: invalid = np.isnan(data) ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] def gen_lq(img0): img = norm_img(cv2.GaussianBlur(img0,(5,5), 2.5)) steps = 25 use_frac = 1/16 amp = 5. mask = make_mask(use_frac) #mask = mask.clip(0., 1.) #print(np.sum(mask)/(512**2)) select = mask > 0 #Combine with uniform noise low detection time data is less meaningful detection = mask*img0#mask * ( mask*img0 + 2*(1-mask)*np.random.rand(*img0.shape)*img ) lq = -np.ones(img.shape) lq[select] = detection[select] lq = scale0to1(lq) lq = fill(lq, invalid=np.logical_not(mask.astype(np.bool))) #Changed img to img0 halfway through training return img0.astype(np.float32), lq.astype(np.float32), mask.astype(np.float32) def inspiral(coverage, side, num_steps=10_000): """Duration spent at each location as a particle falls in a magnetic field. Trajectory chosen so that the duration density is (approx.) evenly distributed. Trajectory is calculated stepwise. Args: coverage: Average amount of time spent at a random pixel side: Sidelength of square image that the motion is inscribed on. Returns: Amounts of time spent at each pixel on a square image as a charged particle inspirals. """ #Use size that is larger than the image size = int(np.ceil(np.sqrt(2)*side)) #Maximum radius of motion R = size/2 #Get constant in equation of motion k = 1/ (2*np.pi*coverage) #Maximum theta that is in the image theta_max = R / k #Equispaced steps theta = np.arange(0, theta_max, theta_max/num_steps) r = k * theta #Convert to cartesian, with (0,0) at the center of the image x = r*np.cos(theta) + R y = r*np.sin(theta) + R #Draw spiral z = np.empty((x.size + y.size,), dtype=x.dtype) z[0::2] = x z[1::2] = y z = list(z) img = Image.new('F', (size,size), "black") img_draw = ImageDraw.Draw(img) img_draw = img_draw.line(z) img = np.asarray(img) img = img[size//2-side//2:size//2+side//2+side%2, size//2-side//2:size//2+side//2+side%2] #Blur path #img = cv2.GaussianBlur(img,(3,3),0) return img def record_parser(record): """Parse files and generate lower quality images from them.""" img = flip_rotate(preprocess(load_image(record))) img, lq, mask = gen_lq(img) if np.sum(np.isfinite(img)) != cropsize**2 or np.sum(np.isfinite(lq)) != cropsize**2: img = np.zeros((cropsize,cropsize)) lq = mask*img return lq, img, mask def reshaper(img1, img2, img3): img1 = tf.reshape(img1, [cropsize, cropsize, channels]) img2 = tf.reshape(img2, [cropsize, cropsize, channels]) img3 = tf.reshape(img3, [cropsize, cropsize, channels]) return img1, img2, img3 def input_fn(dir, subset, batch_size, num_shards): """Create a dataset from a list of filenames and shard batches from it""" with tf.device('/cpu:0'): dataset = tf.data.Dataset.list_files(dir+subset+"/"+"*.tif") dataset = dataset.shuffle(buffer_size=shuffle_buffer_size) dataset = dataset.repeat(num_epochs) dataset = dataset.map( lambda file: tf.py_func(record_parser, [file], [tf.float32, tf.float32, tf.float32]), num_parallel_calls=num_parallel_calls) #print(dataset.output_shapes, dataset.output_types) dataset = dataset.map(reshaper, num_parallel_calls=num_parallel_calls) #print(dataset.output_shapes, dataset.output_types) dataset = dataset.batch(batch_size=batch_size) dataset = dataset.prefetch(buffer_size=prefetch_buffer_size) iter = dataset.make_one_shot_iterator() img_batch = iter.get_next() if num_shards <= 1: # No GPU available or only 1 GPU. return [img_batch[0]], [img_batch[1]], [img_batch[2]] else: image_batch = tf.unstack(img_batch, num=batch_size, axis=1) feature_shards = [[] for i in range(num_shards)] feature_shards_truth = [[] for i in range(num_shards)] for i in range(batch_size): idx = i % num_shards tensors = tf.unstack(image_batch[i], num=2, axis=0) feature_shards[idx].append(tensors[0]) feature_shards_truth[idx].append(tensors[1]) feature_shards_mask[idx].append(tensors[2]) feature_shards = [tf.parallel_stack(x) for x in feature_shards] feature_shards_truth = [tf.parallel_stack(x) for x in feature_shards_truth] feature_shards_mask = [tf.parallel_stack(x) for x in feature_shards_mask] return feature_shards, feature_shards_truth, feature_shards_mask def disp(img): cv2.namedWindow('CV_Window', cv2.WINDOW_NORMAL) cv2.imshow('CV_Window', scale0to1(img)) cv2.waitKey(0) return if disp_select: disp(select) class RunConfig(tf.contrib.learn.RunConfig): def uid(self, whitelist=None): """ Generates a 'Unique Identifier' based on all internal fields. Caller should use the uid string to check `RunConfig` instance integrity in one session use, but should not rely on the implementation details, which is subject to change. Args: whitelist: A list of the string names of the properties uid should not include. If `None`, defaults to `_DEFAULT_UID_WHITE_LIST`, which includes most properties user allowes to change. Returns: A uid string. """ if whitelist is None: whitelist = run_config._DEFAULT_UID_WHITE_LIST state = {k: v for k, v in self.__dict__.items() if not k.startswith('__')} # Pop out the keys in whitelist. for k in whitelist: state.pop('_' + k, None) ordered_state = collections.OrderedDict( sorted(state.items(), key=lambda t: t[0])) # For class instance without __repr__, some special cares are required. # Otherwise, the object address will be used. if '_cluster_spec' in ordered_state: ordered_state['_cluster_spec'] = collections.OrderedDict( sorted(ordered_state['_cluster_spec'].as_dict().items(), key=lambda t: t[0])) return ', '.join( '%s=%r' % (k, v) for (k, v) in six.iteritems(ordered_state)) def sigmoid(x,shift=0,mult=1): return 1 / (1 + np.exp(-(x+shift)*mult)) def main(job_dir, data_dir, variable_strategy, num_gpus, log_device_placement, num_intra_threads, **hparams): tf.reset_default_graph() temp = set(tf.all_variables()) with open(log_file, 'a') as log: log.flush() # The env variable is on deprecation path, default is set to off. os.environ['TF_SYNC_ON_FINISH'] = '0' os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1' #with tf.device("/cpu:0"): update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) #For batch normalisation windows with tf.control_dependencies(update_ops): # Session configuration. sess_config = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False,#Once placement is correct, this fills up too much of the cmd window... intra_op_parallelism_threads=num_intra_threads, gpu_options=tf.GPUOptions(force_gpu_compatible=True, allow_growth=True)) config = RunConfig( session_config=sess_config, model_dir=job_dir) hparams=tf.contrib.training.HParams( is_chief=config.is_chief, **hparams) img, img_truth, img_mask = input_fn(data_dir, 'test', batch_size, num_gpus) img_val, img_truth_val, img_mask_val = input_fn(data_dir, 'test', batch_size, num_gpus) with tf.Session(config=sess_config) as sess: print("Session started") sess.run(tf.initialize_variables(set(tf.all_variables()) - temp)) temp = set(tf.all_variables()) ____img, ____img_truth, ____img_mask = sess.run([img, img_truth, img_mask]) img_ph = [tf.placeholder(tf.float32, shape=i.shape, name='img') for i in ____img] img_truth_ph = [tf.placeholder(tf.float32, shape=i.shape, name='img_truth') for i in ____img_truth] img_mask_ph = [tf.placeholder(tf.float32, shape=i.shape, name='img_mask') for i in ____img_truth] is_training = True print("Dataflow established") learning_rate_ph = tf.placeholder(tf.float32, name='learning_rate') discr_learning_rate_ph = tf.placeholder(tf.float32, name='discr_learning_rate') beta1_ph = tf.placeholder(tf.float32, shape=(), name='beta1') discr_beta1_ph = tf.placeholder(tf.float32, shape=(), name='discr_beta1') norm_decay_ph = tf.placeholder(tf.float32, shape=(), name='norm_decay') train_outer_ph = tf.placeholder(tf.bool, name='train_outer') ramp_ph = tf.placeholder(tf.float32, name='ramp') ######################################################################################### exp_dict = experiment(img_ph[0], img_truth_ph[0], img_mask_ph[0], learning_rate_ph, discr_learning_rate_ph, beta1_ph, discr_beta1_ph, norm_decay_ph, train_outer_ph, ramp_ph, initialize=True) print("Created experiment") sess.run( tf.initialize_variables( set(tf.all_variables())-temp), feed_dict={beta1_ph: np.float32(0.9), discr_beta1_ph: np.float32(0.5)} ) train_writer = tf.summary.FileWriter( logDir, sess.graph ) #print(tf.all_variables()) saver = tf.train.Saver(max_to_keep=1) #saver.restore(sess, tf.train.latest_checkpoint(model_dir+"model/")) saver.restore(sess, tf.train.latest_checkpoint(model_dir+"notable_ckpts/")) counter = 0 val_counter = 0 save_counter = counter counter_init = counter+1 base_rate = 0.0001 bad_buffer_size = 50 bad_buffer_truth = [] bad_buffer = [] bad_buffer_mask = [] for _ in range(bad_buffer_size): lq, buffer_img, mask = sess.run([img, img_truth, img_mask]) bad_buffer_truth.append(buffer_img) bad_buffer.append(lq) bad_buffer_mask.append(mask) bad_buffer_prob = 0.2 bad_buffer_beta = 0.99 bad_buffer_thresh = 0. bad_buffer_tracker = bad_buffer_prob bad_buffer_tracker_beta = 0.99 bad_buffer_num_uses = 1 #Here our 'natural' statistics are MSEs nat_stat_mean_beta = 0.99 nat_stat_std_dev_beta = 0.99 nat_stat_mean = 1.5 nat_stat2_mean = 4. total_iters = 1_000_000 discr_beta1 = 0.5 discr_learning_rate = 0.0001 wass_iter = 1 train_discr_per_gen = 1 #Number of discriminator training ops per generator training op num_steps_in_lr_decay = 8 mses = [] max_count = 50 total_errors = None print("Starting training") while True: #Train for a couple of hours time0 = time.time() while time.time()-time0 < modelSavePeriod: if not val_counter % val_skip_n: val_counter = 0 val_counter += 1 if val_counter % val_skip_n: #Only increment on nan-validation iterations if not wass_iter % train_discr_per_gen: counter += 1 wass_iter = 1 gen_train = True else: gen_train = False wass_iter += 1 if counter < 0.25*total_iters: rate = 3*base_rate beta1 = 0.9 elif counter < 0.5*total_iters: len_iters = 0.25*total_iters rel_iters = counter - 0.25*total_iters step = int(num_steps_in_lr_decay*rel_iters/len_iters) rate = 3*base_rate * (1 - step/num_steps_in_lr_decay) beta1 = 0.9 - 0.4*step/num_steps_in_lr_decay #elif counter == total_iters//2: # saver.save(sess, save_path=model_dir+"model/model", global_step=counter) # quit() elif counter < 0.75*total_iters: rate = base_rate beta1 = 0.5 elif counter < total_iters: #Stepped linear decay rel_iters = counter - 0.75*total_iters step = int(num_steps_in_lr_decay*rel_iters/(0.25*total_iters)) rate = base_rate * ( 1. - step/num_steps_in_lr_decay ) beta1 = 0.5 if counter in [total_iters//2, total_iters]: saver.save(sess, save_path=model_dir+"notable_ckpts/model", global_step=counter) #if counter == total_iters: quit() learning_rate = np.float32(rate) if counter < 0.5*total_iters: norm_decay = 0.99 else: norm_decay = 1. ramp = 1. train_outer = True base_dict = { learning_rate_ph: learning_rate, discr_learning_rate_ph: np.float32(discr_learning_rate), beta1_ph: np.float32(beta1), discr_beta1_ph: np.float32(discr_beta1), norm_decay_ph: np.float32(norm_decay), train_outer_ph: np.bool(train_outer), ramp_ph: np.float32(ramp) } use_buffer = False#np.random.rand() < bad_buffer_num_uses*bad_buffer_prob if use_buffer: idx = np.random.randint(0, bad_buffer_size) _img = bad_buffer[idx] _img_truth = bad_buffer_truth[idx] _img_mask = bad_buffer_mask[idx] print("From buffer") else: _img, _img_truth, _img_mask = sess.run([img, img_truth, img_mask]) #disp(_img_mask[0][0]) dict = base_dict.copy() dict.update( { img_ph[0]: _img[0], img_truth_ph[0]: _img_truth[0], img_mask_ph[0]: _img_mask[0] } ) if counter < max_count: print(f"Iter: {counter}") final_output = sess.run(exp_dict["output_outer"], feed_dict=dict) Image.fromarray(_img[0].reshape(cropsize, cropsize).astype(np.float32)).save( model_dir+f"partial_scan-{counter}.tif" ) Image.fromarray((0.5*final_output+0.5).reshape(cropsize, cropsize).astype(np.float32)).save( model_dir+f"output-{counter}.tif" ) Image.fromarray((0.5*_img_truth[0]+0.5).reshape(cropsize, cropsize).astype(np.float32)).save( model_dir+f"truth-{counter}.tif" ) Image.fromarray(_img_mask[0].reshape(cropsize, cropsize).astype(np.float32)).save( model_dir+f"mask-{counter}.tif" ) else: quit() #if counter < 0.5*total_iters: # train_ops = exp_dict['start_train_ops'] #else: # train_ops = exp_dict['end_train_ops'] if gen_train else [] # train_ops += exp_dict['train_ops_discr'] #other_ops = [exp_dict['mse_inner'], exp_dict['mse_outer'], exp_dict['wass_loss_outer'], exp_dict['wass_loss_d_outer']] #output_ops = [exp_dict['output_outer']] #output_size = cropsize ##Save outputs occasionally #if 0 <= counter <= 1 or not counter % save_result_every_n_batches or (0 <= counter < 10000 and not counter % 1000) or counter == counter_init: # #Don't train on validation examples # if not val_counter % val_skip_n: # results = sess.run( other_ops + output_ops, feed_dict=dict ) # else: # results = sess.run( other_ops + output_ops + train_ops, feed_dict=dict ) # mse_in = results[0] # mse = results[1] # wass_loss = results[2] # wass_d_loss = results[3] # output = results[len(other_ops)] # try: # save_input_loc = model_dir+"input-"+str(counter)+".tif" # save_truth_loc = model_dir+"truth-"+str(counter)+".tif" # save_output_loc = model_dir+"output-"+str(counter)+".tif" # save_mask_loc = model_dir+"mask-"+str(counter)+".tif" # Image.fromarray((_img[0]).reshape(cropsize, cropsize).astype(np.float32)).save( save_input_loc ) # Image.fromarray((0.5*_img_truth[0]+0.5).reshape(cropsize, cropsize).astype(np.float32)).save( save_truth_loc ) # Image.fromarray((0.5*output+0.5).reshape(output_size, output_size).astype(np.float32)).save( save_output_loc ) # Image.fromarray((_img_mask[0]).reshape(cropsize, cropsize).astype(np.float32)).save( save_mask_loc ) # except: # print("Image save failed") #else: # #Don't train on validation examples # if not val_counter % val_skip_n: # results = sess.run( other_ops, feed_dict=dict ) # else: # results = sess.run( other_ops + train_ops, feed_dict=dict ) # mse_in = results[0] # mse = results[1] # wass_loss = results[2] # wass_d_loss = results[3] #nat_stat_mean = (nat_stat_mean_beta*nat_stat_mean + # (1.-nat_stat_mean_beta)*mse) #nat_stat2_mean = (nat_stat_std_dev_beta*nat_stat2_mean + # (1.-nat_stat_std_dev_beta)*mse**2) #nat_stat_std_dev = np.sqrt(nat_stat2_mean - nat_stat_mean**2) ##Decide whether or not to add to buffer using natural statistics #if not use_buffer and mse > bad_buffer_thresh: # idx = np.random.randint(0, bad_buffer_size) # bad_buffer[idx] = _img # bad_buffer_truth[idx] = _img_truth # bad_buffer_mask[idx] = _img_mask # bad_buffer_tracker = ( bad_buffer_tracker_beta*bad_buffer_tracker + # (1.-bad_buffer_tracker_beta) ) # print("To buffer")#, bad_buffer_thresh, bad_buffer_prob, bad_buffer_tracker) #else: # bad_buffer_tracker = bad_buffer_tracker_beta*bad_buffer_tracker #if bad_buffer_tracker < bad_buffer_prob: # step = nat_stat_mean-5*nat_stat_std_dev # bad_buffer_thresh = bad_buffer_beta*bad_buffer_thresh + (1.-bad_buffer_beta)*step #if bad_buffer_tracker >= bad_buffer_prob: # step = nat_stat_mean+5*nat_stat_std_dev # bad_buffer_thresh = bad_buffer_beta*bad_buffer_thresh + (1.-bad_buffer_beta)*step #message = "NiN-44, Iter: {}, MSE_in: {}, MSE: {}, Wass G: {}, Wass D: {}, Val: {}".format( # counter, 3.5/2*mse_in, 3.5/2*mse, wass_loss, wass_d_loss, # 1 if not val_counter % val_skip_n else 0) #print(message) #try: # log.write(message) #except: # print("Write to log failed") #Save the model #saver.save(sess, save_path=model_dir+"model/model", global_step=counter) save_counter = counter return if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--data-dir', type=str, default=data_dir, help='The directory where the CIFAR-10 input data is stored.') parser.add_argument( '--job-dir', type=str, default=model_dir, help='The directory where the model will be stored.') parser.add_argument( '--variable-strategy', choices=['CPU', 'GPU'], type=str, default='GPU', help='Where to locate variable operations') parser.add_argument( '--num-gpus', type=int, default=num_gpus, help='The number of gpus used. Uses only CPU if set to 0.') parser.add_argument( '--log-device-placement', action='store_true', default=True, help='Whether to log device placement.') parser.add_argument( '--num-intra-threads', type=int, default=0, help="""\ Number of threads to use for intra-op parallelism. When training on CPU set to 0 to have the system pick the appropriate number or alternatively set it to the number of physical CPU cores.\ """) parser.add_argument( '--train-steps', type=int, default=80000, help='The number of steps to use for training.') parser.add_argument( '--train-batch-size', type=int, default=batch_size, help='Batch size for training.') parser.add_argument( '--eval-batch-size', type=int, default=batch_size, help='Batch size for validation.') parser.add_argument( '--momentum', type=float, default=0.9, help='Momentum for MomentumOptimizer.') parser.add_argument( '--learning-rate', type=float, default=0.1, help="""\ This is the inital learning rate value. The learning rate will decrease during training. For more details check the model_fn implementation in this file.\ """) parser.add_argument( '--sync', action='store_true', default=False, help="""\ If present when running in a distributed environment will run on sync mode.\ """) parser.add_argument( '--num-inter-threads', type=int, default=0, help="""\ Number of threads to use for inter-op parallelism. If set to 0, the system will pick an appropriate number.\ """) parser.add_argument( '--data-format', type=str, default="NHWC", help="""\ If not set, the data format best for the training device is used. Allowed values: channels_first (NCHW) channels_last (NHWC).\ """) parser.add_argument( '--batch-norm-decay', type=float, default=0.997, help='Decay for batch norm.') parser.add_argument( '--batch-norm-epsilon', type=float, default=1e-5, help='Epsilon for batch norm.') args = parser.parse_args() if args.num_gpus > 0: assert tf.test.is_gpu_available(), "Requested GPUs but none found." if args.num_gpus < 0: raise ValueError( 'Invalid GPU count: \"--num-gpus\" must be 0 or a positive integer.') if args.num_gpus == 0 and args.variable_strategy == 'GPU': raise ValueError('num-gpus=0, CPU must be used as parameter server. Set' '--variable-strategy=CPU.') if args.num_gpus != 0 and args.train_batch_size % args.num_gpus != 0: raise ValueError('--train-batch-size must be multiple of --num-gpus.') if args.num_gpus != 0 and args.eval_batch_size % args.num_gpus != 0: raise ValueError('--eval-batch-size must be multiple of --num-gpus.') main(**vars(args))
40.715856
176
0.561883
794429cd3ed5c58ebc3e5963e67aa91409f372aa
1,091
py
Python
cgi-bin/log.py
msolivera/Phyton
1322fa2ff4bb06a17350fefa7e5268c0969e5b53
[ "bzip2-1.0.6" ]
null
null
null
cgi-bin/log.py
msolivera/Phyton
1322fa2ff4bb06a17350fefa7e5268c0969e5b53
[ "bzip2-1.0.6" ]
null
null
null
cgi-bin/log.py
msolivera/Phyton
1322fa2ff4bb06a17350fefa7e5268c0969e5b53
[ "bzip2-1.0.6" ]
null
null
null
import cgi, cgitb cgitb.enable() print ("Content-Type: text/html") print ("") params = cgi.FieldStorage() logueado = False mensaje_error = None usuario = params.getvalue("usuario") password = params.getvalue("contrasena") if not usuario or not password: mensaje_error = "Debes ingresar usuario y contrase&ntilde;a" elif usuario == "yo" and password == "yo": logueado = True else: mensaje_error = "Credenciales incorrectas" # Abrimos la pagina HTML print (""" <html> <head> <title>Formulario HTML</title> </head> <body> """) # Si las credenciales fueron correctas, mostramos bienvenida if logueado: print ("Bienvenido,", usuario) # Si no esta logueado, mostramos formulario else: # Si ocurre un error, mostramos el mensaje antes del form if mensaje_error: print (mensaje_error) # Mostramos el formulario de ingreso print (""" <form method="post"> <label>Usuario</label> <input type="text" name="usuario" /> <label>Contrase&ntilde;a</label> <input type="password" name="contrasena" /> <input type="submit" value="Ingresar" /> </form> """) # Finalizamos el HTML print (""" </body> </html> """)
23.212766
60
0.72319
79442a00dcab0f25d9c3f7cfbf7ba17aeb4a23a9
2,933
py
Python
Agents/seeker.py
hanhha/ACTS
dca59ed487cd1581b54e510cc286bd3482d1cb0a
[ "MIT" ]
1
2022-02-04T03:13:38.000Z
2022-02-04T03:13:38.000Z
Agents/seeker.py
alimogh/ACTS
dca59ed487cd1581b54e510cc286bd3482d1cb0a
[ "MIT" ]
null
null
null
Agents/seeker.py
alimogh/ACTS
dca59ed487cd1581b54e510cc286bd3482d1cb0a
[ "MIT" ]
1
2022-02-04T03:13:40.000Z
2022-02-04T03:13:40.000Z
#!/usr/bin/env python3 from pandas import DataFrame from . import misc_utils as misc from . import ta class BaseSeeker (misc.BPA): def __init__ (self, source, params): misc.BPA.__init__ (self, source = source, params = params) self.archive = list () self.pdarchive = DataFrame () self.archive_len = 0 if len(params) > 0: self.setParams (params) self._investment = 0 self._qty_bought = 0 self.studies = dict () self.prediction = dict () self.last_calculations_ans = dict () def setParams (self, params): misc.BPA.setParams (self, params) self._goal = self._params ['goal'] self._fee = self._params ['fee'] def check_gainable (self, bprice, gain): res = gain * (1 - self._fee) > bprice * self._fee * 2 return res def check_profit_achieved (self, price): gprice = price * (1 - self._fee) return (gprice * self._qty_bought) > (self._investment) def check_goal_achieved (self, price): gprice = price * (1 - self._fee) return (gprice * self._qty_bought) > (self._investment*(1 + self._goal)) def store (self, data): self.archive.append (data) self.pdarchive = self.pdarchive.append (data, ignore_index = True) self.archive_len += 1 self.prediction = dict () def predict (self, factor, data): if (self.archive_len > 0 and data ['T'] != self.archive [-1]['T']) or (self.archive_len == 0): self.store (data) return self.call_predict (factor, data) if factor not in self.prediction else self.prediction [factor] def call_predict (self, factor, data): if factor == 'hitgoal': return self.check_goal_achieved (data['O'] if data['C'] > data['O'] else data['C']) if factor == 'trend': return self.predict_trend (data) if factor == 'profitable': return self.predict_profitable (data) if factor == 'harvestable': return self.predict_harvestable (data) def predict_trend (self, data): ptrend = True self.prediction ['trend'] = ptrend return ptrend def predict_profitable (self, data): ptb = True self.prediction ['profitable'] = ptb return ptb def predict_harvestable (self, data): hvb = True self.prediction ['harvestable'] = hvb return hvb def CallBack (self, data): if data[0] == 'buy': self._investment = data[2]['price'] + data[2]['fee'] self._qty_bought = data[2]['qty'] def BkdrCallBack (self, data): if (self.archive_len > 0 and data ['T'] != self.archive [-1]['T']) or (self.archive_len == 0): self.store (data) def printCandleStick (self, data): good = data['C'] > data['O'] self.shout ("Candle stick at {t}".format(t = str(data['T']))) self.shout ("O = {o} : C = {c} : H = {h} : L = {l}".format (h = data['H'], c = data['C'], o = data['O'], l = data['L']), good = good) self.shout ("Bid = {b} : Ask = {a} : Last = {l}".format (b = data['Bid'], a = data['Ask'], l = data['Last']), good = good) self.shout ("BV = {bv} : V = {v}".format (bv = data['BV'], v = data ['V']), good = good)
32.230769
135
0.643028
79442a1ac12589c85927f591b21034bc06b8e4ba
606
py
Python
make_page_list.py
mscroggs/HUSFAX
7fa7d2fcc37b349b070f39c0b26208496fe74bc7
[ "MIT" ]
null
null
null
make_page_list.py
mscroggs/HUSFAX
7fa7d2fcc37b349b070f39c0b26208496fe74bc7
[ "MIT" ]
null
null
null
make_page_list.py
mscroggs/HUSFAX
7fa7d2fcc37b349b070f39c0b26208496fe74bc7
[ "MIT" ]
1
2020-12-26T15:46:28.000Z
2020-12-26T15:46:28.000Z
#!/usr/bin/env python3 from ceefax import config from ceefax.page import PageManager from ceefax.cupt import DummyScreen import os import config as _c config.ceefax_path = os.path.dirname(os.path.realpath(__file__)) config.pages_dir = os.path.join(config.ceefax_path, "pages") config.NAME = "HUSFAX" for i, j in _c.__dict__.items(): setattr(config, i, j) page_manager = PageManager(DummyScreen()) with open("PAGES.md", "w") as f: f.write("| No. | Page title |\n") f.write("| --- | ---------- |\n") for n, page in page_manager.sorted_pages(): f.write(f"| {n} | {page.title} |\n")
28.857143
64
0.669967
79442acccb3262d642f2be315586d33d6876ffcc
10,989
py
Python
pandas/tests/frame/methods/test_reset_index.py
timhunderwood/pandas
0159cba6eb14983ab7eaf38ff138c3c397a6fe3b
[ "BSD-3-Clause" ]
3
2020-07-02T12:59:52.000Z
2020-08-27T20:05:44.000Z
pandas/tests/frame/methods/test_reset_index.py
timhunderwood/pandas
0159cba6eb14983ab7eaf38ff138c3c397a6fe3b
[ "BSD-3-Clause" ]
1
2016-10-23T21:07:28.000Z
2016-10-23T21:07:28.000Z
pandas/tests/frame/methods/test_reset_index.py
timhunderwood/pandas
0159cba6eb14983ab7eaf38ff138c3c397a6fe3b
[ "BSD-3-Clause" ]
2
2020-12-11T05:33:38.000Z
2022-01-16T12:42:17.000Z
from datetime import datetime import numpy as np import pytest from pandas import ( DataFrame, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, date_range, ) import pandas._testing as tm class TestResetIndex: def test_reset_index_tz(self, tz_aware_fixture): # GH 3950 # reset_index with single level tz = tz_aware_fixture idx = date_range("1/1/2011", periods=5, freq="D", tz=tz, name="idx") df = DataFrame({"a": range(5), "b": ["A", "B", "C", "D", "E"]}, index=idx) expected = DataFrame( { "idx": [ datetime(2011, 1, 1), datetime(2011, 1, 2), datetime(2011, 1, 3), datetime(2011, 1, 4), datetime(2011, 1, 5), ], "a": range(5), "b": ["A", "B", "C", "D", "E"], }, columns=["idx", "a", "b"], ) expected["idx"] = expected["idx"].apply(lambda d: Timestamp(d, tz=tz)) tm.assert_frame_equal(df.reset_index(), expected) def test_reset_index_with_intervals(self): idx = IntervalIndex.from_breaks(np.arange(11), name="x") original = DataFrame({"x": idx, "y": np.arange(10)})[["x", "y"]] result = original.set_index("x") expected = DataFrame({"y": np.arange(10)}, index=idx) tm.assert_frame_equal(result, expected) result2 = result.reset_index() tm.assert_frame_equal(result2, original) def test_reset_index(self, float_frame): stacked = float_frame.stack()[::2] stacked = DataFrame({"foo": stacked, "bar": stacked}) names = ["first", "second"] stacked.index.names = names deleveled = stacked.reset_index() for i, (lev, level_codes) in enumerate( zip(stacked.index.levels, stacked.index.codes) ): values = lev.take(level_codes) name = names[i] tm.assert_index_equal(values, Index(deleveled[name])) stacked.index.names = [None, None] deleveled2 = stacked.reset_index() tm.assert_series_equal( deleveled["first"], deleveled2["level_0"], check_names=False ) tm.assert_series_equal( deleveled["second"], deleveled2["level_1"], check_names=False ) # default name assigned rdf = float_frame.reset_index() exp = Series(float_frame.index.values, name="index") tm.assert_series_equal(rdf["index"], exp) # default name assigned, corner case df = float_frame.copy() df["index"] = "foo" rdf = df.reset_index() exp = Series(float_frame.index.values, name="level_0") tm.assert_series_equal(rdf["level_0"], exp) # but this is ok float_frame.index.name = "index" deleveled = float_frame.reset_index() tm.assert_series_equal(deleveled["index"], Series(float_frame.index)) tm.assert_index_equal(deleveled.index, Index(np.arange(len(deleveled)))) # preserve column names float_frame.columns.name = "columns" resetted = float_frame.reset_index() assert resetted.columns.name == "columns" # only remove certain columns df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index(["A", "B"]) # TODO should reset_index check_names ? tm.assert_frame_equal(rs, float_frame, check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index(["index", "A", "B"]) tm.assert_frame_equal(rs, float_frame.reset_index(), check_names=False) rs = df.reset_index("A") xp = float_frame.reset_index().set_index(["index", "B"]) tm.assert_frame_equal(rs, xp, check_names=False) # test resetting in place df = float_frame.copy() resetted = float_frame.reset_index() df.reset_index(inplace=True) tm.assert_frame_equal(df, resetted, check_names=False) df = float_frame.reset_index().set_index(["index", "A", "B"]) rs = df.reset_index("A", drop=True) xp = float_frame.copy() del xp["A"] xp = xp.set_index(["B"], append=True) tm.assert_frame_equal(rs, xp, check_names=False) def test_reset_index_name(self): df = DataFrame( [[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], index=Index(range(2), name="x"), ) assert df.reset_index().index.name is None assert df.reset_index(drop=True).index.name is None df.reset_index(inplace=True) assert df.index.name is None def test_reset_index_level(self): df = DataFrame([[1, 2, 3, 4], [5, 6, 7, 8]], columns=["A", "B", "C", "D"]) for levels in ["A", "B"], [0, 1]: # With MultiIndex result = df.set_index(["A", "B"]).reset_index(level=levels[0]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels[:1]) tm.assert_frame_equal(result, df.set_index("B")) result = df.set_index(["A", "B"]).reset_index(level=levels) tm.assert_frame_equal(result, df) result = df.set_index(["A", "B"]).reset_index(level=levels, drop=True) tm.assert_frame_equal(result, df[["C", "D"]]) # With single-level Index (GH 16263) result = df.set_index("A").reset_index(level=levels[0]) tm.assert_frame_equal(result, df) result = df.set_index("A").reset_index(level=levels[:1]) tm.assert_frame_equal(result, df) result = df.set_index(["A"]).reset_index(level=levels[0], drop=True) tm.assert_frame_equal(result, df[["B", "C", "D"]]) # Missing levels - for both MultiIndex and single-level Index: for idx_lev in ["A", "B"], ["A"]: with pytest.raises(KeyError, match=r"(L|l)evel \(?E\)?"): df.set_index(idx_lev).reset_index(level=["A", "E"]) with pytest.raises(IndexError, match="Too many levels"): df.set_index(idx_lev).reset_index(level=[0, 1, 2]) def test_reset_index_right_dtype(self): time = np.arange(0.0, 10, np.sqrt(2) / 2) s1 = Series( (9.81 * time ** 2) / 2, index=Index(time, name="time"), name="speed" ) df = DataFrame(s1) resetted = s1.reset_index() assert resetted["time"].dtype == np.float64 resetted = df.reset_index() assert resetted["time"].dtype == np.float64 def test_reset_index_multiindex_col(self): vals = np.random.randn(3, 3).astype(object) idx = ["x", "y", "z"] full = np.hstack(([[x] for x in idx], vals)) df = DataFrame( vals, Index(idx, name="a"), columns=[["b", "b", "c"], ["mean", "median", "mean"]], ) rs = df.reset_index() xp = DataFrame( full, columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) rs = df.reset_index(col_fill=None) xp = DataFrame( full, columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) rs = df.reset_index(col_level=1, col_fill="blah") xp = DataFrame( full, columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]] ) tm.assert_frame_equal(rs, xp) df = DataFrame( vals, MultiIndex.from_arrays([[0, 1, 2], ["x", "y", "z"]], names=["d", "a"]), columns=[["b", "b", "c"], ["mean", "median", "mean"]], ) rs = df.reset_index("a") xp = DataFrame( full, Index([0, 1, 2], name="d"), columns=[["a", "b", "b", "c"], ["", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) rs = df.reset_index("a", col_fill=None) xp = DataFrame( full, Index(range(3), name="d"), columns=[["a", "b", "b", "c"], ["a", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) rs = df.reset_index("a", col_fill="blah", col_level=1) xp = DataFrame( full, Index(range(3), name="d"), columns=[["blah", "b", "b", "c"], ["a", "mean", "median", "mean"]], ) tm.assert_frame_equal(rs, xp) def test_reset_index_multiindex_nan(self): # GH#6322, testing reset_index on MultiIndexes # when we have a nan or all nan df = DataFrame( {"A": ["a", "b", "c"], "B": [0, 1, np.nan], "C": np.random.rand(3)} ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame( {"A": [np.nan, "b", "c"], "B": [0, 1, 2], "C": np.random.rand(3)} ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame({"A": ["a", "b", "c"], "B": [0, 1, 2], "C": [np.nan, 1.1, 2.2]}) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) df = DataFrame( { "A": ["a", "b", "c"], "B": [np.nan, np.nan, np.nan], "C": np.random.rand(3), } ) rs = df.set_index(["A", "B"]).reset_index() tm.assert_frame_equal(rs, df) def test_reset_index_with_datetimeindex_cols(self): # GH#5818 df = DataFrame( [[1, 2], [3, 4]], columns=date_range("1/1/2013", "1/2/2013"), index=["A", "B"], ) result = df.reset_index() expected = DataFrame( [["A", 1, 2], ["B", 3, 4]], columns=["index", datetime(2013, 1, 1), datetime(2013, 1, 2)], ) tm.assert_frame_equal(result, expected) def test_reset_index_range(self): # GH#12071 df = DataFrame([[0, 0], [1, 1]], columns=["A", "B"], index=RangeIndex(stop=2)) result = df.reset_index() assert isinstance(result.index, RangeIndex) expected = DataFrame( [[0, 0, 0], [1, 1, 1]], columns=["index", "A", "B"], index=RangeIndex(stop=2), ) tm.assert_frame_equal(result, expected) def test_reset_index_dtypes_on_empty_frame_with_multiindex(): # GH 19602 - Preserve dtype on empty DataFrame with MultiIndex idx = MultiIndex.from_product([[0, 1], [0.5, 1.0], ["a", "b"]]) result = DataFrame(index=idx)[:0].reset_index().dtypes expected = Series({"level_0": np.int64, "level_1": np.float64, "level_2": object}) tm.assert_series_equal(result, expected)
35.678571
87
0.533352
79442b3a3a9baf32a304392d1cd18a75c290a707
19,695
py
Python
utime/dataset/sleep_study/sleep_study.py
learning310/U-Time
f7c8e3f1368f43226872a69b0fbb8c29990e4bd9
[ "MIT" ]
138
2019-11-20T02:31:17.000Z
2022-03-23T04:31:51.000Z
utime/dataset/sleep_study/sleep_study.py
acrarshin/U-Time
f7c8e3f1368f43226872a69b0fbb8c29990e4bd9
[ "MIT" ]
46
2019-12-04T03:13:28.000Z
2022-03-31T13:10:48.000Z
utime/dataset/sleep_study/sleep_study.py
acrarshin/U-Time
f7c8e3f1368f43226872a69b0fbb8c29990e4bd9
[ "MIT" ]
42
2019-11-26T16:02:26.000Z
2022-01-06T11:01:32.000Z
""" Implements the SleepStudy class which represents a sleep study (PSG) """ import numpy as np from utime import errors from utime.io.high_level_file_loaders import load_psg, load_hypnogram from utime.preprocessing import (apply_scaling, strip_funcs, apply_strip_func, assert_scaler, set_psg_sample_rate, quality_control_funcs, assert_equal_length, apply_quality_control_func) from utime.hypnogram.utils import create_class_int_to_period_idx_dict from utime.dataset.sleep_study.subject_dir_sleep_study_base import SubjectDirSleepStudyBase def assert_header_fields(header): """ Check for minimally required fields of a header dict """ check = (('sample_rate', False), ('channel_names', False), ('date', True)) for c, replace_with_none in check: if c not in header: if replace_with_none: header[c] = None else: raise ValueError("Invalid header file loaded, did not find " "attribute {} in header {}".format(c, header)) class SleepStudy(SubjectDirSleepStudyBase): """ Represents a PSG sleep study and (optionally) a manually scored hypnogram """ def __init__(self, subject_dir, psg_regex=None, hyp_regex=None, header_regex=None, period_length_sec=None, no_hypnogram=None, annotation_dict=None, load=False, logger=None): """ Initialize a SleepStudy object from PSG/HYP data PSG: A file that stores polysomnography (PSG) data HYP: A file that stores the sleep stages / annotations for the PSG Takes a path pointing to a directory in which two or more files are located. One of those files should be a PSG (data) file and unless no_hypnogram == True another should be a hypnogram/sleep stages/labels file. The PSG(/HYP) files are automatically automatically inferred using a set of simple rules when psg_regex or hyp_regex are None (refer to the 'utime.dataset.utils.find_psg_and_hyp' function). Otherwise, the psg_regex and/or hyp_regex is used to match against folder content. Each regex should have exactly one match within 'subject_dir'. Args: subject_dir: (str) File path to a directory storing the subject data. psg_regex: (str) Optional regex used to select PSG file hyp_regex: (str) Optional regex used to select HYP file header_regex: (str) Optional regex used to select a header file OBS: Rarely used as most formats store headers internally, or have header paths which are inferrable from the psg_path. period_length_sec (int) Sleep 'epoch' (segment/period) length in seconds no_hypnogram (bool) Initialize without ground truth data. annotation_dict (dict) A dictionary mapping from labels in the hyp_file_path file to integers load (bool) Load the PSG object at init time. logger (Logger) A Logger object """ super(SleepStudy, self).__init__( subject_dir=subject_dir, psg_regex=psg_regex, hyp_regex=hyp_regex, header_regex=header_regex, period_length_sec=period_length_sec, no_hypnogram=no_hypnogram, annotation_dict=annotation_dict, logger=logger ) # Hidden attributes controlled in property functions to limit setting # of these values to the load() function self._scaler = None self._scaler_obj = None self._load_time_random_channel_selector = None self._strip_func = None self._quality_control_func = None self._class_to_period_dict = None self._sample_rate = None self._date = None self._org_sample_rate = None # Define attributes that will be dumped on self.unload calls self._none_on_unload = ( '_psg', '_date', '_org_sample_rate', '_hypnogram', '_scaler_obj', '_class_to_period_dict' ) # Temp fix to stop QA warnings on each load in a Queue object self.times_loaded = 0 if load: self.load() def __str__(self): if self.loaded: t = (self.identifier, len(self.select_channels), self.date, self.sample_rate, self.hypnogram is not False) return "SleepStudy(loaded=True, identifier={:s}, N channels: " \ "{}, date: {}, sample_rate={:.1f}, hypnogram={})".format(*t) else: return repr(self) def __repr__(self): return "SleepStudy(loaded={}, identifier={})".format(self.loaded, self.identifier) @property def class_to_period_dict(self): """ Returns the class_to_period_dict, which maps a class integer (such as 0) to an array of period indices that correspond to PSG periods/epochs/segments that in the ground truth is scored as the that class (such as 0). """ return self._class_to_period_dict @property def load_time_random_channel_selector(self): """ TODO Returns: """ return self._load_time_random_channel_selector @load_time_random_channel_selector.setter def load_time_random_channel_selector(self, channel_selector): """ TODO Args: channel_selector: Returns: """ if channel_selector and self.select_channels: raise RuntimeError("Setting the 'load_time_random_channel_selector' " "attribute is not possible with set values in " "'select_channels'") from utime.io.channels import RandomChannelSelector if channel_selector is not None and not \ isinstance(channel_selector, RandomChannelSelector): raise TypeError("Expected 'channel_selector' argument to be of " "type {}, got {}".format(type(RandomChannelSelector), type(channel_selector))) self._load_time_random_channel_selector = channel_selector @property def sample_rate(self): """ Returns the currently set sample rate """ return self._sample_rate @sample_rate.setter def sample_rate(self, sample_rate): """ Set a new sample rate Is considered at load-time Setting with self.loaded == True forces a reload. """ sample_rate = int(sample_rate) if sample_rate <= 0: raise ValueError("Sample rate must be a positive integer, " "got {}".format(sample_rate)) self._sample_rate = sample_rate if self.loaded: self.reload(warning=True) @property def org_sample_rate(self): """ Returns the original sample rate """ return self._org_sample_rate @property def date(self): """ Returns the recording date, may be None """ return self._date @property def scaler(self): """ Returns the scaler type (string), see setter method """ return self._scaler @scaler.setter def scaler(self, scaler): """ Sets a scaler type. Is considered at load-time Setting with self.loaded == True forces a reload. Args: scaler: String, naming a sklearn.preprocessing scaler. """ if not assert_scaler(scaler): raise ValueError("Invalid scaler, does not exist {}".format(scaler)) self._scaler = scaler if self.loaded: self.reload(warning=True) @property def scaler_obj(self): """ Reference to the scaler object """ return self._scaler_obj @property def strip_func(self): """ See setter method strip_func - when set - is a 2-tuple (strip_func_name, kwargs) """ return self._strip_func def set_strip_func(self, strip_func_str, **kwargs): """ Sets a strip function. Strip functions are applied to the PSG/HYP pair at load time and may deal with minor differences between the length of the PSG and HYP (e.g. if the PSG is longer than the HYP file). See utime.preprocessing.strip_funcs Forces a reload if self.loaded is True Args: strip_func_str: A string naming a strip_func in: utime.preprocessing.strip_funcs kwargs: Other kw arguments that will be passed to the strip function. """ if strip_func_str not in strip_funcs.__dict__: self.raise_err(ValueError, "Invalid strip function " "{}".format(strip_func_str)) self._strip_func = (strip_func_str, kwargs) if self.loaded: self.reload(warning=True) @property def quality_control_func(self): """ See setter method """ return self._quality_control_func def set_quality_control_func(self, quality_control_func, **kwargs): """ Sets a quality control function which is applied to all segments of a PSG (as determined by self.period_length_sec) and may alter the values of said segments. Applies at load-time, forces a reload if self.loaded == True. Args: qc_func: A string naming a quality control function in: utime.preprocessing.quality_control_funcs **kwargs: Parameters passed to the quality control func at load """ if quality_control_func not in quality_control_funcs.__dict__: self.raise_err(ValueError, "Invalid quality control function " "{}".format(quality_control_func)) self._quality_control_func = (quality_control_func, kwargs) if self.loaded: self.reload(warning=True) @property def loaded(self): """ Returns whether the SleepStudy data is currently loaded or not """ return not any((self.psg is None, self.hypnogram is None)) def _load_with_any_in(self, channel_sets): """ Normally not called directly, usually called from self._load. Circulates a list of lists of proposed channel names to load, attempting to load using any of the sets (in specified order), raising ChannelNorFound error if none of the sets could be loaded. Args: channel_sets: List of lists of strings, each naming a channel to load. Returns: If one of the sets of channels could be loaded, returns the PSG array of shape [-1, n_channels], the header and the list of channels that were successfully loaded (an elem. of channel_sets). """ for i, channel_set in enumerate(channel_sets): try: if self.load_time_random_channel_selector: # On reloads, the set_load_channel group will have been set # if using a load_time_channel_selector, remove it here. channel_set = None temp = self.load_time_random_channel_selector psg, header = load_psg(psg_file_path=self.psg_file_path, load_channels=channel_set or None, load_time_channel_selector=temp, header_file_path=self.header_file_path) return psg, header except errors.ChannelNotFoundError as e: if i < len(channel_sets) - 1: # Try nex set of channels continue else: s, sa = self.select_channels, \ self.alternative_select_channels err = errors.ChannelNotFoundError("Could not load " "select_channels {} or " "alternative_select_" "channels " "{}".format(s, sa)) raise err from e def _load(self): """ Loads data from the PSG and HYP files -- If self.select_channels is set (aka non empty list), only the column names matching this list will be kept. -- PSG data is kept as a numpy array. Use self.select_channels to map between names and the numpy array -- If self.scaler is set, the PSG array will be scaled according to the specified sklearn.preprocessing scaler -- If self.hyp_strip_func is set, this function will be applied to the hypnogram object. """ self._psg, header = self._load_with_any_in(self._try_channels) self._set_loaded_channels(header['channel_names']) self._set_header_fields(header) if self.hyp_file_path is not None and not self.no_hypnogram: self._hypnogram, \ self.annotation_dict = load_hypnogram(self.hyp_file_path, period_length_sec=self.period_length_sec, annotation_dict=self.annotation_dict, sample_rate=header["sample_rate"]) else: self._hypnogram = False if self.strip_func: # Strip the data using the passed function on the passed class self._psg, self._hypnogram = apply_strip_func(self, self.org_sample_rate) elif self.hypnogram and not assert_equal_length(self.psg, self.hypnogram, self.org_sample_rate): self.raise_err(RuntimeError, "PSG and hypnogram are not equally " "long in seconds. Consider setting a " "strip_function. " "See utime.preprocessing.strip_funcs.") if self.quality_control_func: # Run over epochs and assess if epoch-specific changes should be # made to limit the influence of very high noise level ecochs etc. self._psg = apply_quality_control_func(self, self.org_sample_rate, not bool(self.times_loaded)) # Set different sample rate of PSG? if self.org_sample_rate != self.sample_rate: self._psg = set_psg_sample_rate(self._psg, new_sample_rate=self.sample_rate, old_sample_rate=self.org_sample_rate) if self.scaler: self._psg, self._scaler_obj = apply_scaling(self.psg, self.scaler) # Store dictionary mapping class integers to period idx of that class if self.hypnogram: self._class_to_period_dict = create_class_int_to_period_idx_dict( self.hypnogram ) # Ensure converted to float32 ndarray self._psg = self._psg.astype(np.float32) self.times_loaded += 1 def _set_header_fields(self, header): """ TODO Args: header: Returns: """ # Ensure all header information is available assert_header_fields(header) self._date = header["date"] self._org_sample_rate = header["sample_rate"] self._sample_rate = self._sample_rate or self._org_sample_rate def load(self, reload=False): """ High-level function invoked to load the SleepStudy data """ if reload or not self.loaded: try: self._load() except Exception as e: raise errors.CouldNotLoadError("Unexpected load error for sleep " "study {}. Please refer to the " "above traceback.".format(self.identifier), study_id=self.identifier) from e return self def unload(self): """ Unloads the PSG, header and hypnogram data """ for attr in self._none_on_unload: setattr(self, attr, None) def reload(self, warning=True): """ Unloads and loads """ if warning and self.loaded: print("Reloading SleepStudy '{}'".format(self.identifier)) self.load(reload=True) def get_psg_shape(self): """ TODO Returns: """ return self.psg.shape def get_class_counts(self, as_dict=False): """ Computes the class counts for the loaded hypnogram. Args: as_dict: (bool) return a dictionary mapping from class labels (ints) to the count (int) for that class instead of the typical array of class counts. Returns: An ndarray of length n_classes of counts if as_dict == False Otherwise a dictionary mapping class labels to counts. """ classes = sorted(self._class_to_period_dict.keys()) counts = np.array([len(self._class_to_period_dict[c]) for c in classes]) if as_dict: return {cls: count for cls, count in zip(classes, counts)} else: return counts def get_class_indicies(self, class_int): return self.class_to_period_dict[class_int] def get_full_psg(self): """ TODO Returns: """ return self.psg def extract_from_psg(self, start, end, channel_inds=None): """ Extract PSG data from second 'start' (inclusive) to second 'end' (exclusive) Args: start: int, start second to extract from end: int, end second to extract from channel_inds: list, list of channel indices to extract from Returns: A Pandas DataFrame view or numpy view """ if start > self.last_period_start_second: raise ValueError("Cannot extract a full period starting from second" " {}. Last full period of {} seconds starts at " "second {}.".format(start, self.period_length_sec, self.last_period_start_second)) sr = self.sample_rate first_row = int(start * sr) last_row = int(end * sr) rows = self.psg[first_row:last_row] if channel_inds is not None: return rows[:, channel_inds] else: return rows
39.707661
100
0.566743
79442c2b8b7838ccc421e22b577cfedf186be0dc
643
py
Python
rstem/mcpi/examples/zhuowei_rainbow.py
readysetstem/readysetstem-api
01e1360f4a28a6783ee1e0fa1bc239dd999de6be
[ "Apache-2.0" ]
1
2018-02-23T20:20:45.000Z
2018-02-23T20:20:45.000Z
rstem/mcpi/examples/zhuowei_rainbow.py
readysetstem/readysetstem-api
01e1360f4a28a6783ee1e0fa1bc239dd999de6be
[ "Apache-2.0" ]
1
2016-10-25T18:00:15.000Z
2016-10-25T18:00:15.000Z
rstem/mcpi/examples/zhuowei_rainbow.py
readysetstem/readysetstem-api
01e1360f4a28a6783ee1e0fa1bc239dd999de6be
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # mcpipy.com retrieved from URL below, written by zhuowei # http://www.minecraftforum.net/topic/1638036-my-first-script-for-minecraft-pi-api-a-rainbow/ from .. import minecraft from .. import block from math import * import server colors = [14, 1, 4, 5, 3, 11, 10] mc = minecraft.Minecraft.create(server.address) height = 60 mc.setBlocks(-64,0,0,64,height + len(colors),0,0) for x in range(0, 128): for colourindex in range(0, len(colors)): y = sin((x / 128.0) * pi) * height + colourindex mc.setBlock(x - 64, int(y), 0, block.WOOL.id, colors[len(colors) - 1 - colourindex])
30.619048
100
0.656299
79442c6a0e25142d99c60164f8a08e72cc426d05
6,863
py
Python
src/relstorage/adapters/poller.py
lungj/relstorage
e18394b0197f6b70708037f36defbd3fe3ee5137
[ "ZPL-2.1" ]
null
null
null
src/relstorage/adapters/poller.py
lungj/relstorage
e18394b0197f6b70708037f36defbd3fe3ee5137
[ "ZPL-2.1" ]
null
null
null
src/relstorage/adapters/poller.py
lungj/relstorage
e18394b0197f6b70708037f36defbd3fe3ee5137
[ "ZPL-2.1" ]
null
null
null
############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from __future__ import absolute_import, print_function import logging from zope.interface import implementer from .interfaces import IPoller from .interfaces import StaleConnectionError from .schema import Schema from .sql import func log = logging.getLogger(__name__) @implementer(IPoller) class Poller(object): """Database change notification poller""" # The zoid is the primary key on both ``current_object`` (history # preserving) and ``object_state`` (history free), so these # queries are guaranteed to only produce an OID once. _list_changes_range_query = Schema.all_current_object.select( Schema.all_current_object.c.zoid, Schema.all_current_object.c.tid ).where( Schema.all_current_object.c.tid > Schema.all_current_object.bindparam('min_tid') ).and_( Schema.all_current_object.c.tid <= Schema.all_current_object.bindparam('max_tid') ).prepared() _poll_inv_query = Schema.all_current_object.select( Schema.all_current_object.c.zoid, Schema.all_current_object.c.tid ).where( Schema.all_current_object.c.tid > Schema.all_current_object.bindparam('tid') ).prepared() _poll_inv_exc_query = _poll_inv_query.and_( Schema.all_current_object.c.tid != Schema.all_current_object.bindparam('self_tid') ).prepared() poll_query = Schema.all_transaction.select( func.max(Schema.all_transaction.c.tid) ).prepared() def __init__(self, driver, keep_history, runner, revert_when_stale): self.driver = driver self.keep_history = keep_history self.runner = runner self.revert_when_stale = revert_when_stale def poll_invalidations(self, conn, cursor, prev_polled_tid, ignore_tid): """ Polls for new transactions. *conn* and *cursor* must have been created previously by ``open_for_load()`` (a snapshot connection). prev_polled_tid is the tid returned at the last poll, or None if this is the first poll. If ignore_tid is not None, changes committed in that transaction will not be included in the list of changed OIDs. Returns ``(changes, new_polled_tid)``, where *changes* is either a list of ``(oid_int, tid_int)`` that have changed, or ``None`` to indicate that the changes are too complex to li --- this must cause local storage caches to be invalidated.. *new_polled_tid* can be 0 if there is no data in the database. """ # pylint:disable=unused-argument # find out the tid of the most recent transaction. self.poll_query.execute(cursor) rows = cursor.fetchall() if not rows or not rows[0][0]: # No data, must be fresh database, without even # the root object. # Anything we had cached is now definitely invalid. return None, 0 new_polled_tid = rows[0][0] if prev_polled_tid is None: # This is the first time the connection has polled. # We'd have to list the entire database for the changes, # which is clearly no good. So we have no information # about the state of anything we have cached. return None, new_polled_tid if new_polled_tid == prev_polled_tid: # No transactions have been committed since prev_polled_tid. return (), new_polled_tid if new_polled_tid < prev_polled_tid: # The database connection is stale. This can happen after # reading an asynchronous slave that is not fully up to date. # (It may also suggest that transaction IDs are not being created # in order, which would be a serious bug leading to consistency # violations.) if self.revert_when_stale: # This client prefers to revert to the old state. log.warning( "Reverting to stale transaction ID %d and clearing cache. " "(prev_polled_tid=%d)", new_polled_tid, prev_polled_tid) # We have to invalidate the whole cPickleCache, otherwise # the cache would be inconsistent with the reverted state. return None, new_polled_tid # This client never wants to revert to stale data, so # raise ReadConflictError to trigger a retry. # We're probably just waiting for async replication # to catch up, so retrying could do the trick. raise StaleConnectionError.from_prev_and_new_tid( prev_polled_tid, new_polled_tid) # New transaction(s) have been added. # In the past, but only for history-preserving databases, we # would check to see if the previously polled transaction no # longer exists in the transaction table. If it didn't, we # would return ``(None, new_polled_tid)``, in order to clear # the Connection cache. # # However, we ran for yers without an analogous case for # history-free databases without problems, on the theory that # all the unreachable objects will be garbage collected # anyway. # # Thus we became convinced it was safe to remove the check in # history-preserving databases. # Get the list of changed OIDs and return it. stmt = self._poll_inv_query params = {'tid': prev_polled_tid} if ignore_tid is not None: stmt = self._poll_inv_exc_query params['self_tid'] = ignore_tid stmt.execute(cursor, params) # See list_changes: This could be a large result set. changes = cursor return changes, new_polled_tid def list_changes(self, cursor, after_tid, last_tid): """ See ``IPoller``. """ params = {'min_tid': after_tid, 'max_tid': last_tid} self._list_changes_range_query.execute(cursor, params) # Return the cursor: let it be its own iterable. This could be a # very large result set. For things that matter, like gevent, # consume in batches allowing periodic switches. return cursor
42.104294
90
0.64549
79442e3bf682b78dcf039fdc9f2801e603921ff8
872
py
Python
alipay/aop/api/response/AlipayOpenDesCreateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayOpenDesCreateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayOpenDesCreateResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse from alipay.aop.api.domain.GavintestNewLeveaOne import GavintestNewLeveaOne class AlipayOpenDesCreateResponse(AlipayResponse): def __init__(self): super(AlipayOpenDesCreateResponse, self).__init__() self._ces = None @property def ces(self): return self._ces @ces.setter def ces(self, value): if isinstance(value, GavintestNewLeveaOne): self._ces = value else: self._ces = GavintestNewLeveaOne.from_alipay_dict(value) def parse_response_content(self, response_content): response = super(AlipayOpenDesCreateResponse, self).parse_response_content(response_content) if 'ces' in response: self.ces = response['ces']
29.066667
100
0.698394
79442e775625cd0694de4720fd5de846738b1c9d
3,485
py
Python
src/pretix/plugins/banktransfer/urls.py
fabm3n/pretix
520fb620888d5c434665a6a4a33cb2ab22dd42c7
[ "Apache-2.0" ]
1,248
2015-04-24T13:32:06.000Z
2022-03-29T07:01:36.000Z
src/pretix/plugins/banktransfer/urls.py
fabm3n/pretix
520fb620888d5c434665a6a4a33cb2ab22dd42c7
[ "Apache-2.0" ]
2,113
2015-02-18T18:58:16.000Z
2022-03-31T11:12:32.000Z
src/pretix/plugins/banktransfer/urls.py
fabm3n/pretix
520fb620888d5c434665a6a4a33cb2ab22dd42c7
[ "Apache-2.0" ]
453
2015-05-13T09:29:06.000Z
2022-03-24T13:39:16.000Z
# # This file is part of pretix (Community Edition). # # Copyright (C) 2014-2020 Raphael Michel and contributors # Copyright (C) 2020-2021 rami.io GmbH and contributors # # This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General # Public License as published by the Free Software Foundation in version 3 of the License. # # ADDITIONAL TERMS APPLY: Pursuant to Section 7 of the GNU Affero General Public License, additional terms are # applicable granting you additional permissions and placing additional restrictions on your usage of this software. # Please refer to the pretix LICENSE file to obtain the full terms applicable to this work. If you did not receive # this file, see <https://pretix.eu/about/en/license>. # # This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License along with this program. If not, see # <https://www.gnu.org/licenses/>. # from django.conf.urls import re_path from pretix.api.urls import orga_router from pretix.plugins.banktransfer.api import BankImportJobViewSet from . import views urlpatterns = [ re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/import/', views.OrganizerImportView.as_view(), name='import'), re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/job/(?P<job>\d+)/', views.OrganizerJobDetailView.as_view(), name='import.job'), re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/action/', views.OrganizerActionView.as_view(), name='import.action'), re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/refunds/', views.OrganizerRefundExportListView.as_view(), name='refunds.list'), re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/export/(?P<id>\d+)/$', views.OrganizerDownloadRefundExportView.as_view(), name='refunds.download'), re_path(r'^control/organizer/(?P<organizer>[^/]+)/banktransfer/sepa-export/(?P<id>\d+)/$', views.OrganizerSepaXMLExportView.as_view(), name='refunds.sepa'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/import/', views.EventImportView.as_view(), name='import'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/job/(?P<job>\d+)/', views.EventJobDetailView.as_view(), name='import.job'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/action/', views.EventActionView.as_view(), name='import.action'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/refunds/', views.EventRefundExportListView.as_view(), name='refunds.list'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/export/(?P<id>\d+)/$', views.EventDownloadRefundExportView.as_view(), name='refunds.download'), re_path(r'^control/event/(?P<organizer>[^/]+)/(?P<event>[^/]+)/banktransfer/sepa-export/(?P<id>\d+)/$', views.EventSepaXMLExportView.as_view(), name='refunds.sepa'), ] orga_router.register('bankimportjobs', BankImportJobViewSet)
53.615385
118
0.682066
79442ebf15a1730ce0af5d8dbbc9186d27a69c8e
1,670
py
Python
AtC_Reg_Con_011-020/ARC018/A.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
AtC_Reg_Con_011-020/ARC018/A.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
AtC_Reg_Con_011-020/ARC018/A.py
yosho-18/AtCoder
50f6d5c92a01792552c31ac912ce1cd557b06fb0
[ "MIT" ]
null
null
null
import sys # import math, string, itertools, fractions, heapq, collections, re, array, bisect, copy, functools, random # from collections import deque, defaultdict, Counter; from heapq import heappush, heappop # from itertools import permutations, combinations, product, accumulate, groupby # from bisect import bisect_left, bisect_right, insort_left, insort_right # from operator import itemgetter as ig sys.setrecursionlimit(10 ** 7) # inf = 10 ** 20; INF = float("INF"); ans = 0; tmp = 0; ansli = []; tmpli = []; candili = []; mod = 10 ** 9 + 7 # dd = [(-1, 0), (0, 1), (1, 0), (0, -1)]; ddn = dd + [(-1, 1), (1, 1), (1, -1), (-1, -1)]; ddn9 = ddn + [(0, 0)] """for dx, dy in dd: nx = j + dx; ny = i + dy if 0 <= nx < w and 0 <= ny < h:""" def wi(): return list(map(int, sys.stdin.readline().split())) def wip(): return [int(x) - 1 for x in sys.stdin.readline().split()]#WideIntPoint def ws(): return sys.stdin.readline().split() def i(): return int(sys.stdin.readline()) def s(): return input() def hi(n): return [i() for _ in range(n)] def hs(n): return [s() for _ in range(n)]#HeightString def mi(n): return [wi() for _ in range(n)]#MatrixInt def mip(n): return [wip() for _ in range(n)] def ms(n): return [ws() for _ in range(n)] a = i() b = i() c = i() if max(a, b, c) == a: print(1) if b > c: print(2) print(3) else: print(3) print(2) elif max(a, b, c) == b: if a > c: print(2) print(1) print(3) else: print(3) print(1) print(2) else: if a > b: print(2) print(3) else: print(3) print(2) print(1)
32.115385
113
0.562874
79442ee0211fe0d295cce806747e2317a14db0c6
15,161
py
Python
SwiftManager.py
SongBS/SwiftManager
2fdb7fe8987139b9b050c77a5d711bcdae2d1a62
[ "Apache-2.0" ]
null
null
null
SwiftManager.py
SongBS/SwiftManager
2fdb7fe8987139b9b050c77a5d711bcdae2d1a62
[ "Apache-2.0" ]
null
null
null
SwiftManager.py
SongBS/SwiftManager
2fdb7fe8987139b9b050c77a5d711bcdae2d1a62
[ "Apache-2.0" ]
null
null
null
#-*-coding:cp949-*- ''' Created on 2013. 6. 24. @author: [email protected] ''' import wx import os import SwiftFunction import SwauthFunction import DialogClass import threading #down side button ID_BUTTON=100 #function ID_EXIT=200 #windows ID_SPLITTER=300 #menu ID_SETTING=400 ID_ABOUT=401 ID_SWIFT_AUTH = 500 ID_SWIFT_CONTAINER_LIST = 501 ID_SWIFT_CONTAINER_SELECT = 502 ID_SWIFT_CREATE_CONTAINER = 503 ID_SWIFT_DELETE_CONTAINER = 504 ID_SWIFT_OBEJCT_LIST = 505 ID_SWIFT_OJBECT_METADATA = 506 ID_SWIFT_OBJECT_UPLOAD = 507 ID_SWIFT_OBJECT_DOWNLOAD = 508 ID_SWIFT_OBJECT_COPY = 509 ID_SWIFT_OBJECT_DELETE = 510 ID_SWAUTH_ACCOUNT_LIST = 600 ID_SWAUTH_ACCOUNT_DETAIL = 601 ID_SWAUTH_ADD_ACCOUNT = 602 ID_SWAUTH_DEL_ACCOUNT = 603 ID_SWAUTH_ADD_USER = 604 ID_SWAUTH_DEL_USER = 605 ID_SWAUTH_DEL_USER_ALL = 606 #Toolbar ID_TOOLBAR_CONNECT = 700 ID_TOOLBAR_FOLDER = 701 ID_TOOLBAR_UPLOAD = 702 ID_TOOLBAR_DOWNLOAD = 703 ID_TOOLBAR_DELETE_FILE = 704 TD_TOOLBAR_DELETE_FOLDER = 705 ID_TOOLBAR_CONFIG = 706 ID_TOOLBAR_HELP = 707 ID_TOOLBAR_EXIT = 708 #side button ID_SIDE_BUTTON = 800 class MainWindow(wx.Frame): def __init__(self, parent, id, title): wx.Frame.__init__(self, parent, id, title, size=(590,700), style=wx.DEFAULT_FRAME_STYLE|wx.NO_FULL_REPAINT_ON_RESIZE|wx.SYSTEM_MENU) self.dirname = "." #---------------------------------------------------------------- #config values self.authToken = "" self.storageUrl = "" #swift config values self.swift_url = "" self.swift_account = "" self.swift_user = "" self.swift_passwd = "" self.swift_tokenTTL = "" self.swift_tokenNew = "" self.selectedContainer = "" #swauth config values self.swauth_url = "" self.swauth_admin = "" self.swauth_adminpass = "" #---------------------------------------------------------------- #set frame self.panel=wx.Panel(self,-1) self.textControl = wx.TextCtrl(self.panel, pos=(10, 35), size=(550, 500), style=wx.TE_MULTILINE|wx.TE_RICH) wx.StaticText(self.panel, label="Operation Display:", pos=(10, 15), size=wx.DefaultSize, style=0) # file filemenu= wx.Menu() filemenu.Append(ID_SETTING,"&Settings","") filemenu.Append(ID_EXIT,"&Exit","") swauthmenu= wx.Menu() swauthmenu.Append(ID_SWAUTH_ACCOUNT_LIST,"&Show Account List","") swauthmenu.Append(ID_SWAUTH_ACCOUNT_DETAIL,"&Show User List","") swauthmenu.AppendSeparator() swauthmenu.Append(ID_SWAUTH_ADD_ACCOUNT,"&Create Account","") swauthmenu.Append(ID_SWAUTH_DEL_ACCOUNT,"&Delete Account","") swauthmenu.AppendSeparator() swauthmenu.Append(ID_SWAUTH_ADD_USER,"&Create User","") swauthmenu.Append(ID_SWAUTH_DEL_USER,"&Delete User","") swauthmenu.Append(ID_SWAUTH_DEL_USER_ALL,"&Delete User All","") swiftmenu= wx.Menu() swiftmenu.Append(ID_SWIFT_AUTH,"&Authentication","") swiftmenu.AppendSeparator() swiftmenu.Append(ID_SWIFT_CONTAINER_LIST,"&Show Container List","") swiftmenu.Append(ID_SWIFT_CONTAINER_SELECT,"&Select Container","") swiftmenu.Append(ID_SWIFT_CREATE_CONTAINER,"&Create Container","") swiftmenu.Append(ID_SWIFT_DELETE_CONTAINER,"&Delete Container","") swiftmenu.AppendSeparator() swiftmenu.Append(ID_SWIFT_OBEJCT_LIST,"&Show Object List","") swiftmenu.Append(ID_SWIFT_OJBECT_METADATA,"&Show Object Metadata","") swiftmenu.Append(ID_SWIFT_OBJECT_UPLOAD,"&Upload Object ","") swiftmenu.Append(ID_SWIFT_OBJECT_DOWNLOAD,"&Download Object","") swiftmenu.Append(ID_SWIFT_OBJECT_COPY,"&Copy Object","") swiftmenu.Append(ID_SWIFT_OBJECT_DELETE,"&Delete Object","") # help helpmenu = wx.Menu() helpmenu.Append(ID_ABOUT,"&About Program","") menuBar = wx.MenuBar() menuBar.Append(filemenu,"&Program") menuBar.Append(swauthmenu,"&Account") menuBar.Append(swiftmenu,"&Storage") menuBar.Append(helpmenu, "&Help") self.SetMenuBar(menuBar) self.Bind(wx.EVT_MENU, self.OnModifyConfig, id=ID_SETTING) self.Bind(wx.EVT_MENU, self.OnExit, id=ID_EXIT) self.Bind(wx.EVT_MENU, self.AccountList, id=ID_SWAUTH_ACCOUNT_LIST) self.Bind(wx.EVT_MENU, self.AccountUserList, id=ID_SWAUTH_ACCOUNT_DETAIL) self.Bind(wx.EVT_MENU, self.CreateAccount, id=ID_SWAUTH_ADD_ACCOUNT) self.Bind(wx.EVT_MENU, self.DeleteAccount, id=ID_SWAUTH_DEL_ACCOUNT) self.Bind(wx.EVT_MENU, self.CreateUser, id=ID_SWAUTH_ADD_USER) self.Bind(wx.EVT_MENU, self.DeleteUser, id=ID_SWAUTH_DEL_USER) self.Bind(wx.EVT_MENU, self.DeleteUserAll, id=ID_SWAUTH_DEL_USER_ALL) self.Bind(wx.EVT_MENU, self.SwiftAuth, id=ID_SWIFT_AUTH) self.Bind(wx.EVT_MENU, self.ListContainer, id=ID_SWIFT_CONTAINER_LIST) self.Bind(wx.EVT_MENU, self.SelectContainer, id=ID_SWIFT_CONTAINER_SELECT) self.Bind(wx.EVT_MENU, self.CreateContainer, id=ID_SWIFT_CREATE_CONTAINER) self.Bind(wx.EVT_MENU, self.DeleteContainer, id=ID_SWIFT_DELETE_CONTAINER) self.Bind(wx.EVT_MENU, self.ListObject, id=ID_SWIFT_OBEJCT_LIST) self.Bind(wx.EVT_MENU, self.ObjectMeta, id=ID_SWIFT_OJBECT_METADATA) self.Bind(wx.EVT_MENU, self.UploadObject, id=ID_SWIFT_OBJECT_UPLOAD) self.Bind(wx.EVT_MENU, self.DownloadObject, id=ID_SWIFT_OBJECT_DOWNLOAD) self.Bind(wx.EVT_MENU, self.CopyObject, id=ID_SWIFT_OBJECT_COPY) self.Bind(wx.EVT_MENU, self.DeleteObject, id=ID_SWIFT_OBJECT_DELETE) self.Bind(wx.EVT_MENU, self.OnAbout, id=ID_ABOUT) tb = self.CreateToolBar( wx.TB_HORIZONTAL | wx.NO_BORDER | wx.TB_FLAT | wx.TB_TEXT) tb.SetBackgroundColour('white') tb.AddSimpleTool(ID_TOOLBAR_CONNECT, wx.Bitmap('images/connect.png', wx.BITMAP_TYPE_PNG), 'Connect Container') tb.AddSimpleTool(ID_TOOLBAR_FOLDER, wx.Bitmap('images/folder.png', wx.BITMAP_TYPE_PNG), 'Show Container List') tb.AddSeparator() tb.AddSimpleTool(ID_TOOLBAR_UPLOAD, wx.Bitmap('images/upload.png', wx.BITMAP_TYPE_PNG), 'Upload Object') tb.AddSimpleTool(ID_TOOLBAR_DOWNLOAD, wx.Bitmap('images/download.png', wx.BITMAP_TYPE_PNG), 'Download Object') tb.AddSimpleTool(ID_TOOLBAR_DELETE_FILE, wx.Bitmap('images/delete.png', wx.BITMAP_TYPE_PNG), 'Delete Object') tb.AddSimpleTool(TD_TOOLBAR_DELETE_FOLDER, wx.Bitmap('images/deletefolder.png', wx.BITMAP_TYPE_PNG), 'Delete Container') tb.AddSeparator() tb.AddSimpleTool(ID_TOOLBAR_CONFIG, wx.Bitmap('images/setting.png', wx.BITMAP_TYPE_PNG), 'Settings') tb.AddSimpleTool(ID_TOOLBAR_HELP, wx.Bitmap('images/help.png', wx.BITMAP_TYPE_PNG), 'Help') tb.AddSimpleTool(ID_TOOLBAR_EXIT, wx.Bitmap('images/exit.png', wx.BITMAP_TYPE_PNG), 'Exit Prgram') tb.Realize() self.Bind(wx.EVT_TOOL, self.TBarConnect, id=ID_TOOLBAR_CONNECT) self.Bind(wx.EVT_TOOL, self.ListContainer, id=ID_TOOLBAR_FOLDER) self.Bind(wx.EVT_TOOL, self.UploadObject, id=ID_TOOLBAR_UPLOAD) self.Bind(wx.EVT_TOOL, self.DownloadObject, id=ID_TOOLBAR_DOWNLOAD) self.Bind(wx.EVT_TOOL, self.DeleteObject, id=ID_TOOLBAR_DELETE_FILE) self.Bind(wx.EVT_TOOL, self.DeleteContainerAll, id=TD_TOOLBAR_DELETE_FOLDER) self.Bind(wx.EVT_TOOL, self.OnModifyConfig, id=ID_TOOLBAR_CONFIG) self.Bind(wx.EVT_TOOL, self.OnAbout, id=ID_TOOLBAR_HELP) self.Bind(wx.EVT_TOOL, self.OnExit, id=ID_TOOLBAR_EXIT) self.sb = self.CreateStatusBar() self.sb.SetStatusText(os.getcwd()) self.Center() self.Show(True) try: configFile = open("./config.ini", "r") except: wx.MessageBox(' Load Configuration Failure' ,'Notice' ,wx.OK|wx.ICON_INFORMATION) configdig = DialogClass.dialogNewConfigure(self, -1, 'Settings') configdig.ShowModal() configdig.Destroy() return else: config = configFile.read() config = config.encode('utf-8') for x in config.splitlines(): sLine = x.split("=", 1) if "swift_url" in sLine : self.swift_url = sLine[1].strip() if "swift_account" in sLine : self.swift_account = sLine[1].strip() if "swift_user" in sLine : self.swift_user = sLine[1].strip() if "swift_passwd" in sLine : self.swift_passwd = sLine[1].strip() if "selectedContainer" in sLine : self.selectedContainer = sLine[1].strip() if "swift_tokenTTL" in sLine : self.swift_tokenTTL = sLine[1].strip() if "swift_tokenNew" in sLine : self.swift_tokenNew = sLine[1].strip() if "swauth_url" in sLine : self.swauth_url = sLine[1].strip() if "swauth_admin" in sLine : self.swauth_admin = sLine[1].strip() if "swauth_adminpass" in sLine : self.swauth_adminpass = sLine[1].strip() self.textControl.SetValue("> Load Configuration.\r\n") self.textControl.AppendText("------------------------------------------------------------------------------------------\r\n") self.textControl.AppendText("swift_url : %s\r\n" %self.swift_url) self.textControl.AppendText("swift_account : %s\r\n" %self.swift_account) self.textControl.AppendText("swift_user : %s\r\n" %self.swift_user) self.textControl.AppendText("swift_passwd : %s\r\n" %self.swift_passwd) self.textControl.AppendText("selectedContainer : %s\r\n" %self.selectedContainer) self.textControl.AppendText("swift_tokenTTL : %s\r\n" %self.swift_tokenTTL) self.textControl.AppendText("swift_tokenNew : %s\r\n" %self.swift_tokenNew) self.textControl.AppendText("swauth_url : %s\r\n" %self.swauth_url) self.textControl.AppendText("swauth_admin : %s\r\n" %self.swauth_admin) self.textControl.AppendText("swauth_adminpass : %s\r\n" %self.swauth_adminpass) self.textControl.AppendText("-------------------------------------------------------------------------------------------\r\n\r\n") #event function def OnAbout(self, event): description = " This program is..... \r\n\r\n" licence = """ Do not allow .... """ info = wx.AboutDialogInfo() info.SetName('Swift Manager') info.SetVersion('1.0') info.SetDescription(description) info.SetCopyright('(C) Gabia inc.') info.SetWebSite('http://www.gabia.com') info.SetLicence(licence) info.AddDeveloper(' Gabia inc. ([email protected])') wx.AboutBox(info) def TBarConnect(self, event): SwiftFunction.SwiftAuth(self) SwiftFunction.ListObject(self) def OnExit(self, event): self.Close(True) def OnModifyConfig(self, event): dialog = DialogClass.dialogModifyConfigure(self, -1, 'Settings') dialog.ShowModal() dialog.Destroy() self.swift_url = dialog.swift_url self.swift_account = dialog.swift_account self.swift_user = dialog.swift_user self.swift_passwd = dialog.swift_passwd self.swift_tokenTTL = dialog.swift_tokenTTL self.swift_tokenNew = dialog.swift_tokenNew self.selectedContainer = dialog.selectedContainer self.swauth_url = dialog.swauth_url self.swauth_admin = dialog.swauth_admin self.swauth_adminpass = dialog.swauth_adminpass def OnSize(self, event): size = self.GetSize() self.splitter.SetSashPosition(size.x / 2) self.sb.SetStatusText(os.getcwd()) event.Skip() def OnDoubleClick(self, event): size = self.GetSize() self.splitter.SetSashPosition(size.x / 2) #swauth functon def AccountList(self, event): SwauthFunction.AccountList(self) def AccountUserList(self, event): SwauthFunction.AccountUserList(self) def CreateAccount(self, event): SwauthFunction.CreateAccount(self) def DeleteAccount(self, event): SwauthFunction.DeleteAccount(self) def CreateUser(self, event): SwauthFunction.CreateUser(self) def DeleteUser(self, event): SwauthFunction.DeleteUser(self) def DeleteUserAll(self, event): SwauthFunction.DeleteUserAll(self) # swift function def SwiftAuth(self, event): SwiftFunction.SwiftAuth(self) def ListContainer(self, event): SwiftFunction.ListContainer(self) def SelectContainer(self, event): SwiftFunction.SelectContainer(self) def CreateContainer(self, event): SwiftFunction.CreateContainer(self) def DeleteContainer(self, event): SwiftFunction.DeleteContainer(self) def ListObject(self, event): SwiftFunction.ListObject(self) def ObjectMeta(self, event): SwiftFunction.ObjectMeta(self) def UploadObject(self, event): th=threading.Thread(SwiftFunction.UploadObject(self)) th.start(); def DownloadObject(self, event): th=threading.Thread(SwiftFunction.DownloadObject(self)) th.start(); def CopyObject(self, event): th=threading.Thread(SwiftFunction.CopyObject(self)) th.start(); def DeleteObject(self, event): th=threading.Thread(SwiftFunction.DeleteObject(self)) th.start(); def DeleteContainerAll(self, event): th=threading.Thread(SwiftFunction.DeleteContainerAll(self)) th.start(); def EmptyInput(self): wx.MessageBox('Required fields was not entered.' ,'Notices' ,wx.OK|wx.ICON_INFORMATION) #main app = wx.App(0) MainWindow(None, -1, 'Swift Manager v1.0 beta') app.MainLoop()
39.792651
146
0.607348
79442f6d1f79e6cd2fdc45ae7573948adab2a08d
671
py
Python
LeetCode/0508. Most Frequent Subtree Sum/solution.py
InnoFang/algorithms
01847903f757722b6c877e1631e5413b9376c82e
[ "Apache-2.0" ]
null
null
null
LeetCode/0508. Most Frequent Subtree Sum/solution.py
InnoFang/algorithms
01847903f757722b6c877e1631e5413b9376c82e
[ "Apache-2.0" ]
null
null
null
LeetCode/0508. Most Frequent Subtree Sum/solution.py
InnoFang/algorithms
01847903f757722b6c877e1631e5413b9376c82e
[ "Apache-2.0" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right """ 58 / 58 test cases passed. Runtime: 56 ms Memory Usage: 18.5 MB """ class Solution: def findFrequentTreeSum(self, root: TreeNode) -> List[int]: cnt = Counter() def dfs(node): if node: total = node.val + dfs(node.left) + dfs(node.right) cnt[total] += 1 return total return 0 dfs(root) _max = max(cnt.values()) return [s for s, c in cnt.items() if c == _max]
26.84
67
0.532042
79442fbd6785a143235813c2a2cc6bafb176b358
785
py
Python
source/pkgsrc/mail/feed2exec/patches/patch-setup.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
1
2021-11-20T22:46:39.000Z
2021-11-20T22:46:39.000Z
source/pkgsrc/mail/feed2exec/patches/patch-setup.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
source/pkgsrc/mail/feed2exec/patches/patch-setup.py
Scottx86-64/dotfiles-1
51004b1e2b032664cce6b553d2052757c286087d
[ "Unlicense" ]
null
null
null
$NetBSD: patch-setup.py,v 1.2 2020/10/07 19:46:53 schmonz Exp $ Avoid setuptools_scm since tarball has no .git. --- setup.py.orig 2020-10-06 18:35:43.000000000 +0000 +++ setup.py @@ -126,10 +126,6 @@ if __name__ == '__main__': long_description=sphinx2rst('README.rst'), license=mod.__license_short__, url=mod.__website__, - use_scm_version={ - 'write_to': '%s/_version.py' - % mod.__prog__, - }, packages=packages, package_data=package_data, entry_points={ @@ -140,7 +136,6 @@ if __name__ == '__main__': ] }, setup_requires=[ - 'setuptools_scm', 'sphinx', ], install_requires=requires,
30.192308
63
0.529936
79443054d1cb5388a3895f8a85101616bc4e9e7f
1,543
py
Python
src/scripts/cobertura.py
hugots363/Multi2Sim
37f146ffa18427885aa10260f74719b00c127692
[ "Unlicense" ]
null
null
null
src/scripts/cobertura.py
hugots363/Multi2Sim
37f146ffa18427885aa10260f74719b00c127692
[ "Unlicense" ]
null
null
null
src/scripts/cobertura.py
hugots363/Multi2Sim
37f146ffa18427885aa10260f74719b00c127692
[ "Unlicense" ]
null
null
null
import re import sys def get_useful_prefetches(memreport): result = {} name = "" for line in memreport: m = re.match("\[ ([id]?l[0-9])-0 \]",line) if m: name = m.group(1) m = re.match("Useful Prefetches = ([0-9]+)",line) if m: useful_pref = m.group(1) result[name] = result.get(name,0) + float(useful_pref) return result def get_misses_without_prefetch(memreport): result = {} for line in memreport: m = re.match("\[ ([id]?l[0-9])-0 \]",line) if m: name = m.group(1) m = re.match("Misses = ([0-9]+)",line) if m: misses = m.group(1) result[name] = result.get(name,0) + float(misses) return result def calc_coverage(useful_pref, misses): result = [] for name1,name2 in zip(useful_pref,misses): if name1 != name2: print('ERROR: Cache level mismatch') exit(-1) if misses[name2] == 0: misses[name2] = useful_pref[name1] result.append((name1, useful_pref[name1] / misses[name2])) return result def main(): if len(sys.argv) != 3: print("USAGE: program memreport_with_prefetch memreport_without_prefetch") exit(1) memreport_pref = open(sys.argv[1]) memreport_nopref = open(sys.argv[2]) useful_pref = get_useful_prefetches(memreport_pref) misses = get_misses_without_prefetch(memreport_nopref) print(useful_pref) print(misses) coverage = calc_coverage(useful_pref, misses) print(coverage) if __name__ == "__main__": main()
24.109375
76
0.613739
79443260a7e636b74b8627e0061a50efda778a90
672
py
Python
vending_machine/vending_machine.py
chapa369/tdd-vending_machine
e5c964a3cf083dbaa5fb95e105003b1c63292ed0
[ "MIT" ]
null
null
null
vending_machine/vending_machine.py
chapa369/tdd-vending_machine
e5c964a3cf083dbaa5fb95e105003b1c63292ed0
[ "MIT" ]
null
null
null
vending_machine/vending_machine.py
chapa369/tdd-vending_machine
e5c964a3cf083dbaa5fb95e105003b1c63292ed0
[ "MIT" ]
1
2020-08-19T06:57:59.000Z
2020-08-19T06:57:59.000Z
class vending_machine: # リファクタリングの余地あり # coinクラスを作って、40円コインがないようにする price={'コーラ': 120} def __init__(self): self.money=0 self.storage={'コーラ': 5} def insert(self,yen): available_yen = [10,50,100,500,1000] if yen in available_yen: self.money += yen return True else: return False def get_total(self): return self.money def reject_money(self): tmp=self.money self.money=0 return tmp def buy(self, drink_name): for item in self.storage.keys(): if self.storage[item] >= 1: self.storage[item] -= 1
21
44
0.547619
7944328903abbe53589ff75d2a1704fac32d3aca
1,793
py
Python
protolpsmap/dense.py
vene/prototype-lp-sparsemap
0a3320ebafa2269a400293f63892d18dd76a3801
[ "MIT" ]
null
null
null
protolpsmap/dense.py
vene/prototype-lp-sparsemap
0a3320ebafa2269a400293f63892d18dd76a3801
[ "MIT" ]
null
null
null
protolpsmap/dense.py
vene/prototype-lp-sparsemap
0a3320ebafa2269a400293f63892d18dd76a3801
[ "MIT" ]
null
null
null
# dense factor import numpy as np class DenseFactor(object): def __init__(self, m, n): self.m = m self.n = n def vertex(self, y): i, j = y um = np.zeros(self.m) un = np.zeros(self.n) um[i] = 1 un[j] = 1 U = np.concatenate([um, un]) V = np.outer(um, un) # if self.scale_u is not None: # U *= self.scale_u return U, V def map_oracle(self, eta_u, eta_v): S = eta_v.copy() eta_um, eta_un = eta_u[:self.m], eta_u[self.m:] S += eta_um[:, np.newaxis] S += eta_un i, j = np.unravel_index(S.argmax(), S.shape) return i, j def jacobian(self, active_set): M = [] N = [] for y in active_set: m, n = self.vertex(y) M.append(m) N.append(n.ravel()) M = np.column_stack(M) N = np.column_stack(N) Z = np.linalg.pinv(np.dot(M.T, M)) MZM = M @ Z @ M.T d = len(Z) one = np.ones((d, d)) eye = np.eye(d) Zsum = Z.sum() Zrow = Z.sum(axis=0) J = (eye - (Z @ one) / Zsum) @ Z JM = M @ J @ M.T JN = M @ J @ N.T return J, JM, JN, M, Z if __name__ == '__main__': from .sparsemap_fw import SparseMAPFW m = 3 n = 4 eta_u = np.random.randn(m + n) eta_v = np.random.randn(m, n) df = DenseFactor(m, n) y = df.map_oracle(eta_u, eta_v) print(y) u, v, active_set = SparseMAPFW(df).solve(eta_u, eta_v) print(active_set) JM, JN = df.jacobian(active_set) from numdifftools import Jacobian def f(eta_u_prime): u, _, _ = SparseMAPFW(df).solve(eta_u_prime, eta_v) return u J = Jacobian(f) print(J(eta_u) - JM)
20.848837
59
0.492471
7944328d4f4e0346705b44ad9ea9c3bc28ae1341
580
py
Python
util/config/validators/validate_redis.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
2,027
2019-11-12T18:05:48.000Z
2022-03-31T22:25:04.000Z
util/config/validators/validate_redis.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
496
2019-11-12T18:13:37.000Z
2022-03-31T10:43:45.000Z
util/config/validators/validate_redis.py
giuseppe/quay
a1b7e4b51974edfe86f66788621011eef2667e6a
[ "Apache-2.0" ]
249
2019-11-12T18:02:27.000Z
2022-03-22T12:19:19.000Z
import redis from util.config.validators import BaseValidator, ConfigValidationException class RedisValidator(BaseValidator): name = "redis" @classmethod def validate(cls, validator_context): """ Validates connecting to redis. """ config = validator_context.config redis_config = config.get("BUILDLOGS_REDIS", {}) if not "host" in redis_config: raise ConfigValidationException("Missing redis hostname") client = redis.StrictRedis(socket_connect_timeout=5, **redis_config) client.ping()
26.363636
76
0.677586
794432c3b9e128b747081aa5b022cf4f3932256e
7,400
py
Python
wsgi.py
yees-cds/pricefinder
a263d484ba8b68df667899fe0f0c28ab61910d97
[ "Apache-2.0" ]
null
null
null
wsgi.py
yees-cds/pricefinder
a263d484ba8b68df667899fe0f0c28ab61910d97
[ "Apache-2.0" ]
null
null
null
wsgi.py
yees-cds/pricefinder
a263d484ba8b68df667899fe0f0c28ab61910d97
[ "Apache-2.0" ]
null
null
null
""" /*-------------------------------------------------------------------*/ /* */ /* Copyright IBM Corp. 2013 All Rights Reserved */ /* */ /*-------------------------------------------------------------------*/ /* */ /* NOTICE TO USERS OF THE SOURCE CODE EXAMPLES */ /* */ /* The source code examples provided by IBM are only intended to */ /* assist in the development of a working software program. */ /* */ /* International Business Machines Corporation provides the source */ /* code examples, both individually and as one or more groups, */ /* "as is" without warranty of any kind, either expressed or */ /* implied, including, but not limited to the warranty of */ /* non-infringement and the implied warranties of merchantability */ /* and fitness for a particular purpose. The entire risk */ /* as to the quality and performance of the source code */ /* examples, both individually and as one or more groups, is with */ /* you. Should any part of the source code examples prove defective, */ /* you (and not IBM or an authorized dealer) assume the entire cost */ /* of all necessary servicing, repair or correction. */ /* */ /* IBM does not warrant that the contents of the source code */ /* examples, whether individually or as one or more groups, will */ /* meet your requirements or that the source code examples are */ /* error-free. */ /* */ /* IBM may make improvements and/or changes in the source code */ /* examples at any time. */ /* */ /* Changes may be made periodically to the information in the */ /* source code examples; these changes may be reported, for the */ /* sample code included herein, in new editions of the examples. */ /* */ /* References in the source code examples to IBM products, programs, */ /* or services do not imply that IBM intends to make these */ /* available in all countries in which IBM operates. Any reference */ /* to the IBM licensed program in the source code examples is not */ /* intended to state or imply that IBM's licensed program must be */ /* used. Any functionally equivalent program may be used. */ /*-------------------------------------------------------------------*/ """ import bottle from bottle import * import os,sys,logging, traceback, json, string, urllib, urllib2 from BeautifulSoup import BeautifulSoup import httplib2 import cloudant import pprint import urllib from twilio.rest import TwilioRestClient # Configs from BlueMix vcap_config = os.environ.get('VCAP_SERVICES') decoded_config = json.loads(vcap_config) dbname = "fabulous-price-finder" account = None for key, value in decoded_config.iteritems(): if decoded_config[key][0]['name'].startswith('Twilio'): twilio_creds = decoded_config[key][0]['credentials'] twilio_authToken = twilio_creds['authToken'] twilio_accountSID = twilio_creds['accountSID'] twilioClient = TwilioRestClient(twilio_accountSID, twilio_authToken) if key.startswith('cloudant'): cloudant_creds = decoded_config[key][0]['credentials'] cloudant_host = cloudant_creds['host'] cloudant_port = int(cloudant_creds['port']) cloudant_username = cloudant_creds['username'] cloudant_password = cloudant_creds['password'] cloudant_url = str(cloudant_creds['url']) account = cloudant.Account(cloudant_username) login = account.login(cloudant_username, cloudant_password) assert login.status_code == 200 db = account.database(dbname) response = db.put() print response.json def sendTextWithMessage(message): message = twilioClient.messages.create(to="+16172836931", from_="+1857399-2773", body=message) #Provide all the static css and js files under the static dir to browser @route('/static/:filename#.*#') def server_static(filename): """ This is for JS files """ return static_file(filename, root='static') # Displays the home page @bottle.get("/") def testFunc(): return bottle.template('home') # Get the prices for all of the items stored in the database @bottle.get('/getCurrentPrices') def getCurrentPrices(): z = [] view = db.all_docs() for doc in view.iter(params={'include_docs': True}): getCurrentPrice(doc['doc']) pass return bottle.template('currentPrice') # Get the current price of a particular item def getCurrentPrice(item): try: http = httplib2.Http() status, page = http.request(urllib.unquote_plus(item["url"])) soup = BeautifulSoup(page) price = soup.find(id=item["idToCheck"]).string if price is not None: sendTextWithMessage("The current price of %s is %s" % (item["name"], price)) d = db.document(item["url"]) resp = d.merge({ 'url': item["url"], 'price': price}) return bottle.template('currentPrice', price=price) else: return bottle.template('currentPriceError') except: return bottle.template('currentPriceError') # Saves the item info in the database @bottle.post('/recordItemInfo') def recordItemInfo(): name = str(request.forms.get('name')) url = urllib.quote_plus(request.forms.get('url')) idToCheck = str(request.forms.get('idToCheck')) # get document d = db.document(url) # merge updated information resp = d.merge({ 'url': url, 'name': name, 'idToCheck': idToCheck}) bottle.redirect('/displayall') # Displays all the records in the database @bottle.get('/displayall') def displayData(): z = [] view = db.all_docs() for doc in view.iter(params={'include_docs': True}): z.append(doc['doc']) pass cursor = list(z) totinf = int(len(cursor)) return bottle.template ('dbdump',totinf=totinf,cursor=cursor) # Removes all the records from the database @bottle.post('/clearall') def clearAll(): # destroy DB del account[dbname] # recreate DB # bug: the db is not getting recreated db = account.database(dbname) return bottle.template ('dbdump',totinf=0,cursor=[]) # Removes only the selected stuff from the database @bottle.post('/delselected') def removeSelected(): s = urllib.quote_plus(request.forms.get('url')) # document we want to delete del_doc = db.document(s) # iterate over all documents to find revision # for one we want to delete view = db.all_docs() for doc in view.iter(params={'include_docs': True}): if (doc['doc']['url'] == s): rev = doc['doc']['_rev'] del_doc.delete(rev).raise_for_status() bottle.redirect('/displayall') debug(True) # Error Methods @bottle.error(404) def error404(error): return 'Nothing here--sorry!' application = bottle.default_app() if __name__ == '__main__': port = int(os.getenv('PORT', '8000')) bottle.run(host='0.0.0.0', port=port)
34.90566
95
0.607973
794433a2e08d5c500ef695ef1fa0161e46beff1a
2,636
py
Python
AUTOENCODERS/AE_LSTM__KIBANA.py
pawelptak/AI-Anomaly-Detection
0d3e6072e273d6cc59ba79d5f8c73f393d1ec4e5
[ "MIT" ]
1
2022-03-23T10:18:17.000Z
2022-03-23T10:18:17.000Z
AUTOENCODERS/AE_LSTM__KIBANA.py
pawelptak/AI-Anomaly-Detection
0d3e6072e273d6cc59ba79d5f8c73f393d1ec4e5
[ "MIT" ]
null
null
null
AUTOENCODERS/AE_LSTM__KIBANA.py
pawelptak/AI-Anomaly-Detection
0d3e6072e273d6cc59ba79d5f8c73f393d1ec4e5
[ "MIT" ]
null
null
null
from Classification.AutoencoderWindowsResultsClassificator import AutoencoderWindowsResultsClassificator from DataPreparing.KIBANALoader import KIBANALoader from DataPreparing.KIBANAPreprocessor import KIBANAPreprocessor from Execution.AutoencoderModelExecutor import AutoencoderModelExecutor from Model.AutoEncoderModelLSTM import AutoEncoderModelLSTM import numpy as np import matplotlib.pyplot as plt from Analisis.AutoencoderResultsAnlyzer import AutoencoderResultsAnlyzer UNITS = [80, 50, 20] WINDOW_SIZE = 20 STRIDE = 5 TAKE_TOP_ERRORS = 20 loader = KIBANALoader() preprocessor = KIBANAPreprocessor( windows=True, windows_size=WINDOW_SIZE, windows_stride=STRIDE) df = loader.load_train_data() df_test = loader.load_test_data() test_lines = loader.load_test_data_lines() df = preprocessor.preprocess_train_data(df) df_test = preprocessor.preprocess_test_data(df_test) y_label = np.zeros(len(df_test)) model = AutoEncoderModelLSTM(df.shape[2], WINDOW_SIZE, UNITS) model_executor = AutoencoderModelExecutor(model, epochs=5) classificator = AutoencoderWindowsResultsClassificator() analyzer = AutoencoderResultsAnlyzer() model_executor.fit(df) x_predicted = model_executor.predict(df_test) classificator.feed(df_test, x_predicted, y_label) error = classificator.calculate_reconstruction_error_windows() def sortSecond(val): return val[1] ordered_errors = list( map(lambda e: (e[0], e[1][0]), enumerate(error))) ordered_errors.sort(key=sortSecond, reverse=True) highest_errors_indexes = list(map( lambda x: x[0], ordered_errors[:TAKE_TOP_ERRORS])) errors_text = [] for index in highest_errors_indexes: print(f'\n\n\nWINDOWS with index nr: {index}') errors_text.append( f'\n\n\nWINDOWS with index nr: {index}, ERROR SCORE: {error[index]}') for i in range(index * STRIDE, index * STRIDE + WINDOW_SIZE): print(test_lines[i]) errors_text.append(test_lines[i]) with open('errors_results.txt', 'a') as the_file: for line in errors_text: the_file.write(f"{line}") # error_lines = # errors = np.concatenate([error_anomaly, error_normal]) # y_label = np.concatenate([[1 for _ in range(len(error_anomaly))], # [0 for _ in range(len(error_normal))]]) # (max_f1_score, best_threshold) = classificator.calculate_best_threshold() # analyzer.feed(errors, y_label, best_threshold, # max_f1_score, f'AE_1/Dense', 'AE_1'.upper()) # analyzer.plot_results() # analyzer.plot_confusion_matrix() # print(error_normal) # print(high_error_indexes) # print(np.array(df_test.values)[list(map(lambda h: h[0], high_error_indexes))])
30.298851
104
0.764036
794433e9e34480c78f5ff95720cd50e4c0a4b9dd
8,188
py
Python
gdal/swig/python/scripts/epsg_tr.py
mloskot/gdal-old-mirror-with-jpegxr-pr
88409871d445a1ed7c973533cf2075f904a39f90
[ "MIT" ]
2
2018-03-22T22:31:00.000Z
2021-07-16T01:34:47.000Z
gdal/swig/python/scripts/epsg_tr.py
mloskot/gdal-old-mirror-with-jpegxr-pr
88409871d445a1ed7c973533cf2075f904a39f90
[ "MIT" ]
7
2021-06-04T23:45:15.000Z
2022-03-12T00:44:14.000Z
gdal/swig/python/scripts/epsg_tr.py
mloskot/gdal-old-mirror-with-jpegxr-pr
88409871d445a1ed7c973533cf2075f904a39f90
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ****************************************************************************** # $Id$ # # Project: CFS OGC MapServer # Purpose: Script to create WKT and PROJ.4 dictionaries for EPSG GCS/PCS # codes. # Author: Frank Warmerdam, [email protected] # # ****************************************************************************** # Copyright (c) 2001, Frank Warmerdam # Copyright (c) 2009-2010, 2019, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** import sys from osgeo import osr from osgeo import gdal # ============================================================================= def Usage(): print('Usage: epsg_tr.py [-wkt] [-pretty_wkt] [-proj4] [-xml] [-postgis]') print(' [-authority name]') sys.exit(1) # ============================================================================= def trHandleCode(set_srid, srs, auth_name, code, deprecated, output_format): if output_format == '-pretty_wkt': print('%s:%s' % (auth_name, str(code))) print(srs.ExportToPrettyWkt()) if output_format == '-xml': print(srs.ExportToXML()) if output_format == '-wkt': print('EPSG:%d' % code) print(srs.ExportToWkt()) if output_format == '-proj4': out_string = srs.ExportToProj4() name = srs.GetName() print('# %s' % name) if out_string.find('+proj=') > -1: print('<%s> %s <>' % (str(code), out_string)) else: print('# Unable to translate coordinate system ' '%s:%s into PROJ.4 format.' % (auth_name, str(code))) print('#') if output_format == '-postgis': if code in set_srid: if auth_name == 'ESRI': if int(code) < 32767: return assert code not in set_srid, (auth_name, code) set_srid.add(code) name = srs.GetName() if deprecated and 'deprecated' not in name: name += " (deprecated)" wkt = srs.ExportToWkt() proj4text = srs.ExportToProj4() print('---') print('--- %s %s : %s' % (auth_name, str(code), name)) print('---') if proj4text is None or len(proj4text) == 0: print('-- (unable to translate to PROJ.4)') else: wkt = gdal.EscapeString(wkt, scheme=gdal.CPLES_SQL) proj4text = gdal.EscapeString(proj4text, scheme=gdal.CPLES_SQL) print('INSERT INTO "spatial_ref_sys" ("srid","auth_name","auth_srid","srtext","proj4text") VALUES (%d,\'%s\',%d,\'%s\',\'%s\');' % (int(code), auth_name, int(code), wkt, proj4text)) # INGRES COPY command input. if output_format == '-copy': try: wkt = srs.ExportToWkt() proj4text = srs.ExportToProj4() print('%s\t%d%s\t%s\t%d%s\t%d%s\n' % (str(code), 4, auth_name, str(code), len(wkt), wkt, len(proj4text), proj4text)) except: pass # ============================================================================= if __name__ == '__main__': output_format = '-pretty_wkt' authority = None argv = gdal.GeneralCmdLineProcessor(sys.argv) if argv is None: sys.exit(0) # Parse command line arguments. i = 1 while i < len(argv): arg = argv[i] if arg == '-wkt' or arg == '-pretty_wkt' or arg == '-proj4' \ or arg == '-postgis' or arg == '-xml' or arg == '-copy': output_format = arg elif arg == '-authority': i = i + 1 authority = argv[i] elif arg[0] == '-': Usage() else: Usage() i = i + 1 # Output BEGIN transaction for PostGIS if output_format == '-postgis': print('BEGIN;') # loop over all codes to generate output if authority: authorities = [ authority ] elif output_format == '-postgis' : authorities = [ 'EPSG', 'ESRI' ] else: authorities = [ 'EPSG', 'ESRI', 'IGNF' ] set_srid = set() for authority in authorities: if authority in ('EPSG', 'ESRI'): set_codes_geographic = set() set_codes_geographic_3d = set() set_codes_projected = set() set_codes_geocentric = set() set_codes_compound = set() set_deprecated = set() for crs_info in osr.GetCRSInfoListFromDatabase(authority): code = int(crs_info.code) if crs_info.type == osr.OSR_CRS_TYPE_COMPOUND: set_codes_compound.add(code) elif crs_info.type == osr.OSR_CRS_TYPE_GEOGRAPHIC_3D: set_codes_geographic_3d.add(code) elif crs_info.type == osr.OSR_CRS_TYPE_GEOGRAPHIC_2D: set_codes_geographic.add(code) elif crs_info.type == osr.OSR_CRS_TYPE_PROJECTED: set_codes_projected.add(code) elif crs_info.type == osr.OSR_CRS_TYPE_GEOCENTRIC: set_codes_geocentric.add(code) if crs_info.deprecated: set_deprecated.add(code) set_codes_geographic = sorted(set_codes_geographic) set_codes_geographic_3d = sorted(set_codes_geographic_3d) set_codes_projected = sorted(set_codes_projected) set_codes_geocentric = sorted(set_codes_geocentric) set_codes_compound = sorted(set_codes_compound) for typestr, set_codes in (('Geographic 2D CRS', set_codes_geographic), ('Projected CRS', set_codes_projected), ('Geocentric CRS', set_codes_geocentric), ('Compound CRS', set_codes_compound), ('Geographic 3D CRS', set_codes_geographic_3d)): if set_codes and output_format == '-postgis': print('-' * 80) print('--- ' + authority + ' ' + typestr) print('-' * 80) for code in set_codes: srs = osr.SpatialReference() srs.SetFromUserInput(authority + ':' + str(code)) deprecated = False if code in set_deprecated: deprecated = True trHandleCode(set_srid, srs, authority, str(code), deprecated, output_format) else: for crs_info in osr.GetCRSInfoListFromDatabase(authority): srs = osr.SpatialReference() srs.SetFromUserInput(authority + ':' + crs_info.code) trHandleCode(set_srid, srs, authority, crs_info.code, crs_info.deprecated, output_format) # Output COMMIT transaction for PostGIS if output_format == '-postgis': print('COMMIT;') print('VACUUM ANALYZE spatial_ref_sys;')
36.717489
142
0.539692
7944348585a4720b95c902377562f60ea5edcb6f
7,838
py
Python
magenta/models/arbitrary_image_stylization/arbitrary_image_stylization_distill_mobilenet.py
Eshan-Agarwal/magenta
21f4cbf8ac2717df6a6fbff8cc6a027fbf3e4057
[ "Apache-2.0" ]
2
2020-04-30T13:46:55.000Z
2021-07-02T20:07:58.000Z
magenta/models/arbitrary_image_stylization/arbitrary_image_stylization_distill_mobilenet.py
Eshan-Agarwal/magenta
21f4cbf8ac2717df6a6fbff8cc6a027fbf3e4057
[ "Apache-2.0" ]
1
2020-03-01T16:02:10.000Z
2020-03-01T16:02:10.000Z
magenta/models/arbitrary_image_stylization/arbitrary_image_stylization_distill_mobilenet.py
Eshan-Agarwal/magenta
21f4cbf8ac2717df6a6fbff8cc6a027fbf3e4057
[ "Apache-2.0" ]
1
2020-09-21T01:23:05.000Z
2020-09-21T01:23:05.000Z
# Copyright 2020 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Distills a trained style prediction network using a MobileNetV2. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import ast import os from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_mobilenet_model as build_mobilenet_model from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_model as build_model from magenta.models.image_stylization import image_utils import tensorflow.compat.v1 as tf from tensorflow.contrib import slim as contrib_slim slim = contrib_slim DEFAULT_CONTENT_WEIGHTS = '{"vgg_16/conv3": 1}' DEFAULT_STYLE_WEIGHTS = ('{"vgg_16/conv1": 0.5e-3, "vgg_16/conv2": 0.5e-3,' ' "vgg_16/conv3": 0.5e-3, "vgg_16/conv4": 0.5e-3}') flags = tf.app.flags flags.DEFINE_float('clip_gradient_norm', 0, 'Clip gradients to this norm') flags.DEFINE_float('learning_rate', 1e-5, 'Learning rate') flags.DEFINE_float('total_variation_weight', 1e4, 'Total variation weight') flags.DEFINE_string('content_weights', DEFAULT_CONTENT_WEIGHTS, 'Content weights') flags.DEFINE_string('style_weights', DEFAULT_STYLE_WEIGHTS, 'Style weights') flags.DEFINE_integer('batch_size', 8, 'Batch size.') flags.DEFINE_integer('image_size', 256, 'Image size.') flags.DEFINE_boolean('random_style_image_size', True, 'Whether to resize the style images ' 'to a random size or not.') flags.DEFINE_boolean( 'augment_style_images', True, 'Whether to augment style images or not.') flags.DEFINE_boolean('center_crop', False, 'Whether to center crop the style images.') flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers. If 0, parameters ' 'are handled locally by the worker.') flags.DEFINE_integer('save_summaries_secs', 15, 'Frequency at which summaries are saved, in seconds.') flags.DEFINE_integer('save_interval_secs', 15, 'Frequency at which the model is saved, in seconds.') flags.DEFINE_integer('task', 0, 'Task ID. Used when training with multiple ' 'workers to identify each worker.') flags.DEFINE_integer('train_steps', 8000000, 'Number of training steps.') flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.') flags.DEFINE_string('style_dataset_file', None, 'Style dataset file.') flags.DEFINE_string('train_dir', None, 'Directory for checkpoints and summaries.') flags.DEFINE_string('initial_checkpoint', None, 'Path to the pre-trained arbitrary_image_stylization ' 'checkpoint') flags.DEFINE_string('mobilenet_checkpoint', 'mobilenet_v2_1.0_224.ckpt', 'Path to the pre-trained mobilenet checkpoint') flags.DEFINE_boolean('use_true_loss', False, 'Add true style loss term based on VGG.') flags.DEFINE_float('true_loss_weight', 1e-9, 'Scale factor for real loss') FLAGS = flags.FLAGS def main(unused_argv=None): tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): # Forces all input processing onto CPU in order to reserve the GPU for the # forward inference and back-propagation. device = '/cpu:0' if not FLAGS.ps_tasks else '/job:worker/cpu:0' with tf.device( tf.train.replica_device_setter(FLAGS.ps_tasks, worker_device=device)): # Load content images content_inputs_, _ = image_utils.imagenet_inputs(FLAGS.batch_size, FLAGS.image_size) # Loads style images. [style_inputs_, _, style_inputs_orig_] = image_utils.arbitrary_style_image_inputs( FLAGS.style_dataset_file, batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, shuffle=True, center_crop=FLAGS.center_crop, augment_style_images=FLAGS.augment_style_images, random_style_image_size=FLAGS.random_style_image_size) with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)): # Process style and content weight flags. content_weights = ast.literal_eval(FLAGS.content_weights) style_weights = ast.literal_eval(FLAGS.style_weights) # Define the model stylized_images, \ true_loss, \ _, \ bottleneck_feat = build_mobilenet_model.build_mobilenet_model( content_inputs_, style_inputs_, mobilenet_trainable=True, style_params_trainable=False, style_prediction_bottleneck=100, adds_losses=True, content_weights=content_weights, style_weights=style_weights, total_variation_weight=FLAGS.total_variation_weight, ) _, inception_bottleneck_feat = build_model.style_prediction( style_inputs_, [], [], is_training=False, trainable=False, inception_end_point='Mixed_6e', style_prediction_bottleneck=100, reuse=None, ) print('PRINTING TRAINABLE VARIABLES') for x in tf.trainable_variables(): print(x) mse_loss = tf.losses.mean_squared_error( inception_bottleneck_feat, bottleneck_feat) total_loss = mse_loss if FLAGS.use_true_loss: true_loss = FLAGS.true_loss_weight*true_loss total_loss += true_loss if FLAGS.use_true_loss: tf.summary.scalar('mse', mse_loss) tf.summary.scalar('true_loss', true_loss) tf.summary.scalar('total_loss', total_loss) tf.summary.image('image/0_content_inputs', content_inputs_, 3) tf.summary.image('image/1_style_inputs_orig', style_inputs_orig_, 3) tf.summary.image('image/2_style_inputs_aug', style_inputs_, 3) tf.summary.image('image/3_stylized_images', stylized_images, 3) mobilenet_variables_to_restore = slim.get_variables_to_restore( include=['MobilenetV2'], exclude=['global_step']) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) train_op = slim.learning.create_train_op( total_loss, optimizer, clip_gradient_norm=FLAGS.clip_gradient_norm, summarize_gradients=False ) init_fn = slim.assign_from_checkpoint_fn( FLAGS.initial_checkpoint, slim.get_variables_to_restore( exclude=['MobilenetV2', 'mobilenet_conv', 'global_step'])) init_pretrained_mobilenet = slim.assign_from_checkpoint_fn( FLAGS.mobilenet_checkpoint, mobilenet_variables_to_restore) def init_sub_networks(session): init_fn(session) init_pretrained_mobilenet(session) slim.learning.train( train_op=train_op, logdir=os.path.expanduser(FLAGS.train_dir), master=FLAGS.master, is_chief=FLAGS.task == 0, number_of_steps=FLAGS.train_steps, init_fn=init_sub_networks, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs) def console_entry_point(): tf.app.run(main) if __name__ == '__main__': console_entry_point()
40.194872
129
0.691631
794434db109bea45a8765a6f4f0175ce4fade3af
877
py
Python
sdks/python/test/test_ErrorCounts.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
null
null
null
sdks/python/test/test_ErrorCounts.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
6
2019-10-23T06:38:53.000Z
2022-01-22T07:57:58.000Z
sdks/python/test/test_ErrorCounts.py
Brantone/appcenter-sdks
eeb063ecf79908b6e341fb00196d2cd9dc8f3262
[ "MIT" ]
2
2019-10-23T06:31:05.000Z
2021-08-21T17:32:47.000Z
# coding: utf-8 """ App Center Client Microsoft Visual Studio App Center API # noqa: E501 OpenAPI spec version: preview Contact: [email protected] Project Repository: https://github.com/b3nab/appcenter-sdks """ from __future__ import absolute_import import unittest import appcenter_sdk from ErrorCounts.clsErrorCounts import ErrorCounts # noqa: E501 from appcenter_sdk.rest import ApiException class TestErrorCounts(unittest.TestCase): """ErrorCounts unit test stubs""" def setUp(self): pass def tearDown(self): pass def testErrorCounts(self): """Test ErrorCounts""" # FIXME: construct object with mandatory attributes with example values # model = appcenter_sdk.models.clsErrorCounts.ErrorCounts() # noqa: E501 pass if __name__ == '__main__': unittest.main()
21.925
81
0.703535
79443554efc9f5551f33556b1d85d9668e29ceeb
14,447
py
Python
bpython/test/test_autocomplete.py
supremestdoggo/bpython
06d255ada61105684f4e2b92f09219f9619506e6
[ "PSF-2.0" ]
null
null
null
bpython/test/test_autocomplete.py
supremestdoggo/bpython
06d255ada61105684f4e2b92f09219f9619506e6
[ "PSF-2.0" ]
null
null
null
bpython/test/test_autocomplete.py
supremestdoggo/bpython
06d255ada61105684f4e2b92f09219f9619506e6
[ "PSF-2.0" ]
null
null
null
import inspect import keyword import unittest from collections import namedtuple from unittest import mock try: import jedi has_jedi = True except ImportError: has_jedi = False from bpython import autocomplete glob_function = "glob.iglob" class TestSafeEval(unittest.TestCase): def test_catches_syntax_error(self): with self.assertRaises(autocomplete.EvaluationError): autocomplete.safe_eval("1re", {}) class TestFormatters(unittest.TestCase): def test_filename(self): completer = autocomplete.FilenameCompletion() last_part_of_filename = completer.format self.assertEqual(last_part_of_filename("abc"), "abc") self.assertEqual(last_part_of_filename("abc/"), "abc/") self.assertEqual(last_part_of_filename("abc/efg"), "efg") self.assertEqual(last_part_of_filename("abc/efg/"), "efg/") self.assertEqual(last_part_of_filename("/abc"), "abc") self.assertEqual(last_part_of_filename("ab.c/e.f.g/"), "e.f.g/") def test_attribute(self): self.assertEqual(autocomplete.after_last_dot("abc.edf"), "edf") def completer(matches): mock_completer = autocomplete.BaseCompletionType() mock_completer.matches = mock.Mock(return_value=matches) return mock_completer class TestGetCompleter(unittest.TestCase): def test_no_completers(self): self.assertTupleEqual(autocomplete.get_completer([], 0, ""), ([], None)) def test_one_completer_without_matches_returns_empty_list_and_none(self): a = completer([]) self.assertTupleEqual( autocomplete.get_completer([a], 0, ""), ([], None) ) def test_one_completer_returns_matches_and_completer(self): a = completer(["a"]) self.assertTupleEqual( autocomplete.get_completer([a], 0, ""), (["a"], a) ) def test_two_completers_with_matches_returns_first_matches(self): a = completer(["a"]) b = completer(["b"]) self.assertEqual(autocomplete.get_completer([a, b], 0, ""), (["a"], a)) def test_first_non_none_completer_matches_are_returned(self): a = completer([]) b = completer(["a"]) self.assertEqual(autocomplete.get_completer([a, b], 0, ""), ([], None)) def test_only_completer_returns_None(self): a = completer(None) self.assertEqual(autocomplete.get_completer([a], 0, ""), ([], None)) def test_first_completer_returns_None(self): a = completer(None) b = completer(["a"]) self.assertEqual(autocomplete.get_completer([a, b], 0, ""), (["a"], b)) class TestCumulativeCompleter(unittest.TestCase): def completer(self, matches): mock_completer = autocomplete.BaseCompletionType() mock_completer.matches = mock.Mock(return_value=matches) return mock_completer def test_no_completers_fails(self): with self.assertRaises(ValueError): autocomplete.CumulativeCompleter([]) def test_one_empty_completer_returns_empty(self): a = self.completer([]) cumulative = autocomplete.CumulativeCompleter([a]) self.assertEqual(cumulative.matches(3, "abc"), set()) def test_one_none_completer_returns_none(self): a = self.completer(None) cumulative = autocomplete.CumulativeCompleter([a]) self.assertEqual(cumulative.matches(3, "abc"), None) def test_two_completers_get_both(self): a = self.completer(["a"]) b = self.completer(["b"]) cumulative = autocomplete.CumulativeCompleter([a, b]) self.assertEqual(cumulative.matches(3, "abc"), {"a", "b"}) class TestFilenameCompletion(unittest.TestCase): def setUp(self): self.completer = autocomplete.FilenameCompletion() def test_locate_fails_when_not_in_string(self): self.assertEqual(self.completer.locate(4, "abcd"), None) def test_locate_succeeds_when_in_string(self): self.assertEqual(self.completer.locate(4, "a'bc'd"), (2, 4, "bc")) def test_issue_491(self): self.assertNotEqual(self.completer.matches(9, '"a[a.l-1]'), None) @mock.patch(glob_function, new=lambda text: []) def test_match_returns_none_if_not_in_string(self): self.assertEqual(self.completer.matches(2, "abcd"), None) @mock.patch(glob_function, new=lambda text: []) def test_match_returns_empty_list_when_no_files(self): self.assertEqual(self.completer.matches(2, '"a'), set()) @mock.patch(glob_function, new=lambda text: ["abcde", "aaaaa"]) @mock.patch("os.path.expanduser", new=lambda text: text) @mock.patch("os.path.isdir", new=lambda text: False) @mock.patch("os.path.sep", new="/") def test_match_returns_files_when_files_exist(self): self.assertEqual( sorted(self.completer.matches(2, '"x')), ["aaaaa", "abcde"] ) @mock.patch(glob_function, new=lambda text: ["abcde", "aaaaa"]) @mock.patch("os.path.expanduser", new=lambda text: text) @mock.patch("os.path.isdir", new=lambda text: True) @mock.patch("os.path.sep", new="/") def test_match_returns_dirs_when_dirs_exist(self): self.assertEqual( sorted(self.completer.matches(2, '"x')), ["aaaaa/", "abcde/"] ) @mock.patch( glob_function, new=lambda text: ["/expand/ed/abcde", "/expand/ed/aaaaa"] ) @mock.patch( "os.path.expanduser", new=lambda text: text.replace("~", "/expand/ed") ) @mock.patch("os.path.isdir", new=lambda text: False) @mock.patch("os.path.sep", new="/") def test_tilde_stays_pretty(self): self.assertEqual( sorted(self.completer.matches(4, '"~/a')), ["~/aaaaa", "~/abcde"] ) @mock.patch("os.path.sep", new="/") def test_formatting_takes_just_last_part(self): self.assertEqual(self.completer.format("/hello/there/"), "there/") self.assertEqual(self.completer.format("/hello/there"), "there") class MockNumPy: """This is a mock numpy object that raises an error when there is an attempt to convert it to a boolean.""" def __nonzero__(self): raise ValueError( "The truth value of an array with more than one " "element is ambiguous. Use a.any() or a.all()" ) class TestDictKeyCompletion(unittest.TestCase): def test_set_of_keys_returned_when_matches_found(self): com = autocomplete.DictKeyCompletion() local = {"d": {"ab": 1, "cd": 2}} self.assertSetEqual( com.matches(2, "d[", locals_=local), {"'ab']", "'cd']"} ) def test_none_returned_when_eval_error(self): com = autocomplete.DictKeyCompletion() local = {"e": {"ab": 1, "cd": 2}} self.assertEqual(com.matches(2, "d[", locals_=local), None) def test_none_returned_when_not_dict_type(self): com = autocomplete.DictKeyCompletion() local = {"l": ["ab", "cd"]} self.assertEqual(com.matches(2, "l[", locals_=local), None) def test_none_returned_when_no_matches_left(self): com = autocomplete.DictKeyCompletion() local = {"d": {"ab": 1, "cd": 2}} self.assertEqual(com.matches(3, "d[r", locals_=local), None) def test_obj_that_does_not_allow_conversion_to_bool(self): com = autocomplete.DictKeyCompletion() local = {"mNumPy": MockNumPy()} self.assertEqual(com.matches(7, "mNumPy[", locals_=local), None) class Foo: a = 10 def __init__(self): self.b = 20 def method(self, x): pass class Properties(Foo): @property def asserts_when_called(self): raise AssertionError("getter method called") class Slots: __slots__ = ["a", "b"] class OverriddenGetattribute(Foo): def __getattribute__(self, name): raise AssertionError("custom get attribute invoked") class TestAttrCompletion(unittest.TestCase): @classmethod def setUpClass(cls): cls.com = autocomplete.AttrCompletion() def test_att_matches_found_on_instance(self): self.assertSetEqual( self.com.matches(2, "a.", locals_={"a": Foo()}), {"a.method", "a.a", "a.b"}, ) def test_descriptor_attributes_not_run(self): com = autocomplete.AttrCompletion() self.assertSetEqual( com.matches(2, "a.", locals_={"a": Properties()}), {"a.b", "a.a", "a.method", "a.asserts_when_called"}, ) def test_custom_get_attribute_not_invoked(self): com = autocomplete.AttrCompletion() self.assertSetEqual( com.matches(2, "a.", locals_={"a": OverriddenGetattribute()}), {"a.b", "a.a", "a.method"}, ) def test_slots_not_crash(self): com = autocomplete.AttrCompletion() self.assertSetEqual( com.matches(2, "A.", locals_={"A": Slots}), {"A.b", "A.a"}, ) class TestExpressionAttributeCompletion(unittest.TestCase): @classmethod def setUpClass(cls): cls.com = autocomplete.ExpressionAttributeCompletion() def test_att_matches_found_on_instance(self): self.assertSetEqual( self.com.matches(5, "a[0].", locals_={"a": [Foo()]}), {"method", "a", "b"}, ) def test_other_getitem_methods_not_called(self): class FakeList: def __getitem__(inner_self, i): self.fail("possibly side-effecting __getitem_ method called") self.com.matches(5, "a[0].", locals_={"a": FakeList()}) def test_tuples_complete(self): self.assertSetEqual( self.com.matches(5, "a[0].", locals_={"a": (Foo(),)}), {"method", "a", "b"}, ) @unittest.skip("TODO, subclasses do not complete yet") def test_list_subclasses_complete(self): class ListSubclass(list): pass self.assertSetEqual( self.com.matches(5, "a[0].", locals_={"a": ListSubclass([Foo()])}), {"method", "a", "b"}, ) def test_getitem_not_called_in_list_subclasses_overriding_getitem(self): class FakeList(list): def __getitem__(inner_self, i): self.fail("possibly side-effecting __getitem_ method called") self.com.matches(5, "a[0].", locals_={"a": FakeList()}) def test_literals_complete(self): self.assertSetEqual( self.com.matches(10, "[a][0][0].", locals_={"a": (Foo(),)}), {"method", "a", "b"}, ) def test_dictionaries_complete(self): self.assertSetEqual( self.com.matches(7, 'a["b"].', locals_={"a": {"b": Foo()}}), {"method", "a", "b"}, ) class TestMagicMethodCompletion(unittest.TestCase): def test_magic_methods_complete_after_double_underscores(self): com = autocomplete.MagicMethodCompletion() block = "class Something(object)\n def __" self.assertSetEqual( com.matches(10, " def __", current_block=block), set(autocomplete.MAGIC_METHODS), ) Completion = namedtuple("Completion", ["name", "complete"]) @unittest.skipUnless(has_jedi, "jedi required") class TestMultilineJediCompletion(unittest.TestCase): def test_returns_none_with_single_line(self): com = autocomplete.MultilineJediCompletion() self.assertEqual( com.matches(2, "Va", current_block="Va", history=[]), None ) def test_returns_non_with_blank_second_line(self): com = autocomplete.MultilineJediCompletion() self.assertEqual( com.matches( 0, "", current_block="class Foo():\n", history=["class Foo():"] ), None, ) def matches_from_completions( self, cursor, line, block, history, completions ): with mock.patch("bpython.autocomplete.jedi.Script") as Script: script = Script.return_value script.complete.return_value = completions com = autocomplete.MultilineJediCompletion() return com.matches( cursor, line, current_block=block, history=history ) def test_completions_starting_with_different_letters(self): matches = self.matches_from_completions( 2, " a", "class Foo:\n a", ["adsf"], [Completion("Abc", "bc"), Completion("Cbc", "bc")], ) self.assertEqual(matches, None) def test_completions_starting_with_different_cases(self): matches = self.matches_from_completions( 2, " a", "class Foo:\n a", ["adsf"], [Completion("Abc", "bc"), Completion("ade", "de")], ) self.assertSetEqual(matches, {"ade"}) def test_issue_544(self): com = autocomplete.MultilineJediCompletion() code = "@asyncio.coroutine\ndef" history = ("import asyncio", "@asyncio.coroutin") com.matches(3, "def", current_block=code, history=history) class TestGlobalCompletion(unittest.TestCase): def setUp(self): self.com = autocomplete.GlobalCompletion() def test_function(self): def function(): pass self.assertEqual( self.com.matches(8, "function", locals_={"function": function}), {"function("}, ) def test_completions_are_unicode(self): for m in self.com.matches(1, "a", locals_={"abc": 10}): self.assertIsInstance(m, str) def test_mock_kwlist(self): with mock.patch.object(keyword, "kwlist", new=["abcd"]): self.assertEqual(self.com.matches(3, "abc", locals_={}), None) def test_mock_kwlist_non_ascii(self): with mock.patch.object(keyword, "kwlist", new=["abcß"]): self.assertEqual(self.com.matches(3, "abc", locals_={}), None) class TestParameterNameCompletion(unittest.TestCase): def test_set_of_params_returns_when_matches_found(self): def func(apple, apricot, banana, carrot): pass argspec = list(inspect.getfullargspec(func)) argspec = ["func", argspec, False] com = autocomplete.ParameterNameCompletion() self.assertSetEqual( com.matches(1, "a", argspec=argspec), {"apple=", "apricot="} ) self.assertSetEqual(com.matches(2, "ba", argspec=argspec), {"banana="}) self.assertSetEqual(com.matches(3, "car", argspec=argspec), {"carrot="})
33.992941
80
0.626497
794435bfa093b84efd7f4cc8a5373e1418eb54bf
23,500
py
Python
windows_packages_gpu/torch/testing/_internal/distributed/ddp_under_dist_autograd_test.py
codeproject/DeepStack
d96368a3db1bc0266cb500ba3701d130834da0e6
[ "Apache-2.0" ]
353
2020-12-10T10:47:17.000Z
2022-03-31T23:08:29.000Z
windows_packages_gpu/torch/testing/_internal/distributed/ddp_under_dist_autograd_test.py
codeproject/DeepStack
d96368a3db1bc0266cb500ba3701d130834da0e6
[ "Apache-2.0" ]
80
2020-12-10T09:54:22.000Z
2022-03-30T22:08:45.000Z
windows_packages_gpu/torch/testing/_internal/distributed/ddp_under_dist_autograd_test.py
codeproject/DeepStack
d96368a3db1bc0266cb500ba3701d130834da0e6
[ "Apache-2.0" ]
63
2020-12-10T17:10:34.000Z
2022-03-28T16:27:07.000Z
#!/usr/bin/env python3 from typing import NamedTuple import enum import logging import os import threading from torch.distributed.nn import RemoteModule import torch from torch.distributed import rpc from torch.nn.parallel import DistributedDataParallel from torch.testing._internal.common_distributed import ( MultiProcessTestCase, requires_gloo, requires_nccl, skip_if_lt_x_gpu, ) from torch.testing._internal.common_utils import ( TEST_WITH_ASAN, ) from torch.testing._internal.dist_utils import dist_init import torch.distributed as dist import torch.distributed.autograd as dist_autograd import torch.nn as nn import unittest from torch.testing._internal.distributed.rpc.rpc_agent_test_fixture import ( RpcAgentTestFixture, ) NUM_EM_ROW = 2 D_SPARSE = 3 D_DENSE = 2 D_HID = 3 D_OUT = 1 NUM_TRAINERS = 4 # Trainers + the master + the remote worker WORLD_SIZE = NUM_TRAINERS + 2 TRAINER_RANKS = list(range(NUM_TRAINERS)) REMOTE_WORKER_RANK = TRAINER_RANKS[-1] + 1 MASTER_RANK = REMOTE_WORKER_RANK + 1 class DdpMode(enum.Enum): # Don't apply DDP NONE = enum.auto() # Apply DDP to the top level nn.Module OUTSIDE = enum.auto() # Embed DDP inside the top level nn.Module INSIDE = enum.auto() def init_logger(): logger = logging.getLogger(__name__) level = logging.DEBUG if "debug" in os.environ else logging.INFO logger.setLevel(level) console = logging.StreamHandler() formatter = logging.Formatter( "%(asctime)s %(filename)s:%(lineno)s %(levelname)s p:%(processName)s t:%(threadName)s: %(message)s" ) console.setFormatter(formatter) console.setLevel(level) # add the handlers to the logger logger.addHandler(console) logger.propagate = False return logger gLogger = init_logger() class FeatureSet(NamedTuple): """ A feature set has 2 types of features""" dense_features: torch.Tensor sparse_features: torch.LongTensor values: torch.Tensor def _call_method(method, rref, *args, **kwargs): return method(rref.local_value(), *args, **kwargs) def _remote_method(method, rref, *args, **kwargs): args_tup = tuple([method, rref] + list(args)) return rpc.rpc_sync( rref.owner(), _call_method, args=args_tup, kwargs=kwargs ) def _remote_method_async(method, rref, *args, **kwargs): args_tup = tuple([method, rref] + list(args)) return rpc.rpc_async( rref.owner(), _call_method, args=args_tup, kwargs=kwargs ) class RemoteEM(nn.Module): def __init__(self, num_embeddings: int, embedding_dim: int): gLogger.info(f"Initing RemoteEM with {num_embeddings} {embedding_dim}") super(RemoteEM, self).__init__() init_em = [0.5] * embedding_dim self.em = nn.EmbeddingBag( num_embeddings, embedding_dim, _weight=torch.Tensor([init_em] * num_embeddings), ) def forward(self, input: torch.Tensor): gLogger.debug(f"Running RemoteEM.forward() on: {input}") return self.em(input, offsets=torch.LongTensor(range(input.shape[0]))) # Return a linear module with predefined parameters. def getLinear(d_in, d_out): l = nn.Linear(d_in, d_out, bias=False) w = torch.ones((d_out, d_in)) w[0][0] = -1 w.requires_grad_() l.weight.data = w return l class RemoteNet(nn.Module): def __init__(self, d_in: int, d_out: int): gLogger.info(f"Initing RemoteNet with {d_in} {d_out}") super(RemoteNet, self).__init__() self.fc = getLinear(d_in, d_out) self.relu = nn.ReLU() def forward(self, input: torch.Tensor): gLogger.debug(f"Running RemoteNet.forward() on: {input}") return self.relu(self.fc(input)) class HybridModel(nn.Module): def __init__( self, remote_em_rref: rpc.RRef, remote_net_rref: rpc.RRef, process_group_for_ddp: dist.ProcessGroup = None, ): super(HybridModel, self).__init__() self.remote_em_rref = remote_em_rref self.remote_net_rref = remote_net_rref self.fc1 = getLinear(D_DENSE, D_DENSE) self.fc2 = getLinear(D_HID, D_OUT) self.non_ddp_params = tuple(self.fc1.parameters()) + tuple( self.fc2.parameters() ) self.ddp_params = () if process_group_for_ddp is not None: self.non_ddp_params, self.ddp_params = ( tuple(self.fc1.parameters()), tuple(self.fc2.parameters()), ) gLogger.info("Use DDP for the second local net.") self.fc2 = DistributedDataParallel( self.fc2, check_reduction=True, process_group=process_group_for_ddp, ) gLogger.info( f"HybridModel has {len(list(self.parameters()))} groups of parameters." ) def forward(self, input: FeatureSet): gLogger.debug(f"Running HybridModel.forward on {input}") sparse = _remote_method( RemoteEM.forward, self.remote_em_rref, input.sparse_features ) # The same size of mini batch. assert sparse.shape[0] == input.dense_features.shape[0] dense = self.fc1(input.dense_features) x = torch.cat((dense, sparse), 1) gLogger.debug(f"Concatenated feature: {x}") x = _remote_method(RemoteNet.forward, self.remote_net_rref, x) return self.fc2(x) class Trainer: def __init__( self, remote_em_rref: rpc.RRef, remote_net_rref: rpc.RRef, ddp_mode: DdpMode, rank: int, ): self.rank = rank self.trainer_group = dist.new_group(TRAINER_RANKS) self.remote_em_rref = remote_em_rref self.remote_net_rref = remote_net_rref self.hybrid_module = HybridModel( self.remote_em_rref, self.remote_net_rref, self.trainer_group if ddp_mode in (DdpMode.INSIDE,) else None, ) self.ddp_params, self.non_ddp_params = ( self.hybrid_module.ddp_params, self.hybrid_module.non_ddp_params, ) if ddp_mode == DdpMode.OUTSIDE: gLogger.info("Wrapping the whole hybrid module into DDP.") self.ddp_params += self.non_ddp_params self.non_ddp_params = () self.hybrid_module = DistributedDataParallel( self.hybrid_module, check_reduction=True, process_group=self.trainer_group, ) gLogger.info( f"Succeeded in creating a HybridModel instance with " f"{len(self.ddp_params)} ddp params and {len(self.non_ddp_params)} " f"other local params." ) def destroy_pg(self): dist.destroy_process_group(self.trainer_group) def train_batch(self, mini_batch: FeatureSet): grads_dict = None with dist_autograd.context() as context_id: output = self.hybrid_module.forward(mini_batch) loss = (output * mini_batch.values).sum() dist_autograd.backward(context_id, [loss]) grads_dict = dist_autograd.get_gradients(context_id) gLogger.info( f"Loss is {loss} for mini batch: {mini_batch}. " f"Grads dict has {len(grads_dict)} entries: {grads_dict}" ) return ( tuple(grads_dict[param] for param in self.ddp_params), tuple(grads_dict[param] for param in self.non_ddp_params), ) def get_training_examples(): n = 16 training_examples = FeatureSet( dense_features=torch.zeros((n, D_DENSE)), sparse_features=torch.zeros(n, dtype=torch.long), values=torch.zeros(n), ) idx = 0 # Every example has another one that has exactly the same features but an # opposite value. Therefore, their grads cancel each other in all-reduce. for value in (-1, 1): for x in (-1 * value, 1 * value): for y in (1 * value, -1 * value): for z in (0, 1): training_examples.dense_features[idx, :] = torch.Tensor( (x, y) ) training_examples.sparse_features[idx] = z training_examples.values[idx] = value idx += 1 # Split the examples among NUM_TRAINERS trainers assert 0 == (n % NUM_TRAINERS) examples_per_trainer = int(n / NUM_TRAINERS) return [ FeatureSet( dense_features=training_examples.dense_features[ start : start + examples_per_trainer, : ], sparse_features=training_examples.sparse_features[ start : start + examples_per_trainer ], values=training_examples.values[ start : start + examples_per_trainer ], ) for start in range(0, n, examples_per_trainer) ] shutdown_signal = threading.Condition() def set_shutdown_signal(): global shutdown_signal with shutdown_signal: shutdown_signal.notify() @unittest.skipIf( TEST_WITH_ASAN, "Skip ASAN as torch + multiprocessing spawn have known issues", ) class TestDdpUnderDistAutograd(MultiProcessTestCase, RpcAgentTestFixture): @property def world_size(self) -> int: return WORLD_SIZE def remote_worker_name(self) -> str: # The name has to be consistent with that in 'dist_init' decorator. return f"worker{REMOTE_WORKER_RANK}" def trainer_name(self, rank): # The name has to be consistent with that in 'dist_init' decorator. return f"worker{rank}" def setUp(self): super(TestDdpUnderDistAutograd, self).setUp() self._spawn_processes() def tearDown(self): super(TestDdpUnderDistAutograd, self).tearDown() def _remote_worker_process(self): gLogger.info("The remote worker is running.") dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) global shutdown_signal with shutdown_signal: shutdown_signal.wait() gLogger.info("Exiting remote worker.") dist.destroy_process_group() def _trainer_process(self, rank: int): gLogger.info(f"Running the trainer #{rank}...") gLogger.info( f"Initing trainer process group by trainer #{rank} with ranks {TRAINER_RANKS}" ) dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) gLogger.info(f"Waiting for shutdown signal on trainer #{rank}...") global shutdown_signal with shutdown_signal: shutdown_signal.wait() gLogger.info(f"Exiting the trainer #{rank}...") dist.destroy_process_group() def _master_process(self, ddp_mode: DdpMode): gLogger.info("Running the master process...") dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) remote_em_rref = rpc.remote( self.remote_worker_name(), RemoteEM, args=(NUM_EM_ROW, D_SPARSE) ) remote_net_rref = rpc.remote( self.remote_worker_name(), RemoteNet, args=(D_DENSE + D_SPARSE, D_HID), ) gLogger.info("Created remote rrefs on master") self.do_test_on_master(ddp_mode, remote_em_rref, remote_net_rref) def do_test_on_master( self, ddp_mode: DdpMode, remote_em_rref: rpc.RRef, remote_net_rref: rpc.RRef, ): trainer_rrefs = [] for rank in TRAINER_RANKS: trainer = self.trainer_name(rank) trainer_rrefs.append( rpc.remote( trainer, Trainer, args=(remote_em_rref, remote_net_rref, ddp_mode, rank), ) ) training_examples = get_training_examples() for _ in range(3): futures = [] for idx, trainer_rref in enumerate(trainer_rrefs): futures.append( _remote_method_async( Trainer.train_batch, trainer_rref, training_examples[idx], ) ) for future in futures: ddp_grads, non_ddp_grads = future.wait() for grad in ddp_grads: self.assertEqual( grad, torch.zeros_like(grad), msg="The grad for any ddp parameter should be zeros, because " "the training examples' grads cancel each other.", ) for grad in non_ddp_grads: self.assertNotEqual( grad, torch.zeros_like(grad), msg="The grad for any non-ddp parameter shouldn't be zeros", ) # Destroy process groups for idx, trainer_rref in enumerate(trainer_rrefs): _remote_method_async( Trainer.destroy_pg, trainer_rref, ).wait() # Send shutdown signals. for rank in TRAINER_RANKS: trainer = self.trainer_name(rank) rpc.rpc_sync(trainer, set_shutdown_signal, args=()) rpc.rpc_sync(self.remote_worker_name(), set_shutdown_signal, args=()) def _do_test(self, ddp_mode): if self.rank == MASTER_RANK: self._master_process(ddp_mode) elif self.rank == REMOTE_WORKER_RANK: self._remote_worker_process() elif self.rank in TRAINER_RANKS: self._trainer_process(self.rank) else: raise RuntimeError(f"Unknow process rank: {self.rank}") @requires_gloo() @dist_init def test_backward_no_ddp(self): self._do_test(DdpMode.NONE) @requires_gloo() @dist_init def test_backward_ddp_outside(self): self._do_test(DdpMode.OUTSIDE) @requires_gloo() @dist_init def test_backward_ddp_inside(self): self._do_test(DdpMode.INSIDE) @unittest.skipIf( TEST_WITH_ASAN, "Skip ASAN as torch + multiprocessing spawn have known issues", ) class TestDdpComparison(MultiProcessTestCase, RpcAgentTestFixture): @property def world_size(self) -> int: return NUM_TRAINERS def trainer_name(self, rank): # The name has to be consistent with that in 'dist_init' decorator. return f"worker{rank}" def setUp(self): super(TestDdpComparison, self).setUp() self._spawn_processes() def tearDown(self): super(TestDdpComparison, self).tearDown() @requires_gloo() @dist_init def test_ddp_comparison(self): gLogger.info(f"Running trainer rank: {self.rank}") # Each trainer uses a different random seed. Otherwise, they are going # to have exactly the same initial model parameters, input, and # therefore grads. That means the grads will be the same before and # after DDP's all-reduce. torch.manual_seed(self.rank) dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) net = nn.Linear(2, 3) ddp_net = DistributedDataParallel( net ) inputs = torch.rand((3, 2)) # Use distributed autograd. The gradients will be in RPC context map. grads_dict = {} with dist_autograd.context() as context_id: loss = ddp_net(inputs).norm() dist_autograd.backward(context_id, [loss]) grads_dict = dist_autograd.get_gradients(context_id) gLogger.info(f"Trainer #{self.rank} got grad dict: {grads_dict}") # Use local autograd. The gradients will be in each variable's '.grad'. loss = ddp_net(inputs).norm() loss.backward() # The gradients should be the same for param in net.parameters(): self.assertTrue( param in grads_dict, msg=f"Param {param} is not in dist_auto grad dict {grads_dict}", ) self.assertEqual( grads_dict[param], param.grad, msg=f"The grads for param {param} are different under local " f"and dist autograd: {param.grad} \n---\n {grads_dict[param]}", ) dist.destroy_process_group() @requires_gloo() @dist_init def test_ddp_dist_autograd_sparse_grads(self): # Each trainer uses a different random seed. Otherwise, they are going # to have exactly the same initial model parameters, input, and # therefore grads. That means the grads will be the same before and # after DDP's all-reduce. torch.manual_seed(self.rank) dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) model = nn.EmbeddingBag(10, 3, sparse=True) ddp_model = DistributedDataParallel(model) # Different inputs for each input = torch.LongTensor(10).random_(0, 10) offsets = torch.LongTensor([0, 4]) # Run local. loss = ddp_model(input, offsets).sum() loss.backward() with dist_autograd.context() as context_id: loss = ddp_model(input, offsets).sum() dist_autograd.backward(context_id, [loss]) grads_dict = dist_autograd.get_gradients(context_id) self.assertEqual(1, len(grads_dict)) self.assertEqual(model.weight.grad, grads_dict[model.weight]) @staticmethod def get_remote_grads(rref, context_id): return dist_autograd.get_gradients(context_id)[rref.local_value().weight] @requires_gloo() @dist_init def test_ddp_dist_autograd_local_vs_remote(self): # Each trainer uses a different random seed. Otherwise, they are going # to have exactly the same initial model parameters, input, and # therefore grads. That means the grads will be the same before and # after DDP's all-reduce. torch.manual_seed(self.rank) dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) remote_layer1 = RemoteModule("worker0", nn.Linear, args=(10, 5, False)) layer1 = nn.Linear(10, 5, False) # Start with the same parameters for remote and local layer1.weight = remote_layer1.module_rref.to_here().weight # Run local case. layer2 = nn.Linear(5, 1) inputs = torch.rand((10, 10)) ddp_model = DistributedDataParallel(layer2) loss = ddp_model(layer1(inputs)).sum() loss.backward() # Run remote case. with dist_autograd.context() as context_id: loss = ddp_model(remote_layer1(inputs)).sum() dist_autograd.backward(context_id, [loss]) grads_dict = dist_autograd.get_gradients(context_id) dist.barrier() self.assertEqual(layer2.weight.grad, grads_dict[layer2.weight]) self.assertEqual( layer1.weight.grad, rpc.rpc_sync( "worker0", TestDdpComparison.get_remote_grads, args=(remote_layer1.module_rref, context_id) ) ) @skip_if_lt_x_gpu(NUM_TRAINERS) @requires_nccl() @dist_init def test_ddp_dist_autograd_local_vs_remote_gpu(self): # Each trainer uses a different random seed. Otherwise, they are going # to have exactly the same initial model parameters, input, and # therefore grads. That means the grads will be the same before and # after DDP's all-reduce. torch.manual_seed(self.rank) dist.init_process_group( backend="gloo", init_method="file://{}".format(self.file_name), world_size=self.world_size, rank=self.rank) remote_layer1 = RemoteModule("worker0", nn.Linear, args=(10, 7, False)) layer1 = nn.Linear(10, 7, False) # Start with the same parameters for remote and local layer1.weight = remote_layer1.module_rref.to_here().weight layer2 = nn.Linear(7, 5).cuda(self.rank) ddp_layer2 = DistributedDataParallel(layer2, device_ids=[self.rank]) remote_layer3 = RemoteModule("worker0", nn.Linear, args=(5, 3, False)) layer3 = nn.Linear(5, 3, False) # Start with the same parameters for remote and local layer3.weight = remote_layer3.module_rref.to_here().weight layer4 = nn.Linear(3, 1).cuda(self.rank) ddp_layer4 = DistributedDataParallel(layer4, device_ids=[self.rank]) # Run local case. inputs = torch.rand((10, 10)) loss = ddp_layer4( layer3( ddp_layer2( layer1(inputs).cuda(self.rank) ).cpu() ).cuda(self.rank) ).sum() loss.backward() # Run remote case. with dist_autograd.context() as context_id: loss = ddp_layer4( remote_layer3( ddp_layer2( remote_layer1(inputs).cuda(self.rank) ).cpu() ).cuda(self.rank) ).sum() dist_autograd.backward(context_id, [loss]) grads_dict = dist_autograd.get_gradients(context_id) dist.barrier() self.assertEqual( layer1.weight.grad, rpc.rpc_sync( "worker0", TestDdpComparison.get_remote_grads, args=(remote_layer1.module_rref, context_id) ) ) self.assertEqual(layer2.weight.grad, grads_dict[layer2.weight]) self.assertEqual( layer3.weight.grad, rpc.rpc_sync( "worker0", TestDdpComparison.get_remote_grads, args=(remote_layer3.module_rref, context_id) ) ) self.assertEqual(layer4.weight.grad, grads_dict[layer4.weight])
35.179641
108
0.58783
794435f64a955dfb2d8aec866dbec6b76a68c557
2,683
py
Python
capsul/study_config/config_modules/attributes_config.py
Dralehcab/capsul
cc27fe74706aeb646ac54244a14e432caacee3c7
[ "CECILL-B" ]
null
null
null
capsul/study_config/config_modules/attributes_config.py
Dralehcab/capsul
cc27fe74706aeb646ac54244a14e432caacee3c7
[ "CECILL-B" ]
null
null
null
capsul/study_config/config_modules/attributes_config.py
Dralehcab/capsul
cc27fe74706aeb646ac54244a14e432caacee3c7
[ "CECILL-B" ]
null
null
null
########################################################################## # CAPSUL - Copyright (C) CEA, 2016 # Distributed under the terms of the CeCILL-B license, as published by # the CEA-CNRS-INRIA. Refer to the LICENSE file or to # http://www.cecill.info/licences/Licence_CeCILL-B_V1-en.html # for details. ########################################################################## import os import six from traits.api import Bool, Str, Undefined, List, DictStrStr from capsul.study_config.study_config import StudyConfigModule from capsul.attributes.attributes_factory import AttributesFactory from capsul.attributes.attributes_schema import AttributesSchema, \ ProcessAttributes from capsul.attributes.completion_engine \ import ProcessCompletionEngineFactory, PathCompletionEngineFactory class AttributesConfig(StudyConfigModule): '''Attributes-based completion configuration module for StudyConfig ''' dependencies = [] def __init__(self, study_config, configuration): super(AttributesConfig, self).__init__(study_config, configuration) default_paths = ['capsul.attributes.completion_engine_factory'] self.study_config.add_trait( 'attributes_schema_paths', List(default_paths, Str(Undefined, output=False), output=False, desc='attributes shchema module name')) self.study_config.add_trait( 'attributes_schemas', DictStrStr(output=False, desc='attributes shchemas names')) self.study_config.add_trait( 'process_completion', Str('builtin', output=False, desc='process completion model name')) self.study_config.add_trait( 'path_completion', Str(Undefined, output=False, desc='path completion model name')) self.study_config.modules_data.attributes_factory = AttributesFactory() def initialize_module(self): ''' ''' factory = self.study_config.modules_data.attributes_factory factory.class_types['schema'] = AttributesSchema factory.class_types['process_completion'] \ = ProcessCompletionEngineFactory factory.class_types['path_completion'] \ = PathCompletionEngineFactory factory.class_types['process_attributes'] \ = ProcessAttributes factory.module_path = self.study_config.attributes_schema_paths def initialize_callbacks(self): self.study_config.on_trait_change( self.initialize_module, ['attributes_schemas', 'process_completion', 'path_completion', 'attributes_shema_paths'])
38.884058
79
0.660082
7944360d9f8a57981506c28d51d154c39dffc601
348
py
Python
extra/game-mechanics/platform-game-project/Listing28_ScreenPosition.py
PythonBiellaGroup/LearningPythonWithGames
4dbcff5b55f7f19d09127c7ef7dd04791d9cad96
[ "MIT" ]
2
2021-03-20T14:54:00.000Z
2021-06-16T19:10:52.000Z
extra/game-mechanics/platform-game-project/Listing28_ScreenPosition.py
PythonBiellaGroup/LearningPythonWithGames
4dbcff5b55f7f19d09127c7ef7dd04791d9cad96
[ "MIT" ]
null
null
null
extra/game-mechanics/platform-game-project/Listing28_ScreenPosition.py
PythonBiellaGroup/LearningPythonWithGames
4dbcff5b55f7f19d09127c7ef7dd04791d9cad96
[ "MIT" ]
null
null
null
def ScreenPositionUpdate(player, screenPosition): if player.centre[1] - screenPosition < 150: screenPosition = player.centre[1] - 150 elif player.centre[1] - screenPosition > 600 - 150: screenPosition = player.centre[1] - (600 - 150) if screenPosition > 0: screenPosition = 0 return screenPosition
31.636364
55
0.652299
794436220fbc8c74dfbc3f5d5e20d2ec9df6f070
30,337
py
Python
DSSP_statistics.py
sutormin94/N-to-C_asymmetry
ed4f9d6ed6c202a46d619d9ebec097134ee04985
[ "MIT" ]
null
null
null
DSSP_statistics.py
sutormin94/N-to-C_asymmetry
ed4f9d6ed6c202a46d619d9ebec097134ee04985
[ "MIT" ]
null
null
null
DSSP_statistics.py
sutormin94/N-to-C_asymmetry
ed4f9d6ed6c202a46d619d9ebec097134ee04985
[ "MIT" ]
null
null
null
############################################### ##Dmitry Sutormin, 2020## ##N-to-C-terminus assymetry in protein domain secondary structure elements composition## #Pareses DSSP output generated for representative structures with Run_DSSP.py #Get statistics of secondary structure elements at N- and C-termini of protein domains. ############################################### ####### #Packages to be imported. ####### import matplotlib.pyplot as plt import numpy as np import scipy.stats as st ####### #Variables to be defined. ####### #Path to DSSP data file. DSSP_data_inpath="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Documents\Skoltech_PhD\Structural_bioinformatics\Project\DSSP\DSSP\DSSP_Representative_pdb_domains.txt" #Path to output file. DSSP_data_outpath="C:\\Users\sutor\OneDrive\ThinkPad_working\Sutor\Documents\Skoltech_PhD\Structural_bioinformatics\Project\DSSP\\" ####### #Read DSSP output. ####### def read_dssp_data(DSSP_inpath): #Read DSSP data keep in dictionary. DSSP_data_dict={} filein=open(DSSP_inpath, 'r') for line in filein: line=line.rstrip().split('\t') if line[0] not in ['PFAM_id']: PFAM_id=line[0] PDB_id=line[1] Chain_id=line[2] Start=int(line[3]) End=int(line[4]) Resolution=float(line[5]) SSE_string=line[6] Phi_list=[float(x) for x in line[7].lstrip('[').rstrip(']').split(', ')] Psi_list=[float(x) for x in line[8].lstrip('[').rstrip(']').split(', ')] DSSP_data_dict[PFAM_id]=[PDB_id, Chain_id, Start, End, Resolution, SSE_string, Phi_list, Psi_list] filein.close() return DSSP_data_dict ####### #Filter data, split data by domain length. ####### def define_length_groups(DSSP_data_dict, min_len, thr_len): Domain_length_ar=[] Discarded_short_structures={} Short_structures={} Long_structures={} for pfam_id, dssp_data in DSSP_data_dict.items(): domain_len=len(dssp_data[5]) Domain_length_ar.append(domain_len) #Classify domains by length. if domain_len<min_len: Discarded_short_structures[pfam_id]=dssp_data elif min_len<=domain_len<thr_len: Short_structures[pfam_id]=dssp_data elif domain_len>=thr_len: Long_structures[pfam_id]=dssp_data #Plot domain length distribution. fig, plot=plt.subplots(1,1,figsize=(3,3), dpi=100) plot.hist(Domain_length_ar, bins=50, rwidth=0.85, color='#94fff1', edgecolor='black', linewidth=0.1) plot.axvline(x=min_len, ls='--', linewidth=0.7, color='black') plot.axvline(x=thr_len, ls='--', linewidth=0.7) plot.set_xlabel('Domain length, aa') plot.set_ylabel('Number of structures') plot.set_yscale('log') plot.set_title('Representative structures\nafter DSSP') plot.annotate(f'Number of\nstructures\n{len(Domain_length_ar)}', (0.5,0.7), xycoords='axes fraction') plot.annotate(f'x<{min_len} : {len(Discarded_short_structures)}', (0.5,0.6), xycoords='axes fraction', size=7) plot.annotate(f'{min_len}<=x<{thr_len} : {len(Short_structures)}', (0.5,0.5), xycoords='axes fraction', size=7) plot.annotate(f'x>={thr_len} : {len(Long_structures)}', (0.5,0.4), xycoords='axes fraction', size=7) plt.tight_layout() plt.show() return Short_structures, Long_structures ####### #Take phi, psi angles for N- and C-termini. ####### def phi_psi_N_to_C(structures_dict, window_width): phi_N=[] phi_C=[] psi_N=[] psi_C=[] phi=[] psi=[] for pfam_id, dssp_data in structures_dict.items(): phi_list=dssp_data[6] psi_list=dssp_data[7] phi_N+=phi_list[:window_width] phi_C+=phi_list[-window_width:] psi_N+=psi_list[:window_width] psi_C+=psi_list[-window_width:] phi+=phi_list psi+=psi_list return phi_N, phi_C, psi_N, psi_C, phi, psi ####### #Create secondary structure element frequency matrix. ####### def ss_element_frequency_matrix(structures_dict, window_width): #Create positioned matrix of secondary structure elements. ss_matrix_N=[] ss_matrix_C=[] for i in range(window_width): column_N=[] column_C=[] for pfam_id, dssp_data in structures_dict.items(): SSE_string=dssp_data[5] column_N.append(SSE_string[i]) column_C.append(SSE_string[-window_width+i]) ss_matrix_N.append(column_N) ss_matrix_C.append(column_C) #Create position frequency matrix of secondary structure elements. DSSP_alphabet=['H', 'B', 'E', 'G', 'I', 'T', 'S', '-'] ss_pfm_N={} ss_pfm_C={} ss_pfm_conf_N={} ss_pfm_conf_C={} for letter_code in DSSP_alphabet: #Keep frequences of ss elements. frequency_row_N=[] frequency_row_C=[] #Keep boundaries of confident interval. conf_upper_N=[] conf_upper_C=[] conf_lower_N=[] conf_lower_C=[] for i in range(len(ss_matrix_N)): column_letter_freq_N=ss_matrix_N[i].count(letter_code)/float(len(ss_matrix_N[i])) confident_interval_N=st.binom.interval(0.95, len(ss_matrix_N[i]), column_letter_freq_N, loc=0) lower_N=confident_interval_N[0]/len(ss_matrix_N[i]) upper_N=confident_interval_N[1]/len(ss_matrix_N[i]) conf_lower_N.append(lower_N) conf_upper_N.append(upper_N) frequency_row_N.append(column_letter_freq_N) column_letter_freq_C=ss_matrix_C[i].count(letter_code)/float(len(ss_matrix_C[i])) confident_interval_C=st.binom.interval(0.95, len(ss_matrix_C[i]), column_letter_freq_C, loc=0) lower_C=confident_interval_C[0]/len(ss_matrix_C[i]) upper_C=confident_interval_C[1]/len(ss_matrix_C[i]) conf_lower_C.append(lower_C) conf_upper_C.append(upper_C) frequency_row_C.append(column_letter_freq_C) ss_pfm_N[letter_code]=frequency_row_N ss_pfm_C[letter_code]=frequency_row_C ss_pfm_conf_N[letter_code+'_upper']=conf_upper_N ss_pfm_conf_N[letter_code+'_lower']=conf_lower_N ss_pfm_conf_C[letter_code+'_upper']=conf_upper_C ss_pfm_conf_C[letter_code+'_lower']=conf_lower_C print(ss_pfm_N) print(ss_pfm_C) return ss_matrix_N, ss_matrix_C, ss_pfm_N, ss_pfm_C, ss_pfm_conf_N, ss_pfm_conf_C ####### #Enrichment of secondary structure elements N- over C-terminus. ####### def ss_ele_enrichment(ss_pfm_N, ss_pfm_C): enrichment_N_to_C_dict={} for letter_code, frequency_row_N in ss_pfm_N.items(): frequency_N=np.array(frequency_row_N) frequency_C=np.array(ss_pfm_C[letter_code][::-1]) enrichment_N_to_C=frequency_N/frequency_C enrichment_N_to_C_dict[letter_code]=enrichment_N_to_C return enrichment_N_to_C_dict ####### #Terminal beta-strands relations: simultaneous occurence or independant?. ####### def termini_dependance(ss_matrix_N, ss_matrix_C, ss_pfm_N, ss_pfm_C, local_window_width): DSSP_alphabet=['H', 'B', 'E', 'G', 'I', 'T', 'S', '-'] #Calculate observed frequences of elements co-occurence coordinate-wise. Observed_matrices_dict={} for letter_code_1 in DSSP_alphabet: for letter_code_2 in DSSP_alphabet: Ni_Cj_freq_2d_ar=[] for Ni in range(local_window_width): Cj_freq_1d_ar=[] for Cj in range(local_window_width): N_column_i=ss_matrix_N[Ni] C_column_j=ss_matrix_C[-Cj-1] Ni_Cj_counts=0 for structure_k in range(len(N_column_i)): if (N_column_i[structure_k]==letter_code_1) and (C_column_j[structure_k]==letter_code_2): Ni_Cj_counts+=1 Ni_Cj_frequency=Ni_Cj_counts/float(len(N_column_i)) Cj_freq_1d_ar.append(Ni_Cj_frequency) Ni_Cj_freq_2d_ar.append(Cj_freq_1d_ar) Ni_Cj_freq_2d_ar_np=np.array(Ni_Cj_freq_2d_ar) Observed_matrices_dict[letter_code_1+letter_code_2]=Ni_Cj_freq_2d_ar_np #Calculate expected frequences of elements co-occurence coordinate-wise. Expected_matrices_dict={} for letter_code_1 in DSSP_alphabet: for letter_code_2 in DSSP_alphabet: Expected_Ni_Cj_freq_2d_ar=[] for Ni in range(local_window_width): Expected_Cj_freq_1d_ar=[] for Cj in range(local_window_width): Ni_frequency=ss_pfm_N[letter_code_1][Ni] Cj_frequency=ss_pfm_C[letter_code_2][-Cj-1] Expected_Ni_Cj_frequency=Ni_frequency*Cj_frequency Expected_Cj_freq_1d_ar.append(Expected_Ni_Cj_frequency) Expected_Ni_Cj_freq_2d_ar.append(Expected_Cj_freq_1d_ar) Expected_Ni_Cj_freq_2d_ar_np=np.array(Expected_Ni_Cj_freq_2d_ar) Expected_matrices_dict[letter_code_1+letter_code_2]=Expected_Ni_Cj_freq_2d_ar_np #Calculate observed over expected ratio of frequences of elements co-occurence coordinate-wise. Obs_over_exp_matrices_dict={} for letter_code_1 in DSSP_alphabet: for letter_code_2 in DSSP_alphabet: Obs_over_exp_freq_matrix=np.divide(Observed_matrices_dict[letter_code_1+letter_code_2], Expected_matrices_dict[letter_code_1+letter_code_2]) Obs_over_exp_matrices_dict[letter_code_1+letter_code_2]=Obs_over_exp_freq_matrix print(letter_code_1, letter_code_2, Obs_over_exp_freq_matrix) return Obs_over_exp_matrices_dict ####### #Analyse N-to-C asymmetry in secondary structure elements frequency. ####### def distribution_of_frequences(ss_pfm_N, ss_pfm_C): ss_pfm=ss_pfm_N+ss_pfm_C print(len(ss_pfm)) fig, plot=plt.subplots(1,1,figsize=(4,4), dpi=100) weights=np.ones_like(ss_pfm)/(len(ss_pfm)) #Taken from https://stackoverflow.com/questions/42481698/probability-density-histogram-with-matplotlib-doesnt-make-sense plot.hist(ss_pfm, bins=10, weights=weights) plot.set_xlabel('Frequency of ss element') plot.set_ylabel('Fraction of positions') plt.show() return ####### #Analyse N-to-C asymmetry in secondary structure elements frequency. ####### def N_to_C_asymmetry(ss_pfm_N_short, ss_pfm_C_short, ss_pfm_conf_N_short, ss_pfm_conf_C_short, ss_pfm_N_long, ss_pfm_C_long, ss_pfm_conf_N_long, ss_pfm_conf_C_long, window_width): ##Plot distribution of frequences, get confidential interval. ##Distribution are far from being normal, estimation is not good -> depricated. #distribution_of_frequences(ss_pfm_N_short['H'], ss_pfm_C_short['H']) #distribution_of_frequences(ss_pfm_N_long['H'], ss_pfm_C_long['H']) #Plot frequency of ss elements as a function of distance from N- and C-termini. X_N=range(window_width) X_C=range(60, 60+window_width) xticks_ar=list(range(0,111,10)) xticklabels_ar=[0,10,20,30,40,50,-50,-40,-30,-20,-10,0] xticks_spec=[-4, 114] xticklabels_spec=['N-', '-C'] fig, plot=plt.subplots(2,2,figsize=(12,6), dpi=100) plot[0,0].plot(X_N, ss_pfm_N_short['H'], color='#94fff1', linewidth=2, label=r'$\alpha$-helix short domains') plot[0,0].fill_between(X_N, ss_pfm_conf_N_short['H_lower'], ss_pfm_conf_N_short['H_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[0,0].plot(X_C, ss_pfm_C_short['H'], color='#94fff1', linewidth=2) plot[0,0].fill_between(X_C, ss_pfm_conf_C_short['H_lower'], ss_pfm_conf_C_short['H_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[0,0].plot(X_N, ss_pfm_N_long['H'], color='#ab658c', linewidth=2, label=r'$\alpha$-helix long domains') plot[0,0].fill_between(X_N, ss_pfm_conf_N_long['H_lower'], ss_pfm_conf_N_long['H_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[0,0].plot(X_C, ss_pfm_C_long['H'], color='#ab658c', linewidth=2) plot[0,0].fill_between(X_C, ss_pfm_conf_C_long['H_lower'], ss_pfm_conf_C_long['H_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[0,0].plot(X_N, ss_pfm_N_short['E'], color='#59acff', linewidth=2, label=r'$\beta$-strand short domains') plot[0,0].fill_between(X_N, ss_pfm_conf_N_short['E_lower'], ss_pfm_conf_N_short['E_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[0,0].plot(X_C, ss_pfm_C_short['E'], color='#59acff', linewidth=2) plot[0,0].fill_between(X_C, ss_pfm_conf_C_short['E_lower'], ss_pfm_conf_C_short['E_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[0,0].plot(X_N, ss_pfm_N_long['E'], color='#ffec59', linewidth=2, label=r'$\beta$-strand long domains') plot[0,0].fill_between(X_N, ss_pfm_conf_N_long['E_lower'], ss_pfm_conf_N_long['E_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[0,0].plot(X_C, ss_pfm_C_long['E'], color='#ffec59', linewidth=2) plot[0,0].fill_between(X_C, ss_pfm_conf_C_long['E_lower'], ss_pfm_conf_C_long['E_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[0,0].set_xticks(xticks_ar) plot[0,0].set_xticklabels(xticklabels_ar) plot[0,0].set_xticks(xticks_spec, minor=True) plot[0,0].set_xticklabels(xticklabels_spec, minor=True) plot[0,0].tick_params(axis='x', which='minor', length=0) plot[0,0].set_xlabel('Distance, aa') plot[0,0].set_ylabel('Frequency') plot[0,0].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='upper center') plot[0,1].plot(X_N, ss_pfm_N_short['B'], color='#94fff1', linewidth=2, label=r'$\beta$-bridge short domains') plot[0,1].fill_between(X_N, ss_pfm_conf_N_short['B_lower'], ss_pfm_conf_N_short['B_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[0,1].plot(X_C, ss_pfm_C_short['B'], color='#94fff1', linewidth=2) plot[0,1].fill_between(X_C, ss_pfm_conf_C_short['B_lower'], ss_pfm_conf_C_short['B_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[0,1].plot(X_N, ss_pfm_N_long['B'], color='#ab658c', linewidth=2, label=r'$\beta$-bridge long domains') plot[0,1].fill_between(X_N, ss_pfm_conf_N_long['B_lower'], ss_pfm_conf_N_long['B_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[0,1].plot(X_C, ss_pfm_C_long['B'], color='#ab658c', linewidth=2) plot[0,1].fill_between(X_C, ss_pfm_conf_C_long['B_lower'], ss_pfm_conf_C_long['B_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[0,1].plot(X_N, ss_pfm_N_short['G'], color='#59acff', linewidth=2, label=r'3-10-helix short domains') plot[0,1].fill_between(X_N, ss_pfm_conf_N_short['G_lower'], ss_pfm_conf_N_short['G_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[0,1].plot(X_C, ss_pfm_C_short['G'], color='#59acff', linewidth=2) plot[0,1].fill_between(X_C, ss_pfm_conf_C_short['G_lower'], ss_pfm_conf_C_short['G_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[0,1].plot(X_N, ss_pfm_N_long['G'], color='#ffec59', linewidth=2, label=r'3-10-helix long domains') plot[0,1].fill_between(X_N, ss_pfm_conf_N_long['G_lower'], ss_pfm_conf_N_long['G_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[0,1].plot(X_C, ss_pfm_C_long['G'], color='#ffec59', linewidth=2) plot[0,1].fill_between(X_C, ss_pfm_conf_C_long['G_lower'], ss_pfm_conf_C_long['G_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[0,1].set_xticks(xticks_ar) plot[0,1].set_xticklabels(xticklabels_ar) plot[0,1].set_xticks(xticks_spec, minor=True) plot[0,1].set_xticklabels(xticklabels_spec, minor=True) plot[0,1].tick_params(axis='x', which='minor', length=0) plot[0,1].set_xlabel('Distance, aa') plot[0,1].set_ylabel('Frequency') plot[0,1].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='center') plot[1,0].plot(X_N, ss_pfm_N_short['I'], color='#94fff1', linewidth=2, label=r'$\pi$-helix short domains') plot[1,0].fill_between(X_N, ss_pfm_conf_N_short['I_lower'], ss_pfm_conf_N_short['I_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[1,0].plot(X_C, ss_pfm_C_short['I'], color='#94fff1', linewidth=2) plot[1,0].fill_between(X_C, ss_pfm_conf_C_short['I_lower'], ss_pfm_conf_C_short['I_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[1,0].plot(X_N, ss_pfm_N_long['I'], color='#ab658c', linewidth=2, label=r'$\pi$-helix long domains') plot[1,0].fill_between(X_N, ss_pfm_conf_N_long['I_lower'], ss_pfm_conf_N_long['I_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[1,0].plot(X_C, ss_pfm_C_long['I'], color='#ab658c', linewidth=2) plot[1,0].fill_between(X_C, ss_pfm_conf_C_long['I_lower'], ss_pfm_conf_C_long['I_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[1,0].plot(X_N, ss_pfm_N_short['T'], color='#59acff', linewidth=2, label=r'turn short domains') plot[1,0].fill_between(X_N, ss_pfm_conf_N_short['T_lower'], ss_pfm_conf_N_short['T_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[1,0].plot(X_C, ss_pfm_C_short['T'], color='#59acff', linewidth=2) plot[1,0].fill_between(X_C, ss_pfm_conf_C_short['T_lower'], ss_pfm_conf_C_short['T_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[1,0].plot(X_N, ss_pfm_N_long['T'], color='#ffec59', linewidth=2, label=r'turn long domains') plot[1,0].fill_between(X_N, ss_pfm_conf_N_long['T_lower'], ss_pfm_conf_N_long['T_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[1,0].plot(X_C, ss_pfm_C_long['T'], color='#ffec59', linewidth=2) plot[1,0].fill_between(X_C, ss_pfm_conf_C_long['T_lower'], ss_pfm_conf_C_long['T_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[1,0].set_xticks(xticks_ar) plot[1,0].set_xticklabels(xticklabels_ar) plot[1,0].set_xticks(xticks_spec, minor=True) plot[1,0].set_xticklabels(xticklabels_spec, minor=True) plot[1,0].tick_params(axis='x', which='minor', length=0) plot[1,0].set_xlabel('Distance, aa') plot[1,0].set_ylabel('Frequency') plot[1,0].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='center') plot[1,1].plot(X_N, ss_pfm_N_short['S'], color='#94fff1', linewidth=2, label=r'bend short domains') plot[1,1].fill_between(X_N, ss_pfm_conf_N_short['S_lower'], ss_pfm_conf_N_short['S_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[1,1].plot(X_C, ss_pfm_C_short['S'], color='#94fff1', linewidth=2) plot[1,1].fill_between(X_C, ss_pfm_conf_C_short['S_lower'], ss_pfm_conf_C_short['S_upper'], color='#94fff1', alpha=0.3, linewidth=0) plot[1,1].plot(X_N, ss_pfm_N_long['S'], color='#ab658c', linewidth=2, label=r'bend long domains') plot[1,1].fill_between(X_N, ss_pfm_conf_N_long['S_lower'], ss_pfm_conf_N_long['S_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[1,1].plot(X_C, ss_pfm_C_long['S'], color='#ab658c', linewidth=2) plot[1,1].fill_between(X_C, ss_pfm_conf_C_long['S_lower'], ss_pfm_conf_C_long['S_upper'], color='#ab658c', alpha=0.3, linewidth=0) plot[1,1].plot(X_N, ss_pfm_N_short['-'], color='#59acff', linewidth=2, label=r'unstructured short domains') plot[1,1].fill_between(X_N, ss_pfm_conf_N_short['-_lower'], ss_pfm_conf_N_short['-_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[1,1].plot(X_C, ss_pfm_C_short['-'], color='#59acff', linewidth=2) plot[1,1].fill_between(X_C, ss_pfm_conf_C_short['-_lower'], ss_pfm_conf_C_short['-_upper'], color='#59acff', alpha=0.3, linewidth=0) plot[1,1].plot(X_N, ss_pfm_N_long['-'], color='#ffec59', linewidth=2, label=r'unstructured long domains') plot[1,1].fill_between(X_N, ss_pfm_conf_N_long['-_lower'], ss_pfm_conf_N_long['-_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[1,1].plot(X_C, ss_pfm_C_long['-'], color='#ffec59', linewidth=2) plot[1,1].fill_between(X_C, ss_pfm_conf_C_long['-_lower'], ss_pfm_conf_C_long['-_upper'], color='#ffec59', alpha=0.3, linewidth=0) plot[1,1].set_xticks(xticks_ar) plot[1,1].set_xticklabels(xticklabels_ar) plot[1,1].set_xticks(xticks_spec, minor=True) plot[1,1].set_xticklabels(xticklabels_spec, minor=True) plot[1,1].tick_params(axis='x', which='minor', length=0) plot[1,1].set_xlabel('Distance, aa') plot[1,1].set_ylabel('Frequency') plot[1,1].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='center') plt.tight_layout() plt.show() return ####### #Enrichment of ss elements at N-terminus over the elements at C-terminus. ####### def N_to_C_enrichment(enrichment_N_to_C_dict_short, enrichment_N_to_C_dict_long, window_width): #Plot enrichment of ss elements as a function of distance from termini. X=range(window_width) xticks_ar=list(range(0,51,10)) xticklabels_ar=[0,10,20,30,40,50] xticks_spec=[-4] xticklabels_spec=['N-\nC-', ] fig, plot=plt.subplots(2,2,figsize=(12,6), dpi=100) plot[0,0].plot(X, enrichment_N_to_C_dict_short['H'], color='#94fff1', linewidth=2, label=r'$\alpha$-helix short domains') plot[0,0].plot(X, enrichment_N_to_C_dict_long['H'], color='#ab658c', linewidth=2, label=r'$\alpha$-helix long domains') plot[0,0].plot(X, enrichment_N_to_C_dict_short['E'], color='#59acff', linewidth=2, label=r'$\beta$-strand short domains') plot[0,0].plot(X, enrichment_N_to_C_dict_long['E'], color='#ffec59', linewidth=2, label=r'$\beta$-strand long domains') plot[0,0].set_xticks(xticks_ar) plot[0,0].set_xticklabels(xticklabels_ar) plot[0,0].set_xticks(xticks_spec, minor=True) plot[0,0].set_xticklabels(xticklabels_spec, minor=True) plot[0,0].tick_params(axis='x', which='minor', length=0) plot[0,0].set_xlabel('Distance, aa') plot[0,0].set_ylabel('Enrichment p(N)/p(C)') plot[0,0].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='upper center') plot[0,1].plot(X, enrichment_N_to_C_dict_short['B'], color='#94fff1', linewidth=2, label=r'$\beta$-bridge short domains') plot[0,1].plot(X, enrichment_N_to_C_dict_long['B'], color='#ab658c', linewidth=2, label=r'$\beta$-bridge long domains') plot[0,1].plot(X, enrichment_N_to_C_dict_short['G'], color='#59acff', linewidth=2, label=r'3-10-helix short domains') plot[0,1].plot(X, enrichment_N_to_C_dict_long['G'], color='#ffec59', linewidth=2, label=r'3-10-helix long domains') plot[0,1].set_xticks(xticks_ar) plot[0,1].set_xticklabels(xticklabels_ar) plot[0,1].set_xticks(xticks_spec, minor=True) plot[0,1].set_xticklabels(xticklabels_spec, minor=True) plot[0,1].tick_params(axis='x', which='minor', length=0) plot[0,1].set_xlabel('Distance, aa') plot[0,1].set_ylabel('Enrichment p(N)/p(C)') plot[0,1].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='upper center') plot[1,0].plot(X, enrichment_N_to_C_dict_short['I'], color='#94fff1', linewidth=2, label=r'$\pi$-helix short domains') plot[1,0].plot(X, enrichment_N_to_C_dict_long['I'], color='#ab658c', linewidth=2, label=r'$\pi$-helix long domains') plot[1,0].plot(X, enrichment_N_to_C_dict_short['T'], color='#59acff', linewidth=2, label=r'turn short domains') plot[1,0].plot(X, enrichment_N_to_C_dict_long['T'], color='#ffec59', linewidth=2, label=r'turn long domains') plot[1,0].set_xticks(xticks_ar) plot[1,0].set_xticklabels(xticklabels_ar) plot[1,0].set_xticks(xticks_spec, minor=True) plot[1,0].set_xticklabels(xticklabels_spec, minor=True) plot[1,0].tick_params(axis='x', which='minor', length=0) plot[1,0].set_xlabel('Distance, aa') plot[1,0].set_ylabel('Enrichment p(N)/p(C)') plot[1,0].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='upper center') plot[1,1].plot(X, enrichment_N_to_C_dict_short['S'], color='#94fff1', linewidth=2, label=r'bend short domains') plot[1,1].plot(X, enrichment_N_to_C_dict_long['S'], color='#ab658c', linewidth=2, label=r'bend long domains') plot[1,1].plot(X, enrichment_N_to_C_dict_short['-'], color='#59acff', linewidth=2, label=r'unstructured short domains') plot[1,1].plot(X, enrichment_N_to_C_dict_long['-'], color='#ffec59', linewidth=2, label=r'unstructured long domains') plot[1,1].set_xticks(xticks_ar) plot[1,1].set_xticklabels(xticklabels_ar) plot[1,1].set_xticks(xticks_spec, minor=True) plot[1,1].set_xticklabels(xticklabels_spec, minor=True) plot[1,1].tick_params(axis='x', which='minor', length=0) plot[1,1].set_xlabel('Distance, aa') plot[1,1].set_ylabel('Enrichment p(N)/p(C)') plot[1,1].legend(fontsize=8.5, ncol=2, handlelength=0.7, frameon=False, columnspacing=0.7, loc='upper center') plt.tight_layout() plt.show() return ####### #Plot co-occurence of ss elements at termini. ####### def plot_co_occurence(Obs_over_exp_matrices_short, Obs_over_exp_matrices_long, local_window_width): fig, plot=plt.subplots(2,2,figsize=(7,7), dpi=100) ticks_ar=list(range(-1, local_window_width, int(local_window_width/10))) ticks_ar[0]=0 print(list(ticks_ar)) ticklabels_ar=np.array(list(ticks_ar))+1 plot00=plot[0,0].imshow(Obs_over_exp_matrices_short['EH'], cmap='gnuplot', vmin=0.3, vmax=2.1, interpolation='nearest') plot[0,0].set_title(r'$\beta-\alpha$ short domains') plo00_cbar=plot[0,0].figure.colorbar(plot00, ax=plot[0,0], shrink=0.7) plot[0,0].set_xticks(ticks_ar) plot[0,0].set_xticklabels(ticklabels_ar) plot[0,0].set_yticks(ticks_ar) plot[0,0].set_yticklabels(ticklabels_ar) plot[0,0].set_xlabel(r'Distance from C-terminus, aa ($\alpha$)') plot[0,0].set_ylabel(r'Distance from N-terminus, aa ($\beta$)') plo00_cbar.ax.set_ylabel('p(Obs)/p(Exp)', rotation=-90, va="bottom") plot01=plot[0,1].imshow(Obs_over_exp_matrices_long['EH'], cmap='gnuplot', vmin=0.3, vmax=2.1, interpolation='nearest') plot[0,1].set_title(r'$\beta-\alpha$-helix long domains') plo01_cbar=plot[0,1].figure.colorbar(plot01, ax=plot[0,1], shrink=0.7) plot[0,1].set_xticks(ticks_ar) plot[0,1].set_xticklabels(ticklabels_ar) plot[0,1].set_yticks(ticks_ar) plot[0,1].set_yticklabels(ticklabels_ar) plot[0,1].set_xlabel(r'Distance from C-terminus, aa ($\alpha$)') plot[0,1].set_ylabel(r'Distance from N-terminus, aa ($\beta$)') plo01_cbar.ax.set_ylabel('p(Obs)/p(Exp)', rotation=-90, va="bottom") plot10=plot[1,0].imshow(Obs_over_exp_matrices_short['HE'], cmap='gnuplot', vmin=0.3, vmax=2.1, interpolation='nearest') plot[1,0].set_title(r'$\alpha-\beta$-strand short domains') plo10_cbar=plot[0,0].figure.colorbar(plot10, ax=plot[1,0], shrink=0.7) plot[1,0].set_xticks(ticks_ar) plot[1,0].set_xticklabels(ticklabels_ar) plot[1,0].set_yticks(ticks_ar) plot[1,0].set_yticklabels(ticklabels_ar) plot[1,0].set_xlabel(r'Distance from C-terminus, aa ($\beta$)') plot[1,0].set_ylabel(r'Distance from N-terminus, aa ($\alpha$)') plo10_cbar.ax.set_ylabel('p(Obs)/p(Exp)', rotation=-90, va="bottom") plot11=plot[1,1].imshow(Obs_over_exp_matrices_long['HE'], cmap='gnuplot', vmin=0.3, vmax=2.1, interpolation='nearest') plot[1,1].set_title(r'$\alpha-\beta$-strand long domains') plo11_cbar=plot[1,1].figure.colorbar(plot11, ax=plot[1,1], shrink=0.7) plot[1,1].set_xticks(ticks_ar) plot[1,1].set_xticklabels(ticklabels_ar) plot[1,1].set_yticks(ticks_ar) plot[1,1].set_yticklabels(ticklabels_ar) plot[1,1].set_xlabel(r'Distance from C-terminus, aa ($\beta$)') plot[1,1].set_ylabel(r'Distance from N-terminus, aa ($\alpha$)') plo11_cbar.ax.set_ylabel('p(Obs)/p(Exp)', rotation=-90, va="bottom") plt.tight_layout() plt.show() return ####### #Wrapper function. ####### def wrapper(DSSP_inpath): #Define domain length trhresholds. min_len=50 thr_len=130 #Define distance from termini to analyse. window_width=50 local_window_width=50 #Read DSSP data. DSSP_data_dict=read_dssp_data(DSSP_inpath) #Classify domains by length. Short_structures, Long_structures=define_length_groups(DSSP_data_dict, min_len, thr_len) #Get phi, psi angles for N- and C-termini. sphi_N, sphi_C, spsi_N, spsi_C, sphi, spsi=phi_psi_N_to_C(Short_structures, window_width) lphi_N, lphi_C, lpsi_N, lpsi_C, lphi, lpsi=phi_psi_N_to_C(Long_structures, window_width) #Compute position frequency matrices. ss_matrix_N_short, ss_matrix_C_short, ss_pfm_N_short, ss_pfm_C_short, ss_pfm_conf_N_short, ss_pfm_conf_C_short=ss_element_frequency_matrix(Short_structures, window_width) ss_matrix_N_long, ss_matrix_C_long, ss_pfm_N_long, ss_pfm_C_long, ss_pfm_conf_N_long, ss_pfm_conf_C_long=ss_element_frequency_matrix(Long_structures, window_width) #Plot frequency of ss elements as a function of a distance from termini. N_to_C_asymmetry(ss_pfm_N_short, ss_pfm_C_short, ss_pfm_conf_N_short, ss_pfm_conf_C_short, ss_pfm_N_long, ss_pfm_C_long, ss_pfm_conf_N_long, ss_pfm_conf_C_long, window_width) #Enrichment of ss elements N- over C-terminus. enrichment_N_to_C_dict_short=ss_ele_enrichment(ss_pfm_N_short, ss_pfm_C_short) enrichment_N_to_C_dict_long=ss_ele_enrichment(ss_pfm_N_long, ss_pfm_C_long) #Plot enrichment of frequency of ss elements at N-terminus over C-terminus. N_to_C_enrichment(enrichment_N_to_C_dict_short, enrichment_N_to_C_dict_long, window_width) #Analyse co-occurence of secondary structure elements at protein termini. Obs_over_exp_matrices_short=termini_dependance(ss_matrix_N_short, ss_matrix_C_short, ss_pfm_N_short, ss_pfm_C_short, local_window_width) Obs_over_exp_matrices_long=termini_dependance(ss_matrix_N_long, ss_matrix_C_long, ss_pfm_N_long, ss_pfm_C_long, local_window_width) #Plot co-occurence of secondary structure elements at protein termini. plot_co_occurence(Obs_over_exp_matrices_short, Obs_over_exp_matrices_long, local_window_width) return wrapper(DSSP_data_inpath)
50.730769
179
0.687576