hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
794030efec87cc222af29be4be72489c696fac20
1,873
py
Python
test/test_delete_contact_from_group.py
Paulss20/python_training
d0e48f453d08f29e1a0f0bfdcee2fb3aecdc5a82
[ "Apache-2.0" ]
null
null
null
test/test_delete_contact_from_group.py
Paulss20/python_training
d0e48f453d08f29e1a0f0bfdcee2fb3aecdc5a82
[ "Apache-2.0" ]
null
null
null
test/test_delete_contact_from_group.py
Paulss20/python_training
d0e48f453d08f29e1a0f0bfdcee2fb3aecdc5a82
[ "Apache-2.0" ]
null
null
null
from fixture.orm import ORMFixture from model.group import Group from model.add_new import AddNew orm = ORMFixture(host="127.0.0.1", name="addressbook", user="root", password="") def test_delete_contact_from_group(app, db): # собираем списки групп и контактов из БД, если они пусты, добавляем группу и контакт groups = db.get_group_list() contacts = db.get_contact_list() if len(groups) == 0: app.group.create(Group(name="group_to_delete")) if len(contacts) == 0: app.contacts.create_contact(AddNew(my_f_name="contact_to_delete")) # собираем список контактов, присутствующих в таблице связи групп и контактов через orm, если таковых нет, то создаем и добавляем old_dealed_contacts = orm.get_dealed_contacts() # если нет занятого контакта, то создаем контакт и группу и связываем их if len(old_dealed_contacts) == 0 : dealed_group = app.group.create(Group(name="group_to_delete")) dealed_contact = app.contacts.create_contact(AddNew(my_f_name="contact_to_delete")) # app.contacts.add_contact_to_group(old_free_contacts[0], old_free_groups[0]) app.contacts.add_contact_to_group( dealed_contact, dealed_group) old_dealed_contacts = orm.get_dealed_contacts() dealed_contact = old_dealed_contacts[0] dealed_group = orm.get_groups_of_contact(dealed_contact)[0] app.contacts.remove_contact_from_group(dealed_contact, dealed_group) print("Contact with id %s from the group with id %s successfully deleted" % (dealed_contact, dealed_group)) # собираем списки групп и контактов, отсутствующих в таблице связи групп и контактов через orm, после добавления new_dealed_contacts = orm.get_dealed_contacts() # проверяем, что список свободных контактов изменился на 1 assert len(old_dealed_contacts) == len(new_dealed_contacts) + 1
48.025641
134
0.741591
794031236fbbe097d28e7a40779b9eee35ef4fe4
10,918
py
Python
examples/inspection/plot_partial_dependence.py
matiasrvazquez/scikit-learn
e821a9e8a0d4ef63b1219faf9ab902ad0fd4b181
[ "BSD-3-Clause" ]
2
2017-11-22T08:20:15.000Z
2017-11-22T08:23:14.000Z
examples/inspection/plot_partial_dependence.py
matiasrvazquez/scikit-learn
e821a9e8a0d4ef63b1219faf9ab902ad0fd4b181
[ "BSD-3-Clause" ]
1
2022-03-06T18:49:03.000Z
2022-03-06T18:49:03.000Z
examples/inspection/plot_partial_dependence.py
matiasrvazquez/scikit-learn
e821a9e8a0d4ef63b1219faf9ab902ad0fd4b181
[ "BSD-3-Clause" ]
null
null
null
""" =============================================================== Partial Dependence and Individual Conditional Expectation Plots =============================================================== Partial dependence plots show the dependence between the target function [2]_ and a set of features of interest, marginalizing over the values of all other features (the complement features). Due to the limits of human perception, the size of the set of features of interest must be small (usually, one or two) thus they are usually chosen among the most important features. Similarly, an individual conditional expectation (ICE) plot [3]_ shows the dependence between the target function and a feature of interest. However, unlike partial dependence plots, which show the average effect of the features of interest, ICE plots visualize the dependence of the prediction on a feature for each :term:`sample` separately, with one line per sample. Only one feature of interest is supported for ICE plots. This example shows how to obtain partial dependence and ICE plots from a :class:`~sklearn.neural_network.MLPRegressor` and a :class:`~sklearn.ensemble.HistGradientBoostingRegressor` trained on the California housing dataset. The example is taken from [1]_. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] For classification you can think of it as the regression score before the link function. .. [3] :arxiv:`Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015). "Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation". Journal of Computational and Graphical Statistics, 24(1): 44-65 <1309.6392>` """ # %% # California Housing data preprocessing # ------------------------------------- # # Center target to avoid gradient boosting init bias: gradient boosting # with the 'recursion' method does not account for the initial estimator # (here the average target, by default). import pandas as pd from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split cal_housing = fetch_california_housing() X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names) y = cal_housing.target y -= y.mean() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) # %% # 1-way partial dependence with different models # ---------------------------------------------- # # In this section, we will compute 1-way partial dependence with two different # machine-learning models: (i) a multi-layer perceptron and (ii) a # gradient-boosting. With these two models, we illustrate how to compute and # interpret both partial dependence plot (PDP) and individual conditional # expectation (ICE). # # Multi-layer perceptron # ...................... # # Let's fit a :class:`~sklearn.neural_network.MLPRegressor` and compute # single-variable partial dependence plots. from time import time from sklearn.pipeline import make_pipeline from sklearn.preprocessing import QuantileTransformer from sklearn.neural_network import MLPRegressor print("Training MLPRegressor...") tic = time() est = make_pipeline( QuantileTransformer(), MLPRegressor( hidden_layer_sizes=(30, 15), learning_rate_init=0.01, early_stopping=True, random_state=0, ), ) est.fit(X_train, y_train) print(f"done in {time() - tic:.3f}s") print(f"Test R2 score: {est.score(X_test, y_test):.2f}") # %% # We configured a pipeline to scale the numerical input features and tuned the # neural network size and learning rate to get a reasonable compromise between # training time and predictive performance on a test set. # # Importantly, this tabular dataset has very different dynamic ranges for its # features. Neural networks tend to be very sensitive to features with varying # scales and forgetting to preprocess the numeric feature would lead to a very # poor model. # # It would be possible to get even higher predictive performance with a larger # neural network but the training would also be significantly more expensive. # # Note that it is important to check that the model is accurate enough on a # test set before plotting the partial dependence since there would be little # use in explaining the impact of a given feature on the prediction function of # a poor model. # # We will plot the partial dependence, both individual (ICE) and averaged one # (PDP). We limit to only 50 ICE curves to not overcrowd the plot. import matplotlib.pyplot as plt from sklearn.inspection import partial_dependence from sklearn.inspection import PartialDependenceDisplay print("Computing partial dependence plots...") tic = time() features = ["MedInc", "AveOccup", "HouseAge", "AveRooms"] display = PartialDependenceDisplay.from_estimator( est, X_train, features, kind="both", subsample=50, n_jobs=3, grid_resolution=20, random_state=0, ice_lines_kw={"color": "tab:blue", "alpha": 0.2, "linewidth": 0.5}, pd_line_kw={"color": "tab:orange", "linestyle": "--"}, ) print(f"done in {time() - tic:.3f}s") display.figure_.suptitle( "Partial dependence of house value on non-location features\n" "for the California housing dataset, with MLPRegressor" ) display.figure_.subplots_adjust(hspace=0.3) # %% # Gradient boosting # ................. # # Let's now fit a :class:`~sklearn.ensemble.HistGradientBoostingRegressor` and # compute the partial dependence on the same features. from sklearn.ensemble import HistGradientBoostingRegressor print("Training HistGradientBoostingRegressor...") tic = time() est = HistGradientBoostingRegressor(random_state=0) est.fit(X_train, y_train) print(f"done in {time() - tic:.3f}s") print(f"Test R2 score: {est.score(X_test, y_test):.2f}") # %% # Here, we used the default hyperparameters for the gradient boosting model # without any preprocessing as tree-based models are naturally robust to # monotonic transformations of numerical features. # # Note that on this tabular dataset, Gradient Boosting Machines are both # significantly faster to train and more accurate than neural networks. It is # also significantly cheaper to tune their hyperparameters (the defaults tend # to work well while this is not often the case for neural networks). # # We will plot the partial dependence, both individual (ICE) and averaged one # (PDP). We limit to only 50 ICE curves to not overcrowd the plot. print("Computing partial dependence plots...") tic = time() display = PartialDependenceDisplay.from_estimator( est, X_train, features, kind="both", subsample=50, n_jobs=3, grid_resolution=20, random_state=0, ice_lines_kw={"color": "tab:blue", "alpha": 0.2, "linewidth": 0.5}, pd_line_kw={"color": "tab:orange", "linestyle": "--"}, ) print(f"done in {time() - tic:.3f}s") display.figure_.suptitle( "Partial dependence of house value on non-location features\n" "for the California housing dataset, with Gradient Boosting" ) display.figure_.subplots_adjust(wspace=0.4, hspace=0.3) # %% # Analysis of the plots # ..................... # # We can clearly see on the PDPs (dashed orange line) that the median house price # shows a linear relationship with the median income (top left) and that the # house price drops when the average occupants per household increases (top # middle). The top right plot shows that the house age in a district does not # have a strong influence on the (median) house price; so does the average # rooms per household. # # The ICE curves (light blue lines) complement the analysis: we can see that # there are some exceptions, where the house price remain constant with median # income and average occupants. On the other hand, while the house age (top # right) does not have a strong influence on the median house price on average, # there seems to be a number of exceptions where the house price increase when # between the ages 15-25. Similar exceptions can be observed for the average # number of rooms (bottom left). Therefore, ICE plots show some individual # effect which are attenuated by taking the averages. # # In all plots, the tick marks on the x-axis represent the deciles of the # feature values in the training data. # # We also observe that :class:`~sklearn.neural_network.MLPRegressor` has much # smoother predictions than # :class:`~sklearn.ensemble.HistGradientBoostingRegressor`. # # However, it is worth noting that we are creating potential meaningless # synthetic samples if features are correlated. # %% # 2D interaction plots # -------------------- # # PDPs with two features of interest enable us to visualize interactions among # them. However, ICEs cannot be plotted in an easy manner and thus interpreted. # Another consideration is linked to the performance to compute the PDPs. With # the tree-based algorithm, when only PDPs are requested, they can be computed # on an efficient way using the `'recursion'` method. features = ["AveOccup", "HouseAge", ("AveOccup", "HouseAge")] print("Computing partial dependence plots...") tic = time() _, ax = plt.subplots(ncols=3, figsize=(9, 4)) display = PartialDependenceDisplay.from_estimator( est, X_train, features, kind="average", n_jobs=2, grid_resolution=10, ax=ax, ) print(f"done in {time() - tic:.3f}s") display.figure_.suptitle( "Partial dependence of house value on non-location features\n" "for the California housing dataset, with Gradient Boosting" ) display.figure_.subplots_adjust(wspace=0.4, hspace=0.3) # %% # The two-way partial dependence plot shows the dependence of median house # price on joint values of house age and average occupants per household. We # can clearly see an interaction between the two features: for an average # occupancy greater than two, the house price is nearly independent of the # house age, whereas for values less than two there is a strong dependence on # age. # # 3D interaction plots # -------------------- # # Let's make the same partial dependence plot for the 2 features interaction, # this time in 3 dimensions. import numpy as np from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() features = ("AveOccup", "HouseAge") pdp = partial_dependence( est, X_train, features=features, kind="average", grid_resolution=10 ) XX, YY = np.meshgrid(pdp["values"][0], pdp["values"][1]) Z = pdp.average[0].T ax = Axes3D(fig) fig.add_axes(ax) surf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor="k") ax.set_xlabel(features[0]) ax.set_ylabel(features[1]) ax.set_zlabel("Partial dependence") # pretty init view ax.view_init(elev=22, azim=122) plt.colorbar(surf) plt.suptitle( "Partial dependence of house value on median\n" "age and average occupancy, with Gradient Boosting" ) plt.subplots_adjust(top=0.9) plt.show()
37.5189
88
0.731453
7940317e97d8a06828234ba63a188f8c02f59386
3,212
py
Python
eden/integration/hg/merge_test.py
jmswen/eden
5e0b051703fa946cc77fc43004435ae6b20599a1
[ "BSD-3-Clause" ]
null
null
null
eden/integration/hg/merge_test.py
jmswen/eden
5e0b051703fa946cc77fc43004435ae6b20599a1
[ "BSD-3-Clause" ]
null
null
null
eden/integration/hg/merge_test.py
jmswen/eden
5e0b051703fa946cc77fc43004435ae6b20599a1
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # # Copyright (c) 2016-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from eden.integration.lib.hgrepo import HgRepository from .lib.hg_extension_test_base import EdenHgTestCase, hg_test @hg_test class MergeTest(EdenHgTestCase): """Note that Mercurial has a number of built-in merge tools: https://www.mercurial-scm.org/repo/hg/help/merge-tools """ commit0: str commit1: str commit2: str def populate_backing_repo(self, repo: HgRepository) -> None: repo.write_file("foo", "original") self.commit0 = repo.commit("root commit") repo.write_file("foo", "1") self.commit1 = repo.commit("commit1") repo.update(self.commit0) repo.write_file("foo", "2") self.commit2 = repo.commit("commit2") def test_merge_local(self) -> None: self._do_merge_and_commit(":local") self._verify_tip("2") def test_merge_other(self) -> None: self._do_merge_and_commit(":other") self._verify_tip("1") def test_merge_union(self) -> None: self._do_merge_and_commit(":union") self._verify_tip("21") def _do_merge_and_commit(self, tool: str) -> None: self.hg("merge", "--tool", tool, "-r", self.commit1) self.assert_status({"foo": "M"}, op="merge") self.repo.commit("merge commit1 into commit2") self.assert_status_empty() def test_resolve_merge(self) -> None: # Perform the merge and let it fail with the file unresolved self.hg("merge", "--tool", ":fail", "-r", self.commit1, check=False) self.assert_status({"foo": "M"}, op="merge") self.assert_unresolved(["foo"]) self.write_file("foo", "3") self.hg("resolve", "--mark", "foo") self.assert_unresolved(unresolved=[], resolved=["foo"]) self.assert_status({"foo": "M"}, op="merge") self.repo.commit("merge commit1 into commit2") self._verify_tip("3") def test_clear_merge_state(self) -> None: # Perform the merge and let it fail with the file unresolved self.hg("merge", "--tool", ":fail", "-r", self.commit1, check=False) self.assert_status({"foo": "M"}, op="merge") self.assert_unresolved(["foo"]) # "hg update --clean ." should reset is back to a clean state # with no outstanding merge conflicts. self.hg("update", "--clean", ".") self.assertEqual(self.commit2, self.repo.get_head_hash()) self.assert_status_empty() self.assert_unresolved([]) def _verify_tip(self, expected_contents: str) -> None: files = self.repo.log(template="{files}", revset="tip")[0] self.assertEqual("foo", files) p1, p2 = self.repo.log(template="{p1node}\n{p2node}", revset="tip")[0].split( "\n" ) self.assertEqual(self.commit2, p1) self.assertEqual(self.commit1, p2) self.assertEqual(expected_contents, self.read_file("foo"))
35.688889
85
0.633873
794031ac86770f20e8843d6c84ced4dc2c237b93
422
py
Python
migrations/0006_auto_20161019_2000.py
tobiasbartel/servicium-contact_manager
551001bc20c52484707b56fd548605a6580beacf
[ "MIT" ]
null
null
null
migrations/0006_auto_20161019_2000.py
tobiasbartel/servicium-contact_manager
551001bc20c52484707b56fd548605a6580beacf
[ "MIT" ]
null
null
null
migrations/0006_auto_20161019_2000.py
tobiasbartel/servicium-contact_manager
551001bc20c52484707b56fd548605a6580beacf
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-10-19 20:00 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('contact_manager', '0005_contact_is_memeber_of'), ] operations = [ migrations.AlterModelOptions( name='contact', options={'ordering': ['name']}, ), ]
21.1
58
0.620853
794032b12f8c5385df51cfb54f2b117a2af98ccd
6,716
py
Python
holidays/countries/spain.py
m-ganko/python-holidays
f0d5a91f8bee8661ef3440bde2302332a364877e
[ "MIT" ]
null
null
null
holidays/countries/spain.py
m-ganko/python-holidays
f0d5a91f8bee8661ef3440bde2302332a364877e
[ "MIT" ]
1
2021-06-08T14:40:55.000Z
2021-06-08T14:40:55.000Z
holidays/countries/spain.py
m-ganko/python-holidays
f0d5a91f8bee8661ef3440bde2302332a364877e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # python-holidays # --------------- # A fast, efficient Python library for generating country, province and state # specific sets of holidays on the fly. It aims to make determining whether a # specific date is a holiday as fast and flexible as possible. # # Author: ryanss <[email protected]> (c) 2014-2017 # dr-prodigy <[email protected]> (c) 2017-2021 # Website: https://github.com/dr-prodigy/python-holidays # License: MIT (see LICENSE file) from datetime import date from dateutil.easter import easter from dateutil.relativedelta import relativedelta as rd, TH, FR, MO from holidays.constants import ( JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC, ) from holidays.constants import SUN from holidays.holiday_base import HolidayBase class Spain(HolidayBase): PROVINCES = [ "AN", "AR", "AS", "CB", "CM", "CL", "CT", "VC", "EX", "GA", "IB", "CN", "MD", "MC", "ML", "NC", "PV", "RI", ] def __init__(self, **kwargs): self.country = "ES" self.prov = kwargs.pop("prov", kwargs.pop("state", "")) HolidayBase.__init__(self, **kwargs) def _is_observed(self, date_holiday, name_holiday): if self.observed and date_holiday.weekday() == SUN: self[date_holiday + rd(days=+1)] = name_holiday + " (Trasladado)" else: self[date_holiday] = name_holiday def _populate(self, year): self._is_observed(date(year, JAN, 1), "Año nuevo") self._is_observed(date(year, JAN, 6), "Epifanía del Señor") if ( year < 2015 and self.prov and self.prov in [ "AR", "CL", "CM", "EX", "GA", "MD", "ML", "MC", "NC", "PV", "VC", ] ): self._is_observed(date(year, MAR, 19), "San José") elif ( year == 2015 and self.prov and self.prov in ["CM", "MD", "ML", "MC", "NC", "PV", "VC"] ): self._is_observed(date(year, MAR, 19), "San José") elif ( year == 2016 and self.prov and self.prov in ["ML", "MC", "PV", "VC"] ): self._is_observed(date(year, MAR, 19), "San José") elif year == 2017 and self.prov and self.prov in ["PV"]: self._is_observed(date(year, MAR, 19), "San José") elif ( 2018 <= year <= 2019 and self.prov and self.prov in ["GA", "MC", "NC", "PV", "VC"] ): self._is_observed(date(year, MAR, 19), "San José") elif ( 2020 <= year <= 2025 and self.prov and self.prov in ["CM", "GA", "MC", "NC", "PV", "VC"] ): self._is_observed(date(year, MAR, 19), "San José") if self.prov and self.prov not in ["CT", "VC"]: self[easter(year) + rd(weeks=-1, weekday=TH)] = "Jueves Santo" self[easter(year) + rd(weeks=-1, weekday=FR)] = "Viernes Santo" if self.prov and self.prov in ["CT", "PV", "NC", "VC", "IB", "CM"]: self[easter(year) + rd(weekday=MO)] = "Lunes de Pascua" self._is_observed(date(year, MAY, 1), "Día del Trabajador") if self.prov and self.prov in ["CT", "GA", "VC"]: self._is_observed(date(year, JUN, 24), "San Juan") self._is_observed(date(year, AUG, 15), "Asunción de la Virgen") self._is_observed(date(year, OCT, 12), "Día de la Hispanidad") self._is_observed(date(year, NOV, 1), "Todos los Santos") self._is_observed( date(year, DEC, 6), "Día de la Constitución " "Española" ) self._is_observed(date(year, DEC, 8), "La Inmaculada Concepción") self._is_observed(date(year, DEC, 25), "Navidad") if self.prov and self.prov in ["CT", "IB"]: self._is_observed(date(year, DEC, 26), "San Esteban") # Provinces festive day if self.prov: if self.prov == "AN": self._is_observed(date(year, FEB, 28), "Día de Andalucia") elif self.prov == "AR": self._is_observed(date(year, APR, 23), "Día de San Jorge") elif self.prov == "AS": self._is_observed(date(year, SEP, 8), "Día de Asturias") elif self.prov == "CB": self._is_observed( date(year, JUL, 28), "Día de las Instituci" "ones de Cantabria", ) elif self.prov == "CM": self._is_observed( date(year, MAY, 31), "Día de Castilla " "La Mancha" ) elif self.prov == "CL": self._is_observed( date(year, APR, 23), "Día de Castilla y " "Leon" ) elif self.prov == "CT": self._is_observed( date(year, SEP, 11), "Día Nacional de " "Catalunya" ) elif self.prov == "VC": self._is_observed( date(year, OCT, 9), "Día de la Comunidad " "Valenciana" ) elif self.prov == "EX": self._is_observed(date(year, SEP, 8), "Día de Extremadura") elif self.prov == "GA": self._is_observed( date(year, JUL, 25), "Día Nacional de " "Galicia" ) elif self.prov == "IB": self._is_observed( date(year, MAR, 1), "Día de las Islas " "Baleares" ) elif self.prov == "CN": self._is_observed(date(year, MAY, 30), "Día de Canarias") elif self.prov == "MD": self._is_observed( date(year, MAY, 2), "Día de Comunidad de " "Madrid" ) elif self.prov == "MC": self._is_observed( date(year, JUN, 9), "Día de la Región de " "Murcia" ) elif self.prov == "NC": self._is_observed(date(year, SEP, 27), "Día de Navarra") elif self.prov == "PV": self._is_observed(date(year, OCT, 25), "Día del Páis Vasco") elif self.prov == "RI": self._is_observed(date(year, JUN, 9), "Día de La Rioja") class ES(Spain): pass class ESP(Spain): pass
33.748744
78
0.483472
7940335539e067bab6066f686a64ed8e547342ce
9,464
py
Python
events.py
adrian-stephens/schedule
56002951155b44aee9989393a088c20dd56d7f03
[ "MIT" ]
null
null
null
events.py
adrian-stephens/schedule
56002951155b44aee9989393a088c20dd56d7f03
[ "MIT" ]
null
null
null
events.py
adrian-stephens/schedule
56002951155b44aee9989393a088c20dd56d7f03
[ "MIT" ]
null
null
null
# Events # Class definitions for events from datetime import timedelta, datetime # Base Event type class Event(object): """ Base class for all meeting events. Times and dates are in the meeting locale. """ def __init__(self,settings,startDateTime,endDateTime,summary,location,inIMAT,group): self.sessionDateTime = settings.sessionDateTime self.startDateTime = startDateTime # In the local meeting timezone self.endDateTime = endDateTime # In the local meeting timezone self.summary = summary self.deleted = False self.timeZoneOffset = settings.timeZoneOffset if location != None: self.location = location else: self.location = '' self.inIMAT = inIMAT # Event is present in IMAT self.group = group # name of group hosting breakout def endsBefore(self, endDateTime): return self.endDateTime < endDateTime def startDateTimeUTC(self): return self.startDateTime - timedelta(hours=self.timeZoneOffset) def endDateTimeUTC(self): return self.endDateTime - timedelta(hours=self.timeZoneOffset) def __repr__(self): s = "Event %s-%s '%s' " % (self.startDateTime, self.endDateTime, self.summary) if len(self.location) > 0: s += "in %s " % (self.location,) return s def shortStr(self): """ Return a short string to identify the meeting uniquely """ return "%s %s '%s'" % (self.startDateTime.strftime("%Y-%m-%d %a"), self.startDateTime.time(), self.summary) # Equality is determined by a matching start and summary def __eq__(self,obj): return (self.startDateTime == obj.startDateTime) and (self.summary == obj.summary) and (self.deleted == obj.deleted) def __ne__(self,obj): return not self == obj def changed(self,obj): """ Determine if self and obj have changed """ if self.startDateTime != obj.startDateTime: return True if self.endDateTime != obj.endDateTime: return True if self.summary != obj.summary: return True if (len(self.location) > 0) and (len(obj.location) > 0) and (self.location != obj.location): return True # if self.deleted and not obj.deleted: # return True if self.deleted != obj.deleted: return True return False def diff(self,obj): """ Returns a string describing differences between two objects """ s = '' if self.startDateTime != obj.startDateTime: s += '%s start changed: to %s from %s. ' % (self.shortStr(), self.startDateTime, obj.startDateTime) if self.endDateTime != obj.endDateTime: s += '%s end changed: to %s from %s. ' % (self.shortStr(), self.endDateTime, obj.endDateTime) if self.summary != obj.summary: s += '%s summary changed: to %s from %s. ' % (self.shortStr(), self.summary, obj.summary) if (len(self.location) > 0) and (len(obj.location) > 0) and (self.location != obj.location): s += '%s location changed: to %s from %s. ' % (self.shortStr(), self.location, obj.location) # if self.deleted != obj.deleted: # s += '%s deleted changed: to %s from %s. ' % (self.shortStr(), 'now marked deleted') if self.deleted != obj.deleted: s += '%s deleted changed: %s. ' % (self.shortStr(), 'now marked deleted' if self.deleted else 'deletion marker removed') if len(s) > 0: s += '\n' return s # Return day index of start time def dayIndex(self): td = self.startDateTime - self.sessionDateTime return td.days class SlottedEvent(Event): """ Class for events that have been assigned start and end slots """ def __init__(self,settings,startDateTime,endDateTime,summary,location,startSlot,endSlot,inIMAT,group): super(SlottedEvent, self).__init__(settings,startDateTime,endDateTime,summary,location,inIMAT,group) self.startSlot = startSlot if endSlot != None: self.endSlot = endSlot else: self.endSlot = startSlot def __repr__(self): return super(SlottedEvent, self).__repr__() + " %s-%s" % (self.startSlot, self.endSlot) # Equality is determined by a matching start date and slot and summary def __eq__(self,obj): return (self.dayIndex() == obj.dayIndex()) and \ (self.startSlot == obj.startSlot) and \ (self.summary == obj.summary) class ImatEvent(SlottedEvent): """ Class to hold all information in an IMAT Event. Adds IMAT accounting data to slotted event. """ def __init__(self,settings,startDateTime,endDateTime,summary,location,startSlot,endSlot,group,credit,edit): super(ImatEvent, self).__init__(settings,startDateTime,endDateTime,summary,location,startSlot,endSlot,True,'') self.group = group self.credit = credit self.edit = edit self.numerator = '0' self.denominator = '0' def __repr__(self): return super(ImatEvent, self).__repr__() + " %s %s (%s/%s)" % (self.group, self.credit, self.numerator, self.denominator) def creditChanged(self,obj): """ Indicate if a significant change has been made to credit """ if self.credit != obj.credit: # We generally don't enforce our automated view of credit. It it's # been changed on IMAT, that is presumably for a good reason. However # The closing plenary has to be progressed automatically from "Normal" to # "Other" as the dialog on which the meeting was initially created doesn't # support "Other" if self.credit == 'Other' and obj.credit == 'Normal': return True return False def changed(self,obj): """ Determine if self and obj have changed """ if self.creditChanged(obj): return True return super(ImatEvent, self).changed(obj) def diff(self,obj): """ Returns a string describing differences between two objects """ s = super(ImatEvent, self).diff(obj) if self.creditChanged(obj): s += '%s credit changed: to %s from %s.\n' % (self.shortStr(), self.credit, obj.credit) return s def compareEventLists(l1,n1,l2,n2,isImat,updatePast): """ Compare two event lists l1 and l2 called n1 and n2, conditionally ignoring any events that ended in the past. When one of the lists is on IMAT, it is l2. isImat indicates whether this is testing for imat events only updatePast indicates whether past events should be updated Returns: a list events only in l1 a list [l1, l2] tuples of those changed a list of events only in l2 A string describing the changes that will be made to resolve any differences. This string assumes that l1 is the "new" state and l2 the "old" state, and that changes will be made to match the new state. """ # Current time in UTC now = datetime.utcnow() onlyInL1 = [] onlyInL2 = [] changed = [] s = '' for e1 in l1: # Ignore events that start in the past # if (e1.startDateTimeUTC() <= now) and not updatePast: # continue # Ignore events that end in the past if (e1.endDateTimeUTC() <= now) and not updatePast: continue if isImat and not e1.inIMAT: continue # Ignore events marked deleted if e1.deleted: continue found = False for e2 in l2: if e1 == e2: if e1.changed(e2): changed.append((e1, e2)) s += e1.diff(e2) found = True break if not found: onlyInL1.append(e1) s += "%s: New in %s\n" % (e1.shortStr(), n1) for e2 in l2: # Ignore events that start in the past # if (e2.startDateTimeUTC() <= now) and not updatePast: # continue # Ignore events that end in the past if (e2.endDateTimeUTC() <= now) and not updatePast: continue if isImat and not e2.inIMAT: continue # Ignore events marked as deleted if e2.deleted: continue found = False for e1 in l1: if e1 == e2: found = True break if not found: onlyInL2.append(e2) s += "%s: Deleting item only in %s\n" % (e2.shortStr(), n2) return (onlyInL1, changed, onlyInL2, s)
34.666667
133
0.554205
794034151dd14da0037d743587644428b28c1ec0
139
py
Python
ex_12/urllib1.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
ex_12/urllib1.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
ex_12/urllib1.py
rovelee/py4e
32125f5d62b6c7b6a56c8e1a250c1d81c6d54006
[ "MIT" ]
null
null
null
import urllib.request fhand = urllib.request.urlopen('http://data.pr4e.org/romeo.txt') for line in fhand: print(line.decode().strip())
27.8
64
0.726619
794034d6cae9cc20610ec8662190fd23750bf625
5,319
py
Python
src/util/storage.py
cagatay/Evolution-9
dee5b0d95d722706d5014595d4e7d18ef81929cd
[ "WTFPL" ]
18
2015-02-12T17:37:17.000Z
2021-12-19T02:47:25.000Z
src/util/storage.py
cagatay/Evolution-9
dee5b0d95d722706d5014595d4e7d18ef81929cd
[ "WTFPL" ]
null
null
null
src/util/storage.py
cagatay/Evolution-9
dee5b0d95d722706d5014595d4e7d18ef81929cd
[ "WTFPL" ]
6
2015-12-26T15:54:58.000Z
2021-02-17T19:30:24.000Z
''' Created on Oct 11, 2010 @author: melih.karci ''' from constants import SQLITE_FILE import sqlite3 import json class db: _connection = None def __init__(self): self._connection = sqlite3.connect(SQLITE_FILE) c = self._cursor # Create neural networks table c.execute(''' CREATE TABLE IF NOT EXISTS neural_networks( name TEXT PRIMARY KEY ON CONFLICT REPLACE, dataset TEXT, trained BOOLEAN ); ''') # Create evolutions table c.execute(''' CREATE TABLE IF NOT EXISTS evolutions( name TEXT PRIMARY KEY ON CONFLICT REPLACE, population_size INTEGER, generation_count INTEGER, evaluator TEXT, state TEXT, FOREIGN KEY(evaluator) REFERENCES neural_networks(name) ); ''') # create genomes table c.execute(''' CREATE TABLE IF NOT EXISTS genomes( name TEXT PRIMARY KEY ON CONFLICT REPLACE, genome TEXT, evolution TEXT, generation INTEGER, individual_id, parent_1 TEXT, parent_2 TEXT, grade REAL, status TEXT, FOREIGN KEY(evolution) REFERENCES evolutions(name) ); ''') self._commit() c.close() def _commit(self): self._connection.commit() @property def _cursor(self): return self._connection.cursor() def close(self): self._connection.close() def save_evolution(self, name, population_size, evaluator, generation_count, state): c = self._cursor c.execute(''' INSERT INTO evolutions (name, evaluator, population_size, generation_count, state) VALUES(?, ?, ?, ?, ?); ''', (name, evaluator, population_size, generation_count, state)) self._commit() c.close() return #Returns evolution for the given row id def get_evolution(self, name): c = self._cursor c.execute(''' SELECT * FROM evolutions WHERE name=? ''', [name]) result = c.fetchall() c.close() return result[0] if result else None def get_evolution_list(self): c = self._cursor c.execute(''' SELECT name FROM evolutions ''') result = c.fetchall() c.close() return result def new_neural_network(self, name, dataset): c = self._cursor c.execute(''' INSERT INTO neural_networks (name, dataset, trained) VALUES(?, ?, ?); ''', (name, json.dumps(dataset), 0)) self._commit() c.close() return def save_neural_network(self, name, dataset, trained): c = self._cursor c.execute(''' UPDATE neural_networks SET name=?, trained=? WHERE name=?; ''', (name, int(trained), json.dumps(dataset))) self._commit() c.close() return def get_neural_network(self, name): c = self._cursor c.execute(''' SELECT dataset, trained from neural_networks WHERE name=?; ''', [name]) result = c.fetchall()[0] c.close() return json.loads(result[0]), bool(result[1]) def get_neural_network_list(self): c = self._cursor c.execute(''' SELECT name FROM neural_networks ''') result = c.fetchall() c.close() return [x[0] for x in result] def get_genomes(self, evolution, generation): c = self._cursor c.execute(''' SELECT * FROM genomes WHERE evolution=? AND generation=? AND status <> ? ORDER BY individual_id ASC ''', [evolution, generation, 'eliminated']) result = c.fetchall() c.close() return result def save_genome(self, name, genome, evolution, generation, individual_id, parent_1, parent_2, grade, status): c = self._cursor c.execute(''' INSERT INTO genomes(name, genome, evolution, generation, individual_id, parent_1, parent_2, grade, status) VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?); ''', (name, genome, evolution, generation, individual_id, parent_1, parent_2, grade, status)) self._commit() c.close() return
26.728643
112
0.460425
794034fe32f49b68eb755c13c433c30c7a61070e
1,441
py
Python
py/tests/problems/arr/majority_element_test.py
bmoretz/Daily-Coding-Problem
f79e062e9f6e7b18b7e95c071fbe71ad104affcb
[ "MIT" ]
1
2020-06-26T13:28:43.000Z
2020-06-26T13:28:43.000Z
py/tests/problems/arr/majority_element_test.py
bmoretz/Daily-Coding-Problem
f79e062e9f6e7b18b7e95c071fbe71ad104affcb
[ "MIT" ]
7
2021-11-18T19:46:08.000Z
2022-03-12T01:03:01.000Z
py/tests/problems/arr/majority_element_test.py
bmoretz/Daily-Coding-Problem
f79e062e9f6e7b18b7e95c071fbe71ad104affcb
[ "MIT" ]
null
null
null
import unittest from problems.arr import majority_element class Test_LettersNumbers2(unittest.TestCase): def setUp(self): pass def test_none(self): arr = None actual = majority_element(arr) expected = None assert actual == expected def test_case1(self): arr = [1, 2, 5, 9, 5, 9, 5, 5, 5] actual = majority_element(arr) expected = 5 assert actual == expected def test_case2(self): arr = [1, 2, 5, 9, 5, 9, 5, 5, 5, 1] actual = majority_element(arr) expected = 5 assert actual == expected def test_case2(self): arr = [1, 2, 5, 9, 5, 9, 5, 5, 5, 1, 2] actual = majority_element(arr) expected = -1 assert actual == expected def test_case3(self): arr = [1, 2, 5, 9, 5, 9, 5, 5, 5, 1, 2, 1, 2] actual = majority_element(arr) expected = -1 assert actual == expected def test_case4(self): arr = [1, 2, 5, 9, 5, 9, 5, 5, 5, 1, 2, 1, 2, 5] actual = majority_element(arr) expected = -1 assert actual == expected def test_case5(self): arr = [1, 5] actual = majority_element(arr) expected = -1 assert actual == expected def test_case6(self): arr = [1, 5, 5] actual = majority_element(arr) expected = 5 assert actual == expected
20.013889
56
0.532963
7940360ecee668e64808126b0258e95cb4420646
4,370
py
Python
payfast/tests.py
reinbach/django-payfast-convert
20267f76252cc61eba582d06694ce8e24ed413f0
[ "MIT" ]
2
2017-11-16T16:47:55.000Z
2018-01-02T17:00:09.000Z
payfast/tests.py
reinbach/django-payfast-convert
20267f76252cc61eba582d06694ce8e24ed413f0
[ "MIT" ]
null
null
null
payfast/tests.py
reinbach/django-payfast-convert
20267f76252cc61eba582d06694ce8e24ed413f0
[ "MIT" ]
2
2019-08-06T11:57:35.000Z
2020-09-01T15:50:51.000Z
# coding: utf-8 import unittest from collections import OrderedDict import django from django.test import TestCase from payfast.forms import notify_url, PayFastForm from payfast.models import PayFastOrder from payfast.api import signature from payfast import conf import payfast.signals def _test_data(): data = OrderedDict() data['merchant_id'] = '10000100' data['merchant_key'] = '46f0cd694581a' data['notify_url'] = "http://127.0.0.1:8000/payfast/notify/" data['name_first'] = u"Вася" data['last_name'] = u'Пупников' data['m_payment_id'] = '23' data['amount'] = '234' data['item_name'] = u"Payment (Планета суши). ID:272-15" return data def _notify_data(data, payment_form): notify_data = data.copy() # prepare server data notify_data['m_payment_id'] = payment_form.order.pk notify_data['amount_gross'] = data['amount'] del notify_data['amount'] del notify_data['merchant_key'] notify_data['signature'] = signature(notify_data) return notify_data def _order(): return PayFastOrder.objects.all()[0] class SignatureTest(unittest.TestCase): def test_signature(self): data = _test_data() self.assertEqual(signature(data), 'c71d41dd5041bf28d819fe102ab0106b') class NotifyTest(TestCase): def setUp(self): conf.IP_ADDRESSES = ['127.0.0.1'] conf.USE_POSTBACK = False conf.MERCHANT_ID = '10000100' conf.REQUIRE_AMOUNT_MATCH = True def handler(sender, **kwargs): handler.called = True handler.called = False self.signal_handler = handler payfast.signals.notify.connect(self.signal_handler) def tearDown(self): payfast.signals.notify.disconnect(self.signal_handler) def _create_order(self): """ Create a payment order, and return the notification data for it. """ data = _test_data() # user posts the pay request payment_form = PayFastForm(initial={ 'amount': data['amount'], 'item_name': data['item_name'] }) self.assertEqual(_order().trusted, None) return _notify_data(data, payment_form) def test_notify(self): notify_data = self._create_order() # the server sends a notification response = self.client.post(notify_url(), notify_data) self.assertEqual(response.status_code, 200) self.assertTrue(self.signal_handler.called) order = _order() self.assertEqual(order.request_ip, u'127.0.0.1') self.assertEqual(order.debug_info, u'') self.assertEqual(order.trusted, True) def test_untrusted_ip(self): """ The notify handler rejects notification attempts from untrusted IP address. """ notify_data = self._create_order() # the server sends a notification response = self.client.post(notify_url(), notify_data, REMOTE_ADDR='127.0.0.2') self.assertEqual(response.status_code, 404) self.assertFalse(self.signal_handler.called) order = _order() self.assertEqual(order.request_ip, u'127.0.0.2') self.assertEqual(order.debug_info, u'__all__: untrusted ip: 127.0.0.2') self.assertEqual(order.trusted, False) def test_non_existing_order(self): response = self.client.post(notify_url(), {}) self.assertEqual(response.status_code, 404) self.assertFalse(self.signal_handler.called) self.assertQuerysetEqual(PayFastOrder.objects.all(), []) def test_invalid_request(self): form = PayFastForm(initial={'amount': 100, 'item_name': 'foo'}) response = self.client.post(notify_url(), {'m_payment_id': form.order.pk}) self.assertEqual(response.status_code, 404) self.assertFalse(self.signal_handler.called) order = _order() self.assertEqual(order.request_ip, u'127.0.0.1') self.assertEqual(set(order.debug_info.split(u'|')), { u'amount_gross: Amount is not the same: {} != None'.format( # Django 1.8 returns more precise DecimalField values. u'100' if django.VERSION < (1, 8) else u'100.00' ), u'item_name: This field is required.', u'merchant_id: This field is required.', }) self.assertEqual(order.trusted, False)
32.61194
87
0.653089
7940365fb4a641ecc80309586295002967c44fb9
894
py
Python
rpi-config/scripts/sample_devices.py
DiamondLightSource/rpi-config
617f5e176c0621e3ea1b567e9586e96ba0f8b5db
[ "Apache-2.0" ]
4
2016-08-23T12:13:21.000Z
2018-08-22T12:55:55.000Z
rpi-config/scripts/sample_devices.py
DiamondLightSource/rpi-config
617f5e176c0621e3ea1b567e9586e96ba0f8b5db
[ "Apache-2.0" ]
null
null
null
rpi-config/scripts/sample_devices.py
DiamondLightSource/rpi-config
617f5e176c0621e3ea1b567e9586e96ba0f8b5db
[ "Apache-2.0" ]
2
2016-09-15T19:17:30.000Z
2018-03-06T06:34:13.000Z
from gdascripts.pd.dummy_pds import DummyPD from gdascripts.pd.dummy_pds import MultiInputExtraFieldsDummyPD from gdascripts.pd.dummy_pds import ZeroInputExtraFieldsDummyPD from gdascripts.pd.time_pds import showtimeClass from gdascripts.pd.time_pds import showincrementaltimeClass from gdascripts.pd.time_pds import waittimeClass print "Creating dummy devices x,y and z" x=DummyPD("x") y=DummyPD("y") z=DummyPD("z") print "Creating timer devices t, dt, and w" t = showtimeClass("t") # cannot also be driven. dt= showincrementaltimeClass("dt") w = waittimeClass("w") print "Creating multi input/extra field device, mi, me and mie" mi=MultiInputExtraFieldsDummyPD('mi',['i1','i2'],[]) me=MultiInputExtraFieldsDummyPD('me',[],['e1','e2']) mie=MultiInputExtraFieldsDummyPD('mie',['i1'],['e2','e3']) print "Createing zero input/extra field device, zie" zie=ZeroInputExtraFieldsDummyPD('zie')
33.111111
64
0.779642
794037ae23c5efd4daf0e6c1f0b2f400bf176dc8
280
py
Python
tests/mods/packinit/init.py
thatch45/pop
b1ea83cf93c1ea28851129146d8507842363aa6a
[ "Apache-2.0" ]
null
null
null
tests/mods/packinit/init.py
thatch45/pop
b1ea83cf93c1ea28851129146d8507842363aa6a
[ "Apache-2.0" ]
null
null
null
tests/mods/packinit/init.py
thatch45/pop
b1ea83cf93c1ea28851129146d8507842363aa6a
[ "Apache-2.0" ]
1
2021-02-05T04:18:33.000Z
2021-02-05T04:18:33.000Z
# -*- coding: utf-8 -*- ''' used to test the pack_init system ''' # pylint: disable=undefined-variable def new(hub): ''' Add a value to the context ''' hub.context['NEW'] = True hub.mods._mem['new'] = True def check(hub): return hub.context.get('NEW')
15.555556
36
0.592857
7940386dfab624ea2865919b4b95668620dd8ab3
5,220
py
Python
cronjobs/FileLoader.py
axsauze/bigdatadarwin
76320a1ba1b0e6efd50ca150699b34175c474856
[ "Apache-2.0" ]
1
2015-09-21T16:15:11.000Z
2015-09-21T16:15:11.000Z
cronjobs/FileLoader.py
axsauze/bigdatadarwin
76320a1ba1b0e6efd50ca150699b34175c474856
[ "Apache-2.0" ]
15
2015-09-19T20:19:18.000Z
2015-10-10T05:36:23.000Z
cronjobs/FileLoader.py
HackPartners/bigdatadarwin
76320a1ba1b0e6efd50ca150699b34175c474856
[ "Apache-2.0" ]
null
null
null
import os, sys sys.path.append(os.path.join(os.path.dirname(__file__), '..')) from models import Schedule, CallingPoint, db from darwinpush.messagefactories.xml import ScheduleXMLMessageFactory import darwinpush.xb.pushport as pp import re class ScheduleFileLoader: def __init__(self, file_location): assert(file_location) self.file_location = file_location def update_daily_schedules(self): collect_mode=False journey_buffer = [] for line in open(self.file_location): if '<Journey' in line: assert(not collect_mode) collect_mode=True elif '</Journey' in line: assert(collect_mode) journey_buffer.append(line) journey_string = "".join(journey_buffer) journey_string = journey_string.replace("Journey", "schedule") journey_string = journey_string.replace("<OR", "<ns2:OR") journey_string = journey_string.replace("<PP", "<ns2:PP") journey_string = journey_string.replace("<IP", "<ns2:IP") journey_string = journey_string.replace("<DT", "<ns2:DT") journey_string = journey_string.replace("<OPOR", "<ns2:OPOR") journey_string = journey_string.replace("<OPIP", "<ns2:OPIP") journey_string = journey_string.replace("<OPDT", "<ns2:OPDT") journey_string = journey_string.replace("<OPPP", "<ns2:OPPP") journey_string = journey_string.replace("cancelReason", "ns2:cancelReason") journey_string = re.sub(r'plat=\"[0-9a-zA-Z\s]+\"', '', journey_string) journey_string = re.sub(r'qtrain=\"[0-9a-zA-Z\s]+\"', '', journey_string) journey_string = re.sub(r'can=\"[0-9a-zA-Z\s]+\"', '', journey_string) journey_string = re.sub(r'act=\"[0-9a-zA-Z\s]+\"', '', journey_string) journey_string = ( '<?xml version="1.0" encoding="UTF-8"?>' + '<Pport ts="2015-07-20T11:52:07.3487919+01:00" version="12.0" xmlns="http://www.thalesgroup.com/rtti/PushPort/v12" xmlns:ns2="http://www.thalesgroup.com/rtti/PushPort/Schedules/v1">' + '<uR requestID="0000000000020608" requestSource="at09" updateOrigin="CIS">' + journey_string + '</uR>' + '</Pport>') self.add_schedule_from_buffer(journey_string) journey_buffer = [] collect_mode=False if collect_mode: journey_buffer.append(line) @db.transaction() def add_schedule_from_buffer(self, journey_buffer): r = pp.CreateFromDocument(journey_buffer) assert(None is r.sR) assert(None is not r.uR) assert(1 == len(r.uR.schedule)) m = ScheduleXMLMessageFactory.build(r.uR.schedule[0], r, journey_buffer) ###### This code below checks that there are no schedules already stored # # We try to find a schedule, and replace it if we do # found = (Schedule # .select() # .where( # Schedule.uid == m.uid, # Schedule.rid == m.rid # )) # count = found.count() # if count > 0: # assert(count == 1) # s = found[0] # # Removing all relevant calling points # CallingPoint.delete().where( # CallingPoint.schedule == s # ).execute() # else: # s = Schedule() # s.uid = m.uid # s.rid = m.rid # Script assumes new schedules added, and overrides any existing s = Schedule() s.uid = m.uid s.rid = m.rid s.headcode = m.headcode s.start_date = m.start_date s.toc_code = m.toc_code s.category = m.category s.status = m.status s.active = m.active s.deleted = m.deleted s.cancel_tiploc = m.cancel_reason_tiploc s.cancel_code = m.cancel_reason_code s.cancel_near = m.cancel_reason_near s.save() for o in m.all_points: p = CallingPoint() p.tiploc = o.tiploc p.schedule = s p.activity_codes = o.planned_activity_codes p.cancelled = o.cancelled p.false_tiploc = o.false_tiploc p.route_delay = o.route_delay p.working_arrival = o.raw_working_arrival_time p.working_pass = o.raw_working_pass_time p.working_departure = o.raw_working_departure_time p.public_arrival = o.raw_public_arrival_time p.public_departure = o.raw_public_departure_time p.type = str(type(o)) p.save() if __name__ == "__main__": if len(sys.argv) < 2: print("You must pass the name of the file as argument") exit() s=ScheduleFileLoader(sys.argv[1]) s.update_daily_schedules()
37.285714
220
0.546552
794038a66e8cbe75dfd2caed47bbcfd65ca699f2
4,964
py
Python
repour/server/server.py
janinko/repour
5df249254b0c4c5a5c90e7e87a8c3e135ad95d21
[ "Apache-2.0" ]
null
null
null
repour/server/server.py
janinko/repour
5df249254b0c4c5a5c90e7e87a8c3e135ad95d21
[ "Apache-2.0" ]
null
null
null
repour/server/server.py
janinko/repour
5df249254b0c4c5a5c90e7e87a8c3e135ad95d21
[ "Apache-2.0" ]
null
null
null
# flake8: noqa import asyncio import logging import os import prometheus_async.aio as aio from aiohttp import web from prometheus_client.bridge.graphite import GraphiteBridge from .. import clone, repo, websockets from ..adjust import adjust from ..auth import auth from ..config import config from .endpoint import ( cancel, endpoint, external_to_internal, info, validation, ws, internal_scm, ) logger = logging.getLogger(__name__) # # Setup # shutdown_callbacks = [] async def init(loop, bind, repo_provider, repour_url, adjust_provider): logger.debug("Running init") c = await config.get_configuration() auth_provider = c.get("auth", {}).get("provider", None) logger.info("Using auth provider '" + str(auth_provider) + "'.") app = web.Application( loop=loop, middlewares=[auth.providers[auth_provider]] if auth_provider else {} ) logger.debug("Adding application resources") app["repo_provider"] = repo.provider_types[repo_provider["type"]]( **repo_provider["params"] ) external_to_internal_source = endpoint.validated_json_endpoint( shutdown_callbacks, validation.external_to_internal, external_to_internal.translate, repour_url, ) adjust_source = endpoint.validated_json_endpoint( shutdown_callbacks, validation.adjust_modeb, adjust.adjust, repour_url ) internal_scm_source = endpoint.validated_json_endpoint( shutdown_callbacks, validation.internal_scm, internal_scm.internal_scm, repour_url, ) logger.debug("Setting up handlers") app.router.add_route("GET", "/", info.handle_request) app.router.add_route( "POST", "/git-external-to-internal", external_to_internal_source ) app.router.add_route( "POST", "/clone", endpoint.validated_json_endpoint( shutdown_callbacks, validation.clone, clone.clone, repour_url ), ) app.router.add_route("POST", "/adjust", adjust_source) app.router.add_route("POST", "/internal-scm", internal_scm_source) app.router.add_route("POST", "/cancel/{task_id}", cancel.handle_cancel) app.router.add_route("GET", "/callback/{callback_id}", ws.handle_socket) app.router.add_route("GET", "/metrics", aio.web.server_stats) await setup_graphite_exporter() # used for distributed cancel operation asyncio.get_event_loop().create_task(cancel.start_cancel_loop()) logger.debug("Creating asyncio server") srv = await loop.create_server(app.make_handler(), bind["address"], bind["port"]) for socket in srv.sockets: logger.info("Server started on socket: {}".format(socket.getsockname())) def start_server(bind, repo_provider, repour_url, adjust_provider): logger.debug("Starting server") loop = asyncio.get_event_loop() # # Monkey patch for Python 3.4.1 # if not hasattr(loop, "create_task"): # loop.create_task = lambda c: asyncio.async(c, loop=loop) loop.run_until_complete( init( loop=loop, bind=bind, repo_provider=repo_provider, repour_url=repour_url, adjust_provider=adjust_provider, ) ) loop.create_task(websockets.periodic_cleanup()) try: loop.run_forever() except KeyboardInterrupt: logger.debug("KeyboardInterrupt") finally: logger.info("Stopping tasks") tasks = asyncio.Task.all_tasks() for task in tasks: task.cancel() results = loop.run_until_complete( asyncio.gather(*tasks, loop=loop, return_exceptions=True) ) for shutdown_callback in shutdown_callbacks: shutdown_callback() exception_results = [ r for r in results if isinstance(r, Exception) and not isinstance(r, asyncio.CancelledError) ] if len(exception_results) > 1: raise Exception(exception_results) elif len(exception_results) == 1: raise exception_results[0] loop.close() async def setup_graphite_exporter(): graphite_server = os.environ.get("GRAPHITE_SERVER", None) graphite_key = os.environ.get("GRAPHITE_KEY", None) graphite_port = os.environ.get("GRAPHITE_PORT", 2003) if graphite_server is None or graphite_key is None: logger.warn( "Graphite server (" + str(graphite_server) + ") or Graphite key (" + str(graphite_key) + ") is not defined. Not setting up Monitoring graphite server!" ) return logger.info( "Monitoring graphite server setup! Reporting to server: " + graphite_server + ":" + str(graphite_port) + " with prefix: " + str(graphite_key) ) gb = GraphiteBridge((graphite_server, graphite_port)) gb.start(60.0, prefix=graphite_key)
29.2
87
0.65552
7940397ffe8de596d4fa1d6504a4146f20f7f1c5
411
py
Python
dupgee/base/dupgee/matcher.py
ahmetkotan/dupgee
7cb65e6ba107fb30e98bdd17fd666ecff53f9eb7
[ "MIT" ]
40
2021-12-26T07:42:29.000Z
2022-01-03T01:37:16.000Z
dupgee/base/dupgee/matcher.py
ahmetkotan/dupgee
7cb65e6ba107fb30e98bdd17fd666ecff53f9eb7
[ "MIT" ]
null
null
null
dupgee/base/dupgee/matcher.py
ahmetkotan/dupgee
7cb65e6ba107fb30e98bdd17fd666ecff53f9eb7
[ "MIT" ]
null
null
null
urls_module = __import__("{{ app_name }}.urls") pages_module = __import__("{{ app_name }}.pages") def match_url(path): for url in urls_module.urls.urls: if url.get("path") == path: return url.get("view") return pages_module.pages.HomepageView def find_view(request): view_class = match_url(path=request.path) view = view_class() return view.dispatch(request=request)
25.6875
49
0.673966
79403ac66e6eb68abac5dc38304c7a84c14b395b
1,053
py
Python
tensorflow_compression/python/ops/coder_ops.py
ghgh3269/compression
3e920bc49fa32d79c1c2917583ffb663c6ebac85
[ "Apache-2.0" ]
46
2019-06-17T21:13:57.000Z
2022-03-29T07:52:11.000Z
tensorflow_compression/python/ops/coder_ops.py
ghgh3269/compression
3e920bc49fa32d79c1c2917583ffb663c6ebac85
[ "Apache-2.0" ]
11
2019-07-05T09:51:08.000Z
2022-02-06T14:00:03.000Z
tensorflow_compression/python/ops/coder_ops.py
ghgh3269/compression
3e920bc49fa32d79c1c2917583ffb663c6ebac85
[ "Apache-2.0" ]
14
2019-04-10T01:09:36.000Z
2022-03-30T01:24:57.000Z
# -*- coding: utf-8 -*- # Copyright 2018 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Range coder operations.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports from tensorflow.contrib.coder.python.ops import coder_ops pmf_to_quantized_cdf = coder_ops.pmf_to_quantized_cdf range_decode = coder_ops.range_decode range_encode = coder_ops.range_encode
36.310345
80
0.725546
79403b3fc5708de3dddd0375f0a8bd10a3bbafa7
722
py
Python
bluepy/scan_fuzz.py
rohichau/BLETracking
495cbfc8e39343b3808a68a52283cdc6e113b7ff
[ "Apache-2.0" ]
1
2021-08-20T10:02:21.000Z
2021-08-20T10:02:21.000Z
old/scan_fuzz.py
grodansparadis/vscp-python-sensorpuck
168aeb29b9994dd8f9499fa6380c4d7332619b34
[ "MIT" ]
7
2021-03-19T15:51:36.000Z
2022-03-12T00:53:47.000Z
flora/lib/python3.5/site-packages/bluepy/scan_fuzz.py
saulgold/miflora
dc19d812dda1fc90b43e3e3bd72841fd62ca4003
[ "Apache-2.0" ]
null
null
null
from __future__ import print_function import sys import os import random import struct import btle def rand_db(adtype, datalen): return struct.pack("<BB", datalen+1, adtype) + os.urandom(datalen) if __name__ == '__main__': while True: sr = btle.ScanEntry(None, 0) db = b'' while len(db) <= 28: adlen = random.randint(3, 31-len(db)) adtype = random.randint(0,255) db += rand_db(adtype, adlen-2) resp = { 'type' : [ random.randint(1,2) ], 'rssi' : [ random.randint(1,127) ], 'flag' : [ 4 ], 'd' : [ db ] } sr._update(resp) print ("Result:", sr.getScanData())
24.896552
70
0.522161
79403b717975c8ad70157d4d69c370b7adb72d92
5,387
py
Python
influxdb_client/domain/scraper_target_response.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
influxdb_client/domain/scraper_target_response.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
influxdb_client/domain/scraper_target_response.py
Rajpratik71/influxdb-client-python
ae537018b638600552b3ac11f1b070c048719910
[ "MIT" ]
null
null
null
# coding: utf-8 """ Influx API Service. No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 0.1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from influxdb_client.domain.scraper_target_request import ScraperTargetRequest class ScraperTargetResponse(ScraperTargetRequest): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'str', 'org': 'str', 'bucket': 'str', 'links': 'object', 'name': 'str', 'type': 'str', 'url': 'str', 'org_id': 'str', 'bucket_id': 'str' } attribute_map = { 'id': 'id', 'org': 'org', 'bucket': 'bucket', 'links': 'links', 'name': 'name', 'type': 'type', 'url': 'url', 'org_id': 'orgID', 'bucket_id': 'bucketID' } def __init__(self, id=None, org=None, bucket=None, links=None, name=None, type=None, url=None, org_id=None, bucket_id=None): # noqa: E501,D401,D403 """ScraperTargetResponse - a model defined in OpenAPI.""" # noqa: E501 ScraperTargetRequest.__init__(self, name=name, type=type, url=url, org_id=org_id, bucket_id=bucket_id) # noqa: E501 self._id = None self._org = None self._bucket = None self._links = None self.discriminator = None if id is not None: self.id = id if org is not None: self.org = org if bucket is not None: self.bucket = bucket if links is not None: self.links = links @property def id(self): """Get the id of this ScraperTargetResponse. :return: The id of this ScraperTargetResponse. :rtype: str """ # noqa: E501 return self._id @id.setter def id(self, id): """Set the id of this ScraperTargetResponse. :param id: The id of this ScraperTargetResponse. :type: str """ # noqa: E501 self._id = id @property def org(self): """Get the org of this ScraperTargetResponse. The organization name. :return: The org of this ScraperTargetResponse. :rtype: str """ # noqa: E501 return self._org @org.setter def org(self, org): """Set the org of this ScraperTargetResponse. The organization name. :param org: The org of this ScraperTargetResponse. :type: str """ # noqa: E501 self._org = org @property def bucket(self): """Get the bucket of this ScraperTargetResponse. The bucket name. :return: The bucket of this ScraperTargetResponse. :rtype: str """ # noqa: E501 return self._bucket @bucket.setter def bucket(self, bucket): """Set the bucket of this ScraperTargetResponse. The bucket name. :param bucket: The bucket of this ScraperTargetResponse. :type: str """ # noqa: E501 self._bucket = bucket @property def links(self): """Get the links of this ScraperTargetResponse. :return: The links of this ScraperTargetResponse. :rtype: object """ # noqa: E501 return self._links @links.setter def links(self, links): """Set the links of this ScraperTargetResponse. :param links: The links of this ScraperTargetResponse. :type: object """ # noqa: E501 self._links = links def to_dict(self): """Return the model properties as a dict.""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Return the string representation of the model.""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`.""" return self.to_str() def __eq__(self, other): """Return true if both objects are equal.""" if not isinstance(other, ScraperTargetResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Return true if both objects are not equal.""" return not self == other
26.935
152
0.558196
79403d8ae544f97a4a83b5b1c190bf395ffe8bb2
2,518
py
Python
phi/physics/material.py
joelguerrero/PhiFlow
94c7f3966c30c38b4e298fada88e001eba897dba
[ "MIT" ]
1
2021-03-13T19:29:15.000Z
2021-03-13T19:29:15.000Z
phi/physics/material.py
joelguerrero/PhiFlow
94c7f3966c30c38b4e298fada88e001eba897dba
[ "MIT" ]
null
null
null
phi/physics/material.py
joelguerrero/PhiFlow
94c7f3966c30c38b4e298fada88e001eba897dba
[ "MIT" ]
null
null
null
""" Surface material definitions including constants. """ import math from phi import struct @struct.definition() class Material(struct.Struct): """ Defines a surface material including the boundary conditions. """ def __init__(self, name, **kwargs): struct.Struct.__init__(self, **struct.kwargs(locals())) @struct.constant() def name(self, name): """ Material name. """ return str(name) @struct.constant(default=True) def solid(self, solid): """ Fluid can only enter non-solid cells or pass through non-solid boundaries. """ assert isinstance(solid, bool) return solid @struct.constant(default=0.0) def friction(self, friction): """ (only for solid materials) velocity decay rate in units of 1/time. 0: fluid can move parallell to the surface (no-stick), 1: fluid cannot move parallel (no-slip) """ return friction def friction_multiplier(self, dt=1): """ Computes the velocity multiplication factor for fluid that moves along the surface for time dt. :param dt: time spent near surface (float) :return: factor (float) """ if dt == 1 or self.friction == 1 or self.friction == 0: return 1 - self.friction else: time_friction_exponent = math.log(1/(1-self.friction)) return math.exp(- dt * time_friction_exponent) @struct.constant(default=False) def periodic(self, periodic): """ Whether the boundary is periodic, i.e. seamlessly merges with the opposite end of the domain. """ assert isinstance(periodic, bool) return periodic def __repr__(self): return self.name @struct.derived() def extrapolation_mode(self): """ Returns the extrapolation mode, one of ('periodic', 'boundary', 'constant'). """ if self.periodic: return 'periodic' if self.solid: return 'boundary' else: return 'constant' @struct.derived() def accessible_extrapolation_mode(self): if self.periodic: return 'periodic' if self.solid: return 'constant' else: return 'boundary' OPEN = Material('open', solid=False) CLOSED = NO_STICK = SLIPPERY = Material('slippery', solid=True, friction=0.0) # NO_SLIP = STICKY = Material('sticky', solid=True, friction=1.0) PERIODIC = Material('periodic', solid=False, periodic=True)
27.369565
95
0.619936
79403fd3ec341cbb42d5d1886552f6db6b287c82
931
py
Python
application/app.py
PaulineLc/OpenDoorData
203b19427467e330cd04b4dc5e8c31d5b9af755c
[ "MIT" ]
null
null
null
application/app.py
PaulineLc/OpenDoorData
203b19427467e330cd04b4dc5e8c31d5b9af755c
[ "MIT" ]
null
null
null
application/app.py
PaulineLc/OpenDoorData
203b19427467e330cd04b4dc5e8c31d5b9af755c
[ "MIT" ]
null
null
null
# file that contains flask app setup code from flask import Flask # import Flask class from config import DevelopmentConfig import peewee app = Flask(__name__) # instantiate the Flask class app.config.from_object(DevelopmentConfig) # initialise app with development config configdb = app.config['DATABASE'] db = peewee.MySQLDatabase("wifi_db", host = configdb['host'], user = configdb['user'], password =configdb['password'] ) # This hook ensures that a connection is opened to handle any queries # generated by the request. @app.before_request def _db_connect(): db.connect() # This hook ensures that the connection is closed when we've finished # processing the request. @app.teardown_request def _db_close(exc): if not db.is_closed(): db.close()
30.032258
83
0.627282
7940401a36f4d8b0eeeb436b6bd2b08b0426b161
1,815
py
Python
userbot/modules/hentai.py
bryanasfuk/Baphomet
bf3c3d9589511534ad848b3aa0b59e3d6b113282
[ "Naumen", "Condor-1.1", "MS-PL" ]
1
2021-04-15T16:10:49.000Z
2021-04-15T16:10:49.000Z
userbot/modules/hentai.py
bryanasfuk/Baphomet
bf3c3d9589511534ad848b3aa0b59e3d6b113282
[ "Naumen", "Condor-1.1", "MS-PL" ]
null
null
null
userbot/modules/hentai.py
bryanasfuk/Baphomet
bf3c3d9589511534ad848b3aa0b59e3d6b113282
[ "Naumen", "Condor-1.1", "MS-PL" ]
21
2021-02-01T14:01:42.000Z
2021-08-22T01:13:28.000Z
# Copyright (C) 2021 Bian Sepang # All Rights Reserved. # import nekos from userbot import CMD_HELP from userbot.events import register @register(pattern=r"^\.hentai$", outgoing=True) async def _(event): """Gets random hentai gif from nekos.py.""" await event.edit("`Fetching from nekos...`") pic = nekos.img("random_hentai_gif") await event.client.send_file( event.chat_id, pic, caption=f"[Source]({pic})", ) await event.delete() @register(pattern=r"^\.pussy$", outgoing=True) async def _(event): """Gets anime pussy gif from nekos.py.""" await event.edit("`Fetching from nekos...`") pic = nekos.img("pussy") await event.client.send_file( event.chat_id, pic, caption=f"[Source]({pic})", ) await event.delete() @register(pattern=r"^\.cum$", outgoing=True) async def _(event): """Gets anime cum gif from nekos.py.""" await event.edit("`Fetching from nekos...`") pic = nekos.img("cum") await event.client.send_file( event.chat_id, pic, caption=f"[Source]({pic})", ) await event.delete() @register(pattern=r"^\.nsfwneko$", outgoing=True) async def _(event): """Gets nsfw neko gif from nekos.py.""" await event.edit("`Fetching from nekos...`") pic = nekos.img("nsfw_neko_gif") await event.client.send_file( event.chat_id, pic, caption=f"[Source]({pic})", ) await event.delete() CMD_HELP.update( { "hentai": ">`.hentai`" "\nUsage: Gets random hentai gif from nekos" "\n\n>`.pussy`" "\nUsage: Gets anime pussy gif from nekos" "\n\n>`.cum`" "\nUsage: Gets anime cum gif from nekos" "\n\n>`.nsfwneko`" "\nUsage: Gets nsfw neko gif from nekos" } )
24.2
52
0.595041
7940404582ae89b39db0c17d08f20cb362e64003
3,087
py
Python
src/main/resources/blazemeter/AddData.py
xebialabs-community/xlr-blazemeter-plugin
d4629d31fda2a42efc7e628b01665e055ebe0096
[ "MIT" ]
null
null
null
src/main/resources/blazemeter/AddData.py
xebialabs-community/xlr-blazemeter-plugin
d4629d31fda2a42efc7e628b01665e055ebe0096
[ "MIT" ]
1
2020-01-28T20:14:04.000Z
2020-01-28T20:14:04.000Z
src/main/resources/blazemeter/AddData.py
xebialabs-community/xlr-blazemeter-plugin
d4629d31fda2a42efc7e628b01665e055ebe0096
[ "MIT" ]
1
2020-01-15T20:07:14.000Z
2020-01-15T20:07:14.000Z
# # Copyright 2020 XEBIALABS # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # import sys import time import base64 import random import json from ast import literal_eval from blazemeter.common import (call_url, encode_multipart) # Initialize variables base_url = server.get('url').strip('/') contents = '' # Make sure all the required paramaters are set if not base_url.strip(): print 'FATAL: Input error! Server configuration url undefined\n' sys.exit(101) if not keyId.strip(): print 'FATAL: Input error! Parameter keyId undefined\n' sys.exit(102) if not secret.strip(): print 'FATAL: Input error! Parameter secret undefined\n' sys.exit(103) if not test.strip(): print 'FATAL: Input error! Parameter test undefined\n' sys.exit(104) if not filename.strip(): print 'FATAL: Input error! Parameter filename undefined\n' sys.exit(105) if not testData: print 'FATAL: Input error! Parameter testData undefined\n' sys.exit(106) print 'BlazeMeter test data upload started\n' # Write the data to a string try: for r in testData: row = literal_eval(r) contents += ','.join(map(str, row)) + '\n' except Exception as error: print 'FATAL: The test data is in the wrong format!\n' print 'Example: ["(\'Header1\', \'Header2\')", "(\'Value1\', \'Value2\')"]\n' sys.exit(107) # Encode multipart form data files = {'file': {'filename': filename, 'content': contents}} url_data, url_headers = encode_multipart({}, files) # Add headers base64string = base64.encodestring('%s:%s' % (keyId, secret)).replace('\n', '') url_headers['Authorization'] = 'Basic %s' % base64string # Upload the test data upload_url = '%s/tests/%s/files' % (base_url, test) data = call_url('post', upload_url, url_data, url_headers) if 'updated' in data.get('result') and data.get('result').get('updated') == True: print 'BlazeMeter file upload for test %s completed **successfully**\n' % test sys.exit(0) print 'FATAL: BlazeMeter upload for test %s **failed**:\n' % test print '```' print json.dumps(data) print '```' sys.exit(1)
38.111111
462
0.721088
7940407104bb1baeb52a68a624af88c38b838f0b
333
py
Python
softdelete/urls.py
fritill-team/django-generic-delete
dcd07bfff577525b8010b9e9790f5c054a41433e
[ "MIT" ]
null
null
null
softdelete/urls.py
fritill-team/django-generic-delete
dcd07bfff577525b8010b9e9790f5c054a41433e
[ "MIT" ]
null
null
null
softdelete/urls.py
fritill-team/django-generic-delete
dcd07bfff577525b8010b9e9790f5c054a41433e
[ "MIT" ]
null
null
null
from django.urls import path, include from .views import AdminSingleDeleteView app_name = 'softdelete' urlpatterns = [ path('<str:app_label>/<str:model>/<str:pk>/', AdminSingleDeleteView.as_view(), name='single-delete'), # path('<str:app_label>/<str:model>/<str:pks>/', AdminBulkDeleteView.as_view(), name='bulk-delete'), ]
37
105
0.717718
794041a0313e747014f11fa2dcab2bbf8a8e5c31
8,989
py
Python
utilities/utility_functions.py
pnwinkler/GKeepToCalc
ec995ba56a614deadca60927e29c1a8c27f1589a
[ "MIT" ]
null
null
null
utilities/utility_functions.py
pnwinkler/GKeepToCalc
ec995ba56a614deadca60927e29c1a8c27f1589a
[ "MIT" ]
null
null
null
utilities/utility_functions.py
pnwinkler/GKeepToCalc
ec995ba56a614deadca60927e29c1a8c27f1589a
[ "MIT" ]
null
null
null
import gkeepapi import openpyxl import shutil import re from datetime import datetime from GKeepToCalc.utilities.params import * import getpass def backup_targetpath(): if not BACKUP_FOLDER_NAME: bk_folder_name = 'Keep2Calc.backups' else: bk_folder_name = BACKUP_FOLDER_NAME backup_folder = os.path.join(os.path.dirname(TARGET_PATH), bk_folder_name) if not os.path.exists(backup_folder): os.makedirs(backup_folder) now = datetime.now() dmy = '{}.{}.{}'.format(now.day, now.month, now.year) backup_basename = 'backup_' + dmy + '_' + os.path.basename(TARGET_PATH) backup_full_path = os.path.join(backup_folder, backup_basename) if not os.path.exists(backup_full_path): print('Backing up target file') shutil.copy(TARGET_PATH, backup_full_path) def convert_ddmmyyyy_to_datetime(date_str, verbose=True): # take string in form DDMMYYYY and return its datetime equivalent # also accepts strings like DDMONTHYYY where MONTH is a string # tolerant of spaces, newlines, semi-colons # returns -1 if effort fails date_str = date_str.replace('\n', '').replace(';', '').replace(' ', '').replace('.', '') # if not date_str.isdigit(): # raise ValueError(f'Invalid parameter for utilities convert_ddmm_to_datetime, date_str={date_str}') # return -1 try: datetime_obj = datetime.strptime(date_str, '%d%B%Y') except ValueError: try: datetime_obj = datetime.strptime(date_str, '%d%b%Y') except ValueError: try: datetime_obj = datetime.strptime(date_str, '%B%d%Y') except ValueError: try: datetime_obj = datetime.strptime(date_str, '%b%d%Y') except Exception as e: # Possible causes: UTF 8 bullshit; unconverted data like "day 1" if verbose: print('Error in utilities convert_ddmm_to_datetime:', e) return -1 now = datetime.now() datetime_obj = datetime_obj.replace(year=now.year) if now < datetime_obj: # exercise would be in the future, so we assume it's from last year return datetime_obj.replace(year=now.year - 1) return datetime_obj def count_empty_cells_between_rows(sheet, start_row, end_row, cols_lst: list): # a non-inclusive count. Given target sheet, start and end rows, and a simple or composite key, counts how many # rows between the 2 passed in rows have empty values in the key columns if isinstance(cols_lst, str): cols_lst = list(cols_lst) cols = [int(x) for x in cols_lst] count = 0 for r in range(start_row + 1, end_row): for col in cols: if not sheet.cell(row=r, column=col).value: count += 1 break return count def find_row_of_datecell_given_datetime(sheet, datetime_target, date_column=2) -> int: # todo: make this handle full datetimes better. Like 2021-05-13 12:09:53 # current behavior is to fail to match "2021-05-13" because it's not "2021-05-13 12:09:53", for example # returns row value of cell containing specified date, in specified column # returns -1 if not found # takes parameter sheet: a valid sheet object in an xlsx file # takes parameter datetime_target: the datetime date to search for in DATE_COLUMN # takes parameter DATE_COLUMN: column in which to search for date datetime_target = datetime_target.replace(hour=0, minute=0, second=0, microsecond=0) # this may be redundant. We can probably assume we'll get a proper sheet object if not isinstance(sheet, openpyxl.worksheet.worksheet.Worksheet): print( f'Invalid parameter: find_row_of_datecell_given_datetime did not receive a valid sheet, sheet type = {type(sheet)}') return -1 if not isinstance(datetime_target, datetime): print( f'Invalid parameter: find_row_of_datecell_given_datetime did not receive a valid datetime_target. It received: {datetime_target}') return -1 # find date cell matching the "date" parameter in the given sheet # note that in xlsx files: # headers & strings are str, # dates are datetime objects, # empty cells are NoneType r = 0 empty_cell_count = 0 while True: r += 1 # check datetime cells in DATE_COLUMN for exercise_datetime match. # break if too many empty cells found in place of dates. if isinstance(sheet.cell(row=r, column=date_column).value, datetime): empty_cell_count = 0 if sheet.cell(row=r, column=date_column).value == datetime_target: return r # if examined cell is distant from workout's date, jump closer # we assume continuity in file's date column: that there's no time gap between start and final date. days_to_advance = (datetime_target - sheet.cell(row=r, column=date_column).value).days if days_to_advance > 3: r += days_to_advance - 2 else: # it's possible that some cells in this column are neither None nor datetime # but we still break after 50 non-date cells, given that we're looking for dates # a few cells may be empty, for formatting reasons, so don't set the cap too low. # but there's no reason to have 50+ non-date cells in a row. empty_cell_count += 1 if empty_cell_count > 50: return -1 def return_first_empty_bodyweight_row(sheet, date_column=2, bodyweight_column=3): # returns the integer row where: # 1) there's a date column cell filled in # 2) there's a bodyweights column cell that's empty # 3) the previous row has a filled in date cell, and bodyweights cell (disregarding empty rows, e.g. at year's end) today = datetime.now() todays_row = find_row_of_datecell_given_datetime(sheet, today, date_column) if sheet.cell(row=todays_row, column=bodyweight_column).value: return todays_row num_rows_to_check = 10000 first_occurrence = todays_row for x in range(num_rows_to_check): # search backwards row = todays_row - x try: row_has_date = isinstance(sheet.cell(row=row, column=date_column).value, datetime) row_has_bodyweight = isinstance(sheet.cell(row=row, column=bodyweight_column).value, (str, float, int)) if row_has_date and not row_has_bodyweight: first_occurrence = row elif row_has_bodyweight: break except IndexError as e: raise ValueError(f"Failed to find empty bodyweight cell. Row index out of range. Exception {e}") if x != num_rows_to_check: return first_occurrence raise ValueError(f"Failed to find empty bodyweight cell. Examined {num_rows_to_check} rows") def is_est_xx_mins_line(line): # I decided against putting this regex in utilities.params because # it's fundamental to how my programs work, and cannot be changed without significant consequence # it would also introduce stylistic inconsistencies in the xlsx file, # when future workouts are written with a different stylistic standard. est_xx_mins_reg = re.compile(r'(est \d\d(\d)? min)|(est \?\? min)|(est \?\?\? min)', re.IGNORECASE) return re.search(est_xx_mins_reg, line) def login_and_return_keep_obj(): keep = gkeepapi.Keep() try: from GKeepToCalc.utilities.credentials import username, password except FileNotFoundError: # to avoid typing your username each time, change the following line in params.py # username = '[email protected]' username = input('Google Keep username: ') # getpass obscures the password as it's entered if password is None: password = getpass.getpass('Google Keep password: ') print('Logging in...') keep.login(username, password) return keep def retrieve_notes(keep): # retrieves a list of not trashed Note objects print('Retrieving notes') # gnotes = keep.all() # gnotes = keep.find(pinned=True, archived=False, trashed=False) gnotes = keep.find(trashed=False) if not gnotes: raise ValueError('No notes found. Incorrect username or password?') return gnotes def return_now_as_friendly_datetime(): # return datetime.now() in a usable format (that the other programs expect) return datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) def target_path_is_xslx(): # returns True if utilities.TARGET_PATH variable points to .xslx file filename, file_extension = os.path.splitext(TARGET_PATH) if file_extension == '.xlsx': return True return False def targetsheet_exists(): wb = openpyxl.load_workbook(TARGET_PATH) if TARGET_SHEET in wb.sheetnames: return True else: return False
40.129464
142
0.671599
794041ce8b452e0a95d88560e3a473ac025e688d
227
py
Python
ubuild.py
basilveerman/vcver-python
d5c1c70f0e7aae57cd047bb08fe9bfb7a16685a4
[ "MIT" ]
1
2017-06-22T17:04:59.000Z
2017-06-22T17:04:59.000Z
ubuild.py
basilveerman/vcver-python
d5c1c70f0e7aae57cd047bb08fe9bfb7a16685a4
[ "MIT" ]
5
2019-07-24T20:45:18.000Z
2021-08-10T05:26:41.000Z
ubuild.py
basilveerman/vcver-python
d5c1c70f0e7aae57cd047bb08fe9bfb7a16685a4
[ "MIT" ]
3
2018-07-29T20:34:30.000Z
2021-11-12T19:35:49.000Z
from uranium import current_build import os current_build.packages.install("uranium-plus[vscode]") import uranium_plus current_build.config.update({"uranium-plus": {"module": "vcver"}}) uranium_plus.bootstrap(current_build)
22.7
66
0.801762
79404288ed5b86bb8076f2e01fe996e98f46536c
1,216
py
Python
snakepit/world.py
Artimi/snakepit-game
b9832cd542b1317147c179e944f529c022cad2e4
[ "MIT" ]
null
null
null
snakepit/world.py
Artimi/snakepit-game
b9832cd542b1317147c179e944f529c022cad2e4
[ "MIT" ]
null
null
null
snakepit/world.py
Artimi/snakepit-game
b9832cd542b1317147c179e944f529c022cad2e4
[ "MIT" ]
null
null
null
from . import settings from .datatypes import Char class World(list): SIZE_X = settings.FIELD_SIZE_X SIZE_Y = settings.FIELD_SIZE_Y COLOR_0 = 0 CH_VOID = ' ' CH_STONE = '#' VOID_CHAR = Char(CH_VOID, COLOR_0) def __init__(self): super(World, self).__init__() for y in range(0, self.SIZE_Y): self.append([self.VOID_CHAR] * self.SIZE_X) def __repr__(self): return '<%s [%sx%s]>' % (self.__class__.__name__, self.SIZE_X, self.SIZE_Y) def __str__(self): return self.show() def show(self): border = '+' + '-' * len(self[0]) + '+' return border + '\n' + '\n'.join('|' + (''.join(j[0] for j in i)) + '|' for i in self) + '\n' + border def reset(self): for y in range(0, self.SIZE_Y): for x in range(0, self.SIZE_X): if self[y][x][0] != self.CH_VOID: self[y][x] = self.VOID_CHAR def load(self, data): self[:] = data def update(self, draw): self[draw.y][draw.x] = Char(draw.char, draw.color) @classmethod def is_invalid_position(cls, pos): return pos.x < 0 or pos.x >= cls.SIZE_X or pos.y < 0 or pos.y >= cls.SIZE_Y
28.27907
110
0.553454
794042a784667230368f57d0f830b6e16b89cd39
13,601
py
Python
gaphor/core/modeling/tests/test_elementdispatcher.py
Texopolis/gaphor
3b190620075fd413258af1e7a007b4b2167a7564
[ "Apache-2.0" ]
1
2022-01-30T15:33:53.000Z
2022-01-30T15:33:53.000Z
gaphor/core/modeling/tests/test_elementdispatcher.py
burakozturk16/gaphor
86267a5200ac4439626d35d306dbb376c3800107
[ "Apache-2.0" ]
1
2021-12-10T19:46:00.000Z
2021-12-10T19:46:00.000Z
gaphor/core/modeling/tests/test_elementdispatcher.py
burakozturk16/gaphor
86267a5200ac4439626d35d306dbb376c3800107
[ "Apache-2.0" ]
1
2022-01-23T18:36:27.000Z
2022-01-23T18:36:27.000Z
import pytest from gaphor import UML from gaphor.core.eventmanager import EventManager from gaphor.core.modeling import Element, ElementFactory from gaphor.core.modeling.elementdispatcher import ElementDispatcher, EventWatcher from gaphor.core.modeling.properties import association from gaphor.UML.modelinglanguage import UMLModelingLanguage class Event: def __init__(self): self.events = [] def handler(self, event): self.events.append(event) @pytest.fixture def event_manager(): return EventManager() @pytest.fixture def modeling_language(): return UMLModelingLanguage() @pytest.fixture def dispatcher(event_manager, modeling_language): return ElementDispatcher(event_manager, modeling_language) @pytest.fixture def element_factory(event_manager): return ElementFactory(event_manager) @pytest.fixture def uml_class(element_factory): return element_factory.create(UML.Class) @pytest.fixture def uml_parameter(element_factory): return element_factory.create(UML.Parameter) @pytest.fixture def uml_operation(element_factory): return element_factory.create(UML.Operation) @pytest.fixture def uml_transition(element_factory): return element_factory.create(UML.Transition) @pytest.fixture def uml_constraint(element_factory): return element_factory.create(UML.Constraint) @pytest.fixture def event(): return Event() def test_register_handler(dispatcher, uml_class, uml_parameter, uml_operation, event): element = uml_class dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert len(dispatcher._handlers) == 1 assert list(dispatcher._handlers.keys())[0] == (element, UML.Class.ownedOperation) # Add some properties: # 1: element.ownedOperation = uml_operation # 2: p = element.ownedOperation[0].ownedParameter = uml_parameter # 3: p.name = "func" dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert len(event.events) == 3 assert len(dispatcher._handlers) == 3 def test_register_handler_twice( dispatcher, uml_class, uml_operation, uml_parameter, event ): """Multiple registrations have no effect.""" # Add some properties: element = uml_class element.ownedOperation = uml_operation p = element.ownedOperation[0].ownedParameter = uml_parameter dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") n_handlers = len(dispatcher._handlers) assert len(event.events) == 0 dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert n_handlers == len(dispatcher._handlers) dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert n_handlers == len(dispatcher._handlers) dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert n_handlers == len(dispatcher._handlers) p.name = "func" assert len(event.events) == 1 def test_unregister_handler(dispatcher, uml_class, uml_operation, uml_parameter, event): # First some setup: element = uml_class o = element.ownedOperation = uml_operation p = element.ownedOperation[0].ownedParameter = uml_parameter p.name = "func" dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert len(dispatcher._handlers) == 3 assert dispatcher._handlers[element, UML.Class.ownedOperation] assert dispatcher._handlers[o, UML.Operation.ownedParameter] assert dispatcher._handlers[p, UML.Parameter.name] dispatcher.unsubscribe(event.handler) assert len(dispatcher._handlers) == 0, dispatcher._handlers assert len(dispatcher._reverse) == 0, dispatcher._reverse # Should not fail here too: dispatcher.unsubscribe(event.handler) def test_notification( dispatcher, uml_class, uml_operation, uml_parameter, event, element_factory ): """Test notifications with Class object.""" element = uml_class o = element.ownedOperation = uml_operation p = element.ownedOperation[0].ownedParameter = uml_parameter p.name = "func" dispatcher.subscribe(event.handler, element, "ownedOperation.ownedParameter.name") assert len(dispatcher._handlers) == 3 assert not event.events element.ownedOperation = element_factory.create(UML.Operation) assert len(event.events) == 1, event.events assert len(dispatcher._handlers) == 4 p.name = "othername" assert len(event.events) == 2, event.events del element.ownedOperation[o] assert len(dispatcher._handlers) == 2 def test_notification_2( dispatcher, uml_transition, uml_constraint, event, element_factory ): """Test notifications with Transition object.""" element = uml_transition g = element.guard = uml_constraint dispatcher.subscribe(event.handler, element, "guard.specification") assert len(dispatcher._handlers) == 2 assert not event.events assert (element.guard, UML.Constraint.specification) in list( dispatcher._handlers.keys() ), list(dispatcher._handlers.keys()) g.specification = "x" assert len(event.events) == 1, event.events element.guard = element_factory.create(UML.Constraint) assert len(event.events) == 2, event.events assert len(dispatcher._handlers) == 2, len(dispatcher._handlers) assert (element.guard, UML.Constraint.specification) in list( dispatcher._handlers.keys() ) def test_notification_of_change( dispatcher, uml_transition, uml_constraint, event, element_factory ): """Test notifications with Transition object.""" element = uml_transition g = element.guard = uml_constraint dispatcher.subscribe(event.handler, element, "guard.specification") assert len(dispatcher._handlers) == 2 assert not event.events g.specification = "x" assert len(event.events) == 1, event.events element.guard = element_factory.create(UML.Constraint) assert len(event.events) == 2, event.events def test_notification_with_composition( dispatcher, uml_class, uml_operation, uml_constraint, event ): """Test unregister with composition. Use Class.ownedOperation.precondition. """ element = uml_class o = element.ownedOperation = uml_operation p = element.ownedOperation[0].precondition = uml_constraint p.name = "func" dispatcher.subscribe(event.handler, element, "ownedOperation.precondition.name") assert len(dispatcher._handlers) == 3 assert not event.events del element.ownedOperation[o] assert len(dispatcher._handlers) == 1 def test_notification_with_incompatible_elements( dispatcher, uml_transition, uml_constraint, event ): """Test unregister with composition. Use Class.ownedOperation.precondition. """ element = uml_transition g = element.guard = uml_constraint dispatcher.subscribe(event.handler, element, "guard.specification") assert len(dispatcher._handlers) == 2 assert not event.events assert (element.guard, UML.Constraint.specification) in list( dispatcher._handlers.keys() ), list(dispatcher._handlers.keys()) g.specification = "x" assert len(event.events) == 1, event.events g.specification = "a" assert len(event.events) == 2, event.events class A(Element): one: association two: association def __init__(self, id=None, model=None): super().__init__(id, model) A.one = association("one", A, lower=0, upper=1, composite=True) A.two = association("two", A, lower=0, upper=2, composite=True) class TestElementDispatcherAsService: @pytest.fixture def case(self, case): case.events = [] case.dispatcher = case.element_factory.element_dispatcher def handler(event): case.events.append(event) case._handler = handler def getA(): return case.element_factory.create(A) case.A = getA return case def test_notification(self, case): """Test notifications with Class object.""" dispatcher = case.dispatcher element = case.element_factory.create(UML.Class) o = element.ownedOperation = case.element_factory.create(UML.Operation) p = element.ownedOperation[0].ownedParameter = case.element_factory.create( UML.Parameter ) p.name = "func" dispatcher.subscribe( case._handler, element, "ownedOperation.ownedParameter.name" ) assert len(dispatcher._handlers) == 4 assert not case.events element.ownedOperation = case.element_factory.create(UML.Operation) assert len(case.events) == 1, case.events assert len(dispatcher._handlers) == 5 p.name = "othername" assert len(case.events) == 2, case.events del element.ownedOperation[o] assert len(dispatcher._handlers) == 3 def test_association_notification(self, case): """Test notifications with Class object. Tricky case where no events are fired. """ dispatcher = case.dispatcher element = case.element_factory.create(UML.Association) p1 = element.memberEnd = case.element_factory.create(UML.Property) element.memberEnd = case.element_factory.create(UML.Property) assert len(element.memberEnd) == 2 dispatcher.subscribe(case._handler, element, "memberEnd.name") assert len(dispatcher._handlers) == 4, len(dispatcher._handlers) assert not case.events p1.name = "foo" assert len(case.events) == 1, (case.events, dispatcher._handlers) assert len(dispatcher._handlers) == 4 p1.name = "othername" assert len(case.events) == 2, case.events p1.name = "othername" assert len(case.events) == 2, case.events def test_association_notification_complex(self, case): """Test notifications with Class object. Tricky case where no events are fired. """ dispatcher = case.dispatcher element = case.element_factory.create(UML.Association) p1 = element.memberEnd = case.element_factory.create(UML.Property) p2 = element.memberEnd = case.element_factory.create(UML.Property) p1.lowerValue = "0" p1.upperValue = "1" p2.lowerValue = "1" p2.upperValue = "*" assert len(element.memberEnd) == 2 base = "memberEnd[Property]." dispatcher.subscribe(case._handler, element, base + "name") dispatcher.subscribe(case._handler, element, base + "aggregation") dispatcher.subscribe(case._handler, element, base + "classifier") dispatcher.subscribe(case._handler, element, base + "lowerValue") dispatcher.subscribe(case._handler, element, base + "upperValue") assert len(dispatcher._handlers) == 12, len(dispatcher._handlers) assert not case.events p1.name = "foo" assert len(case.events) == 1, (case.events, dispatcher._handlers) assert len(dispatcher._handlers) == 12 p1.name = "othername" assert len(case.events) == 2, case.events def test_diamond(self, case): """Test diamond shaped dependencies a -> b -> c, a -> b' -> c.""" A = case.A a = A() watcher = EventWatcher(a, case.dispatcher, case._handler) watcher.watch("one.two.one.two") a.one = A() a.one.two = A() a.one.two = A() a.one.two[0].one = A() a.one.two[1].one = a.one.two[0].one a.one.two[0].one.two = A() assert len(case.events) == 6 a.unlink() watcher.unsubscribe_all() watcher.unsubscribe_all() def test_big_diamond(self, case): """Test diamond shaped dependencies a -> b -> c -> d, a -> b' -> c' -> d.""" A = case.A a = A() watcher = EventWatcher(a, case.dispatcher, case._handler) watcher.watch("one.two.one.two") a.one = A() a.one.two = A() a.one.two = A() a.one.two[0].one = A() a.one.two[1].one = A() a.one.two[0].one.two = A() a.one.two[1].one.two = a.one.two[0].one.two[0] assert len(case.events) == 7 a.unlink() watcher.unsubscribe_all() watcher.unsubscribe_all() assert len(case.dispatcher._handlers) == 1 def test_braking_big_diamond(self, case): """Test diamond shaped dependencies a -> b -> c -> d, a -> b' -> c' -> d.""" A = case.A a = A() watcher = EventWatcher(a, case.dispatcher, case._handler) watcher.watch("one.two.one.two") a.one = A() a.one.two = A() a.one.two = A() a.one.two[0].one = A() a.one.two[1].one = A() a.one.two[0].one.two = A() a.one.two[1].one.two = a.one.two[0].one.two[0] assert len(case.events) == 7 assert len(case.dispatcher._handlers) == 7 del a.one.two[0].one watcher.unsubscribe_all() watcher.unsubscribe_all() assert len(case.dispatcher._handlers) == 1 def test_cyclic(self, case): """Test cyclic dependency a -> b -> c -> a.""" A = case.A a = A() watcher = EventWatcher(a, case.dispatcher, case._handler) watcher.watch("one.two.one.two") a.one = A() a.one.two = A() a.one.two = A() a.one.two[0].one = a assert 4 == len(case.events) a.unlink() assert 2 == len(case.dispatcher._handlers)
31.33871
88
0.670465
794042b548004e67eee02b194db263821271d33e
447
py
Python
ruuvitag/ruuvi_single.py
emehtata/scripts
9eda01157d2dfb3951bf2056d2336c1df4e01512
[ "MIT" ]
null
null
null
ruuvitag/ruuvi_single.py
emehtata/scripts
9eda01157d2dfb3951bf2056d2336c1df4e01512
[ "MIT" ]
null
null
null
ruuvitag/ruuvi_single.py
emehtata/scripts
9eda01157d2dfb3951bf2056d2336c1df4e01512
[ "MIT" ]
null
null
null
# 56 DD:17:F3:D7:86:CE pakastin # 74 EA:D5:76:69:70:99 jääkaappi # 104 EC:67:46:36:EA:60 sauna import logging import sys from ruuvitag_sensor.ruuvi import RuuviTagSensor logging.basicConfig(level=logging.DEBUG) macs = [ sys.argv[1] ] timeout_in_sec = 30 datas = RuuviTagSensor.get_data_for_sensors(macs, timeout_in_sec) if sys.argv[1] in datas: print(datas[sys.argv[1]]) else: print("Data not received for "+sys.argv[1]) sys.exit(1)
20.318182
65
0.736018
794042f32dfdd6be5b028c255db036b3d9c85283
16,584
py
Python
technology/freepdk45/tech/tech.py
ycyang0508/OpenRAM
54c6043cb81c51f5f4a2f77e91145545ce0ed6d6
[ "BSD-3-Clause" ]
1
2022-02-17T22:12:46.000Z
2022-02-17T22:12:46.000Z
technology/freepdk45/tech/tech.py
ycyang0508/OpenRAM
54c6043cb81c51f5f4a2f77e91145545ce0ed6d6
[ "BSD-3-Clause" ]
null
null
null
technology/freepdk45/tech/tech.py
ycyang0508/OpenRAM
54c6043cb81c51f5f4a2f77e91145545ce0ed6d6
[ "BSD-3-Clause" ]
null
null
null
# See LICENSE for licensing information. # # Copyright (c) 2016-2021 Regents of the University of California and The Board # of Regents for the Oklahoma Agricultural and Mechanical College # (acting for and on behalf of Oklahoma State University) # All rights reserved. # import os from design_rules import * from module_type import * from custom_cell_properties import cell_properties from custom_layer_properties import layer_properties """ File containing the process technology parameters for FreePDK 45nm. """ ################################################### # Custom modules ################################################### # This uses the default classes to instantiate module from # '$OPENRAM_HOME/compiler/modules'. # Using tech_modules['cellname'] you can override each class by providing a custom # implementation in '$OPENRAM_TECHDIR/modules/' # For example: tech_modules['contact'] = 'contact_freepdk45' tech_modules = module_type() ################################################### # Custom cell properties ################################################### cell_properties = cell_properties() cell_properties.bitcell_power_pin_directions = ("V", "V") ################################################### # Custom cell properties ################################################### layer_properties = layer_properties() ################################################### # GDS file info ################################################### GDS = {} # gds units # From http://www.cnf.cornell.edu/cnf_spie9.html: "The first #is the size of a database unit in user units. The second is the size #of a database unit in meters. For example, if your library was #created with the default units (user unit = 1 m and 1000 database #units per user unit), then the first number would be 0.001 and the #second number would be 10-9. Typically, the first number is less than #1, since you use more than 1 database unit per user unit. To #calculate the size of a user unit in meters, divide the second number #by the first." GDS["unit"] = (0.0005,1e-9) # default label zoom GDS["zoom"] = 0.05 ################################################### # Interconnect stacks ################################################### poly_stack = ("poly", "contact", "m1") active_stack = ("active", "contact", "m1") m1_stack = ("m1", "via1", "m2") m2_stack = ("m2", "via2", "m3") m3_stack = ("m3", "via3", "m4") layer_indices = {"poly": 0, "active": 0, "m1": 1, "m2": 2, "m3": 3, "m4": 4} # The FEOL stacks get us up to m1 feol_stacks = [poly_stack, active_stack] # The BEOL stacks are m1 and up beol_stacks = [m1_stack, m2_stack, m3_stack] layer_stacks = feol_stacks + beol_stacks preferred_directions = {"poly": "V", "active": "V", "m1": "H", "m2": "V", "m3": "H", "m4": "V"} ################################################### # Power grid ################################################### # Use M3/M4 power_grid = m3_stack ################################################### # GDS Layer Map ################################################### # Create the GDS layer map using internal names layer = {} layer["active"] = (1, 0) layer["pwell"] = (2, 0) layer["nwell"] = (3, 0) layer["nimplant"]= (4, 0) layer["pimplant"]= (5, 0) layer["vtg"] = (6, 0) layer["vth"] = (7, 0) layer["thkox"] = (8, 0) layer["poly"] = (9, 0) layer["contact"] = (10, 0) layer["m1"] = (11, 0) layer["via1"] = (12, 0) layer["m2"] = (13, 0) layer["via2"] = (14, 0) layer["m3"] = (15, 0) layer["via3"] = (16, 0) layer["m4"] = (17, 0) layer["via4"] = (18, 0) layer["m5"] = (19, 0) layer["via5"] = (20, 0) layer["m6"] = (21, 0) layer["via6"] = (22, 0) layer["m7"] = (23, 0) layer["via7"] = (24, 0) layer["m8"] = (25, 0) layer["via8"] = (26, 0) layer["m9"] = (27, 0) layer["via9"] = (28, 0) layer["m10"] = (29, 0) layer["text"] = (239, 0) layer["boundary"]= (239, 0) # Layer names for external PDKs layer_names = {} layer_names["active"] = "active" layer_names["pwell"] = "pwell" layer_names["nwell"] = "nwell" layer_names["nimplant"]= "nimplant" layer_names["pimplant"]= "pimplant" layer_names["vtg"] = "vtg" layer_names["vth"] = "vth" layer_names["thkox"] = "thkox" layer_names["poly"] = "poly" layer_names["contact"] = "contact" layer_names["m1"] = "metal1" layer_names["via1"] = "via1" layer_names["m2"] = "metal2" layer_names["via2"] = "via2" layer_names["m3"] = "metal3" layer_names["via3"] = "via3" layer_names["m4"] = "metal4" layer_names["via4"] = "via4" layer_names["m5"] = "metal5" layer_names["via5"] = "via5" layer_names["m6"] = "metal6" layer_names["via6"] = "via6" layer_names["m7"] = "metal7" layer_names["via7"] = "via7" layer_names["m8"] = "metal8" layer_names["via8"] = "via8" layer_names["m9"] = "metal9" layer_names["via9"] = "via9" layer_names["m10"] = "metal10" layer_names["text"] = "text" layer_names["boundary"]= "boundary" ################################################### # DRC/LVS Rules Setup ################################################### #technology parameter parameter={} parameter["min_tx_size"] = 0.09 parameter["beta"] = 3 parameter["6T_inv_nmos_size"] = 0.205 parameter["6T_inv_pmos_size"] = 0.09 parameter["6T_access_size"] = 0.135 drclvs_home=os.environ.get("DRCLVS_HOME") drc = design_rules("freepdk45") #grid size drc["grid"] = 0.0025 #DRC/LVS test set_up drc["drc_rules"]=drclvs_home + "/calibreDRC.rul" drc["lvs_rules"]=drclvs_home + "/calibreLVS.rul" drc["xrc_rules"]=drclvs_home + "/calibrexRC.rul" drc["layer_map"]=os.environ.get("OPENRAM_TECH") + "/freepdk45/layers.map" # minwidth_tx with contact (no dog bone transistors) drc["minwidth_tx"] = 0.09 drc["minlength_channel"] = 0.05 # WELL.2 Minimum spacing of nwell/pwell at different potential drc["pwell_to_nwell"] = 0.225 # WELL.3 Minimum spacing of nwell/pwell at the same potential # WELL.4 Minimum width of nwell/pwell drc.add_layer("nwell", width=0.2, spacing=0.135) drc.add_layer("pwell", width=0.2, spacing=0.135) # POLY.1 Minimum width of poly # POLY.2 Minimum spacing of poly AND active drc.add_layer("poly", width=0.05, spacing=0.14) # POLY.3 Minimum poly extension beyond active drc["poly_extend_active"]=0.055 # Not a rule drc["poly_to_contact"]=0.075 # POLY.4 Minimum enclosure of active around gate drc["active_enclose_gate"]=0.07 # POLY.5 Minimum spacing of field poly to active drc["poly_to_active"]=0.05 # POLY.6 Minimum Minimum spacing of field poly drc["poly_to_field_poly"]=0.075 # Not a rule drc["minarea_poly"]=0.0 # ACTIVE.1 Minimum width of active # ACTIVE.2 Minimum spacing of active drc.add_layer("active", width=0.09, spacing=0.08) # ACTIVE.3 Minimum enclosure/spacing of nwell/pwell to active drc.add_enclosure("nwell", layer="active", enclosure=0.055) drc.add_enclosure("pwell", layer="active", enclosure=0.055) # IMPLANT.1 Minimum spacing of nimplant/ pimplant to channel drc["implant_to_channel"]=0.07 # Not a rule drc.add_enclosure("implant", layer="active", enclosure=0) # Not a rule drc.add_enclosure("implant", layer="contact", enclosure=0) # IMPLANT.2 Minimum spacing of nimplant/ pimplant to contact drc["implant_to_contact"]=0.025 # IMPLANT.3 Minimum width/ spacing of nimplant/ pimplant # IMPLANT.4 Minimum width/ spacing of nimplant/ pimplant drc.add_layer("implant", width=0.045, spacing=0.045) # CONTACT.1 Minimum width of contact # CONTACT.2 Minimum spacing of contact drc.add_layer("contact", width=0.065, spacing=0.075) # CONTACT.4 Minimum enclosure of active around contact drc.add_enclosure("active", layer="contact", enclosure=0.005) # CONTACT.6 Minimum spacing of contact and gate drc["active_contact_to_gate"]=0.0375 # CONTACT.7 Minimum spacing of contact and poly drc["poly_contact_to_gate"]=0.090 # CONTACT.1 Minimum width of contact # CONTACT.2 Minimum spacing of contact drc.add_layer("contact", width=0.065, spacing=0.075) # CONTACT.5 Minimum enclosure of poly around contact drc.add_enclosure("poly", layer="contact", enclosure=0.005) # CONTACT.6 Minimum spacing of contact and gate drc["contact_to_gate"]=0.0375 # CONTACT.7 Minimum spacing of contact and poly drc["contact_to_poly"]=0.090 # METAL1.1 Minimum width of metal1 # METAL1.2 Minimum spacing of metal1 drc.add_layer("m1", width=0.065, spacing=0.065) # METAL1.3 Minimum enclosure around contact on two opposite sides drc.add_enclosure("m1", layer="contact", enclosure=0, extension=0.035) # METAL1.4 inimum enclosure around via1 on two opposite sides drc.add_enclosure("m1", layer="via1", enclosure=0, extension=0.035) # VIA1.1 Minimum width of via1 # VIA1.2 Minimum spacing of via1 drc.add_layer("via1", width=0.065, spacing=0.075) # METALINT.1 Minimum width of intermediate metal # METALINT.2 Minimum spacing of intermediate metal drc.add_layer("m2", width=0.07, spacing=0.07) # METALINT.3 Minimum enclosure around via1 on two opposite sides drc.add_enclosure("m2", layer="via1", enclosure=0, extension=0.035) # METALINT.4 Minimum enclosure around via[2-3] on two opposite sides drc.add_enclosure("m2", layer="via2", enclosure=0, extension=0.035) # VIA2-3.1 Minimum width of Via[2-3] # VIA2-3.2 Minimum spacing of Via[2-3] drc.add_layer("via2", width=0.065, spacing=0.075) # METALINT.1 Minimum width of intermediate metal # METALINT.2 Minimum spacing of intermediate metal # Minimum spacing of m3 wider than 0.09 & longer than 0.3=0.09 # Minimum spacing of m3 wider than 0.27 & longer than 0.9=0.27 # Minimum spacing of m3 wider than 0.5 & longer than 1.8=0.5 # Minimum spacing of m3 wider than 0.9 & longer than 2.7=0.9 # Minimum spacing of m3 wider than 1.5 & longer than 4.0=1.5 drc.add_layer("m3", width=0.07, spacing=drc_lut({(0.00, 0.0): 0.07, (0.09, 0.3): 0.09, (0.27, 0.9): 0.27, (0.50, 1.8): 0.5, (0.90, 2.7): 0.9, (1.50, 4.0): 1.5})) # METALINT.3 Minimum enclosure around via1 on two opposite sides drc.add_enclosure("m3", layer="via2", enclosure=0, extension=0.035) # METALINT.4 Minimum enclosure around via[2-3] on two opposite sides drc.add_enclosure("m3", layer="via3", enclosure=0, extension=0.035) # VIA2-3.1 Minimum width of Via[2-3] # VIA2-3.2 Minimum spacing of Via[2-3] drc.add_layer("via3", width=0.07, spacing=0.085) # METALSMG.1 Minimum width of semi-global metal # METALSMG.2 Minimum spacing of semi-global metal # Minimum spacing of m4 wider than 0.27 & longer than 0.9=0.27 # Minimum spacing of m4 wider than 0.5 & longer than 1.8=0.5 # Minimum spacing of m4 wider than 0.9 & longer than 2.7=0.9 # Minimum spacing of m4 wider than 1.5 & longer than 4.0=1.5 drc.add_layer("m4", width=0.14, spacing=drc_lut({(0.00, 0.0): 0.14, (0.27, 0.9): 0.27, (0.50, 1.8): 0.5, (0.90, 2.7): 0.9, (1.50, 4.0): 1.5})) # METALSMG.3 Minimum enclosure around via[3-6] on two opposite sides drc.add_enclosure("m4", layer="via3", enclosure=0.0025) # Metal 5-10 are ommitted ################################################### # Spice Simulation Parameters ################################################### #spice info spice = {} spice["nmos"] = "nmos_vtg" spice["pmos"] = "pmos_vtg" # This is a map of corners to model files SPICE_MODEL_DIR=os.environ.get("SPICE_MODEL_DIR") spice["fet_models"] = {"TT": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"], "FF": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"], "SF": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"], "FS": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"], "SS": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"], "ST": [SPICE_MODEL_DIR + "/models_ss/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"], "TS": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ss/NMOS_VTG.inc"], "FT": [SPICE_MODEL_DIR + "/models_ff/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_nom/NMOS_VTG.inc"], "TF": [SPICE_MODEL_DIR + "/models_nom/PMOS_VTG.inc", SPICE_MODEL_DIR + "/models_ff/NMOS_VTG.inc"], } #spice stimulus related variables spice["feasible_period"] = 5 # estimated feasible period in ns spice["supply_voltages"] = [0.9, 1.0, 1.1] # Supply voltage corners in [Volts] spice["nom_supply_voltage"] = 1.0 # Nominal supply voltage in [Volts] spice["rise_time"] = 0.005 # rise time in [Nano-seconds] spice["fall_time"] = 0.005 # fall time in [Nano-seconds] spice["temperatures"] = [0, 25, 100] # Temperature corners (celcius) spice["nom_temperature"] = 25 # Nominal temperature (celcius) # analytical delay parameters spice["nom_threshold"] = 0.4 # Typical Threshold voltage in Volts spice["wire_unit_r"] = 0.075 # Unit wire resistance in ohms/square spice["wire_unit_c"] = 0.64 # Unit wire capacitance ff/um^2 spice["min_tx_drain_c"] = 0.7 # Minimum transistor drain capacitance in ff spice["min_tx_gate_c"] = 0.2 # Minimum transistor gate capacitance in ff spice["dff_setup"] = 9 # DFF setup time in ps spice["dff_hold"] = 1 # DFF hold time in ps spice["dff_in_cap"] = 0.2091 # Input capacitance (D) [Femto-farad] spice["dff_out_cap"] = 2 # Output capacitance (Q) [Femto-farad] # analytical power parameters, many values are temporary spice["bitcell_leakage"] = 1 # Leakage power of a single bitcell in nW spice["inv_leakage"] = 1 # Leakage power of inverter in nW spice["nand2_leakage"] = 1 # Leakage power of 2-input nand in nW spice["nand3_leakage"] = 1 # Leakage power of 3-input nand in nW spice["nand4_leakage"] = 1 # Leakage power of 4-input nand in nW spice["nor2_leakage"] = 1 # Leakage power of 2-input nor in nW spice["dff_leakage"] = 1 # Leakage power of flop in nW spice["default_event_frequency"] = 100 # Default event activity of every gate. MHz # Parameters related to sense amp enable timing and delay chain/RBL sizing parameter["le_tau"] = 2.25 # In pico-seconds. parameter["cap_relative_per_ff"] = 7.5 # Units of Relative Capacitance/ Femto-Farad parameter["dff_clk_cin"] = 30.6 # relative capacitance parameter["6tcell_wl_cin"] = 3 # relative capacitance parameter["min_inv_para_delay"] = 2.4 # Tau delay units parameter["sa_en_pmos_size"] = 0.72 # micro-meters parameter["sa_en_nmos_size"] = 0.27 # micro-meters parameter["sa_inv_pmos_size"] = 0.54 # micro-meters parameter["sa_inv_nmos_size"] = 0.27 # micro-meters parameter["bitcell_drain_cap"] = 0.1 # In Femto-Farad, approximation of drain capacitance ################################################### # Technology Tool Preferences ################################################### drc_name = "calibre" lvs_name = "calibre" pex_name = "calibre" blackbox_bitcell = False
35.587983
122
0.582972
79404384fc2971f69ead8fdd1e9d7609ed4e4911
554
py
Python
util/text_tool.py
BarryZM/KnowYouAI
8c9d96238090fa8fd70b8581ac536bb1b0691eb5
[ "MIT" ]
null
null
null
util/text_tool.py
BarryZM/KnowYouAI
8c9d96238090fa8fd70b8581ac536bb1b0691eb5
[ "MIT" ]
null
null
null
util/text_tool.py
BarryZM/KnowYouAI
8c9d96238090fa8fd70b8581ac536bb1b0691eb5
[ "MIT" ]
1
2020-12-31T11:13:30.000Z
2020-12-31T11:13:30.000Z
import jieba from jieba.posseg import POSTokenizer import config import os import logging jieba.setLogLevel(logging.INFO) class TextTool: def __init__(self): self.token = jieba.Tokenizer() file = [x.path for x in os.scandir(config.JIEBA_DICT_PATH) if x.path.endswith("txt")] for fp in file: self.token.load_userdict(fp) self.pos_token = POSTokenizer(self.token) def lcut(self, query): return self.token.lcut(query) def pos_lcut(self, query): return self.pos_token.lcut(query)
23.083333
93
0.676895
7940441d0882c2b05003a5793e1977151a7131e2
6,904
py
Python
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spalloc/scripts/ps.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
2
2020-11-01T13:22:11.000Z
2020-11-01T13:22:20.000Z
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spalloc/scripts/ps.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
null
null
null
src/spinnaker_ros_lsm/venv/lib/python2.7/site-packages/spalloc/scripts/ps.py
Roboy/LSM_SpiNNaker_MyoArm
04fa1eaf78778edea3ba3afa4c527d20c491718e
[ "BSD-3-Clause" ]
null
null
null
"""An administrative command-line process listing utility. By default, the ``spalloc-ps`` command lists all running and queued jobs. For a real-time monitor of queued and running jobs, the ``--watch`` option may be added. .. image:: _static/spalloc_ps.png :alt: Jobs being listed by spalloc-ps This list may be filtered by owner or machine with the ``--owner`` and ``--machine`` arguments. """ import sys import argparse import datetime from pytz import utc from tzlocal import get_localzone from spalloc import config from spalloc import \ __version__, ProtocolClient, ProtocolTimeoutError, JobState from spalloc.term import Terminal, render_table # The acceptable range of server version numbers VERSION_RANGE_START = (0, 1, 0) VERSION_RANGE_STOP = (2, 0, 0) def render_job_list(t, jobs, machine=None, owner=None): """Return a human-readable process listing. Parameters ---------- t : :py:class:`spalloc.term.Terminal` The terminal to which the output will be sent. jobs : [{...}, ...] The list of jobs returned by the server. machine : str or None If not None, only list jobs on this machine. owner : str or None If not None, only list jobs with this owner. """ table = [] # Add headings table.append(((t.underscore_bright, "ID"), (t.underscore_bright, "State"), (t.underscore_bright, "Power"), (t.underscore_bright, "Boards"), (t.underscore_bright, "Machine"), (t.underscore_bright, "Created at"), (t.underscore_bright, "Keepalive"), (t.underscore_bright, "Owner"))) for job in jobs: # Filter jobs if machine is not None and job["allocated_machine_name"] != machine: continue if owner is not None and job["owner"] != owner: continue # Colourise job states if job["state"] == JobState.queued: job_state = (t.blue, "queue") elif job["state"] == JobState.power: job_state = (t.yellow, "power") elif job["state"] == JobState.ready: job_state = (t.green, "ready") else: job_state = str(job["state"]) # Colourise power states if job["power"] is not None: if job["power"]: power_state = (t.green, "on") else: power_state = (t.red, "off") if job["state"] == JobState.power: power_state = (t.yellow, power_state[1]) else: power_state = "" if job["boards"] is not None: num_boards = len(job["boards"]) else: num_boards = "" # Format start time utc_timestamp = datetime.datetime.fromtimestamp( job["start_time"], utc) local_timestamp = utc_timestamp.astimezone(get_localzone()) timestamp = local_timestamp.strftime('%d/%m/%Y %H:%M:%S') if job["allocated_machine_name"] is not None: machine_name = job["allocated_machine_name"] else: machine_name = "" table.append(( job["job_id"], job_state, power_state, num_boards, machine_name, timestamp, str(job["keepalive"]), job["owner"], )) # Format the table return render_table(table) def main(argv=None): t = Terminal(stream=sys.stderr) cfg = config.read_config() parser = argparse.ArgumentParser( description="List all active jobs.") parser.add_argument("--version", "-V", action="version", version=__version__) parser.add_argument("--watch", "-w", action="store_true", default=False, help="watch the list of live jobs in real time") filter_args = parser.add_argument_group("filtering arguments") filter_args.add_argument("--machine", "-m", help="list only jobs on the specified " "machine") filter_args.add_argument("--owner", "-o", help="list only jobs belonging to a particular " "owner") server_args = parser.add_argument_group("spalloc server arguments") server_args.add_argument("--hostname", "-H", default=cfg["hostname"], help="hostname or IP of the spalloc server " "(default: %(default)s)") server_args.add_argument("--port", "-P", default=cfg["port"], type=int, help="port number of the spalloc server " "(default: %(default)s)") server_args.add_argument("--timeout", default=cfg["timeout"], type=float, metavar="SECONDS", help="seconds to wait for a response " "from the server (default: %(default)s)") args = parser.parse_args(argv) # Fail if server not specified if args.hostname is None: parser.error("--hostname of spalloc server must be specified") client = ProtocolClient(args.hostname, args.port) try: # Connect to server and ensure compatible version client.connect() version = tuple( map(int, client.version(timeout=args.timeout).split("."))) if not (VERSION_RANGE_START <= version < VERSION_RANGE_STOP): sys.stderr.write("Incompatible server version ({}).\n".format( ".".join(map(str, version)))) return 2 if args.watch: client.notify_job(timeout=args.timeout) while True: jobs = client.list_jobs(timeout=args.timeout) # Clear the screen before reprinting the table if args.watch: sys.stdout.write(t.clear_screen()) print(render_job_list( t, jobs, args.machine, args.owner)) # Exit or wait for changes, if requested if not args.watch: return 0 else: # Wait for state change try: client.wait_for_notification() except KeyboardInterrupt: # Gracefully exit print("") return 0 # Print a newline to separate old table from the new table when # it gets printed if ANSI screen clearing is not possible. print("") except (IOError, OSError, ProtocolTimeoutError) as e: sys.stderr.write("Error communicating with server: {}\n".format(e)) return 1 finally: client.close() if __name__ == "__main__": # pragma: no cover sys.exit(main())
32.87619
79
0.55562
794044603bb074fff84646136731475b312623b6
1,715
py
Python
commands/calevent_commands.py
k-anson/minilla_bot_py
8099059b7a577f2d3a8bbcbf673bda71178212b6
[ "MIT" ]
null
null
null
commands/calevent_commands.py
k-anson/minilla_bot_py
8099059b7a577f2d3a8bbcbf673bda71178212b6
[ "MIT" ]
null
null
null
commands/calevent_commands.py
k-anson/minilla_bot_py
8099059b7a577f2d3a8bbcbf673bda71178212b6
[ "MIT" ]
null
null
null
from discord.ext import commands from discord.ext.commands import Bot, Context, CommandError from datetime import datetime, date from dateutil.parser import parse from database import Database from utils.embed import create_cal_embed, create_calevent_embed def create_calevent_commands(config:dict, client:Bot, db:Database): @client.group(invoke_without_command=True) @commands.guild_only() @commands.has_permissions(administrator=True) async def calevent(ctx:Context): # TODO: send tooltip pass @calevent.command(name='create') @commands.guild_only() @commands.has_permissions(administrator=True) async def calevent_create(ctx:Context, name:str, event_datetime:convert_to_datetime, description:str): calendar:db.Calendar = db.session.query(db.Calendar).filter(db.Calendar.guild_id == ctx.guild.id).first() event = db.Event( name = name, date = event_datetime, description = description, calendar_id = calendar.id ) db.session.add(event) db.session.commit() channel = client.get_channel(int(calendar.events_channel_id)) message = await channel.send(embed=create_calevent_embed(db, event)) event.message_id = message.id db.session.commit() await ctx.send(f'Event "{event.name}" created') channel = client.get_channel(int(calendar.channel_id)) message = await channel.fetch_message(int(calendar.message_id)) await message.edit(embed=create_cal_embed(db)) @calevent.error @calevent_create.error async def calevent_error(ctx:Context, error:CommandError): if isinstance(error, commands.NoPrivateMessage): pass else: await ctx.send(error) def convert_to_datetime(arg): return parse(arg)
34.3
109
0.749271
794044af12c1ff76bce99bc3d2f03d3d06ebe6a6
8,896
py
Python
tests/graph/hex/test_hex.py
clebouteiller/landlab
e6f47db76ea0814c4c5a24e695bbafb74c722ff7
[ "MIT" ]
null
null
null
tests/graph/hex/test_hex.py
clebouteiller/landlab
e6f47db76ea0814c4c5a24e695bbafb74c722ff7
[ "MIT" ]
1
2021-11-11T21:23:46.000Z
2021-11-11T21:23:46.000Z
tests/graph/hex/test_hex.py
clebouteiller/landlab
e6f47db76ea0814c4c5a24e695bbafb74c722ff7
[ "MIT" ]
null
null
null
import numpy as np import pytest from hypothesis import given from hypothesis.strategies import integers, lists from numpy.testing import assert_array_almost_equal, assert_array_equal from pytest import approx from landlab.graph import TriGraph from landlab.graph.hex.hex import ( HorizontalHexTriGraph, HorizontalRectTriGraph, VerticalHexTriGraph, VerticalRectTriGraph, ) def test_number_of_nodes_horizontal_rect(): assert HorizontalRectTriGraph.number_of_nodes((1, 2)) == 2 assert HorizontalRectTriGraph.number_of_nodes((1, 3)) == 3 assert HorizontalRectTriGraph.number_of_nodes((2, 2)) == 4 assert HorizontalRectTriGraph.number_of_nodes((2, 3)) == 6 assert HorizontalRectTriGraph.number_of_nodes((3, 2)) == 6 assert HorizontalRectTriGraph.number_of_nodes((3, 3)) == 9 def test_number_of_nodes_vertical_rect(): assert VerticalRectTriGraph.number_of_nodes((1, 2)) == 2 assert VerticalRectTriGraph.number_of_nodes((1, 3)) == 3 assert VerticalRectTriGraph.number_of_nodes((2, 2)) == 4 assert VerticalRectTriGraph.number_of_nodes((2, 3)) == 6 assert VerticalRectTriGraph.number_of_nodes((3, 2)) == 6 assert VerticalRectTriGraph.number_of_nodes((3, 3)) == 9 def test_number_of_nodes_horizontal_hex(): assert HorizontalHexTriGraph.number_of_nodes((1, 2)) == 2 assert HorizontalHexTriGraph.number_of_nodes((1, 3)) == 3 assert HorizontalHexTriGraph.number_of_nodes((2, 2)) == 5 assert HorizontalHexTriGraph.number_of_nodes((2, 3)) == 7 assert HorizontalHexTriGraph.number_of_nodes((3, 2)) == 7 assert HorizontalHexTriGraph.number_of_nodes((3, 3)) == 10 def test_number_of_nodes_vertical_hex(): assert VerticalHexTriGraph.number_of_nodes((1, 2)) == 3 assert VerticalHexTriGraph.number_of_nodes((1, 3)) == 4 assert VerticalHexTriGraph.number_of_nodes((2, 2)) == 5 assert VerticalHexTriGraph.number_of_nodes((2, 3)) == 7 assert VerticalHexTriGraph.number_of_nodes((3, 2)) == 7 assert VerticalHexTriGraph.number_of_nodes((3, 3)) == 10 @given(shape=lists(integers(min_value=3, max_value=1024), min_size=2, max_size=2)) def test_number_of_nodes_symetric_rect(shape): assert VerticalRectTriGraph.number_of_nodes( shape ) == HorizontalRectTriGraph.number_of_nodes(shape[::-1]) @given(shape=lists(integers(min_value=3, max_value=1024), min_size=2, max_size=2)) def test_number_of_nodes_symetric_hex(shape): assert VerticalHexTriGraph.number_of_nodes( shape ) == HorizontalHexTriGraph.number_of_nodes(shape[::-1]) @pytest.mark.parametrize("n_rows", (3,)) @pytest.mark.parametrize("node_layout", ("rect", "hex")) @pytest.mark.parametrize("orientation", ("horizontal", "vertical")) @pytest.mark.parametrize("at", ("nodes", "links", "patches")) def test_create_hex_graph(n_rows, node_layout, orientation, at): expected = { "rect": { "horizontal": {"nodes": 6, "links": 9, "patches": 4}, "vertical": {"nodes": 6, "links": 9, "patches": 4}, }, "hex": { "horizontal": {"nodes": 7, "links": 12, "patches": 6}, "vertical": {"nodes": 7, "links": 12, "patches": 6}, }, } if orientation == "vertical": shape = (2, n_rows) else: shape = (n_rows, 2) graph = TriGraph(shape, node_layout=node_layout, orientation=orientation, sort=True) assert ( getattr(graph, "number_of_{at}".format(at=at)) == expected[node_layout][orientation][at] ) def test_create_rect(): """Test creating a hex graph with rectangular layout.""" graph = TriGraph((3, 2), node_layout="rect", sort=True) assert graph.number_of_nodes == 6 assert graph.number_of_links == 9 assert graph.number_of_patches == 4 def test_create_hex(): """Test creating a hex graph with hex layout.""" graph = TriGraph((3, 2), node_layout="hex", sort=True) assert graph.number_of_nodes == 7 assert graph.number_of_links == 12 assert graph.number_of_patches == 6 @given(shape=lists(integers(min_value=3, max_value=32), min_size=2, max_size=2)) def test_spacing(shape): """Test spacing of nodes.""" graph = TriGraph(shape) assert_array_almost_equal(graph.length_of_link, 1.0) graph = TriGraph(shape, spacing=2) assert_array_almost_equal(graph.length_of_link, 2.0) @given(shape=lists(integers(min_value=3, max_value=32), min_size=2, max_size=2)) @pytest.mark.parametrize("orientation", ("horizontal", "vertical")) @pytest.mark.parametrize("node_layout", ("hex", "rect")) def test_origin_keyword(node_layout, orientation, shape): """Test setting the origin.""" graph = TriGraph(shape) assert np.min(graph.x_of_node) == approx(0.0) assert np.min(graph.y_of_node) == approx(0.0) graph = TriGraph(shape, xy_of_lower_left=(0.5, 0.25)) assert np.min(graph.x_of_node[0]) == approx(0.5) assert np.min(graph.y_of_node[0]) == approx(0.25) def test_orientation(): """Test vertical and horizontal orientation.""" graph = TriGraph((3, 3), orientation="vertical") assert_array_almost_equal( graph.y_of_node, [0.0, 0.0, 0.5, 1.0, 1.0, 1.5, 2.0, 2.0, 2.5] ) graph = TriGraph((3, 3), orientation="horizontal") assert_array_almost_equal( graph.x_of_node, [0.0, 1.0, 2.0, 0.5, 1.5, 2.5, 0.0, 1.0, 2.0] ) def test_perimeter_nodes_rect(): graph = TriGraph((3, 4), node_layout="rect") assert_array_equal(graph.perimeter_nodes, [3, 7, 11, 10, 9, 8, 4, 0, 1, 2]) def test_perimeter_nodes_hex(): graph = TriGraph((4, 2), node_layout="hex") assert_array_equal(graph.perimeter_nodes, [8, 11, 10, 9, 5, 2, 0, 1, 4]) def test_adjacent_nodes_at_node(): graph = TriGraph((3, 3), node_layout="hex", sort=True) assert_array_equal( graph.adjacent_nodes_at_node, [ [1, 4, 3, -1, -1, -1], [2, 5, 4, 0, -1, -1], [6, 5, 1, -1, -1, -1], [4, 7, 0, -1, -1, -1], [5, 8, 7, 3, 0, 1], [6, 9, 8, 4, 1, 2], [9, 5, 2, -1, -1, -1], [8, 3, 4, -1, -1, -1], [9, 7, 4, 5, -1, -1], [8, 5, 6, -1, -1, -1], ], ) def test_patches_at_node(): grid = TriGraph((3, 3), node_layout="hex", sort=True) assert_array_equal( grid.patches_at_node, [ [0, 2, -1, -1, -1, -1], [1, 3, 0, -1, -1, -1], [4, 1, -1, -1, -1, -1], [5, 2, -1, -1, -1, -1], [6, 8, 5, 2, 0, 3], [7, 9, 6, 3, 1, 4], [7, 4, -1, -1, -1, -1], [5, 8, -1, -1, -1, -1], [8, 6, 9, -1, -1, -1], [9, 7, -1, -1, -1, -1], ], ) @pytest.mark.parametrize("n_cols", (2, 3)) @pytest.mark.parametrize("n_rows", (2, 3)) def test_xy_of_node_rect_vertical(n_rows, n_cols): expected = { (2, 2): ([0, 1, 0, 1], [0, 0.5, 1, 1.5]), (2, 3): ([0, 2, 1, 0, 2, 1], [0, 0, 0.5, 1, 1, 1.5]), (3, 2): ([0, 1, 0, 1, 0, 1], [0, 0.5, 1, 1.5, 2, 2.5]), (3, 3): ([0, 2, 1, 0, 2, 1, 0, 2, 1], [0, 0, 0.5, 1, 1, 1.5, 2, 2, 2.5]), } x_of_node, y_of_node = VerticalRectTriGraph.xy_of_node((n_rows, n_cols)) assert np.all( x_of_node / np.sin(np.pi / 3.0) == approx(expected[(n_rows, n_cols)][0]) ) assert np.all(y_of_node == approx(expected[(n_rows, n_cols)][1])) @pytest.mark.parametrize("n_cols", (2, 3)) @pytest.mark.parametrize("n_rows", (1, 2, 3)) def test_xy_of_node_hex_vertical(n_rows, n_cols): expected = { (1, 2): ([1.0, 0, 1.0], [0, 0.5, 1]), (1, 3): ([1.0, 0, 2, 1.0], [0, 0.5, 0.5, 1]), (2, 2): ([1.0, 0, 1.0, 0, 1.0], [0, 0.5, 1, 1.5, 2]), (2, 3): ([1.0, 0, 2, 1.0, 0, 2, 1.0], [0, 0.5, 0.5, 1, 1.5, 1.5, 2]), (3, 2): ([1.0, 0, 1.0, 0, 1.0, 0.0, 1.0], [0, 0.5, 1, 1.5, 2, 2.5, 3]), (3, 3): ( [1.0, 0, 2, 1.0, 0, 2, 1.0, 0, 2, 1.0], [0, 0.5, 0.5, 1, 1.5, 1.5, 2, 2.5, 2.5, 3], ), } x_of_node, y_of_node = VerticalHexTriGraph.xy_of_node((n_rows, n_cols)) assert np.all( x_of_node / np.sin(np.pi / 3.0) == approx(expected[(n_rows, n_cols)][0]) ) assert np.all(y_of_node == approx(expected[(n_rows, n_cols)][1])) def test_xy_of_node_spacing(hex_layout): x_of_node_expected, y_of_node_expected = hex_layout.xy_of_node((3, 4)) x_of_node, y_of_node = hex_layout.xy_of_node((3, 4), spacing=2.0) assert_array_almost_equal(x_of_node / 2.0, x_of_node_expected) assert_array_almost_equal(y_of_node / 2.0, y_of_node_expected) @pytest.mark.parametrize("n_cols", (2, 3)) @pytest.mark.parametrize("n_rows", (1, 2, 3)) def test_xy_of_node_lower_left(hex_layout, n_rows, n_cols): (x_of_node, y_of_node) = hex_layout.xy_of_node((n_rows, n_cols)) assert np.min(x_of_node) == approx(0.0) assert np.min(y_of_node) == approx(0.0)
35.301587
88
0.61286
794045026ad061c4fbb00169f7bc13bc305d7d0c
3,759
py
Python
core_modules/macro_handler.py
picass02005/PyMacro-async
5945de7be39793c42d2e1d53a6050809d962338d
[ "MIT" ]
1
2021-08-10T19:50:57.000Z
2021-08-10T19:50:57.000Z
core_modules/macro_handler.py
picass02005/PyMacro-async
5945de7be39793c42d2e1d53a6050809d962338d
[ "MIT" ]
null
null
null
core_modules/macro_handler.py
picass02005/PyMacro-async
5945de7be39793c42d2e1d53a6050809d962338d
[ "MIT" ]
null
null
null
import gc import importlib import json from typing import Coroutine, Union from core_modules.get_window import get_window from core_modules.tray import Tray from global_modules import logs class MacroHandler: def __init__(self, tray: Tray): from global_modules.macro_manager import REGISTERED_PATH self.__REGISTERED_PATH = REGISTERED_PATH self.__tray = tray self.__window_name = get_window() self.actual_loaded = {} self.just_updated_loaded = False # A variable for the keyboard_handler logs.info("macro_handler", f"Loading macros for window {self.__window_name}") self.__update_registered_for_window() def __update_registered_for_window(self): with open(self.__REGISTERED_PATH, "r") as f: actual_json = json.loads(f.read()) actual_loaded = {} if "default" in actual_json.keys(): actual_loaded.update(actual_json["default"].items()) for i in actual_json.keys(): if i.lower() in self.__window_name.lower(): if actual_json[i] is None: self.actual_loaded = {} return else: actual_loaded.update(actual_json[i].items()) tmp = {} for key, value in actual_loaded.items(): try: module = importlib.import_module(".".join(value['callback'].split(".")[:-1])) importlib.reload(module) except ModuleNotFoundError: return logs.error("macro_handler", f"Module {'.'.join(value['callback'].split('.')[:-1])} not found") try: callback = eval(f"module.{value['callback'].split('.')[-1]}") except AttributeError: return logs.error("macro_handler", f"Function {value['callback']} not found") callback = self.__get_callback_from_location(value['callback']) before = self.__get_callback_from_location(value['before']) if value['before'] is not None else None after = self.__get_callback_from_location(value['after']) if value['after'] is not None else None if callback is not None: tmp.update({key: { 'callback': {"func": callback, "location": value['callback']}, 'before': {"func": before, "location": value['before']}, 'after': {"func": after, "location": value['after']}, 'loop': value['loop']} }) self.actual_loaded = {} self.actual_loaded.update(tmp) self.just_updated_loaded = True def update(self): if not self.__tray.enabled: if self.actual_loaded: self.actual_loaded = {} self.__window_name = None logs.info("macro_handler", "Actually loaded cleared") return if self.__window_name != (window := get_window()): logs.info("macro_handler", f"Window changed from {self.__window_name} to {window}, reloading macros...") self.__window_name = window self.__update_registered_for_window() gc.collect() @staticmethod def __get_callback_from_location(location) -> Union[Coroutine, None]: try: module = importlib.import_module(".".join(location.split(".")[:-1])) importlib.reload(module) except ModuleNotFoundError: return logs.error("macro_handler", f"Module {'.'.join(location.split('.')[:-1])} not found") try: return eval(f"module.{location.split('.')[-1]}") except AttributeError: return logs.error("macro_handler", f"Function {location} not found")
36.852941
117
0.589518
7940466d6e1fbfa9431ab8c92555b1f2b36be0fe
415
py
Python
packages/markblocks/tests/test_preprocessor.py
stattikcms/stattik
5c96d600d105461edb95a11d8050dee3c32edd1e
[ "MIT" ]
1
2021-11-05T06:24:28.000Z
2021-11-05T06:24:28.000Z
packages/markblocks/tests/test_preprocessor.py
stattikcms/stattik
5c96d600d105461edb95a11d8050dee3c32edd1e
[ "MIT" ]
null
null
null
packages/markblocks/tests/test_preprocessor.py
stattikcms/stattik
5c96d600d105461edb95a11d8050dee3c32edd1e
[ "MIT" ]
null
null
null
import unittest from markblocks.data import load from markblocks.lex.textlexer import TextLexer class Test(unittest.TestCase): def test(self): filename = "hello.mb" with load(filename) as fh: s = fh.read() lexer = TextLexer() tokens = lexer.tokenize(s) for tok in tokens: print(tok) if __name__ == "__main__": Test().test()
18.863636
46
0.585542
79404675e864ed3fb926cd2722bc42bcd1a56e6d
63,476
py
Python
flaml/model.py
wuchihsu/FLAML
54d303a95ab8615ec298a5a7a530f8d1d477bf68
[ "MIT" ]
null
null
null
flaml/model.py
wuchihsu/FLAML
54d303a95ab8615ec298a5a7a530f8d1d477bf68
[ "MIT" ]
4
2022-01-16T04:25:26.000Z
2022-02-23T04:50:37.000Z
flaml/model.py
wuchihsu/FLAML
54d303a95ab8615ec298a5a7a530f8d1d477bf68
[ "MIT" ]
null
null
null
# ! # * Copyright (c) Microsoft Corporation. All rights reserved. # * Licensed under the MIT License. See LICENSE file in the # * project root for license information. from contextlib import contextmanager from functools import partial import signal import os from typing import Callable, List import numpy as np import time from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.ensemble import ExtraTreesRegressor, ExtraTreesClassifier from sklearn.linear_model import LogisticRegression from sklearn.dummy import DummyClassifier, DummyRegressor from scipy.sparse import issparse import logging import shutil from . import tune from .data import ( group_counts, CLASSIFICATION, TS_FORECAST, TS_TIMESTAMP_COL, TS_VALUE_COL, SEQCLASSIFICATION, SEQREGRESSION, ) import pandas as pd from pandas import DataFrame, Series import sys try: import psutil except ImportError: psutil = None try: import resource except ImportError: resource = None logger = logging.getLogger("flaml.automl") FREE_MEM_RATIO = 0.2 def TimeoutHandler(sig, frame): raise TimeoutError(sig, frame) @contextmanager def limit_resource(memory_limit, time_limit): if memory_limit > 0: soft, hard = resource.getrlimit(resource.RLIMIT_AS) if soft < 0 and (hard < 0 or memory_limit <= hard) or memory_limit < soft: resource.setrlimit(resource.RLIMIT_AS, (memory_limit, hard)) main_thread = False if time_limit is not None: try: signal.signal(signal.SIGALRM, TimeoutHandler) signal.alarm(int(time_limit) or 1) main_thread = True except ValueError: pass try: yield finally: if main_thread: signal.alarm(0) if memory_limit > 0: resource.setrlimit(resource.RLIMIT_AS, (soft, hard)) class BaseEstimator: """The abstract class for all learners. Typical examples: * XGBoostEstimator: for regression. * XGBoostSklearnEstimator: for classification. * LGBMEstimator, RandomForestEstimator, LRL1Classifier, LRL2Classifier: for both regression and classification. """ def __init__(self, task="binary", **config): """Constructor. Args: task: A string of the task type, one of 'binary', 'multi', 'regression', 'rank', 'forecast' config: A dictionary containing the hyperparameter names, 'n_jobs' as keys. n_jobs is the number of parallel threads. """ self._task = task self.params = self.config2params(config) self.estimator_class = self._model = None if "_estimator_type" in config: self._estimator_type = self.params.pop("_estimator_type") else: self._estimator_type = ( "classifier" if task in CLASSIFICATION else "regressor" ) def get_params(self, deep=False): params = self.params.copy() params["task"] = self._task if hasattr(self, "_estimator_type"): params["_estimator_type"] = self._estimator_type return params @property def classes_(self): return self._model.classes_ @property def n_features_in_(self): return self.model.n_features_in_ @property def model(self): """Trained model after fit() is called, or None before fit() is called.""" return self._model @property def estimator(self): """Trained model after fit() is called, or None before fit() is called.""" return self._model def _preprocess(self, X): return X def _fit(self, X_train, y_train, **kwargs): current_time = time.time() if "groups" in kwargs: kwargs = kwargs.copy() groups = kwargs.pop("groups") if self._task == "rank": kwargs["group"] = group_counts(groups) # groups_val = kwargs.get('groups_val') # if groups_val is not None: # kwargs['eval_group'] = [group_counts(groups_val)] # kwargs['eval_set'] = [ # (kwargs['X_val'], kwargs['y_val'])] # kwargs['verbose'] = False # del kwargs['groups_val'], kwargs['X_val'], kwargs['y_val'] X_train = self._preprocess(X_train) model = self.estimator_class(**self.params) if logger.level == logging.DEBUG: logger.debug(f"flaml.model - {model} fit started") model.fit(X_train, y_train, **kwargs) if logger.level == logging.DEBUG: logger.debug(f"flaml.model - {model} fit finished") train_time = time.time() - current_time self._model = model return train_time def fit(self, X_train, y_train, budget=None, **kwargs): """Train the model from given training data. Args: X_train: A numpy array or a dataframe of training data in shape n*m. y_train: A numpy array or a series of labels in shape n*1. budget: A float of the time budget in seconds. Returns: train_time: A float of the training time in seconds. """ if ( getattr(self, "limit_resource", None) and resource is not None and (budget is not None or psutil is not None) ): start_time = time.time() mem = psutil.virtual_memory() if psutil is not None else None try: with limit_resource( mem.available * (1 - FREE_MEM_RATIO) + psutil.Process(os.getpid()).memory_info().rss if mem is not None else -1, budget, ): train_time = self._fit(X_train, y_train, **kwargs) except (MemoryError, TimeoutError) as e: logger.warning(f"{e.__class__} {e}") if self._task in CLASSIFICATION: model = DummyClassifier() else: model = DummyRegressor() X_train = self._preprocess(X_train) model.fit(X_train, y_train) self._model = model train_time = time.time() - start_time else: train_time = self._fit(X_train, y_train, **kwargs) return train_time def predict(self, X_test): """Predict label from features. Args: X_test: A numpy array or a dataframe of featurized instances, shape n*m. Returns: A numpy array of shape n*1. Each element is the label for a instance. """ if self._model is not None: X_test = self._preprocess(X_test) return self._model.predict(X_test) else: return np.ones(X_test.shape[0]) def predict_proba(self, X_test): """Predict the probability of each class from features. Only works for classification problems Args: X_test: A numpy array of featurized instances, shape n*m. Returns: A numpy array of shape n*c. c is the # classes. Each element at (i,j) is the probability for instance i to be in class j. """ assert ( self._task in CLASSIFICATION ), "predict_prob() only for classification task." X_test = self._preprocess(X_test) return self._model.predict_proba(X_test) def cleanup(self): del self._model self._model = None @classmethod def search_space(cls, data_size, task, **params): """[required method] search space. Args: data_size: A tuple of two integers, number of rows and columns. task: A str of the task type, e.g., "binary", "multi", "regression". Returns: A dictionary of the search space. Each key is the name of a hyperparameter, and value is a dict with its domain (required) and low_cost_init_value, init_value, cat_hp_cost (if applicable). e.g., `{'domain': tune.randint(lower=1, upper=10), 'init_value': 1}.` """ return {} @classmethod def size(cls, config: dict) -> float: """[optional method] memory size of the estimator in bytes. Args: config: A dict of the hyperparameter config. Returns: A float of the memory size required by the estimator to train the given config. """ return 1.0 @classmethod def cost_relative2lgbm(cls) -> float: """[optional method] relative cost compared to lightgbm.""" return 1.0 @classmethod def init(cls): """[optional method] initialize the class.""" pass def config2params(self, config: dict) -> dict: """[optional method] config dict to params dict Args: config: A dict of the hyperparameter config. Returns: A dict that will be passed to self.estimator_class's constructor. """ params = config.copy() return params class TransformersEstimator(BaseEstimator): """The class for fine-tuning language models, using huggingface transformers API.""" ITER_HP = "global_max_steps" def __init__(self, task="seq-classification", **config): super().__init__(task, **config) import uuid self.trial_id = str(uuid.uuid1().hex)[:8] def _join(self, X_train, y_train): y_train = DataFrame(y_train, columns=["label"], index=X_train.index) train_df = X_train.join(y_train) return train_df @classmethod def search_space(cls, data_size, task, **params): search_space_dict = { "learning_rate": { "domain": tune.loguniform(lower=1e-6, upper=1e-3), "init_value": 1e-5, }, "num_train_epochs": { "domain": tune.loguniform(lower=0.1, upper=10.0), }, "per_device_train_batch_size": { "domain": tune.choice([4, 8, 16, 32]), "init_value": 32, }, "warmup_ratio": { "domain": tune.uniform(lower=0.0, upper=0.3), "init_value": 0.0, }, "weight_decay": { "domain": tune.uniform(lower=0.0, upper=0.3), "init_value": 0.0, }, "adam_epsilon": { "domain": tune.loguniform(lower=1e-8, upper=1e-6), "init_value": 1e-6, }, "seed": {"domain": tune.choice(list(range(40, 45))), "init_value": 42}, "global_max_steps": {"domain": sys.maxsize, "init_value": sys.maxsize}, } # TODO: if self._task == SUMMARIZATION, uncomment the code below, SET the search space for # "num_beams" in search_space_dict using # search_space_dict["num_beams"] = {...} # if task in NLG_TASKS: # search_space_dict["num_beams"] = {"domain": tune.choice(...)} return search_space_dict def _init_hpo_args(self, automl_fit_kwargs: dict = None): from .nlp.utils import HPOArgs custom_hpo_args = HPOArgs() for key, val in automl_fit_kwargs["custom_hpo_args"].items(): assert ( key in custom_hpo_args.__dict__ ), "The specified key {} is not in the argument list of flaml.nlp.utils::HPOArgs".format( key ) setattr(custom_hpo_args, key, val) self.custom_hpo_args = custom_hpo_args def _preprocess(self, X, task, **kwargs): from .nlp.utils import tokenize_text if X.dtypes[0] == "string": return tokenize_text(X, task, self.custom_hpo_args) else: return X def fit(self, X_train: DataFrame, y_train: Series, budget=None, **kwargs): from transformers import EarlyStoppingCallback from transformers.trainer_utils import set_seed from transformers import AutoTokenizer # TODO: if self._task == SUMMARIZATION, uncomment the code below (add indentation before # from transformers import TrainingArguments) # if self._task in NLG_TASKS: # from transformers import Seq2SeqTrainingArguments as TrainingArguments # else: from transformers import TrainingArguments import transformers from datasets import Dataset from .nlp.utils import ( get_num_labels, separate_config, load_model, compute_checkpoint_freq, get_trial_fold_name, date_str, ) # TODO: if self._task == QUESTIONANSWERING, uncomment the code below (add indentation before # from .nlp.huggingface.trainer import TrainerForAuto) # if self._task in NLG_TASKS: # from .nlp.huggingface.trainer import Seq2SeqTrainerForAuto as TrainerForAuto # else: from .nlp.huggingface.trainer import TrainerForAuto this_params = self.params class EarlyStoppingCallbackForAuto(EarlyStoppingCallback): def on_train_begin(self, args, state, control, **callback_kwargs): self.train_begin_time = time.time() def on_step_begin(self, args, state, control, **callback_kwargs): self.step_begin_time = time.time() def on_step_end(self, args, state, control, **callback_kwargs): if state.global_step == 1: self.time_per_iter = time.time() - self.step_begin_time if ( budget and ( time.time() + self.time_per_iter > self.train_begin_time + budget ) or state.global_step >= this_params[TransformersEstimator.ITER_HP] ): control.should_training_stop = True control.should_save = True control.should_evaluate = True return control def on_epoch_end(self, args, state, control, **callback_kwargs): if ( control.should_training_stop or state.epoch + 1 >= args.num_train_epochs ): control.should_save = True control.should_evaluate = True set_seed(self.params.get("seed", TrainingArguments.seed)) self._init_hpo_args(kwargs) self._metric_name = kwargs["metric"] if hasattr(self, "use_ray") is False: self.use_ray = kwargs["use_ray"] X_val = kwargs.get("X_val") y_val = kwargs.get("y_val") X_train = self._preprocess(X_train, self._task, **kwargs) train_dataset = Dataset.from_pandas(self._join(X_train, y_train)) # TODO: set a breakpoint here, observe the resulting train_dataset, # compare it with the output of the tokenized results in your transformer example # for example, if your task is MULTIPLECHOICE, you need to compare train_dataset with # the output of https://github.com/huggingface/transformers/blob/master/examples/pytorch/multiple-choice/run_swag.py#L329 # make sure they are the same if X_val is not None: X_val = self._preprocess(X_val, self._task, **kwargs) eval_dataset = Dataset.from_pandas(self._join(X_val, y_val)) else: eval_dataset = None tokenizer = AutoTokenizer.from_pretrained( self.custom_hpo_args.model_path, use_fast=True ) num_labels = get_num_labels(self._task, y_train) training_args_config, per_model_config = separate_config(self.params) this_model = load_model( checkpoint_path=self.custom_hpo_args.model_path, task=self._task, num_labels=num_labels, per_model_config=per_model_config, ) ckpt_freq = compute_checkpoint_freq( train_data_size=len(X_train), custom_hpo_args=self.custom_hpo_args, num_train_epochs=training_args_config.get( "num_train_epochs", TrainingArguments.num_train_epochs ), batch_size=training_args_config.get( "per_device_train_batch_size", TrainingArguments.per_device_train_batch_size, ), ) local_dir = os.path.join( self.custom_hpo_args.output_dir, "train_{}".format(date_str()) ) if not self.use_ray: # if self.params = {}, don't include configuration in trial fold name trial_dir = get_trial_fold_name(local_dir, self.params, self.trial_id) else: import ray trial_dir = ray.tune.get_trial_dir() if transformers.__version__.startswith("3"): training_args = TrainingArguments( report_to=[], output_dir=trial_dir, do_train=True, do_eval=True, eval_steps=ckpt_freq, evaluate_during_training=True, save_steps=ckpt_freq, save_total_limit=0, fp16=self.custom_hpo_args.fp16, load_best_model_at_end=True, **training_args_config, ) else: from transformers import IntervalStrategy training_args = TrainingArguments( report_to=[], output_dir=trial_dir, do_train=True, do_eval=True, per_device_eval_batch_size=1, eval_steps=ckpt_freq, evaluation_strategy=IntervalStrategy.STEPS, save_steps=ckpt_freq, save_total_limit=0, fp16=self.custom_hpo_args.fp16, load_best_model_at_end=True, **training_args_config, ) def _model_init(): return load_model( checkpoint_path=self.custom_hpo_args.model_path, task=self._task, num_labels=num_labels, per_model_config=per_model_config, ) self._model = TrainerForAuto( model=this_model, args=training_args, model_init=_model_init, train_dataset=train_dataset, eval_dataset=eval_dataset, tokenizer=tokenizer, compute_metrics=self._compute_metrics_by_dataset_name, callbacks=[EarlyStoppingCallbackForAuto], ) setattr(self._model, "_use_ray", self.use_ray) self._model.train() self.params[self.ITER_HP] = self._model.state.global_step self._checkpoint_path = self._select_checkpoint(self._model) self._kwargs = kwargs self._num_labels = num_labels self._per_model_config = per_model_config self._ckpt_remains = list(self._model.ckpt_to_metric.keys()) def _delete_one_ckpt(self, ckpt_location): if self.use_ray is False: try: shutil.rmtree(ckpt_location) except FileNotFoundError: logger.warning("checkpoint {} not found".format(ckpt_location)) def cleanup(self): super().cleanup() if hasattr(self, "_ckpt_remains"): for each_ckpt in self._ckpt_remains: self._delete_one_ckpt(each_ckpt) def _select_checkpoint(self, trainer): from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR if trainer.ckpt_to_metric: best_ckpt, _ = min( trainer.ckpt_to_metric.items(), key=lambda x: x[1]["val_loss"] ) best_ckpt_global_step = trainer.ckpt_to_global_step[best_ckpt] for each_ckpt in list(trainer.ckpt_to_metric): if each_ckpt != best_ckpt: del trainer.ckpt_to_metric[each_ckpt] del trainer.ckpt_to_global_step[each_ckpt] self._delete_one_ckpt(each_ckpt) else: best_ckpt_global_step = trainer.state.global_step best_ckpt = os.path.join( trainer.args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{best_ckpt_global_step}", ) self.params[self.ITER_HP] = best_ckpt_global_step print(trainer.state.global_step) print(trainer.ckpt_to_global_step) return best_ckpt def _compute_metrics_by_dataset_name(self, eval_pred): from .ml import sklearn_metric_loss_score import datasets from .nlp.utils import load_default_huggingface_metric_for_task predictions, labels = eval_pred predictions = ( np.squeeze(predictions) if self._task == SEQREGRESSION else np.argmax(predictions, axis=1) ) if isinstance(self._metric_name, str): return { "val_loss": sklearn_metric_loss_score( metric_name=self._metric_name, y_predict=predictions, y_true=labels ) } else: ( default_metric_name, default_metric_mode, ) = load_default_huggingface_metric_for_task(self._task) metric = datasets.load_metric(default_metric_name) multiplier = -1 if default_metric_mode == "max" else 1 return { "val_loss": metric.compute(predictions=predictions, references=labels)[ default_metric_name ] * multiplier } def predict_proba(self, X_test): from datasets import Dataset from .nlp.huggingface.trainer import TrainerForAuto from transformers import TrainingArguments from .nlp.utils import load_model assert ( self._task in CLASSIFICATION ), "predict_proba is only available in classification tasks" X_test = self._preprocess(X_test, self._task, **self._kwargs) test_dataset = Dataset.from_pandas(X_test) best_model = load_model( checkpoint_path=self._checkpoint_path, task=self._task, num_labels=self._num_labels, per_model_config=self._per_model_config, ) training_args = TrainingArguments( per_device_eval_batch_size=1, output_dir=self.custom_hpo_args.output_dir, ) self._model = TrainerForAuto(model=best_model, args=training_args) predictions = self._model.predict(test_dataset) return predictions.predictions def predict(self, X_test): from datasets import Dataset from transformers import TrainingArguments from .nlp.utils import load_model from .nlp.huggingface.trainer import TrainerForAuto X_test = self._preprocess(X_test, self._task, **self._kwargs) test_dataset = Dataset.from_pandas(X_test) best_model = load_model( checkpoint_path=self._checkpoint_path, task=self._task, num_labels=self._num_labels, per_model_config=self._per_model_config, ) training_args = TrainingArguments( per_device_eval_batch_size=1, output_dir=self.custom_hpo_args.output_dir, ) self._model = TrainerForAuto(model=best_model, args=training_args) predictions = self._model.predict(test_dataset) if self._task == SEQCLASSIFICATION: return np.argmax(predictions.predictions, axis=1) elif self._task == SEQREGRESSION: return predictions.predictions # TODO: elif self._task == your task, return the corresponding prediction # e.g., if your task == QUESTIONANSWERING, you need to return the answer instead # of the index def config2params(self, config: dict) -> dict: params = config.copy() params[TransformersEstimator.ITER_HP] = params.get( TransformersEstimator.ITER_HP, sys.maxsize ) return params class SKLearnEstimator(BaseEstimator): """The base class for tuning scikit-learn estimators.""" def __init__(self, task="binary", **config): super().__init__(task, **config) def _preprocess(self, X): if isinstance(X, DataFrame): cat_columns = X.select_dtypes(include=["category"]).columns if not cat_columns.empty: X = X.copy() X[cat_columns] = X[cat_columns].apply(lambda x: x.cat.codes) elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif": # numpy array is not of numeric dtype X = DataFrame(X) for col in X.columns: if isinstance(X[col][0], str): X[col] = X[col].astype("category").cat.codes X = X.to_numpy() return X class LGBMEstimator(BaseEstimator): """The class for tuning LGBM, using sklearn API.""" ITER_HP = "n_estimators" HAS_CALLBACK = True @classmethod def search_space(cls, data_size, **params): upper = min(32768, int(data_size[0])) return { "n_estimators": { "domain": tune.lograndint(lower=4, upper=upper), "init_value": 4, "low_cost_init_value": 4, }, "num_leaves": { "domain": tune.lograndint(lower=4, upper=upper), "init_value": 4, "low_cost_init_value": 4, }, "min_child_samples": { "domain": tune.lograndint(lower=2, upper=2 ** 7 + 1), "init_value": 20, }, "learning_rate": { "domain": tune.loguniform(lower=1 / 1024, upper=1.0), "init_value": 0.1, }, # 'subsample': { # 'domain': tune.uniform(lower=0.1, upper=1.0), # 'init_value': 1.0, # }, "log_max_bin": { # log transformed with base 2 "domain": tune.lograndint(lower=3, upper=11), "init_value": 8, }, "colsample_bytree": { "domain": tune.uniform(lower=0.01, upper=1.0), "init_value": 1.0, }, "reg_alpha": { "domain": tune.loguniform(lower=1 / 1024, upper=1024), "init_value": 1 / 1024, }, "reg_lambda": { "domain": tune.loguniform(lower=1 / 1024, upper=1024), "init_value": 1.0, }, } def config2params(self, config: dict) -> dict: params = config.copy() if "log_max_bin" in params: params["max_bin"] = (1 << params.pop("log_max_bin")) - 1 return params @classmethod def size(cls, config): num_leaves = int( round( config.get("num_leaves") or config.get("max_leaves") or 1 << config.get("max_depth", 16) ) ) n_estimators = int(round(config["n_estimators"])) return (num_leaves * 3 + (num_leaves - 1) * 4 + 1.0) * n_estimators * 8 def __init__(self, task="binary", **config): super().__init__(task, **config) if "verbose" not in self.params: self.params["verbose"] = -1 if "regression" == task: from lightgbm import LGBMRegressor self.estimator_class = LGBMRegressor elif "rank" == task: from lightgbm import LGBMRanker self.estimator_class = LGBMRanker else: from lightgbm import LGBMClassifier self.estimator_class = LGBMClassifier self._time_per_iter = None self._train_size = 0 self._mem_per_iter = -1 self.HAS_CALLBACK = self.HAS_CALLBACK and self._callbacks(0, 0) is not None def _preprocess(self, X): if ( not isinstance(X, DataFrame) and issparse(X) and np.issubdtype(X.dtype, np.integer) ): X = X.astype(float) elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif": # numpy array is not of numeric dtype X = DataFrame(X) for col in X.columns: if isinstance(X[col][0], str): X[col] = X[col].astype("category").cat.codes X = X.to_numpy() return X def fit(self, X_train, y_train, budget=None, **kwargs): start_time = time.time() deadline = start_time + budget if budget else np.inf n_iter = self.params[self.ITER_HP] trained = False if not self.HAS_CALLBACK: mem0 = psutil.virtual_memory().available if psutil is not None else 1 if ( ( not self._time_per_iter or abs(self._train_size - X_train.shape[0]) > 4 ) and budget is not None or self._mem_per_iter < 0 and psutil is not None ) and n_iter > 1: self.params[self.ITER_HP] = 1 self._t1 = self._fit(X_train, y_train, **kwargs) if budget is not None and self._t1 >= budget or n_iter == 1: # self.params[self.ITER_HP] = n_iter return self._t1 mem1 = psutil.virtual_memory().available if psutil is not None else 1 self._mem1 = mem0 - mem1 self.params[self.ITER_HP] = min(n_iter, 4) self._t2 = self._fit(X_train, y_train, **kwargs) mem2 = psutil.virtual_memory().available if psutil is not None else 1 self._mem2 = max(mem0 - mem2, self._mem1) # if self._mem1 <= 0: # self._mem_per_iter = self._mem2 / (self.params[self.ITER_HP] + 1) # elif self._mem2 <= 0: # self._mem_per_iter = self._mem1 # else: self._mem_per_iter = min( self._mem1, self._mem2 / self.params[self.ITER_HP] ) # if self._mem_per_iter <= 1 and psutil is not None: # n_iter = self.params[self.ITER_HP] self._time_per_iter = ( (self._t2 - self._t1) / (self.params[self.ITER_HP] - 1) if self._t2 > self._t1 else self._t1 if self._t1 else 0.001 ) self._train_size = X_train.shape[0] if ( budget is not None and self._t1 + self._t2 >= budget or n_iter == self.params[self.ITER_HP] ): # self.params[self.ITER_HP] = n_iter return time.time() - start_time trained = True # logger.debug(mem0) # logger.debug(self._mem_per_iter) if n_iter > 1: max_iter = min( n_iter, int( (budget - time.time() + start_time - self._t1) / self._time_per_iter + 1 ) if budget is not None else n_iter, int((1 - FREE_MEM_RATIO) * mem0 / self._mem_per_iter) if psutil is not None and self._mem_per_iter > 0 else n_iter, ) if trained and max_iter <= self.params[self.ITER_HP]: return time.time() - start_time self.params[self.ITER_HP] = max_iter if self.params[self.ITER_HP] > 0: if self.HAS_CALLBACK: self._fit( X_train, y_train, callbacks=self._callbacks(start_time, deadline), **kwargs, ) best_iteration = ( self._model.get_booster().best_iteration if isinstance(self, XGBoostSklearnEstimator) else self._model.best_iteration_ ) if best_iteration is not None: self._model.set_params(n_estimators=best_iteration + 1) else: self._fit(X_train, y_train, **kwargs) else: self.params[self.ITER_HP] = self._model.n_estimators train_time = time.time() - start_time return train_time def _callbacks(self, start_time, deadline) -> List[Callable]: return [partial(self._callback, start_time, deadline)] def _callback(self, start_time, deadline, env) -> None: from lightgbm.callback import EarlyStopException now = time.time() if env.iteration == 0: self._time_per_iter = now - start_time if now + self._time_per_iter > deadline: raise EarlyStopException(env.iteration, env.evaluation_result_list) if psutil is not None: mem = psutil.virtual_memory() if mem.available / mem.total < FREE_MEM_RATIO: raise EarlyStopException(env.iteration, env.evaluation_result_list) class XGBoostEstimator(SKLearnEstimator): """The class for tuning XGBoost regressor, not using sklearn API.""" @classmethod def search_space(cls, data_size, **params): upper = min(32768, int(data_size[0])) return { "n_estimators": { "domain": tune.lograndint(lower=4, upper=upper), "init_value": 4, "low_cost_init_value": 4, }, "max_leaves": { "domain": tune.lograndint(lower=4, upper=upper), "init_value": 4, "low_cost_init_value": 4, }, "max_depth": { "domain": tune.choice([0, 6, 12]), "init_value": 0, }, "min_child_weight": { "domain": tune.loguniform(lower=0.001, upper=128), "init_value": 1, }, "learning_rate": { "domain": tune.loguniform(lower=1 / 1024, upper=1.0), "init_value": 0.1, }, "subsample": { "domain": tune.uniform(lower=0.1, upper=1.0), "init_value": 1.0, }, "colsample_bylevel": { "domain": tune.uniform(lower=0.01, upper=1.0), "init_value": 1.0, }, "colsample_bytree": { "domain": tune.uniform(lower=0.01, upper=1.0), "init_value": 1.0, }, "reg_alpha": { "domain": tune.loguniform(lower=1 / 1024, upper=1024), "init_value": 1 / 1024, }, "reg_lambda": { "domain": tune.loguniform(lower=1 / 1024, upper=1024), "init_value": 1.0, }, } @classmethod def size(cls, config): return LGBMEstimator.size(config) @classmethod def cost_relative2lgbm(cls): return 1.6 def config2params(self, config: dict) -> dict: params = config.copy() max_depth = params["max_depth"] = params.get("max_depth", 0) if max_depth == 0: params["grow_policy"] = params.get("grow_policy", "lossguide") params["tree_method"] = params.get("tree_method", "hist") # params["booster"] = params.get("booster", "gbtree") params["use_label_encoder"] = params.get("use_label_encoder", False) if "n_jobs" in config: params["nthread"] = params.pop("n_jobs") return params def __init__( self, task="regression", **config, ): super().__init__(task, **config) self.params["verbosity"] = 0 def fit(self, X_train, y_train, budget=None, **kwargs): import xgboost as xgb start_time = time.time() deadline = start_time + budget if budget else np.inf if issparse(X_train): self.params["tree_method"] = "auto" else: X_train = self._preprocess(X_train) if "sample_weight" in kwargs: dtrain = xgb.DMatrix(X_train, label=y_train, weight=kwargs["sample_weight"]) else: dtrain = xgb.DMatrix(X_train, label=y_train) objective = self.params.get("objective") if isinstance(objective, str): obj = None else: obj = objective if "objective" in self.params: del self.params["objective"] _n_estimators = self.params.pop("n_estimators") callbacks = XGBoostEstimator._callbacks(start_time, deadline) if callbacks: self._model = xgb.train( self.params, dtrain, _n_estimators, obj=obj, callbacks=callbacks, ) self.params["n_estimators"] = self._model.best_iteration + 1 else: self._model = xgb.train(self.params, dtrain, _n_estimators, obj=obj) self.params["n_estimators"] = _n_estimators self.params["objective"] = objective del dtrain train_time = time.time() - start_time return train_time def predict(self, X_test): import xgboost as xgb if not issparse(X_test): X_test = self._preprocess(X_test) dtest = xgb.DMatrix(X_test) return super().predict(dtest) @classmethod def _callbacks(cls, start_time, deadline): try: from xgboost.callback import TrainingCallback except ImportError: # for xgboost<1.3 return None class ResourceLimit(TrainingCallback): def after_iteration(self, model, epoch, evals_log) -> bool: now = time.time() if epoch == 0: self._time_per_iter = now - start_time if now + self._time_per_iter > deadline: return True if psutil is not None: mem = psutil.virtual_memory() if mem.available / mem.total < FREE_MEM_RATIO: return True return False return [ResourceLimit()] class XGBoostSklearnEstimator(SKLearnEstimator, LGBMEstimator): """The class for tuning XGBoost with unlimited depth, using sklearn API.""" @classmethod def search_space(cls, data_size, **params): space = XGBoostEstimator.search_space(data_size) space.pop("max_depth") return space @classmethod def cost_relative2lgbm(cls): return XGBoostEstimator.cost_relative2lgbm() def config2params(self, config: dict) -> dict: params = config.copy() max_depth = params["max_depth"] = params.get("max_depth", 0) if max_depth == 0: params["grow_policy"] = params.get("grow_policy", "lossguide") params["tree_method"] = params.get("tree_method", "hist") params["use_label_encoder"] = params.get("use_label_encoder", False) return params def __init__( self, task="binary", **config, ): super().__init__(task, **config) del self.params["verbose"] self.params["verbosity"] = 0 import xgboost as xgb self.estimator_class = xgb.XGBRegressor if "rank" == task: self.estimator_class = xgb.XGBRanker elif task in CLASSIFICATION: self.estimator_class = xgb.XGBClassifier def fit(self, X_train, y_train, budget=None, **kwargs): if issparse(X_train): self.params["tree_method"] = "auto" return super().fit(X_train, y_train, budget, **kwargs) def _callbacks(self, start_time, deadline) -> List[Callable]: return XGBoostEstimator._callbacks(start_time, deadline) class XGBoostLimitDepthEstimator(XGBoostSklearnEstimator): """The class for tuning XGBoost with limited depth, using sklearn API.""" @classmethod def search_space(cls, data_size, **params): space = XGBoostEstimator.search_space(data_size) space.pop("max_leaves") upper = max(6, int(np.log2(data_size[0]))) space["max_depth"] = { "domain": tune.randint(lower=1, upper=min(upper, 16)), "init_value": 6, "low_cost_init_value": 1, } space["learning_rate"]["init_value"] = 0.3 space["n_estimators"]["init_value"] = 10 return space @classmethod def cost_relative2lgbm(cls): return 64 class RandomForestEstimator(SKLearnEstimator, LGBMEstimator): """The class for tuning Random Forest.""" HAS_CALLBACK = False nrows = 101 @classmethod def search_space(cls, data_size, task, **params): RandomForestEstimator.nrows = int(data_size[0]) upper = min(2048, RandomForestEstimator.nrows) init = 1 / np.sqrt(data_size[1]) if task in CLASSIFICATION else 1 lower = min(0.1, init) space = { "n_estimators": { "domain": tune.lograndint(lower=4, upper=upper), "init_value": 4, "low_cost_init_value": 4, }, "max_features": { "domain": tune.loguniform(lower=lower, upper=1.0), "init_value": init, }, "max_leaves": { "domain": tune.lograndint( lower=4, upper=min(32768, RandomForestEstimator.nrows >> 1) ), "init_value": 4, "low_cost_init_value": 4, }, } if task in CLASSIFICATION: space["criterion"] = { "domain": tune.choice(["gini", "entropy"]), # "init_value": "gini", } return space @classmethod def cost_relative2lgbm(cls): return 2 def config2params(self, config: dict) -> dict: params = config.copy() if "max_leaves" in params: params["max_leaf_nodes"] = params.get( "max_leaf_nodes", params.pop("max_leaves") ) if self._task not in CLASSIFICATION and "criterion" in config: params.pop("criterion") return params def __init__( self, task="binary", **params, ): super().__init__(task, **params) self.params["verbose"] = 0 self.estimator_class = RandomForestRegressor if task in CLASSIFICATION: self.estimator_class = RandomForestClassifier class ExtraTreesEstimator(RandomForestEstimator): """The class for tuning Extra Trees.""" @classmethod def cost_relative2lgbm(cls): return 1.9 def __init__(self, task="binary", **params): super().__init__(task, **params) if "regression" in task: self.estimator_class = ExtraTreesRegressor else: self.estimator_class = ExtraTreesClassifier class LRL1Classifier(SKLearnEstimator): """The class for tuning Logistic Regression with L1 regularization.""" @classmethod def search_space(cls, **params): return { "C": { "domain": tune.loguniform(lower=0.03125, upper=32768.0), "init_value": 1.0, }, } @classmethod def cost_relative2lgbm(cls): return 160 def config2params(self, config: dict) -> dict: params = config.copy() params["tol"] = params.get("tol", 0.0001) params["solver"] = params.get("solver", "saga") params["penalty"] = params.get("penalty", "l1") return params def __init__(self, task="binary", **config): super().__init__(task, **config) assert task in CLASSIFICATION, "LogisticRegression for classification task only" self.estimator_class = LogisticRegression class LRL2Classifier(SKLearnEstimator): """The class for tuning Logistic Regression with L2 regularization.""" limit_resource = True @classmethod def search_space(cls, **params): return LRL1Classifier.search_space(**params) @classmethod def cost_relative2lgbm(cls): return 25 def config2params(self, config: dict) -> dict: params = config.copy() params["tol"] = params.get("tol", 0.0001) params["solver"] = params.get("solver", "lbfgs") params["penalty"] = params.get("penalty", "l2") return params def __init__(self, task="binary", **config): super().__init__(task, **config) assert task in CLASSIFICATION, "LogisticRegression for classification task only" self.estimator_class = LogisticRegression class CatBoostEstimator(BaseEstimator): """The class for tuning CatBoost.""" ITER_HP = "n_estimators" @classmethod def search_space(cls, data_size, **params): upper = max(min(round(1500000 / data_size[0]), 150), 12) return { "early_stopping_rounds": { "domain": tune.lograndint(lower=10, upper=upper), "init_value": 10, "low_cost_init_value": 10, }, "learning_rate": { "domain": tune.loguniform(lower=0.005, upper=0.2), "init_value": 0.1, }, "n_estimators": { "domain": 8192, "init_value": 8192, }, } @classmethod def size(cls, config): n_estimators = config.get("n_estimators", 8192) max_leaves = 64 return (max_leaves * 3 + (max_leaves - 1) * 4 + 1.0) * n_estimators * 8 @classmethod def cost_relative2lgbm(cls): return 15 def _preprocess(self, X): if isinstance(X, DataFrame): cat_columns = X.select_dtypes(include=["category"]).columns if not cat_columns.empty: X = X.copy() X[cat_columns] = X[cat_columns].apply( lambda x: x.cat.rename_categories( [ str(c) if isinstance(c, float) else c for c in x.cat.categories ] ) ) elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif": # numpy array is not of numeric dtype X = DataFrame(X) for col in X.columns: if isinstance(X[col][0], str): X[col] = X[col].astype("category").cat.codes X = X.to_numpy() return X def config2params(self, config: dict) -> dict: params = config.copy() params["n_estimators"] = params.get("n_estimators", 8192) if "n_jobs" in params: params["thread_count"] = params.pop("n_jobs") return params def __init__( self, task="binary", **config, ): super().__init__(task, **config) self.params.update( { "verbose": config.get("verbose", False), "random_seed": config.get("random_seed", 10242048), } ) from catboost import CatBoostRegressor self.estimator_class = CatBoostRegressor if task in CLASSIFICATION: from catboost import CatBoostClassifier self.estimator_class = CatBoostClassifier def fit(self, X_train, y_train, budget=None, **kwargs): start_time = time.time() deadline = start_time + budget if budget else np.inf train_dir = f"catboost_{str(start_time)}" X_train = self._preprocess(X_train) if isinstance(X_train, DataFrame): cat_features = list(X_train.select_dtypes(include="category").columns) else: cat_features = [] n = max(int(len(y_train) * 0.9), len(y_train) - 1000) X_tr, y_tr = X_train[:n], y_train[:n] if "sample_weight" in kwargs: weight = kwargs["sample_weight"] if weight is not None: kwargs["sample_weight"] = weight[:n] else: weight = None from catboost import Pool, __version__ model = self.estimator_class(train_dir=train_dir, **self.params) if __version__ >= "0.26": model.fit( X_tr, y_tr, cat_features=cat_features, eval_set=Pool( data=X_train[n:], label=y_train[n:], cat_features=cat_features ), callbacks=CatBoostEstimator._callbacks(start_time, deadline), **kwargs, ) else: model.fit( X_tr, y_tr, cat_features=cat_features, eval_set=Pool( data=X_train[n:], label=y_train[n:], cat_features=cat_features ), **kwargs, ) shutil.rmtree(train_dir, ignore_errors=True) if weight is not None: kwargs["sample_weight"] = weight self._model = model self.params[self.ITER_HP] = self._model.tree_count_ train_time = time.time() - start_time return train_time @classmethod def _callbacks(cls, start_time, deadline): class ResourceLimit: def after_iteration(self, info) -> bool: now = time.time() if info.iteration == 1: self._time_per_iter = now - start_time if now + self._time_per_iter > deadline: return False if psutil is not None: mem = psutil.virtual_memory() if mem.available / mem.total < FREE_MEM_RATIO: return False return True # can continue return [ResourceLimit()] class KNeighborsEstimator(BaseEstimator): @classmethod def search_space(cls, data_size, **params): upper = min(512, int(data_size[0] / 2)) return { "n_neighbors": { "domain": tune.lograndint(lower=1, upper=upper), "init_value": 5, "low_cost_init_value": 1, }, } @classmethod def cost_relative2lgbm(cls): return 30 def config2params(self, config: dict) -> dict: params = config.copy() params["weights"] = params.get("weights", "distance") return params def __init__(self, task="binary", **config): super().__init__(task, **config) if task in CLASSIFICATION: from sklearn.neighbors import KNeighborsClassifier self.estimator_class = KNeighborsClassifier else: from sklearn.neighbors import KNeighborsRegressor self.estimator_class = KNeighborsRegressor def _preprocess(self, X): if isinstance(X, DataFrame): cat_columns = X.select_dtypes(["category"]).columns if X.shape[1] == len(cat_columns): raise ValueError("kneighbor requires at least one numeric feature") X = X.drop(cat_columns, axis=1) elif isinstance(X, np.ndarray) and X.dtype.kind not in "buif": # drop categocial columns if any X = DataFrame(X) cat_columns = [] for col in X.columns: if isinstance(X[col][0], str): cat_columns.append(col) X = X.drop(cat_columns, axis=1) X = X.to_numpy() return X class Prophet(SKLearnEstimator): """The class for tuning Prophet.""" @classmethod def search_space(cls, **params): space = { "changepoint_prior_scale": { "domain": tune.loguniform(lower=0.001, upper=0.05), "init_value": 0.05, "low_cost_init_value": 0.001, }, "seasonality_prior_scale": { "domain": tune.loguniform(lower=0.01, upper=10), "init_value": 10, }, "holidays_prior_scale": { "domain": tune.loguniform(lower=0.01, upper=10), "init_value": 10, }, "seasonality_mode": { "domain": tune.choice(["additive", "multiplicative"]), "init_value": "multiplicative", }, } return space def __init__(self, task=TS_FORECAST, n_jobs=1, **params): super().__init__(task, **params) def _join(self, X_train, y_train): assert TS_TIMESTAMP_COL in X_train, ( "Dataframe for training ts_forecast model must have column" f' "{TS_TIMESTAMP_COL}" with the dates in X_train.' ) y_train = DataFrame(y_train, columns=[TS_VALUE_COL]) train_df = X_train.join(y_train) return train_df def fit(self, X_train, y_train, budget=None, **kwargs): from prophet import Prophet current_time = time.time() train_df = self._join(X_train, y_train) train_df = self._preprocess(train_df) cols = list(train_df) cols.remove(TS_TIMESTAMP_COL) cols.remove(TS_VALUE_COL) logging.getLogger("prophet").setLevel(logging.WARNING) model = Prophet(**self.params) for regressor in cols: model.add_regressor(regressor) with suppress_stdout_stderr(): model.fit(train_df) train_time = time.time() - current_time self._model = model return train_time def predict(self, X_test): if isinstance(X_test, int): raise ValueError( "predict() with steps is only supported for arima/sarimax." " For Prophet, pass a dataframe with the first column containing" " the timestamp values." ) if self._model is not None: X_test = self._preprocess(X_test) forecast = self._model.predict(X_test) return forecast["yhat"] else: logger.warning( "Estimator is not fit yet. Please run fit() before predict()." ) return np.ones(X_test.shape[0]) class ARIMA(Prophet): """The class for tuning ARIMA.""" @classmethod def search_space(cls, **params): space = { "p": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 2, "low_cost_init_value": 0, }, "d": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 2, "low_cost_init_value": 0, }, "q": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 1, "low_cost_init_value": 0, }, } return space def _join(self, X_train, y_train): train_df = super()._join(X_train, y_train) train_df.index = pd.to_datetime(train_df[TS_TIMESTAMP_COL]) train_df = train_df.drop(TS_TIMESTAMP_COL, axis=1) return train_df def fit(self, X_train, y_train, budget=None, **kwargs): import warnings warnings.filterwarnings("ignore") from statsmodels.tsa.arima.model import ARIMA as ARIMA_estimator current_time = time.time() train_df = self._join(X_train, y_train) train_df = self._preprocess(train_df) regressors = list(train_df) regressors.remove(TS_VALUE_COL) if regressors: model = ARIMA_estimator( train_df[[TS_VALUE_COL]], exog=train_df[regressors], order=(self.params["p"], self.params["d"], self.params["q"]), enforce_stationarity=False, enforce_invertibility=False, ) else: model = ARIMA_estimator( train_df, order=(self.params["p"], self.params["d"], self.params["q"]), enforce_stationarity=False, enforce_invertibility=False, ) with suppress_stdout_stderr(): model = model.fit() train_time = time.time() - current_time self._model = model return train_time def predict(self, X_test): if self._model is not None: if isinstance(X_test, int): forecast = self._model.forecast(steps=X_test) elif isinstance(X_test, DataFrame): start = X_test[TS_TIMESTAMP_COL].iloc[0] end = X_test[TS_TIMESTAMP_COL].iloc[-1] if len(X_test.columns) > 1: X_test = self._preprocess(X_test.drop(columns=TS_TIMESTAMP_COL)) regressors = list(X_test) print(start, end, X_test.shape) forecast = self._model.predict( start=start, end=end, exog=X_test[regressors] ) else: forecast = self._model.predict(start=start, end=end) else: raise ValueError( "X_test needs to be either a pandas Dataframe with dates as the first column" " or an int number of periods for predict()." ) return forecast else: return np.ones(X_test if isinstance(X_test, int) else X_test.shape[0]) class SARIMAX(ARIMA): """The class for tuning SARIMA.""" @classmethod def search_space(cls, **params): space = { "p": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 2, "low_cost_init_value": 0, }, "d": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 2, "low_cost_init_value": 0, }, "q": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 1, "low_cost_init_value": 0, }, "P": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 1, "low_cost_init_value": 0, }, "D": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 1, "low_cost_init_value": 0, }, "Q": { "domain": tune.quniform(lower=0, upper=10, q=1), "init_value": 1, "low_cost_init_value": 0, }, "s": { "domain": tune.choice([1, 4, 6, 12]), "init_value": 12, }, } return space def fit(self, X_train, y_train, budget=None, **kwargs): import warnings warnings.filterwarnings("ignore") from statsmodels.tsa.statespace.sarimax import SARIMAX as SARIMAX_estimator current_time = time.time() train_df = self._join(X_train, y_train) train_df = self._preprocess(train_df) regressors = list(train_df) regressors.remove(TS_VALUE_COL) if regressors: model = SARIMAX_estimator( train_df[[TS_VALUE_COL]], exog=train_df[regressors], order=(self.params["p"], self.params["d"], self.params["q"]), seasonality_order=( self.params["P"], self.params["D"], self.params["Q"], self.params["s"], ), enforce_stationarity=False, enforce_invertibility=False, ) else: model = SARIMAX_estimator( train_df, order=(self.params["p"], self.params["d"], self.params["q"]), seasonality_order=( self.params["P"], self.params["D"], self.params["Q"], self.params["s"], ), enforce_stationarity=False, enforce_invertibility=False, ) with suppress_stdout_stderr(): model = model.fit() train_time = time.time() - current_time self._model = model return train_time class suppress_stdout_stderr(object): def __init__(self): # Open a pair of null files self.null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. self.save_fds = (os.dup(1), os.dup(2)) def __enter__(self): # Assign the null pointers to stdout and stderr. os.dup2(self.null_fds[0], 1) os.dup2(self.null_fds[1], 2) def __exit__(self, *_): # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(self.save_fds[0], 1) os.dup2(self.save_fds[1], 2) # Close the null files os.close(self.null_fds[0]) os.close(self.null_fds[1])
36.292739
131
0.539653
794046a9a27ba53eec0ffda2acb470f34a19a802
1,062
py
Python
website/urls.py
sharif-42/Personal_Website
7c385bec272ec7b5c816eab92e3b5bfb8cd80016
[ "MIT" ]
null
null
null
website/urls.py
sharif-42/Personal_Website
7c385bec272ec7b5c816eab92e3b5bfb8cd80016
[ "MIT" ]
null
null
null
website/urls.py
sharif-42/Personal_Website
7c385bec272ec7b5c816eab92e3b5bfb8cd80016
[ "MIT" ]
null
null
null
"""website URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from django.conf import settings from django.conf.urls.static import static urlpatterns = [ path('admin/', admin.site.urls), path('', include('blog.rest_apis.urls')) ] if settings.DEBUG: urlpatterns += static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
37.928571
82
0.731638
7940477e6bb0c1e71467d5385dbcda485b9edc83
1,318
py
Python
distkv/command/client/log.py
smurfix/distkv
190b4c8f6cbe038b85bac4317a7fb13a9e742516
[ "Apache-2.0", "MIT" ]
10
2019-03-19T16:04:21.000Z
2020-06-04T20:11:10.000Z
distkv/command/client/log.py
M-o-a-T/distkv
94f440e1480ecec04af63abdb66ec8f23859f871
[ "Apache-2.0", "MIT" ]
1
2020-02-05T18:32:52.000Z
2020-02-05T22:15:36.000Z
distkv/command/client/log.py
smurfix/distkv
190b4c8f6cbe038b85bac4317a7fb13a9e742516
[ "Apache-2.0", "MIT" ]
1
2020-08-03T03:10:58.000Z
2020-08-03T03:10:58.000Z
# command line interface import asyncclick as click from distkv.util import yprint @click.group(short_help="Manage logging.") # pylint: disable=undefined-variable async def cli(): """ This subcommand controls a server's logging. """ pass @cli.command() @click.option("-i", "--incremental", is_flag=True, help="Don't write the initial state") @click.argument("path", nargs=1) @click.pass_obj async def dest(obj, path, incremental): """ Log changes to a file. Any previously open log (on the server you talk to) is closed as soon as the new one is opened and ready. """ res = await obj.client._request("log", path=path, fetch=not incremental) if obj.meta: yprint(res, stream=obj.stdout) @cli.command() @click.option("-f", "--full", is_flag=1, help="Also dump internal state") @click.argument("path", nargs=1) @click.pass_obj async def save(obj, path, full): """ Write the server's current state to a file. """ res = await obj.client._request("save", path=path, full=full) if obj.meta: yprint(res, stream=obj.stdout) @cli.command() @click.pass_obj async def stop(obj): """ Stop logging changes. """ res = await obj.client._request("log") # no path == stop if obj.meta: yprint(res, stream=obj.stdout)
24.407407
88
0.656297
7940482833564abce82bcade0204082b4aaeb73d
1,117
py
Python
src/pyobo/sources/pfam_clan.py
fossabot/pyobo
f196b1ea37a50f9e9144bd0990e6c52ec1c16d0f
[ "MIT" ]
null
null
null
src/pyobo/sources/pfam_clan.py
fossabot/pyobo
f196b1ea37a50f9e9144bd0990e6c52ec1c16d0f
[ "MIT" ]
null
null
null
src/pyobo/sources/pfam_clan.py
fossabot/pyobo
f196b1ea37a50f9e9144bd0990e6c52ec1c16d0f
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """Convert PFAM Clans to OBO.""" from typing import Iterable import bioversions from tqdm import tqdm from .pfam import get_pfam_clan_df from ..struct import Obo, Reference, Term PREFIX = 'pfam.clan' def get_obo() -> Obo: """Get PFAM Clans as OBO.""" version = bioversions.get_version('pfam') return Obo( ontology=PREFIX, name='PFAM Clans', data_version=version, iter_terms=iter_terms, iter_terms_kwargs=dict(version=version), auto_generated_by=f'bio2obo:{PREFIX}', ) # TODO could get definitions from ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam33.0/Pfam-C.gz def iter_terms(version: str) -> Iterable[Term]: """Iterate PFAM clan terms.""" df = get_pfam_clan_df(version=version) df = df[['clan_id', 'clan_name']].drop_duplicates() it = tqdm(df.values, total=len(df.index), desc=f'mapping {PREFIX}') for identifier, name in it: yield Term( reference=Reference(PREFIX, identifier=identifier, name=name), ) if __name__ == '__main__': get_obo().write_default()
25.386364
100
0.659803
7940482882fa35887944cf0001ee52f37433bbb3
804
py
Python
env/Scripts/f2py.py
matrixxd/woofpatrol
af7f7b6f44719450f6e0bf707c82f2be727f2553
[ "MIT" ]
1
2019-11-15T11:31:10.000Z
2019-11-15T11:31:10.000Z
env/Scripts/f2py.py
matrixxd/woofpatrol
af7f7b6f44719450f6e0bf707c82f2be727f2553
[ "MIT" ]
2
2022-01-13T01:50:33.000Z
2022-03-12T00:05:29.000Z
env/Scripts/f2py.py
matrixxd/woofpatrol
af7f7b6f44719450f6e0bf707c82f2be727f2553
[ "MIT" ]
null
null
null
#!C:\Users\Darren\Desktop\OnlineDogFilter\env\Scripts\python.exe # See http://cens.ioc.ee/projects/f2py2e/ from __future__ import division, print_function import os import sys for mode in ["g3-numpy", "2e-numeric", "2e-numarray", "2e-numpy"]: try: i = sys.argv.index("--" + mode) del sys.argv[i] break except ValueError: pass os.environ["NO_SCIPY_IMPORT"] = "f2py" if mode == "g3-numpy": sys.stderr.write("G3 f2py support is not implemented, yet.\\n") sys.exit(1) elif mode == "2e-numeric": from f2py2e import main elif mode == "2e-numarray": sys.argv.append("-DNUMARRAY") from f2py2e import main elif mode == "2e-numpy": from numpy.f2py import main else: sys.stderr.write("Unknown mode: " + repr(mode) + "\\n") sys.exit(1) main()
27.724138
67
0.64801
79404957325a3d524c13ec5e68053a3f3c89924f
126,621
py
Python
base/site-packages/docutils/parsers/rst/states.py
edisonlz/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
285
2019-12-23T09:50:21.000Z
2021-12-08T09:08:49.000Z
base/site-packages/docutils/parsers/rst/states.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
3
2015-01-06T15:21:58.000Z
2019-04-09T12:03:13.000Z
base/site-packages/docutils/parsers/rst/states.py
jeckun/fastor
342078a18363ac41d3c6b1ab29dbdd44fdb0b7b3
[ "Apache-2.0" ]
9
2019-12-23T12:59:25.000Z
2022-03-15T05:12:11.000Z
# $Id: states.py 6141 2009-09-25 18:50:30Z milde $ # Author: David Goodger <[email protected]> # Copyright: This module has been placed in the public domain. """ This is the ``docutils.parsers.restructuredtext.states`` module, the core of the reStructuredText parser. It defines the following: :Classes: - `RSTStateMachine`: reStructuredText parser's entry point. - `NestedStateMachine`: recursive StateMachine. - `RSTState`: reStructuredText State superclass. - `Inliner`: For parsing inline markup. - `Body`: Generic classifier of the first line of a block. - `SpecializedBody`: Superclass for compound element members. - `BulletList`: Second and subsequent bullet_list list_items - `DefinitionList`: Second+ definition_list_items. - `EnumeratedList`: Second+ enumerated_list list_items. - `FieldList`: Second+ fields. - `OptionList`: Second+ option_list_items. - `RFC2822List`: Second+ RFC2822-style fields. - `ExtensionOptions`: Parses directive option fields. - `Explicit`: Second+ explicit markup constructs. - `SubstitutionDef`: For embedded directives in substitution definitions. - `Text`: Classifier of second line of a text block. - `SpecializedText`: Superclass for continuation lines of Text-variants. - `Definition`: Second line of potential definition_list_item. - `Line`: Second line of overlined section title or transition marker. - `Struct`: An auxiliary collection class. :Exception classes: - `MarkupError` - `ParserError` - `MarkupMismatch` :Functions: - `escape2null()`: Return a string, escape-backslashes converted to nulls. - `unescape()`: Return a string, nulls removed or restored to backslashes. :Attributes: - `state_classes`: set of State classes used with `RSTStateMachine`. Parser Overview =============== The reStructuredText parser is implemented as a recursive state machine, examining its input one line at a time. To understand how the parser works, please first become familiar with the `docutils.statemachine` module. In the description below, references are made to classes defined in this module; please see the individual classes for details. Parsing proceeds as follows: 1. The state machine examines each line of input, checking each of the transition patterns of the state `Body`, in order, looking for a match. The implicit transitions (blank lines and indentation) are checked before any others. The 'text' transition is a catch-all (matches anything). 2. The method associated with the matched transition pattern is called. A. Some transition methods are self-contained, appending elements to the document tree (`Body.doctest` parses a doctest block). The parser's current line index is advanced to the end of the element, and parsing continues with step 1. B. Other transition methods trigger the creation of a nested state machine, whose job is to parse a compound construct ('indent' does a block quote, 'bullet' does a bullet list, 'overline' does a section [first checking for a valid section header], etc.). - In the case of lists and explicit markup, a one-off state machine is created and run to parse contents of the first item. - A new state machine is created and its initial state is set to the appropriate specialized state (`BulletList` in the case of the 'bullet' transition; see `SpecializedBody` for more detail). This state machine is run to parse the compound element (or series of explicit markup elements), and returns as soon as a non-member element is encountered. For example, the `BulletList` state machine ends as soon as it encounters an element which is not a list item of that bullet list. The optional omission of inter-element blank lines is enabled by this nested state machine. - The current line index is advanced to the end of the elements parsed, and parsing continues with step 1. C. The result of the 'text' transition depends on the next line of text. The current state is changed to `Text`, under which the second line is examined. If the second line is: - Indented: The element is a definition list item, and parsing proceeds similarly to step 2.B, using the `DefinitionList` state. - A line of uniform punctuation characters: The element is a section header; again, parsing proceeds as in step 2.B, and `Body` is still used. - Anything else: The element is a paragraph, which is examined for inline markup and appended to the parent element. Processing continues with step 1. """ __docformat__ = 'reStructuredText' import sys import re import roman from types import FunctionType, MethodType from docutils import nodes, statemachine, utils, urischemes from docutils import ApplicationError, DataError from docutils.statemachine import StateMachineWS, StateWS from docutils.nodes import fully_normalize_name as normalize_name from docutils.nodes import whitespace_normalize_name from docutils.utils import escape2null, unescape, column_width import docutils.parsers.rst from docutils.parsers.rst import directives, languages, tableparser, roles from docutils.parsers.rst.languages import en as _fallback_language_module class MarkupError(DataError): pass class UnknownInterpretedRoleError(DataError): pass class InterpretedRoleNotImplementedError(DataError): pass class ParserError(ApplicationError): pass class MarkupMismatch(Exception): pass class Struct: """Stores data attributes for dotted-attribute access.""" def __init__(self, **keywordargs): self.__dict__.update(keywordargs) class RSTStateMachine(StateMachineWS): """ reStructuredText's master StateMachine. The entry point to reStructuredText parsing is the `run()` method. """ def run(self, input_lines, document, input_offset=0, match_titles=1, inliner=None): """ Parse `input_lines` and modify the `document` node in place. Extend `StateMachineWS.run()`: set up parse-global data and run the StateMachine. """ self.language = languages.get_language( document.settings.language_code) self.match_titles = match_titles if inliner is None: inliner = Inliner() inliner.init_customizations(document.settings) self.memo = Struct(document=document, reporter=document.reporter, language=self.language, title_styles=[], section_level=0, section_bubble_up_kludge=0, inliner=inliner) self.document = document self.attach_observer(document.note_source) self.reporter = self.memo.reporter self.node = document results = StateMachineWS.run(self, input_lines, input_offset, input_source=document['source']) assert results == [], 'RSTStateMachine.run() results should be empty!' self.node = self.memo = None # remove unneeded references class NestedStateMachine(StateMachineWS): """ StateMachine run from within other StateMachine runs, to parse nested document structures. """ def run(self, input_lines, input_offset, memo, node, match_titles=1): """ Parse `input_lines` and populate a `docutils.nodes.document` instance. Extend `StateMachineWS.run()`: set up document-wide data. """ self.match_titles = match_titles self.memo = memo self.document = memo.document self.attach_observer(self.document.note_source) self.reporter = memo.reporter self.language = memo.language self.node = node results = StateMachineWS.run(self, input_lines, input_offset) assert results == [], ('NestedStateMachine.run() results should be ' 'empty!') return results class RSTState(StateWS): """ reStructuredText State superclass. Contains methods used by all State subclasses. """ nested_sm = NestedStateMachine nested_sm_cache = [] def __init__(self, state_machine, debug=0): self.nested_sm_kwargs = {'state_classes': state_classes, 'initial_state': 'Body'} StateWS.__init__(self, state_machine, debug) def runtime_init(self): StateWS.runtime_init(self) memo = self.state_machine.memo self.memo = memo self.reporter = memo.reporter self.inliner = memo.inliner self.document = memo.document self.parent = self.state_machine.node def goto_line(self, abs_line_offset): """ Jump to input line `abs_line_offset`, ignoring jumps past the end. """ try: self.state_machine.goto_line(abs_line_offset) except EOFError: pass def no_match(self, context, transitions): """ Override `StateWS.no_match` to generate a system message. This code should never be run. """ self.reporter.severe( 'Internal error: no transition pattern match. State: "%s"; ' 'transitions: %s; context: %s; current line: %r.' % (self.__class__.__name__, transitions, context, self.state_machine.line), line=self.state_machine.abs_line_number()) return context, None, [] def bof(self, context): """Called at beginning of file.""" return [], [] def nested_parse(self, block, input_offset, node, match_titles=0, state_machine_class=None, state_machine_kwargs=None): """ Create a new StateMachine rooted at `node` and run it over the input `block`. """ use_default = 0 if state_machine_class is None: state_machine_class = self.nested_sm use_default += 1 if state_machine_kwargs is None: state_machine_kwargs = self.nested_sm_kwargs use_default += 1 block_length = len(block) state_machine = None if use_default == 2: try: state_machine = self.nested_sm_cache.pop() except IndexError: pass if not state_machine: state_machine = state_machine_class(debug=self.debug, **state_machine_kwargs) state_machine.run(block, input_offset, memo=self.memo, node=node, match_titles=match_titles) if use_default == 2: self.nested_sm_cache.append(state_machine) else: state_machine.unlink() new_offset = state_machine.abs_line_offset() # No `block.parent` implies disconnected -- lines aren't in sync: if block.parent and (len(block) - block_length) != 0: # Adjustment for block if modified in nested parse: self.state_machine.next_line(len(block) - block_length) return new_offset def nested_list_parse(self, block, input_offset, node, initial_state, blank_finish, blank_finish_state=None, extra_settings={}, match_titles=0, state_machine_class=None, state_machine_kwargs=None): """ Create a new StateMachine rooted at `node` and run it over the input `block`. Also keep track of optional intermediate blank lines and the required final one. """ if state_machine_class is None: state_machine_class = self.nested_sm if state_machine_kwargs is None: state_machine_kwargs = self.nested_sm_kwargs.copy() state_machine_kwargs['initial_state'] = initial_state state_machine = state_machine_class(debug=self.debug, **state_machine_kwargs) if blank_finish_state is None: blank_finish_state = initial_state state_machine.states[blank_finish_state].blank_finish = blank_finish for key, value in extra_settings.items(): setattr(state_machine.states[initial_state], key, value) state_machine.run(block, input_offset, memo=self.memo, node=node, match_titles=match_titles) blank_finish = state_machine.states[blank_finish_state].blank_finish state_machine.unlink() return state_machine.abs_line_offset(), blank_finish def section(self, title, source, style, lineno, messages): """Check for a valid subsection and create one if it checks out.""" if self.check_subsection(source, style, lineno): self.new_subsection(title, lineno, messages) def check_subsection(self, source, style, lineno): """ Check for a valid subsection header. Return 1 (true) or None (false). When a new section is reached that isn't a subsection of the current section, back up the line count (use ``previous_line(-x)``), then ``raise EOFError``. The current StateMachine will finish, then the calling StateMachine can re-examine the title. This will work its way back up the calling chain until the correct section level isreached. @@@ Alternative: Evaluate the title, store the title info & level, and back up the chain until that level is reached. Store in memo? Or return in results? :Exception: `EOFError` when a sibling or supersection encountered. """ memo = self.memo title_styles = memo.title_styles mylevel = memo.section_level try: # check for existing title style level = title_styles.index(style) + 1 except ValueError: # new title style if len(title_styles) == memo.section_level: # new subsection title_styles.append(style) return 1 else: # not at lowest level self.parent += self.title_inconsistent(source, lineno) return None if level <= mylevel: # sibling or supersection memo.section_level = level # bubble up to parent section if len(style) == 2: memo.section_bubble_up_kludge = 1 # back up 2 lines for underline title, 3 for overline title self.state_machine.previous_line(len(style) + 1) raise EOFError # let parent section re-evaluate if level == mylevel + 1: # immediate subsection return 1 else: # invalid subsection self.parent += self.title_inconsistent(source, lineno) return None def title_inconsistent(self, sourcetext, lineno): error = self.reporter.severe( 'Title level inconsistent:', nodes.literal_block('', sourcetext), line=lineno) return error def new_subsection(self, title, lineno, messages): """Append new subsection to document tree. On return, check level.""" memo = self.memo mylevel = memo.section_level memo.section_level += 1 section_node = nodes.section() self.parent += section_node textnodes, title_messages = self.inline_text(title, lineno) titlenode = nodes.title(title, '', *textnodes) name = normalize_name(titlenode.astext()) section_node['names'].append(name) section_node += titlenode section_node += messages section_node += title_messages self.document.note_implicit_target(section_node, section_node) offset = self.state_machine.line_offset + 1 absoffset = self.state_machine.abs_line_offset() + 1 newabsoffset = self.nested_parse( self.state_machine.input_lines[offset:], input_offset=absoffset, node=section_node, match_titles=1) self.goto_line(newabsoffset) if memo.section_level <= mylevel: # can't handle next section? raise EOFError # bubble up to supersection # reset section_level; next pass will detect it properly memo.section_level = mylevel def paragraph(self, lines, lineno): """ Return a list (paragraph & messages) & a boolean: literal_block next? """ data = '\n'.join(lines).rstrip() if re.search(r'(?<!\\)(\\\\)*::$', data): if len(data) == 2: return [], 1 elif data[-3] in ' \n': text = data[:-3].rstrip() else: text = data[:-1] literalnext = 1 else: text = data literalnext = 0 textnodes, messages = self.inline_text(text, lineno) p = nodes.paragraph(data, '', *textnodes) p.line = lineno return [p] + messages, literalnext def inline_text(self, text, lineno): """ Return 2 lists: nodes (text and inline elements), and system_messages. """ return self.inliner.parse(text, lineno, self.memo, self.parent) def unindent_warning(self, node_name): return self.reporter.warning( '%s ends without a blank line; unexpected unindent.' % node_name, line=(self.state_machine.abs_line_number() + 1)) def build_regexp(definition, compile=1): """ Build, compile and return a regular expression based on `definition`. :Parameter: `definition`: a 4-tuple (group name, prefix, suffix, parts), where "parts" is a list of regular expressions and/or regular expression definitions to be joined into an or-group. """ name, prefix, suffix, parts = definition part_strings = [] for part in parts: if type(part) is tuple: part_strings.append(build_regexp(part, None)) else: part_strings.append(part) or_group = '|'.join(part_strings) regexp = '%(prefix)s(?P<%(name)s>%(or_group)s)%(suffix)s' % locals() if compile: return re.compile(regexp, re.UNICODE) else: return regexp class Inliner: """ Parse inline markup; call the `parse()` method. """ def __init__(self): self.implicit_dispatch = [(self.patterns.uri, self.standalone_uri),] """List of (pattern, bound method) tuples, used by `self.implicit_inline`.""" def init_customizations(self, settings): """Setting-based customizations; run when parsing begins.""" if settings.pep_references: self.implicit_dispatch.append((self.patterns.pep, self.pep_reference)) if settings.rfc_references: self.implicit_dispatch.append((self.patterns.rfc, self.rfc_reference)) def parse(self, text, lineno, memo, parent): # Needs to be refactored for nested inline markup. # Add nested_parse() method? """ Return 2 lists: nodes (text and inline elements), and system_messages. Using `self.patterns.initial`, a pattern which matches start-strings (emphasis, strong, interpreted, phrase reference, literal, substitution reference, and inline target) and complete constructs (simple reference, footnote reference), search for a candidate. When one is found, check for validity (e.g., not a quoted '*' character). If valid, search for the corresponding end string if applicable, and check it for validity. If not found or invalid, generate a warning and ignore the start-string. Implicit inline markup (e.g. standalone URIs) is found last. """ self.reporter = memo.reporter self.document = memo.document self.language = memo.language self.parent = parent pattern_search = self.patterns.initial.search dispatch = self.dispatch remaining = escape2null(text) processed = [] unprocessed = [] messages = [] while remaining: match = pattern_search(remaining) if match: groups = match.groupdict() method = dispatch[groups['start'] or groups['backquote'] or groups['refend'] or groups['fnend']] before, inlines, remaining, sysmessages = method(self, match, lineno) unprocessed.append(before) messages += sysmessages if inlines: processed += self.implicit_inline(''.join(unprocessed), lineno) processed += inlines unprocessed = [] else: break remaining = ''.join(unprocessed) + remaining if remaining: processed += self.implicit_inline(remaining, lineno) return processed, messages openers = u'\'"([{<\u2018\u201c\xab\u00a1\u00bf' # see quoted_start below closers = u'\'")]}>\u2019\u201d\xbb!?' unicode_delimiters = u'\u2010\u2011\u2012\u2013\u2014\u00a0' start_string_prefix = (u'((?<=^)|(?<=[-/: \\n\u2019%s%s]))' % (re.escape(unicode_delimiters), re.escape(openers))) end_string_suffix = (r'((?=$)|(?=[-/:.,; \n\x00%s%s]))' % (re.escape(unicode_delimiters), re.escape(closers))) non_whitespace_before = r'(?<![ \n])' non_whitespace_escape_before = r'(?<![ \n\x00])' non_whitespace_after = r'(?![ \n])' # Alphanumerics with isolated internal [-._+:] chars (i.e. not 2 together): simplename = r'(?:(?!_)\w)+(?:[-._+:](?:(?!_)\w)+)*' # Valid URI characters (see RFC 2396 & RFC 2732); # final \x00 allows backslash escapes in URIs: uric = r"""[-_.!~*'()[\];/:@&=+$,%a-zA-Z0-9\x00]""" # Delimiter indicating the end of a URI (not part of the URI): uri_end_delim = r"""[>]""" # Last URI character; same as uric but no punctuation: urilast = r"""[_~*/=+a-zA-Z0-9]""" # End of a URI (either 'urilast' or 'uric followed by a # uri_end_delim'): uri_end = r"""(?:%(urilast)s|%(uric)s(?=%(uri_end_delim)s))""" % locals() emailc = r"""[-_!~*'{|}/#?^`&=+$%a-zA-Z0-9\x00]""" email_pattern = r""" %(emailc)s+(?:\.%(emailc)s+)* # name (?<!\x00)@ # at %(emailc)s+(?:\.%(emailc)s*)* # host %(uri_end)s # final URI char """ parts = ('initial_inline', start_string_prefix, '', [('start', '', non_whitespace_after, # simple start-strings [r'\*\*', # strong r'\*(?!\*)', # emphasis but not strong r'``', # literal r'_`', # inline internal target r'\|(?!\|)'] # substitution reference ), ('whole', '', end_string_suffix, # whole constructs [# reference name & end-string r'(?P<refname>%s)(?P<refend>__?)' % simplename, ('footnotelabel', r'\[', r'(?P<fnend>\]_)', [r'[0-9]+', # manually numbered r'\#(%s)?' % simplename, # auto-numbered (w/ label?) r'\*', # auto-symbol r'(?P<citationlabel>%s)' % simplename] # citation reference ) ] ), ('backquote', # interpreted text or phrase reference '(?P<role>(:%s:)?)' % simplename, # optional role non_whitespace_after, ['`(?!`)'] # but not literal ) ] ) patterns = Struct( initial=build_regexp(parts), emphasis=re.compile(non_whitespace_escape_before + r'(\*)' + end_string_suffix), strong=re.compile(non_whitespace_escape_before + r'(\*\*)' + end_string_suffix), interpreted_or_phrase_ref=re.compile( r""" %(non_whitespace_escape_before)s ( ` (?P<suffix> (?P<role>:%(simplename)s:)? (?P<refend>__?)? ) ) %(end_string_suffix)s """ % locals(), re.VERBOSE | re.UNICODE), embedded_uri=re.compile( r""" ( (?:[ \n]+|^) # spaces or beginning of line/string < # open bracket %(non_whitespace_after)s ([^<>\x00]+) # anything but angle brackets & nulls %(non_whitespace_before)s > # close bracket w/o whitespace before ) $ # end of string """ % locals(), re.VERBOSE), literal=re.compile(non_whitespace_before + '(``)' + end_string_suffix), target=re.compile(non_whitespace_escape_before + r'(`)' + end_string_suffix), substitution_ref=re.compile(non_whitespace_escape_before + r'(\|_{0,2})' + end_string_suffix), email=re.compile(email_pattern % locals() + '$', re.VERBOSE), uri=re.compile( (r""" %(start_string_prefix)s (?P<whole> (?P<absolute> # absolute URI (?P<scheme> # scheme (http, ftp, mailto) [a-zA-Z][a-zA-Z0-9.+-]* ) : ( ( # either: (//?)? # hierarchical URI %(uric)s* # URI characters %(uri_end)s # final URI char ) ( # optional query \?%(uric)s* %(uri_end)s )? ( # optional fragment \#%(uric)s* %(uri_end)s )? ) ) | # *OR* (?P<email> # email address """ + email_pattern + r""" ) ) %(end_string_suffix)s """) % locals(), re.VERBOSE), pep=re.compile( r""" %(start_string_prefix)s ( (pep-(?P<pepnum1>\d+)(.txt)?) # reference to source file | (PEP\s+(?P<pepnum2>\d+)) # reference by name ) %(end_string_suffix)s""" % locals(), re.VERBOSE), rfc=re.compile( r""" %(start_string_prefix)s (RFC(-|\s+)?(?P<rfcnum>\d+)) %(end_string_suffix)s""" % locals(), re.VERBOSE)) def quoted_start(self, match): """Return 1 if inline markup start-string is 'quoted', 0 if not.""" string = match.string start = match.start() end = match.end() if start == 0: # start-string at beginning of text return 0 prestart = string[start - 1] try: poststart = string[end] if self.openers.index(prestart) \ == self.closers.index(poststart): # quoted return 1 except IndexError: # start-string at end of text return 1 except ValueError: # not quoted pass return 0 def inline_obj(self, match, lineno, end_pattern, nodeclass, restore_backslashes=0): string = match.string matchstart = match.start('start') matchend = match.end('start') if self.quoted_start(match): return (string[:matchend], [], string[matchend:], [], '') endmatch = end_pattern.search(string[matchend:]) if endmatch and endmatch.start(1): # 1 or more chars text = unescape(endmatch.string[:endmatch.start(1)], restore_backslashes) textend = matchend + endmatch.end(1) rawsource = unescape(string[matchstart:textend], 1) return (string[:matchstart], [nodeclass(rawsource, text)], string[textend:], [], endmatch.group(1)) msg = self.reporter.warning( 'Inline %s start-string without end-string.' % nodeclass.__name__, line=lineno) text = unescape(string[matchstart:matchend], 1) rawsource = unescape(string[matchstart:matchend], 1) prb = self.problematic(text, rawsource, msg) return string[:matchstart], [prb], string[matchend:], [msg], '' def problematic(self, text, rawsource, message): msgid = self.document.set_id(message, self.parent) problematic = nodes.problematic(rawsource, text, refid=msgid) prbid = self.document.set_id(problematic) message.add_backref(prbid) return problematic def emphasis(self, match, lineno): before, inlines, remaining, sysmessages, endstring = self.inline_obj( match, lineno, self.patterns.emphasis, nodes.emphasis) return before, inlines, remaining, sysmessages def strong(self, match, lineno): before, inlines, remaining, sysmessages, endstring = self.inline_obj( match, lineno, self.patterns.strong, nodes.strong) return before, inlines, remaining, sysmessages def interpreted_or_phrase_ref(self, match, lineno): end_pattern = self.patterns.interpreted_or_phrase_ref string = match.string matchstart = match.start('backquote') matchend = match.end('backquote') rolestart = match.start('role') role = match.group('role') position = '' if role: role = role[1:-1] position = 'prefix' elif self.quoted_start(match): return (string[:matchend], [], string[matchend:], []) endmatch = end_pattern.search(string[matchend:]) if endmatch and endmatch.start(1): # 1 or more chars textend = matchend + endmatch.end() if endmatch.group('role'): if role: msg = self.reporter.warning( 'Multiple roles in interpreted text (both ' 'prefix and suffix present; only one allowed).', line=lineno) text = unescape(string[rolestart:textend], 1) prb = self.problematic(text, text, msg) return string[:rolestart], [prb], string[textend:], [msg] role = endmatch.group('suffix')[1:-1] position = 'suffix' escaped = endmatch.string[:endmatch.start(1)] rawsource = unescape(string[matchstart:textend], 1) if rawsource[-1:] == '_': if role: msg = self.reporter.warning( 'Mismatch: both interpreted text role %s and ' 'reference suffix.' % position, line=lineno) text = unescape(string[rolestart:textend], 1) prb = self.problematic(text, text, msg) return string[:rolestart], [prb], string[textend:], [msg] return self.phrase_ref(string[:matchstart], string[textend:], rawsource, escaped, unescape(escaped)) else: rawsource = unescape(string[rolestart:textend], 1) nodelist, messages = self.interpreted(rawsource, escaped, role, lineno) return (string[:rolestart], nodelist, string[textend:], messages) msg = self.reporter.warning( 'Inline interpreted text or phrase reference start-string ' 'without end-string.', line=lineno) text = unescape(string[matchstart:matchend], 1) prb = self.problematic(text, text, msg) return string[:matchstart], [prb], string[matchend:], [msg] def phrase_ref(self, before, after, rawsource, escaped, text): match = self.patterns.embedded_uri.search(escaped) if match: text = unescape(escaped[:match.start(0)]) uri_text = match.group(2) uri = ''.join(uri_text.split()) uri = self.adjust_uri(uri) if uri: target = nodes.target(match.group(1), refuri=uri) else: raise ApplicationError('problem with URI: %r' % uri_text) if not text: text = uri else: target = None refname = normalize_name(text) reference = nodes.reference(rawsource, text, name=whitespace_normalize_name(text)) node_list = [reference] if rawsource[-2:] == '__': if target: reference['refuri'] = uri else: reference['anonymous'] = 1 else: if target: reference['refuri'] = uri target['names'].append(refname) self.document.note_explicit_target(target, self.parent) node_list.append(target) else: reference['refname'] = refname self.document.note_refname(reference) return before, node_list, after, [] def adjust_uri(self, uri): match = self.patterns.email.match(uri) if match: return 'mailto:' + uri else: return uri def interpreted(self, rawsource, text, role, lineno): role_fn, messages = roles.role(role, self.language, lineno, self.reporter) if role_fn: nodes, messages2 = role_fn(role, rawsource, text, lineno, self) return nodes, messages + messages2 else: msg = self.reporter.error( 'Unknown interpreted text role "%s".' % role, line=lineno) return ([self.problematic(rawsource, rawsource, msg)], messages + [msg]) def literal(self, match, lineno): before, inlines, remaining, sysmessages, endstring = self.inline_obj( match, lineno, self.patterns.literal, nodes.literal, restore_backslashes=1) return before, inlines, remaining, sysmessages def inline_internal_target(self, match, lineno): before, inlines, remaining, sysmessages, endstring = self.inline_obj( match, lineno, self.patterns.target, nodes.target) if inlines and isinstance(inlines[0], nodes.target): assert len(inlines) == 1 target = inlines[0] name = normalize_name(target.astext()) target['names'].append(name) self.document.note_explicit_target(target, self.parent) return before, inlines, remaining, sysmessages def substitution_reference(self, match, lineno): before, inlines, remaining, sysmessages, endstring = self.inline_obj( match, lineno, self.patterns.substitution_ref, nodes.substitution_reference) if len(inlines) == 1: subref_node = inlines[0] if isinstance(subref_node, nodes.substitution_reference): subref_text = subref_node.astext() self.document.note_substitution_ref(subref_node, subref_text) if endstring[-1:] == '_': reference_node = nodes.reference( '|%s%s' % (subref_text, endstring), '') if endstring[-2:] == '__': reference_node['anonymous'] = 1 else: reference_node['refname'] = normalize_name(subref_text) self.document.note_refname(reference_node) reference_node += subref_node inlines = [reference_node] return before, inlines, remaining, sysmessages def footnote_reference(self, match, lineno): """ Handles `nodes.footnote_reference` and `nodes.citation_reference` elements. """ label = match.group('footnotelabel') refname = normalize_name(label) string = match.string before = string[:match.start('whole')] remaining = string[match.end('whole'):] if match.group('citationlabel'): refnode = nodes.citation_reference('[%s]_' % label, refname=refname) refnode += nodes.Text(label) self.document.note_citation_ref(refnode) else: refnode = nodes.footnote_reference('[%s]_' % label) if refname[0] == '#': refname = refname[1:] refnode['auto'] = 1 self.document.note_autofootnote_ref(refnode) elif refname == '*': refname = '' refnode['auto'] = '*' self.document.note_symbol_footnote_ref( refnode) else: refnode += nodes.Text(label) if refname: refnode['refname'] = refname self.document.note_footnote_ref(refnode) if utils.get_trim_footnote_ref_space(self.document.settings): before = before.rstrip() return (before, [refnode], remaining, []) def reference(self, match, lineno, anonymous=None): referencename = match.group('refname') refname = normalize_name(referencename) referencenode = nodes.reference( referencename + match.group('refend'), referencename, name=whitespace_normalize_name(referencename)) if anonymous: referencenode['anonymous'] = 1 else: referencenode['refname'] = refname self.document.note_refname(referencenode) string = match.string matchstart = match.start('whole') matchend = match.end('whole') return (string[:matchstart], [referencenode], string[matchend:], []) def anonymous_reference(self, match, lineno): return self.reference(match, lineno, anonymous=1) def standalone_uri(self, match, lineno): if (not match.group('scheme') or match.group('scheme').lower() in urischemes.schemes): if match.group('email'): addscheme = 'mailto:' else: addscheme = '' text = match.group('whole') unescaped = unescape(text, 0) return [nodes.reference(unescape(text, 1), unescaped, refuri=addscheme + unescaped)] else: # not a valid scheme raise MarkupMismatch def pep_reference(self, match, lineno): text = match.group(0) if text.startswith('pep-'): pepnum = int(match.group('pepnum1')) elif text.startswith('PEP'): pepnum = int(match.group('pepnum2')) else: raise MarkupMismatch ref = (self.document.settings.pep_base_url + self.document.settings.pep_file_url_template % pepnum) unescaped = unescape(text, 0) return [nodes.reference(unescape(text, 1), unescaped, refuri=ref)] rfc_url = 'rfc%d.html' def rfc_reference(self, match, lineno): text = match.group(0) if text.startswith('RFC'): rfcnum = int(match.group('rfcnum')) ref = self.document.settings.rfc_base_url + self.rfc_url % rfcnum else: raise MarkupMismatch unescaped = unescape(text, 0) return [nodes.reference(unescape(text, 1), unescaped, refuri=ref)] def implicit_inline(self, text, lineno): """ Check each of the patterns in `self.implicit_dispatch` for a match, and dispatch to the stored method for the pattern. Recursively check the text before and after the match. Return a list of `nodes.Text` and inline element nodes. """ if not text: return [] for pattern, method in self.implicit_dispatch: match = pattern.search(text) if match: try: # Must recurse on strings before *and* after the match; # there may be multiple patterns. return (self.implicit_inline(text[:match.start()], lineno) + method(match, lineno) + self.implicit_inline(text[match.end():], lineno)) except MarkupMismatch: pass return [nodes.Text(unescape(text), rawsource=unescape(text, 1))] dispatch = {'*': emphasis, '**': strong, '`': interpreted_or_phrase_ref, '``': literal, '_`': inline_internal_target, ']_': footnote_reference, '|': substitution_reference, '_': reference, '__': anonymous_reference} def _loweralpha_to_int(s, _zero=(ord('a')-1)): return ord(s) - _zero def _upperalpha_to_int(s, _zero=(ord('A')-1)): return ord(s) - _zero def _lowerroman_to_int(s): return roman.fromRoman(s.upper()) class Body(RSTState): """ Generic classifier of the first line of a block. """ double_width_pad_char = tableparser.TableParser.double_width_pad_char """Padding character for East Asian double-width text.""" enum = Struct() """Enumerated list parsing information.""" enum.formatinfo = { 'parens': Struct(prefix='(', suffix=')', start=1, end=-1), 'rparen': Struct(prefix='', suffix=')', start=0, end=-1), 'period': Struct(prefix='', suffix='.', start=0, end=-1)} enum.formats = enum.formatinfo.keys() enum.sequences = ['arabic', 'loweralpha', 'upperalpha', 'lowerroman', 'upperroman'] # ORDERED! enum.sequencepats = {'arabic': '[0-9]+', 'loweralpha': '[a-z]', 'upperalpha': '[A-Z]', 'lowerroman': '[ivxlcdm]+', 'upperroman': '[IVXLCDM]+',} enum.converters = {'arabic': int, 'loweralpha': _loweralpha_to_int, 'upperalpha': _upperalpha_to_int, 'lowerroman': _lowerroman_to_int, 'upperroman': roman.fromRoman} enum.sequenceregexps = {} for sequence in enum.sequences: enum.sequenceregexps[sequence] = re.compile( enum.sequencepats[sequence] + '$') grid_table_top_pat = re.compile(r'\+-[-+]+-\+ *$') """Matches the top (& bottom) of a full table).""" simple_table_top_pat = re.compile('=+( +=+)+ *$') """Matches the top of a simple table.""" simple_table_border_pat = re.compile('=+[ =]*$') """Matches the bottom & header bottom of a simple table.""" pats = {} """Fragments of patterns used by transitions.""" pats['nonalphanum7bit'] = '[!-/:-@[-`{-~]' pats['alpha'] = '[a-zA-Z]' pats['alphanum'] = '[a-zA-Z0-9]' pats['alphanumplus'] = '[a-zA-Z0-9_-]' pats['enum'] = ('(%(arabic)s|%(loweralpha)s|%(upperalpha)s|%(lowerroman)s' '|%(upperroman)s|#)' % enum.sequencepats) pats['optname'] = '%(alphanum)s%(alphanumplus)s*' % pats # @@@ Loosen up the pattern? Allow Unicode? pats['optarg'] = '(%(alpha)s%(alphanumplus)s*|<[^<>]+>)' % pats pats['shortopt'] = r'(-|\+)%(alphanum)s( ?%(optarg)s)?' % pats pats['longopt'] = r'(--|/)%(optname)s([ =]%(optarg)s)?' % pats pats['option'] = r'(%(shortopt)s|%(longopt)s)' % pats for format in enum.formats: pats[format] = '(?P<%s>%s%s%s)' % ( format, re.escape(enum.formatinfo[format].prefix), pats['enum'], re.escape(enum.formatinfo[format].suffix)) patterns = { 'bullet': u'[-+*\u2022\u2023\u2043]( +|$)', 'enumerator': r'(%(parens)s|%(rparen)s|%(period)s)( +|$)' % pats, 'field_marker': r':(?![: ])([^:\\]|\\.)*(?<! ):( +|$)', 'option_marker': r'%(option)s(, %(option)s)*( +| ?$)' % pats, 'doctest': r'>>>( +|$)', 'line_block': r'\|( +|$)', 'grid_table_top': grid_table_top_pat, 'simple_table_top': simple_table_top_pat, 'explicit_markup': r'\.\.( +|$)', 'anonymous': r'__( +|$)', 'line': r'(%(nonalphanum7bit)s)\1* *$' % pats, 'text': r''} initial_transitions = ( 'bullet', 'enumerator', 'field_marker', 'option_marker', 'doctest', 'line_block', 'grid_table_top', 'simple_table_top', 'explicit_markup', 'anonymous', 'line', 'text') def indent(self, match, context, next_state): """Block quote.""" indented, indent, line_offset, blank_finish = \ self.state_machine.get_indented() elements = self.block_quote(indented, line_offset) self.parent += elements if not blank_finish: self.parent += self.unindent_warning('Block quote') return context, next_state, [] def block_quote(self, indented, line_offset): elements = [] while indented: (blockquote_lines, attribution_lines, attribution_offset, indented, new_line_offset) = self.split_attribution(indented, line_offset) blockquote = nodes.block_quote() self.nested_parse(blockquote_lines, line_offset, blockquote) elements.append(blockquote) if attribution_lines: attribution, messages = self.parse_attribution( attribution_lines, attribution_offset) blockquote += attribution elements += messages line_offset = new_line_offset while indented and not indented[0]: indented = indented[1:] line_offset += 1 return elements # U+2014 is an em-dash: attribution_pattern = re.compile(u'(---?(?!-)|\u2014) *(?=[^ \\n])') def split_attribution(self, indented, line_offset): """ Check for a block quote attribution and split it off: * First line after a blank line must begin with a dash ("--", "---", em-dash; matches `self.attribution_pattern`). * Every line after that must have consistent indentation. * Attributions must be preceded by block quote content. Return a tuple of: (block quote content lines, content offset, attribution lines, attribution offset, remaining indented lines). """ blank = None nonblank_seen = False for i in range(len(indented)): line = indented[i].rstrip() if line: if nonblank_seen and blank == i - 1: # last line blank match = self.attribution_pattern.match(line) if match: attribution_end, indent = self.check_attribution( indented, i) if attribution_end: a_lines = indented[i:attribution_end] a_lines.trim_left(match.end(), end=1) a_lines.trim_left(indent, start=1) return (indented[:i], a_lines, i, indented[attribution_end:], line_offset + attribution_end) nonblank_seen = True else: blank = i else: return (indented, None, None, None, None) def check_attribution(self, indented, attribution_start): """ Check attribution shape. Return the index past the end of the attribution, and the indent. """ indent = None i = attribution_start + 1 for i in range(attribution_start + 1, len(indented)): line = indented[i].rstrip() if not line: break if indent is None: indent = len(line) - len(line.lstrip()) elif len(line) - len(line.lstrip()) != indent: return None, None # bad shape; not an attribution else: # return index of line after last attribution line: i += 1 return i, (indent or 0) def parse_attribution(self, indented, line_offset): text = '\n'.join(indented).rstrip() lineno = self.state_machine.abs_line_number() + line_offset textnodes, messages = self.inline_text(text, lineno) node = nodes.attribution(text, '', *textnodes) node.line = lineno return node, messages def bullet(self, match, context, next_state): """Bullet list item.""" bulletlist = nodes.bullet_list() self.parent += bulletlist bulletlist['bullet'] = match.string[0] i, blank_finish = self.list_item(match.end()) bulletlist += i offset = self.state_machine.line_offset + 1 # next line new_line_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=bulletlist, initial_state='BulletList', blank_finish=blank_finish) self.goto_line(new_line_offset) if not blank_finish: self.parent += self.unindent_warning('Bullet list') return [], next_state, [] def list_item(self, indent): if self.state_machine.line[indent:]: indented, line_offset, blank_finish = ( self.state_machine.get_known_indented(indent)) else: indented, indent, line_offset, blank_finish = ( self.state_machine.get_first_known_indented(indent)) listitem = nodes.list_item('\n'.join(indented)) if indented: self.nested_parse(indented, input_offset=line_offset, node=listitem) return listitem, blank_finish def enumerator(self, match, context, next_state): """Enumerated List Item""" format, sequence, text, ordinal = self.parse_enumerator(match) if not self.is_enumerated_list_item(ordinal, sequence, format): raise statemachine.TransitionCorrection('text') enumlist = nodes.enumerated_list() self.parent += enumlist if sequence == '#': enumlist['enumtype'] = 'arabic' else: enumlist['enumtype'] = sequence enumlist['prefix'] = self.enum.formatinfo[format].prefix enumlist['suffix'] = self.enum.formatinfo[format].suffix if ordinal != 1: enumlist['start'] = ordinal msg = self.reporter.info( 'Enumerated list start value not ordinal-1: "%s" (ordinal %s)' % (text, ordinal), line=self.state_machine.abs_line_number()) self.parent += msg listitem, blank_finish = self.list_item(match.end()) enumlist += listitem offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=enumlist, initial_state='EnumeratedList', blank_finish=blank_finish, extra_settings={'lastordinal': ordinal, 'format': format, 'auto': sequence == '#'}) self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning('Enumerated list') return [], next_state, [] def parse_enumerator(self, match, expected_sequence=None): """ Analyze an enumerator and return the results. :Return: - the enumerator format ('period', 'parens', or 'rparen'), - the sequence used ('arabic', 'loweralpha', 'upperroman', etc.), - the text of the enumerator, stripped of formatting, and - the ordinal value of the enumerator ('a' -> 1, 'ii' -> 2, etc.; ``None`` is returned for invalid enumerator text). The enumerator format has already been determined by the regular expression match. If `expected_sequence` is given, that sequence is tried first. If not, we check for Roman numeral 1. This way, single-character Roman numerals (which are also alphabetical) can be matched. If no sequence has been matched, all sequences are checked in order. """ groupdict = match.groupdict() sequence = '' for format in self.enum.formats: if groupdict[format]: # was this the format matched? break # yes; keep `format` else: # shouldn't happen raise ParserError('enumerator format not matched') text = groupdict[format][self.enum.formatinfo[format].start :self.enum.formatinfo[format].end] if text == '#': sequence = '#' elif expected_sequence: try: if self.enum.sequenceregexps[expected_sequence].match(text): sequence = expected_sequence except KeyError: # shouldn't happen raise ParserError('unknown enumerator sequence: %s' % sequence) elif text == 'i': sequence = 'lowerroman' elif text == 'I': sequence = 'upperroman' if not sequence: for sequence in self.enum.sequences: if self.enum.sequenceregexps[sequence].match(text): break else: # shouldn't happen raise ParserError('enumerator sequence not matched') if sequence == '#': ordinal = 1 else: try: ordinal = self.enum.converters[sequence](text) except roman.InvalidRomanNumeralError: ordinal = None return format, sequence, text, ordinal def is_enumerated_list_item(self, ordinal, sequence, format): """ Check validity based on the ordinal value and the second line. Return true if the ordinal is valid and the second line is blank, indented, or starts with the next enumerator or an auto-enumerator. """ if ordinal is None: return None try: next_line = self.state_machine.next_line() except EOFError: # end of input lines self.state_machine.previous_line() return 1 else: self.state_machine.previous_line() if not next_line[:1].strip(): # blank or indented return 1 result = self.make_enumerator(ordinal + 1, sequence, format) if result: next_enumerator, auto_enumerator = result try: if ( next_line.startswith(next_enumerator) or next_line.startswith(auto_enumerator) ): return 1 except TypeError: pass return None def make_enumerator(self, ordinal, sequence, format): """ Construct and return the next enumerated list item marker, and an auto-enumerator ("#" instead of the regular enumerator). Return ``None`` for invalid (out of range) ordinals. """ #" if sequence == '#': enumerator = '#' elif sequence == 'arabic': enumerator = str(ordinal) else: if sequence.endswith('alpha'): if ordinal > 26: return None enumerator = chr(ordinal + ord('a') - 1) elif sequence.endswith('roman'): try: enumerator = roman.toRoman(ordinal) except roman.RomanError: return None else: # shouldn't happen raise ParserError('unknown enumerator sequence: "%s"' % sequence) if sequence.startswith('lower'): enumerator = enumerator.lower() elif sequence.startswith('upper'): enumerator = enumerator.upper() else: # shouldn't happen raise ParserError('unknown enumerator sequence: "%s"' % sequence) formatinfo = self.enum.formatinfo[format] next_enumerator = (formatinfo.prefix + enumerator + formatinfo.suffix + ' ') auto_enumerator = formatinfo.prefix + '#' + formatinfo.suffix + ' ' return next_enumerator, auto_enumerator def field_marker(self, match, context, next_state): """Field list item.""" field_list = nodes.field_list() self.parent += field_list field, blank_finish = self.field(match) field_list += field offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=field_list, initial_state='FieldList', blank_finish=blank_finish) self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning('Field list') return [], next_state, [] def field(self, match): name = self.parse_field_marker(match) lineno = self.state_machine.abs_line_number() indented, indent, line_offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) field_node = nodes.field() field_node.line = lineno name_nodes, name_messages = self.inline_text(name, lineno) field_node += nodes.field_name(name, '', *name_nodes) field_body = nodes.field_body('\n'.join(indented), *name_messages) field_node += field_body if indented: self.parse_field_body(indented, line_offset, field_body) return field_node, blank_finish def parse_field_marker(self, match): """Extract & return field name from a field marker match.""" field = match.group()[1:] # strip off leading ':' field = field[:field.rfind(':')] # strip off trailing ':' etc. return field def parse_field_body(self, indented, offset, node): self.nested_parse(indented, input_offset=offset, node=node) def option_marker(self, match, context, next_state): """Option list item.""" optionlist = nodes.option_list() try: listitem, blank_finish = self.option_list_item(match) except MarkupError, (message, lineno): # This shouldn't happen; pattern won't match. msg = self.reporter.error( 'Invalid option list marker: %s' % message, line=lineno) self.parent += msg indented, indent, line_offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) elements = self.block_quote(indented, line_offset) self.parent += elements if not blank_finish: self.parent += self.unindent_warning('Option list') return [], next_state, [] self.parent += optionlist optionlist += listitem offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=optionlist, initial_state='OptionList', blank_finish=blank_finish) self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning('Option list') return [], next_state, [] def option_list_item(self, match): offset = self.state_machine.abs_line_offset() options = self.parse_option_marker(match) indented, indent, line_offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) if not indented: # not an option list item self.goto_line(offset) raise statemachine.TransitionCorrection('text') option_group = nodes.option_group('', *options) description = nodes.description('\n'.join(indented)) option_list_item = nodes.option_list_item('', option_group, description) if indented: self.nested_parse(indented, input_offset=line_offset, node=description) return option_list_item, blank_finish def parse_option_marker(self, match): """ Return a list of `node.option` and `node.option_argument` objects, parsed from an option marker match. :Exception: `MarkupError` for invalid option markers. """ optlist = [] optionstrings = match.group().rstrip().split(', ') for optionstring in optionstrings: tokens = optionstring.split() delimiter = ' ' firstopt = tokens[0].split('=') if len(firstopt) > 1: # "--opt=value" form tokens[:1] = firstopt delimiter = '=' elif (len(tokens[0]) > 2 and ((tokens[0].startswith('-') and not tokens[0].startswith('--')) or tokens[0].startswith('+'))): # "-ovalue" form tokens[:1] = [tokens[0][:2], tokens[0][2:]] delimiter = '' if len(tokens) > 1 and (tokens[1].startswith('<') and tokens[-1].endswith('>')): # "-o <value1 value2>" form; join all values into one token tokens[1:] = [' '.join(tokens[1:])] if 0 < len(tokens) <= 2: option = nodes.option(optionstring) option += nodes.option_string(tokens[0], tokens[0]) if len(tokens) > 1: option += nodes.option_argument(tokens[1], tokens[1], delimiter=delimiter) optlist.append(option) else: raise MarkupError( 'wrong number of option tokens (=%s), should be 1 or 2: ' '"%s"' % (len(tokens), optionstring), self.state_machine.abs_line_number() + 1) return optlist def doctest(self, match, context, next_state): data = '\n'.join(self.state_machine.get_text_block()) self.parent += nodes.doctest_block(data, data) return [], next_state, [] def line_block(self, match, context, next_state): """First line of a line block.""" block = nodes.line_block() self.parent += block lineno = self.state_machine.abs_line_number() line, messages, blank_finish = self.line_block_line(match, lineno) block += line self.parent += messages if not blank_finish: offset = self.state_machine.line_offset + 1 # next line new_line_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=block, initial_state='LineBlock', blank_finish=0) self.goto_line(new_line_offset) if not blank_finish: self.parent += self.reporter.warning( 'Line block ends without a blank line.', line=(self.state_machine.abs_line_number() + 1)) if len(block): if block[0].indent is None: block[0].indent = 0 self.nest_line_block_lines(block) return [], next_state, [] def line_block_line(self, match, lineno): """Return one line element of a line_block.""" indented, indent, line_offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end(), until_blank=1) text = u'\n'.join(indented) text_nodes, messages = self.inline_text(text, lineno) line = nodes.line(text, '', *text_nodes) if match.string.rstrip() != '|': # not empty line.indent = len(match.group(1)) - 1 return line, messages, blank_finish def nest_line_block_lines(self, block): for index in range(1, len(block)): if block[index].indent is None: block[index].indent = block[index - 1].indent self.nest_line_block_segment(block) def nest_line_block_segment(self, block): indents = [item.indent for item in block] least = min(indents) new_items = [] new_block = nodes.line_block() for item in block: if item.indent > least: new_block.append(item) else: if len(new_block): self.nest_line_block_segment(new_block) new_items.append(new_block) new_block = nodes.line_block() new_items.append(item) if len(new_block): self.nest_line_block_segment(new_block) new_items.append(new_block) block[:] = new_items def grid_table_top(self, match, context, next_state): """Top border of a full table.""" return self.table_top(match, context, next_state, self.isolate_grid_table, tableparser.GridTableParser) def simple_table_top(self, match, context, next_state): """Top border of a simple table.""" return self.table_top(match, context, next_state, self.isolate_simple_table, tableparser.SimpleTableParser) def table_top(self, match, context, next_state, isolate_function, parser_class): """Top border of a generic table.""" nodelist, blank_finish = self.table(isolate_function, parser_class) self.parent += nodelist if not blank_finish: msg = self.reporter.warning( 'Blank line required after table.', line=self.state_machine.abs_line_number() + 1) self.parent += msg return [], next_state, [] def table(self, isolate_function, parser_class): """Parse a table.""" block, messages, blank_finish = isolate_function() if block: try: parser = parser_class() tabledata = parser.parse(block) tableline = (self.state_machine.abs_line_number() - len(block) + 1) table = self.build_table(tabledata, tableline) nodelist = [table] + messages except tableparser.TableMarkupError, detail: nodelist = self.malformed_table( block, ' '.join(detail.args)) + messages else: nodelist = messages return nodelist, blank_finish def isolate_grid_table(self): messages = [] blank_finish = 1 try: block = self.state_machine.get_text_block(flush_left=1) except statemachine.UnexpectedIndentationError, instance: block, source, lineno = instance.args messages.append(self.reporter.error('Unexpected indentation.', source=source, line=lineno)) blank_finish = 0 block.disconnect() # for East Asian chars: block.pad_double_width(self.double_width_pad_char) width = len(block[0].strip()) for i in range(len(block)): block[i] = block[i].strip() if block[i][0] not in '+|': # check left edge blank_finish = 0 self.state_machine.previous_line(len(block) - i) del block[i:] break if not self.grid_table_top_pat.match(block[-1]): # find bottom blank_finish = 0 # from second-last to third line of table: for i in range(len(block) - 2, 1, -1): if self.grid_table_top_pat.match(block[i]): self.state_machine.previous_line(len(block) - i + 1) del block[i+1:] break else: messages.extend(self.malformed_table(block)) return [], messages, blank_finish for i in range(len(block)): # check right edge if len(block[i]) != width or block[i][-1] not in '+|': messages.extend(self.malformed_table(block)) return [], messages, blank_finish return block, messages, blank_finish def isolate_simple_table(self): start = self.state_machine.line_offset lines = self.state_machine.input_lines limit = len(lines) - 1 toplen = len(lines[start].strip()) pattern_match = self.simple_table_border_pat.match found = 0 found_at = None i = start + 1 while i <= limit: line = lines[i] match = pattern_match(line) if match: if len(line.strip()) != toplen: self.state_machine.next_line(i - start) messages = self.malformed_table( lines[start:i+1], 'Bottom/header table border does ' 'not match top border.') return [], messages, i == limit or not lines[i+1].strip() found += 1 found_at = i if found == 2 or i == limit or not lines[i+1].strip(): end = i break i += 1 else: # reached end of input_lines if found: extra = ' or no blank line after table bottom' self.state_machine.next_line(found_at - start) block = lines[start:found_at+1] else: extra = '' self.state_machine.next_line(i - start - 1) block = lines[start:] messages = self.malformed_table( block, 'No bottom table border found%s.' % extra) return [], messages, not extra self.state_machine.next_line(end - start) block = lines[start:end+1] # for East Asian chars: block.pad_double_width(self.double_width_pad_char) return block, [], end == limit or not lines[end+1].strip() def malformed_table(self, block, detail=''): block.replace(self.double_width_pad_char, '') data = '\n'.join(block) message = 'Malformed table.' lineno = self.state_machine.abs_line_number() - len(block) + 1 if detail: message += '\n' + detail error = self.reporter.error(message, nodes.literal_block(data, data), line=lineno) return [error] def build_table(self, tabledata, tableline, stub_columns=0): colwidths, headrows, bodyrows = tabledata table = nodes.table() tgroup = nodes.tgroup(cols=len(colwidths)) table += tgroup for colwidth in colwidths: colspec = nodes.colspec(colwidth=colwidth) if stub_columns: colspec.attributes['stub'] = 1 stub_columns -= 1 tgroup += colspec if headrows: thead = nodes.thead() tgroup += thead for row in headrows: thead += self.build_table_row(row, tableline) tbody = nodes.tbody() tgroup += tbody for row in bodyrows: tbody += self.build_table_row(row, tableline) return table def build_table_row(self, rowdata, tableline): row = nodes.row() for cell in rowdata: if cell is None: continue morerows, morecols, offset, cellblock = cell attributes = {} if morerows: attributes['morerows'] = morerows if morecols: attributes['morecols'] = morecols entry = nodes.entry(**attributes) row += entry if ''.join(cellblock): self.nested_parse(cellblock, input_offset=tableline+offset, node=entry) return row explicit = Struct() """Patterns and constants used for explicit markup recognition.""" explicit.patterns = Struct( target=re.compile(r""" ( _ # anonymous target | # *OR* (?!_) # no underscore at the beginning (?P<quote>`?) # optional open quote (?![ `]) # first char. not space or # backquote (?P<name> # reference name .+? ) %(non_whitespace_escape_before)s (?P=quote) # close quote if open quote used ) (?<!(?<!\x00):) # no unescaped colon at end %(non_whitespace_escape_before)s [ ]? # optional space : # end of reference name ([ ]+|$) # followed by whitespace """ % vars(Inliner), re.VERBOSE), reference=re.compile(r""" ( (?P<simple>%(simplename)s)_ | # *OR* ` # open backquote (?![ ]) # not space (?P<phrase>.+?) # hyperlink phrase %(non_whitespace_escape_before)s `_ # close backquote, # reference mark ) $ # end of string """ % vars(Inliner), re.VERBOSE | re.UNICODE), substitution=re.compile(r""" ( (?![ ]) # first char. not space (?P<name>.+?) # substitution text %(non_whitespace_escape_before)s \| # close delimiter ) ([ ]+|$) # followed by whitespace """ % vars(Inliner), re.VERBOSE),) def footnote(self, match): lineno = self.state_machine.abs_line_number() indented, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) label = match.group(1) name = normalize_name(label) footnote = nodes.footnote('\n'.join(indented)) footnote.line = lineno if name[0] == '#': # auto-numbered name = name[1:] # autonumber label footnote['auto'] = 1 if name: footnote['names'].append(name) self.document.note_autofootnote(footnote) elif name == '*': # auto-symbol name = '' footnote['auto'] = '*' self.document.note_symbol_footnote(footnote) else: # manually numbered footnote += nodes.label('', label) footnote['names'].append(name) self.document.note_footnote(footnote) if name: self.document.note_explicit_target(footnote, footnote) else: self.document.set_id(footnote, footnote) if indented: self.nested_parse(indented, input_offset=offset, node=footnote) return [footnote], blank_finish def citation(self, match): lineno = self.state_machine.abs_line_number() indented, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) label = match.group(1) name = normalize_name(label) citation = nodes.citation('\n'.join(indented)) citation.line = lineno citation += nodes.label('', label) citation['names'].append(name) self.document.note_citation(citation) self.document.note_explicit_target(citation, citation) if indented: self.nested_parse(indented, input_offset=offset, node=citation) return [citation], blank_finish def hyperlink_target(self, match): pattern = self.explicit.patterns.target lineno = self.state_machine.abs_line_number() block, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented( match.end(), until_blank=1, strip_indent=0) blocktext = match.string[:match.end()] + '\n'.join(block) block = [escape2null(line) for line in block] escaped = block[0] blockindex = 0 while 1: targetmatch = pattern.match(escaped) if targetmatch: break blockindex += 1 try: escaped += block[blockindex] except IndexError: raise MarkupError('malformed hyperlink target.', lineno) del block[:blockindex] block[0] = (block[0] + ' ')[targetmatch.end()-len(escaped)-1:].strip() target = self.make_target(block, blocktext, lineno, targetmatch.group('name')) return [target], blank_finish def make_target(self, block, block_text, lineno, target_name): target_type, data = self.parse_target(block, block_text, lineno) if target_type == 'refname': target = nodes.target(block_text, '', refname=normalize_name(data)) target.indirect_reference_name = data self.add_target(target_name, '', target, lineno) self.document.note_indirect_target(target) return target elif target_type == 'refuri': target = nodes.target(block_text, '') self.add_target(target_name, data, target, lineno) return target else: return data def parse_target(self, block, block_text, lineno): """ Determine the type of reference of a target. :Return: A 2-tuple, one of: - 'refname' and the indirect reference name - 'refuri' and the URI - 'malformed' and a system_message node """ if block and block[-1].strip()[-1:] == '_': # possible indirect target reference = ' '.join([line.strip() for line in block]) refname = self.is_reference(reference) if refname: return 'refname', refname reference = ''.join([''.join(line.split()) for line in block]) return 'refuri', unescape(reference) def is_reference(self, reference): match = self.explicit.patterns.reference.match( whitespace_normalize_name(reference)) if not match: return None return unescape(match.group('simple') or match.group('phrase')) def add_target(self, targetname, refuri, target, lineno): target.line = lineno if targetname: name = normalize_name(unescape(targetname)) target['names'].append(name) if refuri: uri = self.inliner.adjust_uri(refuri) if uri: target['refuri'] = uri else: raise ApplicationError('problem with URI: %r' % refuri) self.document.note_explicit_target(target, self.parent) else: # anonymous target if refuri: target['refuri'] = refuri target['anonymous'] = 1 self.document.note_anonymous_target(target) def substitution_def(self, match): pattern = self.explicit.patterns.substitution lineno = self.state_machine.abs_line_number() block, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end(), strip_indent=0) blocktext = (match.string[:match.end()] + '\n'.join(block)) block.disconnect() escaped = escape2null(block[0].rstrip()) blockindex = 0 while 1: subdefmatch = pattern.match(escaped) if subdefmatch: break blockindex += 1 try: escaped = escaped + ' ' + escape2null(block[blockindex].strip()) except IndexError: raise MarkupError('malformed substitution definition.', lineno) del block[:blockindex] # strip out the substitution marker block[0] = (block[0].strip() + ' ')[subdefmatch.end()-len(escaped)-1:-1] if not block[0]: del block[0] offset += 1 while block and not block[-1].strip(): block.pop() subname = subdefmatch.group('name') substitution_node = nodes.substitution_definition(blocktext) substitution_node.line = lineno if not block: msg = self.reporter.warning( 'Substitution definition "%s" missing contents.' % subname, nodes.literal_block(blocktext, blocktext), line=lineno) return [msg], blank_finish block[0] = block[0].strip() substitution_node['names'].append( nodes.whitespace_normalize_name(subname)) new_abs_offset, blank_finish = self.nested_list_parse( block, input_offset=offset, node=substitution_node, initial_state='SubstitutionDef', blank_finish=blank_finish) i = 0 for node in substitution_node[:]: if not (isinstance(node, nodes.Inline) or isinstance(node, nodes.Text)): self.parent += substitution_node[i] del substitution_node[i] else: i += 1 for node in substitution_node.traverse(nodes.Element): if self.disallowed_inside_substitution_definitions(node): pformat = nodes.literal_block('', node.pformat().rstrip()) msg = self.reporter.error( 'Substitution definition contains illegal element:', pformat, nodes.literal_block(blocktext, blocktext), line=lineno) return [msg], blank_finish if len(substitution_node) == 0: msg = self.reporter.warning( 'Substitution definition "%s" empty or invalid.' % subname, nodes.literal_block(blocktext, blocktext), line=lineno) return [msg], blank_finish self.document.note_substitution_def( substitution_node, subname, self.parent) return [substitution_node], blank_finish def disallowed_inside_substitution_definitions(self, node): if (node['ids'] or isinstance(node, nodes.reference) and node.get('anonymous') or isinstance(node, nodes.footnote_reference) and node.get('auto')): return 1 else: return 0 def directive(self, match, **option_presets): """Returns a 2-tuple: list of nodes, and a "blank finish" boolean.""" type_name = match.group(1) directive_class, messages = directives.directive( type_name, self.memo.language, self.document) self.parent += messages if directive_class: return self.run_directive( directive_class, match, type_name, option_presets) else: return self.unknown_directive(type_name) def run_directive(self, directive, match, type_name, option_presets): """ Parse a directive then run its directive function. Parameters: - `directive`: The class implementing the directive. Must be a subclass of `rst.Directive`. - `match`: A regular expression match object which matched the first line of the directive. - `type_name`: The directive name, as used in the source text. - `option_presets`: A dictionary of preset options, defaults for the directive options. Currently, only an "alt" option is passed by substitution definitions (value: the substitution name), which may be used by an embedded image directive. Returns a 2-tuple: list of nodes, and a "blank finish" boolean. """ if isinstance(directive, (FunctionType, MethodType)): from docutils.parsers.rst import convert_directive_function directive = convert_directive_function(directive) lineno = self.state_machine.abs_line_number() initial_line_offset = self.state_machine.line_offset indented, indent, line_offset, blank_finish \ = self.state_machine.get_first_known_indented(match.end(), strip_top=0) block_text = '\n'.join(self.state_machine.input_lines[ initial_line_offset : self.state_machine.line_offset + 1]) try: arguments, options, content, content_offset = ( self.parse_directive_block(indented, line_offset, directive, option_presets)) except MarkupError, detail: error = self.reporter.error( 'Error in "%s" directive:\n%s.' % (type_name, ' '.join(detail.args)), nodes.literal_block(block_text, block_text), line=lineno) return [error], blank_finish directive_instance = directive( type_name, arguments, options, content, lineno, content_offset, block_text, self, self.state_machine) try: result = directive_instance.run() except docutils.parsers.rst.DirectiveError, error: msg_node = self.reporter.system_message(error.level, error.msg, source=error.source, line=error.line) msg_node += nodes.literal_block(block_text, block_text) msg_node['line'] = lineno result = [msg_node] assert isinstance(result, list), \ 'Directive "%s" must return a list of nodes.' % type_name for i in range(len(result)): assert isinstance(result[i], nodes.Node), \ ('Directive "%s" returned non-Node object (index %s): %r' % (type_name, i, result[i])) return (result, blank_finish or self.state_machine.is_next_line_blank()) def parse_directive_block(self, indented, line_offset, directive, option_presets): option_spec = directive.option_spec has_content = directive.has_content if indented and not indented[0].strip(): indented.trim_start() line_offset += 1 while indented and not indented[-1].strip(): indented.trim_end() if indented and (directive.required_arguments or directive.optional_arguments or option_spec): for i in range(len(indented)): if not indented[i].strip(): break else: i += 1 arg_block = indented[:i] content = indented[i+1:] content_offset = line_offset + i + 1 else: content = indented content_offset = line_offset arg_block = [] while content and not content[0].strip(): content.trim_start() content_offset += 1 if option_spec: options, arg_block = self.parse_directive_options( option_presets, option_spec, arg_block) if arg_block and not (directive.required_arguments or directive.optional_arguments): raise MarkupError('no arguments permitted; blank line ' 'required before content block') else: options = {} if directive.required_arguments or directive.optional_arguments: arguments = self.parse_directive_arguments( directive, arg_block) else: arguments = [] if content and not has_content: raise MarkupError('no content permitted') return (arguments, options, content, content_offset) def parse_directive_options(self, option_presets, option_spec, arg_block): options = option_presets.copy() for i in range(len(arg_block)): if arg_block[i][:1] == ':': opt_block = arg_block[i:] arg_block = arg_block[:i] break else: opt_block = [] if opt_block: success, data = self.parse_extension_options(option_spec, opt_block) if success: # data is a dict of options options.update(data) else: # data is an error string raise MarkupError(data) return options, arg_block def parse_directive_arguments(self, directive, arg_block): required = directive.required_arguments optional = directive.optional_arguments arg_text = '\n'.join(arg_block) arguments = arg_text.split() if len(arguments) < required: raise MarkupError('%s argument(s) required, %s supplied' % (required, len(arguments))) elif len(arguments) > required + optional: if directive.final_argument_whitespace: arguments = arg_text.split(None, required + optional - 1) else: raise MarkupError( 'maximum %s argument(s) allowed, %s supplied' % (required + optional, len(arguments))) return arguments def parse_extension_options(self, option_spec, datalines): """ Parse `datalines` for a field list containing extension options matching `option_spec`. :Parameters: - `option_spec`: a mapping of option name to conversion function, which should raise an exception on bad input. - `datalines`: a list of input strings. :Return: - Success value, 1 or 0. - An option dictionary on success, an error string on failure. """ node = nodes.field_list() newline_offset, blank_finish = self.nested_list_parse( datalines, 0, node, initial_state='ExtensionOptions', blank_finish=1) if newline_offset != len(datalines): # incomplete parse of block return 0, 'invalid option block' try: options = utils.extract_extension_options(node, option_spec) except KeyError, detail: return 0, ('unknown option: "%s"' % detail.args[0]) except (ValueError, TypeError), detail: return 0, ('invalid option value: %s' % ' '.join(detail.args)) except utils.ExtensionOptionError, detail: return 0, ('invalid option data: %s' % ' '.join(detail.args)) if blank_finish: return 1, options else: return 0, 'option data incompletely parsed' def unknown_directive(self, type_name): lineno = self.state_machine.abs_line_number() indented, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented(0, strip_indent=0) text = '\n'.join(indented) error = self.reporter.error( 'Unknown directive type "%s".' % type_name, nodes.literal_block(text, text), line=lineno) return [error], blank_finish def comment(self, match): if not match.string[match.end():].strip() \ and self.state_machine.is_next_line_blank(): # an empty comment? return [nodes.comment()], 1 # "A tiny but practical wart." indented, indent, offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end()) while indented and not indented[-1].strip(): indented.trim_end() text = '\n'.join(indented) return [nodes.comment(text, text)], blank_finish explicit.constructs = [ (footnote, re.compile(r""" \.\.[ ]+ # explicit markup start \[ ( # footnote label: [0-9]+ # manually numbered footnote | # *OR* \# # anonymous auto-numbered footnote | # *OR* \#%s # auto-number ed?) footnote label | # *OR* \* # auto-symbol footnote ) \] ([ ]+|$) # whitespace or end of line """ % Inliner.simplename, re.VERBOSE | re.UNICODE)), (citation, re.compile(r""" \.\.[ ]+ # explicit markup start \[(%s)\] # citation label ([ ]+|$) # whitespace or end of line """ % Inliner.simplename, re.VERBOSE | re.UNICODE)), (hyperlink_target, re.compile(r""" \.\.[ ]+ # explicit markup start _ # target indicator (?![ ]|$) # first char. not space or EOL """, re.VERBOSE)), (substitution_def, re.compile(r""" \.\.[ ]+ # explicit markup start \| # substitution indicator (?![ ]|$) # first char. not space or EOL """, re.VERBOSE)), (directive, re.compile(r""" \.\.[ ]+ # explicit markup start (%s) # directive name [ ]? # optional space :: # directive delimiter ([ ]+|$) # whitespace or end of line """ % Inliner.simplename, re.VERBOSE | re.UNICODE))] def explicit_markup(self, match, context, next_state): """Footnotes, hyperlink targets, directives, comments.""" nodelist, blank_finish = self.explicit_construct(match) self.parent += nodelist self.explicit_list(blank_finish) return [], next_state, [] def explicit_construct(self, match): """Determine which explicit construct this is, parse & return it.""" errors = [] for method, pattern in self.explicit.constructs: expmatch = pattern.match(match.string) if expmatch: try: return method(self, expmatch) except MarkupError, error: # never reached? message, lineno = error.args errors.append(self.reporter.warning(message, line=lineno)) break nodelist, blank_finish = self.comment(match) return nodelist + errors, blank_finish def explicit_list(self, blank_finish): """ Create a nested state machine for a series of explicit markup constructs (including anonymous hyperlink targets). """ offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=self.parent, initial_state='Explicit', blank_finish=blank_finish, match_titles=self.state_machine.match_titles) self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning('Explicit markup') def anonymous(self, match, context, next_state): """Anonymous hyperlink targets.""" nodelist, blank_finish = self.anonymous_target(match) self.parent += nodelist self.explicit_list(blank_finish) return [], next_state, [] def anonymous_target(self, match): lineno = self.state_machine.abs_line_number() block, indent, offset, blank_finish \ = self.state_machine.get_first_known_indented(match.end(), until_blank=1) blocktext = match.string[:match.end()] + '\n'.join(block) block = [escape2null(line) for line in block] target = self.make_target(block, blocktext, lineno, '') return [target], blank_finish def line(self, match, context, next_state): """Section title overline or transition marker.""" if self.state_machine.match_titles: return [match.string], 'Line', [] elif match.string.strip() == '::': raise statemachine.TransitionCorrection('text') elif len(match.string.strip()) < 4: msg = self.reporter.info( 'Unexpected possible title overline or transition.\n' "Treating it as ordinary text because it's so short.", line=self.state_machine.abs_line_number()) self.parent += msg raise statemachine.TransitionCorrection('text') else: blocktext = self.state_machine.line msg = self.reporter.severe( 'Unexpected section title or transition.', nodes.literal_block(blocktext, blocktext), line=self.state_machine.abs_line_number()) self.parent += msg return [], next_state, [] def text(self, match, context, next_state): """Titles, definition lists, paragraphs.""" return [match.string], 'Text', [] class RFC2822Body(Body): """ RFC2822 headers are only valid as the first constructs in documents. As soon as anything else appears, the `Body` state should take over. """ patterns = Body.patterns.copy() # can't modify the original patterns['rfc2822'] = r'[!-9;-~]+:( +|$)' initial_transitions = [(name, 'Body') for name in Body.initial_transitions] initial_transitions.insert(-1, ('rfc2822', 'Body')) # just before 'text' def rfc2822(self, match, context, next_state): """RFC2822-style field list item.""" fieldlist = nodes.field_list(classes=['rfc2822']) self.parent += fieldlist field, blank_finish = self.rfc2822_field(match) fieldlist += field offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=fieldlist, initial_state='RFC2822List', blank_finish=blank_finish) self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning( 'RFC2822-style field list') return [], next_state, [] def rfc2822_field(self, match): name = match.string[:match.string.find(':')] indented, indent, line_offset, blank_finish = \ self.state_machine.get_first_known_indented(match.end(), until_blank=1) fieldnode = nodes.field() fieldnode += nodes.field_name(name, name) fieldbody = nodes.field_body('\n'.join(indented)) fieldnode += fieldbody if indented: self.nested_parse(indented, input_offset=line_offset, node=fieldbody) return fieldnode, blank_finish class SpecializedBody(Body): """ Superclass for second and subsequent compound element members. Compound elements are lists and list-like constructs. All transition methods are disabled (redefined as `invalid_input`). Override individual methods in subclasses to re-enable. For example, once an initial bullet list item, say, is recognized, the `BulletList` subclass takes over, with a "bullet_list" node as its container. Upon encountering the initial bullet list item, `Body.bullet` calls its ``self.nested_list_parse`` (`RSTState.nested_list_parse`), which starts up a nested parsing session with `BulletList` as the initial state. Only the ``bullet`` transition method is enabled in `BulletList`; as long as only bullet list items are encountered, they are parsed and inserted into the container. The first construct which is *not* a bullet list item triggers the `invalid_input` method, which ends the nested parse and closes the container. `BulletList` needs to recognize input that is invalid in the context of a bullet list, which means everything *other than* bullet list items, so it inherits the transition list created in `Body`. """ def invalid_input(self, match=None, context=None, next_state=None): """Not a compound element member. Abort this state machine.""" self.state_machine.previous_line() # back up so parent SM can reassess raise EOFError indent = invalid_input bullet = invalid_input enumerator = invalid_input field_marker = invalid_input option_marker = invalid_input doctest = invalid_input line_block = invalid_input grid_table_top = invalid_input simple_table_top = invalid_input explicit_markup = invalid_input anonymous = invalid_input line = invalid_input text = invalid_input class BulletList(SpecializedBody): """Second and subsequent bullet_list list_items.""" def bullet(self, match, context, next_state): """Bullet list item.""" if match.string[0] != self.parent['bullet']: # different bullet: new list self.invalid_input() listitem, blank_finish = self.list_item(match.end()) self.parent += listitem self.blank_finish = blank_finish return [], next_state, [] class DefinitionList(SpecializedBody): """Second and subsequent definition_list_items.""" def text(self, match, context, next_state): """Definition lists.""" return [match.string], 'Definition', [] class EnumeratedList(SpecializedBody): """Second and subsequent enumerated_list list_items.""" def enumerator(self, match, context, next_state): """Enumerated list item.""" format, sequence, text, ordinal = self.parse_enumerator( match, self.parent['enumtype']) if ( format != self.format or (sequence != '#' and (sequence != self.parent['enumtype'] or self.auto or ordinal != (self.lastordinal + 1))) or not self.is_enumerated_list_item(ordinal, sequence, format)): # different enumeration: new list self.invalid_input() if sequence == '#': self.auto = 1 listitem, blank_finish = self.list_item(match.end()) self.parent += listitem self.blank_finish = blank_finish self.lastordinal = ordinal return [], next_state, [] class FieldList(SpecializedBody): """Second and subsequent field_list fields.""" def field_marker(self, match, context, next_state): """Field list field.""" field, blank_finish = self.field(match) self.parent += field self.blank_finish = blank_finish return [], next_state, [] class OptionList(SpecializedBody): """Second and subsequent option_list option_list_items.""" def option_marker(self, match, context, next_state): """Option list item.""" try: option_list_item, blank_finish = self.option_list_item(match) except MarkupError, (message, lineno): self.invalid_input() self.parent += option_list_item self.blank_finish = blank_finish return [], next_state, [] class RFC2822List(SpecializedBody, RFC2822Body): """Second and subsequent RFC2822-style field_list fields.""" patterns = RFC2822Body.patterns initial_transitions = RFC2822Body.initial_transitions def rfc2822(self, match, context, next_state): """RFC2822-style field list item.""" field, blank_finish = self.rfc2822_field(match) self.parent += field self.blank_finish = blank_finish return [], 'RFC2822List', [] blank = SpecializedBody.invalid_input class ExtensionOptions(FieldList): """ Parse field_list fields for extension options. No nested parsing is done (including inline markup parsing). """ def parse_field_body(self, indented, offset, node): """Override `Body.parse_field_body` for simpler parsing.""" lines = [] for line in list(indented) + ['']: if line.strip(): lines.append(line) elif lines: text = '\n'.join(lines) node += nodes.paragraph(text, text) lines = [] class LineBlock(SpecializedBody): """Second and subsequent lines of a line_block.""" blank = SpecializedBody.invalid_input def line_block(self, match, context, next_state): """New line of line block.""" lineno = self.state_machine.abs_line_number() line, messages, blank_finish = self.line_block_line(match, lineno) self.parent += line self.parent.parent += messages self.blank_finish = blank_finish return [], next_state, [] class Explicit(SpecializedBody): """Second and subsequent explicit markup construct.""" def explicit_markup(self, match, context, next_state): """Footnotes, hyperlink targets, directives, comments.""" nodelist, blank_finish = self.explicit_construct(match) self.parent += nodelist self.blank_finish = blank_finish return [], next_state, [] def anonymous(self, match, context, next_state): """Anonymous hyperlink targets.""" nodelist, blank_finish = self.anonymous_target(match) self.parent += nodelist self.blank_finish = blank_finish return [], next_state, [] blank = SpecializedBody.invalid_input class SubstitutionDef(Body): """ Parser for the contents of a substitution_definition element. """ patterns = { 'embedded_directive': re.compile(r'(%s)::( +|$)' % Inliner.simplename, re.UNICODE), 'text': r''} initial_transitions = ['embedded_directive', 'text'] def embedded_directive(self, match, context, next_state): nodelist, blank_finish = self.directive(match, alt=self.parent['names'][0]) self.parent += nodelist if not self.state_machine.at_eof(): self.blank_finish = blank_finish raise EOFError def text(self, match, context, next_state): if not self.state_machine.at_eof(): self.blank_finish = self.state_machine.is_next_line_blank() raise EOFError class Text(RSTState): """ Classifier of second line of a text block. Could be a paragraph, a definition list item, or a title. """ patterns = {'underline': Body.patterns['line'], 'text': r''} initial_transitions = [('underline', 'Body'), ('text', 'Body')] def blank(self, match, context, next_state): """End of paragraph.""" paragraph, literalnext = self.paragraph( context, self.state_machine.abs_line_number() - 1) self.parent += paragraph if literalnext: self.parent += self.literal_block() return [], 'Body', [] def eof(self, context): if context: self.blank(None, context, None) return [] def indent(self, match, context, next_state): """Definition list item.""" definitionlist = nodes.definition_list() definitionlistitem, blank_finish = self.definition_list_item(context) definitionlist += definitionlistitem self.parent += definitionlist offset = self.state_machine.line_offset + 1 # next line newline_offset, blank_finish = self.nested_list_parse( self.state_machine.input_lines[offset:], input_offset=self.state_machine.abs_line_offset() + 1, node=definitionlist, initial_state='DefinitionList', blank_finish=blank_finish, blank_finish_state='Definition') self.goto_line(newline_offset) if not blank_finish: self.parent += self.unindent_warning('Definition list') return [], 'Body', [] def underline(self, match, context, next_state): """Section title.""" lineno = self.state_machine.abs_line_number() title = context[0].rstrip() underline = match.string.rstrip() source = title + '\n' + underline messages = [] if column_width(title) > len(underline): if len(underline) < 4: if self.state_machine.match_titles: msg = self.reporter.info( 'Possible title underline, too short for the title.\n' "Treating it as ordinary text because it's so short.", line=lineno) self.parent += msg raise statemachine.TransitionCorrection('text') else: blocktext = context[0] + '\n' + self.state_machine.line msg = self.reporter.warning( 'Title underline too short.', nodes.literal_block(blocktext, blocktext), line=lineno) messages.append(msg) if not self.state_machine.match_titles: blocktext = context[0] + '\n' + self.state_machine.line msg = self.reporter.severe( 'Unexpected section title.', nodes.literal_block(blocktext, blocktext), line=lineno) self.parent += messages self.parent += msg return [], next_state, [] style = underline[0] context[:] = [] self.section(title, source, style, lineno - 1, messages) return [], next_state, [] def text(self, match, context, next_state): """Paragraph.""" startline = self.state_machine.abs_line_number() - 1 msg = None try: block = self.state_machine.get_text_block(flush_left=1) except statemachine.UnexpectedIndentationError, instance: block, source, lineno = instance.args msg = self.reporter.error('Unexpected indentation.', source=source, line=lineno) lines = context + list(block) paragraph, literalnext = self.paragraph(lines, startline) self.parent += paragraph self.parent += msg if literalnext: try: self.state_machine.next_line() except EOFError: pass self.parent += self.literal_block() return [], next_state, [] def literal_block(self): """Return a list of nodes.""" indented, indent, offset, blank_finish = \ self.state_machine.get_indented() while indented and not indented[-1].strip(): indented.trim_end() if not indented: return self.quoted_literal_block() data = '\n'.join(indented) literal_block = nodes.literal_block(data, data) literal_block.line = offset + 1 nodelist = [literal_block] if not blank_finish: nodelist.append(self.unindent_warning('Literal block')) return nodelist def quoted_literal_block(self): abs_line_offset = self.state_machine.abs_line_offset() offset = self.state_machine.line_offset parent_node = nodes.Element() new_abs_offset = self.nested_parse( self.state_machine.input_lines[offset:], input_offset=abs_line_offset, node=parent_node, match_titles=0, state_machine_kwargs={'state_classes': (QuotedLiteralBlock,), 'initial_state': 'QuotedLiteralBlock'}) self.goto_line(new_abs_offset) return parent_node.children def definition_list_item(self, termline): indented, indent, line_offset, blank_finish = \ self.state_machine.get_indented() definitionlistitem = nodes.definition_list_item( '\n'.join(termline + list(indented))) lineno = self.state_machine.abs_line_number() - 1 definitionlistitem.line = lineno termlist, messages = self.term(termline, lineno) definitionlistitem += termlist definition = nodes.definition('', *messages) definitionlistitem += definition if termline[0][-2:] == '::': definition += self.reporter.info( 'Blank line missing before literal block (after the "::")? ' 'Interpreted as a definition list item.', line=line_offset+1) self.nested_parse(indented, input_offset=line_offset, node=definition) return definitionlistitem, blank_finish classifier_delimiter = re.compile(' +: +') def term(self, lines, lineno): """Return a definition_list's term and optional classifiers.""" assert len(lines) == 1 text_nodes, messages = self.inline_text(lines[0], lineno) term_node = nodes.term() node_list = [term_node] for i in range(len(text_nodes)): node = text_nodes[i] if isinstance(node, nodes.Text): parts = self.classifier_delimiter.split(node.rawsource) if len(parts) == 1: node_list[-1] += node else: node_list[-1] += nodes.Text(parts[0].rstrip()) for part in parts[1:]: classifier_node = nodes.classifier('', part) node_list.append(classifier_node) else: node_list[-1] += node return node_list, messages class SpecializedText(Text): """ Superclass for second and subsequent lines of Text-variants. All transition methods are disabled. Override individual methods in subclasses to re-enable. """ def eof(self, context): """Incomplete construct.""" return [] def invalid_input(self, match=None, context=None, next_state=None): """Not a compound element member. Abort this state machine.""" raise EOFError blank = invalid_input indent = invalid_input underline = invalid_input text = invalid_input class Definition(SpecializedText): """Second line of potential definition_list_item.""" def eof(self, context): """Not a definition.""" self.state_machine.previous_line(2) # so parent SM can reassess return [] def indent(self, match, context, next_state): """Definition list item.""" definitionlistitem, blank_finish = self.definition_list_item(context) self.parent += definitionlistitem self.blank_finish = blank_finish return [], 'DefinitionList', [] class Line(SpecializedText): """ Second line of over- & underlined section title or transition marker. """ eofcheck = 1 # @@@ ??? """Set to 0 while parsing sections, so that we don't catch the EOF.""" def eof(self, context): """Transition marker at end of section or document.""" marker = context[0].strip() if self.memo.section_bubble_up_kludge: self.memo.section_bubble_up_kludge = 0 elif len(marker) < 4: self.state_correction(context) if self.eofcheck: # ignore EOFError with sections lineno = self.state_machine.abs_line_number() - 1 transition = nodes.transition(rawsource=context[0]) transition.line = lineno self.parent += transition self.eofcheck = 1 return [] def blank(self, match, context, next_state): """Transition marker.""" lineno = self.state_machine.abs_line_number() - 1 marker = context[0].strip() if len(marker) < 4: self.state_correction(context) transition = nodes.transition(rawsource=marker) transition.line = lineno self.parent += transition return [], 'Body', [] def text(self, match, context, next_state): """Potential over- & underlined title.""" lineno = self.state_machine.abs_line_number() - 1 overline = context[0] title = match.string underline = '' try: underline = self.state_machine.next_line() except EOFError: blocktext = overline + '\n' + title if len(overline.rstrip()) < 4: self.short_overline(context, blocktext, lineno, 2) else: msg = self.reporter.severe( 'Incomplete section title.', nodes.literal_block(blocktext, blocktext), line=lineno) self.parent += msg return [], 'Body', [] source = '%s\n%s\n%s' % (overline, title, underline) overline = overline.rstrip() underline = underline.rstrip() if not self.transitions['underline'][0].match(underline): blocktext = overline + '\n' + title + '\n' + underline if len(overline.rstrip()) < 4: self.short_overline(context, blocktext, lineno, 2) else: msg = self.reporter.severe( 'Missing matching underline for section title overline.', nodes.literal_block(source, source), line=lineno) self.parent += msg return [], 'Body', [] elif overline != underline: blocktext = overline + '\n' + title + '\n' + underline if len(overline.rstrip()) < 4: self.short_overline(context, blocktext, lineno, 2) else: msg = self.reporter.severe( 'Title overline & underline mismatch.', nodes.literal_block(source, source), line=lineno) self.parent += msg return [], 'Body', [] title = title.rstrip() messages = [] if column_width(title) > len(overline): blocktext = overline + '\n' + title + '\n' + underline if len(overline.rstrip()) < 4: self.short_overline(context, blocktext, lineno, 2) else: msg = self.reporter.warning( 'Title overline too short.', nodes.literal_block(source, source), line=lineno) messages.append(msg) style = (overline[0], underline[0]) self.eofcheck = 0 # @@@ not sure this is correct self.section(title.lstrip(), source, style, lineno + 1, messages) self.eofcheck = 1 return [], 'Body', [] indent = text # indented title def underline(self, match, context, next_state): overline = context[0] blocktext = overline + '\n' + self.state_machine.line lineno = self.state_machine.abs_line_number() - 1 if len(overline.rstrip()) < 4: self.short_overline(context, blocktext, lineno, 1) msg = self.reporter.error( 'Invalid section title or transition marker.', nodes.literal_block(blocktext, blocktext), line=lineno) self.parent += msg return [], 'Body', [] def short_overline(self, context, blocktext, lineno, lines=1): msg = self.reporter.info( 'Possible incomplete section title.\nTreating the overline as ' "ordinary text because it's so short.", line=lineno) self.parent += msg self.state_correction(context, lines) def state_correction(self, context, lines=1): self.state_machine.previous_line(lines) context[:] = [] raise statemachine.StateCorrection('Body', 'text') class QuotedLiteralBlock(RSTState): """ Nested parse handler for quoted (unindented) literal blocks. Special-purpose. Not for inclusion in `state_classes`. """ patterns = {'initial_quoted': r'(%(nonalphanum7bit)s)' % Body.pats, 'text': r''} initial_transitions = ('initial_quoted', 'text') def __init__(self, state_machine, debug=0): RSTState.__init__(self, state_machine, debug) self.messages = [] self.initial_lineno = None def blank(self, match, context, next_state): if context: raise EOFError else: return context, next_state, [] def eof(self, context): if context: text = '\n'.join(context) literal_block = nodes.literal_block(text, text) literal_block.line = self.initial_lineno self.parent += literal_block else: self.parent += self.reporter.warning( 'Literal block expected; none found.', line=self.state_machine.abs_line_number()) self.state_machine.previous_line() self.parent += self.messages return [] def indent(self, match, context, next_state): assert context, ('QuotedLiteralBlock.indent: context should not ' 'be empty!') self.messages.append( self.reporter.error('Unexpected indentation.', line=self.state_machine.abs_line_number())) self.state_machine.previous_line() raise EOFError def initial_quoted(self, match, context, next_state): """Match arbitrary quote character on the first line only.""" self.remove_transition('initial_quoted') quote = match.string[0] pattern = re.compile(re.escape(quote)) # New transition matches consistent quotes only: self.add_transition('quoted', (pattern, self.quoted, self.__class__.__name__)) self.initial_lineno = self.state_machine.abs_line_number() return [match.string], next_state, [] def quoted(self, match, context, next_state): """Match consistent quotes on subsequent lines.""" context.append(match.string) return context, next_state, [] def text(self, match, context, next_state): if context: self.messages.append( self.reporter.error('Inconsistent literal block quoting.', line=self.state_machine.abs_line_number())) self.state_machine.previous_line() raise EOFError state_classes = (Body, BulletList, DefinitionList, EnumeratedList, FieldList, OptionList, LineBlock, ExtensionOptions, Explicit, Text, Definition, Line, SubstitutionDef, RFC2822Body, RFC2822List) """Standard set of State classes used to start `RSTStateMachine`."""
42.080758
80
0.561882
794049ab2fe8bf96ec65e8c63971e44e7b835705
1,196
py
Python
angr/engines/vex/statements/store.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
2
2018-12-03T23:14:56.000Z
2018-12-03T23:15:57.000Z
angr/engines/vex/statements/store.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
null
null
null
angr/engines/vex/statements/store.py
mariusmue/angr
f8304c4b1f0097a721a6692b02a45cabaae137c5
[ "BSD-2-Clause" ]
1
2022-02-10T02:29:38.000Z
2022-02-10T02:29:38.000Z
from . import SimIRStmt from .... import sim_options as o from ....state_plugins.sim_action_object import SimActionObject from ....state_plugins.sim_action import SimActionData class SimIRStmt_Store(SimIRStmt): def _execute(self): # first resolve the address and record stuff addr = self._translate_expr(self.stmt.addr) # now get the value and track everything data = self._translate_expr(self.stmt.data) expr = data.expr.raw_to_bv() # track the write if o.TRACK_MEMORY_ACTIONS in self.state.options: data_ao = SimActionObject(expr, reg_deps=data.reg_deps(), tmp_deps=data.tmp_deps()) addr_ao = SimActionObject(addr.expr, reg_deps=addr.reg_deps(), tmp_deps=addr.tmp_deps()) size_ao = SimActionObject(data.size_bits()) a = SimActionData(self.state, SimActionData.MEM, SimActionData.WRITE, data=data_ao, size=size_ao, addr=addr_ao) self.actions.append(a) else: a = None # Now do the store (if we should) if o.DO_STORES in self.state.options: self.state.memory.store(addr.expr, data.expr, action=a, endness=self.stmt.endness)
41.241379
123
0.674749
794049e4f30221372ed41ef964148f0d3c91f09b
629
py
Python
InventoryManager/product/models.py
FuryAndRage/InventoryManager
bbb7318dae6bf40da81ed02a0f547019f031778f
[ "MIT" ]
null
null
null
InventoryManager/product/models.py
FuryAndRage/InventoryManager
bbb7318dae6bf40da81ed02a0f547019f031778f
[ "MIT" ]
null
null
null
InventoryManager/product/models.py
FuryAndRage/InventoryManager
bbb7318dae6bf40da81ed02a0f547019f031778f
[ "MIT" ]
null
null
null
from django.db import models from InventoryManager.category.models import Category from django.contrib.auth.models import User class Product(models.Model): user = models.ForeignKey(User, on_delete = models.CASCADE) category = models.ForeignKey(Category, on_delete = models.CASCADE, verbose_name = 'Category') product_name = models.CharField('Product', max_length = 255) product_description = models.TextField(null = True) product_quantity = models.IntegerField(default = 0) product_image = models.ImageField(upload_to = 'product/', null=True) def __str__(self): return self.product_name
41.933333
97
0.750397
79404b66bddf932db6f8dacdf5ef5085f91e55f4
5,188
py
Python
MyApi/settings.py
CodeEnvironment/django-rest-framework-deploy-heroku
c6ffb20961c193b0f4dc1289de904b5d6750f335
[ "MIT" ]
3
2021-04-05T14:02:44.000Z
2022-01-25T07:50:20.000Z
MyApi/settings.py
CodeEnvironment/django-rest-framework-deploy-heroku
c6ffb20961c193b0f4dc1289de904b5d6750f335
[ "MIT" ]
null
null
null
MyApi/settings.py
CodeEnvironment/django-rest-framework-deploy-heroku
c6ffb20961c193b0f4dc1289de904b5d6750f335
[ "MIT" ]
1
2022-01-23T15:09:59.000Z
2022-01-23T15:09:59.000Z
""" Django settings for MyApi project. Generated by 'django-admin startproject' using Django 2.2.5. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os from decouple import config from dj_database_url import parse as dburl # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) ALLOWED_HOSTS = ['127.0.0.1','dj-test-api.herokuapp.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'allauth.socialaccount', 'rest_framework.authtoken', 'rest_auth', 'django.contrib.sites', 'allauth', 'allauth.account', 'rest_auth.registration', 'firstApp', 'cars', 'posts', 'userapp', 'school', 'racing', 'weather.apps.WeatherConfig', ] SITE_ID = 1 MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'MyApi.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'MyApi.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases # DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # } # } default_dburl = 'sqlite:///' + os.path.join(BASE_DIR, 'db.sqlite3') DATABASES = { 'default': config('DATABASE_URL', default=default_dburl, cast=dburl), } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ # 'rest_framework.authentication.BasicAuthentication', # 'rest_framework.authentication.SessionAuthentication', 'rest_framework.authentication.TokenAuthentication', #'rest_framework_simplejwt.authentication.JWTAuthentication', ], 'DEFAULT_PERMISSION_CLASSES': [ # 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly' # 'rest_framework.permissions.IsAuthenticated', 'rest_framework.permissions.AllowAny', ], 'TEST_REQUEST_RENDERER_CLASSES': [ 'rest_framework.renderers.MultiPartRenderer', 'rest_framework.renderers.JSONRenderer', 'rest_framework.renderers.TemplateHTMLRenderer' ], 'DEFAULT_THROTTLE_CLASSES': [ 'rest_framework.throttling.ScopedRateThrottle', ], 'DEFAULT_THROTTLE_RATES': { 'cars_app': '50/day', 'first_app': '4/day' } } REST_AUTH_SERIALIZERS = { 'USER_DETAILS_SERIALIZER': 'userapp.serializer.UserDetailsSerializer' } CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache', 'LOCATION': 'C:/Users/Python/Desktop/MyApi', } } # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR,'staticfiles') AUTH_USER_MODEL = 'userapp.User' ACCOUNT_EMAIL_REQUIRED = False #gmail_send/settings.py EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = 'smtp.gmail.com' EMAIL_HOST_USER = '[email protected]' EMAIL_HOST_PASSWORD = 'emqcfqqghtgndxqq' EMAIL_PORT = 587 EMAIL_USE_TLS = True DEFAULT_FROM_EMAIL = 'default from email'
26.605128
91
0.694873
79404b9091f4c9236ab4474e061ef2151e98c910
66
py
Python
kpi/unical_accounts/__init__.py
UniversitaDellaCalabria/kpiManagement
d045a464298e17f50e005b89ba3b71e53d57f368
[ "Apache-2.0" ]
null
null
null
kpi/unical_accounts/__init__.py
UniversitaDellaCalabria/kpiManagement
d045a464298e17f50e005b89ba3b71e53d57f368
[ "Apache-2.0" ]
null
null
null
kpi/unical_accounts/__init__.py
UniversitaDellaCalabria/kpiManagement
d045a464298e17f50e005b89ba3b71e53d57f368
[ "Apache-2.0" ]
1
2022-03-28T10:48:38.000Z
2022-03-28T10:48:38.000Z
default_app_config = 'unical_accounts.apps.Unical_AccountsConfig'
33
65
0.878788
79404bc719dededb5333373b2d7cb689679a62f2
4,414
py
Python
Database.py
itsp300/attendance_facial_recognition
0f49998ebbe35d350443c2f0b7e24060635066ee
[ "MIT" ]
null
null
null
Database.py
itsp300/attendance_facial_recognition
0f49998ebbe35d350443c2f0b7e24060635066ee
[ "MIT" ]
null
null
null
Database.py
itsp300/attendance_facial_recognition
0f49998ebbe35d350443c2f0b7e24060635066ee
[ "MIT" ]
null
null
null
import sqlite3 from sqlite3 import Error def convert_tuple(tup): str = ''.join(tup) return str # Database Connection def create_connection(db_file): """ create a database connection to the SQLite database specified by db_file :param db_file: database file :return: Connection object or None """ print("Creating a connection to the database") conn = None try: print("Connection Created!") conn = sqlite3.connect(db_file) except Error as e: print(e) return conn # Creates tables in the database def create_table(conn, create_table_sql): """ create a table from the create_table_sql statement :param conn: Connection object :param create_table_sql: a CREATE TABLE statement :return: """ try: c = conn.cursor() c.execute(create_table_sql) except Error as e: print(e) # Create a Attendance Record def create_attend(conn, face_attend): """ Create a new record into the students table :param conn: :param face_attend: :return: table id """ sql = ''' INSERT INTO attendance(attendance_id,report_id,student_number,confidence, date_attended) VALUES(?,?,?,?,?) ''' cur = conn.cursor() cur.execute(sql, face_attend) return cur.lastrowid # Create a Report Record def create_report(conn, face_report): """ Create a new record into the students table :param conn: :param face_report: :return: table id """ sql = ''' INSERT INTO report(report_id,identified,date_attended) VALUES(?,?,?) ''' print("Report " + sql) cur = conn.cursor() cur.execute(sql, face_report) return cur.lastrowid # Create a Student Record def create_student(conn, student_data): """ Create a new record into the students table :param conn: :param student_data: :return: table id """ try: sql = ''' INSERT INTO students(student_number, first_name, surname, file_name) VALUES(?,?,?,?) ''' cur = conn.cursor() cur.execute(sql, student_data) except Error as e: print(e) return cur.lastrowid # Select all Students in the Database def select_all_students(conn): """ Query all rows in the tasks table :param conn: the Connection object :return: """ cur = conn.cursor() cur.execute("SELECT * FROM students") rows = cur.fetchall() print("Students in Database") for row in rows: print(row) # Select all records from Table Attendances def select_all_tasks(conn): """ Query all rows in the tasks table :param conn: the Connection object :return: """ cur = conn.cursor() cur.execute("SELECT * FROM attendance") rows = cur.fetchall() for row in rows: print(row) # Select All Records from Table Reports def select_all_report(conn): """ Query all rows in the tasks table :param conn: the Connection object :return: """ cur = conn.cursor() cur.execute("SELECT * FROM report") rows = cur.fetchall() for row in rows: print(row) # Creates the Json Statement to return to main Server def create_the_statement(conn, report_num): """ Query all rows in the tasks table :param conn: the Connection object :param report_num: the identifier :return: """ student_number = [] att_confidence = [] identified = [] cur = conn.cursor() cur.execute("SELECT student_number FROM attendance WHERE report_id =" + report_num) students = cur.fetchall() for student in students: stud = convert_tuple(student) student_number.append(stud) print(student_number) cur.execute("SELECT confidence FROM attendance WHERE report_id =" + report_num) confidence = cur.fetchall() for con in confidence: conf = convert_tuple(con) att_confidence.append(conf) print(att_confidence) counter = 0 for person in student_number: the_records = { "person_id": person, "certainty": att_confidence[counter] } identified.append(the_records) counter = counter +1 report_config = { "type": "face_rec_details", "identified": identified } return report_config
23.604278
102
0.624377
79404c4690837cc329e0c0abc1e55e7e455117c9
3,628
py
Python
src/oci/application_migration/models/occ_authorization_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/application_migration/models/occ_authorization_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/application_migration/models/occ_authorization_details.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from .authorization_details import AuthorizationDetails from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class OccAuthorizationDetails(AuthorizationDetails): """ Credentials to access Oracle Cloud@Customer, which is the source environment from which you want to migrate the application. """ def __init__(self, **kwargs): """ Initializes a new OccAuthorizationDetails object with values from keyword arguments. The default value of the :py:attr:`~oci.application_migration.models.OccAuthorizationDetails.type` attribute of this class is ``OCC`` and it should not be changed. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param type: The value to assign to the type property of this OccAuthorizationDetails. Allowed values for this property are: "OCIC", "INTERNAL_COMPUTE", "OCC", "OCIC_IDCS", "IMPORT" :type type: str :param username: The value to assign to the username property of this OccAuthorizationDetails. :type username: str :param password: The value to assign to the password property of this OccAuthorizationDetails. :type password: str """ self.swagger_types = { 'type': 'str', 'username': 'str', 'password': 'str' } self.attribute_map = { 'type': 'type', 'username': 'username', 'password': 'password' } self._type = None self._username = None self._password = None self._type = 'OCC' @property def username(self): """ **[Required]** Gets the username of this OccAuthorizationDetails. User with Compute Operations role in Oracle Cloud@Customer. :return: The username of this OccAuthorizationDetails. :rtype: str """ return self._username @username.setter def username(self, username): """ Sets the username of this OccAuthorizationDetails. User with Compute Operations role in Oracle Cloud@Customer. :param username: The username of this OccAuthorizationDetails. :type: str """ self._username = username @property def password(self): """ **[Required]** Gets the password of this OccAuthorizationDetails. Password for this user. :return: The password of this OccAuthorizationDetails. :rtype: str """ return self._password @password.setter def password(self, password): """ Sets the password of this OccAuthorizationDetails. Password for this user. :param password: The password of this OccAuthorizationDetails. :type: str """ self._password = password def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
32.392857
245
0.649118
79404ce563c06205e2c0278cee59f5bcd539811e
8,754
py
Python
tensorflow/python/eager/wrap_function_test.py
Sonata-Wang/tensorflow
8bbef0cd77879d05ed69bf30e76087847a8ca4a2
[ "Apache-2.0" ]
6
2019-02-05T22:36:51.000Z
2022-01-14T03:50:57.000Z
tensorflow/python/eager/wrap_function_test.py
YaoYaoZhi/tensorflow
83903c9dd9b5235996ec9158c30a1607fcfb4c73
[ "Apache-2.0" ]
1
2019-09-14T04:40:07.000Z
2020-11-18T18:16:17.000Z
tensorflow/python/eager/wrap_function_test.py
YaoYaoZhi/tensorflow
83903c9dd9b5235996ec9158c30a1607fcfb4c73
[ "Apache-2.0" ]
8
2016-01-14T13:12:56.000Z
2021-04-09T10:20:53.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.python.eager import backprop from tensorflow.python.eager import def_function from tensorflow.python.eager import wrap_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_spec from tensorflow.python.ops import array_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test class WrapFunctionTest(test.TestCase): def testDocString(self): def f(x, do_add): v = variables.Variable(5.0) if do_add: op = v.assign_add(x) else: op = v.assign_sub(x) with ops.control_dependencies([op]): return v.read_value() f_add = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32), True]) self.assertAllEqual(f_add(1.0), 6.0) self.assertAllEqual(f_add(1.0), 7.0) # Can call tf.compat.v1.wrap_function again to get a new trace, a new set # of variables, and possibly different non-template arguments. f_sub = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32), False]) self.assertAllEqual(f_sub(1.0), 4.0) self.assertAllEqual(f_sub(1.0), 3.0) def testPrune(self): x_in = [] x_out = [] def f(x, y): x_in.append(x) xx = x * x x_out.append(xx) return xx, 2 * y*y f_wrapped = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtypes.float32)] * 2) f_pruned = f_wrapped.prune(x_in[0], [x_out[0]]) self.assertAllEqual(f_pruned(ops.convert_to_tensor(2.0)), [4.0]) def testNoArguments(self): def f(): return constant_op.constant(1.) f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(1.0, f_wrapped()) def testPruneCaptures(self): v1 = variables.Variable(2.) def f(): v2 = variables.Variable(3.) return array_ops.identity(v1 * v2 * constant_op.constant(1.), 'fetch') f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(6.0, f_wrapped()) # Test pruning directly on the inputs pruned = f_wrapped.prune( feeds=f_wrapped.inputs, fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) self.assertAllEqual(6.0, pruned()) # Test pruning with no inputs pruned = f_wrapped.prune( feeds=(), fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) self.assertAllEqual(6.0, pruned()) def testCollectionsIsolation(self): v1 = variables.Variable(2.) v2_holder = [] def f(): v2 = variables.Variable(3.) v2_holder.append(v2) ops.add_to_collection(ops.GraphKeys.LOSSES, v2 * constant_op.constant(3.)) return array_ops.identity(v1 * v2 * constant_op.constant(1.), 'fetch') f_wrapped = wrap_function.wrap_function(f, []) self.assertAllEqual(6.0, f_wrapped()) self.assertEqual( len(f_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)), 1) f_var_collection = f_wrapped.graph.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) self.assertEqual(len(f_var_collection), 1) self.assertIs(f_var_collection[0], v2_holder[0]) v3_holder = [] def g(): v3 = variables.Variable(4.) v3_holder.append(v3) ops.add_to_collection(ops.GraphKeys.LOSSES, v3 * constant_op.constant(3.)) return array_ops.identity(v1 * v3 * constant_op.constant(1.), 'fetch') g_wrapped = wrap_function.wrap_function(g, []) self.assertAllEqual(8.0, g_wrapped()) self.assertEqual( len(g_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)), 1) g_var_collection = g_wrapped.graph.get_collection( ops.GraphKeys.TRAINABLE_VARIABLES) self.assertEqual(len(g_var_collection), 1) self.assertIs(g_var_collection[0], v3_holder[0]) # Both have only one value, and their values aren't equal. So no sharing. self.assertNotEqual(g_wrapped.graph.get_collection(ops.GraphKeys.LOSSES), f_wrapped.graph.get_collection(ops.GraphKeys.LOSSES)) def testGradientsOfPrune(self): v1 = variables.Variable(2.) v2_holder = [] def f(z): v2 = variables.Variable(3.) v2_holder.append(v2) return array_ops.identity(v1 * v2 * z, 'fetch') f_wrapped = wrap_function.wrap_function( f, [tensor_spec.TensorSpec((), dtype=dtypes.float32)]) x = constant_op.constant(1.) with backprop.GradientTape() as tape: tape.watch(x) out = f_wrapped(x) grads = tape.gradient(out, [x, v1, v2_holder[0]]) self.assertAllEqual(6.0, out) self.assertAllEqual([6.0, 3.0, 2.0], grads) pruned = f_wrapped.prune( feeds=f_wrapped.inputs, fetches=f_wrapped.graph.get_tensor_by_name('fetch:0')) x = constant_op.constant(1.) with backprop.GradientTape() as tape: tape.watch(x) out = pruned(x) grads = tape.gradient(out, [x, v1, v2_holder[0]]) self.assertAllEqual(6.0, out) self.assertAllEqual([6.0, 3.0, 2.0], grads) def testPruneOperations(self): v = variables.Variable(0) def f(): v.assign_add(1, name='increment', read_value=False) f_wrapped = wrap_function.wrap_function(f, []) pruned = f_wrapped.prune( feeds=(), fetches=(f_wrapped.graph.get_operation_by_name('increment'),)) self.assertEqual((None,), pruned()) self.assertEqual(1, self.evaluate(v)) del f, f_wrapped def f1(): v.assign_add( array_ops.placeholder(shape=[], dtype=dtypes.int32, name='step'), name='increment', read_value=False) return constant_op.constant(1, name='other') f_wrapped = wrap_function.wrap_function(f1, []) increments = f_wrapped.prune( feeds=(f_wrapped.graph.get_tensor_by_name('step:0')), fetches=(f_wrapped.graph.get_operation_by_name('increment'), f_wrapped.graph.get_tensor_by_name('other:0'))) first_output, second_output = increments(constant_op.constant(2)) self.assertEqual(['step:0', 'increment/resource:0'], [t.name for t in increments.inputs]) self.assertIs(None, first_output) self.assertEqual(1, second_output.numpy()) self.assertEqual(3, v.numpy()) does_not_increment = f_wrapped.prune( feeds=(f_wrapped.graph.get_tensor_by_name('step:0')), fetches=f_wrapped.graph.get_tensor_by_name('other:0')) self.assertEqual(1, does_not_increment(constant_op.constant(3)).numpy()) self.assertEqual(3, v.numpy()) def testPruneStatefulOpsFromWrappedFunc(self): v0 = variables.Variable(0) v1 = variables.Variable(0) # When we wrap a function, we expect it to be executed with 'tf.Graph` # rules: it's allowed to prune all ops that are not in transitive fanin of # the fetches. def f(x): v0.assign_add(1, name='increment_v0') v1.assign_add(1, name='increment_v1') return x f_wrapped = wrap_function.wrap_function(f, [1]) self.assertEqual(1, f_wrapped().numpy()) self.assertEqual(0, v0.numpy()) self.assertEqual(0, v1.numpy()) f_wrapped_with_name = wrap_function.wrap_function(f, [2], name='func') self.assertEqual(2, f_wrapped_with_name().numpy()) self.assertEqual(0, v0.numpy()) self.assertEqual(0, v1.numpy()) def test_function_from_graph_def(self): @def_function.function def make_graph_def(x): return x + 1. original_func_graph = make_graph_def.get_concrete_function( tensor_spec.TensorSpec([None, 2], dtypes.float32)).graph graph_def = original_func_graph.as_graph_def() revived_function = wrap_function.function_from_graph_def( graph_def, inputs=original_func_graph.inputs[0].name, outputs=original_func_graph.outputs[0].name) self.assertEqual(2., revived_function(constant_op.constant(1.)).numpy()) if __name__ == '__main__': ops.enable_eager_execution() test.main()
33.285171
80
0.68186
79404d2942ec5d9462b5487f391faa75c03bccf8
3,694
py
Python
hyver/config.py
retr0h/hyver
e17a95d97e43afa2e99dce5a7b2619a1ce330654
[ "MIT" ]
null
null
null
hyver/config.py
retr0h/hyver
e17a95d97e43afa2e99dce5a7b2619a1ce330654
[ "MIT" ]
null
null
null
hyver/config.py
retr0h/hyver
e17a95d97e43afa2e99dce5a7b2619a1ce330654
[ "MIT" ]
null
null
null
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright (c) 2017 John Dewey # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import errno import os import uuid from hyver import logger from hyver import util HYVER_FILE = 'hyver.yml' HYVER_DIR = '~/.gilt' LOG = logger.get_logger(__name__) class Config(object): def __init__(self, hyver_file, args={}, command_args={}): """ Initialize a new config version one class and returns None. :param hyver_file: A string containing the path to the Hyver file to be parsed. :param args: A dict of options, arguments and commands from the CLI. :param command_args: A dict of options passed to the subcommand from the CLI. :returns: None """ self.hyver_file = hyver_file self.args = args self.command_args = command_args self.config = self._get_config() @property def acpi(self): return self.config.get('acpi') @property def kernel(self): return self.config['kernel'] @property def initrd(self): return self.config['initrd'] @property def cmdline(self): return self.config.get('cmdline') @property def mem(self): return self.config.get('mem', 1024) @property def cpus(self): return self.config.get('cpus', 1) @property def net(self): return '2:0,virtio-net' @property def cd(self): return self.config['cd'] @property def img_cd(self): return '3,ahci-cd,{}'.format(self.cd) @property def hdd(self): return self.config['hdd'] @property def img_hdd(self): return '4,virtio-blk,{}'.format(self.hdd) @property def uuid(self): return str(uuid.uuid4()) @property def pci_dev(self): return '0:0,hostbridge' @property def lpc_dev(self): return 'com1,stdio' def _get_config(self): try: return util.safe_load_file(self.hyver_file) except IOError: msg = 'Unable to find {}. Exiting.'.format(hyver_file()) util.sysexit_with_message(msg) def hyver_file(): return HYVER_FILE # test def hyver_dir(): return os.path.expanduser(HYVER_DIR) def _makedirs(path): """ Create a base directory of the provided path and return None. :param path: A string containing a path to be deconstructed and basedir created. :return: None """ dirname, _ = os.path.split(path) try: os.makedirs(dirname) except OSError as exc: if exc.errno == errno.EEXIST: pass else: raise
26.198582
78
0.65647
79404dfda67b660f3ddd2b100b101a59af8f25f0
1,053
py
Python
simulator/routers/NwcLeastEnergyRouter.py
seakers/dtnsim
9ea1da84e0565d97b3ea184facb597302bf4d99e
[ "Apache-2.0" ]
4
2020-03-06T19:39:08.000Z
2022-02-22T13:12:36.000Z
simulator/routers/NwcLeastEnergyRouter.py
seakers/dtnsim
9ea1da84e0565d97b3ea184facb597302bf4d99e
[ "Apache-2.0" ]
null
null
null
simulator/routers/NwcLeastEnergyRouter.py
seakers/dtnsim
9ea1da84e0565d97b3ea184facb597302bf4d99e
[ "Apache-2.0" ]
2
2021-07-30T14:09:20.000Z
2022-02-27T10:28:58.000Z
""" # ================================================================================== # Author: Marc Sanchez Net # Date: 03/25/2019 # Copyright (c) 2019, Jet Propulsion Laboratory. # ================================================================================== """ from simulator.routers.NwcAbstractOpportunisticRouter import NwcAbstractRouter from simulator.routers.nwc_opportunistic import find_route_energy_estimate3 class NwcLeastEnergyRouter(NwcAbstractRouter): def find_best_route(self, bundle, first_contact, **kwargs): # Call routing function return find_route_energy_estimate3(bundle_size=bundle.data_vol, contact_plan=self.cp2, current_time=self.t, nodes_state=self.state, source=self.parent.nid, target=bundle.dest, preferred_path=self.preferred_path)
37.607143
84
0.475783
79404f7fb1104f10432017b9800a40a63783ac61
7,173
py
Python
CMSIS/CoreValidation/Tests/builder.py
DavidLesnjak/CMSIS_5
e0848410d137758a3356a5ee94ca4501cea708a8
[ "Apache-2.0" ]
2,293
2016-02-25T06:47:33.000Z
2022-03-29T16:44:02.000Z
CMSIS/CoreValidation/Tests/builder.py
DavidLesnjak/CMSIS_5
e0848410d137758a3356a5ee94ca4501cea708a8
[ "Apache-2.0" ]
1,125
2016-02-27T09:56:01.000Z
2022-03-31T13:57:05.000Z
CMSIS/CoreValidation/Tests/builder.py
DavidLesnjak/CMSIS_5
e0848410d137758a3356a5ee94ca4501cea708a8
[ "Apache-2.0" ]
1,160
2016-02-27T09:06:10.000Z
2022-03-31T19:06:24.000Z
#! python import os import shutil import sys from datetime import datetime from buildutils.builder import Device, Compiler, Axis, Step, BuildStep, RunModelStep, Builder, Filter OPTIMIZATION = [ 'O1', 'O2', 'Ofast', 'Os', 'Oz' ] CC_OPT = { Compiler.AC5: { 'O1': 'O0', 'O2': 'O1', 'Ofast': 'Otime', 'Os': 'O2', 'Oz': 'O3' }, Compiler.AC6: { 'O1': 'O1', 'O2': 'O2', 'Ofast': 'Ofast', 'Os': 'Os', 'Oz': 'Oz' }, Compiler.AC6LTM: { 'O1': 'O1', 'O2': 'O2', 'Ofast': 'Ofast', 'Os': 'Os', 'Oz': 'Oz' }, Compiler.AC6STBL: { 'O1': 'O1', 'O2': 'O2', 'Ofast': 'Ofast', 'Os': 'Os', 'Oz': 'Oz' }, Compiler.GCC: { 'O1': 'O1', 'O2': 'O2', 'Ofast': 'Ofast', 'Os': 'Os', 'Oz': 'O3' }, } CORTEX_M = [ Device.CM0, Device.CM0PLUS, Device.CM3, Device.CM4, Device.CM4FP, Device.CM7, Device.CM7SP, Device.CM7DP, Device.CM23, Device.CM33, Device.CM23NS, Device.CM33NS, Device.CM23S, Device.CM33S, Device.CM35P, Device.CM35PS, Device.CM35PNS ] BOOTLOADER = [ Device.CM23NS, Device.CM33NS, Device.CM35PNS ] FVP_MODELS = { Device.CM0 : { 'cmd': "FVP_MPS2_Cortex-M0", 'args': { 'limit': "1000000000", 'config': "config/ARMCM0_config.txt" } }, Device.CM0PLUS : { 'cmd': "FVP_MPS2_Cortex-M0plus", 'args': { 'limit': "1000000000", 'config': "config/ARMCM0plus_config.txt" } }, Device.CM3 : { 'cmd': "FVP_MPS2_Cortex-M3", 'args': { 'limit': "1000000000", 'config': "config/ARMCM3_config.txt" } }, Device.CM4 : { 'cmd': "FVP_MPS2_Cortex-M4", 'args': { 'limit': "1000000000", 'config': "config/ARMCM4_config.txt" } }, Device.CM4FP : { 'cmd': "FVP_MPS2_Cortex-M4", 'args': { 'limit': "1000000000", 'config': "config/ARMCM4FP_config.txt" } }, Device.CM7 : { 'cmd': "FVP_MPS2_Cortex-M7", 'args': { 'limit': "1000000000", 'config': "config/ARMCM7_config.txt" } }, Device.CM7SP : { 'cmd': "FVP_MPS2_Cortex-M7", 'args': { 'limit': "1000000000", 'config': "config/ARMCM7SP_config.txt" } }, Device.CM7DP : { 'cmd': "FVP_MPS2_Cortex-M7", 'args': { 'limit': "1000000000", 'config': "config/ARMCM7DP_config.txt" } }, Device.CM23 : { 'cmd': "FVP_MPS2_Cortex-M23", 'args': { 'limit': "1000000000", 'config': "config/ARMCM23_config.txt", 'target': "cpu0" } }, Device.CM33 : { 'cmd': "FVP_MPS2_Cortex-M33", 'args': { 'limit': "1000000000", 'config': "config/ARMCM33_config.txt", 'target': "cpu0" } }, Device.CM23NS : { 'cmd': "FVP_MPS2_Cortex-M23", 'args': { 'limit': "1000000000", 'config': "config/ARMCM23_TZ_config.txt", 'target': "cpu0" } }, Device.CM33NS : { 'cmd': "FVP_MPS2_Cortex-M33", 'args': { 'limit': "1000000000", 'config': "config/ARMCM33_DSP_FP_TZ_config.txt", 'target': "cpu0" } }, Device.CM23S : { 'cmd': "FVP_MPS2_Cortex-M23", 'args': { 'limit': "1000000000", 'config': "config/ARMCM23_TZ_config.txt", 'target': "cpu0" } }, Device.CM33S : { 'cmd': "FVP_MPS2_Cortex-M33", 'args': { 'limit': "1000000000", 'config': "config/ARMCM33_DSP_FP_TZ_config.txt", 'target': "cpu0" } }, Device.CM35P : { 'cmd': "FVP_MPS2_Cortex-M35P", 'args': { 'limit': "1000000000", 'config': "config/ARMCM35P_config.txt", 'target': "cpu0" } }, Device.CM35PS : { 'cmd': "FVP_MPS2_Cortex-M35P", 'args': { 'limit': "1000000000", 'config': "config/ARMCM35P_DSP_FP_TZ_config.txt", 'target': "cpu0" } }, Device.CM35PNS : { 'cmd': "FVP_MPS2_Cortex-M35P", 'args': { 'limit': "1000000000", 'config': "config/ARMCM35P_DSP_FP_TZ_config.txt", 'target': "cpu0" } }, Device.CA5 : { 'cmd': "FVP_VE_Cortex-A5x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA5_config.txt" } }, Device.CA7 : { 'cmd': "FVP_VE_Cortex-A7x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA7_config.txt" } }, Device.CA9 : { 'cmd': "FVP_VE_Cortex-A9x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA9_config.txt" } }, Device.CA5NEON : { 'cmd': "FVP_VE_Cortex-A5x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA5neon_config.txt" } }, Device.CA7NEON : { 'cmd': "FVP_VE_Cortex-A7x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA7neon_config.txt" } }, Device.CA9NEON : { 'cmd': "FVP_VE_Cortex-A9x1", 'args': { 'limit': "1000000000", 'config': "config/ARMCA9neon_config.txt" } } } def projects(step, config): result = [ str(config['compiler']).lower()+".rtebuild" ] if config['device'] in BOOTLOADER: result += [ "bootloader/"+str(config['compiler']).lower()+".rtebuild" ] return result def images(step, config): result = [ "build/arm{dev}/arm{dev}.elf".format(dev=config['device'].value[1].lower()) ] if config['device'] in BOOTLOADER: result += [ "bootloader/build/arm{dev}/arm{dev}.elf".format(dev=config['device'].value[1].lower()) ] return result def storeResult(step, config, cmd): result = "result_{cc}_{dev}_{opt}_{now}.junit".format(dev=config['device'], cc=config['compiler'], opt=config['optimize'],now=datetime.now().strftime("%Y%m%d%H%M%S")) resultfile = step.storeJunitResult(cmd, result, "{cc}.{dev}.{opt}".format(dev=config['device'], cc=config['compiler'], opt=config['optimize'])) if not resultfile: cmd.appendOutput("Storing results failed!"); cmd.forceResult(1) def add_options(step, config, cmd): cmd._options['optimize'] = CC_OPT[config['compiler']][config['optimize']] def create(): deviceAxis = Axis("device", abbrev="d", values=Device, desc="Device(s) to be considered.") compilerAxis = Axis("compiler", abbrev="c", values=Compiler, desc="Compiler(s) to be considered.") optimizeAxis = Axis("optimize", abbrev="o", values=OPTIMIZATION , desc="Optimization level(s) to be considered.") buildStep = BuildStep("build", abbrev="b", desc="Build the selected configurations.") buildStep.projects = projects buildStep.target = lambda step, config: "arm"+config['device'].value[1].lower() buildStep.pre = add_options runStep = RunModelStep("run", abbrev="r", desc="Run the selected configurations.") runStep.images = images runStep.model = lambda step, config: FVP_MODELS[config['device']] runStep.post = storeResult debugStep = RunModelStep("debug", abbrev="d", desc="Debug the selected configurations.") debugStep.images = images debugStep.args = lambda step, config: { 'cadi' : True } debugStep.model = lambda step, config: FVP_MODELS[config['device']] filterAC5 = Filter().addAxis(compilerAxis, Compiler.AC5).addAxis(deviceAxis, "CM[23]3*") filterAC6LTM = Filter().addAxis(compilerAxis, Compiler.AC6LTM).addAxis(deviceAxis, "CM35P*") builder = Builder() builder.addAxis([ compilerAxis, deviceAxis, optimizeAxis ]) builder.addStep([ buildStep, runStep, debugStep ]) builder.addFilter([ filterAC5, filterAC6LTM ]) return builder def complete(builder, success): builder.saveJunitResult("build_{now}.junit".format(now = datetime.now().strftime("%Y%m%d%H%M%S")))
45.980769
168
0.615921
794050fbef34ae04c9cdb6df07766c2e62ac1d7c
15,664
py
Python
framework/PostProcessors/LimitSurfaceIntegral.py
milljm/raven
5f29fe81b75e2ffbeb54a55aa63647e7b2f6457b
[ "Apache-2.0" ]
null
null
null
framework/PostProcessors/LimitSurfaceIntegral.py
milljm/raven
5f29fe81b75e2ffbeb54a55aa63647e7b2f6457b
[ "Apache-2.0" ]
null
null
null
framework/PostProcessors/LimitSurfaceIntegral.py
milljm/raven
5f29fe81b75e2ffbeb54a55aa63647e7b2f6457b
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on July 10, 2013 @author: alfoa """ from __future__ import division, print_function , unicode_literals, absolute_import import warnings warnings.simplefilter('default', DeprecationWarning) #External Modules------------------------------------------------------------------------------------ import numpy as np import xarray import math import os #External Modules End-------------------------------------------------------------------------------- #Internal Modules------------------------------------------------------------------------------------ from .PostProcessor import PostProcessor from .BasicStatistics import BasicStatistics from utils import InputData import LearningGate import Files import Runners #Internal Modules End-------------------------------------------------------------------------------- class LimitSurfaceIntegral(PostProcessor): """ This post-processor computes the n-dimensional integral of a Limit Surface """ @classmethod def getInputSpecification(cls): """ Method to get a reference to a class that specifies the input data for class cls. @ In, cls, the class for which we are retrieving the specification @ Out, inputSpecification, InputData.ParameterInput, class to use for specifying input of cls. """ ## This will replace the lines above inputSpecification = super(LimitSurfaceIntegral, cls).getInputSpecification() LSIVariableInput = InputData.parameterInputFactory("variable") LSIVariableInput.addParam("name", InputData.StringType) LSIDistributionInput = InputData.parameterInputFactory("distribution", contentType=InputData.StringType) LSIVariableInput.addSub(LSIDistributionInput) LSILowerBoundInput = InputData.parameterInputFactory("lowerBound", contentType=InputData.FloatType) LSIVariableInput.addSub(LSILowerBoundInput) LSIUpperBoundInput = InputData.parameterInputFactory("upperBound", contentType=InputData.FloatType) LSIVariableInput.addSub(LSIUpperBoundInput) inputSpecification.addSub(LSIVariableInput) LSIToleranceInput = InputData.parameterInputFactory("tolerance", contentType=InputData.FloatType) inputSpecification.addSub(LSIToleranceInput) LSIIntegralTypeInput = InputData.parameterInputFactory("integralType", contentType=InputData.StringType) inputSpecification.addSub(LSIIntegralTypeInput) LSISeedInput = InputData.parameterInputFactory("seed", contentType=InputData.IntegerType) inputSpecification.addSub(LSISeedInput) LSITargetInput = InputData.parameterInputFactory("target", contentType=InputData.StringType) inputSpecification.addSub(LSITargetInput) LSIOutputNameInput = InputData.parameterInputFactory("outputName", contentType=InputData.StringType) inputSpecification.addSub(LSIOutputNameInput) return inputSpecification def __init__(self, messageHandler): """ Constructor @ In, messageHandler, MessageHandler, message handler object @ Out, None """ PostProcessor.__init__(self, messageHandler) self.variableDist = {} # dictionary created upon the .xml input file reading. It stores the distributions for each variable. self.target = None # target that defines the f(x1,x2,...,xn) self.tolerance = 0.0001 # integration tolerance self.integralType = 'montecarlo' # integral type (which alg needs to be used). Either montecarlo or quadrature(quadrature not yet) self.seed = 20021986 # seed for montecarlo self.matrixDict = {} # dictionary of arrays and target self.lowerUpperDict = {} self.functionS = None self.computationPrefix = None self.stat = BasicStatistics(self.messageHandler) # instantiation of the 'BasicStatistics' processor, which is used to compute the pb given montecarlo evaluations self.stat.what = ['expectedValue'] self.addAssemblerObject('Distribution','n', newXmlFlg = False) self.printTag = 'POSTPROCESSOR INTEGRAL' def _localWhatDoINeed(self): """ This method is a local mirror of the general whatDoINeed method. It is implemented by this postprocessor that need to request special objects @ In, None @ Out, needDict, dict, list of objects needed """ needDict = {'Distributions':[]} for distName in self.variableDist.values(): if distName != None: needDict['Distributions'].append((None, distName)) return needDict def _localGenerateAssembler(self, initDict): """ This method is used for sending to the instanciated class, which is implementing the method, the objects that have been requested through "whatDoINeed" method It is an abstract method -> It must be implemented in the derived class! @ In, initDict, dict, dictionary ({'mainClassName(e.g., Databases):{specializedObjectName(e.g.,DatabaseForSystemCodeNamedWolf):ObjectInstance}'}) @ Out, None """ for varName, distName in self.variableDist.items(): if distName != None: if distName not in initDict['Distributions'].keys(): self.raiseAnError(IOError, 'distribution ' + distName + ' not found.') self.variableDist[varName] = initDict['Distributions'][distName] self.lowerUpperDict[varName]['lowerBound'] = self.variableDist[varName].lowerBound self.lowerUpperDict[varName]['upperBound'] = self.variableDist[varName].upperBound def _localReadMoreXML(self, xmlNode): """ Function to read the portion of the xml input that belongs to this specialized class and initialize some stuff based on the inputs got @ In, xmlNode, xml.etree.Element, Xml element node @ Out, None """ paramInput = LimitSurfaceIntegral.getInputSpecification()() paramInput.parseNode(xmlNode) self._handleInput(paramInput) def _handleInput(self, paramInput): """ Function to handle the parsed paramInput for this class. @ In, paramInput, ParameterInput, the already parsed input. @ Out, None """ for child in paramInput.subparts: varName = None if child.getName() == 'variable': varName = child.parameterValues['name'] self.lowerUpperDict[varName] = {} self.variableDist[varName] = None for childChild in child.subparts: if childChild.getName() == 'distribution': self.variableDist[varName] = childChild.value elif childChild.getName() == 'lowerBound': if self.variableDist[varName] != None: self.raiseAnError(NameError, 'you can not specify both distribution and lower/upper bounds nodes for variable ' + varName + ' !') self.lowerUpperDict[varName]['lowerBound'] = childChild.value elif childChild.getName() == 'upperBound': if self.variableDist[varName] != None: self.raiseAnError(NameError, 'you can not specify both distribution and lower/upper bounds nodes for variable ' + varName + ' !') self.lowerUpperDict[varName]['upperBound'] = childChild.value else: self.raiseAnError(NameError, 'invalid labels after the variable call. Only "distribution", "lowerBound" abd "upperBound" is accepted. tag: ' + child.getName()) elif child.getName() == 'tolerance': try: self.tolerance = child.value except ValueError: self.raiseAnError(ValueError, "tolerance can not be converted into a float value!") elif child.getName() == 'integralType': self.integralType = child.value.strip().lower() if self.integralType not in ['montecarlo']: self.raiseAnError(IOError, 'only one integral types are available: MonteCarlo!') elif child.getName() == 'seed': try: self.seed = child.value except ValueError: self.raiseAnError(ValueError, 'seed can not be converted into a int value!') if self.integralType != 'montecarlo': self.raiseAWarning('integral type is ' + self.integralType + ' but a seed has been inputted!!!') else: np.random.seed(self.seed) elif child.getName() == 'target': self.target = child.value elif child.getName() == 'outputName': self.computationPrefix = child.value else: self.raiseAnError(NameError, 'invalid or missing labels after the variables call. Only "variable" is accepted.tag: ' + child.getName()) # if no distribution, we look for the integration domain in the input if varName != None: if self.variableDist[varName] == None: if 'lowerBound' not in self.lowerUpperDict[varName].keys() or 'upperBound' not in self.lowerUpperDict[varName].keys(): self.raiseAnError(NameError, 'either a distribution name or lowerBound and upperBound need to be specified for variable ' + varName) if self.computationPrefix == None: self.raiseAnError(IOError,'The required XML node <outputName> has not been inputted!!!') if self.target == None: self.raiseAWarning('integral target has not been provided. The postprocessor is going to take the last output it finds in the provided limitsurface!!!') def initialize(self, runInfo, inputs, initDict): """ Method to initialize the pp. @ In, runInfo, dict, dictionary of run info (e.g. working dir, etc) @ In, inputs, list, list of inputs @ In, initDict, dict, dictionary with initialization options @ Out, None """ self.inputToInternal(inputs) if self.integralType in ['montecarlo']: self.stat.toDo = {'expectedValue':[{'targets':set([self.target]), 'prefix':self.computationPrefix}]} self.stat.initialize(runInfo, inputs, initDict) self.functionS = LearningGate.returnInstance('SupervisedGate','SciKitLearn', self, **{'SKLtype':'neighbors|KNeighborsClassifier', 'Features':','.join(list(self.variableDist.keys())), 'Target':self.target}) self.functionS.train(self.matrixDict) self.raiseADebug('DATA SET MATRIX:') self.raiseADebug(self.matrixDict) def inputToInternal(self, currentInput): """ Method to convert an input object into the internal format that is understandable by this pp. The resulting converted object is stored as an attribute of this class @ In, currentInput, object, an object that needs to be converted @ Out, None """ if len(currentInput) > 1: self.raiseAnError(IOError,"This PostProcessor can accept only a single input! Got: "+ str(len(currentInput))+"!") item = currentInput[0] if item.type == 'PointSet': if not set(item.getVars('input')) == set(self.variableDist.keys()): self.raiseAnError(IOError, 'The variables inputted and the features in the input PointSet ' + item.name + 'do not match!!!') outputKeys = item.getVars('output') if self.target is None: self.target = utils.first(outputKeys) elif self.target not in outputKeys: self.raiseAnError(IOError, 'The target ' + self.target + 'is not present among the outputs of the PointSet ' + item.name) # construct matrix dataSet = item.asDataset() self.matrixDict = {varName: dataSet[varName].values for varName in self.variableDist} responseArray = dataSet[self.target].values if len(np.unique(responseArray)) != 2: self.raiseAnError(IOError, 'The target ' + self.target + ' needs to be a classifier output (-1 +1 or 0 +1)!') responseArray[responseArray == -1] = 0.0 self.matrixDict[self.target] = responseArray else: self.raiseAnError(IOError, 'Only PointSet is accepted as input!!!!') def run(self, input): """ This method executes the postprocessor action. In this case, it performs the computation of the LS integral @ In, input, object, object contained the data to process. (inputToInternal output) @ Out, pb, float, integral outcome (probability of the event) """ pb = None if self.integralType == 'montecarlo': tempDict = {} randomMatrix = np.random.rand(int(math.ceil(1.0 / self.tolerance**2)), len(self.variableDist.keys())) for index, varName in enumerate(self.variableDist.keys()): if self.variableDist[varName] == None: randomMatrix[:, index] = randomMatrix[:, index] * (self.lowerUpperDict[varName]['upperBound'] - self.lowerUpperDict[varName]['lowerBound']) + self.lowerUpperDict[varName]['lowerBound'] else: f = np.vectorize(self.variableDist[varName].ppf, otypes=[np.float]) randomMatrix[:, index] = f(randomMatrix[:, index]) tempDict[varName] = randomMatrix[:, index] pb = self.stat.run({'targets':{self.target:xarray.DataArray(self.functionS.evaluate(tempDict)[self.target])}})[self.computationPrefix +"_"+self.target] else: self.raiseAnError(NotImplemented, "quadrature not yet implemented") return pb def collectOutput(self, finishedJob, output): """ Function to place all of the computed data into the output object @ In, finishedJob, JobHandler External or Internal instance, A JobHandler object that is in charge of running this post-processor @ In, output, dataObjects, The object where we want to place our computed results @ Out, None """ evaluation = finishedJob.getEvaluation() if isinstance(evaluation, Runners.Error): self.raiseAnError(RuntimeError, "No available output to collect (run possibly not finished yet)") pb = evaluation[1] lms = evaluation[0][0] if output.type == 'PointSet': # we store back the limitsurface dataSet = lms.asDataset() loadDict = {key: dataSet[key].values for key in lms.getVars()} loadDict[self.computationPrefix] = np.full(len(lms), pb) output.load(loadDict,'dict') # NB I keep this commented part in case we want to keep the possibility to have outputfiles for PP #elif isinstance(output,Files.File): # headers = lms.getParaKeys('inputs') + lms.getParaKeys('outputs') # if 'EventProbability' not in headers: # headers += ['EventProbability'] # stack = [None] * len(headers) # output.close() # # If the file already exist, we will erase it. # if os.path.exists(output.getAbsFile()): # self.raiseAWarning('File %s already exists, this file will be erased!' %output.getAbsFile()) # output.open('w') # output.close() # outIndex = 0 # for key, value in lms.getParametersValues('input').items(): # stack[headers.index(key)] = np.asarray(value).flatten() # for key, value in lms.getParametersValues('output').items(): # stack[headers.index(key)] = np.asarray(value).flatten() # outIndex = headers.index(key) # stack[headers.index('EventProbability')] = np.array([pb] * len(stack[outIndex])).flatten() # stacked = np.column_stack(stack) # np.savetxt(output, stacked, delimiter = ',', header = ','.join(headers),comments='') # #N.B. without comments='' you get a "# " at the top of the header row else: self.raiseAnError(Exception, self.type + ' accepts PointSet only')
49.88535
209
0.683797
79405402c3e6a991d39a4ae082a2039ff549ebd1
1,204
py
Python
mfanalysis/utils.py
omardrwch/mfanalysis
36c00e0d4ee346bb6dddc5776a86c8c2ebd4501a
[ "MIT" ]
3
2019-04-11T15:38:25.000Z
2021-04-16T16:30:34.000Z
mfanalysis/utils.py
omardrwch/mfanalysis
36c00e0d4ee346bb6dddc5776a86c8c2ebd4501a
[ "MIT" ]
null
null
null
mfanalysis/utils.py
omardrwch/mfanalysis
36c00e0d4ee346bb6dddc5776a86c8c2ebd4501a
[ "MIT" ]
3
2018-07-09T07:28:33.000Z
2021-07-26T12:40:52.000Z
from __future__ import print_function from __future__ import unicode_literals import numpy as np class Utils: def __init__(self): pass def linear_regression(self, x, y, nj, return_variance = False): """ Performs a (weighted or not) linear regression. Finds 'a' that minimizes the error: sum_j { n[j]*(y[j] - (a*x[j] + b))**2 } Args: x, y : regression variables nj: list containg the weigths Returns: a, b: angular coefficient and intercept (!!!!!!!!!!!!!) IMPORTANT: return_variance NOT DEBUGGED (!!!!!!!!!!!!!) """ bj = np.array(nj, dtype = np.float) assert len(bj) == len(x) V_0 = np.sum(bj) V_1 = np.sum(bj * x) V_2 = np.sum(bj * (x**2)) weights_slope = bj * (V_0*x - V_1)/(V_0*V_2 - V_1*V_1) weights_intercept = bj * (V_2 - V_1*x)/(V_0*V_2 - V_1*V_1) a = np.sum(weights_slope*y) b = np.sum(weights_intercept*y) var_a = np.sum((1/bj)*weights_slope*weights_slope) if not return_variance: return a, b else: return a, b, var_a
24.571429
67
0.527409
7940546813233f6d66e3857eb7b0e4b6a37afdca
3,425
py
Python
MindFuck/mindfuck.py
tixcode/mindfuck
9737318a246c49adcda5b02596677cb0964189ce
[ "MIT" ]
2
2021-12-25T18:16:16.000Z
2022-01-10T10:38:43.000Z
MindFuck/mindfuck.py
tixcode/mindfuck
9737318a246c49adcda5b02596677cb0964189ce
[ "MIT" ]
5
2021-12-25T18:24:06.000Z
2022-01-05T16:48:27.000Z
MindFuck/mindfuck.py
tixcode/mindfuck
9737318a246c49adcda5b02596677cb0964189ce
[ "MIT" ]
2
2021-12-25T18:25:50.000Z
2022-01-10T10:37:24.000Z
import sys import time import random from colorama import init, Fore, Style, Back init(autoreset=True) def Error(text: str): print(text) input('Click enter to exit from a program...') exit() def AnimationPrinting(text: str, secs: int): for symbol in text: print(symbol, flush=True, end="") time.sleep(secs) print("") slots = [] special = "" cursor_position = 0 for i in range(0, 5000): slots.append(0) fileN = input("Write a script file-name: ") if fileN == "": Error("Script file-name can't be nothing!") else: try: with open(fileN, 'r', encoding='utf-8') as file: code = file.read() except: Error("Uncorrect script file-name!") AnimationPrinting("Creating a int-array with 5000 slots...", 0.05) time.sleep(0.5) AnimationPrinting("Created!", 0.05) index = 0 while index < len(code): symbol = code[index] match symbol: case ">": cursor_position += 1 cursor_position = min(cursor_position, 5000 - 1) case "<": cursor_position -= 1 cursor_position = max(cursor_position, 0) case "?": value = input("") if value != "": slots[cursor_position] = ord(value[0]) case ".": print(special+chr(slots[cursor_position]), end="") case "+": slots[cursor_position] += 1 case "-": slots[cursor_position] -= 1 case "*": slots[cursor_position] += 10 case "/": slots[cursor_position] -= 10 case "$": slots[cursor_position] += 100 case "#": slots[cursor_position] -= 100 case "^": slots[cursor_position] += 1000 case "!": slots[cursor_position] -= 1000 case "g": special = "%s" % Fore.GREEN case "r": special = "%s" % Fore.RED case "y": special = "%s" % Fore.YELLOW case "b": special = "%s" % Fore.BLUE case ":": cursor_position += 10 if cursor_position > 5000: cursor_position = 5000 case ";": cursor_position -= 10 if cursor_position < 1: cursor_position = 1 case "[": if slots[cursor_position] == 0: counter = 1 while counter: index += 1 char = code[index] match char: case "[": counter += 1 case "]": counter -= 1 case "]": if slots[cursor_position] != 0: counter = 1 while counter: index -= 1 char = code[index] match char: case "[": counter -= 1 case "]": counter += 1 case _: pass index += 1 print("") AnimationPrinting("Program is finished!", 0.05) input("Click enter to exit from a program...")
31.136364
71
0.434161
7940550e80aff2bcb75224d7d73b2c77ed4502da
4,255
py
Python
pysnmp/MITEL-APPLICATION-PLATFORM-LIST-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/MITEL-APPLICATION-PLATFORM-LIST-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/MITEL-APPLICATION-PLATFORM-LIST-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module MITEL-APPLICATION-PLATFORM-LIST-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/MITEL-APPLICATION-PLATFORM-LIST-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 20:02:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, ObjectIdentifier, Integer = mibBuilder.importSymbols("ASN1", "OctetString", "ObjectIdentifier", "Integer") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, SingleValueConstraint, ConstraintsIntersection, ValueSizeConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "SingleValueConstraint", "ConstraintsIntersection", "ValueSizeConstraint", "ValueRangeConstraint") mitelIdentification, = mibBuilder.importSymbols("MITEL-MIB", "mitelIdentification") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") ModuleIdentity, Gauge32, Counter64, Unsigned32, Bits, MibIdentifier, ObjectIdentity, IpAddress, NotificationType, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, Integer32, iso, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "ModuleIdentity", "Gauge32", "Counter64", "Unsigned32", "Bits", "MibIdentifier", "ObjectIdentity", "IpAddress", "NotificationType", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "Integer32", "iso", "TimeTicks") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") mitelIdApplicationPlatforms = ModuleIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6)) mitelIdApplicationPlatforms.setRevisions(('2006-08-10 00:00', '2005-08-24 21:34',)) if mibBuilder.loadTexts: mitelIdApplicationPlatforms.setLastUpdated('200608100000Z') if mibBuilder.loadTexts: mitelIdApplicationPlatforms.setOrganization('MITEL Networks Corporation') mitelIdAppPlatManagementApplicationServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 1)) if mibBuilder.loadTexts: mitelIdAppPlatManagementApplicationServer.setStatus('current') mitelIdAppPlatLXTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 2)) if mibBuilder.loadTexts: mitelIdAppPlatLXTelephonyServer.setStatus('current') mitelIdAppPlatMXTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 3)) if mibBuilder.loadTexts: mitelIdAppPlatMXTelephonyServer.setStatus('current') mitelIdAppPlatCXTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 4)) if mibBuilder.loadTexts: mitelIdAppPlatCXTelephonyServer.setStatus('current') mitelIdAppPlatCXiTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 5)) if mibBuilder.loadTexts: mitelIdAppPlatCXiTelephonyServer.setStatus('current') mitelIdAppPlatLiteTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 6)) if mibBuilder.loadTexts: mitelIdAppPlatLiteTelephonyServer.setStatus('current') mitelIdAppPlatMXeTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 7)) if mibBuilder.loadTexts: mitelIdAppPlatMXeTelephonyServer.setStatus('current') mitelIdAppPlatAXTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 8)) if mibBuilder.loadTexts: mitelIdAppPlatAXTelephonyServer.setStatus('current') mitelIdAppPlatMXTTelephonyServer = ObjectIdentity((1, 3, 6, 1, 4, 1, 1027, 1, 6, 9)) if mibBuilder.loadTexts: mitelIdAppPlatMXTTelephonyServer.setStatus('current') mibBuilder.exportSymbols("MITEL-APPLICATION-PLATFORM-LIST-MIB", mitelIdAppPlatLXTelephonyServer=mitelIdAppPlatLXTelephonyServer, mitelIdAppPlatLiteTelephonyServer=mitelIdAppPlatLiteTelephonyServer, mitelIdAppPlatCXiTelephonyServer=mitelIdAppPlatCXiTelephonyServer, PYSNMP_MODULE_ID=mitelIdApplicationPlatforms, mitelIdAppPlatMXTelephonyServer=mitelIdAppPlatMXTelephonyServer, mitelIdAppPlatAXTelephonyServer=mitelIdAppPlatAXTelephonyServer, mitelIdAppPlatMXTTelephonyServer=mitelIdAppPlatMXTTelephonyServer, mitelIdApplicationPlatforms=mitelIdApplicationPlatforms, mitelIdAppPlatManagementApplicationServer=mitelIdAppPlatManagementApplicationServer, mitelIdAppPlatCXTelephonyServer=mitelIdAppPlatCXTelephonyServer, mitelIdAppPlatMXeTelephonyServer=mitelIdAppPlatMXeTelephonyServer)
111.973684
781
0.818566
7940559c5cf0e4c3ea348b0cb733fd0ed2504a58
655
py
Python
Day 14/day14pt1.py
sjgg555/aoc2021
bf3a84a85949b65558a749aa0b39fb5b79b850ac
[ "MIT" ]
null
null
null
Day 14/day14pt1.py
sjgg555/aoc2021
bf3a84a85949b65558a749aa0b39fb5b79b850ac
[ "MIT" ]
null
null
null
Day 14/day14pt1.py
sjgg555/aoc2021
bf3a84a85949b65558a749aa0b39fb5b79b850ac
[ "MIT" ]
null
null
null
from day14data import simple_test_data, data import numpy as np from collections import Counter #data = simple_test_data steps = 10 template = data[0] start, end = np.array(data[1]).T result = template for step in range(steps): step_result = "" for i in range(len(result)): search = result[i:i+2] try: idx = np.where(start == search)[0][0] addition = search[0] + end[idx] except: addition = search[0] step_result += addition result = step_result res_count = Counter(result).most_common(26) most = res_count[0][1] least = res_count[-1][1] print(f"result = {most - least}")
24.259259
49
0.630534
79405802e7a7590ab33eddf60b69888db5266694
6,677
py
Python
apidocs/retrieve.py
gabeorlanski/external-knowledge-codegen
3e1e3581f5774ca51d79c97e768eb5227e7e3dba
[ "Apache-2.0" ]
80
2020-04-17T06:16:40.000Z
2022-02-16T13:24:48.000Z
apidocs/retrieve.py
gabeorlanski/external-knowledge-codegen
3e1e3581f5774ca51d79c97e768eb5227e7e3dba
[ "Apache-2.0" ]
5
2020-06-17T14:55:15.000Z
2021-11-05T11:56:46.000Z
apidocs/retrieve.py
gabeorlanski/external-knowledge-codegen
3e1e3581f5774ca51d79c97e768eb5227e7e3dba
[ "Apache-2.0" ]
10
2020-05-03T13:00:03.000Z
2021-08-20T04:13:06.000Z
from typing import List import json import pprint import sys import argparse import re from tqdm import tqdm import string from collections import defaultdict from elasticsearch import Elasticsearch import operator import numpy as np import pickle #PUNCT_TO_SPACE = dict(zip(list(string.punctuation), list(' ' * len(string.punctuation)))) PUNCT_TO_SPACE = str.maketrans(string.punctuation, ' ' * len(string.punctuation)) def softmax(x): e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def log_softmax(x): return np.log(softmax(x)) class ESSearcher(): def __init__(self, index_name: str): self.es = Elasticsearch() self.index_name = index_name def query_format(self, query_str: str, field: str): new_query_str = query_str.translate(PUNCT_TO_SPACE) new_query_str = ' '.join([w for w in new_query_str.split() if re.match('^[0-9A-Za-z]+$', w)]) new_query_str = new_query_str.replace(' AND ', ' ').replace(' and ', ' ') ''' if len(query_str) - len(new_query_str) > 10: print(query_str) print(new_query_str) input() ''' return '{}:({})'.format(field, new_query_str) def get_topk(self, query_str: str, field: str, topk: int=5): results = self.es.search( index=self.index_name, q=self.query_format(query_str, field))['hits']['hits'][:topk] return [(doc['_source'], doc['_score']) for doc in results] def load_multi_files(files: List[str], max_counts: List[int]=None): if type(files) is not list: files = [files] dataset = [] max_counts = max_counts or [None] * len(files) for file, max_count in zip(files, max_counts): try: td = json.load(open(file, 'r')) except: td = [json.loads(l) for l in open(file, 'r')] if max_count: td = td[:max_count] print('load {} from {}'.format(len(td), file)) dataset.extend(td) return dataset def aug_iter(ess, dataset, field, topk): ''' iterate over dataset and do retrieval ''' for i, code in enumerate(tqdm(dataset)): if field == 'intent': query = (code['rewritten_intent'] if 'rewritten_intent' in code else None) or code['intent'] elif field == 'snippet': query = code['snippet'] try: hits = ess.get_topk(query, field, topk=topk) yield code, hits except KeyboardInterrupt: raise except Exception as e: pass # sometimes the query is empty def topk_aug(args): dataset = load_multi_files(args.inp.split(':')) ess = ESSearcher(index_name='python-docs') aug_dataset = [] id2count = defaultdict(lambda: 0) for code, hits in aug_iter(ess, dataset, args.field, args.topk): ''' if len(hits) != args.topk: print('not enough for "{}"'.format(query)) print(ess.query_format(query, args.field)) ''' for (rcode, score) in hits: rcode['for'] = code['question_id'] rcode['retrieval_score'] = score aug_dataset.append(rcode) id2count[rcode['question_id']] += 1 with open(args.out, 'w') as fout: for code in aug_dataset: fout.write(json.dumps(code) + '\n') print('most commonly retrieved ids {}'.format(sorted(id2count.items(), key=lambda x: -x[1])[:5])) def anneal(probs: np.ndarray, temperature=1): lp = np.log(probs) alp = temperature * lp anneal_probs = softmax(alp) return anneal_probs def get_distribution(args): files = args.inp.split(':') dataset = load_multi_files(files, max_counts=[args.max_count] * len(files)) ess = ESSearcher(index_name='python-docs') aug_dataset = [] id2count = defaultdict(lambda: 0) for code, hits in aug_iter(ess, dataset, args.field, args.topk): for (rcode, score) in hits: rcode['for'] = code['question_id'] rcode['retrieval_score'] = score aug_dataset.append(rcode) id2count[rcode['question_id']] += 1 # compute distribution dist = sorted(id2count.items(), key=lambda x: -x[1]) qids = np.array(list(map(operator.itemgetter(0), dist))) probs = np.array(list(map(operator.itemgetter(1), dist))) probs = probs / np.sum(probs) if args.temp: # anneal probs = anneal(probs, args.temp) print('#retrieved code {}'.format(len(probs))) print('most commonly retrieved ids {}'.format(list(zip(qids, probs))[:5])) if args.out: with open(args.out, 'w') as fout: for qid, ap in zip(qids, probs): fout.write('{}\t{}\n'.format(qid, ap)) def sample_aug(args): dist_file, data_file = args.inp.split(':') qids = [] probs = [] with open(dist_file, 'r') as fin: for l in fin: qid, prob = l.strip().split('\t') qids.append(qid) probs.append(float(prob)) qids = np.array(qids) probs = np.array(probs) if args.temp: # anneal print('annel to {}'.format(args.temp)) print(probs[:5]) probs = anneal(probs, args.temp) print(probs[:5]) dataset = load_multi_files(data_file) qid2code = dict((str(code['question_id']), code) for code in dataset) qid2count = defaultdict(lambda: 0) with open(args.out, 'w') as fout: for sam in np.random.choice(len(probs), args.max_count, p=probs): fout.write(json.dumps(qid2code[qids[sam]]) + '\n') qid2count[qids[sam]] += 1 print('mostly sampled qids {}'.format(sorted(qid2count.items(), key=lambda x: -x[1])[:5])) if __name__ == '__main__': arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--method', type=str, help='method of augmentation', choices=['topk', 'dist', 'sample']) arg_parser.add_argument('--inp', type=str, help='input json file') arg_parser.add_argument('--out', type=str, help='output file') arg_parser.add_argument('--topk', type=int, help='top k for retrieval', default=5) arg_parser.add_argument('--max_count', type=int, help='max number of codes from each file', default=None) arg_parser.add_argument('--field', type=str, help='field for retrieval', choices=['snippet', 'intent'], default='snippet') arg_parser.add_argument('--temp', type=float, help='temperature of sampling', default=None) args = arg_parser.parse_args() if args.method == 'topk': topk_aug(args) elif args.method == 'dist': get_distribution(args) elif args.method == 'sample': sample_aug(args)
34.958115
104
0.608357
7940586ccde2d4f0a7c00043081106645ab0a735
1,380
py
Python
web-simple/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
1
2015-01-28T07:11:03.000Z
2015-01-28T07:11:03.000Z
web-simple/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
null
null
null
web-simple/setup.py
lightyeare/FrameworkBenchmarks
40489856a0480c85227993d91de7d66e9224f8b4
[ "BSD-3-Clause" ]
null
null
null
import subprocess import sys import setup_util from os.path import expanduser import os import getpass home = expanduser("~") def start(args, logfile, errfile): setup_util.replace_text("web-simple/app.pl", "localhost", ""+ args.database_host +"") setup_util.replace_text("web-simple/nginx.conf", "USR", getpass.getuser()) setup_util.replace_text("web-simple/nginx.conf", "server unix:.*\/FrameworkBenchmarks", "server unix:" + home + "/FrameworkBenchmarks") try: subprocess.Popen("plackup -E production -s Starman --workers=" + str(args.max_threads) + " -l " + home + "/FrameworkBenchmarks/web-simple/frameworks-benchmark.sock -a ./app.pl", shell=True, cwd="web-simple", stderr=errfile, stdout=logfile) subprocess.check_call("sudo /usr/local/nginx/sbin/nginx -c " + home + "/FrameworkBenchmarks/web-simple/nginx.conf", shell=True, stderr=errfile, stdout=logfile) return 0 except subprocess.CalledProcessError: return 1 def stop(logfile, errfile): try: subprocess.call("sudo /usr/local/nginx/sbin/nginx -s stop", shell=True, stderr=errfile, stdout=logfile) p = subprocess.Popen(['ps', 'aux'], stdout=subprocess.PIPE) out, err = p.communicate() for line in out.splitlines(): if 'starman' in line: pid = int(line.split(None, 2)[1]) os.kill(pid, 9) return 0 except subprocess.CalledProcessError: return 1
41.818182
243
0.707971
79405994839fdb115af61becdee41c3d80eb69dc
6,581
py
Python
gcn/utils.py
alisure-fork/gcn
4b7b64f941b89647f1ae9aa1f6a0e4276dbdf0d7
[ "MIT" ]
null
null
null
gcn/utils.py
alisure-fork/gcn
4b7b64f941b89647f1ae9aa1f6a0e4276dbdf0d7
[ "MIT" ]
null
null
null
gcn/utils.py
alisure-fork/gcn
4b7b64f941b89647f1ae9aa1f6a0e4276dbdf0d7
[ "MIT" ]
null
null
null
import numpy as np import pickle as pkl import networkx as nx import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh import sys def parse_index_file(filename): """Parse index file.""" index = [] for line in open(filename): index.append(int(line.strip())) return index def sample_mask(idx, l): """Create mask.""" mask = np.zeros(l) mask[idx] = 1 return np.array(mask, dtype=np.bool) def load_data(dataset_str): """ Loads input data from gcn/data directory ind.dataset_str.x => the feature vectors of the training instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.tx => the feature vectors of the test instances as scipy.sparse.csr.csr_matrix object; ind.dataset_str.allx => the feature vectors of both labeled and unlabeled training instances (a superset of ind.dataset_str.x) as scipy.sparse.csr.csr_matrix object; ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object; ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object; ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object; ind.dataset_str.graph => a dict in the format {index: [index_of_neighbor_nodes]} as collections.defaultdict object; ind.dataset_str.test.index => the indices of test instances in graph, for the inductive setting as list object. All objects above must be saved using python pickle module. :param dataset_str: Dataset name :return: All data input files loaded (as well the training/test data). """ names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph'] objects = [] for i in range(len(names)): with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f: if sys.version_info > (3, 0): objects.append(pkl.load(f, encoding='latin1')) else: objects.append(pkl.load(f)) x, y, tx, ty, allx, ally, graph = tuple(objects) test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str)) test_idx_range = np.sort(test_idx_reorder) if dataset_str == 'citeseer': # Fix citeseer dataset (there are some isolated nodes in the graph) # Find isolated nodes, add them as zero-vecs into the right position test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1) tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1])) tx_extended[test_idx_range-min(test_idx_range), :] = tx tx = tx_extended ty_extended = np.zeros((len(test_idx_range_full), y.shape[1])) ty_extended[test_idx_range-min(test_idx_range), :] = ty ty = ty_extended features = sp.vstack((allx, tx)).tolil() features[test_idx_reorder, :] = features[test_idx_range, :] adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph)) labels = np.vstack((ally, ty)) labels[test_idx_reorder, :] = labels[test_idx_range, :] idx_test = test_idx_range.tolist() idx_train = range(len(y)) idx_val = range(len(y), len(y)+500) train_mask = sample_mask(idx_train, labels.shape[0]) val_mask = sample_mask(idx_val, labels.shape[0]) test_mask = sample_mask(idx_test, labels.shape[0]) y_train = np.zeros(labels.shape) y_val = np.zeros(labels.shape) y_test = np.zeros(labels.shape) y_train[train_mask, :] = labels[train_mask, :] y_val[val_mask, :] = labels[val_mask, :] y_test[test_mask, :] = labels[test_mask, :] return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def preprocess_features(features): """Row-normalize feature matrix and convert to tuple representation""" rowsum = np.array(features.sum(1)) # 每个节点的特征数量 n r_inv = np.power(rowsum, -1).flatten() # 特征数量的倒数 1/n r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) # 特征数量的倒数的对角阵: features = r_mat_inv.dot(features) # 是否可以解释为:特征及特征的权重? return sparse_to_tuple(features) def normalize_adj(adj): """Symmetrically normalize adjacency matrix.""" adj = sp.coo_matrix(adj) rowsum = np.array(adj.sum(1)) d_inv_sqrt = np.power(rowsum, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): """Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation.""" adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) # A + I, 及权重 return sparse_to_tuple(adj_normalized) def construct_feed_dict(features, support, labels, labels_mask, placeholders): """Construct feed dictionary.""" feed_dict = dict() feed_dict.update({placeholders['labels']: labels}) feed_dict.update({placeholders['labels_mask']: labels_mask}) feed_dict.update({placeholders['features']: features}) feed_dict.update({placeholders['support'][i]: support[i] for i in range(len(support))}) feed_dict.update({placeholders['num_features_nonzero']: features[1].shape}) return feed_dict def chebyshev_polynomials(adj, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation).""" print("Calculating Chebyshev polynomials up to order {}...".format(k)) adj_normalized = normalize_adj(adj) laplacian = sp.eye(adj.shape[0]) - adj_normalized largest_eigval, _ = eigsh(laplacian, 1, which='LM') scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0]) t_k = list() t_k.append(sp.eye(adj.shape[0])) t_k.append(scaled_laplacian) def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap): s_lap = sp.csr_matrix(scaled_lap, copy=True) return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two for i in range(2, k+1): t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian)) return sparse_to_tuple(t_k)
38.711765
115
0.683483
794059bfda0780c283b4a8d86ab6f3d41fc92a15
635
py
Python
etl/parsers/etw/Microsoft_Windows_Video_For_Windows.py
IMULMUL/etl-parser
76b7c046866ce0469cd129ee3f7bb3799b34e271
[ "Apache-2.0" ]
104
2020-03-04T14:31:31.000Z
2022-03-28T02:59:36.000Z
etl/parsers/etw/Microsoft_Windows_Video_For_Windows.py
IMULMUL/etl-parser
76b7c046866ce0469cd129ee3f7bb3799b34e271
[ "Apache-2.0" ]
7
2020-04-20T09:18:39.000Z
2022-03-19T17:06:19.000Z
etl/parsers/etw/Microsoft_Windows_Video_For_Windows.py
IMULMUL/etl-parser
76b7c046866ce0469cd129ee3f7bb3799b34e271
[ "Apache-2.0" ]
16
2020-03-05T18:55:59.000Z
2022-03-01T10:19:28.000Z
# -*- coding: utf-8 -*- """ Microsoft-Windows-Video-For-Windows GUID : 712abb2d-d806-4b42-9682-26da01d8b307 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("712abb2d-d806-4b42-9682-26da01d8b307"), event_id=1, version=0) class Microsoft_Windows_Video_For_Windows_1_0(Etw): pattern = Struct( "ApplicationName" / WString, "FileName" / WString, "ContentType" / WString )
31.75
123
0.725984
794059d85cb8078a7f803daa4412795b336239a5
5,309
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_05_01/operations/_vpn_site_link_connections_operations.py
xolve/azure-sdk-for-python
9f5baa19c392f77f811d936ee43450e4ea524002
[ "MIT" ]
2,728
2015-01-09T10:19:32.000Z
2022-03-31T14:50:33.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_05_01/operations/_vpn_site_link_connections_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
17,773
2015-01-05T15:57:17.000Z
2022-03-31T23:50:25.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2021_05_01/operations/_vpn_site_link_connections_operations.py
v-xuto/azure-sdk-for-python
9c6296d22094c5ede410bc83749e8df8694ccacc
[ "MIT" ]
1,916
2015-01-19T05:05:41.000Z
2022-03-31T19:36:44.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.mgmt.core.exceptions import ARMErrorFormat from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class VpnSiteLinkConnectionsOperations(object): """VpnSiteLinkConnectionsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2021_05_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str gateway_name, # type: str connection_name, # type: str link_connection_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.VpnSiteLinkConnection" """Retrieves the details of a vpn site link connection. :param resource_group_name: The resource group name of the VpnGateway. :type resource_group_name: str :param gateway_name: The name of the gateway. :type gateway_name: str :param connection_name: The name of the vpn connection. :type connection_name: str :param link_connection_name: The name of the vpn connection. :type link_connection_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: VpnSiteLinkConnection, or the result of cls(response) :rtype: ~azure.mgmt.network.v2021_05_01.models.VpnSiteLinkConnection :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.VpnSiteLinkConnection"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-05-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'gatewayName': self._serialize.url("gateway_name", gateway_name, 'str'), 'connectionName': self._serialize.url("connection_name", connection_name, 'str'), 'linkConnectionName': self._serialize.url("link_connection_name", link_connection_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('VpnSiteLinkConnection', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/vpnGateways/{gatewayName}/vpnConnections/{connectionName}/vpnLinkConnections/{linkConnectionName}'} # type: ignore
46.982301
238
0.685628
79405a7c0f95b1d632c407fa0cb26435255eaed2
552
py
Python
virtual/lib/python3.8/site-packages/rest_framework/authtoken/migrations/0003_tokenproxy.py
ShirQUillE-SandE/the-neighborhood-101
fda09cb0481d1cd902f5e13b7ed61ed96772121d
[ "MIT" ]
17,395
2017-03-31T21:13:13.000Z
2022-03-31T21:33:13.000Z
virtual/lib/python3.8/site-packages/rest_framework/authtoken/migrations/0003_tokenproxy.py
ShirQUillE-SandE/the-neighborhood-101
fda09cb0481d1cd902f5e13b7ed61ed96772121d
[ "MIT" ]
2,983
2017-03-31T14:43:26.000Z
2022-03-31T20:34:23.000Z
virtual/lib/python3.8/site-packages/rest_framework/authtoken/migrations/0003_tokenproxy.py
ShirQUillE-SandE/the-neighborhood-101
fda09cb0481d1cd902f5e13b7ed61ed96772121d
[ "MIT" ]
5,159
2017-03-31T15:06:32.000Z
2022-03-31T03:25:17.000Z
# Generated by Django 3.1.1 on 2020-09-28 09:34 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('authtoken', '0002_auto_20160226_1747'), ] operations = [ migrations.CreateModel( name='TokenProxy', fields=[ ], options={ 'verbose_name': 'token', 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('authtoken.token',), ), ]
21.230769
49
0.471014
79405adb54b06f79a03d63496cdce160d8ad5b7c
1,052
py
Python
ci/dropbox_upload.py
swistakm/pyrilla
43ceed4e2500ee9aa352446fd7a9552466b66aed
[ "BSD-3-Clause" ]
9
2016-03-31T15:28:00.000Z
2021-11-18T23:41:01.000Z
ci/dropbox_upload.py
swistakm/pyrilla
43ceed4e2500ee9aa352446fd7a9552466b66aed
[ "BSD-3-Clause" ]
7
2015-10-19T15:13:26.000Z
2016-10-29T14:17:20.000Z
ci/dropbox_upload.py
swistakm/pyrilla
43ceed4e2500ee9aa352446fd7a9552466b66aed
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Script for uploading securely built distributions (artifacts) to private Dropbox directory. Dropbox authorization token should be provided only as environment variable in a secure form. In case of CI systems (AppVeyor, Travis CI) this should be provided as encrypted value in CI configuration file. We prefer to use this method instead of native artifacts collection routine provided by given CI system because it is more consistent. """ import os import dropbox import dropbox.files dropbox_token = os.environ.get('DROPBOX_TOKEN') dbx = dropbox.Dropbox(dropbox_token) for root, dirs, files in os.walk('dist'): for filename in files: local_path = os.path.join(root, filename) relative_path = os.path.relpath(local_path, 'dist') dropbox_path = "/" + relative_path with open(local_path, 'rb') as f: print("uploading %s" % local_path) dbx.files_upload( f.read(), dropbox_path, dropbox.files.WriteMode('overwrite') )
30.941176
75
0.692966
79405b182dd33f0ca98116738f83470cc051fffe
768
py
Python
desktop/core/ext-py/cx_Oracle-6.4.1/samples/PLSQLProcedure.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
5,079
2015-01-01T03:39:46.000Z
2022-03-31T07:38:22.000Z
desktop/core/ext-py/cx_Oracle-6.4.1/samples/PLSQLProcedure.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
1,623
2015-01-01T08:06:24.000Z
2022-03-30T19:48:52.000Z
desktop/core/ext-py/cx_Oracle-6.4.1/samples/PLSQLProcedure.py
yetsun/hue
2e48f0cc70e233ee0e1b40733d4b2a18d8836c66
[ "Apache-2.0" ]
2,033
2015-01-04T07:18:02.000Z
2022-03-28T19:55:47.000Z
#------------------------------------------------------------------------------ # Copyright 2016, 2017, Oracle and/or its affiliates. All rights reserved. #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # PLSQLProcedure.py # # Demonstrate how to call a PL/SQL stored procedure and get the results of an # OUT variable. #------------------------------------------------------------------------------ from __future__ import print_function import cx_Oracle import SampleEnv connection = cx_Oracle.connect(SampleEnv.MAIN_CONNECT_STRING) cursor = connection.cursor() myvar = cursor.var(int) cursor.callproc('myproc', (123, myvar)) print(myvar.getvalue())
32
79
0.454427
79405b79fd7199cc6ffdc946ac38611a6d1bfced
11,616
py
Python
diffusion/sampling.py
crowsonkb/v-diffusion-pytorch
93b6a54986d8259837a100046777fba52d812554
[ "MIT" ]
393
2021-12-16T19:44:36.000Z
2022-03-31T02:30:30.000Z
diffusion/sampling.py
crowsonkb/v-diffusion-pytorch
93b6a54986d8259837a100046777fba52d812554
[ "MIT" ]
13
2021-12-21T11:14:37.000Z
2022-03-29T14:29:59.000Z
diffusion/sampling.py
crowsonkb/v-diffusion-pytorch
93b6a54986d8259837a100046777fba52d812554
[ "MIT" ]
59
2021-12-16T23:35:34.000Z
2022-03-25T22:59:58.000Z
import torch from tqdm.auto import trange from . import utils # DDPM/DDIM sampling @torch.no_grad() def sample(model, x, steps, eta, extra_args, callback=None): """Draws samples from a model given starting noise.""" ts = x.new_ones([x.shape[0]]) # Create the noise schedule alphas, sigmas = utils.t_to_alpha_sigma(steps) # The sampling loop for i in trange(len(steps), disable=None): # Get the model output (v, the predicted velocity) with torch.cuda.amp.autocast(): v = model(x, ts * steps[i], **extra_args).float() # Predict the noise and the denoised image pred = x * alphas[i] - v * sigmas[i] eps = x * sigmas[i] + v * alphas[i] # Call the callback if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'v': v, 'pred': pred}) # If we are not on the last timestep, compute the noisy image for the # next timestep. if i < len(steps) - 1: # If eta > 0, adjust the scaling factor for the predicted noise # downward according to the amount of additional noise to add ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \ (1 - alphas[i]**2 / alphas[i + 1]**2).sqrt() adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt() # Recombine the predicted noise and predicted denoised image in the # correct proportions for the next step x = pred * alphas[i + 1] + eps * adjusted_sigma # Add the correct amount of fresh noise if eta: x += torch.randn_like(x) * ddim_sigma # If we are on the last timestep, output the denoised image return pred @torch.no_grad() def cond_sample(model, x, steps, eta, extra_args, cond_fn, callback=None): """Draws guided samples from a model given starting noise.""" ts = x.new_ones([x.shape[0]]) # Create the noise schedule alphas, sigmas = utils.t_to_alpha_sigma(steps) # The sampling loop for i in trange(len(steps), disable=None): # Get the model output with torch.enable_grad(): x = x.detach().requires_grad_() with torch.cuda.amp.autocast(): v = model(x, ts * steps[i], **extra_args) pred = x * alphas[i] - v * sigmas[i] # Call the callback if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'v': v.detach(), 'pred': pred.detach()}) if steps[i] < 1: cond_grad = cond_fn(x, ts * steps[i], pred, **extra_args).detach() v = v.detach() - cond_grad * (sigmas[i] / alphas[i]) else: v = v.detach() # Predict the noise and the denoised image pred = x * alphas[i] - v * sigmas[i] eps = x * sigmas[i] + v * alphas[i] # If we are not on the last timestep, compute the noisy image for the # next timestep. if i < len(steps) - 1: # If eta > 0, adjust the scaling factor for the predicted noise # downward according to the amount of additional noise to add ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \ (1 - alphas[i]**2 / alphas[i + 1]**2).sqrt() adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt() # Recombine the predicted noise and predicted denoised image in the # correct proportions for the next step x = pred * alphas[i + 1] + eps * adjusted_sigma # Add the correct amount of fresh noise if eta: x += torch.randn_like(x) * ddim_sigma # If we are on the last timestep, output the denoised image return pred @torch.no_grad() def reverse_sample(model, x, steps, extra_args, callback=None): """Finds a starting latent that would produce the given image with DDIM (eta=0) sampling.""" ts = x.new_ones([x.shape[0]]) # Create the noise schedule alphas, sigmas = utils.t_to_alpha_sigma(steps) # The sampling loop for i in trange(len(steps) - 1, disable=None): # Get the model output (v, the predicted velocity) with torch.cuda.amp.autocast(): v = model(x, ts * steps[i], **extra_args).float() # Predict the noise and the denoised image pred = x * alphas[i] - v * sigmas[i] eps = x * sigmas[i] + v * alphas[i] # Call the callback if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'v': v, 'pred': pred}) # Recombine the predicted noise and predicted denoised image in the # correct proportions for the next step x = pred * alphas[i + 1] + eps * sigmas[i + 1] return x # PNDM sampling (see https://openreview.net/pdf?id=PlKWVd2yBkY) def make_eps_model_fn(model): def eps_model_fn(x, t, **extra_args): alphas, sigmas = utils.t_to_alpha_sigma(t) v = model(x, t, **extra_args) eps = x * utils.append_dims(sigmas, x.ndim) + v * utils.append_dims(alphas, x.ndim) return eps return eps_model_fn def make_autocast_model_fn(model, enabled=True): def autocast_model_fn(*args, **kwargs): with torch.cuda.amp.autocast(enabled): return model(*args, **kwargs).float() return autocast_model_fn def transfer(x, eps, t_1, t_2): alphas, sigmas = utils.t_to_alpha_sigma(t_1) next_alphas, next_sigmas = utils.t_to_alpha_sigma(t_2) pred = (x - eps * utils.append_dims(sigmas, x.ndim)) / utils.append_dims(alphas, x.ndim) x = pred * utils.append_dims(next_alphas, x.ndim) + eps * utils.append_dims(next_sigmas, x.ndim) return x, pred def prk_step(model, x, t_1, t_2, extra_args): eps_model_fn = make_eps_model_fn(model) t_mid = (t_2 + t_1) / 2 eps_1 = eps_model_fn(x, t_1, **extra_args) x_1, _ = transfer(x, eps_1, t_1, t_mid) eps_2 = eps_model_fn(x_1, t_mid, **extra_args) x_2, _ = transfer(x, eps_2, t_1, t_mid) eps_3 = eps_model_fn(x_2, t_mid, **extra_args) x_3, _ = transfer(x, eps_3, t_1, t_2) eps_4 = eps_model_fn(x_3, t_2, **extra_args) eps_prime = (eps_1 + 2 * eps_2 + 2 * eps_3 + eps_4) / 6 x_new, pred = transfer(x, eps_prime, t_1, t_2) return x_new, eps_prime, pred def plms_step(model, x, old_eps, t_1, t_2, extra_args): eps_model_fn = make_eps_model_fn(model) eps = eps_model_fn(x, t_1, **extra_args) eps_prime = (55 * eps - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24 x_new, _ = transfer(x, eps_prime, t_1, t_2) _, pred = transfer(x, eps, t_1, t_2) return x_new, eps, pred @torch.no_grad() def prk_sample(model, x, steps, extra_args, is_reverse=False, callback=None): """Draws samples from a model given starting noise using fourth-order Pseudo Runge-Kutta.""" ts = x.new_ones([x.shape[0]]) model_fn = make_autocast_model_fn(model) if not is_reverse: steps = torch.cat([steps, steps.new_zeros([1])]) for i in trange(len(steps) - 1, disable=None): x, _, pred = prk_step(model_fn, x, steps[i] * ts, steps[i + 1] * ts, extra_args) if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'pred': pred}) return x @torch.no_grad() def plms_sample(model, x, steps, extra_args, is_reverse=False, callback=None): """Draws samples from a model given starting noise using fourth order Pseudo Linear Multistep.""" ts = x.new_ones([x.shape[0]]) model_fn = make_autocast_model_fn(model) if not is_reverse: steps = torch.cat([steps, steps.new_zeros([1])]) old_eps = [] for i in trange(len(steps) - 1, disable=None): if len(old_eps) < 3: x, eps, pred = prk_step(model_fn, x, steps[i] * ts, steps[i + 1] * ts, extra_args) else: x, eps, pred = plms_step(model_fn, x, old_eps, steps[i] * ts, steps[i + 1] * ts, extra_args) old_eps.pop(0) old_eps.append(eps) if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'pred': pred}) return x def pie_step(model, x, t_1, t_2, extra_args): eps_model_fn = make_eps_model_fn(model) eps_1 = eps_model_fn(x, t_1, **extra_args) x_1, _ = transfer(x, eps_1, t_1, t_2) eps_2 = eps_model_fn(x_1, t_2, **extra_args) eps_prime = (eps_1 + eps_2) / 2 x_new, pred = transfer(x, eps_prime, t_1, t_2) return x_new, eps_prime, pred def plms2_step(model, x, old_eps, t_1, t_2, extra_args): eps_model_fn = make_eps_model_fn(model) eps = eps_model_fn(x, t_1, **extra_args) eps_prime = (3 * eps - old_eps[-1]) / 2 x_new, _ = transfer(x, eps_prime, t_1, t_2) _, pred = transfer(x, eps, t_1, t_2) return x_new, eps, pred @torch.no_grad() def pie_sample(model, x, steps, extra_args, is_reverse=False, callback=None): """Draws samples from a model given starting noise using second-order Pseudo Improved Euler.""" ts = x.new_ones([x.shape[0]]) model_fn = make_autocast_model_fn(model) if not is_reverse: steps = torch.cat([steps, steps.new_zeros([1])]) for i in trange(len(steps) - 1, disable=None): x, _, pred = pie_step(model_fn, x, steps[i] * ts, steps[i + 1] * ts, extra_args) if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'pred': pred}) return x @torch.no_grad() def plms2_sample(model, x, steps, extra_args, is_reverse=False, callback=None): """Draws samples from a model given starting noise using second order Pseudo Linear Multistep.""" ts = x.new_ones([x.shape[0]]) model_fn = make_autocast_model_fn(model) if not is_reverse: steps = torch.cat([steps, steps.new_zeros([1])]) old_eps = [] for i in trange(len(steps) - 1, disable=None): if len(old_eps) < 1: x, eps, pred = pie_step(model_fn, x, steps[i] * ts, steps[i + 1] * ts, extra_args) else: x, eps, pred = plms2_step(model_fn, x, old_eps, steps[i] * ts, steps[i + 1] * ts, extra_args) old_eps.pop(0) old_eps.append(eps) if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'pred': pred}) return x def iplms_step(model, x, old_eps, t_1, t_2, extra_args): eps_model_fn = make_eps_model_fn(model) eps = eps_model_fn(x, t_1, **extra_args) if len(old_eps) == 0: eps_prime = eps elif len(old_eps) == 1: eps_prime = (3/2 * eps - 1/2 * old_eps[-1]) elif len(old_eps) == 2: eps_prime = (23/12 * eps - 16/12 * old_eps[-1] + 5/12 * old_eps[-2]) else: eps_prime = (55/24 * eps - 59/24 * old_eps[-1] + 37/24 * old_eps[-2] - 9/24 * old_eps[-3]) x_new, _ = transfer(x, eps_prime, t_1, t_2) _, pred = transfer(x, eps, t_1, t_2) return x_new, eps, pred @torch.no_grad() def iplms_sample(model, x, steps, extra_args, is_reverse=False, callback=None): """Draws samples from a model given starting noise using fourth order Improved Pseudo Linear Multistep.""" ts = x.new_ones([x.shape[0]]) model_fn = make_autocast_model_fn(model) if not is_reverse: steps = torch.cat([steps, steps.new_zeros([1])]) old_eps = [] for i in trange(len(steps) - 1, disable=None): x, eps, pred = iplms_step(model_fn, x, old_eps, steps[i] * ts, steps[i + 1] * ts, extra_args) if len(old_eps) >= 3: old_eps.pop(0) old_eps.append(eps) if callback is not None: callback({'x': x, 'i': i, 't': steps[i], 'pred': pred}) return x
37.230769
105
0.600723
79405bb96bdb046d9f64950346ad004a8e71615b
15,780
py
Python
symbolic_slimshot/ind_union_open.py
sunyi000/SafeLearner
bf93268c9107f3404696b9212accaace1a0e76ee
[ "Apache-2.0" ]
6
2019-10-03T04:18:17.000Z
2020-12-18T16:13:34.000Z
symbolic_slimshot/ind_union_open.py
sunyi000/SafeLearner
bf93268c9107f3404696b9212accaace1a0e76ee
[ "Apache-2.0" ]
null
null
null
symbolic_slimshot/ind_union_open.py
sunyi000/SafeLearner
bf93268c9107f3404696b9212accaace1a0e76ee
[ "Apache-2.0" ]
2
2019-10-16T21:13:04.000Z
2022-02-02T14:00:54.000Z
import itertools from symbolic_slimshot import algorithm class IndependentUnion(object): def __init__(self, query, subqueries, init=True): self.query = query self.subqueries = subqueries self.genericConstantStr = None self.genericIdentifiers = set() self.usedSeparatorVars = [] # True means that missing tuples in the output count as True self.trueOnMissing = False # this call must be last for initialization purposes self.getSafeQueryPlan(init) def getSafeQueryPlan(self, init=True): if isinstance(self.query, list): self.usedSeparatorVars = set() for q in self.query: self.usedSeparatorVars.update(q.getUsedSeparators()) else: self.usedSeparatorVars = self.query.getUsedSeparators() self.formattedUsedSeparators = [ self.formatSeparatorVariable(sep) for sep in self.usedSeparatorVars ] if init: self.children = list( map(algorithm.getSafeOpenQueryPlanNaive, self.subqueries) ) self.lam = sum(x.lam for x in self.children) else: self.children = [] def hasGenericConstant(self): return self.genericConstantStr is not None def getGenericConstantStr(self): return self.genericConstantStr def generateSQL_DNF(self, separatorSubs=None): if separatorSubs is None: separatorSubs = [] results = [] counters = [] selectAtts = [] identToTermSubs = {} counterIdentToGenericConstantStr = {} genericConstantStrIdent = 0 for (i, child) in enumerate(self.children): sql = child.generateSQL_DNF(separatorSubs[:]) ident = algorithm.counter() if child.hasGenericConstant(): genericConstantStr = child.getGenericConstantStr() # doesn't matter which one, just pick arbitrarily self.genericConstantStr = genericConstantStr counterIdentToGenericConstantStr[ident] = genericConstantStr genericConstantStrIdent = ident counters.append(ident) results.append((sql, ident)) thisTermSubs = set() for (subId, varList) in separatorSubs: if child.usesSeparator(subId): thisTermSubs.add(subId) identToTermSubs[ident] = thisTermSubs if self.hasGenericConstant(): selectAtts.append( "q%d.%s" % (genericConstantStrIdent, self.genericConstantStr) ) subqueryPairs = [ pair for pair in itertools.product(counters, counters) if pair[0] < pair[1] ] joinConditions = [] for (j1, j2) in subqueryPairs: if ( j1 in counterIdentToGenericConstantStr and j2 in counterIdentToGenericConstantStr ): joinConditions.append( "q%d.%s = q%d.%s" % ( j1, counterIdentToGenericConstantStr[j1], j2, counterIdentToGenericConstantStr[j2], ) ) if len(joinConditions): joinCondition = "where %s" % " and ".join(joinConditions) else: joinCondition = "" subqueries = [] previousIdent = False for (sql, ident) in results: newSubquery = "(%s) as q%d \n" % (sql, ident) if previousIdent: if len(separatorSubs): condition = "ON %s" % " and ".join( [ "q%d.c%d = q%d.c%d" % (previousIdent, i, ident, i) for (i, x) in separatorSubs if i in identToTermSubs[previousIdent] and i in identToTermSubs[ident] ] ) subqueries.append( "FULL OUTER JOIN %s %s" % (newSubquery, condition) ) else: subqueries.append("FULL OUTER JOIN %s ON true" % (newSubquery)) else: subqueries.append("%s" % (newSubquery)) previousIdent = ident subqueryString = " ".join(subqueries) # pString = '*'.join(["COALESCE(1-q%d.pUse,1)" % i for i in counters]) pString = ( "concat(" + ", ' + ', ".join( [ "COALESCE(cast(q%d.pUse as text), '<%s>')" % (i, l) for i, l in zip(counters, [c.lam for c in self.children]) ] ) + ")" ) for (i, x) in separatorSubs: attsToCoalesce = ", ".join( [ "q%d.c%d" % (ident, i) for ident in counters if i in identToTermSubs[previousIdent] and i in identToTermSubs[ident] ] ) if len(attsToCoalesce) > 0: selectAtts.append("COALESCE(%s) as c%d" % (attsToCoalesce, i)) attString = ", ".join(selectAtts) if attString: selectString = "%s, %s as pUse" % (attString, pString) else: selectString = "%s as pUse" % (pString) sql = "\n select %s from %s %s" % (selectString, subqueryString, joinCondition) return sql def formatSeparatorVariable(self, sep): return "sep_var_%s" % str(sep) # we have an order on attributes to follow, but some will require complex statements such # as CASE/WHEN or COALESCE, which are passed in using # attributeToFormattedStringMap def getOrderedSelectString(self, orderedAttributes, attributeToFormattedStringMap): selectAttributes = [] for attribute in orderedAttributes: if attribute in attributeToFormattedStringMap: selectAttributes.append(attributeToFormattedStringMap[attribute]) return ", ".join(selectAttributes) def generateSQL_CNF(self, params): if params["useLog"]: if params["useNull"]: defaultValue = "NULL" else: defaultValue = "'-Infinity'" else: defaultValue = "0" tableAliases = [] tableAliasToSubquerySQLMap = {} tableAliasToGenericIdentifiersMap = {} tableAliasToUsedSeparatorsMap = {} genericIdentifierToTableAliasMap = {} usedSeparatorToTableAliasMap = {} tableAliasesUsingAllSeparators = set() tableAliasesUsingAllSeparatorsAndGenericIdentifiers = set() tableAliasIsTrueOnMissing = {} tableAliasToMissingGenericIdentifiersMap = {} tableAliasToMissingSeparatorsMap = {} restOfTableAliases = set() self.genericIdentifiers = set() # if any child is not true on missing, this gets set to False self.trueOnMissing = True # assign each child a table alias and fetch its SQL code, then build the maps # that say which identifiers/separator vars are used by each child for child in self.children: currentSubqueryID = algorithm.counter() subquerySQL = child.generateSQL_CNF(params) tableAlias = "q%d" % currentSubqueryID tableAliases.append(tableAlias) tableAliasToSubquerySQLMap[tableAlias] = subquerySQL tableAliasIsTrueOnMissing[tableAlias] = child.trueOnMissing if not child.trueOnMissing: self.trueOnMissing = False childGenericIdentifiers = child.genericIdentifiers.copy() tableAliasToGenericIdentifiersMap[tableAlias] = childGenericIdentifiers self.genericIdentifiers.update(childGenericIdentifiers) for genericIdentifier in childGenericIdentifiers: if genericIdentifier in genericIdentifierToTableAliasMap: genericIdentifierToTableAliasMap[genericIdentifier].add(tableAlias) else: genericIdentifierToTableAliasMap[genericIdentifier] = set( [tableAlias] ) usesAllSeparators = True tableAliasToUsedSeparatorsMap[tableAlias] = set() for usedSeparatorVariable in self.usedSeparatorVars: if child.usesSeparator(usedSeparatorVariable): formattedSeparator = self.formatSeparatorVariable( usedSeparatorVariable ) tableAliasToUsedSeparatorsMap[tableAlias].add(formattedSeparator) if formattedSeparator in usedSeparatorToTableAliasMap: usedSeparatorToTableAliasMap[formattedSeparator].add(tableAlias) else: usedSeparatorToTableAliasMap[formattedSeparator] = set( [tableAlias] ) else: usesAllSeparators = False if usesAllSeparators: tableAliasesUsingAllSeparators.add(tableAlias) for tableAlias in tableAliases: tableAliasToMissingGenericIdentifiersMap[ tableAlias ] = self.genericIdentifiers.difference( tableAliasToGenericIdentifiersMap[tableAlias] ) tableAliasToMissingSeparatorsMap[tableAlias] = set( self.formattedUsedSeparators ).difference(tableAliasToUsedSeparatorsMap[tableAlias]) if tableAliasToMissingGenericIdentifiersMap[tableAlias]: restOfTableAliases.add(tableAlias) elif tableAlias in tableAliasesUsingAllSeparators: tableAliasesUsingAllSeparatorsAndGenericIdentifiers.add(tableAlias) else: restOfTableAliases.add(tableAlias) # need a fixed order for selected attributes, before building the union # queries orderedAttributes = [] for previousSeparatorVariable in self.formattedUsedSeparators: orderedAttributes.append(previousSeparatorVariable) for genericIdentifier in self.genericIdentifiers: orderedAttributes.append(genericIdentifier) orderedAttributes.append("pUse") orderedAttributes.append("trueOnMissing") unionSubqueries = [] selectVariables = set(self.formattedUsedSeparators).union( self.genericIdentifiers ) for tableAlias in tableAliases: if tableAlias in tableAliasesUsingAllSeparatorsAndGenericIdentifiers: selectAttributeMap = { attribute: "%s.%s" % (tableAlias, attribute) for attribute in selectVariables } selectAttributeMap["pUse"] = "%s.pUse" % tableAlias selectAttributeMap["trueOnMissing"] = "%s as trueOnMissing" % str( tableAliasIsTrueOnMissing[tableAlias] ) selectAttributeString = self.getOrderedSelectString( orderedAttributes, selectAttributeMap ) unionSubqueries.append( "SELECT %s FROM %s" % (selectAttributeString, tableAlias) ) else: # skip if this tableAlias has no joining variables? missingSelectVariables = tableAliasToMissingGenericIdentifiersMap[ tableAlias ].union(tableAliasToMissingSeparatorsMap[tableAlias]) selectAttributeMap = {} additionalTables = [] index = 0 for attribute in selectVariables: if attribute in missingSelectVariables: domainTable = "A%d" % index additionalTables.append("A %s" % domainTable) selectAttributeMap[attribute] = "%s.v0 as %s" % ( domainTable, attribute, ) index += 1 else: selectAttributeMap[attribute] = "%s.%s" % ( tableAlias, attribute, ) selectAttributeMap["pUse"] = "%s.pUse" % tableAlias selectAttributeMap["trueOnMissing"] = "%s as trueOnMissing" % str( tableAliasIsTrueOnMissing[tableAlias] ) selectAttributeString = self.getOrderedSelectString( orderedAttributes, selectAttributeMap ) additionalTablesString = ", ".join(additionalTables) unionSubqueries.append( "SELECT %s FROM %s, %s" % (selectAttributeString, tableAlias, additionalTablesString) ) selectAttributeMap = { attribute: "%s" % (attribute) for attribute in selectVariables } numberOfChildrenFalseOnMissing = len(self.children) - sum( tableAliasIsTrueOnMissing.values() ) if params["useLog"]: if params["useNull"]: selectAttributeMap["pUse"] = ( "iunion_log_null_%d_false_on_missing(pUse, trueOnMissing) as pUse" % numberOfChildrenFalseOnMissing ) else: selectAttributeMap["pUse"] = ( "iunion_log_neginf_%d_false_on_missing(pUse, trueOnMissing) as pUse" % numberOfChildrenFalseOnMissing ) else: selectAttributeMap["pUse"] = ( "iunion_%d_false_on_missing(pUse, trueOnMissing) as pUse" % numberOfChildrenFalseOnMissing ) selectClause = self.getOrderedSelectString( orderedAttributes, selectAttributeMap ) groupByAttributeMap = { attribute: "%s" % (attribute) for attribute in selectVariables } if groupByAttributeMap: groupByClause = "GROUP BY %s" % self.getOrderedSelectString( orderedAttributes, groupByAttributeMap ) else: groupByClause = "" withClause = ",\n".join( [ "%s as (%s)" % (tableAlias, tableAliasToSubquerySQLMap[tableAlias]) for tableAlias in tableAliases ] ) unionClause = " UNION ALL ".join(unionSubqueries) unionClauseAlias = "q%d" % algorithm.counter() joinSQL = "\n WITH %s select %s from (\n %s \n) %s \n %s" % ( withClause, selectClause, unionClause, unionClauseAlias, groupByClause, ) return joinSQL def usesSeparator(self, sep): return self.query.usesSeparator(sep) def buildTree(self, T, parent=None): newId = len(T.nodes()) + 1 T.add_node(newId, label=self.getLabel()) for n in self.children: T.add_edge(newId, n.buildTree(T, self)) return newId def getLabel(self): # TODO(ericgribkoff) make the join/union distinction for CNF versus DNF # more clear return "Independent Join\n%s" % self.query.prettyPrintCNF() def __repr__(self): return "Independent Union (true on missing = %s): %s" % ( self.trueOnMissing, ", ".join([x.__repr__() for x in self.children]), )
39.748111
93
0.557098
79405e254c2200450a3d39c76dfc5483134ea245
286
py
Python
_modules/urls/handler404/views.py
looking-for-a-job/django-examples
dfafa450668cac5c0351f6c7238b8886511229bf
[ "Unlicense" ]
null
null
null
_modules/urls/handler404/views.py
looking-for-a-job/django-examples
dfafa450668cac5c0351f6c7238b8886511229bf
[ "Unlicense" ]
null
null
null
_modules/urls/handler404/views.py
looking-for-a-job/django-examples
dfafa450668cac5c0351f6c7238b8886511229bf
[ "Unlicense" ]
null
null
null
#!/usr/bin/env python from django.http import HttpResponse, HttpResponseNotFound def my_view(request): return HttpResponse('hello world') def handler404(request, *args, **kwargs): """works only with DEBUG = False """ return HttpResponseNotFound("handler404 output")
22
58
0.723776
79405f9a201ac2c9e8bed737e48a2c8f319fa462
15,537
py
Python
notebooks/01_dynamic_bernoulli/src/models.py
jfilter/ptf
94e76a6f26344ba37c41793523e70ba75863c5c0
[ "MIT" ]
10
2020-05-20T07:25:21.000Z
2021-05-20T15:14:55.000Z
notebooks/01_dynamic_bernoulli/src/models.py
jfilter/ptf
94e76a6f26344ba37c41793523e70ba75863c5c0
[ "MIT" ]
null
null
null
notebooks/01_dynamic_bernoulli/src/models.py
jfilter/ptf
94e76a6f26344ba37c41793523e70ba75863c5c0
[ "MIT" ]
2
2020-04-28T15:07:41.000Z
2021-05-06T14:30:01.000Z
import numpy as np import os import pickle import tensorflow as tf from tensorflow.contrib.distributions import Normal, Bernoulli from tensorflow.contrib.tensorboard.plugins import projector from sklearn.manifold import TSNE from utils import * class emb_model(object): def __init__(self, args, d, logdir): self.args = args self.K = args.K self.cs = args.cs self.ns = args.ns self.sig = args.sig self.dynamic = args.dynamic self.logdir = logdir self.N = d.N self.L = d.L self.T = d.T self.n_minibatch = d.n_train self.n_test = d.n_test self.labels = d.labels self.unigram = d.unigram self.dictionary = d.dictionary self.query_words = d.query_words self.train_feed = d.train_feed #self.valid_data = d.valid_data #self.test_data = d.test_data self.n_iter = args.n_iter self.n_epochs = d.n_epochs self.n_test = d.n_test self.n_valid = d.n_valid self.alpha_trainable = True if args.init: fname = os.path.join('fits', d.name, args.init) if 'alpha_constant' in args.init: self.alpha_trainable = False fname = fname.replace('/alpha_constant','') fit = pickle.load(open(fname)) self.rho_init = fit['rho'] self.alpha_init = fit['alpha'] else: self.rho_init = (np.random.randn(self.L, self.K)/self.K).astype('float32') self.alpha_init = (np.random.randn(self.L, self.K)/self.K).astype('float32') if not self.alpha_trainable: self.rho_init = (0.1*np.random.randn(self.L, self.K)/self.K).astype('float32') with open(os.path.join(self.logdir, "log_file.txt"), "a") as text_file: text_file.write(str(self.args)) text_file.write('\n') def dump(self, fname): raise NotImplementedError() def detect_drift(self): raise NotImplementedError() def eval_log_like(self, feed_dict): return self.sess.run(tf.log(self.y_pos.mean()+0.000001), feed_dict = feed_dict) def plot_params(self, plot_only=500): with self.sess.as_default(): tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) low_dim_embs_alpha2 = tsne.fit_transform(self.alpha.eval()[:plot_only]) plot_with_labels(low_dim_embs_alpha2[:plot_only], self.labels[:plot_only], self.logdir + '/alpha.eps') tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) low_dim_embs_rho2 = tsne.fit_transform(self.rho.eval()[:plot_only]) plot_with_labels(low_dim_embs_rho2[:plot_only], self.labels[:plot_only], self.logdir + '/rho.eps') def print_word_similarities(self, words, num): with self.sess.as_default(): rho = self.rho.eval() for x in words: x_idx = self.dictionary[x] f_name = os.path.join(self.logdir, '%s_queries.txt' % (x)) with open(f_name, "w+") as text_file: cos = cosine_distance(rho[x_idx], rho.T) rank = np.argsort(cos)[1:num+1] text_file.write("\n\n=====================================\n%s\n=====================================" % (x)) for r in rank: text_file.write("\n%-20s %6.4f" % (self.labels[r], cos[r])) def initialize_training(self): optimizer = tf.train.AdamOptimizer() self.train = optimizer.minimize(self.loss) self.sess = tf.Session() with self.sess.as_default(): tf.global_variables_initializer().run() variable_summaries('alpha', self.alpha) with tf.name_scope('objective'): tf.summary.scalar('loss', self.loss) tf.summary.scalar('priors', self.log_prior) tf.summary.scalar('ll_pos', self.ll_pos) tf.summary.scalar('ll_neg', self.ll_neg) self.summaries = tf.summary.merge_all() self.train_writer = tf.summary.FileWriter(self.logdir, self.sess.graph) self.saver = tf.train.Saver() config = projector.ProjectorConfig() alpha = config.embeddings.add() alpha.tensor_name = 'model/embeddings/alpha' alpha.metadata_path = '../vocab.tsv' if not self.dynamic: rho = config.embeddings.add() rho.tensor_name = 'model/embeddings/rho' rho.metadata_path = '../vocab.tsv' else: for t in range(self.T): rho = config.embeddings.add() rho.tensor_name = 'model/embeddings/rho_'+str(t) rho.metadata_path = '../vocab.tsv' projector.visualize_embeddings(self.train_writer, config) def train_embeddings(self): for data_pass in range(self.n_iter): for step in range(self.n_epochs): if step % 100 == 0: summary, ll_pos, ll_neg, _ = self.sess.run([self.summaries, self.ll_pos, self.ll_neg, self.train], feed_dict=self.train_feed(self.placeholders)) self.train_writer.add_summary(summary, data_pass*(self.n_epochs) + step) print("%8d/%8d iter%3d; log-likelihood: %6.4f on positive samples,%6.4f on negative samples " % (step, self.n_epochs, data_pass, ll_pos, ll_neg)) else: self.sess.run([self.train], feed_dict=self.train_feed(self.placeholders)) self.dump(self.logdir+"/variational"+str(data_pass)+".dat") self.saver.save(self.sess, os.path.join(self.logdir, "model.ckpt"), data_pass) self.print_word_similarities(self.query_words, 10) if self.dynamic: words = self.detect_drift() self.print_word_similarities(words[:10], 10) self.plot_params(500) class bern_emb_model(emb_model): def __init__(self, args, d, logdir): super(bern_emb_model, self).__init__(args, d, logdir) self.n_minibatch = self.n_minibatch.sum() with tf.name_scope('model'): # Data Placeholder with tf.name_scope('input'): self.placeholders = tf.placeholder(tf.int32) self.words = self.placeholders # Index Masks with tf.name_scope('context_mask'): self.p_mask = tf.cast(tf.range(self.cs/2, self.n_minibatch + self.cs/2),tf.int32) rows = tf.cast(tf.tile(tf.expand_dims(tf.range(0, self.cs/2),[0]), [self.n_minibatch, 1]),tf.int32) columns = tf.cast(tf.tile(tf.expand_dims(tf.range(0, self.n_minibatch), [1]), [1, self.cs/2]),tf.int32) self.ctx_mask = tf.concat([rows+columns, rows+columns +self.cs/2+1], 1) with tf.name_scope('embeddings'): self.rho = tf.Variable(self.rho_init, name='rho') self.alpha = tf.Variable(self.alpha_init, name='alpha', trainable=self.alpha_trainable) with tf.name_scope('priors'): prior = Normal(loc = 0.0, scale = self.sig) if self.alpha_trainable: self.log_prior = tf.reduce_sum(prior.log_prob(self.rho) + prior.log_prob(self.alpha)) else: self.log_prior = tf.reduce_sum(prior.log_prob(self.rho)) with tf.name_scope('natural_param'): # Taget and Context Indices with tf.name_scope('target_word'): self.p_idx = tf.gather(self.words, self.p_mask) self.p_rho = tf.squeeze(tf.gather(self.rho, self.p_idx)) # Negative samples with tf.name_scope('negative_samples'): unigram_logits = tf.tile(tf.expand_dims(tf.log(tf.constant(self.unigram)), [0]), [self.n_minibatch, 1]) self.n_idx = tf.multinomial(unigram_logits, self.ns) self.n_rho = tf.gather(self.rho, self.n_idx) with tf.name_scope('context'): self.ctx_idx = tf.squeeze(tf.gather(self.words, self.ctx_mask)) self.ctx_alphas = tf.gather(self.alpha, self.ctx_idx) # Natural parameter ctx_sum = tf.reduce_sum(self.ctx_alphas,[1]) self.p_eta = tf.expand_dims(tf.reduce_sum(tf.multiply(self.p_rho, ctx_sum),-1),1) self.n_eta = tf.reduce_sum(tf.multiply(self.n_rho, tf.tile(tf.expand_dims(ctx_sum,1),[1,self.ns,1])),-1) # Conditional likelihood self.y_pos = Bernoulli(logits = self.p_eta) self.y_neg = Bernoulli(logits = self.n_eta) self.ll_pos = tf.reduce_sum(self.y_pos.log_prob(1.0)) self.ll_neg = tf.reduce_sum(self.y_neg.log_prob(0.0)) self.log_likelihood = self.ll_pos + self.ll_neg scale = 1.0*self.N/self.n_minibatch self.loss = - (self.n_epochs * self.log_likelihood + self.log_prior) def dump(self, fname): with self.sess.as_default(): dat = {'rho': self.rho.eval(), 'alpha': self.alpha.eval()} pickle.dump( dat, open( fname, "a+" ) ) class dynamic_bern_emb_model(emb_model): def __init__(self, args, d, logdir): super(dynamic_bern_emb_model, self).__init__(args, d, logdir) with tf.name_scope('model'): with tf.name_scope('embeddings'): self.alpha = tf.Variable(self.alpha_init, name='alpha', trainable=self.alpha_trainable) self.rho_t = {} for t in range(-1,self.T): self.rho_t[t] = tf.Variable(self.rho_init + 0.001*tf.random_normal([self.L, self.K])/self.K, name = 'rho_'+str(t)) with tf.name_scope('priors'): global_prior = Normal(loc = 0.0, scale = self.sig) local_prior = Normal(loc = 0.0, scale = self.sig/100.0) self.log_prior = tf.reduce_sum(global_prior.log_prob(self.alpha)) self.log_prior += tf.reduce_sum(global_prior.log_prob(self.rho_t[-1])) for t in range(self.T): self.log_prior += tf.reduce_sum(local_prior.log_prob(self.rho_t[t] - self.rho_t[t-1])) with tf.name_scope('likelihood'): self.placeholders = {} self.y_pos = {} self.y_neg = {} self.ll_pos = 0.0 self.ll_neg = 0.0 for t in range(self.T): # Index Masks p_mask = tf.range(self.cs/2,self.n_minibatch[t] + self.cs/2) rows = tf.tile(tf.expand_dims(tf.range(0, self.cs/2),[0]), [self.n_minibatch[t], 1]) columns = tf.tile(tf.expand_dims(tf.range(0, self.n_minibatch[t]), [1]), [1, self.cs/2]) ctx_mask = tf.concat([rows+columns, rows+columns +self.cs/2+1], 1) # Data Placeholder self.placeholders[t] = tf.placeholder(tf.int32, shape = (self.n_minibatch[t] + self.cs)) # Taget and Context Indices p_idx = tf.gather(self.placeholders[t], p_mask) ctx_idx = tf.squeeze(tf.gather(self.placeholders[t], ctx_mask)) # Negative samples unigram_logits = tf.tile(tf.expand_dims(tf.log(tf.constant(self.unigram)), [0]), [self.n_minibatch[t], 1]) n_idx = tf.multinomial(unigram_logits, self.ns) # Context vectors ctx_alphas = tf.gather(self.alpha, ctx_idx) p_rho = tf.squeeze(tf.gather(self.rho_t[t], p_idx)) n_rho = tf.gather(self.rho_t[t], n_idx) # Natural parameter ctx_sum = tf.reduce_sum(ctx_alphas,[1]) p_eta = tf.expand_dims(tf.reduce_sum(tf.multiply(p_rho, ctx_sum),-1),1) n_eta = tf.reduce_sum(tf.multiply(n_rho, tf.tile(tf.expand_dims(ctx_sum,1),[1,self.ns,1])),-1) # Conditional likelihood self.y_pos[t] = Bernoulli(logits = p_eta) self.y_neg[t] = Bernoulli(logits = n_eta) self.ll_pos += tf.reduce_sum(self.y_pos[t].log_prob(1.0)) self.ll_neg += tf.reduce_sum(self.y_neg[t].log_prob(0.0)) self.loss = - (self.n_epochs * (self.ll_pos + self.ll_neg) + self.log_prior) def dump(self, fname): with self.sess.as_default(): dat = {'alpha': self.alpha.eval()} for t in range(self.T): dat['rho_'+str(t)] = self.rho_t[t].eval() pickle.dump( dat, open( fname, "a+" ) ) def eval_log_like(self, feed_dict): log_p = np.zeros((0,1)) for t in range(self.T): log_p_t = self.sess.run(tf.log(self.y_pos[t].mean()+0.000001), feed_dict = feed_dict) log_p = np.vstack((log_p, log_p_t)) return log_p def plot_params(self, plot_only=500): with self.sess.as_default(): tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) low_dim_embs_alpha = tsne.fit_transform(self.alpha.eval()[:plot_only]) plot_with_labels(low_dim_embs_alpha[:plot_only], self.labels[:plot_only], self.logdir + '/alpha.eps') for t in [0, int(self.T/2), self.T-1]: w_idx_t = range(plot_only) np_rho = self.rho_t[t].eval() tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000) low_dim_embs_rho = tsne.fit_transform(np_rho[w_idx_t,:]) plot_with_labels(low_dim_embs_rho, self.labels[w_idx_t], self.logdir + '/rho_' + str(t) + '.eps') def detect_drift(self, metric='total_dist'): if metric == 'total_dist': tf_dist, tf_w_idx = tf.nn.top_k(tf.reduce_sum(tf.square(self.rho_t[self.T-1]-self.rho_t[0]),1), 500) else: print('unknown metric') return dist, w_idx = self.sess.run([tf_dist, tf_w_idx]) words = self.labels[w_idx] f_name = self.logdir + '/top_drifting_words.txt' with open(f_name, "w+") as text_file: for (w, drift) in zip(w_idx,dist): text_file.write("\n%-20s %6.4f" % (self.labels[w], drift)) return words def print_word_similarities(self, words, num): for x in words: x_idx = self.dictionary[x] f_name = os.path.join(self.logdir, '%s_queries.txt' % (x)) with open(f_name, "w+") as text_file: for t_idx in xrange(self.T): with self.sess.as_default(): rho_t = self.rho_t[t_idx].eval() cos = cosine_distance(rho_t[x_idx], rho_t.T) rank = np.argsort(cos)[1:num+1] text_file.write("\n\n================================\n%s, t = %d\n================================" % (x,t_idx)) for r in rank: text_file.write("\n%-20s %6.4f" % (self.labels[r], cos[r])) def define_model(args, d, logdir): if args.dynamic: m = dynamic_bern_emb_model(args, d, logdir) else: m = bern_emb_model(args, d, logdir) return m
45.165698
165
0.557765
79406056abb80590dc0ab387cab25bc8240864a5
668
py
Python
startup.py
ruthogunnnaike/SeeSec---IoT-Vulnerablity-Scanner
d2186421607af0ef3351b7d95c2478c4ac307931
[ "MIT" ]
7
2017-09-09T06:16:16.000Z
2020-12-23T09:00:23.000Z
startup.py
eshcrow/SeeSec---IoT-Vulnerablity-Scanner
d2186421607af0ef3351b7d95c2478c4ac307931
[ "MIT" ]
null
null
null
startup.py
eshcrow/SeeSec---IoT-Vulnerablity-Scanner
d2186421607af0ef3351b7d95c2478c4ac307931
[ "MIT" ]
6
2018-05-12T10:07:42.000Z
2021-12-06T15:24:17.000Z
def launch(): def launch(): from pox.log.level import launch launch(DEBUG=True) from pox.misc.firewall import launch launch() from pox.openflow.keepalive import launch launch(interval=300) from pox.forwarding.l3_learning import launch launch() from pox.proto.dhcpd import launch launch() from pox.proto.dns_spy import launch launch() from pox.host_tracker.host_tracker import launch launch() from pox.openflow.discovery import launch launch() # 15 seconds from pox.forwarding.l2_pairs import launch launch()
20.875
56
0.615269
7940610d4644daf2201af34e4208b17352066110
2,242
py
Python
utils/transforms.py
Vaden4d/logo-classifier
18c397e52352da8e79868158123c13bf0417130f
[ "MIT" ]
null
null
null
utils/transforms.py
Vaden4d/logo-classifier
18c397e52352da8e79868158123c13bf0417130f
[ "MIT" ]
null
null
null
utils/transforms.py
Vaden4d/logo-classifier
18c397e52352da8e79868158123c13bf0417130f
[ "MIT" ]
null
null
null
import albumentations as A from albumentations.pytorch.transforms import ToTensor def get_train_transform(img_size): train_transform = A.Compose([ A.Resize(img_size, img_size), A.Transpose(p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.ShiftScaleRotate(p=0.5), A.HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5), A.RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0), A.CoarseDropout(p=0.5), A.Cutout(p=0.5), ToTensor()]) return train_transform def get_valid_transform(img_size): # constants from imagenet data test_transform = A.Compose([A.Resize(img_size, img_size), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ToTensor() ]) return test_transform def get_transforms(img_size): train_transform = A.Compose([A.Resize(img_size, img_size), A.HorizontalFlip(), A.VerticalFlip(), A.ShiftScaleRotate(), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ToTensor() ]) test_transform = A.Compose([A.Resize(img_size, img_size), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ToTensor() ]) return train_transform, test_transform
41.518519
109
0.417484
79406127fb3bf05f843e8c62030aa53b6c0230fb
13,045
py
Python
testscripts/RDKB/component/LOG_AGENT/TS_LOGAGENT_CM_DisableLog.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/LOG_AGENT/TS_LOGAGENT_CM_DisableLog.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
testscripts/RDKB/component/LOG_AGENT/TS_LOGAGENT_CM_DisableLog.py
rdkcmf/rdkb-tools-tdkb
9f9c3600cd701d5fc90ac86a6394ebd28d49267e
[ "Apache-2.0" ]
null
null
null
########################################################################## # If not stated otherwise in this file or this component's Licenses.txt # file the following copyright and licenses apply: # # Copyright 2019 RDK Management # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ########################################################################## ''' <?xml version="1.0" encoding="UTF-8"?><xml> <id/> <version>1</version> <name>TS_LOGAGENT_CM_DisableLog</name> <primitive_test_id/> <primitive_test_name>LogAgent_DoNothing</primitive_test_name> <primitive_test_version>1</primitive_test_version> <status>FREE</status> <synopsis>Disable logging of CM module and check if the logs are getting updated in CMlog.txt.0</synopsis> <groups_id/> <execution_time>40</execution_time> <long_duration>false</long_duration> <advanced_script>false</advanced_script> <remarks/> <skip>false</skip> <box_types> <box_type>Broadband</box_type> </box_types> <rdk_versions> <rdk_version>RDKB</rdk_version> </rdk_versions> <test_cases> <test_case_id>TC_LOGAGENT_4</test_case_id> <test_objective>Disable logging of CM module and check if the logs are getting updated in CMlog.txt.0</test_objective> <test_type>Positive</test_type> <test_setup>Broadband,RPI,Emulator</test_setup> <pre_requisite>TDK Agent should be in running state.</pre_requisite> <api_or_interface_used>None</api_or_interface_used> <input_parameters>Device.LogAgent.X_RDKCENTRAL-COM_LoggerEnable : True Device.LogAgent.X_RDKCENTRAL-COM_CM_LoggerEnable : False</input_parameters> <automation_approch>1. Load LogAgent module 2. Get and save the values of log enable status 3. Set false to CM log enable status 4. Check if the CMAgent process is up and running in device 5. When the process is up, get and save the timestamp of CMlog.txt.0 6. Get the values of CM related parameters and check if the timestamp in log file is changed or not. 7. Revert the values 8. Unload module</automation_approch> <except_output>The logs should not get updated in CMlog.txt.0</except_output> <priority>High</priority> <test_stub_interface>LOG_AGENT</test_stub_interface> <test_script>TS_LOGAGENT_CM_DisableLog</test_script> <skipped>No</skipped> <release_version>M65</release_version> <remarks>None</remarks> </test_cases> </xml> ''' # use tdklib library,which provides a wrapper for tdk testcase script import tdklib; from time import sleep; from tdkbVariables import *; MAX_RETRY = 6; #Test component to be tested obj = tdklib.TDKScriptingLibrary("tdkbtr181","1"); sysobj = tdklib.TDKScriptingLibrary("sysutil","1"); #IP and Port of box, No need to change, #This will be replaced with correspoing Box Ip and port while executing script ip = <ipaddress> port = <port> obj.configureTestCase(ip,port,'TS_LOGAGENT_CM_DisableLog'); sysobj.configureTestCase(ip,port,'TS_LOGAGENT_CM_DisableLog'); #Get the result of connection with test component and DUT loadmodulestatus=obj.getLoadModuleResult(); sysloadmodulestatus=sysobj.getLoadModuleResult(); if "SUCCESS" in loadmodulestatus.upper() and "SUCCESS" in sysloadmodulestatus.upper(): #Set the result status of execution obj.setLoadModuleStatus("SUCCESS") sysobj.setLoadModuleStatus("SUCCESS") tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Get'); tdkTestObj.addParameter("ParamName","Device.LogAgent.X_RDKCENTRAL-COM_LoggerEnable"); expectedresult="SUCCESS"; #Execute the test case in DUT tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); LogStatus = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 1: Get the enable status of Logging"; print "EXPECTED RESULT 1: Should get the enable status of logging"; print "ACTUAL RESULT 1: Enable status is %s" %LogStatus; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; tdkTestObj.addParameter("ParamName","Device.LogAgent.X_RDKCENTRAL-COM_CM_LoggerEnable"); #Execute the test case in DUT tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); CMLogStatus = tdkTestObj.getResultDetails(); if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 2: Get the enable status of CM Logging"; print "EXPECTED RESULT 2: Should get the enable status of CM logging"; print "ACTUAL RESULT 2: Enable status is %s" %CMLogStatus; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; #Set true to both namespaces tdkTestObj = obj.createTestStep("TDKB_TR181Stub_SetMultiple"); tdkTestObj.addParameter("paramList","Device.LogAgent.X_RDKCENTRAL-COM_LoggerEnable|true|bool|Device.LogAgent.X_RDKCENTRAL-COM_CM_LoggerEnable|false|bool"); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 3: Disable logging of CM module" print "EXPECTED RESULT 3: Should disable CM logging" print "ACTUAL RESULT 3: %s" %details; print "TEST EXECUTION RESULT :SUCCESS"; #check whether the process is restarted automatically query="sh %s/tdk_platform_utility.sh checkProcess CcspCMAgentSsp" %TDK_PATH print "query:%s" %query tdkTestObj = sysobj.createTestStep('ExecuteCmd'); tdkTestObj.addParameter("command", query) expectedresult="SUCCESS"; print "Check for every 10 secs whether the process is up" retryCount = 0; while retryCount < MAX_RETRY: tdkTestObj.executeTestCase("SUCCESS"); actualresult = tdkTestObj.getResult(); pid = tdkTestObj.getResultDetails().strip(); if expectedresult in actualresult and pid: break; else: sleep(10); retryCount = retryCount + 1; if not pid: print "Retry Again: Check for every 5 mins whether the process is up" retryCount = 0; while retryCount < MAX_RETRY: tdkTestObj.executeTestCase("SUCCESS"); actualresult = tdkTestObj.getResult(); pid = tdkTestObj.getResultDetails().strip(); if expectedresult in actualresult and pid: break; else: sleep(300); retryCount = retryCount + 1; sleep(30) #Check the timestamp of CMlog.txt.0 tdkTestObj = sysobj.createTestStep('ExecuteCmd'); cmd = "tail -1 /rdklogs/logs/CMlog.txt.0" tdkTestObj.addParameter("command", cmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); lastLineofLog = tdkTestObj.getResultDetails().strip(); if lastLineofLog: oldTimeStamp = lastLineofLog.split(" ")[0] print "Current timestamp in CMlog.txt.0 is %s" %oldTimeStamp #If log file is empty else: oldTimeStamp = " " print "Currently the log file of CM is empty"; #Get the values of CM parameters tdkTestObj = obj.createTestStep('TDKB_TR181Stub_Get'); tdkTestObj.addParameter("ParamName","Device.X_CISCO_COM_CableModem.UpstreamChannel."); expectedresult="SUCCESS"; #Execute the test case in DUT tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails() if expectedresult in actualresult: #Set the result status of execution tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP 4: Get the value of CM parameters"; print "EXPECTED RESULT 4: Should get the value of CM parameters"; #Get the result of execution print "[TEST EXECUTION RESULT] : SUCCESS"; #Get and compare the new timestamp of CMlog.txt.0 tdkTestObj = sysobj.createTestStep('ExecuteCmd'); tdkTestObj.addParameter("command", cmd); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); lastLineofLog = tdkTestObj.getResultDetails().strip(); if lastLineofLog: newTimeStamp = lastLineofLog.split(" ")[0] print "New timestamp in CMlog.txt.0 is %s" %newTimeStamp else: newTimeStamp = " "; print "CMlog.txt.0 is empty" if newTimeStamp == oldTimeStamp: print "SUCCESS:The logs are not updated in the log file" tdkTestObj.setResultStatus("SUCCESS"); else: print "FAILURE:The logs are updated in log file even after disabling logging feature" tdkTestObj.setResultStatus("FAILURE"); else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 4: Get the value of CM parameters"; print "EXPECTED RESULT 4: Should get the value of CM parameters"; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; #Revert the log enable status tdkTestObj = obj.createTestStep("TDKB_TR181Stub_SetMultiple"); tdkTestObj.addParameter("paramList","Device.LogAgent.X_RDKCENTRAL-COM_LoggerEnable|%s|bool|Device.LogAgent.X_RDKCENTRAL-COM_CM_LoggerEnable|%s|bool" %(LogStatus,CMLogStatus)); tdkTestObj.executeTestCase(expectedresult); actualresult = tdkTestObj.getResult(); details = tdkTestObj.getResultDetails(); if expectedresult in actualresult: tdkTestObj.setResultStatus("SUCCESS"); print "TEST STEP : Revert the logging status" print "EXPECTED RESULT : Should revert the logging status" print "ACTUAL RESULT : %s" %details; print "TEST EXECUTION RESULT :SUCCESS"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP : Revert the logging status" print "EXPECTED RESULT : Should revert the logging status" print "ACTUAL RESULT : %s" %details; print "TEST EXECUTION RESULT :FAILURE"; else: tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 3: disable logging of CM module" print "EXPECTED RESULT 3: Should disable CM logging" print "ACTUAL RESULT 3: %s" %details; print "TEST EXECUTION RESULT :FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 2: Get the enable status of CM Logging"; print "EXPECTED RESULT 2: Should get the enable status of CM logging"; print "ACTUAL RESULT 2: Enable status is %s" %CMLogStatus; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; else: #Set the result status of execution tdkTestObj.setResultStatus("FAILURE"); print "TEST STEP 1: Get the enable status of Logging"; print "EXPECTED RESULT 1: Should get the enable status of logging"; print "ACTUAL RESULT 1: Enable status is %s" %LogStatus; #Get the result of execution print "[TEST EXECUTION RESULT] : FAILURE"; obj.unloadModule("tdkbtr181"); sysobj.unloadModule("sysutil"); else: print "Failed to load module"; obj.setLoadModuleStatus("FAILURE"); print "Module loading failed";
46.92446
191
0.637792
7940619aeb9c124198d0f9756ba3f9e76d368a6e
193
py
Python
020-Transaction Atomicity/core/urls.py
karuvally/Django-ORM-Mastery-DJ003
5792d717185b231449d41bd4ef82d6b4367d4722
[ "MIT" ]
33
2021-06-08T21:49:24.000Z
2022-03-06T22:31:59.000Z
020-Transaction Atomicity/core/urls.py
WilliamOtieno/Django-ORM-Mastery-DJ003
0eca2d2408bfc1112b7092fbdce1c5f188a428d3
[ "MIT" ]
null
null
null
020-Transaction Atomicity/core/urls.py
WilliamOtieno/Django-ORM-Mastery-DJ003
0eca2d2408bfc1112b7092fbdce1c5f188a428d3
[ "MIT" ]
33
2021-06-09T12:43:17.000Z
2022-03-29T08:16:12.000Z
from django.contrib import admin from django.urls import path from bank import views urlpatterns = [ path('admin/', admin.site.urls), path('', views.process_payment, name='payment') ]
21.444444
51
0.720207
794061aed042e6ccc9ba6c6f7f48b97ef51c9585
5,008
py
Python
tests_samoa/table_tools/plot_data.py
chameleon-hpc/chameleon-scripts
67c22be72b436395384dd9d83ef05a3397a851ee
[ "BSD-3-Clause" ]
null
null
null
tests_samoa/table_tools/plot_data.py
chameleon-hpc/chameleon-scripts
67c22be72b436395384dd9d83ef05a3397a851ee
[ "BSD-3-Clause" ]
null
null
null
tests_samoa/table_tools/plot_data.py
chameleon-hpc/chameleon-scripts
67c22be72b436395384dd9d83ef05a3397a851ee
[ "BSD-3-Clause" ]
null
null
null
import sys import getopt import matplotlib.pyplot as plt import matplotlib import os from filter_csv import * markers_times = 'x' markers_efficiency = 'o' markers_imbalance = 'o' colors = ['#1f77b4','#ff7f0e','#2ca02c'] def plot_speedup_curve(ax,x,base_time, times, label, marker): speedups = [ base_time/t for t in times] ax.plot(x,speedups,label=label,marker=marker,markerfacecolor="none") def plot_times_curve(ax,x,times,label, marker,color): print(x) print(times) ax.plot(x,times,label=label,marker=marker, color=color) def plot_times_curve_error(ax,x,times,label, marker,color,yerr): print (yerr) ax.errorbar(x,times,label=label,marker=marker, color=color,yerr=yerr) def plot_efficiency_curve(ax,x, base_time, times, label, marker): speedups = [ base_time/t for t in times] efficiencies = [ r[1]/r[0] for r in zip(x,speedups)] print (efficiencies) ax.plot(x,efficiencies,label=label,marker=marker,markerfacecolor="none") def plot_imbalance_curve(ax, x, imbalance, label, marker,color): ax.plot(x,imbalance,label=label,marker=marker,linestyle="dotted",markerfacecolor="none",color=color) def main(): plot_times = False plot_efficiency = False plot_speedup = False plot_imbalance = False output_filename = "plot.pdf" x_filter = "ranks" x_label = "Nodes" labels = [] color_offset = 0 try: opts, arg = getopt.getopt(sys.argv[1:], "i:c:f:o:tsebl:x:","xlabel=") except getopt.GetoptError as err: print(str(err)) sys.exit(2) file="" for o, a in opts: if o=="-i": file=a filter=[] for o, a in opts: if o=="-f": filter=a.split(";") if o=="-e": plot_efficiency = True if o=="-t": plot_times = True if o=="-l": labels=a.split(";") if o=="-s": plot_speedup = True if o=="-o": output_filename = a if o=="-b": plot_imbalance = True if o=="-x": x_filter = a if o=="--xlabel": x_label = a if labels==[]: labels = filter #x=[1,2,4,8,16,32,56,128,256,512] #times with CCP fig = plt.figure() ax = fig.add_subplot(111) ax.set_xscale('log', basex=2) ax.set_yscale('log', basey=2) #ax.set curr_ax = ax cnt = 0 if plot_times: print("plotting times") for f in filter: print (f) dict=getSortedDict(file,f,"",x_filter) print (dict) times=extractCol(dict, "min_time") print (times) err=extractCol(dict, "std_dev") x=extractCol(dict, x_filter) curr_ax.set_xticks(x) curr_ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) curr_ax.get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plot_times_curve(curr_ax, x,times, labels[cnt]+" - wall clock time",markers_times, colors[color_offset+cnt]) #plot_times_curve_error(curr_ax, x,times, labels[cnt]+" - wall clock time", markers_times, colors[color_offset+cnt],err) cnt = cnt+1 curr_ax.legend(frameon=False, loc='lower left',fontsize='small') #curr_ax.set_ylim([0.0,1024.0]) curr_ax.set_xlabel(x_label) curr_ax.set_ylabel("Wall Clock Execution Time [s]") if plot_speedup: if cnt>0: cnt = 0 curr_ax = ax.twinx() for f in filter: #print (f) dict=getSortedDict(file,f,"",x_filter) print (dict) times=extractCol(dict, "mean_time") x=extractCol(dict, x_filter) curr_ax.set_xticks(x) curr_ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plot_speedup_curve(x,times[0], times, labels[cnt],'x') cnt = cnt+1 curr_ax.legend(frameon=False) if plot_efficiency: if cnt>0: cnt = 0 curr_ax = ax.twinx() for f in filter: #print (f) dict=getSortedDict(file,f,"",x_filter) print (dict) times=extractCol(dict, "mean_time") x=extractCol(dict, x_filter) curr_ax.set_xticks(x) curr_ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plot_efficiency_curve(curr_ax,x,times[0], times, labels[cnt]+" - parallel efficiency",markers_efficiency) cnt = cnt+1 curr_ax.set_ylim([0,1.19]) curr_ax.set_ylabel("Parallel Efficiency") curr_ax.legend(frameon=False, loc='upper right', fontsize='small') if plot_imbalance: if cnt>0: cnt = 0 curr_ax = ax.twinx() for f in filter: #print (f) dict=getSortedDict(file,f,"",x_filter) print (dict) imbalances=extractCol(dict, "avg_imbalance") x=extractCol(dict, x_filter) curr_ax.set_xticks(x) curr_ax.get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plot_imbalance_curve(curr_ax,x,imbalances, labels[cnt]+" - imbalance",markers_imbalance,colors[color_offset+cnt]) cnt = cnt+1 curr_ax.set_ylim([1.0,2.0]) curr_ax.set_yscale('linear') curr_ax.set_xlabel(x_label) curr_ax.set_ylabel("Imbalance (max_load/avg_load)") curr_ax.legend(frameon=False, loc='upper right', fontsize='small') plt.savefig(os.path.join(os.path.split(file)[0], output_filename), bbox_inches='tight') if __name__=="__main__": main()
27.516484
125
0.678514
794061dd8e2e069a2b1b07504dfb10633bf7e7fb
458
py
Python
plotly/validators/layout/annotation/_name.py
gnestor/plotly.py
a8ae062795ddbf9867b8578fe6d9e244948c15ff
[ "MIT" ]
12
2020-04-18T18:10:22.000Z
2021-12-06T10:11:15.000Z
plotly/validators/layout/annotation/_name.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
27
2020-04-28T21:23:12.000Z
2021-06-25T15:36:38.000Z
plotly/validators/layout/annotation/_name.py
Vesauza/plotly.py
e53e626d59495d440341751f60aeff73ff365c28
[ "MIT" ]
6
2020-04-18T23:07:08.000Z
2021-11-18T07:53:06.000Z
import _plotly_utils.basevalidators class NameValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name='name', parent_name='layout.annotation', **kwargs ): super(NameValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop('edit_type', 'none'), role=kwargs.pop('role', 'style'), **kwargs )
28.625
75
0.631004
794062c29ab6f35aee4a6a6cf2a457ad8f8e5047
739
py
Python
LeetCode/randomPickInteger.py
johanaluna/DataScience_summary
a365728b81a38f31a28e97666252910a23732936
[ "MIT" ]
null
null
null
LeetCode/randomPickInteger.py
johanaluna/DataScience_summary
a365728b81a38f31a28e97666252910a23732936
[ "MIT" ]
null
null
null
LeetCode/randomPickInteger.py
johanaluna/DataScience_summary
a365728b81a38f31a28e97666252910a23732936
[ "MIT" ]
null
null
null
import random class Solution: def __init__(self, w): self.w = w self.suma = sum(self.w[0][0]) self.sumAdded = [sum(self.w[0][0][0:x:1]) for x in range(1, len(self.w[0][0])+1)] print(self.suma) def pickIndex(self): sln = [] sln.append('null') i = 0 while i < len(self.w)-1: rad = random.randint(1,self.suma) for j in range(len(self.sumAdded)): if rad <= self.sumAdded[j] : index = j i += 1 return j w = [[[1]],[]] w = [[[1,3]],[],[],[],[],[]] # Your Solution object will be instantiated and called as such: obj = Solution(w) param_1 = obj.pickIndex() print(param_1)
25.482759
89
0.484438
7940637ce5ec1ee14232e7da8a7211b8b00b36e9
3,103
py
Python
samples/client/petstore/python-experimental/petstore_api/models/dog_all_of.py
jaumard/openapi-generator
239d68df3644cb0b60547184b7f0db17835940d3
[ "Apache-2.0" ]
1
2021-02-17T00:02:17.000Z
2021-02-17T00:02:17.000Z
samples/client/petstore/python-experimental/petstore_api/models/dog_all_of.py
jaumard/openapi-generator
239d68df3644cb0b60547184b7f0db17835940d3
[ "Apache-2.0" ]
8
2020-07-18T08:19:47.000Z
2022-02-26T18:06:57.000Z
samples/client/petstore/python-experimental/petstore_api/models/dog_all_of.py
jaumard/openapi-generator
239d68df3644cb0b60547184b7f0db17835940d3
[ "Apache-2.0" ]
2
2020-09-30T13:01:22.000Z
2020-09-30T15:20:55.000Z
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class DogAllOf(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'breed': 'str', } attribute_map = { 'breed': 'breed', # noqa: E501 } def __init__(self, breed=None): # noqa: E501 """DogAllOf - a model defined in OpenAPI Keyword Args: breed (str): [optional] # noqa: E501 """ self._breed = None self.discriminator = None if breed is not None: self.breed = breed # noqa: E501 @property def breed(self): """Gets the breed of this DogAllOf. # noqa: E501 :return: The breed of this DogAllOf. # noqa: E501 :rtype: str """ return self._breed @breed.setter def breed( self, breed): """Sets the breed of this DogAllOf. :param breed: The breed of this DogAllOf. # noqa: E501 :type: str """ self._breed = ( breed) def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DogAllOf): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
25.434426
174
0.538511
7940638e1d7faf83eea4618a79cfc9a46b2aeba7
2,552
py
Python
logger.py
keonlee9420/tacotron2_toolkit
fe0e19fdb00f2554d99b0f33e56d65a1d1956b86
[ "BSD-3-Clause" ]
4
2021-04-26T13:48:38.000Z
2022-01-16T03:21:03.000Z
logger.py
keonlee9420/tacotron2_toolkit
fe0e19fdb00f2554d99b0f33e56d65a1d1956b86
[ "BSD-3-Clause" ]
null
null
null
logger.py
keonlee9420/tacotron2_toolkit
fe0e19fdb00f2554d99b0f33e56d65a1d1956b86
[ "BSD-3-Clause" ]
1
2021-05-10T06:17:57.000Z
2021-05-10T06:17:57.000Z
import random import torch from tensorboardX import SummaryWriter from plotting_utils import plot_alignment_to_numpy, plot_spectrogram_to_numpy from plotting_utils import plot_gate_outputs_to_numpy class Tacotron2Logger(SummaryWriter): def __init__(self, logdir, use_mmi, use_guided_attn_loss): super(Tacotron2Logger, self).__init__(logdir) self.use_mmi = use_mmi self.use_guided_attn_loss = use_guided_attn_loss def log_training(self, total_loss, taco_loss, attn_loss, mi_loss, grad_norm, gaf, learning_rate, duration, iteration): self.add_scalar("training.loss", total_loss, iteration) if self.use_guided_attn_loss: self.add_scalar("training.guided_attn_loss", attn_loss, iteration) if self.use_mmi: self.add_scalar("training.taco_loss", taco_loss, iteration) self.add_scalar("training.mi_loss", mi_loss, iteration) self.add_scalar("grad.gaf", gaf, iteration) self.add_scalar("grad.norm", grad_norm, iteration) self.add_scalar("learning.rate", learning_rate, iteration) self.add_scalar("duration", duration, iteration) def log_validation(self, reduced_loss, model, y, y_pred, iteration): self.add_scalar("validation.loss", reduced_loss, iteration) _, _, mel_outputs, gate_outputs, alignments = y_pred mel_targets, gate_targets = y # plot distribution of parameters for tag, value in model.named_parameters(): tag = tag.replace('.', '/') self.add_histogram(tag, value.data.cpu().numpy(), iteration) # plot alignment, mel target and predicted, gate target and predicted idx = random.randint(0, alignments.size(0) - 1) self.add_image( "alignment", plot_alignment_to_numpy(alignments[idx].data.cpu().numpy().T), iteration, dataformats='HWC') self.add_image( "mel_target", plot_spectrogram_to_numpy(mel_targets[idx].data.cpu().numpy()), iteration, dataformats='HWC') self.add_image( "mel_predicted", plot_spectrogram_to_numpy(mel_outputs[idx].data.cpu().numpy()), iteration, dataformats='HWC') self.add_image( "gate", plot_gate_outputs_to_numpy( gate_targets[idx].data.cpu().numpy(), torch.sigmoid(gate_outputs[idx]).data.cpu().numpy()), iteration, dataformats='HWC')
44.77193
82
0.647335
794063de7e3d8f1d2af409b7c068184b15a8026a
933
py
Python
setup.py
Alex-Au1/Youtube_Downloader
3ad7b39a11154b9a9fd205ad75ce58120cb3d9be
[ "MIT" ]
null
null
null
setup.py
Alex-Au1/Youtube_Downloader
3ad7b39a11154b9a9fd205ad75ce58120cb3d9be
[ "MIT" ]
null
null
null
setup.py
Alex-Au1/Youtube_Downloader
3ad7b39a11154b9a9fd205ad75ce58120cb3d9be
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="Youtube_Video_Audio_Downloader", version="0.1.2", author="Alex Au", author_email="[email protected]", description="A Simple GUI interface to help download videos and audio files from Youtube using Youtube-dl and FFMPEG", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/Alex-Au1/Youtube_Downloader", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], install_requires=[ "Pillow", "pyperclip", "youtube_dl", "youtube-search-python", "requests", "validators" ], python_requires='>=3.6', )
30.096774
122
0.652733
7940640d339fc94448be179bb1d3a37e20fb0780
2,316
py
Python
interpolate.py
fmu2/Wasserstein-BiGAN
db4f7f26da54f255cd38451721108f3a762ba3d4
[ "MIT" ]
27
2020-02-21T21:51:54.000Z
2021-12-13T09:04:52.000Z
interpolate.py
fmu2/Wasserstein-BiGAN
db4f7f26da54f255cd38451721108f3a762ba3d4
[ "MIT" ]
null
null
null
interpolate.py
fmu2/Wasserstein-BiGAN
db4f7f26da54f255cd38451721108f3a762ba3d4
[ "MIT" ]
3
2020-06-26T10:30:05.000Z
2021-05-26T17:17:53.000Z
import argparse, torch from torchvision import utils from wali_celeba import create_WALI NLAT = 100 IMAGE_SIZE = 64 NUM_CHANNELS = 3 def interpolate(generator, z0, z1, nintp=10, path='linear', filepath=None): """ Interpolate in the latent space. Args: generator: Generator network that takes z as input. z0: Where interpolation starts. z1: Where interpolation ends. nintp: Number of intermediate steps. path: Trajectory of interpolation. Default: linear filepath: Where to save the images. """ assert path in ['linear', 'spherical'] assert z1.size() == z1.size() z0, z1 = z0.view(z0.size(0), NLAT, 1, 1), z1.view(z1.size(0), NLAT, 1, 1) alphas = torch.linspace(0, 1, nintp) imgs = [] if path == 'linear': for alpha in alphas: z = z0 * alpha + z1 * (1 - alpha) img = generator(z).detach_() * 0.5 + 0.5 imgs.append(img.cpu()) elif path == 'spherical': nz0, nz1 = z0 / z0.norm(dim=1, keepdim=True), z1 / z1.norm(dim=1, keepdim=True) theta = ((nz0 * nz1).sum(dim=1, keepdim=True)).acos() for alpha in alphas: z = torch.sin((1 - alpha) * theta) / torch.sin(theta) * z0 \ + torch.sin(alpha * theta) / torch.sin(theta) * z1 img = generator(z).detach_() * 0.5 + 0.5 imgs.append(img.cpu()) imgs = torch.cat(imgs, dim=1).view(-1, NUM_CHANNELS, IMAGE_SIZE, IMAGE_SIZE) grid = utils.make_grid(imgs, nrow=nintp) utils.save_image(grid, filepath) print('Interpolated images saved.') def main(args): device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') wali = create_WALI() ckpt = torch.load(args.ckpt) wali.load_state_dict(ckpt) generator = wali.G.to(device) z0 = torch.randn(args.n, NLAT, 1, 1).to(device) z1 = torch.randn(args.n, NLAT, 1, 1).to(device) interpolate(generator, z0, z1, nintp=10, path='linear', filepath=args.save_path) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Plot interpolations for WALI.') parser.add_argument("--ckpt", type=str, help='Path to the saved model checkpoint', default=None) parser.add_argument("--n", type=int, help="number of interpolated paths", default=4) parser.add_argument("--save-path", type=str, help="where to save the interpolations", default=None) args = parser.parse_args() main(args)
35.090909
101
0.668394
794064eb8445a456367b3cb76f3e5f2192abbc18
11,339
py
Python
tests/ignite/engine/test_create_supervised.py
Devanshu24/ignite
2f0ba3e65cfa36b43bc87b315733fd3f3585e430
[ "BSD-3-Clause" ]
null
null
null
tests/ignite/engine/test_create_supervised.py
Devanshu24/ignite
2f0ba3e65cfa36b43bc87b315733fd3f3585e430
[ "BSD-3-Clause" ]
null
null
null
tests/ignite/engine/test_create_supervised.py
Devanshu24/ignite
2f0ba3e65cfa36b43bc87b315733fd3f3585e430
[ "BSD-3-Clause" ]
null
null
null
import os from distutils.version import LooseVersion from importlib.util import find_spec from typing import Optional, Union from unittest.mock import patch import pytest import torch from pytest import approx from torch.nn import Linear from torch.nn.functional import mse_loss from torch.optim import SGD import ignite.distributed as idist from ignite.engine import ( create_supervised_evaluator, create_supervised_trainer, supervised_evaluation_step, supervised_evaluation_step_amp, supervised_training_step_tpu, ) from ignite.metrics import MeanSquaredError def _test_create_supervised_trainer( model_device: Optional[str] = None, trainer_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, scaler: Union[bool, "torch.cuda.amp.GradScaler"] = False, ): model = Linear(1, 1) if model_device: model.to(model_device) model.weight.data.zero_() model.bias.data.zero_() optimizer = SGD(model.parameters(), 0.1) if trace: example_input = torch.randn(1, 1) model = torch.jit.trace(model, example_input) if amp_mode == "apex" and model_device == trainer_device == "cuda": from apex import amp model, optimizer = amp.initialize(model, optimizer, opt_level="O2") trainer = create_supervised_trainer( model, optimizer, mse_loss, device=trainer_device, output_transform=lambda x, y, y_pred, loss: (y_pred, loss.item()), amp_mode=amp_mode, scaler=scaler, ) x = torch.tensor([[0.1], [0.2]]) y = torch.tensor([[0.3], [0.5]]) data = [(x, y)] assert model.weight.data[0, 0].item() == approx(0.0) assert model.bias.item() == approx(0.0) if model_device == trainer_device or ((model_device == "cpu") ^ (trainer_device == "cpu")): state = trainer.run(data) assert state.output[-1] == approx(0.17), state.output[-1] assert round(model.weight.data[0, 0].item(), 3) == approx(0.013), model.weight.item() assert round(model.bias.item(), 3) == approx(0.08), model.bias.item() if amp_mode == "amp": assert state.output[0].dtype is torch.half if scaler and isinstance(scaler, bool): assert hasattr(state, "scaler") else: assert not hasattr(state, "scaler") else: if LooseVersion(torch.__version__) >= LooseVersion("1.7.0"): # This is broken in 1.6.0 but will be probably fixed with 1.7.0 with pytest.raises(RuntimeError, match=r"is on CPU, but expected them to be on GPU"): trainer.run(data) def _test_create_supervised_evaluator( model_device: Optional[str] = None, evaluator_device: Optional[str] = None, trace: bool = False, amp_mode: str = None, ): model = Linear(1, 1) if model_device: model.to(model_device) model.weight.data.zero_() model.bias.data.zero_() if trace: example_input = torch.randn(1, 1) model = torch.jit.trace(model, example_input) evaluator = create_supervised_evaluator(model, device=evaluator_device, amp_mode=amp_mode) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [5.0]]) data = [(x, y)] if model_device == evaluator_device or ((model_device == "cpu") ^ (evaluator_device == "cpu")): state = evaluator.run(data) y_pred, y = state.output assert y_pred[0, 0].item() == approx(0.0) assert y_pred[1, 0].item() == approx(0.0) assert y[0, 0].item() == approx(3.0) assert y[1, 0].item() == approx(5.0) assert model.weight.data[0, 0].item() == approx(0.0) assert model.bias.item() == approx(0.0) else: if LooseVersion(torch.__version__) >= LooseVersion("1.7.0"): # This is broken in 1.6.0 but will be probably fixed with 1.7.0 with pytest.raises(RuntimeError, match=r"is on CPU, but expected them to be on GPU"): evaluator.run(data) def test_create_supervised_trainer(): _test_create_supervised_trainer() def test_create_supervised_trainer_with_cpu(): _test_create_supervised_trainer(trainer_device="cpu") def test_create_supervised_trainer_traced_with_cpu(): _test_create_supervised_trainer(trainer_device="cpu", trace=True) @pytest.mark.skipif(find_spec("apex"), reason="Skip if APEX") def test_create_supervised_trainer_apex_error(): with pytest.raises( ModuleNotFoundError, match="Please install apex from https://github.com/nvidia/apex to use amp_mode='apex'." ): _test_create_supervised_trainer(amp_mode="apex") @pytest.fixture def mock_torch_cuda_amp_module(): with patch.dict( "sys.modules", {"torch.cuda.amp": None, "torch.cuda.amp.grad_scaler": None, "torch.cuda.amp.autocast_mode": None}, ): yield torch def test_create_supervised_trainer_amp_error(mock_torch_cuda_amp_module): with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use amp_mode='amp'."): _test_create_supervised_trainer(amp_mode="amp") with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use scaler argument."): _test_create_supervised_trainer(amp_mode="amp", scaler=True) @pytest.mark.skipif(LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Skip if < 1.6.0") def test_create_supervised_trainer_scaler_not_amp(): scaler = torch.cuda.amp.GradScaler(enabled=torch.cuda.is_available()) with pytest.raises(ValueError, match=f"scaler argument is {scaler}, but amp_mode is None."): _test_create_supervised_trainer(amp_mode=None, scaler=scaler) with pytest.raises(ValueError, match="scaler argument is True, but amp_mode is None."): _test_create_supervised_trainer(amp_mode=None, scaler=True) with pytest.raises(ValueError, match="scaler argument is True, but amp_mode is apex."): _test_create_supervised_trainer(amp_mode="apex", scaler=True) with pytest.raises(ValueError, match=f"scaler argument is {scaler}, but amp_mode is apex."): _test_create_supervised_trainer(amp_mode="apex", scaler=scaler) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda(): model_device = trainer_device = "cuda" _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.skipif(LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_amp(): model_device = trainer_device = "cuda" _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="amp") @pytest.mark.skipif(LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_amp_scaler(): model_device = trainer_device = "cuda" _test_create_supervised_trainer( model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=True ) scaler = torch.cuda.amp.GradScaler(enabled=torch.cuda.is_available()) _test_create_supervised_trainer( model_device=model_device, trainer_device=trainer_device, amp_mode="amp", scaler=scaler ) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") @pytest.mark.skipif(not find_spec("apex"), reason="Skip if no APEX") def test_create_supervised_trainer_on_cuda_apex(): model_device = trainer_device = "cuda" _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="apex") @pytest.mark.skipif(idist.has_xla_support, reason="Skip if has PyTorch XLA package") def test_supervised_training_step_tpu_no_xla(): with pytest.raises(ModuleNotFoundError, match="torch_xla cannot be imported, please install PyTorch XLA."): supervised_training_step_tpu(model=None, optimizer=None, loss_fn=None) @pytest.mark.skipif(idist.has_xla_support, reason="Skip if has PyTorch XLA package") def test_create_supervised_trainer_on_tpu_no_xla(): model_device = "cpu" trainer_device = "xla" with pytest.raises(RuntimeError, match=r"In order to run on TPU, please install PyTorch XLA"): _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.tpu @pytest.mark.skipif("NUM_TPU_WORKERS" in os.environ, reason="Skip if no NUM_TPU_WORKERS in env vars") @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_create_supervised_trainer_on_tpu(): model_device = trainer_device = "xla" _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device) @pytest.mark.tpu @pytest.mark.skipif(not idist.has_xla_support, reason="Skip if no PyTorch XLA package") def test_create_supervised_trainer_on_tpu_amp(): model_device = trainer_device = "xla" with pytest.raises(ValueError, match="amp_mode cannot be used with xla device."): _test_create_supervised_trainer(model_device=model_device, trainer_device=trainer_device, amp_mode="amp") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_trainer_on_cuda_with_model_on_cpu(): _test_create_supervised_trainer(trainer_device="cuda") def test_create_supervised_evaluator(): _test_create_supervised_evaluator() def test_create_supervised_evaluator_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cpu") def test_create_supervised_evaluator_traced_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cpu", trace=True) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda(): model_device = evaluator_device = "cuda" _test_create_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device) @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda_with_model_on_cpu(): _test_create_supervised_evaluator(evaluator_device="cuda") @pytest.mark.skipif(LooseVersion(torch.__version__) < LooseVersion("1.6.0"), reason="Skip if < 1.6.0") @pytest.mark.skipif(not torch.cuda.is_available(), reason="Skip if no GPU") def test_create_supervised_evaluator_on_cuda_amp(): model_device = evaluator_device = "cuda" _test_create_supervised_evaluator(model_device=model_device, evaluator_device=evaluator_device, amp_mode="amp") def test_create_supervised_evaluator_amp_error(mock_torch_cuda_amp_module): with pytest.raises(ImportError, match="Please install torch>=1.6.0 to use amp_mode='amp'."): _test_create_supervised_evaluator(amp_mode="amp") def test_create_supervised_evaluator_with_metrics(): model = Linear(1, 1) model.weight.data.zero_() model.bias.data.zero_() evaluator = create_supervised_evaluator(model, metrics={"mse": MeanSquaredError()}) x = torch.tensor([[1.0], [2.0]]) y = torch.tensor([[3.0], [4.0]]) data = [(x, y)] state = evaluator.run(data) assert state.metrics["mse"] == 12.5
38.307432
116
0.723697
794065530fce3e787336c2f6b73bf1b196bc5b33
1,795
py
Python
Encoder/encoder.py
mivallion/Encoder
8887e741e7efdf03eebc04c01c1ae4f0e2e19809
[ "MIT" ]
6
2020-04-06T19:43:31.000Z
2022-03-16T13:15:37.000Z
Encoder/encoder.py
mivallion/Encoder
8887e741e7efdf03eebc04c01c1ae4f0e2e19809
[ "MIT" ]
2
2020-05-14T18:04:53.000Z
2022-02-12T06:22:56.000Z
Encoder/encoder.py
mivallion/Encoder
8887e741e7efdf03eebc04c01c1ae4f0e2e19809
[ "MIT" ]
3
2020-11-08T04:14:43.000Z
2021-09-04T16:48:54.000Z
""" Encoder library for Raspberry Pi for measuring quadrature encoded signals. created by Mivallion <[email protected]> Version 1.0 - 01 april 2020 - inital release """ import RPi.GPIO as GPIO class Encoder(object): """ Encoder class allows to work with rotary encoder which connected via two pin A and B. Works only on interrupts because all RPi pins allow that. This library is a simple port of the Arduino Encoder library (https://github.com/PaulStoffregen/Encoder) """ def __init__(self, A, B): GPIO.setmode(GPIO.BCM) GPIO.setup(A, GPIO.IN) GPIO.setup(B, GPIO.IN) self.A = A self.B = B self.pos = 0 self.state = 0 if GPIO.input(A): self.state |= 1 if GPIO.input(B): self.state |= 2 GPIO.add_event_detect(A, GPIO.BOTH, callback=self.__update) GPIO.add_event_detect(B, GPIO.BOTH, callback=self.__update) """ update() calling every time when value on A or B pins changes. It updates the current position based on previous and current states of the rotary encoder. """ def __update(self, channel): state = self.state & 3 if GPIO.input(self.A): state |= 4 if GPIO.input(self.B): state |= 8 self.state = state >> 2 if state == 1 or state == 7 or state == 8 or state == 14: self.pos += 1 elif state == 2 or state == 4 or state == 11 or state == 13: self.pos -= 1 elif state == 3 or state == 12: self.pos += 2 elif state == 6 or state == 9: self.pos -= 2 """ read() simply returns the current position of the rotary encoder. """ def read(self): return self.pos
29.42623
74
0.581616
794065ca09a2bcb8887f0109f03afec58298f31f
21,006
py
Python
tests/components/google/test_calendar.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
1,635
2015-01-01T14:59:18.000Z
2016-04-13T02:36:16.000Z
tests/components/google/test_calendar.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
1,463
2015-01-06T06:18:07.000Z
2016-04-12T22:30:37.000Z
tests/components/google/test_calendar.py
liangleslie/core
cc807b4d597daaaadc92df4a93c6e30da4f570c6
[ "Apache-2.0" ]
659
2015-01-05T14:02:23.000Z
2016-04-12T23:39:31.000Z
"""The tests for the google calendar platform.""" from __future__ import annotations import copy import datetime from http import HTTPStatus from typing import Any from unittest.mock import patch import urllib from aiohttp.client_exceptions import ClientError from gcal_sync.auth import API_BASE_URL import pytest from homeassistant.const import STATE_OFF, STATE_ON from homeassistant.helpers.template import DATE_STR_FORMAT import homeassistant.util.dt as dt_util from .conftest import CALENDAR_ID, TEST_YAML_ENTITY, TEST_YAML_ENTITY_NAME from tests.common import async_fire_time_changed from tests.test_util.aiohttp import AiohttpClientMockResponse TEST_ENTITY = TEST_YAML_ENTITY TEST_ENTITY_NAME = TEST_YAML_ENTITY_NAME TEST_EVENT = { "summary": "Test All Day Event", "start": {}, "end": {}, "location": "Test Cases", "description": "test event", "kind": "calendar#event", "created": "2016-06-23T16:37:57.000Z", "transparency": "transparent", "updated": "2016-06-24T01:57:21.045Z", "reminders": {"useDefault": True}, "organizer": { "email": "[email protected]", "displayName": "Organizer Name", "self": True, }, "sequence": 0, "creator": { "email": "[email protected]", "displayName": "Organizer Name", "self": True, }, "id": "_c8rinwq863h45qnucyoi43ny8", "etag": '"2933466882090000"', "htmlLink": "https://www.google.com/calendar/event?eid=*******", "iCalUID": "[email protected]", "status": "confirmed", } @pytest.fixture(autouse=True) def mock_test_setup( hass, mock_calendars_yaml, test_api_calendar, mock_calendars_list, config_entry, ): """Fixture that pulls in the default fixtures for tests in this file.""" mock_calendars_list({"items": [test_api_calendar]}) config_entry.add_to_hass(hass) return def upcoming() -> dict[str, Any]: """Create a test event with an arbitrary start/end time fetched from the api url.""" now = dt_util.now() return { "start": {"dateTime": now.isoformat()}, "end": {"dateTime": (now + datetime.timedelta(minutes=5)).isoformat()}, } def upcoming_date() -> dict[str, Any]: """Create a test event with an arbitrary start/end date fetched from the api url.""" now = dt_util.now() return { "start": {"date": now.date().isoformat()}, "end": {"date": now.date().isoformat()}, } def upcoming_event_url() -> str: """Return a calendar API to return events created by upcoming().""" now = dt_util.now() start = (now - datetime.timedelta(minutes=60)).isoformat() end = (now + datetime.timedelta(minutes=60)).isoformat() return f"/api/calendars/{TEST_ENTITY}?start={urllib.parse.quote(start)}&end={urllib.parse.quote(end)}" async def test_all_day_event( hass, mock_events_list_items, mock_token_read, component_setup ): """Test that we can create an event trigger on device.""" week_from_today = dt_util.now().date() + datetime.timedelta(days=7) end_event = week_from_today + datetime.timedelta(days=1) event = { **TEST_EVENT, "start": {"date": week_from_today.isoformat()}, "end": {"date": end_event.isoformat()}, } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event["summary"], "all_day": True, "offset_reached": False, "start_time": week_from_today.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_future_event(hass, mock_events_list_items, component_setup): """Test that we can create an event trigger on device.""" one_hour_from_now = dt_util.now() + datetime.timedelta(minutes=30) end_event = one_hour_from_now + datetime.timedelta(minutes=60) event = { **TEST_EVENT, "start": {"dateTime": one_hour_from_now.isoformat()}, "end": {"dateTime": end_event.isoformat()}, } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event["summary"], "all_day": False, "offset_reached": False, "start_time": one_hour_from_now.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_in_progress_event(hass, mock_events_list_items, component_setup): """Test that we can create an event trigger on device.""" middle_of_event = dt_util.now() - datetime.timedelta(minutes=30) end_event = middle_of_event + datetime.timedelta(minutes=60) event = { **TEST_EVENT, "start": {"dateTime": middle_of_event.isoformat()}, "end": {"dateTime": end_event.isoformat()}, } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_ON assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event["summary"], "all_day": False, "offset_reached": False, "start_time": middle_of_event.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_offset_in_progress_event(hass, mock_events_list_items, component_setup): """Test that we can create an event trigger on device.""" middle_of_event = dt_util.now() + datetime.timedelta(minutes=14) end_event = middle_of_event + datetime.timedelta(minutes=60) event_summary = "Test Event in Progress" event = { **TEST_EVENT, "start": {"dateTime": middle_of_event.isoformat()}, "end": {"dateTime": end_event.isoformat()}, "summary": f"{event_summary} !!-15", } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event_summary, "all_day": False, "offset_reached": True, "start_time": middle_of_event.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_all_day_offset_in_progress_event( hass, mock_events_list_items, component_setup ): """Test that we can create an event trigger on device.""" tomorrow = dt_util.now().date() + datetime.timedelta(days=1) end_event = tomorrow + datetime.timedelta(days=1) event_summary = "Test All Day Event Offset In Progress" event = { **TEST_EVENT, "start": {"date": tomorrow.isoformat()}, "end": {"date": end_event.isoformat()}, "summary": f"{event_summary} !!-25:0", } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event_summary, "all_day": True, "offset_reached": True, "start_time": tomorrow.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_all_day_offset_event(hass, mock_events_list_items, component_setup): """Test that we can create an event trigger on device.""" now = dt_util.now() day_after_tomorrow = now.date() + datetime.timedelta(days=2) end_event = day_after_tomorrow + datetime.timedelta(days=1) offset_hours = 1 + now.hour event_summary = "Test All Day Event Offset" event = { **TEST_EVENT, "start": {"date": day_after_tomorrow.isoformat()}, "end": {"date": end_event.isoformat()}, "summary": f"{event_summary} !!-{offset_hours}:0", } mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": event_summary, "all_day": True, "offset_reached": False, "start_time": day_after_tomorrow.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_missing_summary(hass, mock_events_list_items, component_setup): """Test that we can create an event trigger on device.""" start_event = dt_util.now() + datetime.timedelta(minutes=14) end_event = start_event + datetime.timedelta(minutes=60) event = { **TEST_EVENT, "start": {"dateTime": start_event.isoformat()}, "end": {"dateTime": end_event.isoformat()}, } del event["summary"] mock_events_list_items([event]) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert dict(state.attributes) == { "friendly_name": TEST_ENTITY_NAME, "message": "", "all_day": False, "offset_reached": False, "start_time": start_event.strftime(DATE_STR_FORMAT), "end_time": end_event.strftime(DATE_STR_FORMAT), "location": event["location"], "description": event["description"], } async def test_update_error( hass, component_setup, mock_calendars_list, mock_events_list, test_api_calendar, aioclient_mock, ): """Test that the calendar update handles a server error.""" now = dt_util.now() mock_calendars_list({"items": [test_api_calendar]}) mock_events_list( { "items": [ { **TEST_EVENT, "start": { "dateTime": (now + datetime.timedelta(minutes=-30)).isoformat() }, "end": { "dateTime": (now + datetime.timedelta(minutes=30)).isoformat() }, } ] } ) assert await component_setup() state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == "on" # Advance time to avoid throttling now += datetime.timedelta(minutes=30) aioclient_mock.clear_requests() mock_events_list({}, exc=ClientError()) with patch("homeassistant.util.utcnow", return_value=now): async_fire_time_changed(hass, now) await hass.async_block_till_done() # No change state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == "on" # Advance time beyond update/throttle point now += datetime.timedelta(minutes=30) aioclient_mock.clear_requests() mock_events_list( { "items": [ { **TEST_EVENT, "start": { "dateTime": (now + datetime.timedelta(minutes=30)).isoformat() }, "end": { "dateTime": (now + datetime.timedelta(minutes=60)).isoformat() }, } ] } ) with patch("homeassistant.util.utcnow", return_value=now): async_fire_time_changed(hass, now) await hass.async_block_till_done() # State updated state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == "off" async def test_calendars_api( hass, hass_client, component_setup, mock_events_list_items ): """Test the Rest API returns the calendar.""" mock_events_list_items([]) assert await component_setup() client = await hass_client() response = await client.get("/api/calendars") assert response.status == HTTPStatus.OK data = await response.json() assert data == [ { "entity_id": TEST_ENTITY, "name": TEST_ENTITY_NAME, } ] async def test_http_event_api_failure( hass, hass_client, component_setup, mock_calendars_list, mock_events_list, aioclient_mock, ): """Test the Rest API response during a calendar failure.""" mock_events_list({}) assert await component_setup() client = await hass_client() aioclient_mock.clear_requests() mock_events_list({}, exc=ClientError()) response = await client.get(upcoming_event_url()) assert response.status == HTTPStatus.OK # A failure to talk to the server results in an empty list of events events = await response.json() assert events == [] @pytest.mark.freeze_time("2022-03-27 12:05:00+00:00") async def test_http_api_event( hass, hass_client, mock_events_list_items, component_setup ): """Test querying the API and fetching events from the server.""" hass.config.set_time_zone("Asia/Baghdad") event = { **TEST_EVENT, **upcoming(), } mock_events_list_items([event]) assert await component_setup() client = await hass_client() response = await client.get(upcoming_event_url()) assert response.status == HTTPStatus.OK events = await response.json() assert len(events) == 1 assert {k: events[0].get(k) for k in ["summary", "start", "end"]} == { "summary": TEST_EVENT["summary"], "start": {"dateTime": "2022-03-27T15:05:00+03:00"}, "end": {"dateTime": "2022-03-27T15:10:00+03:00"}, } @pytest.mark.freeze_time("2022-03-27 12:05:00+00:00") async def test_http_api_all_day_event( hass, hass_client, mock_events_list_items, component_setup ): """Test querying the API and fetching events from the server.""" event = { **TEST_EVENT, **upcoming_date(), } mock_events_list_items([event]) assert await component_setup() client = await hass_client() response = await client.get(upcoming_event_url()) assert response.status == HTTPStatus.OK events = await response.json() assert len(events) == 1 assert {k: events[0].get(k) for k in ["summary", "start", "end"]} == { "summary": TEST_EVENT["summary"], "start": {"date": "2022-03-27"}, "end": {"date": "2022-03-27"}, } @pytest.mark.freeze_time("2022-03-27 12:05:00+00:00") async def test_http_api_event_paging( hass, hass_client, aioclient_mock, component_setup ): """Test paging through results from the server.""" hass.config.set_time_zone("Asia/Baghdad") responses = [ { "nextPageToken": "page-token", "items": [ { **TEST_EVENT, "summary": "event 1", **upcoming(), } ], }, { "items": [ { **TEST_EVENT, "summary": "event 2", **upcoming(), } ], }, ] def next_response(response_list): results = copy.copy(response_list) async def get(method, url, data): return AiohttpClientMockResponse(method, url, json=results.pop(0)) return get # Setup response for initial entity load aioclient_mock.get( f"{API_BASE_URL}/calendars/{CALENDAR_ID}/events", side_effect=next_response(responses), ) assert await component_setup() # Setup response for API request aioclient_mock.clear_requests() aioclient_mock.get( f"{API_BASE_URL}/calendars/{CALENDAR_ID}/events", side_effect=next_response(responses), ) client = await hass_client() response = await client.get(upcoming_event_url()) assert response.status == HTTPStatus.OK events = await response.json() assert len(events) == 2 assert events[0]["summary"] == "event 1" assert events[1]["summary"] == "event 2" @pytest.mark.parametrize( "calendars_config_ignore_availability,transparency,expect_visible_event", [ # Look at visibility to determine if entity is created (False, "opaque", True), (False, "transparent", False), # Ignoring availability and always show the entity (True, "opaque", True), (True, "transparency", True), # Default to ignore availability (None, "opaque", True), (None, "transparency", True), ], ) async def test_opaque_event( hass, hass_client, mock_events_list_items, component_setup, transparency, expect_visible_event, ): """Test querying the API and fetching events from the server.""" event = { **TEST_EVENT, **upcoming(), "transparency": transparency, } mock_events_list_items([event]) assert await component_setup() client = await hass_client() response = await client.get(upcoming_event_url()) assert response.status == HTTPStatus.OK events = await response.json() assert (len(events) > 0) == expect_visible_event @pytest.mark.parametrize("mock_test_setup", [None]) async def test_scan_calendar_error( hass, component_setup, test_api_calendar, mock_calendars_list, config_entry, ): """Test that the calendar update handles a server error.""" config_entry.add_to_hass(hass) mock_calendars_list({}, exc=ClientError()) assert await component_setup() assert not hass.states.get(TEST_ENTITY) async def test_future_event_update_behavior( hass, mock_events_list_items, component_setup ): """Test an future event that becomes active.""" now = dt_util.now() now_utc = dt_util.utcnow() one_hour_from_now = now + datetime.timedelta(minutes=60) end_event = one_hour_from_now + datetime.timedelta(minutes=90) event = { **TEST_EVENT, "start": {"dateTime": one_hour_from_now.isoformat()}, "end": {"dateTime": end_event.isoformat()}, } mock_events_list_items([event]) assert await component_setup() # Event has not started yet state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF # Advance time until event has started now += datetime.timedelta(minutes=60) now_utc += datetime.timedelta(minutes=30) with patch("homeassistant.util.dt.utcnow", return_value=now_utc), patch( "homeassistant.util.dt.now", return_value=now ): async_fire_time_changed(hass, now) await hass.async_block_till_done() # Event has started state = hass.states.get(TEST_ENTITY) assert state.state == STATE_ON async def test_future_event_offset_update_behavior( hass, mock_events_list_items, component_setup ): """Test an future event that becomes active.""" now = dt_util.now() now_utc = dt_util.utcnow() one_hour_from_now = now + datetime.timedelta(minutes=60) end_event = one_hour_from_now + datetime.timedelta(minutes=90) event_summary = "Test Event in Progress" event = { **TEST_EVENT, "start": {"dateTime": one_hour_from_now.isoformat()}, "end": {"dateTime": end_event.isoformat()}, "summary": f"{event_summary} !!-15", } mock_events_list_items([event]) assert await component_setup() # Event has not started yet state = hass.states.get(TEST_ENTITY) assert state.name == TEST_ENTITY_NAME assert state.state == STATE_OFF assert not state.attributes["offset_reached"] # Advance time until event has started now += datetime.timedelta(minutes=45) now_utc += datetime.timedelta(minutes=45) with patch("homeassistant.util.dt.utcnow", return_value=now_utc), patch( "homeassistant.util.dt.now", return_value=now ): async_fire_time_changed(hass, now) await hass.async_block_till_done() # Event has not started, but the offset was reached state = hass.states.get(TEST_ENTITY) assert state.state == STATE_OFF assert state.attributes["offset_reached"]
31.683258
106
0.643054
794065e41b382fbb3f0d9667ca0b2741ce5c963c
5,786
py
Python
google/ads/google_ads/v6/proto/services/currency_constant_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/services/currency_constant_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/services/currency_constant_service_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/services/currency_constant_service.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v6.proto.resources import currency_constant_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_currency__constant__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from google.api import client_pb2 as google_dot_api_dot_client__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/services/currency_constant_service.proto', package='google.ads.googleads.v6.services', syntax='proto3', serialized_options=b'\n$com.google.ads.googleads.v6.servicesB\034CurrencyConstantServiceProtoP\001ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\242\002\003GAA\252\002 Google.Ads.GoogleAds.V6.Services\312\002 Google\\Ads\\GoogleAds\\V6\\Services\352\002$Google::Ads::GoogleAds::V6::Services', create_key=_descriptor._internal_create_key, serialized_pb=b'\n@google/ads/googleads/v6/services/currency_constant_service.proto\x12 google.ads.googleads.v6.services\x1a\x39google/ads/googleads/v6/resources/currency_constant.proto\x1a\x1cgoogle/api/annotations.proto\x1a\x17google/api/client.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\"f\n\x1aGetCurrencyConstantRequest\x12H\n\rresource_name\x18\x01 \x01(\tB1\xe0\x41\x02\xfa\x41+\n)googleads.googleapis.com/CurrencyConstant2\xac\x02\n\x17\x43urrencyConstantService\x12\xc9\x01\n\x13GetCurrencyConstant\x12<.google.ads.googleads.v6.services.GetCurrencyConstantRequest\x1a\x33.google.ads.googleads.v6.resources.CurrencyConstant\"?\x82\xd3\xe4\x93\x02)\x12\'/v6/{resource_name=currencyConstants/*}\xda\x41\rresource_name\x1a\x45\xca\x41\x18googleads.googleapis.com\xd2\x41\'https://www.googleapis.com/auth/adwordsB\x83\x02\n$com.google.ads.googleads.v6.servicesB\x1c\x43urrencyConstantServiceProtoP\x01ZHgoogle.golang.org/genproto/googleapis/ads/googleads/v6/services;services\xa2\x02\x03GAA\xaa\x02 Google.Ads.GoogleAds.V6.Services\xca\x02 Google\\Ads\\GoogleAds\\V6\\Services\xea\x02$Google::Ads::GoogleAds::V6::Servicesb\x06proto3' , dependencies=[google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_currency__constant__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,google_dot_api_dot_client__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,]) _GETCURRENCYCONSTANTREQUEST = _descriptor.Descriptor( name='GetCurrencyConstantRequest', full_name='google.ads.googleads.v6.services.GetCurrencyConstantRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.services.GetCurrencyConstantRequest.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\002\372A+\n)googleads.googleapis.com/CurrencyConstant', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=276, serialized_end=378, ) DESCRIPTOR.message_types_by_name['GetCurrencyConstantRequest'] = _GETCURRENCYCONSTANTREQUEST _sym_db.RegisterFileDescriptor(DESCRIPTOR) GetCurrencyConstantRequest = _reflection.GeneratedProtocolMessageType('GetCurrencyConstantRequest', (_message.Message,), { 'DESCRIPTOR' : _GETCURRENCYCONSTANTREQUEST, '__module__' : 'google.ads.googleads.v6.services.currency_constant_service_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.services.GetCurrencyConstantRequest) }) _sym_db.RegisterMessage(GetCurrencyConstantRequest) DESCRIPTOR._options = None _GETCURRENCYCONSTANTREQUEST.fields_by_name['resource_name']._options = None _CURRENCYCONSTANTSERVICE = _descriptor.ServiceDescriptor( name='CurrencyConstantService', full_name='google.ads.googleads.v6.services.CurrencyConstantService', file=DESCRIPTOR, index=0, serialized_options=b'\312A\030googleads.googleapis.com\322A\'https://www.googleapis.com/auth/adwords', create_key=_descriptor._internal_create_key, serialized_start=381, serialized_end=681, methods=[ _descriptor.MethodDescriptor( name='GetCurrencyConstant', full_name='google.ads.googleads.v6.services.CurrencyConstantService.GetCurrencyConstant', index=0, containing_service=None, input_type=_GETCURRENCYCONSTANTREQUEST, output_type=google_dot_ads_dot_googleads_dot_v6_dot_resources_dot_currency__constant__pb2._CURRENCYCONSTANT, serialized_options=b'\202\323\344\223\002)\022\'/v6/{resource_name=currencyConstants/*}\332A\rresource_name', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_CURRENCYCONSTANTSERVICE) DESCRIPTOR.services_by_name['CurrencyConstantService'] = _CURRENCYCONSTANTSERVICE # @@protoc_insertion_point(module_scope)
55.104762
1,174
0.826132
794066193012be50d5678d01b5b1258cd575c17f
3,879
py
Python
data_ingest/utils.py
18F/data-federation-ingest
a896ef2da1faf3966f018366b26a338bb66cc717
[ "CC0-1.0" ]
18
2019-07-26T13:43:01.000Z
2022-01-15T14:57:52.000Z
data_ingest/utils.py
18F/data-federation-ingest
a896ef2da1faf3966f018366b26a338bb66cc717
[ "CC0-1.0" ]
96
2019-06-14T18:30:54.000Z
2021-08-03T09:25:02.000Z
data_ingest/utils.py
18F/data-federation-ingest
a896ef2da1faf3966f018366b26a338bb66cc717
[ "CC0-1.0" ]
3
2020-01-23T04:48:18.000Z
2021-01-12T09:31:20.000Z
import csv import json import io import logging from collections import OrderedDict from django.utils.module_loading import import_string from .ingest_settings import UPLOAD_SETTINGS logger = logging.getLogger('ReVAL') def get_schema_headers(): ordered_header = [] good_table_validator = 'data_ingest.ingestors.GoodtablesValidator' schema = [loc for loc, val_type in UPLOAD_SETTINGS['VALIDATORS'].items() if val_type == good_table_validator and loc is not None] if schema: validator = import_string(good_table_validator)(name=good_table_validator, filename=schema[0]) contents = validator.get_validator_contents() ordered_header = [field['name'] for field in contents.get('fields', [])] return ordered_header def get_ordered_headers(headers): if isinstance(UPLOAD_SETTINGS['STREAM_ARGS']['headers'], list): return UPLOAD_SETTINGS['STREAM_ARGS']['headers'] correct_headers = get_schema_headers() if correct_headers == headers: return headers working_headers = headers.copy() o_headers = [] for h in correct_headers: if h in working_headers: o_headers.append(h) working_headers.remove(h) # add back header that didn't exist in the schema but in headers o_headers.extend(working_headers) return o_headers def to_tabular(incoming): """Coerce incoming json to tabular structure for tabulator [ [All observed keys(headers)], [values], [values], ... ] First list contains all observed `columns`, following lists are data rows containing data values in the order of headers defined in the first row. """ if incoming.get('source') is None: return incoming data = incoming.copy() # if we are going through the API, the JSONDecoder already # converts the source JSON to a python dictionary for us. jsonbuffer = None try: jsonbuffer = json.loads(data["source"].decode()) except (TypeError, KeyError, AttributeError): jsonbuffer = data['source'] headers = set() for row in jsonbuffer: for header in row.keys(): headers.add(header) headers = list(headers) o_headers = get_ordered_headers(headers) output = [o_headers] for row in jsonbuffer: row_data = [] for header in o_headers: logger.debug(f"Fetching: {header}") val = row.get(header, None) row_data.append(val) logger.debug(f'Set to: {val}') output.append(row_data) return output def reorder_csv(incoming): if incoming.get('source') is None: return incoming data = incoming.copy() csvbuffer = io.StringIO(data['source'].decode('UTF-8')) output = io.StringIO() headers = [] header_mapping = {} writer = None # This will make sure empty lines are not deleted lines = (',' if line.isspace() else line for line in csvbuffer) for row in csv.DictReader(lines): if not headers: # write headers first headers = get_ordered_headers(list(row.keys())) writer = csv.DictWriter(output, fieldnames=headers, extrasaction='ignore', lineterminator='\n') writer.writeheader() if (isinstance(UPLOAD_SETTINGS['STREAM_ARGS']['headers'], list)): header_mapping = dict(zip(row.keys(), headers)) # If there's extra item in the row if row.get(None): vals = [row.get(header, '') for header in headers] vals.extend(row.get(None)) write_row = ",".join(vals) output.write(write_row + '\n') else: writer.writerow(OrderedDict([(header_mapping.get(k, k), v) for k, v in row.items()])) data['source'] = output.getvalue().encode('UTF-8') return data
30.785714
107
0.642691
7940662f4859044199cd656698fa207ea21c5792
65,618
py
Python
mindspore/ops/operations/_grad_ops.py
kanchenhao/mindspore
020662240545603fb53407c81f53f2541710e85d
[ "Apache-2.0" ]
null
null
null
mindspore/ops/operations/_grad_ops.py
kanchenhao/mindspore
020662240545603fb53407c81f53f2541710e85d
[ "Apache-2.0" ]
null
null
null
mindspore/ops/operations/_grad_ops.py
kanchenhao/mindspore
020662240545603fb53407c81f53f2541710e85d
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Operators for gradients.""" from ..._c_expression import signature_rw as sig_rw from ..._c_expression import signature_kind as sig_kind from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register from ..._checkparam import Validator as validator, Rel from .._utils import get_concat_offset from ...common import dtype as mstype from .. import functional as F class AbsGrad(PrimitiveWithInfer): """Computes gradients for abs operation.""" @prim_attr_register def __init__(self): """init AbsGrad""" def infer_shape(self, y, dy): return y def infer_dtype(self, y, dy): return y class ACosGrad(PrimitiveWithInfer): """ Computes ACosGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_attr_register def __init__(self): """init ACosGrad""" def infer_shape(self, x, dout): validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) return x def infer_dtype(self, x, dout): args = {"x": x, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return x class AcoshGrad(PrimitiveWithInfer): """Performs grad of Acosh operation.""" @prim_attr_register def __init__(self): """init AcoshGrad""" def infer_shape(self, x, dout): validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) return x def infer_dtype(self, x, dout): args = {"x": x, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return x class AsinGrad(PrimitiveWithInfer): """ Computes AsinGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_attr_register def __init__(self): """Init AsinGrad""" def infer_shape(self, x, dout): validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) return x def infer_dtype(self, x, dout): args = {"x": x, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return x class AsinhGrad(PrimitiveWithInfer): """Performs grad of Asinh operation.""" @prim_attr_register def __init__(self): """init AsinhGrad""" def infer_shape(self, x, dout): validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) return x def infer_dtype(self, x, dout): args = {"x": x, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return x class ReciprocalGrad(PrimitiveWithInfer): """Performs grad of Reciprocal operation.""" @prim_attr_register def __init__(self): """init ReciprocalGrad""" def infer_shape(self, x_shape, dout_shape): validator.check("x shape", x_shape, "dout shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_dtype, dout_dtype): args = {"x": x_dtype, "dout": dout_dtype} validator.check_tensor_type_same(args, [mstype.float16, mstype.float32], self.name) return x_dtype class RsqrtGrad(PrimitiveWithInfer): """Performs grad of Rsqrt operation.""" @prim_attr_register def __init__(self): """init RsqrtGrad""" def infer_shape(self, x_shape, dout_shape): validator.check("x shape", x_shape, "dout shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_dtype, dout_dtype): args = {"x": x_dtype, "dout": dout_dtype} validator.check_tensor_type_same(args, [mstype.float16, mstype.float32, mstype.int32, mstype.int8], self.name) return x_dtype class SoftmaxGrad(PrimitiveWithInfer): """Performs grad of Softmax operation.""" @prim_attr_register def __init__(self): """init SoftmaxGrad""" def infer_shape(self, x_shape, dout_shape): validator.check("x shape", x_shape, "dout shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_dtype, dout_dtype): args = {"x": x_dtype, "dout": dout_dtype} validator.check_tensor_type_same(args, [mstype.float16, mstype.float32], self.name) return x_dtype class SqrtGrad(PrimitiveWithInfer): """Performs grad of Sqrt operation.""" @prim_attr_register def __init__(self): """init SqrtGrad""" def infer_shape(self, x_shape, dout_shape): validator.check("x shape", x_shape, "dout shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_dtype, dout_dtype): args = {"x": x_dtype, "dout": dout_dtype} validator.check_tensor_type_same(args, [mstype.float16, mstype.float32], self.name) return x_dtype class BatchNormGrad(PrimitiveWithInfer): """Performs grad of BatchNorm operation.""" @prim_attr_register def __init__(self, is_training=False, epsilon=1e-5): self.is_training = validator.check_value_type('is_training', is_training, (bool,), self.name) self.epsilon = validator.check_number_range('epsilon', epsilon, 0, 1, Rel.INC_RIGHT, self.name) self.add_prim_attr('data_format', "NCHW") def infer_shape(self, y_backprop_shape, x_shape, scale_shape, reserve_1_shape, reserve_2_shape): validator.check("BatchNorm y_backprop_shape", y_backprop_shape, "BatchNorm x_shape", x_shape) return (x_shape, scale_shape, scale_shape, reserve_1_shape, reserve_2_shape) def infer_dtype(self, y_backprop_type, x_type, scale_type, reserve_1_type, reserve_2_type): return (x_type, scale_type, scale_type, reserve_1_type, reserve_2_type) class BiasAddGrad(Primitive): """Computes gradients of BiasAdd.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['dout'], outputs=['output']) self.add_prim_attr('data_format', 'NCHW') def __call__(self, d_output): raise NotImplementedError class KLDivLossGrad(PrimitiveWithInfer): """Computes gradients for `KLDivLoss` operation.""" @prim_attr_register def __init__(self, reduction='mean'): self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) def infer_shape(self, x_shape, y_shape, doutput_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) return x_shape, y_shape def infer_dtype(self, x_type, y_type, doutput_type): args = {'x_type': x_type, 'y_type': y_type, 'doutput_type': doutput_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) return x_type, y_type class BinaryCrossEntropyGrad(PrimitiveWithInfer): """Computes gradients for `BinaryCrossEntropy` operation.""" @prim_attr_register def __init__(self, reduction='mean'): self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name) def infer_shape(self, x_shape, y_shape, doutput_shape, weight_shape): validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name) if weight_shape: validator.check('y_shape', y_shape, 'weight_shape', weight_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_type, y_type, doutput_type, weight_type): args = {'x_type': x_type, 'y_type': y_type, 'doutput_type': doutput_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) if weight_type: validator.check('x_type', x_type, 'weight_type', weight_type, Rel.EQ, TypeError) return x_type class ConcatOffset(PrimitiveWithInfer): """primitive for computing Concat's gradient.""" @prim_attr_register def __init__(self, N=2, axis=0): """init ConcatOffset""" def __infer__(self, input_x): axis = self.axis x_shp = input_x['shape'] x_type = input_x['dtype'] offset, _, axis = get_concat_offset(x_shp, x_type, axis, self.name) self.add_prim_attr('T', x_type[0].element_type()) offset_values = [] for i in range(len(x_shp)): values = [] for j in range(len(x_shp[0])): value = 0 if j == axis: value = offset[i] values.append(value) offset_values.append(tuple(values)) out = {'shape': None, 'dtype': None, 'value': tuple(offset_values)} return out class Conv2DBackpropFilter(PrimitiveWithInfer): """ Computes the gradients of convolution with respect to the filter. Args: out_channel (int): The dimensionality of the output space. kernel_size (Union[int, tuple[int]]): The size of the convolution window. pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid". pad (int): The pad value to fill. Default: 0. mode (int): 0 Math convolutiuon, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 1. stride (tuple): The stride to apply conv filter. Default: (1, 1). dilation (tuple): Specifies the dilation rate to use for dilated convolution. Default: (1, 1, 1, 1). group (int): Splits input into groups. Default: 1. Returns: Tensor, the gradients of convolution. """ @prim_attr_register def __init__(self, out_channel, kernel_size, pad_mode="valid", pad=0, pad_list=(0, 0, 0, 0), mode=1, stride=(1, 1), dilation=(1, 1, 1, 1), group=1): """init Convolution""" self.init_prim_io_names(inputs=['out_backprop', 'input', 'filter_sizes'], outputs=['output']) self.out_channel = out_channel self.kernel_size = kernel_size self.mode = mode pad_mode = pad_mode.upper() self.add_prim_attr('pad_mode', pad_mode) self.pad = pad if isinstance(stride, tuple) and len(stride) == 4: self.stride = (stride[2], stride[3]) self.add_prim_attr('stride', self.stride) self.dilation = dilation self.group = group self.add_prim_attr('groups', group) self.add_prim_attr('data_format', "NCHW") def __infer__(self, doutput, x, w_size): w_size_v = w_size['value'] validator.check_value_type('w_size', w_size_v, [tuple], self.name) for i, dim_len in enumerate(w_size_v): validator.check_value_type("w_size[%d]" % i, dim_len, [int], self.name) args = {"x": x['dtype'], "doutput": doutput['dtype']} validator.check_tensor_type_same(args, [mstype.int8, mstype.int32, mstype.float16, mstype.float32], self.name) out = { 'value': None, 'shape': w_size_v, 'dtype': doutput['dtype'], } return out class DepthwiseConv2dNativeBackpropFilter(PrimitiveWithInfer): """ Returns the gradient of filter for DepthwiseConv2dNative. Applies depthwise conv2d for the input, which will generate more channels with channel_multiplier. Refer to class DepthwiseConv2dNative for more details. Args: channel_multiplier (int): The multipiler for the original output conv. kernel_size (int or tuple): The size of the conv kernel. mode (int): 0 Math convolutiuon, 1 cross-correlation convolution, 2 deconvolution,3 depthwise convolution. Defaul: 3. pad_mode (str): The mode to fill padding which can be: "valid", "same" or "pad". Default: "valid". pad (int): The pad value to fill. Default: 0. pads (tuple): The pad list like (top, bottom, left, right). Default: (0, 0, 0, 0). stride (int): The stride to apply conv filter. Default: 1. dilation (int): Specifies the space to use between kernel elements. Default: 1. group (int): Splits input into groups. Default: 1. Returns: Tensor, the value is the gradient of filter for DepthwiseConv2dNative. """ @prim_attr_register def __init__(self, channel_multiplier, kernel_size, pad_mode="valid", pad=0, pads=(0, 0, 0, 0), mode=3, stride=1, dilation=1, group=1): """init Convolution""" self.init_prim_io_names(inputs=['input', 'filter_size', 'dout'], outputs=['output']) self.channel_multiplier = channel_multiplier self.kernel_size = kernel_size self.mode = mode self.pad_mode = pad_mode self.pad = pad self.pads = pads self.stride = stride self.dilation = dilation self.group = group self.add_prim_attr('data_format', "NCHW") def __call__(self, x, w_size, dout): raise NotImplementedError def __infer__(self, x, w_size, dout): w_size_v = w_size['value'] args = {'x': x['dtype'], 'dout': dout['dtype']} validator.check_tensor_type_same(args, mstype.number_type, self.name) out = { 'value': None, 'shape': w_size_v, 'dtype': dout['dtype'], } return out class DepthwiseConv2dNativeBackpropInput(PrimitiveWithInfer): """ Returns the gradient of input for DepthwiseConv2dNative. Applies depthwise conv2d for the input, which will generate more channels with channel_multiplier. Args: channel_multiplier (int): The multipiler for the original output conv. kernel_size (int or tuple): The size of the conv kernel. mode (int): 0 Math convolutiuon, 1 cross-correlation convolution , 2 deconvolution,3 depthwise convolution. Default: 3. pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid". pad (int): the pad value to fill. Default: 0. pads (tuple): The pad list like (top, bottom, left, right). Default: (0, 0, 0, 0). stride (int): the stride to apply conv filter. Default: 1. dilation (int): Specifies the space to use between kernel elements. Default: 1. group (int): Splits input into groups. Default: 1. Returns: Tensor, the value is the gradient of input for DepthwiseConv2dNative. """ @prim_attr_register def __init__(self, channel_multiplier, kernel_size, pad_mode="valid", pad=0, pads=(0, 0, 0, 0), mode=3, stride=1, dilation=1, group=1): """init Convolution""" self.init_prim_io_names(inputs=['input_size', 'filter', 'dout'], outputs=['output']) self.channel_multiplier = channel_multiplier self.kernel_size = kernel_size self.mode = mode self.pad_mode = pad_mode self.pad = pad self.pads = pads self.stride = stride self.dilation = dilation self.group = group self.add_prim_attr('data_format', "NCHW") def __call__(self, x_size, w, dout): raise NotImplementedError def __infer__(self, x_size, w, dout): args = {'w': w['dtype'], 'dout': dout['dtype']} validator.check_tensor_type_same(args, mstype.number_type, self.name) x_size_v = x_size['value'] out = { 'value': None, 'shape': x_size_v, 'dtype': dout['dtype'], } return out class FlattenGrad(PrimitiveWithInfer): """Performs gradients of Flatten.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['x', 'shape'], outputs=['output']) def __infer__(self, *args): out = { 'value': None, 'shape': args[1]['value'], 'dtype': args[0]['dtype'], } return out class FusedBatchNormGrad(Primitive): """Gradients of FusedBatchNorm operation.""" @prim_attr_register def __init__(self, epsilon=0.0, momentum=0.1): self.init_prim_io_names(inputs=['dy', 'x', 'scale', 'save_mean', 'save_inv_variance'], outputs=['dx', 'bn_scale', 'bn_bias']) def __call__(self, dy, x, scale, save_mean, save_inv_variance): raise NotImplementedError class UniqueGrad(Primitive): """Gradients of Unique operation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['dy', 'y'], outputs=['dx']) def __call__(self, dy, x, scale, save_mean, save_inv_variance): raise NotImplementedError class BNTrainingReduceGrad(PrimitiveWithInfer): """Gradients of FusedBatchNorm operation.""" @prim_attr_register def __init__(self, epsilon=0.0001): _inputs = ['grads', 'x', 'diff_scale', 'diff_offset', 'scale', 'batch_mean', 'batch_variance'] self.init_prim_io_names(inputs=_inputs, outputs=['y']) def infer_shape(self, grads, x, diff_scale, diff_offset, scale, batch_mean, batch_variance): return grads def infer_dtype(self, grads, x, diff_scale, diff_offset, scale, batch_mean, batch_variance): return grads class BNTrainingUpdateGrad(PrimitiveWithInfer): """Gradients of FusedBatchNorm operation.""" @prim_attr_register def __init__(self, epsilon=0.0001): self.init_prim_io_names(inputs=['grads', 'x', 'batch_mean', 'batch_variance'], outputs=['diff_scale', 'diff_offset']) def infer_shape(self, grads, x, batch_mean, batch_variance): return (batch_mean, batch_variance) def infer_dtype(self, grads, x, batch_mean, batch_variance): return (batch_mean, batch_variance) class GeluGrad(PrimitiveWithInfer): """Gradients of Gelu operation.""" @prim_attr_register def __init__(self): """init GeluGrad""" def infer_shape(self, y_backprop_shape, x_shape, y_shape): return x_shape def infer_dtype(self, y_backprop_dtype, x_dtype, y_dtype): validator.check_tensor_type_same({"y_backprop": y_backprop_dtype}, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"y": y_dtype}, (mstype.float16, mstype.float32), self.name) return x_dtype class _PoolGrad(PrimitiveWithInfer): """Gradients of the max/avg pool operation.""" @prim_attr_register def __init__(self, ksize, strides, padding="VALID"): self.init_prim_io_names(inputs=['x_origin', 'out_origin', 'grad'], outputs=['output']) validator.check_value_type('ksize', ksize, [int, tuple], self.name) validator.check_value_type('strides', strides, [int, tuple], self.name) self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name) self.add_prim_attr("padding", self.padding) self.is_maxpoolgradwithargmax = (self.name == "MaxPoolGradWithArgmax") if not self.is_maxpoolgradwithargmax: self.add_prim_attr('data_format', "NCHW") def _grad_check_int_or_tuple(arg_name, arg_val, is_argmax): validator.check_value_type(arg_name, arg_val, (int, tuple), self.name) error_msg = ValueError(f"For '{self.name}' the '{arg_name}' should be an positive int number " f"or a tuple of two or four positive int numbers, but got {arg_val}") if isinstance(arg_val, int): ret = (1, arg_val, arg_val, 1) if is_argmax else (1, 1, arg_val, arg_val) elif len(arg_val) == 2: ret = (1, arg_val[0], arg_val[1], 1) if is_argmax else (1, 1, arg_val[0], arg_val[1]) elif len(arg_val) == 4: ret = arg_val else: raise error_msg # whether all elements of tuple are positive integers for item in ret: if not isinstance(item, int) or item <= 0: raise error_msg return ret self.ksize = _grad_check_int_or_tuple("ksize", ksize, self.is_maxpoolgradwithargmax) self.add_prim_attr("ksize", self.ksize) self.strides = _grad_check_int_or_tuple("strides", strides, self.is_maxpoolgradwithargmax) self.add_prim_attr("strides", self.strides) class AvgPoolGrad(_PoolGrad): """Gradients of the avg pool operation for ge.""" @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): super(AvgPoolGrad, self).__init__(ksize, strides, padding) def __infer__(self, origin_input, dout): out = { 'value': None, 'shape': tuple(origin_input['value']), 'dtype': dout['dtype'], } return out class AvgPoolGradVm(_PoolGrad): """Gradients of the avg pool operation for vm.""" @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): super(AvgPoolGradVm, self).__init__(ksize, strides, padding) self.init_prim_io_names(inputs=['x_origin', 'grad', 'mean_matrix', 'kernel_matrix'], outputs=['output']) def __infer__(self, origin_input, dout, mean_matrix, kernel_matrix): out = { 'value': None, 'shape': tuple(origin_input['value']), 'dtype': dout['dtype'], } return out class AvgPoolGradGpu(_PoolGrad): """Gradients of the avg pool operation for gpu.""" @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): super(AvgPoolGradGpu, self).__init__(ksize, strides, padding) def infer_shape(self, x1_shape, x2_shape, grad_shape): return x1_shape def infer_dtype(self, x1_dtype, x2_dtype, grad_dtype): return x1_dtype class MaxPoolGrad(_PoolGrad): """Performs gradients of the max pool operation.""" @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): super(MaxPoolGrad, self).__init__(ksize, strides, padding) def infer_shape(self, x1_shape, x2_shape, grad_shape): return x1_shape def infer_dtype(self, x1_dtype, x2_dtype, grad_dtype): return x1_dtype class MaxPoolGradGrad(_PoolGrad): r""" Performs gradients of the MaxPoolGrad operation. Args: ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value, is an int number that represents height and width are both ksize, or a tuple of two int numbers that represent height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive. Default: "valid". - same: Adopts the way of completion. Output height and width will be the same as the input. Total number of padding will be calculated for horizontal and vertical direction and evenly distributed to top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possibly largest height and width of output will be return without padding. Extra pixels will be discarded. Inputs: - **origin_input** (Tensor) - Tensor with data format "NCHW", data type should be float16. - **origin_output** (Tensor) - Data type same as `origin_input`. - **grad** (Tensor) - Data type same as `origin_input`. Outputs: Tensor, With data type same as `origin_input`. """ @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): super(MaxPoolGradGrad, self).__init__(ksize, strides, padding) def infer_shape(self, x1_shape, x2_shape, grad_shape): return x1_shape def infer_dtype(self, x1_dtype, x2_dtype, grad_dtype): args = {'x1_dtype': x1_dtype, 'x2_dtype': x2_dtype, 'grad_dtype': grad_dtype} validator.check_tensor_type_same(args, [mstype.float16], self.name) return x1_dtype class MaximumGrad(Primitive): """Grad for maximum.""" @prim_attr_register def __init__(self, grad_x=True, grad_y=True): """Init MaximumGrad""" def __call__(self, x, y, dout): raise NotImplementedError class MaxPoolGradWithArgmax(_PoolGrad): """Computes the gradients of MaxPoolWithArgmax.""" @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID",): self.init_prim_io_names(inputs=['x', 'grad', 'argmax'], outputs=['output']) super(MaxPoolGradWithArgmax, self).__init__(ksize, strides, padding) def infer_shape(self, x_shape, grad_shape, argmax_shape): if not grad_shape: raise TypeError("The dout of MaxPoolGradWithArgmax should be a Tensor.") return x_shape def infer_dtype(self, x_dtype, grad_dtype, argmax_dtype): return grad_dtype class MaxPoolGradGradWithArgmax(_PoolGrad): r""" Computes the gradients of MaxPoolGradWithArgmax. Args: ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value, is an int number that represents height and width are both ksize, or a tuple of two int numbers that represent height and width respectively. Default: 1. strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents the height and width of movement are both strides, or a tuple of two int numbers that represent height and width of movement respectively. Default: 1. padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive. Default: "valid". - same: Adopts the way of completion. Output height and width will be the same as the input. Total number of padding will be calculated for horizontal and vertical direction and evenly distributed to top and bottom, left and right if possible. Otherwise, the last extra padding will be done from the bottom and the right side. - valid: Adopts the way of discarding. The possibly largest height and width of output will be return without padding. Extra pixels will be discarded. Inputs: - **x** (Tensor) - Tensor with data format "NCHW", data type should be float16. - **grad** (Tensor) - Data type same as `x`. - **argmax** (Tensor) - Data type should be uint16 or int64. Outputs: Tensor, With data type same as `x`. """ @prim_attr_register def __init__(self, ksize=1, strides=1, padding="VALID"): self.init_prim_io_names(inputs=['x', 'grad', 'argmax'], outputs=['output']) super(MaxPoolGradGradWithArgmax, self).__init__(ksize, strides, padding) def infer_shape(self, x_shape, grad_shape, argmax_shape): if not grad_shape: raise TypeError("The dout of MaxPoolGradGradWithArgmax should be a Tensor.") return x_shape def infer_dtype(self, x_dtype, grad_dtype, argmax_dtype): args = {'x_dtype': x_dtype, 'grad_dtype': grad_dtype} validator.check_tensor_type_same(args, [mstype.float16], self.name) return grad_dtype class MinimumGrad(Primitive): """Grad for minimum.""" @prim_attr_register def __init__(self, grad_x=True, grad_y=True): """Init MinimumGrad""" def __call__(self, x, y, dout): raise NotImplementedError class L2NormalizeGrad(PrimitiveWithInfer): r""" Gradients of L2 normalize. Args: axis (int): The begin axis for the input to apply L2 normalize. Default: 0. epsilon (float): A small value added for numerical stability. Default: 1e-4. Inputs: - **input_x** (Tensor) - Should be the input `weight` of forward operator L2Normalize. - **out** (Tensor) - Should be the output of forward operator L2Normalize. - **dout** (Tensor) - The backprop of the next layer. Outputs: Tensor, gradients of L2Normalize `input_x`. """ @prim_attr_register def __init__(self, axis=0, epsilon=1e-4): validator.check_value_type('axis', axis, [int], self.name) validator.check_value_type('epsilon', epsilon, [int, float], self.name) def infer_shape(self, input_x, out, dout): validator.check('input_x shape', input_x, 'out shape', out, Rel.EQ, self.name) validator.check('input_x shape', input_x, 'dout shape', dout, Rel.EQ, self.name) return input_x def infer_dtype(self, input_x, out, dout): args = {'input_x': input_x, 'out': out, 'dout': dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return input_x class LayerNormGrad(Primitive): """ Applies the layer normalization to the input array. This operator will calculate the input gradients of layernorm. Args: begin_norm_axis (int): The begin axis for the input to apply layernorm. Default: 1. begin_params_axis (int): The begin axis for the parameter input to apply layernorm. Default: 1. Returns: tuple[int], tuple of 3 values (the gradients of layernorm input, gamma, beta). """ @prim_attr_register def __init__(self, begin_norm_axis=1, begin_params_axis=1): """init""" self.begin_norm_axis = validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name) self.begin_params_axis = validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name) def __call__(self, x, dy, variance, mean, gamma): raise NotImplementedError class LogSoftmaxGrad(PrimitiveWithInfer): """Computes gradient for the Log Softmax activation.""" @prim_attr_register def __init__(self, axis=-1): """init LogSoftmaxGrad""" validator.check_value_type("axis", axis, [int], self.name) def infer_shape(self, dout, logits): rank = len(logits) validator.check_int_range('axis', self.axis, -rank - 1, rank, Rel.INC_BOTH, self.name) return logits def infer_dtype(self, dout, logits): validator.check_subclass("logits", logits, mstype.tensor, self.name) return logits class LSTMGradData(PrimitiveWithInfer): """Computes the data gradients of LSTM.""" @prim_attr_register def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): self.input_size = validator.check_integer('input_size', input_size, 0, Rel.GT, self.name) self.hidden_size = validator.check_integer('hidden_size', hidden_size, 0, Rel.GT, self.name) self.num_layers = validator.check_integer('num_layers', num_layers, 0, Rel.GT, self.name) self.has_bias = validator.check_value_type('has_bias', has_bias, (bool,), self.name) self.bidirectional = validator.check_value_type('bidirectional', bidirectional, (bool,), self.name) self.dropout = validator.check_value_type("dropout", dropout, [float], self.name) self.dropout = validator.check_number_range('dropout', dropout, 0, 1, Rel.INC_BOTH, self.name) if bidirectional: self.num_directions = 2 else: self.num_directions = 1 def infer_shape(self, y_shape, dy_shape, dhy_shape, dcy_shape, w_shape, hx_shape, cx_shape, reserve_shape, state_shape): # dhy and dcy should be same shape validator.check_integer("h_shape", len(dhy_shape), 3, Rel.EQ, self.name) validator.check_integer("h_shape", len(dhy_shape), len(dcy_shape), Rel.EQ, self.name) validator.check_integer("h_shape[0]", dhy_shape[0], dcy_shape[0], Rel.EQ, self.name) validator.check_integer("h_shape[1]", dhy_shape[1], dcy_shape[1], Rel.EQ, self.name) validator.check_integer("h_shape[2]", dhy_shape[2], dcy_shape[2], Rel.EQ, self.name) validator.check_integer("h_shape[0]", dhy_shape[0], self.num_layers * self.num_directions, Rel.EQ, self.name) validator.check_integer("h_shape[2]", dhy_shape[2], self.hidden_size, Rel.EQ, self.name) # dy: (seq_len, batch_size, hidden_size * num_directions) validator.check_integer("dy_shape", len(dy_shape), 3, Rel.EQ, self.name) validator.check_integer("dy[1]", dy_shape[1], dhy_shape[1], Rel.EQ, self.name) validator.check_integer("dy[2]", dy_shape[2], self.hidden_size * self.num_directions, Rel.EQ, self.name) # (seq_len, batch_size, input_size) dx_shape = (y_shape[0], y_shape[1], self.input_size) dhx_shape = dhy_shape dcx_shape = dcy_shape return (dx_shape, dhx_shape, dcx_shape) def infer_dtype(self, y_dtype, dy_dtype, dhy_dtype, dcy_dtype, w_dtype, hx_dtype, cx_dtype, reserve_dtype, state_dtype): args = {"dy": dy_dtype, "dhy": dhy_dtype, "dcy": dcy_dtype} validator.check_tensor_type_same(args, (mstype.float32, mstype.float16), self.name) return (dy_dtype, dy_dtype, dy_dtype) class LSTMGradWeight(PrimitiveWithInfer): """Computes the weight gradients of LSTM.""" @prim_attr_register def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): self.input_size = validator.check_integer('input_size', input_size, 0, Rel.GT, self.name) self.hidden_size = validator.check_integer('hidden_size', hidden_size, 0, Rel.GT, self.name) self.num_layers = validator.check_integer('num_layers', num_layers, 0, Rel.GT, self.name) self.has_bias = validator.check_value_type('has_bias', has_bias, (bool,), self.name) self.bidirectional = validator.check_value_type('bidirectional', bidirectional, (bool,), self.name) self.dropout = validator.check_value_type("dropout", dropout, [float], self.name) self.dropout = validator.check_number_range('dropout', dropout, 0, 1, Rel.INC_BOTH, self.name) if bidirectional: self.num_directions = 2 else: self.num_directions = 1 def infer_shape(self, x_shape, hx_shape, y_shape, reserve_shape, state_shape): weight_size = 0 gate_size = 4 * self.hidden_size for layer in range(self.num_layers): for _ in range(self.num_directions): input_layer_size = self.input_size if layer == 0 else self.hidden_size * self.num_directions weight_size += gate_size * input_layer_size weight_size += gate_size * self.hidden_size if self.has_bias: weight_size += 2 * gate_size return (weight_size, 1, 1) def infer_dtype(self, x_dtype, hx_dtype, y_dtype, reserve_dtype, state_dtype): return hx_dtype class LSTMGrad(PrimitiveWithInfer): """Computes the data and weight gradients of LSTM.""" @prim_attr_register def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout): self.input_size = validator.check_integer('input_size', input_size, 0, Rel.GT, self.name) self.hidden_size = validator.check_integer('hidden_size', hidden_size, 0, Rel.GT, self.name) self.num_layers = validator.check_integer('num_layers', num_layers, 0, Rel.GT, self.name) self.has_bias = validator.check_value_type('has_bias', has_bias, (bool,), self.name) self.bidirectional = validator.check_value_type('bidirectional', bidirectional, (bool,), self.name) self.dropout = validator.check_value_type("dropout", dropout, [float], self.name) self.dropout = validator.check_number_range('dropout', dropout, 0, 1, Rel.INC_BOTH, self.name) if bidirectional: self.num_directions = 2 else: self.num_directions = 1 def infer_shape(self, x_shape, hx_shape, cx_shape, w_shape, y_shape, hy_shape, cy_shape, dy_shape, dhy_shape, dcy_shape, reserve_shape): # dhy and dcy should be same shape validator.check_integer("h_shape", len(dhy_shape), 3, Rel.EQ, self.name) validator.check_integer("h_shape", len(dhy_shape), len(dcy_shape), Rel.EQ, self.name) validator.check_integer("h_shape[0]", dhy_shape[0], dcy_shape[0], Rel.EQ, self.name) validator.check_integer("h_shape[1]", dhy_shape[1], dcy_shape[1], Rel.EQ, self.name) validator.check_integer("h_shape[2]", dhy_shape[2], dcy_shape[2], Rel.EQ, self.name) validator.check_integer("h_shape[0]", dhy_shape[0], self.num_layers * self.num_directions, Rel.EQ, self.name) validator.check_integer("h_shape[2]", dhy_shape[2], self.hidden_size, Rel.EQ, self.name) # dy: (seq_len, batch_size, hidden_size * num_directions) validator.check_integer("dy_shape", len(dy_shape), 3, Rel.EQ, self.name) validator.check_integer("dy[1]", dy_shape[1], dhy_shape[1], Rel.EQ, self.name) validator.check_integer("dy[2]", dy_shape[2], self.hidden_size * self.num_directions, Rel.EQ, self.name) # (seq_len, batch_size, input_size) dx_shape = (y_shape[0], y_shape[1], self.input_size) dhx_shape = dhy_shape dcx_shape = dcy_shape weight_size = 0 gate_size = 4 * self.hidden_size for layer in range(self.num_layers): for _ in range(self.num_directions): input_layer_size = self.input_size if layer == 0 else self.hidden_size * self.num_directions weight_size += gate_size * input_layer_size weight_size += gate_size * self.hidden_size if self.has_bias: weight_size += gate_size return (dx_shape, dhx_shape, dcx_shape, (weight_size, 1, 1)) def infer_dtype(self, x_dtype, hx_dtype, cx_dtype, w_dtype, y_dtype, hy_dtype, cy_dtype, dy_dtype, dhy_dtype, dcy_dtype, reserve_dtype): return (dy_dtype, dy_dtype, dy_dtype, hx_dtype) class PReLUGrad(PrimitiveWithInfer): r""" Gradients of PReLU operation. Note: 1-dimensional input_x is not supported. Inputs: - **y_backprop** (Tensor) - Representing the backprop of the next layer. - **input_x** (Tensor) - Should be the input `input_x` of forward operator PRelu. - **weight** (Tensor) - Float Tensor, w > 0, should be the input `weight` of forward operator PRelu. Outputs: Tensor, with the same type as `input_x`. """ @prim_attr_register def __init__(self): pass def infer_shape(self, y_backprop_shape, A_shape, w_shape): if len(A_shape) == 1: raise ValueError(f'For \'{self.name}\' input_x rank 1 is not supported.') return y_backprop_shape, w_shape def infer_dtype(self, y_backprop_dtype, A_dtype, w_dtype): valid_types = (mstype.float16, mstype.float32) validator.check_tensor_type_same({"y_backprop": y_backprop_dtype}, valid_types, self.name) validator.check_tensor_type_same({"A_dtype": A_dtype}, valid_types, self.name) validator.check_tensor_type_same({"w_dtype": w_dtype}, valid_types, self.name) return y_backprop_dtype, w_dtype class ReluGrad(Primitive): """Performs grad of Relu operation.""" @prim_attr_register def __init__(self): """init ReluGrad""" self.init_prim_io_names(inputs=['y_backprop', 'x'], outputs=['output']) def __call__(self, y_backprop, x): raise NotImplementedError class ReLU6Grad(PrimitiveWithInfer): """Performs grad of ReLU6 operation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['y_grad', 'x'], outputs=['output']) def __call__(self, y_grad, x): raise NotImplementedError def infer_shape(self, y_grad_shape, x_shape): return x_shape def infer_dtype(self, y_grad_dtype, x_dtype): validator.check_tensor_type_same({"y_grad": y_grad_dtype}, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name) return x_dtype class ReluGradV2(PrimitiveWithInfer): """Performs grad of ReLUV2 operation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['gradients', 'mask'], outputs=['output']) def __call__(self, gradients, mask): raise NotImplementedError def infer_shape(self, gradients_shape, mask_shape): return gradients_shape def infer_dtype(self, gradients_dtype, mask_dtype): validator.check_tensor_type_same({'gradients': gradients_dtype}, mstype.number_type, self.name) validator.check_tensor_type_same({'mask': mask_dtype}, (mstype.uint8,), self.name) return gradients_dtype class EluGrad(PrimitiveWithInfer): """Performs grad of Elu operation.""" @prim_attr_register def __init__(self): """Init EluGrad""" def infer_shape(self, y_grad_shape, x_shape): return x_shape def infer_dtype(self, y_grad_dtype, x_dtype): args = {'y_grad': y_grad_dtype, 'x': x_dtype} validator.check_tensor_type_same(args, mstype.float_type, self.name) return x_dtype class ResizeBilinearGrad(PrimitiveWithInfer): """Performs grad of ResizeBilinear operation.""" @prim_attr_register def __init__(self, align_corners=False): """init""" def infer_shape(self, dout_shape, orig_shape): return orig_shape def infer_dtype(self, dout_dtype, orig_type): return dout_dtype class ResizeNearestNeighborGrad(PrimitiveWithInfer): """ Compute gradient of `ResizeNearestNeighbor` operator. Note: The shape of input parameter `size` must be (height, width). Args: align_corners (bool): Whether the centers of the 4 corner pixels of the input and output tensors are aligned. Default: False. """ @prim_attr_register def __init__(self, align_corners=False): """Init ResizeNearestNeighborGrad""" self.init_prim_io_names(inputs=['grads', 'size'], outputs=['y']) def __infer__(self, grads, size): shp = (grads['shape'][0],) + (grads['shape'][1],) + size['value'] return {'shape': shp, 'dtype': grads['dtype'], 'value': None} class ROIAlignGrad(PrimitiveWithInfer): """ ROIAlignGrad operator. Args: pooled_height (int): The output feature height. pooled_width (int): The output feature width. spatial_scale (float): The feature stride. sample_num (int): Number of sampling points. Default: 2. """ @prim_attr_register def __init__(self, xdiff_shape, pooled_height, pooled_width, spatial_scale, sample_num=2): """init ROIAlignGrad""" validator.check_value_type("pooled_height", pooled_height, [int], self.name) validator.check_value_type("pooled_width", pooled_width, [int], self.name) validator.check_value_type("spatial_scale", spatial_scale, [float], self.name) validator.check_value_type("sample_num", sample_num, [int], self.name) validator.check_value_type("xdiff_shape", xdiff_shape, [tuple], self.name) self.xdiff_shape = xdiff_shape self.pooled_height = pooled_height self.pooled_width = pooled_width self.spatial_scale = spatial_scale self.sample_num = sample_num def infer_shape(self, ydiff_shape, rois_shape): return self.xdiff_shape def infer_dtype(self, ydiff_type, rois_type): return ydiff_type class SigmoidGrad(PrimitiveWithInfer): """Gets the gradient of Sigmoid operation.""" @prim_attr_register def __init__(self): pass def infer_shape(self, out, dout): return out def infer_dtype(self, out, dout): args = {'out': out, 'dout': dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return out class HSigmoidGrad(PrimitiveWithInfer): """Gets the gradient of HSigmoid operation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['y_grad', 'x'], outputs=['output']) def infer_shape(self, y_grad_shape, x_shape): return x_shape def infer_dtype(self, y_grad_dtype, x_dtype): validator.check_tensor_type_same({"y_grad": y_grad_dtype}, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name) return x_dtype class HSwishGrad(PrimitiveWithInfer): """Gets the gradient of HSwish operation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['y_grad', 'x'], outputs=['output']) def infer_shape(self, y_grad_shape, x_shape): return x_shape def infer_dtype(self, y_grad_dtype, x_dtype): validator.check_tensor_type_same({"y_grad": y_grad_dtype}, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name) return x_dtype class SigmoidCrossEntropyWithLogitsGrad(PrimitiveWithInfer): """Computes the gradients of `SigmoidCrossEntropyWithLogits`.""" @prim_attr_register def __init__(self): """Init SigmoidCrossEntropyWithLogitsGrad""" self.init_prim_io_names(inputs=['x', 'y', 'dout'], outputs=['x_grad']) def infer_shape(self, x_shape, y_shape, dout_shape): validator.check("x_shape", x_shape, "y_shape", y_shape, Rel.EQ, self.name) validator.check("x_shape", x_shape, "dout_shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_dtype, y_dtype, dout_dtype): args = {"x_dtype": x_dtype, "y_dtype": y_dtype, 'dout_dtype': dout_dtype} validator.check_tensor_type_same(args, mstype.number_type, self.name) return dout_dtype class SliceGrad(PrimitiveWithInfer): """Reverse of slice.""" @prim_attr_register def __init__(self): """init SliceGrad""" self.init_prim_io_names(inputs=['dy', 'x', 'begin', 'size'], outputs=['dx']) def __infer__(self, dy, x, begin, size): dy_shape, x_shape, size_value = dy['shape'], x['shape'], size['value'] dy_shape_len = len(dy_shape) for i in range(dy_shape_len): validator.check(f'dy_shape[{i}]', dy_shape[i], f'x_shape[{i}]', x_shape[i], Rel.LE, self.name) validator.check(f'dy_shape[{i}]', dy_shape[i], f'size_shape[{i}]', size_value[i], Rel.EQ, self.name) return {'shape': x_shape, 'dtype': x['dtype'], 'value': None} class SmoothL1LossGrad(PrimitiveWithInfer): """Computes gradient for prediction on SmoothL1Loss.""" @prim_attr_register def __init__(self, sigma=1.0): pass def infer_shape(self, prediction, target, dloss): validator.check('prediction shape', prediction, 'target shape', target, Rel.EQ, self.name) validator.check('prediction shape', prediction, 'dloss shape', dloss, Rel.EQ, self.name) return prediction def infer_dtype(self, prediction, target, dloss): args = {"prediction": prediction, "target": target, 'dloss': dloss} validator.check_tensor_type_same(args, mstype.number_type, self.name) return dloss class StridedSliceGrad(PrimitiveWithInfer): """ Performs grad of StridedSlice operation. Args: begin_mask (int): Start indexing the slice. Default: 0. end_mask (int): End indexing the slice. Default: 0. ellipsis_mask (int): An int32 mask. Default: 0. new_axis_mask (int): An int32 mask. Default: 0. shrink_axis_mask (int): An int32 mask. Default: 0. Returns: Tensor, has the same shape of input. """ @prim_attr_register def __init__(self, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0): """init StrideSliceGrad""" validator.check_value_type('begin_mask', begin_mask, [int], self.name) validator.check_value_type('end_mask', end_mask, [int], self.name) validator.check_value_type('ellipsis_mask', ellipsis_mask, [int], self.name) validator.check_value_type('new_axis_mask', new_axis_mask, [int], self.name) validator.check_value_type('shrink_axis_mask', shrink_axis_mask, [int], self.name) self.init_prim_io_names(inputs=['dy', 'shapex', 'begin', 'end', 'strides'], outputs=['output']) def __infer__(self, dy, shapex, begin, end, strides): args = {"dy": dy['dtype']} validator.check_tensor_type_same(args, mstype.number_type, self.name) for idx, item in enumerate(shapex['value']): validator.check_value_type("shapex[%d]" % idx, item, [int], self.name) for idx, item in enumerate(begin['value']): validator.check_value_type("begin[%d]" % idx, item, [int], self.name) for idx, item in enumerate(end['value']): validator.check_value_type("end[%d]" % idx, item, [int], self.name) for idx, item in enumerate(strides['value']): validator.check_value_type("strides[%d]" % idx, item, [int], self.name) return {'shape': shapex['value'], 'dtype': dy['dtype'], 'value': None} class StridedSliceGradAICPU(PrimitiveWithInfer): """ Performs grad of StridedSlice operation. Args: begin_mask (int): Start indexing the slice. Default: 0. end_mask (int): End indexing the slice. Default: 0. ellipsis_mask (int): An int32 mask. Default: 0. new_axis_mask (int): An int32 mask. Default: 0. shrink_axis_mask (int): An int32 mask. Default: 0. Returns: Tensor, has the same shape of input. """ @prim_attr_register def __init__(self, begin_mask=0, end_mask=0, ellipsis_mask=0, new_axis_mask=0, shrink_axis_mask=0): """init StrideSliceGrad""" validator.check_value_type('begin_mask', begin_mask, [int], self.name) validator.check_value_type('end_mask', end_mask, [int], self.name) validator.check_value_type('ellipsis_mask', ellipsis_mask, [int], self.name) validator.check_value_type('new_axis_mask', new_axis_mask, [int], self.name) validator.check_value_type('shrink_axis_mask', shrink_axis_mask, [int], self.name) self.init_prim_io_names(inputs=['dy', 'shapex', 'begin', 'end', 'strides'], outputs=['output']) def __infer__(self, dy, shapex, begin, end, strides): args = {"dy": dy['dtype']} validator.check_tensor_type_same(args, mstype.number_type, self.name) for idx, item in enumerate(shapex['value']): validator.check_value_type("shapex[%d]" % idx, item, [int], self.name) for idx, item in enumerate(begin['value']): validator.check_value_type("begin[%d]" % idx, item, [int], self.name) for idx, item in enumerate(end['value']): validator.check_value_type("end[%d]" % idx, item, [int], self.name) for idx, item in enumerate(strides['value']): validator.check_value_type("strides[%d]" % idx, item, [int], self.name) return {'shape': shapex['value'], 'dtype': dy['dtype'], 'value': None} class SoftplusGrad(PrimitiveWithInfer): """Computes gradient for the Log Softmax activation.""" @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['dout', 'x'], outputs=['output']) def infer_shape(self, dout_shape, x_shape): validator.check("x_shape", x_shape, "dout_shape", dout_shape, Rel.EQ, self.name) return x_shape def infer_dtype(self, dout_dtype, x_dtype): args = {"x_dtype": x_dtype, "dout_dtype": dout_dtype} validator.check_tensor_type_same(args, mstype.float_type, self.name) return x_dtype class TanhGrad(PrimitiveWithInfer): """Computes gradient of hyperbolic tangent of input element-wise.""" @prim_attr_register def __init__(self): pass def infer_shape(self, out, dout): return out def infer_dtype(self, out, dout): args = {"out": out, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return out class MirrorPadGrad(PrimitiveWithInfer): """Gradients of MirrorPad operation.""" @prim_attr_register def __init__(self, mode="REFLECT"): """init MirrorPad""" validator.check_string('mode', mode, ['REFLECT', 'SYMMETRIC'], self.name) self.mode = mode def __infer__(self, dout, paddings): validator.check_subclass("dout", dout['dtype'], mstype.tensor, self.name) validator.check_subclass("paddings", paddings['dtype'], mstype.tensor, self.name) validator.check("paddings rank", len(paddings['shape']), "expected", 2, Rel.EQ, self.name) validator.check("paddings dim_1", paddings['shape'][1], "expected", 2, Rel.EQ, self.name) if paddings['value'] is None: raise ValueError(f"For {self.name}, paddings must be const.") paddings_value = paddings['value'].asnumpy() y_shape = () dout_shape = dout['shape'] for i, val in enumerate(dout_shape): y_shape += (val - paddings_value[i][0] - paddings_value[i][1],) return {'shape': y_shape, 'dtype': dout['dtype'], 'value': None} class EmbeddingLookupCommGrad(PrimitiveWithInfer): """ Perform the gradient for the communication part of EmbeddingLookup operator. This works ONLY when 'reduce_scatter_flag' is True in 'EmbeddingLookup'. Roughly speaking, this primitive is implemented by StridedSlice --> _HostAllGather --> Concat. This primitive runs on host. """ @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['dy', 'split_num'], outputs=['output']) self.add_prim_attr('primitive_target', 'CPU') def __infer__(self, dy, split_num): """ This primitive is implemented by three steps: 1) Split the 'dy' along dimension 0 into 'split_num' parts. 2) For each part, perform _HostAllGather((0, 1, 2, 3, 4, 5, 6, 7)) on the host. 3) After _HostAllGather, there are still 'split_num' parts in each process. Then, perform Concat on them along dimension 0. The output shape of this primitive: shape(output)[0] == shape(dy)[0] * 8 """ dy_shape = tuple(dy['shape']) split_num_value = split_num['value'] validator.check_value_type("split_num_value", split_num_value, [int], self.name) dy_shape_all = F.tuple_setitem(dy_shape, 0, dy_shape[0] * 8) return {'shape': dy_shape_all, 'dtype': dy['dtype'], 'value': None} class RefToEmbed(Primitive): r""" Make a key from Ref. The Key is a symbolic_key, is a embedding on Parameter, which is used as a key of the variable in env_type, and get items by operation `env_get_item` with the symbolic_key instance. The `Parameter` is a ref. Inputs: - **input** (Ref) - Target ref, ref is short for reference. The value of a Parameter is a ref. Outputs: symbolic_key, made from the Ref. Examples: >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.weight = mindspore.Parameter(1.0, name='weight') >>> >>> def construct(self): >>> key = RefToEmbed()(self.weight) >>> return key, self.weight """ __mindspore_signature__ = ( ('variable', sig_rw.RW_REF, sig_kind.KIND_POSITIONAL_KEYWORD), ) @prim_attr_register def __init__(self): pass class AtanGrad(PrimitiveWithInfer): """ Computes AtanGrad of input element-wise. Returns: Tensor, has the same type as input. """ @prim_attr_register def __init__(self): """init AtanGrad""" def infer_shape(self, x, dout): validator.check("x shape", x, "dout shape", dout, Rel.EQ, self.name) return x def infer_dtype(self, x, dout): args = {"x": x, "dout": dout} validator.check_tensor_type_same(args, mstype.number_type, self.name) return x class BasicLSTMCellCStateGrad(PrimitiveWithInfer): """Computes the state gradients of BasicLSTMCell.""" @prim_attr_register def __init__(self, forget_bias, activation): self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name) self.activation = validator.check_string("activation", activation, ['tanh'], self.name) def infer_shape(self, c_shape, dht_shape, dct_shape, it_shape, jt_shape, ft_shape, ot_shape, tanhct_shape): # dhy and dcy should be same shape validator.check_integer("c rank", len(c_shape), 2, Rel.EQ, self.name) validator.check("dht rank", len(dht_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("dct rank", len(dct_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("it rank", len(it_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("jt rank", len(jt_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("ft rank", len(ft_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("ot rank", len(ot_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("tanhct rank", len(tanhct_shape), "c rank", len(c_shape), Rel.EQ, self.name) validator.check("dht shape", dht_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("dct shape", dct_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("it shape", it_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("jt shape", jt_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("ft shape", ft_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("ot shape", ot_shape, "c shape", c_shape, Rel.EQ, self.name) validator.check("tanhct shape", tanhct_shape, "c shape", c_shape, Rel.EQ, self.name) dgate_shape = (c_shape[0], 4 * c_shape[1]) dct_1_shape = c_shape return (dgate_shape, dct_1_shape) def infer_dtype(self, c_dtype, dht_dtype, dct_dtype, it_dtype, jt_dtype, ft_dtype, ot_dtype, tanhct_dtype): validator.check_subclass("c", c_dtype, [mstype.tensor], self.name) validator.check_subclass("dht", dht_dtype, [mstype.tensor], self.name) validator.check_subclass("dct", dct_dtype, [mstype.tensor], self.name) validator.check_subclass("it", it_dtype, [mstype.tensor], self.name) validator.check_subclass("jt", jt_dtype, [mstype.tensor], self.name) validator.check_subclass("ft", ft_dtype, [mstype.tensor], self.name) validator.check_subclass("ot", ot_dtype, [mstype.tensor], self.name) validator.check_subclass("tanhct", tanhct_dtype, [mstype.tensor], self.name) validator.check_type_name("c", c_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("dht", dht_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("dct", dct_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("it", it_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("jt", jt_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("ft", ft_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("ot", ot_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("tanhct", tanhct_dtype, [mstype.float16, mstype.float32], self.name) return (c_dtype, c_dtype) class BasicLSTMCellWeightGrad(PrimitiveWithInfer): """Computes the weight gradients of BasicLSTM.""" @prim_attr_register def __init__(self): pass def infer_shape(self, x_shape, h_shape, dgate_shape): validator.check_integer("x rank", len(x_shape), 2, Rel.EQ, self.name) validator.check("h rank", len(h_shape), " x rank", len(x_shape), Rel.EQ, self.name) validator.check("dgate rank", len(dgate_shape), "x rank", len(x_shape), Rel.EQ, self.name) validator.check("h_shape[0]", h_shape[0], "x_shape[0]", x_shape[0], Rel.EQ, self.name) validator.check("dgate_shape[0]", dgate_shape[0], "h_shape[0]", h_shape[0], Rel.EQ, self.name) validator.check("dgate_shape[1]", dgate_shape[1], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name) dw_shape = (dgate_shape[1], x_shape[1] + h_shape[1], 1, 1) db_shape = (dgate_shape[1], 1, 1, 1) return (dw_shape, db_shape) def infer_dtype(self, x_dtype, h_dtype, dgate_dtype): validator.check_subclass("x", x_dtype, mstype.tensor, self.name) validator.check_subclass("h", h_dtype, mstype.tensor, self.name) validator.check_subclass("dgate", dgate_dtype, mstype.tensor, self.name) validator.check_type_name("x", x_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("h", h_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("dgate", dgate_dtype, [mstype.float16, mstype.float32], self.name) return (x_dtype, x_dtype) class BasicLSTMCellInputGrad(PrimitiveWithInfer): """Computes the input gradients of BasicLSTM.""" @prim_attr_register def __init__(self, keep_prob): self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name) self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0.0, 1.0, Rel.INC_BOTH, self.name) def infer_shape(self, dgate_shape, w_shape): validator.check_integer("dgate rank", len(dgate_shape), 2, Rel.EQ, self.name) validator.check_integer("w rank", len(w_shape), 4, Rel.EQ, self.name) validator.check("dgate_shape[1]", dgate_shape[1], "w_shape[0]", w_shape[0], Rel.EQ, self.name) dxt_shape = (dgate_shape[0], w_shape[1] - w_shape[0] // 4) dht_shape = (dgate_shape[0], dgate_shape[1] // 4) return (dxt_shape, dht_shape) def infer_dtype(self, dgate_dtype, w_dtype): validator.check_subclass("dgate", dgate_dtype, mstype.tensor, self.name) validator.check_subclass("w", w_dtype, mstype.tensor, self.name) validator.check_type_name("dgate", dgate_dtype, [mstype.float16, mstype.float32], self.name) validator.check_type_name("w", w_dtype, [mstype.float16, mstype.float32], self.name) return (dgate_dtype, dgate_dtype) class InvGrad(PrimitiveWithInfer): """Computes gradients for inv operation.""" @prim_attr_register def __init__(self): pass def infer_shape(self, x, grad): validator.check("x_shape", x, "grad_shape", grad, Rel.EQ, self.name) return x def infer_dtype(self, x, grad): validator.check_type_name("dgate", x, [mstype.float16, mstype.float32, mstype.int32, mstype.int8], self.name) validator.check_type_name("grad", grad, [mstype.float16, mstype.float32, mstype.int32, mstype.int8], self.name) return x class LRNGrad(PrimitiveWithInfer): """Computes gradients for LRN operation.""" @prim_attr_register def __init__(self, depth_radius=5, bias=1.0, alpha=1.0, beta=0.5): self.init_prim_io_names(inputs=['grads', 'x', 'y'], outputs=['z']) validator.check_value_type("depth_radius", depth_radius, [int], self.name) validator.check_value_type("bias", bias, [float], self.name) validator.check_value_type("alpha", alpha, [float], self.name) validator.check_value_type("beta", beta, [float], self.name) def infer_dtype(self, grads, x, y): args = {"grads": grads, "x": x, "y": y} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32,), self.name) return x def infer_shape(self, grads, x, y): return x
39.648338
119
0.651574
79406707be2da045747fa6070187c44ef0a6f386
3,312
py
Python
HomeLab/polls/views.py
amalik18/HomeLab
b0d71f379e8628948ceb15bd776386a81a468558
[ "MIT" ]
null
null
null
HomeLab/polls/views.py
amalik18/HomeLab
b0d71f379e8628948ceb15bd776386a81a468558
[ "MIT" ]
null
null
null
HomeLab/polls/views.py
amalik18/HomeLab
b0d71f379e8628948ceb15bd776386a81a468558
[ "MIT" ]
null
null
null
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, HttpResponseRedirect from django.template import loader from django.shortcuts import render from django.urls import reverse from django.http import Http404 from django.utils import timezone from django.views import generic # Create your views here. from .models import Question, Choice # def index(request): # latest_question_list = Question.objects.order_by('-pub_date')[:5] # template = loader.get_template('polls/index.html') # context = { # 'latest_question_list': latest_question_list, # } # # output = ', '.join([q.question_text for q in latest_question_list]) # return render(request=request, template_name='polls/index.html', context=context) # # # def detail(request, question_id): # # try: # # question = Question.objects.get(pk=question_id) # # except Question.DoesNotExist: # # raise Http404("The Question does not exist") # question = get_object_or_404(Question, pk=question_id) # context = { # 'question': question # } # return render(request=request, template_name='polls/detail.html', context=context) # # # def results(request, question_id): # question = get_object_or_404(Question, pk=question_id) # context = { # 'question': question, # } # return render(request=request, template_name='polls/results.html', context=context) class IndexView(generic.ListView): template_name = 'polls/index.html' context_object_name = 'latest_question_list' def get_queryset(self): """Return the last five published questions""" return Question.objects.filter(pub_date__lte=timezone.now(), choice__isnull=False).order_by('-pub_date')[:5] class DetailView(generic.DetailView): model = Question template_name = 'polls/detail.html' def get_queryset(self): """ Excludes any questions that aren't published yet :return: """ return Question.objects.filter(pub_date__lte=timezone.now(), choice__isnull=False) class ResultsView(generic.DetailView): model = Question template_name = 'polls/results.html' def get_queryset(self): """ Excludes any questions that aren't published yet and any questions that do not have a choice. :return: """ return Question.objects.filter(pub_date__lte=timezone.now(), choice__isnull=False) def vote(request, question_id): question = get_object_or_404(Question, pk=question_id) try: selected_choice = question.choice_set.get(pk=request.POST['choice']) except (KeyError, Choice.DoesNotExist): # re-display the question voting form context = { 'question': question, 'error_message': "You didn't select a choice.", } return render(request=request, template_name='polls/detail.html', context=context) else: selected_choice.votes += 1 selected_choice.save() ''' Always return an HttpResponseRedirect after a succesful POST operation. This prevents data from being posted twice if a user hits the back button in their browser. ''' return HttpResponseRedirect(reverse(viewname='polls:results', args=(question_id,)))
34.5
116
0.688406
794068983f05db8990a9af23cebbdd282c752a1f
159
py
Python
tests/model_control/detailed/transf_RelativeDifference/model_control_one_enabled_RelativeDifference_Lag1Trend_NoCycle_MLP.py
shaido987/pyaf
b9afd089557bed6b90b246d3712c481ae26a1957
[ "BSD-3-Clause" ]
377
2016-10-13T20:52:44.000Z
2022-03-29T18:04:14.000Z
tests/model_control/detailed/transf_RelativeDifference/model_control_one_enabled_RelativeDifference_Lag1Trend_NoCycle_MLP.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
160
2016-10-13T16:11:53.000Z
2022-03-28T04:21:34.000Z
tests/model_control/detailed/transf_RelativeDifference/model_control_one_enabled_RelativeDifference_Lag1Trend_NoCycle_MLP.py
ysdede/pyaf
b5541b8249d5a1cfdc01f27fdfd99b6580ed680b
[ "BSD-3-Clause" ]
63
2017-03-09T14:51:18.000Z
2022-03-27T20:52:57.000Z
import tests.model_control.test_ozone_custom_models_enabled as testmod testmod.build_model( ['RelativeDifference'] , ['Lag1Trend'] , ['NoCycle'] , ['MLP'] );
39.75
86
0.754717
79406a1e9454beef765d23ef6a4aad365ba03fff
174,468
py
Python
geostatspy/geostats.py
jessepisel/GeostatsPy
239a2a04b67991393892f5c010635b75e2eac062
[ "MIT" ]
null
null
null
geostatspy/geostats.py
jessepisel/GeostatsPy
239a2a04b67991393892f5c010635b75e2eac062
[ "MIT" ]
null
null
null
geostatspy/geostats.py
jessepisel/GeostatsPy
239a2a04b67991393892f5c010635b75e2eac062
[ "MIT" ]
6
2020-03-27T01:57:58.000Z
2020-04-07T13:20:18.000Z
""" This file includes the reimplementations of GSLIB functionality in Python. While this code will not be as well-tested and robust as the original GSLIB, it does provide the opportunity to build 2D spatial modeling projects in Python without the need to rely on compiled Fortran code from GSLIB. If you want to use the GSLIB compiled code called from Python workflows use the functions available with geostatspy.GSLIB. This file includes the (1) GSLIB subroutines (converted to Python), followed by the (2) functions: declus, gam, gamv, nscore, kb2d (more added all the time) Note: some GSLIB subroutines are not included as they were replaced by available NumPy and SciPy functionality or they were not required as we don't have to deal with graphics and files in the same manner as GSLIB. The original GSLIB code is from GSLIB: Geostatistical Library by Deutsch and Journel, 1998. The reimplementation is by Michael Pyrcz, Associate Professor, the University of Texas at Austin. """ import math # for trig functions etc. from bisect import bisect # for maintaining array elements sorted import numpy as np # for ndarrays import numpy.linalg as linalg # for linear algebra import scipy.spatial as sp # for fast nearest neighbor search from numba import jit # for numerical speed up from statsmodels.stats.weightstats import DescrStatsW def backtr(df,vcol,vr,vrg,zmin,zmax,ltail,ltpar,utail,utpar): """Back transform an entire DataFrame column with a provided transformation table and tail extrapolation. :param df: the source DataFrame :param vcol: the column with the variable to transfrom :param vr: the transformation table, 1D ndarray with the original values :param vrg: the transformation table, 1D ndarray with the trasnformed variable :param zmin: lower trimming limits :param zmax: upper trimming limits :param ltail: lower tail value :param ltpar: lower tail extrapolation parameter :param utail: upper tail value :param utpar: upper tail extrapolation parameter :return: backtr: the DataFrame column, which has been back transformed using the provided transformation table and tail extrapolation. """ EPSLON=1.0e-20 nd = len(df); nt = len(vr) # number of data to transform and number of data in table backtr = np.zeros(nd) vrgs = df[vcol].values # Value in the lower tail? 1=linear, 2=power, (3 and 4 are invalid): for id in range(0,nd): if vrgs[id] <= vrg[0]: backtr[id] = vr[0] cdflo = gcum(vrg[0]) cdfbt = gcum(vrgs[id]) if ltail == 1: backtr[id] = powint(0.0,cdflo,zmin,vr[0],cdfbt,1.0) elif ltail == 2: cpow = 1.0 / ltpar backtr[id] = powint(0.0,cdflo,zmin,vr[0],cdfbt,cpow) # Value in the upper tail? 1=linear, 2=power, 4=hyperbolic: elif vrgs[id] >= vrg[nt-1]: backtr[id] = vr[nt-1] cdfhi = gcum(vrg[nt-1]) cdfbt = gcum(vrgs[id]) if utail == 1: backtr[id] = powint(cdfhi,1.0,vr[nt-1],zmax,cdfbt,1.0) elif utail == 2: cpow = 1.0 / utpar backtr[id] = powint(cdfhi,1.0,vr[nt-1],zmax,cdfbt,cpow) elif utail == 4: plambda = (vr[nt-1]**utpar)*(1.0-gcum(vrg[nt-1])) backtr[id] = (plambda/(1.0-gcum(vrgs)))**(1.0/utpar) else: # Value within the transformation table: j = locate(vrg,1,nt,vrgs[id]) j = max(min((nt-2),j),1) backtr[id] = powint(vrg[j],vrg[j+1],vr[j],vr[j+1],vrgs[id],1.0) return backtr def backtr_value(vrgs,vr,vrg,zmin,zmax,ltail,ltpar,utail,utpar): """Back transform a single value with a provided transformation table and tail extrapolation. :param vrgs: value to transform :param vr: the transformation table, 1D ndarray with the original values :param vrg: the transformation table, 1D ndarray with the trasnformed variable :param zmin: lower trimming limits :param zmax: upper trimming limits :param ltail: lower tail value :param ltpar: lower tail extrapolation parameter :param utail: upper tail value :param utpar: upper tail extrapolation parameter :return: returns revised array """ EPSLON=1.0e-20 nt = len(vr) # number of data to transform # Value in the lower tail? 1=linear, 2=power, (3 and 4 are invalid): if vrgs <= vrg[0]: backtr = vr[0] cdflo = gcum(vrg[0]) cdfbt = gcum(vrgs) if ltail == 1: backtr = dpowint(0.0,cdflo,zmin,vr[0],cdfbt,1.0) elif ltail == 2: cpow = 1.0 / ltpar backtr = dpowint(0.0,cdflo,zmin,vr[0],cdfbt,cpow) # Value in the upper tail? 1=linear, 2=power, 4=hyperbolic: elif vrgs >= vrg[nt-1]: backtr = vr[nt-1] cdfhi = gcum(vrg[nt-1]) cdfbt = gcum(vrgs) if utail == 1: backtr = dpowint(cdfhi,1.0,vr[nt-1],zmax,cdfbt,1.0) elif utail == 2: cpow = 1.0 / utpar backtr = dpowint(cdfhi,1.0,vr[nt-1],zmax,cdfbt,cpow) elif utail == 4: plambda = (vr[nt-1]**utpar)*(1.0-gcum(vrg[nt-1])) backtr = (plambda/(1.0-gcum(vrgs)))**(1.0/utpar) else: # Value within the transformation table: j = dlocate(vrg,1,nt,vrgs) j = max(min((nt-2),j),1) backtr = dpowint(vrg[j],vrg[j+1],vr[j],vr[j+1],vrgs,1.0) return backtr def gcum(x): """Calculate the cumulative probability of the standard normal distribution. :param x: the value from the standard normal distribution :type x: float :return: probability selected x will be less than or equal to a specific value :type: float """ z = x if z < 0: z = -z t = 1./(1.+ 0.2316419*z) gcum = t*(0.31938153 + t*(-0.356563782 + t*(1.781477937 + t*(-1.821255978 + t*1.330274429)))) e2 = 0. # 6 standard deviations out gets treated as infinity: if z <= 6.: e2 = np.exp(-z*z/2.)*0.3989422803 gcum = 1.0- e2 * gcum if x >= 0: return gcum gcum = 1.0 - gcum return gcum def locate(xx,iis,iie,x): """Return value `j` such that `x` is between `xx[j]` and `xx[j+1]`, where `xx` is an array of length `n`, and `x` is a given value. `xx` must be monotonic, either increasing or decreasing (GSLIB version). :param xx: monotonic array to be searched :type: array :param iis: start point :type: integer :param iie: end point :type: integer :param x: given value :type: integer :return: location (index) in array :type: int """ n = len(xx) # Initialize lower and upper methods: if iis <= 0: iis = 0 if iie >= n: iie = n-1 jl = iis-1 ju = iie if xx[n-1] <= x: j = iie return j # If we are not done then compute a midpoint: while (ju-jl) > 1: jm = int((ju+jl)/2) # Replace the lower or upper limit with the midpoint: if (xx[iie] > xx[iis]) == (x > xx[jm]): jl = jm else: ju = jm # Return with the array index: j = jl return j def dlocate(xx, iis, iie, x): """Return value `j` such that `x` is between `xx[j]` and `xx[j+1]`, where `xx` is an array of length `n`, and `x` is a given value. `xx` must be monotonic, either increasing or decreasing (updated with Python bisect) :param xx: array :param iis: start point :param iie: end point :param x: given value :return: TODO """ n = len(xx) if iie <= iis: iis = 0 iie = n - 1 array = xx[iis: iie - 1] # this is accounting for swith to 0,...,n-1 index j = bisect(array, x) return j def powint(xlow,xhigh,ylow,yhigh,xval,power): """Power-based interpolator :param xlow: x lower interval :param xhigh: x upper interval :param ylow: y lower interval :param yhigh: y upper interval :param xval: value on x :param power: power for interpolation :return: TODO """ EPSLON=1.0e-20 if (xhigh-xlow) < EPSLON: powint = (yhigh+ylow)/2.0 else: powint = ylow + (yhigh-ylow)*(((xval-xlow)/(xhigh-xlow))**power) return powint def dsortem(ib, ie, a, iperm, b=0, c=0, d=0, e=0, f=0, g=0, h=0): """Sort array in ascending order. :param ib: start index :param ie: end index :param a: array :param iperm: 0 no other array is permuted. 1 array b is permuted according to array a. 2 arrays b, c are permuted. 3 arrays b, c, d are permuted. 4 arrays b, c, d, e are permuted. 5 arrays b, c, d, e, f are permuted. 6 arrays b, c, d, e, f, g are permuted. 7 arrays b, c, d, e, f, g, h are permuted. >7 no other array is permuted. :param b: array to be permuted according to array a. :param c: array to be permuted according to array a. :param d: array to be permuted according to array a. :param e: array to be permuted according to array a. :param f: array to be permuted according to array a. :param g: array to be permuted according to array a. :param h: array to be permuted according to array a. :return: a: the array, a portion of which has been sorted. b, c, d, e, f, g, h: arrays permuted according to array a (see iperm) """ a = a[ib:ie] inds = a.argsort() a = np.copy(a[inds]) # deepcopy forces pass to outside scope if iperm == 1: return a b_slice = b[ib:ie] b = b_slice[inds] if iperm == 2: return a, b c_slice = c[ib:ie] c = c_slice[inds] if iperm == 3: return a, b, c d_slice = d[ib:ie] d = d_slice[inds] if iperm == 4: return a, b, c, d e_slice = e[ib:ie] e = e_slice[inds] if iperm == 5: return a, b, c, d, e f_slice = f[ib:ie] f = f_slice[inds] if iperm == 6: return a, b, c, d, e, f g_slice = g[ib:ie] g = g_slice[inds] if iperm == 7: return a, b, c, d, e, f, g # TODO: changed from 'a, b, c, d, e, f, h' h_slice = h[ib:ie] h = h_slice[inds] return a, b, c, d, e, f, g, h # TODO: changed from 'a, b, c, d, e, f, h' def gauinv(p): """Compute the inverse of the standard normal cumulative distribution function. :param p: cumulative probability value :type: float :return: inverse of the normal cdf, evaluated at probability p :type: float """ lim = 1.0e-10 p0 = -0.322_232_431_088 p1 = -1.0 p2 = -0.342_242_088_547 p3 = -0.020_423_121_024_5 p4 = -0.000_045_364_221_014_8 q0 = 0.099_348_462_606_0 q1 = 0.588_581_570_495 q2 = 0.531_103_462_366 q3 = 0.103_537_752_850 q4 = 0.003_856_070_063_4 # Check for an error situation if p < lim: xp = -1.0e10 return xp if p > (1.0 - lim): xp = 1.0e10 return xp # Get k for an error situation pp = p if p > 0.5: pp = 1 - pp xp = 0.0 if p == 0.5: return xp # Approximate the function y = np.sqrt(np.log(1.0 / (pp * pp))) xp = float( y + ((((y * p4 + p3) * y + p2) * y + p1) * y + p0) / ((((y * q4 + q3) * y + q2) * y + q1) * y + q0) ) if float(p) == float(pp): xp = -xp return xp def gcum(x): """Evaluate the standard normal cdf given a normal deviate `x`. `gcum` is the area under a unit normal curve to the left of `x`. The results are accurate only to about 5 decimal places. :param x: normal deviate :type: float :return: proportion of area left of x :type: float """ z = x if z < 0: z = -z t = 1.0 / (1.0 + 0.231_641_9 * z) gcum_ = t * ( 0.319_381_53 + t * ( -0.356_563_782 + t * (1.781_477_937 + t * (-1.821_255_978 + t * 1.330_274_429)) ) ) e2 = 0.0 # Standard deviations out gets treated as infinity if z <= 6: e2 = np.exp(-z * z / 2.0) * 0.398_942_280_3 gcum_ = 1.0 - e2 * gcum_ if x >= 0.0: return gcum_ gcum_ = 1.0 - gcum_ return gcum_ def dpowint(xlow, xhigh, ylow, yhigh, xval, pwr): """Power interpolate the value of `y` between (`xlow`, `ylow`) and (`xhigh`, `yhigh`) for a value of `x` and a power `pwr`. :param xlow: minimum x-value for the interpolation :type xlow: float :param xhigh: int: maximum x-value for the interpolation :type xhigh: float :param ylow: minimum y-value for the interpolation :type ylow: float :param yhigh: maximum y-value for the interpolation :type yhigh: float :param xval: x-values used to calculate the interpolation value :type xval: float or array :param pwr: power value used in the interpolation calculation :type pwr: float :return: interpolated y-values """ EPSLON = 1.0e-20 if (xhigh - xlow) < EPSLON: dpowint_ = (yhigh + ylow) / 2.0 else: dpowint_ = ylow + (yhigh - ylow) * ( ((xval - xlow) / (xhigh - xlow)) ** pwr ) return dpowint_ #@jit(nopython=True) # all NumPy array operations included in this function for precompile with NumBa def setup_rotmat2(c0,nst,it,cc,ang): DTOR=3.14159265/180.0; EPSLON=0.000000; PI=3.141593 # The first time around, re-initialize the cosine matrix for the # variogram structures: rotmat = np.zeros((4,nst)) maxcov = c0 for js in range(0,nst): azmuth = (90.0-ang[js])*DTOR rotmat[0,js] = math.cos(azmuth) rotmat[1,js] = math.sin(azmuth) rotmat[2,js] = -1*math.sin(azmuth) rotmat[3,js] = math.cos(azmuth) if it[js] == 4: maxcov = maxcov + 9999.9 else: maxcov = maxcov + cc[js] return rotmat, maxcov @jit(nopython=True) def setup_rotmat(c0, nst, it, cc, ang, pmx): """Setup rotation matrix. :param c0: nugget constant (isotropic) :param nst: number of nested structures (max. 4) :param it: TODO :param cc: multiplicative factor of each nested structure :param ang: TODO :param pmx: TODO :return: TODO """ PI = 3.141_592_65 DTOR = PI / 180.0 # The first time around, re-initialize the cosine matrix for the variogram # structures rotmat = np.zeros((4, nst)) maxcov = c0 for js in range(0, nst): azmuth = (90.0 - ang[js]) * DTOR rotmat[0, js] = math.cos(azmuth) rotmat[1, js] = math.sin(azmuth) rotmat[2, js] = -1 * math.sin(azmuth) rotmat[3, js] = math.cos(azmuth) if it[js] == 4: maxcov = maxcov + pmx else: maxcov = maxcov + cc[js] return rotmat, maxcov @jit(nopython=True) def cova2(x1, y1, x2, y2, nst, c0, pmx, cc, aa, it, ang, anis, rotmat, maxcov): """Calculate the covariance associated with a variogram model specified by a nugget effect and nested variogram structures. :param x1: x coordinate of first point :type x1: float :param y1: y coordinate of first point :type y1: float :param x2: x coordinate of second point :type x2: float :param y2: y coordinate of second point :type y2: float :param nst: number of nested structures (maximum of 4) :type nst: int :param c0: isotropic nugget constant (TODO: not used) :type c0: float :param pmx: Maximum variogram value needed for kriging when using power model. pmx is a unique value used for all nested structures that use the power model, so pmx should be chosen to account for the largest structure that uses the power model. :type pmx: float :param cc: multiplicative factor of each nested structure :type cc: array :param aa: parameter `a` of each nested structure :type aa: array :param it: Integer value indicating type of variogram model for values 0,1,2,..., nst it[value] == 1: Spherical model (aa[value] == `a` is the range, cc[value] is the contribution) it[value] == 2: Exponential model (aa[value] == `a`, 3a is the practical range, cc[value] is the contribution) it[value] == 3: Gaussian model (aa[value] == `a`, a*sqrt(3) is the practical range), cc[value] is the contribution) it[value] == 4: Power model (aa[value] == `a` is the power such that 0 < a < 2, if linear, then a == 1, and cc[value] is the slope) :type it: array :param ang: azimuth angle measured in degrees clockwise from positive y-diretion for each variogram structure: not used (accounted for in anis) :type ang: array :param anis: Anistropy factors that apply after rotations :type anis: array :param rotmat: rotation matrices :type rotmat: array :param maxcov: maximum covariance value :type maxcov: float :return: covariance of a nested variogram model described by the inputs :type return: float """ EPSLON = 0.000001 # Check for very small distance dx = x2 - x1 dy = y2 - y1 if (dx * dx + dy * dy) < EPSLON: cova2_ = maxcov return cova2_ # Non-zero distance, loop over all the structures cova2_ = 0.0 for js in range(0, nst): # Compute the appropriate structural distance dx1 = dx * rotmat[0, js] + dy * rotmat[1, js] dy1 = (dx * rotmat[2, js] + dy * rotmat[3, js]) / anis[js] h = math.sqrt(max((dx1 * dx1 + dy1 * dy1), 0.0)) if it[js] == 1: # Spherical model hr = h / aa[js] if hr < 1.0: (cova2)_ = cova2_ + cc[js] * (1.0 - hr * (1.5 - 0.5 * hr * hr)) elif it[js] == 2: # Exponential model cova2_ = cova2_ + cc[js] * np.exp(-3.0 * h / aa[js]) elif it[js] == 3: # Gaussian model hh = -3.0 * (h * h) / (aa[js] * aa[js]) cova2_ = cova2_ + cc[js] * np.exp(hh) elif it[js] == 4: # Power model cov1 = pmx - cc[js] * (h ** aa[js]) cova2_ = cova2_ + cov1 return cova2_ def sqdist(x1,y1,z1,x2,y2,z2,ind,rotmat): # Compute component distance vectors and the squared distance: dx = x1 - x2 dy = y1 - y2 dz = 0.0 sqdist = 0.0 for i in range(0,2): cont = rotmat[ind,i,1] * dx + rotmat[ind,i,2] * dy sqdist = sqdist + cont * cont return sqdist def sqdist2(x1,y1,x2,y2,ist,rotmat,anis): """Calculate the 2D square distance based on geometric ani :param x1: x coordinate of first point :param y1: y coordinate of first point :param x2: x coordinate of second point :param y2: y coordinate of second point :param ist: structure index :param rotmat: 2d rotation matrix :param anis: 2D anisotropy ratio :return: TODO """ # Compute component distance vectors and the squared distance: dx = x1 - x2 dy = y1 - y2 dx1 = (dx*rotmat[0,ist] + dy*rotmat[1,ist]) dy1 = (dx*rotmat[2,ist] + dy*rotmat[3,ist])/anis[ist] sqdist_ = (dx1*dx1+dy1*dy1) return sqdist_ def setrot(ang1,ang2,sang1,anis1,anis2,sanis1,nst,MAXROT): """GSLIB's SETROT subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ DEG2RAD = 3.141592654/180.0; EPSLON=1.e-20 rotmat = np.zeros((MAXROT+1,3,3)) if ang1 >= 0.0 and ang1 < 270.0: alpha = (90.0 - ang1) * DEG2RAD else: alpha = (450.0 - ang1) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac1 = 1.0 / (max(anis1,EPSLON)) rotmat[0,1,1] = cosa rotmat[0,1,2] = sina rotmat[0,2,1] = afac1*(-sina) rotmat[0,2,2] = afac1*(cosa) # 2nd structure if present if nst > 1: if ang2 >= 0.0 and ang2 < 270.0: alpha = (90.0 - ang2) * DEG2RAD else: alpha = (450.0 - ang2) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac2 = 1.0 / (max(anis2,EPSLON)) rotmat[1,1,1] = cosa rotmat[1,1,2] = sina rotmat[1,2,1] = afac1*(-sina) rotmat[1,2,2] = afac1*(cosa) # search rotation if sang1 >= 0.0 and sang1 < 270.0: alpha = (90.0 - sang1) * DEG2RAD else: alpha = (450.0 - sang1) * DEG2RAD # Get the required sines and cosines: sina = math.sin(alpha) cosa = math.cos(alpha) # Construct the rotation matrix in the required memory: afac1 = 1.0 / (max(sanis1,EPSLON)) rotmat[MAXROT,1,1] = cosa rotmat[MAXROT,1,2] = sina rotmat[MAXROT,2,1] = afac1*(-sina) rotmat[MAXROT,2,2] = afac1*(cosa) # Return to calling program: return rotmat def ksol_numpy(neq, a, r): """Find solution of a system of linear equations. :param neq: number of equations :param a: upper triangular left hand side matrix :param r: right hand side matrix :return: solution array, same dimension as `r` """ a = a[0: neq * neq] # trim the array a = np.reshape(a, (neq, neq)) # reshape to 2D ainv = linalg.inv(a) # invert matrix r = r[0: neq] # trim the array s = np.matmul(ainv, r) # matrix multiplication return s def ctable(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MAXXYZ,xsiz,ysiz,isrot,nx,ny,nst,c0,cc,aa,it,ang,anis,global_rotmat,radsqd): """GSLIB's CTABLE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only, WARNING: only spiral search setup works currently. """ # Declare constants TINY = 1.0e-10 PMX = 9999.9 MAXROT=2 # Size of the look-up table: tmp = np.zeros(MAXXYZ) MAXORD = MAXXYZ if (nx*ny) < MAXCXY: MAXORD = MAXCXY order = np.zeros(MAXORD) nctx = int(min(((MAXCTX-1)/2),(nx-1))) ncty = int(min(((MAXCTY-1)/2),(ny-1))) # print('CTable check') # print('nctx ' + str(nctx) + ', ncty ' + str(ncty)) ixnode = np.zeros(MAXXYZ) iynode = np.zeros(MAXXYZ) covtab = np.zeros((MAXCTX,MAXCTY)) # Initialize the covariance subroutine and cbb at the same time: rotmat, maxcov = setup_rotmat2(c0,nst,it,cc,ang) cbb = cova2(0.0,0.0,0.0,0.0,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) # Now, set up the table and keep track of the node offsets that are # within the search radius: nlooku = -1 # adjusted for 0 origin for i in range(-nctx,nctx+1): # cover entire range xx = i * xsiz ic = nctx + i for j in range(-ncty,ncty+1): # cover entire range yy = j * ysiz jc = ncty + j covtab[ic,jc] = cova2(0.0,0.0,xx,yy,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) # print('cov table offset'); print(xx,yy); print(covtab[ic,jc]) hsqd = sqdist(0.0,0.0,0.0,xx,yy,0.0,MAXROT,global_rotmat) if hsqd <= radsqd: nlooku = nlooku + 1 # We want to search by closest variogram distance (and use the # anisotropic Euclidean distance to break ties: tmp[nlooku] = - (covtab[ic,jc] - TINY*hsqd) order[nlooku] = (jc)*MAXCTX+ic # print('populated presort'); print(tmp,order) # Finished setting up the look-up table, now order the nodes such # that the closest ones, according to variogram distance, are searched # first. Note: the "loc" array is used because I didn't want to make # special allowance for 2 byte integers in the sorting subroutine: nlooku = nlooku + 1 # print('nlooku' + str(nlooku)); print('MAXCTX' + str(MAXCTX)) tmp, order = dsortem(0,nlooku,tmp,2,b=order) # print('populated postsort'); print(tmp,order) for il in range(0,nlooku): loc = int(order[il]) iy = int((loc-0)/MAXCTX) ix = loc - (iy-0)*MAXCTX iynode[il] = int(iy) ixnode[il] = int(ix) # print('populated ix, iy node list'); print(ixnode, iynode) return covtab,tmp,order,ixnode,iynode,nlooku,nctx,ncty def srchnd(ix,iy,nx,ny,xmn,ymn,xsiz,ysiz,sim,noct,nodmax,ixnode,iynode,nlooku,nctx,ncty,UNEST): """GSLIB's SRCHND subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ # Consider all the nearby nodes until enough have been found: ncnode = 0; icnode = np.zeros(nodmax,dtype=int); icnode.fill(-1) cnodev = np.zeros(nodmax);cnodex = np.zeros(nodmax); cnodey = np.zeros(nodmax); # print('Node search at '); print(ix,iy) # print('nlooku'); print(nlooku) if noct > 0: ninoct = np.zeros(8) for il in range(0,nlooku): if ncnode == nodmax: return ncnode, icnode, cnodev, cnodex, cnodey i = ix + (int(ixnode[il])-nctx) j = iy + (int(iynode[il])-ncty) # print('i,j'); print(i,j) if i < 0 or j < 0: continue if i >= nx or j >= ny: continue ind = i + (j)*nx if sim[ind] > UNEST: icnode[ncnode] = il cnodex[ncnode] = xmn + (i)*xsiz # adjust for 0 origin cnodey[ncnode] = ymn + (j)*ysiz cnodev[ncnode] = sim[ind] # print('srchnd found at index - ' +str(ind) + ' at x and y ' + str(cnodex[ncnode]) + ',' + str(cnodey[ncnode])) # print(' ix = ' + str(i) + ' and iy = ' + str(j)) # print(' value = ' + str(sim[ind])) ncnode = ncnode + 1 # moved to account for origin 0 return ncnode, icnode, cnodev, cnodex, cnodey def beyond(ivtype,nccut,ccut,ccdf,ncut,cut,cdf,zmin,zmax,ltail,ltpar,middle,mpar,utail,utpar,zval,cdfval): """GSLIB's BEYOND subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ EPSLON = 1.0e-20; UNEST=-1.0 # Check for both "zval" and "cdfval" defined or undefined: ierr = 1; if zval > UNEST and cdfva > UNEST: return -1 if zval <= UNEST and cdfval <= UNEST: return - 1 # Handle the case of a categorical variable: if ivtype == 0: cum = 0 for i in range(0,nccut): cum = cum + ccdf[i] if cdfval <= cum: zval = ccut[i] return zval return zval # Figure out what part of distribution: ipart = 0 - lower tail # ipart = 1 - middle # ipart = 2 - upper tail ierr = 0 ipart = 1 if zva > UNEST: if zval <= ccut[0]: ipart = 0 if zval >= ccut[nccut-1]: ipart = 2 else: if cdfval <= ccdf[0]: ipart = 0 if cdfval >= ccdf[nccut-1]: ipart = 2 # ARE WE IN THE LOWER TAIL? if ipart == 0: if ltail ==1: # Straight Linear Interpolation: powr = 1.0 if zval > UNEST: cdfval = powint(zmin,ccut[0],0.0,ccdf[0],zval,powr) else: zval = powint(0.0,ccdf[0],zmin,ccut[0],cdfval,powr) elif ltail == 2: # Power Model interpolation to lower limit "zmin"? if zval > UNEST: cdfval = powint(zmin,ccut[0],0.0,ccdf[0],zval,ltpar) else: powr = 1.0 / ltpar zval = powint(0.0,ccdf[0],zmin,ccut[0],cdfval,powr) # Linear interpolation between the rescaled global cdf? elif ltail == 3: if zval > UNEST: # Computing the cdf value. Locate the point and the class bound: idat = locate(cut,1,ncut,zval) iupp = locate(cut,ncut,1,ncut,ccut[0]) # Straight linear interpolation if no data; otherwise, linear: if idat <= -1 or idat >= ncut -1 or iupp <= -1 or iupp >= ncut-1: # modfity for 0 index cdfval = powint(zmin,cut[0],0.0,cdf[0],zval,1.) else: temp = powint(cut[idat],cut[idat+1],cdf[idat],cdf[idat+1],zval,1.) cdfval = temp*ccdf[0]/cdf[iupp] else: # Computing Z value: Are there any data out in the tail? iupp = locate(cut,ncut,1,ncut,ccut[0]) # Straight linear interpolation if no data; otherwise, local linear # interpolation: if iupp <= 0 or iupp >= ncut: zval = powint(0.0,cdf[0],zmin,cut[0],cdfval,1.) else: temp = cdfval*cdf[iupp]/ccdf[1] idat = locate(cdf,ncut,1,ncut,temp) if idat <= -1 or idat >= ncut-1: # adjusted for 0 origin zval = powint(0.0,cdf[0],zmin,cut[0],cdfval,1.) else: zval = powint(cdf[idat],cdf[idat+1],cut[dat],cut[idat+1],temp,1.) else: # Error situation - unacceptable option: ierr = 2 return -1 # FINISHED THE LOWER TAIL, ARE WE IN THE MIDDLE? if ipart == 1: # Establish the lower and upper limits: if zval > UNEST: cclow = locate(ccut,1,nccut,zval) else: cclow = locate(ccdf,1,nccut,cdfval) cchigh = cclow + 1 if middle == 1: # Straight Linear Interpolation: powr = 1.0 if zval > UNEST: cdfval = powint(ccut[cclow],ccut[cchigh],ccdf[cclow],ccdf[cchigh],zval,powr) else: zval = powint(ccdf[cclow],ccdf[cchigh],ccut[cclow],ccut[cchigh],cdfval,powr) # Power interpolation between class bounds? elif middle == 2: if zval > UNEST: cdfval = powint(ccut[cclow],ccut[cchigh],ccdf[cclow],ccdf[cchigh],zval,mpar) else: powr = 1.0 / mpar zval = powint(ccdf[cclow],ccdf[cchigh],ccut[cclow],ccut[cchigh],cdfval,powr) # Linear interpolation between the rescaled global cdf? elif middle == 3: ilow = locate(cut,ncut,1,ncut,ccut[cclow]) iupp = locate(cut,ncut,1,ncut,ccut[cchigh]) if cut[ilow] < ccut[cclow]: ilow = ilow + 1 if cut[iupp] > ccut[cchigh]: iupp = iupp - 1 if zval > UNEST: idat = locate(cut,1,ncut,zval) # Straight linear interpolation if no data; otherwise, local linear # interpolation: if idat <= -1 or idat >= ncut-1 or ilow <= -1 or ilow >= ncut-1 or iupp <= -1 or iupp >= ncut-1 or iupp <= ilow: cdfval=powint(ccut[cclow],ccut[cchigh],ccdf[cclow],ccdf[cchigh],zval,1.) else: temp = powint(cut[idat],cut[idat+1],cdf[idat],cdf[idat+1],zval,1.) cdfval=powint(cdf[ilow],cdf[iupp],ccdf[cclow],ccdf[cchigh],temp,1.) else: # Straight linear interpolation if no data; otherwise, local linear # interpolation: if ilow <= -1 or ilow >= ncut-1 or iup <= -1 or iupp >= ncut-1 or iupp < ilow: zval=powint(ccdf[cclow],ccdf[cchigh],ccut[cclow],ccut[cchigh],cdfval,1.) else: temp=powint(ccdf[cclow],ccdf[cchigh],cdf[ilow],cdf[iupp],cdfval,1.) idat = locate(cdf,1,ncut,temp) if cut[idat] < ccut[cclow]: idat=idat+1 if idat <= -1 or idat >= ncut-1 or cut[idat+1] > ccut[cchigh]: zval = powint(ccdf[cclow],ccdf[cchigh],ccut[cclow],ccut[cchigh],cdfval,1.) else: zval = powint(cdf[idat],cdf[idat+1],cut[idat],cut[idat+1],temp,1.) zval = powint(cdf[idat],cdf[idat+1],cut[idat],cut[idat+1],temp,1.) else: # Error situation - unacceptable option: ierr = 2 return -1 # FINISHED THE MIDDLE, ARE WE IN THE UPPER TAIL? if ipart == 2: if utail == 1: powr = 1.0 if zval > UNEST: cdfval = powint(ccut(nccut),zmax,ccdf(nccut),1.0,zval,powr) else: zval = powint(ccdf(nccut),1.0,ccut(nccut),zmax,cdfval,powr) elif utail == 2: # Power interpolation to upper limit "utpar"? if zval > UNEST: cdfval = powint(ccut(nccut),zmax,ccdf(nccut),1.0,zval,utpar) else: powr = 1.0 / utpar zval = powint(ccdf(nccut),1.0,ccut(nccut),zmax,cdfval,powr) # Linear interpolation between the rescaled global cdf? elif utail == 3: if zval > UNEST: # Approximately Locate the point and the class bound: idat = locate(cut,1,ncut,zval,idat) ilow = locate(cut,1,ncut,ccut(nccut),ilow) if cut[idat] < zval: idat = idat + 1 if cut[ilow] < ccut[nccut-1]: ilow = ilow + 1 # Straight linear interpolation if no data; otherwise, local linear # interpolation: if idat < -1 or idat >= ncut-1 or ilow <= -1 or ilow >= ncut-1: cdfval = powint(ccut(nccut),zmax,ccdf(nccut),1.0,zval,1.) else: temp = powint(cut(idat),cut(idat+1),cdf(idat),cdf(idat+1),zval,1.) cdfval = powint(cdf(ilow),1.0,ccdf(nccut),1.0,temp,1.) else: # Computing Z value: Are there any data out in the tail? ilow = locate(cut,ncut,1,ncut,ccut(nccut),ilow) if cut[ilow] < ccut[nccut-1]: ilow = ilow + 1 # Straight linear interpolation if no data; otherwise, local linear # interpolation: if ilow <= -1 or ilow >= ncut-1: zval = powint(ccdf(nccut),1.0,ccut(nccut),zmax,cdfval,1.) else: temp = powint(ccdf(nccut),1.0,cdf(ilow),1.0,cdfval,1.) idat = locate(cdf,ncut,1,ncut,temp) if cut[idat] < ccut[nccut-1]: idat=idat+1 if idat >= ncut-1: zval = powint(ccdf[nccut-1],1.0,ccut[nccut-1],zmax,cdfval,1.) else: zval = powint(cdf[idat],cdf[idat+1],cut[idat],cut[idat+1],temp,1.) # Fit a Hyperbolic Distribution? elif utail == 4: # Figure out "lambda" and required info: lambd = math.pow(ccut[nccut],utpar)*(1.0-ccdf[nccut-1]) if zval > UNEST: cdfval = 1.0 - (lambd/(math.pow(zval,utpar))) else: zval = (lambd/math.pow((1.0-cdfval),(1.0/utpar))) else: # Error situation - unacceptable option: ierr = 2 return -1 if zval < zmin: zval = zmin if zval > zmax: zval = zmax # All finished - return: return zval def krige(ix,iy,nx,ny,xx,yy,lktype,x,y,vr,sec,colocorr,lvm,close,covtab,nctx,ncty,icnode,ixnode,iynode,cnodev,cnodex,cnodey,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov,MAXCTX,MAXCTY,MAXKR1,MAXKR2): """GSLIB's KRIGE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. """ EPSLON = 1.0e-20 cur_index = ix + (iy)*nx # print('krige at grid '); print(ix,iy) # print('krige at node '); print(xx,yy) # print('grid index = '); print(cur_index) # print('Check ixnode '); print(ixnode); print(iynode) nclose = len(close) ncnode = (icnode >= 0).sum() # print('In kriging, maxcov = ' + str(maxcov)) # print('kriging') # print('nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('MAXKR1'); print(MAXKR1) vra = np.zeros(MAXKR1); vrea = np.zeros(MAXKR1) r = np.zeros(MAXKR1); rr = np.zeros(MAXKR1); s = np.zeros(MAXKR1); a = np.zeros(MAXKR2) cbb = cova2(0,0,0,0,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # print(r.shape) # Local mean if lktype == 2: gmean = lvm[cur_index] else: gmean = 0.0 # Size of the kriging system: first = False na = nclose + ncnode # print('lktype' + str(lktype)) if lktype == 0: neq = na if lktype == 1: # print('ordinary kriging') neq = na + 1 if lktype == 2: neq = na if lktype == 3: neq = na + 2 if lktype == 4: neq = na + 1 # print('prior matrix build neq'); print(neq) # print('na'); print(na) # Set up kriging matrices: iin=-1 # acocunting for 0 origin # print('krige na' + str(na)) for j in range(0,na): # Sort out the actual location of point "j" if j < nclose: # adjusted for 0 index origin index = int(close[j]) x1 = x[index] y1 = y[index] vra[j] = vr[index] # print('data: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) if sec.shape[0] > 1: vrea[j]= sec[index]; else: vrea[j] = 0.0 # added this - no effect if lktype == 2: vra[j] = vra[j] - vrea[j] else: # It is a previously simulated node (keep index for table look-up): # print(j) index = j-(nclose) # adjust for 0 index x1 = cnodex[index] y1 = cnodey[index] vra[j] = cnodev[index] ind = icnode[index] # print('prev node: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) ix1 = ix + (int(ixnode[ind])-nctx-1) iy1 = iy + (int(iynode[ind])-ncty-1) # print('ix1, iy1 = '); print(ix1,iy1) index = ix1 + (iy1-1)*nx if lktype == 2: vrea[j]= lvm[index] vra[j] = vra[j] - vrea[j] for i in range(0,na): # we need the full matrix # print('kriging indice populated' + str(j) + ',' + str(i)) # Sort out the actual location of point "i" if i < nclose: index = int(close[i]) # adjust for 0 index x2 = x[index] y2 = y[index] else: # It is a previously simulated node (keep index for table look-up): #print('i = ' + str(i) + ',nclose = ' + str(nclose) + ', na = ' + str(na)) index = i-(nclose) x2 = cnodex[index] y2 = cnodey[index] ind = icnode[index] # print('previous node index' + str(ind)) ix2 = ix + (int(ixnode[ind])-nctx-1) iy2 = iy + (int(iynode[ind])-ncty-1) # Now, get the covariance value: iin = iin + 1 # print('kriging data location = '); print(x2,y2) # Decide whether or not to use the covariance look-up table: if j <= nclose or i <= nclose: cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) a[iin] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix1 - ix2) # jj = ncty + 1 + (iy1 - iy2) cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] # print(x1,y1,x2,y2,cov) a[iin] = cov # Get the RHS value (possibly with covariance look-up table): if j <= nclose: # print(cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for data ') # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix - ix1) # jj = ncty + 1 + (iy - iy1) # print('RHS ctable coord' + str(ii) + ',' + str(jj)) # print('ix,iy ='); print(ix,iy) # print('ix1,iy1'); print(ix1,iy1) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # adjusted for origin 0 # print('Not using covariance table') # cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for node ' + str(j)) # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov # print('kriging, writing RHS '+ str(j) + ',' + str(cov) + 'loc_est' + str(xx) + ',' + str(yy) + 'data' + str(x1) + ',' + str(y1)) rr[j] = r[j] if lktype == 1: # we need the full array iin = iin + 1 a[iin] = 1.0 if lktype == 4: # we need the full array iin = iin + 1 a[iin] = colocorr*r[j] # Addition of OK constraint: if lktype == 1 or lktype == 3: for i in range(0,na): iin = iin + 1 a[iin] = 1.0 iin = iin + 1 a[iin] = 0.0 r[na] = 1.0 rr[na] = 1.0 # Addition of the External Drift Constraint: if lktype == 3: edmin = 999999. edmax = -999999. for i in range(0,na): iin = iin + 1 a[iin] = vrea(i) if a[iin] <edmin: edmin = a[iin] if a[iin] > edmax: edmax = a[iin] iin = iin + 1 a[iin] = 0.0 iin = iin + 1 a[iin] = 0.0 ind = ix + (iy-1)*nx r[na+1] = lvm[ind] rr[na+1] = r[na+1] if (edmax-edmin) < EPSLON: neq = neq - 1 # Addition of Collocated Cosimulation Constraint: if lktype == 4: colc = True sfmin = 1.0e21 sfmax = -1.0e21 for i in range(0,na): iin = iin + 1 a[iin] = colocorr*r[i] if a[iin] < sfmin: sfmin = a[iin] if a[iin] > sfmax: sfmax = a[iin] iin = iin + 1 a[iin] = 1.0 ii = na r[ii] = colocorr rr[ii] = r[ii] # if (sfmax-sfmin) < EPSLON: # neq = neq - 1 # colc = False # Solve the Kriging System: # print('neq = ' + str(neq)); # print('a'); print(a) # print('r'); print(r) # print('data'); print(vra) if neq == 1 and lktype != 3: # print('neq = 1 '); print(a,r) s[0] = r[0] / a[0] else: # print('neq prior ksol' + str(neq)) s = ksol_numpy(neq,a,r) # print('neq post ksol' + str(neq)) # if s.shape[0]< neq: # print('s shape'); print(s.shape) # print('a'); print(a) # print('r'); print(r) ising = 0 # need to figure this out # print('s'); print(s) # Compute the estimate and kriging variance. Recall that kriging type # 0 = Simple Kriging: # 1 = Ordinary Kriging: # 2 = Locally Varying Mean: # 3 = External Drift: # 4 = Collocated Cosimulation: # print('kriging weights'); print(s) cmean = 0.0 # print('cbb = ' + str(cbb)) cstdev = cbb sumwts = 0.0 for i in range(0,na): cmean = cmean + s[i]*vra[i] cstdev = cstdev - s[i]*rr[i] sumwts = sumwts + s[i] if lktype == 1: cstdev = cstdev - s[na] # print('Ordinary Weight' + str(s[na])) if lktype == 2: cmean = cmean + gmean if lktype == 4 and colc == True: # we may drop colocated if low covariance dispersion ind = ix + (iy-1)*nx # print(ind) # print('neq'); print(neq) # print('s'); print(s.shape) # print('lvm'); print(lvm.shape) # print('colc wt = ' + str(s[na]) + ' for ' + str(lvm[cur_index]) + ' at index ' + str(cur_index)) cmean = cmean + s[na]*lvm[cur_index] cstdev = cstdev - s[na] *rr[na] # Error message if negative variance: if cstdev < 0.0: # print('ERROR: Negative Variance: ' + str(cstdev)) cstdev = 0.0 cstdev = math.sqrt(max(cstdev,0.0)) # print('kriging estimate and variance' + str(cmean) + ', ' + str(cstdev)) return cmean, cstdev def ikrige(ix,iy,nx,ny,xx,yy,lktype,x,y,vr,sec,colocorr,gmean,lvm,close,covtab,nctx,ncty,icnode,ixnode,iynode,cnodev,cnodex,cnodey,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov,MAXCTX,MAXCTY,MAXKR1,MAXKR2): """GSLIB's KRIGE subroutine (Deutsch and Journel, 1998) converted from the original Fortran to Python and modified for indicator kriging by Michael Pyrcz, the University of Texas at Austin (March, 2019). Note this was simplified to 2D only. WARNING: tested only for ktype 0,1,2 (2 is local proportion model / local mean provided, not residual approach) """ EPSLON = 1.0e-20 cur_index = ix + (iy)*nx # print('krige at grid '); print(ix,iy) # print('krige at node '); print(xx,yy) # print('grid index = '); print(cur_index) # print('Check ixnode '); print(ixnode); print(iynode) nclose = len(close) ncnode = (icnode >= 0).sum() # print('In kriging, maxcov = ' + str(maxcov)) # print('kriging') # print('nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('MAXKR1'); print(MAXKR1) vra = np.zeros(MAXKR1); vrea = np.zeros(MAXKR1) r = np.zeros(MAXKR1); rr = np.zeros(MAXKR1); s = np.zeros(MAXKR1); a = np.zeros(MAXKR2) cbb = cova2(0,0,0,0,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # print(r.shape) # Local mean # just pass the local probability as gmean # if lktype == 2: # gmean = lvm[cur_index] # keep input gmean otherwise # Size of the kriging system: first = False na = nclose + ncnode # print('lktype' + str(lktype)) if lktype == 0: neq = na if lktype == 1: # print('ordinary kriging') neq = na + 1 if lktype == 2: neq = na if lktype == 3: neq = na + 2 if lktype == 4: neq = na + 1 # print('prior matrix build neq'); print(neq) # print('na'); print(na) # print('kriging data close'); print(close) # print('kriging node close'); print(icnode) # Set up kriging matrices: iin=-1 # acocunting for 0 origin # print('krige na' + str(na)) for j in range(0,na): # Sort out the actual location of point "j" if j < nclose: # adjusted for 0 index origin index = int(close[j]) x1 = x[index] y1 = y[index] vra[j] = vr[index] # print('data: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) # if lvm.shape[0] > 1: # vrea[j]= sec[index]; # else: vrea[j] = 0.0 # added this - no effect # if lktype == 2: vra[j] = vra[j] - vrea[j] # just using local variable mean not full residual approach else: # It is a previously simulated node (keep index for table look-up): # print(j) index = j-(nclose) # adjust for 0 index x1 = cnodex[index] y1 = cnodey[index] vra[j] = cnodev[index] ind = icnode[index] # print('prev node: index = ' + str(index) + ', x,y ' + str(x1) + ',' + str(y1) + ', value = ' + str(vra[j])) ix1 = ix + (int(ixnode[ind])-nctx-1) iy1 = iy + (int(iynode[ind])-ncty-1) # print('ix1, iy1 = '); print(ix1,iy1) index = ix1 + (iy1-1)*nx # if lktype == 2: # vrea[j]= lvm[index] # vra[j] = vra[j] - vrea[j] for i in range(0,na): # we need the full matrix # print('kriging indice populated' + str(j) + ',' + str(i)) # Sort out the actual location of point "i" if i < nclose: index = int(close[i]) # adjust for 0 index x2 = x[index] y2 = y[index] else: # It is a previously simulated node (keep index for table look-up): #print('i = ' + str(i) + ',nclose = ' + str(nclose) + ', na = ' + str(na)) index = i-(nclose) x2 = cnodex[index] y2 = cnodey[index] ind = icnode[index] # print('previous node index' + str(ind)) ix2 = ix + (int(ixnode[ind])-nctx-1) iy2 = iy + (int(iynode[ind])-ncty-1) # Now, get the covariance value: iin = iin + 1 # print('kriging data location = '); print(x2,y2) # Decide whether or not to use the covariance look-up table: if j <= nclose or i <= nclose: # print('x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov') # print(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # print('cov'); print(cov) a[iin] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix1 - ix2) # jj = ncty + 1 + (iy1 - iy2) cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # cov = cova2(x1,y1,x2,y2,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] # print(x1,y1,x2,y2,cov) a[iin] = cov # Get the RHS value (possibly with covariance look-up table): if j <= nclose: # print(cc,aa,it,ang,anis,rotmat,maxcov) cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for data ') # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov else: # Try to use the covariance look-up (if the distance is in range): # ii = nctx + 1 + (ix - ix1) # jj = ncty + 1 + (iy - iy1) # print('RHS ctable coord' + str(ii) + ',' + str(jj)) # print('ix,iy ='); print(ix,iy) # print('ix1,iy1'); print(ix1,iy1) # if ii < 0 or ii >= MAXCTX or jj < 0 or jj >= MAXCTY: # adjusted for origin 0 # print('Not using covariance table') # cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # else: # cov = covtab[ii,jj] cov = cova2(xx,yy,x1,y1,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) # if cov >= 1.0: # print('cov of 1.0 RHS for node ' + str(j)) # print('ix,iy ='); print(xx,xx) # print('ix1,iy1'); print(x1,y1) r[j] = cov # print('kriging, writing RHS '+ str(j) + ',' + str(cov) + 'loc_est' + str(xx) + ',' + str(yy) + 'data' + str(x1) + ',' + str(y1)) rr[j] = r[j] if lktype == 1: # we need the full array iin = iin + 1 a[iin] = 1.0 if lktype == 4: # we need the full array iin = iin + 1 a[iin] = colocorr*r[j] # Addition of OK constraint: if lktype == 1 or lktype == 3: for i in range(0,na): iin = iin + 1 a[iin] = 1.0 iin = iin + 1 a[iin] = 0.0 r[na] = 1.0 rr[na] = 1.0 # Addition of the External Drift Constraint: if lktype == 3: edmin = 999999. edmax = -999999. for i in range(0,na): iin = iin + 1 a[iin] = vrea(i) if a[iin] <edmin: edmin = a[iin] if a[iin] > edmax: edmax = a[iin] iin = iin + 1 a[iin] = 0.0 iin = iin + 1 a[iin] = 0.0 ind = ix + (iy-1)*nx r[na+1] = lvm[ind] rr[na+1] = r[na+1] if (edmax-edmin) < EPSLON: neq = neq - 1 # Addition of Collocated Cosimulation Constraint: if lktype == 4: colc = True sfmin = 1.0e21 sfmax = -1.0e21 for i in range(0,na): iin = iin + 1 a[iin] = colocorr*r[i] if a[iin] < sfmin: sfmin = a[iin] if a[iin] > sfmax: sfmax = a[iin] iin = iin + 1 a[iin] = 1.0 ii = na r[ii] = colocorr rr[ii] = r[ii] # if (sfmax-sfmin) < EPSLON: # neq = neq - 1 # colc = False # Solve the Kriging System: # print('Kriging equations neq = ' + str(neq)); # print('a'); print(a) # print('r'); print(r) # print('data'); print(vra) if neq == 1 and lktype != 3: # print('neq = 1 '); print(a,r) s[0] = r[0] / a[0] else: # print('neq prior ksol' + str(neq)) s = ksol_numpy(neq,a,r) # print('neq post ksol' + str(neq)) # if s.shape[0]< neq: # print('s shape'); print(s.shape) # print('a'); print(a) # print('r'); print(r) ising = 0 # need to figure this out # print('s'); print(s) # Compute the estimate and kriging variance. Recall that kriging type # 0 = Simple Kriging: # 1 = Ordinary Kriging: # 2 = Locally Varying Mean: # 3 = External Drift: # 4 = Collocated Cosimulation: # print('kriging weights'); print(s) cmean = 0.0 # print('cbb = ' + str(cbb)) cstdev = cbb sumwts = 0.0 for i in range(0,na): cmean = cmean + s[i]*vra[i] cstdev = cstdev - s[i]*rr[i] sumwts = sumwts + s[i] if lktype == 1: cstdev = cstdev - s[na] # print('Ordinary Weight' + str(s[na])) # if lktype == 2: cmean = cmean + gmean if lktype == 4 and colc == True: # we may drop colocated if low covariance dispersion ind = ix + (iy-1)*nx # print(ind) # print('neq'); print(neq) # print('s'); print(s.shape) # print('lvm'); print(lvm.shape) # print('colc wt = ' + str(s[na]) + ' for ' + str(lvm[cur_index]) + ' at index ' + str(cur_index)) cmean = cmean + s[na]*lvm[cur_index] cstdev = cstdev - s[na] *rr[na] if lktype == 0 or lktype == 2: cmean = cmean + (1.0-sumwts)*gmean # print('cmean'); print(cmean) # Error message if negative variance: if cstdev < 0.0: # print('ERROR: Negative Variance: ' + str(cstdev)) cstdev = 0.0 cstdev = math.sqrt(max(cstdev,0.0)) # print('kriging estimate and variance' + str(cmean) + ', ' + str(cstdev)) return cmean, cstdev def getindex(nc,cmn,csiz,loc): ic = min(int((loc - cmn) / csiz), nc - 1) return ic def correct_trend(trend): """Correct a indicator based trend model for closure (probabilities sum to 1.0). :param trend: ndarray [ny,nx,ncut] :return: nadarray [ny,nx,ncut] corrected for closure """ ny = trend.shape[0] nx = trend.shape[1] ncut = trend.shape[2] for iy in range(0,ny): for ix in range(0,nx): sum = 0.0 for ic in range(0,ncut): sum = sum + trend[iy,ix,ic] if sum > 0.0: for icut in range(0,ncut): trend[iy,ix,ic] = trend[iy,ix,ic] / sum return trend def ordrel(ivtype,ncut,ccdf): """Correct a indicator based CDF for order relations. :param ivtype: variable type, 0 - categorical and 1 - continuous :param ncut: number of categories or thresholds :param ccdf: input cumulative distribution function :return: cumulative distribution function correct for order relations """ # print('input ordering relations'); print(ccdf) ccdfo = np.zeros(ncut) ccdf1 = np.zeros(ncut) ccdf2 = np.zeros(ncut) # do we need MAXCUT = 100 for these 2? # Make sure conditional cdf is within [0,1]: for i in range(0,ncut): if ccdf[i] < 0.0: ccdf1[i] = 0.0 ccdf2[i] = 0.0 elif ccdf[i] > 1.0: ccdf1[i] = 1.0 ccdf2[i] = 1.0 else: ccdf1[i] = ccdf[i] ccdf2[i] = ccdf[i] # print('ordering relations'); print(ccdf1,ccdf2) # Correct sequentially up, then down, and then average: if ivtype == 0: sumcdf = 0.0 for i in range(0,ncut): sumcdf = sumcdf + ccdf1[i] if sumcdf <= 0.0: sumcdf = 1.0 for i in range(0,ncut): ccdfo[i] = ccdf1[i] / sumcdf else: for i in range(1,ncut): if ccdf1[i] < ccdf1[i-1]: ccdf1[i] = ccdf1[i-1] for i in range(ncut-2,0,-1): if ccdf2[i] > ccdf2[i+1]: ccdf2[i] = ccdf2[i+1] for i in range(0,ncut): ccdfo[i] = 0.5*(ccdf1[i]+ccdf2[i]) # Return with corrected CDF: return ccdfo def declus(df, xcol, ycol, vcol, iminmax, noff, ncell, cmin, cmax): """GSLIB's DECLUS program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Note this was simplified to 2D only. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param iminmax: 1 / True: for use cell size with max decluster mean 0 / False: for declustered mean minimizing cell size :param noff: number of offsets :param ncell: number of cell sizes :param cmin: min cell size :param cmax: max cell size :return: TODO """ # Load data and set up arrays nd = len(df) x = df[xcol].values y = df[ycol].values v = df[vcol].values wt = np.zeros(nd) wtopt = np.ones(nd) index = np.zeros(nd, np.int32) xcs_mat = np.zeros(ncell + 2) # we use 1,...,n for this array vrcr_mat = np.zeros(ncell + 2) # we use 1,...,n for this array anisy = 1.0 # hard code the cells to 2D isotropic roff = float(noff) # Calculate extents xmin = np.min(x) xmax = np.max(x) ymin = np.min(y) ymax = np.max(y) # Calculate summary statistics vmean = np.mean(v) vstdev = np.std(v) vmin = np.min(v) vmax = np.max(v) xcs_mat[0] = 0.0 vrcr_mat[0] = vmean vrop = vmean # include the naive case print(f"There are {nd} data with:") print(f" mean of {vmean} ") print(f" min and max {vmin} and {vmax}") print(f" standard dev {vstdev} ") # Define a "lower" origin to use for the cell sizes xo1 = xmin - 0.01 yo1 = ymin - 0.01 # Define the increment for the cell size xinc = (cmax - cmin) / ncell yinc = xinc # Loop over "ncell+1" cell sizes in the grid network ncellx = int((xmax - (xo1 - cmin)) / cmin) + 1 ncelly = int((ymax - (yo1 - cmin * anisy)) / cmin) + 1 ncellt = ncellx * ncelly cellwt = np.zeros(ncellt) xcs = cmin - xinc ycs = (cmin * anisy) - yinc # Main loop over cell sizes # 0 index is the 0.0 cell, note n + 1 in Fortran for lp in range(1, ncell + 2): xcs = xcs + xinc ycs = ycs + yinc # Initialize the weights to zero wt.fill(0.0) # Determine the maximum number of grid cells in the network ncellx = int((xmax - (xo1 - xcs)) / xcs) + 1 ncelly = int((ymax - (yo1 - ycs)) / ycs) + 1 ncellt = float(ncellx * ncelly) # TODO: not used # Loop over all the origin offsets selected xfac = min((xcs / roff), (0.5 * (xmax - xmin))) yfac = min((ycs / roff), (0.5 * (ymax - ymin))) for kp in range(1, noff + 1): xo = xo1 - (float(kp) - 1.0) * xfac yo = yo1 - (float(kp) - 1.0) * yfac # Initialize the cumulative weight indicators cellwt.fill(0.0) # Determine which cell each datum is in for i in range(0, nd): icellx = int((x[i] - xo) / xcs) + 1 icelly = int((y[i] - yo) / ycs) + 1 icell = icellx + (icelly - 1) * ncellx index[i] = icell cellwt[icell] = cellwt[icell] + 1.0 # The weight assigned to each datum is inversely proportional to the # number of data in the cell. We first need to get the sum of # weights so that we can normalize the weights to sum to one sumw = 0.0 for i in range(0, nd): ipoint = index[i] sumw = sumw + (1.0 / cellwt[ipoint]) sumw = 1.0 / sumw # Accumulate the array of weights (that now sum to one) for i in range(0, nd): ipoint = index[i] wt[i] = wt[i] + (1.0 / cellwt[ipoint]) * sumw # End loop over all offsets # Compute the weighted average for this cell size sumw = 0.0 sumwg = 0.0 for i in range(0, nd): sumw = sumw + wt[i] sumwg = sumwg + wt[i] * v[i] vrcr = sumwg / sumw vrcr_mat[lp] = vrcr xcs_mat[lp] = xcs # See if this weighting is optimal if iminmax and vrcr < vrop or not iminmax and vrcr > vrop or ncell == 1: best = xcs # TODO: not used vrop = vrcr wtopt = wt.copy() # deep copy # End main loop over all cell sizes # Get the optimal weights sumw = 0.0 for i in range(0, nd): sumw = sumw + wtopt[i] wtmin = np.min(wtopt) # TODO: not used wtmax = np.max(wtopt) # TODO: not used facto = float(nd) / sumw wtopt = wtopt * facto return wtopt, xcs_mat, vrcr_mat def gam(array, tmin, tmax, xsiz, ysiz, ixd, iyd, nlag, isill): """GSLIB's GAM program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param array: 2D gridded data / model :param tmin: property trimming limit :param tmax: property trimming limit :param xsiz: grid cell extents in x direction :param ysiz: grid cell extents in y direction :param ixd: lag offset in grid cells :param iyd: lag offset in grid cells :param nlag: number of lags to calculate :param isill: 1 for standardize sill :return: TODO """ if array.ndim == 2: ny, nx = array.shape elif array.ndim == 1: ny, nx = 1, len(array) nvarg = 1 # for multiple variograms repeat the program nxy = nx * ny # TODO: not used mxdlv = nlag # Allocate the needed memory lag = np.zeros(mxdlv) vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) ivtail = np.zeros(nvarg + 2) ivhead = np.zeros(nvarg + 2) ivtype = np.zeros(nvarg + 2) ivtail[0] = 0 ivhead[0] = 0 ivtype[0] = 0 # Summary statistics for the data after trimming inside = (array > tmin) & (array < tmax) avg = array[(array > tmin) & (array < tmax)].mean() # TODO: not used stdev = array[(array > tmin) & (array < tmax)].std() var = stdev ** 2.0 vrmin = array[(array > tmin) & (array < tmax)].min() # TODO: not used vrmax = array[(array > tmin) & (array < tmax)].max() # TODO: not used num = ((array > tmin) & (array < tmax)).sum() # TODO: not used # For the fixed seed point, loop through all directions for iy in range(0, ny): for ix in range(0, nx): if inside[iy, ix]: vrt = array[iy, ix] ixinc = ixd iyinc = iyd ix1 = ix iy1 = iy for il in range(0, nlag): ix1 = ix1 + ixinc if 0 <= ix1 < nx: iy1 = iy1 + iyinc if 1 <= iy1 < ny: if inside[iy1, ix1]: vrh = array[iy1, ix1] npp[il] = npp[il] + 1 tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) ** 2.0) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag): if npp[il] > 0: rnum = npp[il] lag[il] = np.sqrt((ixd * xsiz * il) ** 2 + (iyd * ysiz * il) ** 2) vario[il] = vario[il] / float(rnum) hm[il] = hm[il] / float(rnum) tm[il] = tm[il] / float(rnum) # Standardize by the sill if isill == 1: vario[il] = vario[il] / var # Semivariogram vario[il] = 0.5 * vario[il] return lag, vario, npp def gamv( df, xcol, ycol, vcol, tmin, tmax, xlag, xltol, nlag, azm, atol, bandwh, isill, ): """GSLIB's GAMV program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Note simplified for 2D, semivariogram only and one direction at a time. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param atol: azimuth tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :param isill: 1 for standardize sill :return: TODO """ # Load the data # Trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) # TODO: not used x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Summary statistics for the data after trimming avg = vr.mean() # TODO: not used stdev = vr.std() sills = stdev ** 2.0 ssq = sills # TODO: not used vrmin = vr.min() # TODO: not used vrmax = vr.max() # TODO: not used # Define the distance tolerance if it isn't already if xltol < 0.0: xltol = 0.5 * xlag # Loop over combinatorial of data pairs to calculate the variogram dis, vario, npp = variogram_loop( x, y, vr, xlag, xltol, nlag, azm, atol, bandwh ) # Standardize sill to one by dividing all variogram values by the variance for il in range(0, nlag + 2): if isill == 1: vario[il] = vario[il] / sills # Apply 1/2 factor to go from variogram to semivariogram vario[il] = 0.5 * vario[il] return dis, vario, npp @jit(nopython=True) def variogram_loop(x, y, vr, xlag, xltol, nlag, azm, atol, bandwh): """Calculate the variogram by looping over combinatorial of data pairs. :param x: x values :param y: y values :param vr: property values :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param atol: azimuth tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :return: TODO """ # Allocate the needed memory nvarg = 1 mxdlv = nlag + 2 # in gamv the npp etc. arrays go to nlag + 2 dis = np.zeros(mxdlv) lag = np.zeros(mxdlv) # TODO: not used vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) ivtail = np.zeros(nvarg + 2) ivhead = np.zeros(nvarg + 2) ivtype = np.ones(nvarg + 2) ivtail[0] = 0 ivhead[0] = 0 ivtype[0] = 0 EPSLON = 1.0e-20 nd = len(x) # The mathematical azimuth is measured counterclockwise from EW and # not clockwise from NS as the conventional azimuth is azmuth = (90.0 - azm) * math.pi / 180.0 uvxazm = math.cos(azmuth) uvyazm = math.sin(azmuth) if atol <= 0.0: csatol = math.cos(45.0 * math.pi / 180.0) else: csatol = math.cos(atol * math.pi / 180.0) # Initialize the arrays for each direction, variogram, and lag nsiz = nlag + 2 # TODO: not used dismxs = ((float(nlag) + 0.5 - EPSLON) * xlag) ** 2 # Main loop over all pairs for i in range(0, nd): for j in range(0, nd): # Definition of the lag corresponding to the current pair dx = x[j] - x[i] dy = y[j] - y[i] dxs = dx * dx dys = dy * dy hs = dxs + dys if hs <= dismxs: if hs < 0.0: hs = 0.0 h = np.sqrt(hs) # Determine which lag this is and skip if outside the defined # distance tolerance if h <= EPSLON: lagbeg = 0 lagend = 0 else: lagbeg = -1 lagend = -1 for ilag in range(1, nlag + 1): # reduced to -1 if ( (xlag * float(ilag - 1) - xltol) <= h <= (xlag * float(ilag - 1) + xltol) ): if lagbeg < 0: lagbeg = ilag lagend = ilag if lagend >= 0: # Definition of the direction corresponding to the current # pair. All directions are considered (overlapping of # direction tolerance cones is allowed) # Check for an acceptable azimuth angle dxy = np.sqrt(max((dxs + dys), 0.0)) if dxy < EPSLON: dcazm = 1.0 else: dcazm = (dx * uvxazm + dy * uvyazm) / dxy # Check the horizontal bandwidth criteria (maximum deviation # perpendicular to the specified direction azimuth) band = uvxazm * dy - uvyazm * dx # Apply all the previous checks at once to avoid a lot of # nested if statements if (abs(dcazm) >= csatol) and (abs(band) <= bandwh): # Check whether or not an omni-directional variogram is # being computed omni = False if atol >= 90.0: omni = True # For this variogram, sort out which is the tail and # the head value iv = 0 # hardcoded just one variogram it = ivtype[iv] # TODO: not used if dcazm >= 0.0: vrh = vr[i] vrt = vr[j] if omni: vrtpr = vr[i] vrhpr = vr[j] else: vrh = vr[j] vrt = vr[i] if omni: vrtpr = vr[j] vrhpr = vr[i] # Reject this pair on the basis of missing values # Data was trimmed at the beginning # The Semivariogram (all other types of measures are # removed for now) for il in range(lagbeg, lagend + 1): npp[il] = npp[il] + 1 dis[il] = dis[il] + h tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) * (vrh - vrt)) if omni: npp[il] = npp[il] + 1.0 dis[il] = dis[il] + h tm[il] = tm[il] + vrtpr hm[il] = hm[il] + vrhpr vario[il] = vario[il] + ( (vrhpr - vrtpr) * (vrhpr - vrtpr) ) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag + 2): i = il if npp[i] > 0: rnum = npp[i] dis[i] = dis[i] / rnum vario[i] = vario[i] / rnum hm[i] = hm[i] / rnum tm[i] = tm[i] / rnum return dis, vario, npp def varmapv(df,xcol,ycol,vcol,tmin,tmax,nxlag,nylag,dxlag,dylag,minnp,isill): """Calculate the variogram map from irregularly spaced data. :param df: DataFrame with the spatial data, xcol, ycol, vcol coordinates and property columns :param xcol: DataFrame column with x coordinate :param ycol: DataFrame column with y coordinate :param vcol: DataFrame column with value of interest :param tmin: lower trimming limit :param tmax: upper trimming limit :param nxlag: number of lags in the x direction :param nxlag: number of lags in the y direction :param dxlag: size of the lags in the x direction :param dylag: size of the lags in the y direction :param minnp: minimum number of pairs to calculate a variogram value :param isill: standardize sill to be 1.0 :return: TODO """ # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax nd = len(df_extract) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() sills = stdev**2.0 ssq = sills vrmin = vr.min() vrmax = vr.max() # Initialize the summation arrays npp = np.zeros((nylag*2+1,nxlag*2+1)) gam = np.zeros((nylag*2+1,nxlag*2+1)) nppf = np.zeros((nylag*2+1,nxlag*2+1)) gamf = np.zeros((nylag*2+1,nxlag*2+1)) hm = np.zeros((nylag*2+1,nxlag*2+1)) tm = np.zeros((nylag*2+1,nxlag*2+1)) hv = np.zeros((nylag*2+1,nxlag*2+1)) tv = np.zeros((nylag*2+1,nxlag*2+1)) # First fix the location of a seed point: for i in range(0,nd): # Second loop over the data: for j in range(0,nd): # The lag: ydis = y[j] - y[i] iyl = nylag + int(ydis/dylag) if iyl < 0 or iyl > nylag*2: # acocunting for 0,...,n-1 array indexing continue xdis = x[j] - x[i] ixl = nxlag + int(xdis/dxlag) if ixl < 0 or ixl > nxlag*2: # acocunting for 0,...,n-1 array indexing continue # We have an acceptable pair, therefore accumulate all the statistics # that are required for the variogram: npp[iyl,ixl] = npp[iyl,ixl] + 1 # our ndarrays read from the base to top, so we flip tm[iyl,ixl] = tm[iyl,ixl] + vr[i] hm[iyl,ixl] = hm[iyl,ixl] + vr[j] tv[iyl,ixl] = tm[iyl,ixl] + vr[i]*vr[i] hv[iyl,ixl] = hm[iyl,ixl] + vr[j]*vr[j] gam[iyl,ixl] = gam[iyl,ixl] + ((vr[i]-vr[j])*(vr[i]-vr[j])) # Get average values for gam, hm, tm, hv, and tv, then compute # the correct "variogram" measure: for iy in range(0,nylag*2+1): for ix in range(0,nxlag*2+1): if npp[iy,ix] <= minnp: gam[iy,ix] = -999. hm[iy,ix] = -999. tm[iy,ix] = -999. hv[iy,ix] = -999. tv[iy,ix] = -999. else: rnum = npp[iy,ix] gam[iy,ix] = gam[iy,ix] / (2*rnum) # semivariogram hm[iy,ix] = hm[iy,ix] / rnum tm[iy,ix] = tm[iy,ix] / rnum hv[iy,ix] = hv[iy,ix] / rnum - hm[iy,ix]*hm[iy,ix] tv[iy,ix] = tv[iy,ix] / rnum - tm[iy,ix]*tm[iy,ix] # Attempt to standardize: if isill > 0: gamf[iy,ix] = gamf[iy,ix]/sills for iy in range(0,nylag*2+1): for ix in range(0,nxlag*2+1): gamf[iy,ix] = gam[nylag*2-iy,ix] nppf[iy,ix] = npp[nylag*2-iy,ix] return gamf, nppf def vmodel( nlag, xlag, azm, vario ): """GSLIB's VMODEL program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Mar, 2019). :param nlag: number of variogram lags :param xlag: size of the lags :param axm: direction by 2D azimuth, 000 is y positive, 090 is x positive :param vario: dictionary with the variogram parameters :return: """ # Parameters MAXNST=4 DEG2RAD=3.14159265/180.0 MAXROT=MAXNST+1 EPSLON = 1.0e-20 VERSION= 1.01 # Declare arrays index = np.zeros(nlag+1) h = np.zeros(nlag+1) gam = np.zeros(nlag+1) cov = np.zeros(nlag+1) ro = np.zeros(nlag+1) # Load the variogram nst = vario["nst"] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang = np.zeros(nst) anis = np.zeros(nst) c0 = vario["nug"] cc[0] = vario["cc1"] it[0] = vario["it1"] ang[0] = vario["azi1"] aa[0] = vario["hmaj1"] anis[0] = vario["hmin1"] / vario["hmaj1"] if nst == 2: cc[1] = vario["cc2"] it[1] = vario["it2"] ang[1] = vario["azi2"] aa[1] = vario["hmaj2"] anis[1] = vario["hmin2"] / vario["hmaj2"] xoff = math.sin(DEG2RAD*azm)*xlag yoff = math.cos(DEG2RAD*azm)*xlag print(' x,y,z offsets = ' + str(xoff) + ',' + str(yoff)) rotmat, maxcov = setup_rotmat(c0, nst, it, cc, ang, 99999.9) xx = 0.0; yy = 0.0 for il in range(0,nlag+1): index[il] = il cov[il] = cova2(0.0,0.0,xx,yy,nst,c0,9999.9,cc,aa,it,ang,anis,rotmat,maxcov) gam[il] = maxcov - cov[il] ro[il] = cov[il]/maxcov h[il] = math.sqrt(max((xx*xx+yy*yy),0.0)) xx = xx + xoff yy = yy + yoff # finished return index,h,gam,cov,ro def nscore( df, vcol, wcol=None, ismooth=False, dfsmooth=None, smcol=0, smwcol=0 ): """GSLIB's NSCORE program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param df: pandas DataFrame with the spatial data :param vcol: name of the variable column :param wcol: name of the weight column, if None assumes equal weighting :param ismooth: if True then use a reference distribution :param dfsmooth: pandas DataFrame required if reference distribution is used :param smcol: reference distribution property (required if reference distribution is used) :param smwcol: reference distribution weight (required if reference distribution is used) :return: TODO """ # Set constants np.random.seed(73073) pwr = 1.0 # interpolation power, hard coded to 1.0 in GSLIB EPSILON = 1.0e-20 # Decide which file to use for establishing the transformation table if ismooth: nd = len(dfsmooth) vr = dfsmooth[smcol].values wt_ns = np.ones(nd) if smwcol != 0: wt_ns = dfsmooth[smwcol].values else: nd = len(df) vr = df[vcol].values wt_ns = np.ones(nd) if wcol is not None: wt_ns = df[wcol].values twt = np.sum(wt_ns) # Sort data by value istart = 0 iend = nd vr, wt_ns = dsortem(istart, iend, vr, 2, wt_ns) # Compute the cumulative probabilities and write transformation table wtfac = 1.0 / twt oldcp = 0.0 cp = 0.0 for j in range(istart, iend): w = wtfac * wt_ns[j] cp = cp + w wt_ns[j] = (cp + oldcp) / 2.0 vrrg = gauinv(wt_ns[j]) vrg = float(vrrg) oldcp = cp # Now, reset the weight to the normal scores value wt_ns[j] = vrg # Normal scores transform nd_trans = len(df) ns = np.zeros(nd_trans) val = df[vcol].values for i in range(0, nd_trans): vrr = val[i] + np.random.rand() * EPSILON # Now, get the normal scores value for "vrr" j = dlocate(vr, 1, nd, vrr) j = min(max(1, j), (nd - 1)) ns[i] = dpowint(vr[j], vr[j + 1], wt_ns[j], wt_ns[j + 1], vrr, pwr) return ns, vr, wt_ns def kb2d( df, xcol, ycol, vcol, tmin, tmax, nx, xmn, xsiz, ny, ymn, ysiz, nxdis, nydis, ndmin, ndmax, radius, ktype, skmean, vario, ): """GSLIB's KB2D program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: :param skmean: :param vario: :return: """ # Constants UNEST = -999. EPSLON = 1.0e-10 VERSION = 2.907 first = True PMX = 9999.0 MAXSAM = ndmax + 1 MAXDIS = nxdis * nydis MAXKD = MAXSAM + 1 MAXKRG = MAXKD * MAXKD # load the variogram nst = vario['nst'] cc = np.zeros(nst); aa = np.zeros(nst); it = np.zeros(nst) ang = np.zeros(nst); anis = np.zeros(nst) c0 = vario['nug']; cc[0] = vario['cc1']; it[0] = vario['it1']; ang[0] = vario['azi1']; aa[0] = vario['hmaj1']; anis[0] = vario['hmin1']/vario['hmaj1']; if nst == 2: cc[1] = vario['cc2']; it[1] = vario['it2']; ang[1] = vario['azi2']; aa[1] = vario['hmaj2']; anis[1] = vario['hmin2']/vario['hmaj2']; # Allocate the needed memory: xdb = np.zeros(MAXDIS) ydb = np.zeros(MAXDIS) xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXKD) rr = np.zeros(MAXKD) s = np.zeros(MAXKD) a = np.zeros(MAXKRG) kmap = np.zeros((nx,ny)) vmap = np.zeros((nx,ny)) # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax nd = len(df_extract) ndmax = min(ndmax,nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0,nd)) data_locs = np.column_stack((y,x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() ss = stdev**2.0 vrmin = vr.min() vrmax = vr.max() # Set up the discretization points per block. Figure out how many # are needed, the spacing, and fill the xdb and ydb arrays with the # offsets relative to the block center (this only gets done once): ndb = nxdis * nydis if ndb > MAXDIS: print('ERROR KB2D: Too many discretization points ') print(' Increase MAXDIS or lower n[xy]dis') return kmap xdis = xsiz / max(float(nxdis),1.0) ydis = ysiz / max(float(nydis),1.0) xloc = -0.5*(xsiz+xdis) i = -1 # accounting for 0 as lowest index for ix in range(0,nxdis): xloc = xloc + xdis yloc = -0.5*(ysiz+ydis) for iy in range(0,nydis): yloc = yloc + ydis i = i+1 xdb[i] = xloc ydb[i] = yloc # Initialize accumulators: cbb = 0.0 rad2 = radius*radius # Calculate Block Covariance. Check for point kriging. rotmat, maxcov = setup_rotmat(c0,nst,it,cc,ang,PMX) cov = cova2(xdb[0],ydb[0],xdb[0],ydb[0],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) # Keep this value to use for the unbiasedness constraint: unbias = cov first = False if ndb <= 1: cbb = cov else: for i in range(0,ndb): for j in range(0,ndb): cov = cova2(xdb[i],ydb[i],xdb[j],ydb[j],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) if i == j: cov = cov - c0 cbb = cbb + cov cbb = cbb/real(ndb*ndb) # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: nk = 0 ak = 0.0 vk = 0.0 for iy in range(0,ny): yloc = ymn + (iy-0)*ysiz for ix in range(0,nx): xloc = xmn + (ix-0)*xsiz current_node = (yloc,xloc) # Find the nearest samples within each octant: First initialize # the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) dist, nums = tree.query(current_node,ndmax) # use kd tree for fast nearest data search # remove any data outside search radius na = len(dist) nums = nums[dist<radius] dist = dist[dist<radius] na = len(dist) # Is there enough samples? if na + 1 < ndmin: # accounting for min index of 0 est = UNEST estv = UNEST print('UNEST at ' + str(ix) + ',' + str(iy)) else: # Put coordinates and values of neighborhood samples into xa,ya,vra: for ia in range(0,na): jj = int(nums[ia]) xa[ia] = x[jj] ya[ia] = y[jj] vra[ia] = vr[jj] # Handle the situation of only one sample: if na == 0: # accounting for min index of 0 - one sample case na = 0 cb1 = cova2(xa[0],ya[0],xa[0],ya[0],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) xx = xa[0] - xloc yy = ya[0] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2(xx,yy,xdb[0],ydb[0],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) else: cb = 0.0 for i in range(0,ndb): cb = cb + cova2(xx,yy,xdb[i],ydb[i],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) dx = xx - xdb(i) dy = yy - ydb(i) if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 cb = cb / real(ndb) if ktype == 0: s[0] = cb/cbb est = s[0]*vra[0] + (1.0-s[0])*skmean estv = cbb - s[0] * cb else: est = vra[0] estv = cbb - 2.0*cb + cb1 else: # Solve the Kriging System with more than one sample: neq = na + ktype # accounting for first index of 0 # print('NEQ' + str(neq)) nn = (neq + 1)*neq/2 # Set up kriging matrices: iin=-1 # accounting for first index of 0 for j in range(0,na): # Establish Left Hand Side Covariance Matrix: for i in range(0,na): # was j - want full matrix iin = iin + 1 a[iin] = cova2(xa[i],ya[i],xa[j],ya[j],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) if ktype == 1: iin = iin + 1 a[iin] = unbias xx = xa[j] - xloc yy = ya[j] - yloc # Establish Right Hand Side Covariance: if ndb <= 1: cb = cova2(xx,yy,xdb[0],ydb[0],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) else: cb = 0.0 for j1 in range(0,ndb): cb = cb + cova2(xx,yy,xdb[j1],ydb[j1],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) dx = xx - xdb[j1] dy = yy - ydb[j1] if (dx*dx+dy*dy) < EPSLON: cb = cb - c0 cb = cb / real(ndb) r[j] = cb rr[j] = r[j] # Set the unbiasedness constraint: if ktype == 1: for i in range(0,na): iin = iin + 1 a[iin] = unbias iin = iin + 1 a[iin] = 0.0 r[neq-1] = unbias rr[neq-1] = r[neq] # Solve the Kriging System: # print('NDB' + str(ndb)) # print('NEQ' + str(neq) + ' Left' + str(a) + ' Right' + str(r)) # stop s = ksol_numpy(neq,a,r) ising = 0 # need to figure this out # print('weights' + str(s)) # stop # Write a warning if the matrix is singular: if ising != 0: print('WARNING KB2D: singular matrix') print(' for block' + str(ix) + ',' + str(iy)+ ' ') est = UNEST estv = UNEST else: # Compute the estimate and the kriging variance: est = 0.0 estv = cbb sumw = 0.0 if ktype == 1: estv = estv - (s[na])*unbias for i in range(0,na): sumw = sumw + s[i] est = est + s[i]*vra[i] estv = estv - s[i]*rr[i] if ktype == 0: est = est + (1.0-sumw)*skmean kmap[ny-iy-1,ix] = est vmap[ny-iy-1,ix] = estv if est > UNEST: nk = nk + 1 ak = ak + est vk = vk + est*est # END OF MAIN LOOP OVER ALL THE BLOCKS: if nk >= 1: ak = ak / float(nk) vk = vk/float(nk) - ak*ak print(' Estimated ' + str(nk) + ' blocks ') print(' average ' + str(ak) + ' variance ' + str(vk)) return kmap, vmap def ik2d(df,xcol,ycol,vcol,ivtype,koption,ncut,thresh,gcdf,trend,tmin,tmax,nx,xmn,xsiz,ny,ymn,ysiz,ndmin,ndmax,radius,ktype,vario): """A 2D version of GSLIB's IK3D Indicator Kriging program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column (cateogorical or continuous - note continuous is untested) :param ivtype: variable type, 0 - categorical, 1 - continuous :param koption: kriging option, 0 - estimation, 1 - cross validation (under construction) :param ncut: number of categories or continuous thresholds :param thresh: an ndarray with the category labels or continuous thresholds :param gcdf: global CDF, not used if trend is present :param trend: an ndarray [ny,ny,ncut] with the local trend proportions or cumulative CDF values :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: kriging type, 0 - simple kriging and 1 - ordinary kriging :param vario: list with all of the indicator variograms (sill of 1.0) in consistent order with above parameters :return: """ # Find the needed paramters: PMX = 9999.9 MAXSAM = ndmax + 1 MAXEQ = MAXSAM + 1 mik = 0 # full indicator kriging use_trend = False if trend.shape[0] == nx and trend.shape[1] == ny and trend.shape[2] == ncut: use_trend = True # load the variogram MAXNST = 2 nst = np.zeros(ncut,dtype=int); c0 = np.zeros(ncut); cc = np.zeros((MAXNST,ncut)) aa = np.zeros((MAXNST,ncut),dtype=int); it = np.zeros((MAXNST,ncut),dtype=int) ang = np.zeros((MAXNST,ncut)); anis = np.zeros((MAXNST,ncut)) for icut in range(0,ncut): nst[icut] = int(vario[icut]['nst']) c0[icut] = vario[icut]['nug']; cc[0,icut] = vario[icut]['cc1']; it[0,icut] = vario[icut]['it1']; ang[0,icut] = vario[icut]['azi1']; aa[0,icut] = vario[icut]['hmaj1']; anis[0,icut] = vario[icut]['hmin1']/vario[icut]['hmaj1']; if nst[icut] == 2: cc[1,icut] = vario[icut]['cc2']; it[1,icut] = vario[icut]['it2']; ang[1,icut] = vario[icut]['azi2']; aa[1,icut] = vario[icut]['hmaj2']; anis[1,icut] = vario[icut]['hmin2']/vario[icut]['hmaj2']; # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax MAXDAT = len(df_extract) MAXCUT = ncut MAXNST = 2 MAXROT = MAXNST*MAXCUT+ 1 ikout = np.zeros((nx,ny,ncut)) maxcov = np.zeros(ncut) # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXEQ) rr = np.zeros(MAXEQ) s = np.zeros(MAXEQ) a = np.zeros(MAXEQ*MAXEQ) ikmap = np.zeros((nx,ny,ncut)) vr = np.zeros((MAXDAT,MAXCUT+1)) nviol = np.zeros(MAXCUT) aviol = np.zeros(MAXCUT) xviol = np.zeros(MAXCUT) ccdf = np.zeros(ncut) ccdfo = np.zeros(ncut) ikout = np.zeros((nx,ny,ncut)) x = df_extract[xcol].values y = df_extract[ycol].values v = df_extract[vcol].values # The indicator data are constructed knowing the thresholds and the # data value. if ivtype == 0: for icut in range(0,ncut): vr[:,icut] = np.where((v <= thresh[icut] + 0.5) & (v > thresh[icut] - 0.5), '1', '0') else: for icut in range(0,ncut): vr[:,icut] = np.where(v <= thresh[icut], '1', '0') vr[:,ncut] = v # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0,MAXDAT)) data_locs = np.column_stack((y,x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics of the input data avg = vr[:,ncut].mean() stdev = vr[:,ncut].std() ss = stdev**2.0 vrmin = vr[:,ncut].min() vrmax = vr[:,ncut].max() print('Data for IK3D: Variable column ' + str(vcol)) print(' Number = ' + str(MAXDAT)) ndh = MAXDAT actloc = np.zeros(MAXDAT, dtype = int) for i in range(1,MAXDAT): actloc[i] = i # Set up the rotation/anisotropy matrices that are needed for the # variogram and search: print('Setting up rotation matrices for variogram and search') radsqd = radius * radius rotmat = [] for ic in range(0,ncut): rotmat_temp, maxcov[ic] = setup_rotmat(c0[ic],int(nst[ic]),it[:,ic],cc[:,ic],ang[:,ic],9999.9) rotmat.append(rotmat_temp) # Initialize accumulators: # not setup yet nk = 0 xk = 0.0 vk = 0.0 for icut in range (0,ncut): nviol[icut] = 0 aviol[icut] = 0.0 xviol[icut] = -1.0 nxy = nx*ny print('Working on the kriging') # Report on progress from time to time: if koption == 0: nxy = nx*ny nloop = nxy irepo = max(1,min((nxy/10),10000)) else: nloop = 10000000 irepo = max(1,min((nd/10),10000)) ddh = 0.0 # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: for index in range(0,nloop): if (int(index/irepo)*irepo) == index: print(' currently on estimate ' + str(index)) if koption == 0: iy = int((index)/nx) ix = index - (iy)*nx xloc = xmn + (ix)*xsiz yloc = ymn + (iy)*ysiz else: ddh = 0.0 # TODO: pass the cross validation value # Find the nearest samples within each octant: First initialize the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) current_node = (yloc,xloc) dist, close = tree.query(current_node,ndmax) # use kd tree for fast nearest data search # remove any data outside search radius close = close[dist<radius] dist = dist[dist<radius] nclose = len(dist) # Is there enough samples? if nclose < ndmin: # accounting for min index of 0 for i in range(0,ncut): ccdfo[i] = UNEST print('UNEST at ' + str(ix) + ',' + str(iy)) else: # Loop over all the thresholds/categories: for ic in range(0,ncut): krig = True if mik == 1 and ic >= 1: krig = False # Identify the close data (there may be a different number of data at # each threshold because of constraint intervals); however, if # there are no constraint intervals then this step can be avoided. nca = -1 for ia in range(0,nclose): j = int(close[ia]+0.5) ii = actloc[j] accept = True if koption != 0 and (abs(x[j]-xloc) + abs(y[j]-yloc)).lt.EPSLON: accept = False if accept: nca = nca + 1 vra[nca] = vr[ii,ic] xa[nca] = x[j] ya[nca] = y[j] # If there are no samples at this threshold then use the global cdf: if nca == -1: if use_trend: ccdf[ic] = trend[ny-iy-1,ix,ic] else: ccdf[ic] = gcdf[ic] else: # Now, only load the variogram, build the matrix,... if kriging: neq = nclose + ktype na = nclose # Set up kriging matrices: iin=-1 # accounting for first index of 0 for j in range(0,na): # Establish Left Hand Side Covariance Matrix: for i in range(0,na): # was j - want full matrix iin = iin + 1 a[iin] = cova2(xa[i],ya[i],xa[j],ya[j],nst[ic],c0[ic],PMX,cc[:,ic],aa[:,ic],it[:,ic],ang[:,ic],anis[:,ic],rotmat[ic],maxcov[ic]) if ktype == 1: iin = iin + 1 a[iin] = maxcov[ic] r[j] = cova2(xloc,yloc,xa[j],ya[j],nst[ic],c0[ic],PMX,cc[:,ic],aa[:,ic],it[:,ic],ang[:,ic],anis[:,ic],rotmat[ic],maxcov[ic]) # Set the unbiasedness constraint: if ktype == 1: for i in range(0,na): iin = iin + 1 a[iin] = maxcov[ic] iin = iin + 1 a[iin] = 0.0 r[neq-1] = maxcov[ic] rr[neq-1] = r[neq] # Solve the system: if neq == 1: ising = 0.0 s[0] = r[0] / a[0] else: s = ksol_numpy(neq,a,r) # Finished kriging (if it was necessary): # Compute Kriged estimate of cumulative probability: sumwts = 0.0 ccdf[ic] = 0.0 for i in range(0,nclose): ccdf[ic] = ccdf[ic] + vra[i]*s[i] sumwts = sumwts + s[i] if ktype == 0: if use_trend == True: ccdf[ic] = ccdf[ic] + (1.0-sumwts)*trend[ny-iy-1,ix,ic] else: ccdf[ic] = ccdf[ic] + (1.0-sumwts)*gcdf[ic] # Keep looping until all the thresholds are estimated: # Correct and write the distribution to the output file: nk = nk + 1 ccdfo = ordrel(ivtype,ncut,ccdf) # Write the IK CCDF for this grid node: if koption == 0: ikout[ny-iy-1,ix,:] = ccdfo else: print('TBD') return ikout def sgsim(df,xcol,ycol,vcol,wcol,scol,tmin,tmax,itrans,ismooth,dftrans,tcol,twtcol,zmin,zmax,ltail,ltpar,utail,utpar,nsim, nx,xmn,xsiz,ny,ymn,ysiz,seed,ndmin,ndmax,nodmax,mults,nmult,noct,radius,radius1,sang1, mxctx,mxcty,ktype,colocorr,sec_map,vario): # Parameters from sgsim.inc MAXNST=2; MAXROT=2; UNEST=-99.0; EPSLON=1.0e-20; VERSION=2.907 KORDEI=12; MAXOP1=KORDEI+1; MAXINT=2**30 # Set other parameters np.random.seed(seed) nxy = nx*ny sstrat = 0 # search data and nodes by default, turned off if unconditional radsqd = radius * radius sanis1 = radius1/radius if ktype == 4: varred = 1.0 # load the variogram nst = int(vario['nst']) cc = np.zeros(nst); aa = np.zeros(nst); it = np.zeros(nst,dtype=int) ang = np.zeros(nst); anis = np.zeros(nst) c0 = vario['nug']; cc[0] = vario['cc1']; it[0] = vario['it1']; ang[0] = vario['azi1']; aa[0] = vario['hmaj1']; anis[0] = vario['hmin1']/vario['hmaj1']; if nst == 2: cc[1] = vario['cc2']; it[1] = vario['it2']; ang[1] = vario['azi2']; aa[1] = vario['hmaj2']; anis[1] = vario['hmin2']/vario['hmaj2']; # Set the constants MAXCTX = mxctx MAXCTY = mxcty MAXCXY = MAXCTX * MAXCTY MAXX = nx MAXY = ny MAXZ = 1 # assuming 2D for now MXY = MAXX * MAXY if MXY < 100: MXY = 100 MAXNOD = nodmax MAXSAM = ndmax MAXKR1 = MAXNOD + MAXSAM + 1 # print('MAXKR1'); print(MAXKR1) MAXKR2 = MAXKR1 * MAXKR1 MAXSBX = 1 if nx > 1: MAXSBX = int(nx/2) if MAXSBX > 50: MAXSBX=50 MAXSBY = 1 if ny > 1: MAXSBY = int(ny/2) if MAXSBY > 50: MAXSBY=50 MAXSBZ = 1 MAXSB = MAXSBX*MAXSBY*MAXSBZ # Declare arrays dist = np.zeros(ndmax) nums = np.zeros(ndmax,dtype = int) # Perform some quick checks if nx > MAXX or ny> MAXY: print('ERROR: available grid size: ' + str(MAXX) + ',' + str(MAXY) + ',' + str(MAXZ) +'.') print(' you have asked for : ' + str(nx) + ',' + str(ny) + ',' + str(nz) + '.') return sim if ltail != 1 and ltail != 2: print('ERROR invalid lower tail option ' + str(ltail)) print(' only allow 1 or 2 - see GSLIB manual ') return sim if utail != 1 and utail != 2 and utail != 4: print('ERROR invalid upper tail option ' + str(ltail)) print(' only allow 1,2 or 4 - see GSLIB manual ') return sim if utail == 4 and utpar < 1.0: print('ERROR invalid power for hyperbolic tail' + str(utpar)) print(' must be greater than 1.0!') return sim if ltail == 2 and ltpar < 0.0: print('ERROR invalid power for power model' + str(ltpar)) print(' must be greater than 0.0!') return sim if utail == 2 and utpar < 0.0: print('ERROR invalid power for power model' + str(utpar)) print(' must be greater than 0.0!') return sim # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax nd = len(df_extract) ndmax = min(ndmax,nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values vr_orig = np.copy(vr) # print('size of data extract'); print(len(vr)) wt = []; wt = np.array(wt) if wcol > -1: wt = df_extract[wcol].values else: wt = np.ones(nd) sec = []; sec = np.array(sec) if scol > -1: sec = df_extract[scol].values if itrans == 1: if ismooth == 1: dftrans_extract = dftrans.loc[(dftrans[tcol] >= tmin) & (dftrans[tcol] <= tmax)] ntr = len(dftrans_extract) vrtr = dftrans_extrac[tcol].values if twtcol > -1: vrgtr = dftrans_extrac[tcol].values else: vrgtr = np.ones(ntr) else: vrtr = df_extract[vcol].values ntr = len(df_extract) vrgtr = np.copy(wt) twt = np.sum(vrgtr) # sort vrtr,vrgtr = dsortem(0,ntr,vrtr,2,b=vrgtr) # Compute the cumulative probabilities and write transformation table twt = max(twt,EPSLON) oldcp = 0.0 cp = 0.0 # print('ntr'); print(ntr) for j in range(0,ntr): cp = cp + vrgtr[j]/twt w = (cp + oldcp)*0.5 vrg = gauinv(w) oldcp = cp # Now, reset the weight to the normal scores value: vrgtr[j] = vrg twt = np.sum(wt) # Normal scores transform the data for id in range(0,nd): if itrans == 1: vrr = vr[id] j = dlocate(vrtr,1,nd,vrr) j = min(max(0,j),(nd-2)) vrg = dpowint(vrtr[j],vrtr[j+1],vrgtr[j],vrgtr[j+1],vrr,1.0) if vrg < vrgtr[0]: vrg = vrgtr[0] if(vrg > vrgtr[nd-1]): vrg = vrgtr[nd-1] vr[id] = vrg weighted_stats_orig = DescrStatsW(vr_orig,weights=wt) orig_av = weighted_stats_orig.mean orig_ss = weighted_stats_orig.var weighted_stats = DescrStatsW(vr,weights=wt) av = weighted_stats.mean ss = weighted_stats.var print('\n Data for SGSIM: Number of acceptable data = ' + str(nd)) print(' Number trimmed = ' + str(len(df)- nd)) print(' Weighted Average = ' + str(round(orig_av,4))) print(' Weighted Variance = ' + str(round(orig_ss,4))) print(' Weighted Transformed Average = ' + str(round(av,4))) print(' Weighted Transformed Variance = ' + str(round(ss,4))) # Read in secondary data sim = np.random.rand(nx*ny) index = 0 for ixy in range(0,nxy): sim[index] = index lvm = []; lvm = np.array(lvm) if ktype >= 2: #lvm = np.copy(sec_map.flatten()) ind = 0 lvm = np.zeros(nxy) for iy in range(0,ny): for ix in range(0,nx): lvm[ind] = sec_map[ny-iy-1,ix] ind = ind + 1 if ktype == 2 and itrans == 1: for ixy in range(0,nxy): # Do we to transform the secondary variable for a local mean? vrr = lvm[ixy] j = dlocate(vrtr,1,ntr,vrr) j = min(max(0,j),(ntr-2)) vrg = dpowint(vrtr[j],vrtr[j+1],vrgtr[j],vrgtr[j+1],vrr,1.0) if vrg < vrgtr[0]: vrg = vrgtr[0] if(vrg > vrgtr[ntr-1]): vrg = vrgtr[nd-1] lvm[ixy] = vrg av = np.average(lvm) ss = np.var(lvm) print(' Secondary Data: Number of data = ' + str(nx*ny)) print(' Equal Weighted Average = ' + str(round(av,4))) print(' Equal Weighted Variance = ' + str(round(ss,4))) # Do we need to work with data residuals? (Locally Varying Mean) if ktype == 2: sec = np.zeros(nd) for idd in range(0,nd): ix = getindex(nx,xmn,xsiz,x[idd]) iy = getindex(ny,ymn,ysiz,y[idd]) index = ix + (iy-1)*nx sec[idd] = lvm[index] # Calculation of residual moved to krige subroutine: vr(i)=vr(i)-sec(i) # Do we need to get an external drift attribute for the data? if ktype == 3: for idd in range(0,nd): if sec[i] != UNEST: ix = getindx(nx,xmn,xsiz,x[idd]) iy = getindx(ny,ymn,ysiz,y[idd]) ind = ix + (iy)*nx sec[ind] = lvm[ind] # Transform the secondary attribute to normal scores? if ktype == 4: order_sec = np.zeros(nxy) ind = 0 for ixy in range(0,nxy): order_sec[ixy] = ind ind = ind + 1 print(' Transforming Secondary Data with') print(' variance reduction of ' + str(varred)) lvm,order_sec = dsortem(0,nxy,lvm,2,b=order_sec) oldcp = 0.0 cp = 0.0 for i in range(0,nxy): cp = cp + (1.0/(nxy)) w = (cp + oldcp)/2.0 lvm[i] = gauinv(w) lvm[i] = lvm[i] * varred oldcp = cp order_sec,lvm = dsortem(0,nxy,order_sec,2,b=lvm) # return np.reshape(lvm,(ny,nx)) # check the transform # Set up the rotation/anisotropy matrices that are needed for the # variogram and search. print('Setting up rotation matrices for variogram and search') if nst == 1: rotmat = setrot(ang[0],ang[0],sang1,anis[0],anis[0],sanis1,nst,MAXROT=2) else: rotmat = setrot(ang[0],ang[1],sang1,anis[0],anis[1],sanis1,nst,MAXROT=2) isrot = 2 # search rotation is appended as 3rd rotmat_2d, maxcov = setup_rotmat2(c0,nst,it,cc,ang) # will use one in the future # print('MaxCov = ' + str(maxcov)) # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0,nd)) data_locs = np.column_stack((y,x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Set up the covariance table and the spiral search: cov_table,tmp,order,ixnode,iynode,nlooku,nctx,ncty = ctable(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MXY, xsiz,ysiz,isrot,nx,ny,nst,c0,cc,aa,it,ang,anis,rotmat,radsqd) # print('Covariance Table'); print(cov_table) # MAIN LOOP OVER ALL THE SIMULAUTIONS: for isim in range(0,nsim): # Work out a random path for this realization: sim = np.random.rand(nx*ny) order = np.zeros(nxy) ind = 0 for ixy in range(0,nxy): order[ixy] = ind ind = ind + 1 # The multiple grid search works with multiples of 4 (yes, that is # somewhat arbitrary): if mults == 1: for imult in range(0,nmult): nny = int(max(1,ny/((imult+1)*4))) nnx = int(max(1,nx/((imult+1)*4))) # print('multi grid - nnx, nny'); print(nnx,nny) jy = 1 jx = 1 for iy in range(0,nny): if nny > 0: jy = iy*(imult+1)*4 for ix in range(0,nnx): if nnx > 0: jx = ix*(imult+1)*4 index = jx + (jy-1)*nx sim[index] = sim[index] - (imult+1) # Initialize the simulation: sim, order = dsortem(0,nxy,sim,2,b=order) sim.fill(UNEST) print('Working on realization number ' + str(isim)) # Assign the data to the closest grid node: TINY = 0.0001 for idd in range(0,nd): # print('data'); print(x[idd],y[idd]) ix = getindex(nx,xmn,xsiz,x[idd]) iy = getindex(ny,ymn,ysiz,y[idd]) ind = ix + (iy-1)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz # print('xx, yy' + str(xx) + ',' + str(yy)) test = abs(xx-x[idd]) + abs(yy-y[idd]) # Assign this data to the node (unless there is a closer data): if sstrat == 1: if sim[ind] > 0.0: id2 = int(sim[ind]+0.5) test2 = abs(xx-x(id2)) + abs(yy-y(id2)) if test <= test2: sim[ind] = idd else: sim[ind] = id2 # Assign a flag so that this node does not get simulated: if sstrat == 0 and test <= TINY: sim[ind]=10.0*UNEST # Now, enter data values into the simulated grid: for ind in range(0,nxy): idd = int(sim[ind]+0.5) if idd > 0: sim[ind] = vr[id] irepo = max(1,min((nxy/10),10000)) # MAIN LOOP OVER ALL THE NODES: for ind in range(0,nxy): if (int(ind/irepo)*irepo) == ind: print(' currently on node ' + str(ind)) # Figure out the location of this point and make sure it has # not been assigned a value already: index = int(order[ind]+0.5) if (sim[index] > (UNEST+EPSLON)) or (sim[index] < (UNEST*2.0)): continue iy = int((index)/nx) ix = index - (iy)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz current_node = (yy,xx) # print('Current_node'); print(current_node) # Now, we'll simulate the point ix,iy,iz. First, get the close data # and make sure that there are enough to actually simulate a value, # we'll only keep the closest "ndmax" data, and look for previously # simulated grid nodes: if sstrat == 0: # print('searching for nearest data') na = -1 # accounting for 0 as first index if ndmax == 1: dist = np.zeros(1); nums = np.zeros(1) dist[0], nums[0] = tree.query(current_node,ndmax) # use kd tree for fast nearest data search else: dist, nums = tree.query(current_node,ndmax) # remove any data outside search radius # print('nums'); print(nums) # print('dist'); print(dist) na = len(dist) nums = nums[dist<radius] dist = dist[dist<radius] na = len(dist) if na < ndmin: continue # bail if not enough data # print('Found ' + str(na) + 'neighbouring data') # print('node search inputs') # print('nodmax ' + str(nodmax)) # print('ixnode'); print(ixnode) ncnode, icnode, cnodev, cnodex, cnodey = srchnd(ix,iy,nx,ny,xmn,ymn,xsiz,ysiz,sim,noct,nodmax,ixnode,iynode,nlooku,nctx,ncty,UNEST) # print('srchnd'); print(ncnode,icnode,cnodev,cnodex,cnodey) # print('Result of srchnd, cnodex = '); print(cnodex) nclose = na # print('srch node, nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('nums'); print(nums) # Calculate the conditional mean and standard deviation. This will be # done with kriging if there are data, otherwise, the global mean and # standard deviation will be used: if ktype == 2: gmean = lvm[index] else: gmean = 0.0 if nclose+ncnode < 1: cmean = gmean cstdev = 1.0 #Perform the kriging. Note that if there are fewer than four data # then simple kriging is prefered so that the variance of the # realization does not become artificially inflated: else: lktype = ktype if ktype == 1 and (nclose+ncnode) < 4: lktype=0 cmean, cstdev = krige(ix,iy,nx,ny,xx,yy,lktype,x,y,vr,sec,colocorr,lvm,nums,cov_table,nctx,ncty,icnode,ixnode,iynode,cnodev,cnodex,cnodey, nst,c0,9999.9,cc,aa,it,ang,anis,rotmat_2d,maxcov,MAXCTX,MAXCTY,MAXKR1, MAXKR2) # Draw a random number and assign a value to this node: p = np.random.rand() xp = gauinv(p) sim[index] = xp * cstdev + cmean # print('simulated value = ' + str(sim[index])) # Quick check for far out results: if abs(cmean) > 5.0 or abs(cstdev) > 5.0 or abs(sim[index]) > 6.0: print('WARNING: grid node location: ' + str(ix) + ',' + str(iy)) print(' conditional mean and stdev: ' + str(cmean) + ',' + str(cstdev)) print(' simulated value: ' + str(sim[index])) # Do we need to reassign the data to the grid nodes? if sstrat == 0: print('Reassigning data to nodes') for iid in range(0,nd): ix = getindex(nx,xmn,xsiz,x[iid]) iy = getindex(ny,ymn,ysiz,y[iid]) xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz ind = ix + (iy-1)*nx test=abs(xx-x[iid])+abs(yy-y[iid]) if test <= TINY: sim[ind] = vr[iid] # Back transform each value and write results: ne = 0 av = 0.0 ss = 0.0 for ind in range(0,nxy): iy = int((index-1)/nx) + 1 ix = index - (iy-1)*nx simval = sim[ind] if simval > -9.0 and simval < 9.0: ne = ne + 1 av = av + simval ss = ss + simval*simval if itrans == 1 and simval > (UNEST+EPSLON): simval = backtr_value(simval,vrtr,vrgtr,zmin,zmax,ltail,ltpar,utail,utpar) if simval < zmin: simval = zmin if simval > zmax: simval = zmax sim[ind] = simval # print('simulated value = ' + str(sim[ind]) + ' at location index = ' + str(ind)) av = av / max(ne,1.0) ss =(ss / max(ne,1.0)) - av * av print('\n Realization ' + str(isim) + ': number = ' + str(ne)) print(' mean = ' + str(round(av,4)) + ' (close to 0.0?)') print(' variance = ' + str(round(ss,4)) + ' (close to gammabar(V,V)? approx. 1.0)') # END MAIN LOOP OVER SIMULATIONS: sim_out = np.zeros((ny,nx)) for ind in range(0,nxy): iy = int((ind)/nx) ix = ind - (iy)*nx sim_out[ny-iy-1,ix] = sim[ind] return sim_out def sisim(df,xcol,ycol,vcol,ivtype,koption,ncut,thresh,gcdf,trend,tmin,tmax,zmin,zmax,ltail,ltpar,middle,mpar,utail,utpar,nx,xmn,xsiz,ny,ymn,ysiz,seed,ndmin, ndmax,nodmax,mults,nmult,noct,radius,ktype,vario): """A 2D version of GSLIB's SISIM Indicator Simulation program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (March, 2019). WARNING: only tested for cateogrical ktype 0, 1 and 2 (locally variable proportion). :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column (cateogorical or continuous - note continuous is untested) :param ivtype: variable type, 0 - categorical, 1 - continuous :param koption: kriging option, 0 - estimation, 1 - cross validation (under construction) :param ncut: number of categories or continuous thresholds :param thresh: an ndarray with the category labels or continuous thresholds :param gcdf: global CDF, not used if trend is present :param trend: an ndarray [ny,ny,ncut] with the local trend proportions or cumulative CDF values :param tmin: property trimming limit :param tmax: property trimming limit :param nx: definition of the grid system (x axis) :param xmn: definition of the grid system (x axis) :param xsiz: definition of the grid system (x axis) :param ny: definition of the grid system (y axis) :param ymn: definition of the grid system (y axis) :param ysiz: definition of the grid system (y axis) :param nxdis: number of discretization points for a block :param nydis: number of discretization points for a block :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: kriging type, 0 - simple kriging and 1 - ordinary kriging :param vario: list with all of the indicator variograms (sill of 1.0) in consistent order with above parameters :return: """ # Checks if utail == 3 or ltail == 3 or middle == 3: print('ERROR - distribution extrapolation option 3 with table is not available') return sim_out if xcol == "" or ycol == "": print('ERROR - must have x and y column in the DataFrame') return sim_out # Set parameters from the include UNEST = -99.0 EPSLON = 1.0e-20 VERSION = 0.001 np.random.seed(seed) colocorr = 0.0 # no collocated cokriging lvm = 0 # no kriging with a locally variable mean sec = []; sec = np.array(sec) # no secondary data ng = 0 # no tabulated values # Find the needed paramters: PMX = 9999.9 MAXSAM = ndmax + 1 MAXEQ = MAXSAM + 1 nxy = nx*ny mik = 0 # full indicator kriging use_trend = False trend1d = np.zeros((nxy,1)) # no trend make a dummy trend if trend.shape[0] == nx and trend.shape[1] == ny and trend.shape[2] == ncut: trend1d = np.zeros((nxy,ncut)) use_trend = True index = 0 for iy in range(0,ny): for ix in range(0,nx): for ic in range(0,ncut): trend1d[index,ic] = trend[ny-iy-1,ix,ic] # copy trend index = index + 1 MAXORD = nxy MAXNOD = nodmax cnodeiv = np.zeros((ncut+1,MAXNOD)) tmp = np.zeros(MAXORD) sstrat = 0 # search data and nodes by default, turned off if unconditional sang1 = 0 # using isotropic search now sanis1 = 1.0 # No covariance lookup table mxctx = int(radius/xsiz)*2+1; mxcty = int(radius/xsiz)*2+1 # print('cov table / spiral search nx, ny '); print(mxctx); print(mxcty) MAXCTX = mxctx MAXCTY = mxcty MAXCXY = MAXCTX * MAXCTY # Grid extents MAXX = nx MAXY = ny MXY = MAXX * MAXY # Kriging system MAXKR1 = 2 * MAXNOD + 2 * MAXSAM + 1 MAXKR2 = MAXKR1 * MAXKR1 MAXSBX = 1 if nx > 1: MAXSBX = int(nx/2) if MAXSBX > 50: MAXSBX=50 MAXSBY = 1 if ny > 1: MAXSBY = int(ny/2) if MAXSBY > 50: MAXSBY=50 # print('ncut'); print(ncut) # load the variogram MAXNST = 2 nst = np.zeros(ncut,dtype=int); c0 = np.zeros(ncut); cc = np.zeros((ncut,MAXNST)) aa = np.zeros((ncut,MAXNST),dtype=int); it = np.zeros((ncut,MAXNST),dtype=int) ang = np.zeros((ncut,MAXNST)); anis = np.zeros((ncut,MAXNST)) # print('varios - 1 vario'); print(vario[1]) for icut in range(0,ncut): # print('icut'); print(icut) nst[icut] = int(vario[icut]['nst']) c0[icut] = vario[icut]['nug']; cc[icut,0] = vario[icut]['cc1']; it[icut,0] = vario[icut]['it1']; ang[icut,0] = vario[icut]['azi1']; aa[icut,0] = vario[icut]['hmaj1']; anis[icut,0] = vario[icut]['hmin1']/vario[icut]['hmaj1']; if nst[icut] == 2: cc[icut,1] = vario[icut]['cc2']; it[icut,1] = vario[icut]['it2']; ang[icut,1] = vario[icut]['azi2']; aa[icut,1] = vario[icut]['hmaj2']; anis[icut,1] = vario[icut]['hmin2']/vario[icut]['hmaj2']; # print('check loaded cov model- icut '); print(icut) # print(cc[icut],aa[icut],it[icut],ang[icut],anis[icut]) # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax MAXDAT = len(df_extract) nd = MAXDAT MAXCUT = ncut MAXNST = 2 MAXROT = MAXNST*MAXCUT+ 1 ikout = np.zeros((nx,ny,ncut)) maxcov = np.zeros(ncut) # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXEQ) rr = np.zeros(MAXEQ) s = np.zeros(MAXEQ) a = np.zeros(MAXEQ*MAXEQ) ikmap = np.zeros((nx,ny,ncut)) vr = np.zeros((MAXDAT,MAXCUT+1)) nviol = np.zeros(MAXCUT) aviol = np.zeros(MAXCUT) xviol = np.zeros(MAXCUT) ccdf = np.zeros(ncut) ccdfo = np.zeros(ncut) ikout = np.zeros((nx,ny,ncut)) x = df_extract[xcol].values y = df_extract[ycol].values v = df_extract[vcol].values MAXTAB = MAXDAT + MAXCUT # tabulated probabilities not used gcut = np.zeros(MAXTAB) # The indicator data are constructed knowing the thresholds and the # data value. # print('ncut'); print(ncut) if ivtype == 0: for icut in range(0,ncut): vr[:,icut] = np.where((v <= thresh[icut] + 0.5) & (v > thresh[icut] - 0.5), '1', '0') else: for icut in range(0,ncut): vr[:,icut] = np.where(v <= thresh[icut], '1', '0') vr[:,ncut] = v # print('loaded data '); print(vr) # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0,MAXDAT)) data_locs = np.column_stack((y,x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics of the input data avg = vr[:,ncut].mean() stdev = vr[:,ncut].std() ss = stdev**2.0 vrmin = vr[:,ncut].min() vrmax = vr[:,ncut].max() print('Data for IK3D: Variable column ' + str(vcol)) print(' Number = ' + str(MAXDAT)) ndh = MAXDAT actloc = np.zeros(MAXDAT, dtype = int) # need to set up data at node locations for i in range(1,MAXDAT): actloc[i] = i # Set up the rotation/anisotropy matrices that are needed for the # variogram and search: print('Setting up rotation matrices for variogram and search') radsqd = radius * radius rotmat = [] for ic in range(0,ncut): rotmat_temp, maxcov[ic] = setup_rotmat(c0[ic],int(nst[ic]),it[ic],cc[ic],ang[ic],9999.9) rotmat.append(rotmat_temp) #return rotmat # Set up the covariance table and the spiral search based just on the first variogram # This is ok as we are not using the covariance look up table, just spiral search for previous nodes isrot = MAXNST*MAXCUT + 1 # note I removed anisotropic search here # print('ang[0]'); print(ang[0]) if nst[0] == 1: global_rotmat = setrot(ang[0,0],ang[0,0],sang1,anis[0,0],anis[0,0],sanis1,nst[0],MAXROT=2) else: global_rotmat = setrot(ang[0,0],ang[1,0],sang1,anis[0,0],anis[1,0],sanis1,nst[0],MAXROT=2) cov_table,tmp2,order,ixnode,iynode,nlooku,nctx,ncty = ctable(MAXNOD,MAXCXY,MAXCTX,MAXCTY,MXY, xsiz,ysiz,isrot,nx,ny,nst[0],c0[0],cc[0],aa[0],it[0],ang[0],anis[0],global_rotmat,radsqd) # print('spiral search number nodes '); print(nlooku) # print('ixnode,iynode'); print(ixnode,iynode) # Initialize accumulators: # not setup yet nk = 0 xk = 0.0 vk = 0.0 for icut in range (0,ncut): nviol[icut] = 0 aviol[icut] = 0.0 xviol[icut] = -1.0 # print('Working on the kriging') # Report on progress from time to time: if koption == 0: nxy = nx*ny nloop = nxy irepo = max(1,min((nxy/10),10000)) else: nloop = 10000000 irepo = max(1,min((nd/10),10000)) ddh = 0.0 # MAIN LOOP OVER ALL THE SIMULAUTIONS: # for isim in range(0,nsim): # will add multiple realizations soon # Work out a random path for this realization: sim = np.random.rand(nx*ny) order = np.zeros(nxy) ind = 0 for ixy in range(0,nxy): order[ixy] = ind ind = ind + 1 # Multiple grid search works with multiples of 4 (yes, that is # soat arbitrary): if mults == 1: for imult in range(0,nmult): nny = int(max(1,ny/((imult+1)*4))) nnx = int(max(1,nx/((imult+1)*4))) # print('multi grid - nnx, nny'); print(nnx,nny) jy = 1 jx = 1 for iy in range(0,nny): if nny > 0: jy = iy*(imult+1)*4 for ix in range(0,nnx): if nnx > 0: jx = ix*(imult+1)*4 index = jx + (jy-1)*nx sim[index] = sim[index] - (imult+1) # Inlize the simulation: sim, order = dsortem(0,nxy,sim,2,b=order) sim.fill(UNEST) tmp.fill(0.0) print('Working on a single realization, seed ' + str(seed)) # print('Random Path'); print(order) # As the data to the closest grid node: TINY = 0.0001 for idd in range(0,nd): # print('data'); print(x[idd],y[idd]) ix = getindex(nx,xmn,xsiz,x[idd]) iy = getindex(ny,ymn,ysiz,y[idd]) ind = ix + (iy-1)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz # print('xx, yy' + str(xx) + ',' + str(yy)) test = abs(xx-x[idd]) + abs(yy-y[idd]) # As this data to the node (unless there is a closer data): if sstrat == 1 or (sstrat == 0 and test <= TINY): if sim[ind] > UNEST: id2 = int(sim[ind]+0.5) test2 = abs(xx-x[id2]) + abs(yy-y[id2]) if test <= test2: sim[ind] = idd else: sim[ind] = idd # As a flag so that this node does not get simulated: # Another data values into the simulated grid: for ind in range(0,nxy): idd = int(sim[ind]+0.5) if idd > 0: sim[ind] = vr[idd] else: tmp[ind] = sim[ind] sim[ind] = UNEST irepo = max(1,min((nxy/10),10000)) # LOOP OVER ALL THE NODES: for ind in range(0,nxy): if (int(ind/irepo)*irepo) == ind: print(' currently on node ' + str(ind)) # Find the index on the random path, check if assigned data and get location index = int(order[ind]+0.5) if (sim[index] > (UNEST+EPSLON)) or (sim[index] < (UNEST*2.0)): continue iy = int((index)/nx) ix = index - (iy)*nx xx = xmn + (ix)*xsiz yy = ymn + (iy)*ysiz current_node = (yy,xx) # print('Current_node'); print(current_node) # Now we'll simulate the point ix,iy,iz. First, get the close data # and make sure that there are enough to actually simulate a value, # we'll only keep the closest "ndmax" data, and look for previously # simulated grid nodes: if sstrat == 0: # print('searching for nearest data') na = -1 # accounting for 0 as first index if ndmax == 1: dist = np.zeros(1); nums = np.zeros(1) dist[0], nums[0] = tree.query(current_node,ndmax) # use kd tree for fast nearest data search else: dist, nums = tree.query(current_node,ndmax) # remove any data outside search radius # print('nums'); print(nums) # print('dist'); print(dist) na = len(dist) nums = nums[dist<radius] dist = dist[dist<radius] na = len(dist) if na < ndmin: continue # bail if not enough data # print('Found ' + str(na) + 'neighbouring data') # print('node search inputs') # print('nodmax ' + str(nodmax)) # print('ixnode'); print(ixnode) # Indicator transform the nearest node data # print('start node search') ncnode, icnode, cnodev, cnodex, cnodey = srchnd(ix,iy,nx,ny,xmn,ymn,xsiz,ysiz,sim,noct,nodmax,ixnode,iynode,nlooku,nctx,ncty,UNEST) if ncnode > 0: for icut in range(0,ncut): cnodeiv[icut,:] = np.where((cnodev <= thresh[icut] + 0.5) & (cnodev > thresh[icut] - 0.5), '1', '0') else: for icut in range(0,ncut): cnodeiv[icut,:] = np.where(cnodev <= thresh[icut], '1', '0') cnodeiv[ncut,:] = cnodev # print('indicator transformed nearest nodes'); print(cnodeiv) # print('srchnd'); print(ncnode,icnode,cnodev,cnodex,cnodey) # print('Result of srchnd, cnodex = '); print(cnodex) nclose = na # print('*****srch node, nclose ' + str(nclose) + ', ncnode ' + str(ncnode)) # print('near data'); print(nums) # print('near data distance'); print(dist) # print('nums'); print(nums) # What cdf value are we looking for? zval = UNEST cdfval = np.random.rand() # Use the global distribution? # check inputs # print('nst'); print(nst) if nclose + ncnode <= 0: # print('nclose & ncnode'); print(nclose, ncnode) zval = beyond(ivtype,ncut,thresh,gcdf,ng,gcut,gcdf,zmin,zmax,ltail,ltpar,middle,mpar,utail,utpar,zval,cdfval) else: # print('kriging') # Estimate the local distribution by indicator kriging: # print('maxcov'); print(maxcov) for ic in range(0,ncut): # print('check kriging cov model- icut '); print(ic) # print('node data values for kriging'); print(cnodev) # print(cc[ic],aa[ic],it[ic],ang[ic],anis[ic],rotmat[ic],maxcov[ic]) #ccdf([ic] = krige(ix,iy,iz,xx,yy,zz,ic,cdf(ic),MAXCTX,MAXCTY,MAXCTZ,MAXKR1,ccdf(ic),MAXROT) if ktype == 0: gmean = gcdf[ic] elif ktype == 2: gmean = trend1d[index,ic] else: gmean = 0 # if locally variable mean it is set from trend in ikrige, otherwise not used # print('gmean'); print(gmean) ccdf[ic], cstdev = ikrige(ix,iy,nx,ny,xx,yy,ktype,x,y,vr[:,ic],sec,colocorr,gmean,trend[:,ic],nums,cov_table,nctx,ncty, icnode,ixnode,iynode,cnodeiv[ic],cnodex,cnodey,nst[ic],c0[ic],9999.9,cc[ic],aa[ic],it[ic],ang[ic],anis[ic], rotmat[ic],maxcov[ic],MAXCTX,MAXCTY,MAXKR1,MAXKR2) # print('ccdf'); print(ccdf) # Correct order relations: ccdfo = ordrel(ivtype,ncut,ccdf) # Draw from the local distribution: zval = beyond(ivtype,ncut,thresh,ccdfo,ng,gcut,gcdf,zmin,zmax,ltail,ltpar,middle,mpar,utail,utpar,zval,cdfval) sim[index] = zval # print('zval'); print(zval) # END MAIN LOOP OVER SIMULATIONS: sim_out = np.zeros((ny,nx)) for ind in range(0,nxy): iy = int((ind)/nx) ix = ind - (iy)*nx sim_out[ny-iy-1,ix] = sim[ind] return sim_out def kb2d_locations( df, xcol, ycol, vcol, tmin, tmax, df_loc, xcol_loc, ycol_loc, ndmin, ndmax, radius, ktype, skmean, vario, ): """GSLIB's KB2D program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Jan, 2019). Version for kriging at a set of spatial locations. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param df_loc: pandas DataFrame with the locations to krige :param xcol: name of the x coordinate column for locations to krige :param ycol: name of the y coordinate column for locations to krige :param ndmin: minimum number of data points to use for kriging a block :param ndmax: maximum number of data points to use for kriging a block :param radius: maximum isotropic search radius :param ktype: :param skmean: :param vario: :return: """ # Constants UNEST = -999. EPSLON = 1.0e-10 VERSION = 2.907 first = True PMX = 9999.0 MAXSAM = ndmax + 1 MAXKD = MAXSAM + 1 MAXKRG = MAXKD * MAXKD # load the variogram nst = vario['nst'] cc = np.zeros(nst); aa = np.zeros(nst); it = np.zeros(nst) ang = np.zeros(nst); anis = np.zeros(nst) c0 = vario['nug']; cc[0] = vario['cc1']; it[0] = vario['it1']; ang[0] = vario['azi1']; aa[0] = vario['hmaj1']; anis[0] = vario['hmin1']/vario['hmaj1']; if nst == 2: cc[1] = vario['cc2']; it[1] = vario['it2']; ang[1] = vario['azi2']; aa[1] = vario['hmaj2']; anis[1] = vario['hmin2']/vario['hmaj2']; # Allocate the needed memory: xa = np.zeros(MAXSAM) ya = np.zeros(MAXSAM) vra = np.zeros(MAXSAM) dist = np.zeros(MAXSAM) nums = np.zeros(MAXSAM) r = np.zeros(MAXKD) rr = np.zeros(MAXKD) s = np.zeros(MAXKD) a = np.zeros(MAXKRG) klist = np.zeros(len(df_loc)) # list of kriged estimates vlist = np.zeros(len(df_loc)) # Load the data df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] # trim values outside tmin and tmax nd = len(df_extract) ndmax = min(ndmax,nd) x = df_extract[xcol].values y = df_extract[ycol].values vr = df_extract[vcol].values # Load the estimation loactions nd_loc = len(df_loc) x_loc = df_loc[xcol].values y_loc = df_loc[ycol].values vr_loc = df_loc[vcol].values # Make a KDTree for fast search of nearest neighbours dp = list((y[i], x[i]) for i in range(0,nd)) data_locs = np.column_stack((y,x)) tree = sp.cKDTree(data_locs, leafsize=16, compact_nodes=True, copy_data=False, balanced_tree=True) # Summary statistics for the data after trimming avg = vr.mean() stdev = vr.std() ss = stdev**2.0 vrmin = vr.min() vrmax = vr.max() # Initialize accumulators: cbb = 0.0 rad2 = radius*radius # Calculate Block Covariance. Check for point kriging. rotmat, maxcov = setup_rotmat(c0,nst,it,cc,ang,PMX) cov = cova2(0.0,0.0,0.0,0.0,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) # Keep this value to use for the unbiasedness constraint: unbias = cov cbb = cov first = False # MAIN LOOP OVER ALL THE BLOCKS IN THE GRID: nk = 0 ak = 0.0 vk = 0.0 for idata in range(len(df_loc)): print('Working on location ' + str(idata)) xloc = x_loc[idata] yloc = y_loc[idata] current_node = (yloc,xloc) # Find the nearest samples within each octant: First initialize # the counter arrays: na = -1 # accounting for 0 as first index dist.fill(1.0e+20) nums.fill(-1) dist, nums = tree.query(current_node,ndmax) # use kd tree for fast nearest data search # remove any data outside search radius na = len(dist) nums = nums[dist<radius] dist = dist[dist<radius] na = len(dist) # Is there enough samples? if na + 1 < ndmin: # accounting for min index of 0 est = UNEST estv = UNEST print('UNEST for Data ' + str(idata) + ', at ' + str(xloc) + ',' + str(yloc)) else: # Put coordinates and values of neighborhood samples into xa,ya,vra: for ia in range(0,na): jj = int(nums[ia]) xa[ia] = x[jj] ya[ia] = y[jj] vra[ia] = vr[jj] # Handle the situation of only one sample: if na == 0: # accounting for min index of 0 - one sample case na = 0 cb1 = cova2(xa[0],ya[0],xa[0],ya[0],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) xx = xa[0] - xloc yy = ya[0] - yloc # Establish Right Hand Side Covariance: cb = cova2(xx,yy,0.0,0.0,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) if ktype == 0: s[0] = cb/cbb est = s[0]*vra[0] + (1.0-s[0])*skmean estv = cbb - s[0] * cb else: est = vra[0] estv = cbb - 2.0*cb + cb1 else: # Solve the Kriging System with more than one sample: neq = na + ktype # accounting for first index of 0 # print('NEQ' + str(neq)) nn = (neq + 1)*neq/2 # Set up kriging matrices: iin=-1 # accounting for first index of 0 for j in range(0,na): # Establish Left Hand Side Covariance Matrix: for i in range(0,na): # was j - want full matrix iin = iin + 1 a[iin] = cova2(xa[i],ya[i],xa[j],ya[j],nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) if ktype == 1: iin = iin + 1 a[iin] = unbias xx = xa[j] - xloc yy = ya[j] - yloc # Establish Right Hand Side Covariance: cb = cova2(xx,yy,0.0,0.0,nst,c0,PMX,cc,aa,it,ang,anis,rotmat,maxcov) r[j] = cb rr[j] = r[j] # Set the unbiasedness constraint: if ktype == 1: for i in range(0,na): iin = iin + 1 a[iin] = unbias iin = iin + 1 a[iin] = 0.0 r[neq-1] = unbias rr[neq-1] = r[neq] # Solve the Kriging System: # print('NDB' + str(ndb)) # print('NEQ' + str(neq) + ' Left' + str(a) + ' Right' + str(r)) # stop s = ksol_numpy(neq,a,r) ising = 0 # need to figure this out # print('weights' + str(s)) # stop # Write a warning if the matrix is singular: if ising != 0: print('WARNING KB2D: singular matrix') print(' for block' + str(ix) + ',' + str(iy)+ ' ') est = UNEST estv = UNEST else: # Compute the estimate and the kriging variance: est = 0.0 estv = cbb sumw = 0.0 if ktype == 1: estv = estv - (s[na])*unbias for i in range(0,na): sumw = sumw + s[i] est = est + s[i]*vra[i] estv = estv - s[i]*rr[i] if ktype == 0: est = est + (1.0-sumw)*skmean klist[idata] = est vlist[idata] = estv if est > UNEST: nk = nk + 1 ak = ak + est vk = vk + est*est # END OF MAIN LOOP OVER ALL THE BLOCKS: if nk >= 1: ak = ak / float(nk) vk = vk/float(nk) - ak*ak print(' Estimated ' + str(nk) + ' blocks ') print(' average ' + str(ak) + ' variance ' + str(vk)) return klist, vlist #Partial Correlation in Python (clone of Matlab's partialcorr) #This uses the linear regression approach to compute the partial correlation #(might be slow for a huge number of variables). The algorithm is detailed here: # http://en.wikipedia.org/wiki/Partial_correlation#Using_linear_regression #Taking X and Y two variables of interest and Z the matrix with all the variable minus {X, Y}, #the algorithm can be summarized as # 1) perform a normal linear least-squares regression with X as the target and Z as the predictor # 2) calculate the residuals in Step #1 # 3) perform a normal linear least-squares regression with Y as the target and Z as the predictor # 4) calculate the residuals in Step #3 # 5) calculate the correlation coefficient between the residuals from Steps #2 and #4; # The result is the partial correlation between X and Y while controlling for the effect of Z #Date: Nov 2014 #Author: Fabian Pedregosa-Izquierdo, [email protected] #Testing: Valentina Borghesani, [email protected] def partial_corr(C): # Returns the sample linear partial correlation coefficients between pairs of variables in C, controlling # for the remaining variables in C. # Parameters # C : array-like, shape (n, p) # Array with the different variables. Each column of C is taken as a variable # Returns # P : array-like, shape (p, p) # P[i, j] contains the partial correlation of C[:, i] and C[:, j] controlling # for the remaining variables in C. C = np.asarray(C) p = C.shape[1] P_corr = np.zeros((p, p), dtype=np.float) for i in range(p): P_corr[i, i] = 1 for j in range(i+1, p): idx = np.ones(p, dtype=np.bool) idx[i] = False idx[j] = False beta_i = linalg.lstsq(C[:, idx], C[:, j])[0] beta_j = linalg.lstsq(C[:, idx], C[:, i])[0] res_j = C[:, j] - C[:, idx].dot( beta_i) res_i = C[:, i] - C[:, idx].dot(beta_j) corr = stats.pearsonr(res_i, res_j)[0] P_corr[i, j] = corr P_corr[j, i] = corr return P_corr def semipartial_corr(C): # Michael Pyrcz modified the function above by Fabian Pedregosa-Izquierdo, [email protected] for semipartial correlation C = np.asarray(C) p = C.shape[1] P_corr = np.zeros((p, p), dtype=np.float) for i in range(p): P_corr[i, i] = 1 for j in range(i+1, p): idx = np.ones(p, dtype=np.bool) idx[i] = False idx[j] = False beta_i = linalg.lstsq(C[:, idx], C[:, j])[0] res_j = C[:, j] - C[:, idx].dot( beta_i) res_i = C[:, i] # just use the value, not a residual corr = stats.pearsonr(res_i, res_j)[0] P_corr[i, j] = corr P_corr[j, i] = corr return P_corr def sqdist3(x1,y1,z1,x2,y2,z2,ind,rotmat): """Squared Anisotropic Distance Calculation Given Matrix Indicator - 3D This routine calculates the anisotropic distance between two points given the coordinates of each point and a definition of the anisotropy. Converted from original fortran GSLIB (Deutsch and Journel, 1998) to Python by Wendi Liu, University of Texas at Austin INPUT VARIABLES: x1,y1,z1 Coordinates of first point x2,y2,z2 Coordinates of second point ind The rotation matrix to use rotmat The rotation matrices""" dx = x1 - x2 dy = y1 - y2 dz = z1 - z2 sqdist = 0.0 for i in range(3): cont = rotmat[ind, i, 0] * dx + rotmat[ind, i, 1] * dy + rotmat[ind, i, 2] * dz sqdist += cont**2 return sqdist def setrot3(ang1,ang2,ang3,anis1,anis2,ind,rotmat): """Sets up an Anisotropic Rotation Matrix - 3D Sets up the matrix to transform cartesian coordinates to coordinates accounting for angles and anisotropy Converted from original fortran GSLIB (Deutsch and Journel, 1998) to Python by Wendi Liu, University of Texas at Austin INPUT PARAMETERS: ang1 Azimuth angle for principal direction ang2 Dip angle for principal direction ang3 Third rotation angle anis1 First anisotropy ratio anis2 Second anisotropy ratio ind matrix indicator to initialize rotmat rotation matrices Converts the input angles to three angles which make more mathematical sense: alpha angle between the major axis of anisotropy and the E-W axis. Note: Counter clockwise is positive. beta angle between major axis and the horizontal plane. (The dip of the ellipsoid measured positive down) theta Angle of rotation of minor axis about the major axis of the ellipsoid.""" DEG2RAD=np.pi/180.0; EPSLON=1e-20 if (ang1 >= 0.0)&(ang1<270.0): alpha = (90.0 - ang1) * DEG2RAD else: alpha = (450.0 - ang1) * DEG2RAD beta = -1.0 * ang2 *DEG2RAD theta = ang3 * DEG2RAD sina = np.sin(alpha) sinb = np.sin(beta) sint = np.sin(theta) cosa = np.cos(alpha) cosb = np.cos(beta) cost = np.cos(theta) ### Construct the rotation matrix in the required memory afac1 = 1.0/max(anis1, EPSLON) afac2 = 1.0/max(anis2, EPSLON) rotmat[ind,0,0] = cosb * cosa rotmat[ind,0,1] = cosb * sina rotmat[ind,0,2] = -sinb rotmat[ind,1,0] = afac1*(-cost*sina + sint*sinb*cosa) rotmat[ind,1,1] = afac1*(cost*cosa + sint*sinb*sina) rotmat[ind,1,2] = afac1*( sint * cosb) rotmat[ind,2,0] = afac2*(sint*sina + cost*sinb*cosa) rotmat[ind,2,1] = afac2*(-sint*cosa + cost*sinb*sina) rotmat[ind,2,2] = afac2*(cost * cosb) return rotmat def gammabar(xsiz, ysiz, zsiz,nst,c0,it,cc,hmaj,hmin,hvert): """This program calculates the gammabar value from a 3D semivariogram model""" """Converted from original fortran GSLIB (Deutsch and Journel, 1998) to Python by Wendi Liu, University of Texas at Austin""" ###Initialization rotmat = np.zeros((5, 3, 3)) EPSLON = 1.0e-20 MAXNST=4 maxcov=1.0 cmax = c0 nx = 3 ny = 3 nz = 6 ang1 = np.zeros((MAXNST,)) #azimuth ang2 = np.ones((MAXNST,))*90.0 #dip ang3 = np.zeros((MAXNST,)) #plenge anis1 = np.zeros((MAXNST,)) anis2 = np.zeros((MAXNST,)) for i in range(nst): anis1[i] = hmin[i]/max(hmaj[i],EPSLON) anis2[i] = hvert[i]/max(hmaj[i],EPSLON) rotmat = setrot3(ang1[i],ang2[i],ang3[i],anis1[i],anis2[i],i,rotmat) cmax,cov = cova3(0.0,0.0,0.0,0.0,0.0,0.0,nst,c0,it,cc,hmaj,rotmat,cmax) ##Discretization parameters xsz = xsiz/nx xmn = xsz/2.0 xzero = xsz * 0.0001 ysz = ysiz/ny ymn = ysz/2.0 yzero = ysz * 0.0001 zsz = zsiz/nz zmn = zsz/2.0 zzero = zsz * 0.0001 ##Calculate Gammabar gb = 0.0 for ix in range(nx): xxi = xmn +(ix-1)*xsz+xzero for jx in range(nx): xxj = xmn +(jx-1)*xsz for iy in range(ny): yyi = ymn +(iy-1)*ysz+yzero for jy in range(ny): yyj = ymn +(jy-1)*ysz for iz in range(nz): zzi = zmn +(iz-1)*zsz+zzero for jz in range(nz): zzj = zmn +(jz-1)*zsz cmax,cov = cova3(xxi,yyi,zzi,xxj,yyj,zzj,nst,c0,it,cc,hmaj,rotmat,cmax) gb += maxcov-cov gb = gb/((nx*ny*nz)**2) return gb def gam_3D(array, tmin, tmax, xsiz, ysiz, zsiz, ixd, iyd, izd, nlag, isill): """GSLIB's GAM program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Nov, 2019). :param array: 2D gridded data / model :param tmin: property trimming limit :param tmax: property trimming limit :param xsiz: grid cell extents in x direction :param ysiz: grid cell extents in y direction :param zsiz: grid cell extents in z direction :param ixd: lag offset in grid cells :param iyd: lag offset in grid cells :param izd: lag offset in grid cells :param nlag: number of lags to calculate :param isill: 1 for standardize sill :return: TODO """ if array.ndim ==3: nz, ny, nx = array.shape elif array.ndim == 2: ny, nx = array.shape elif array.ndim == 1: ny, nx = 1, len(array) nvarg = 1 # for multiple variograms repeat the program nxyz = nx * ny * nz # TODO: not used mxdlv = nlag # Allocate the needed memory lag = np.zeros(mxdlv) vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) ivtail = np.zeros(nvarg + 2) ivhead = np.zeros(nvarg + 2) ivtype = np.zeros(nvarg + 2) ivtail[0] = 0 ivhead[0] = 0 ivtype[0] = 0 # Summary statistics for the data after trimming inside = (array > tmin) & (array < tmax) avg = array[(array > tmin) & (array < tmax)].mean() # TODO: not used stdev = array[(array > tmin) & (array < tmax)].std() var = stdev ** 2.0 vrmin = array[(array > tmin) & (array < tmax)].min() # TODO: not used vrmax = array[(array > tmin) & (array < tmax)].max() # TODO: not used num = ((array > tmin) & (array < tmax)).sum() # TODO: not used # For the fixed seed point, loop through all directions for iz in range(0, nz): for iy in range(0, ny): for ix in range(0, nx): if inside[iz, iy, ix]: vrt = array[iz, iy, ix] ixinc = ixd iyinc = iyd izinc = izd ix1 = ix iy1 = iy iz1 = iz for il in range(0, nlag): ix1 = ix1 + ixinc if 0 <= ix1 < nx: iy1 = iy1 + iyinc if 1 <= iy1 < ny: if 1 <= iz1 < nz: if inside[iz1, iy1, ix1]: vrh = array[iz1, iy1, ix1] npp[il] = npp[il] + 1 tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) ** 2.0) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag): if npp[il] > 0: rnum = npp[il] lag[il] = np.sqrt((ixd * xsiz * il) ** 2 + (iyd * ysiz * il) ** 2 + (izd * zsiz * il) ** 2) vario[il] = vario[il] / float(rnum) hm[il] = hm[il] / float(rnum) tm[il] = tm[il] / float(rnum) # Standardize by the sill if isill == 1: vario[il] = vario[il] / var # Semivariogram vario[il] = 0.5 * vario[il] return lag, vario, npp def make_variogram_3D( nug, nst, it1, cc1, azi1, dip1, hmax1, hmed1, hmin1, it2=1, cc2=0, azi2=0, dip2=0, hmax2=0, hmed2=0, hmin2=0, ): """Make a dictionary of variogram parameters for application with spatial estimation and simulation. :param nug: Nugget constant (isotropic) :param nst: Number of structures (up to 2) :param it1: Structure of 1st variogram (1: Spherical, 2: Exponential, 3: Gaussian) :param cc1: Contribution of 2nd variogram :param azi1: Azimuth of 1st variogram :param dip1: Dip of 1st variogram :param hmax1: Range in major direction (Horizontal) :param hmed1: Range in minor direction (Horizontal) :param hmin1: Range in vertical direction :param it2: Structure of 2nd variogram (1: Spherical, 2: Exponential, 3: Gaussian) :param cc2: Contribution of 2nd variogram :param azi2: Azimuth of 2nd variogram :param dip1: Dip of 2nd variogram :param hmax2: Range in major direction (Horizontal) :param hmed2: Range in minor direction (Horizontal) :param hmin2: Range in vertical direction :return: TODO """ if cc2 == 0: nst = 1 var = dict( [ ("nug", nug), ("nst", nst), ("it1", it1), ("cc1", cc1), ("azi1", azi1), ("dip1", dip1), ("hmax1", hmax1), ("hmed1", hmed1), ("hmin1", hmin1), ("it2", it2), ("cc2", cc2), ("azi2", azi2), ("dip2", dip2), ("hmax2", hmax2), ("hmed2", hmed2), ("hmin2", hmin2), ] ) if nug + cc1 + cc2 != 1: print( "\x1b[0;30;41m make_variogram Warning: " "sill does not sum to 1.0, do not use in simulation \x1b[0m" ) if ( cc1 < 0 or cc2 < 0 or nug < 0 or hmax1 < 0 or hmax2 < 0 or hmin1 < 0 or hmin2 < 0 ): print( "\x1b[0;30;41m make_variogram Warning: " "contributions and ranges must be all positive \x1b[0m" ) if hmax1 < hmed1 or hmax2 < hmed2: print( "\x1b[0;30;41m make_variogram Warning: " "major range should be greater than minor range \x1b[0m" ) return var def vmodel_3D( nlag, xlag, azm, dip, vario ): """GSLIB's VMODEL program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Nov, 2019). :param nlag: number of variogram lags :param xlag: size of the lags :param axm: direction by 3D azimuth, 000 is y positive, 090 is x positive :param dip: direction by 3D dip, 000 is horizontal to x-y plane, 090 is perpendicular to x-y plane :param vario: dictionary with the variogram parameters :return: """ # Parameters MAXNST=4 DEG2RAD=3.14159265/180.0 MAXROT=MAXNST+1 EPSLON = 1.0e-20 VERSION= 1.01 # Declare arrays index = np.zeros(nlag+1) h = np.zeros(nlag+1) gam = np.zeros(nlag+1) cov = np.zeros(nlag+1) ro = np.zeros(nlag+1) # Load the variogram nst = vario["nst"] cc = np.zeros(nst) aa = np.zeros(nst) it = np.zeros(nst) ang_azi = np.zeros(nst) ang_dip = np.zeros(nst) anis = np.zeros(nst) anis_v = np.zeros(nst) c0 = vario["nug"] cc[0] = vario["cc1"] it[0] = vario["it1"] ang_azi[0] = vario["azi1"] ang_dip[0] = vario["dip1"] aa[0] = vario["hmax1"] anis[0] = vario["hmed1"] / vario["hmax1"] anis_v[0] = vario["hmin1"] / vario["hmax1"] if nst == 2: cc[1] = vario["cc2"] it[1] = vario["it2"] ang_azi[1] = vario["azi2"] ang_dip[1] = vario["dip2"] aa[1] = vario["hmax2"] anis[1] = vario["hmed2"] / vario["hmax2"] anis_v[1] = vario["hmin2"] / vario["hmax2"] xoff = math.sin(DEG2RAD*azm)*math.cos(DEG2RAD*dip)*xlag yoff = math.cos(DEG2RAD*azm)*math.cos(DEG2RAD*dip)*xlag zoff = math.sin(DEG2RAD*dip)*xlag print(' x,y,z offsets = ' + str(xoff) + ',' + str(yoff) + ',' + str(zoff)) rotmat, maxcov = setup_rotmat_3D(c0, nst, it, cc, ang_azi, ang_dip, 99999.9) xx = 0.0; yy = 0.0; zz = 0.0; for il in range(0,nlag+1): index[il] = il cov[il] = cova3(0.0,0.0,0.0,xx,yy,zz,nst,c0,9999.9,cc,aa,it,anis, anis_v, rotmat, maxcov) gam[il] = maxcov - cov[il] ro[il] = cov[il]/maxcov h[il] = math.sqrt(max((xx*xx + yy*yy + zz*zz),0.0)) xx = xx + xoff yy = yy + yoff zz = zz + zoff # finished return index,h,gam,cov,ro @jit(nopython=True) def setup_rotmat_3D(c0, nst, it, cc, ang_azi, ang_dip, pmx): """Setup rotation matrix. :param c0: nugget constant (isotropic) :param nst: number of nested structures (max. 4) :param it: Variogram shapes (i.e., Gaussian, Exponential, Spherical) of each nested structure :param cc: multiplicative factor of each nested structure :param ang_azi: azimuths of each nested structure :param ang_dip: dips of each nested structure :param pmx: constant 9999.0 :return: TODO """ PI = 3.141_592_65 DTOR = PI / 180.0 # The first time around, re-initialize the cosine matrix for the variogram # structures rotmat = np.zeros((9, nst)) maxcov = c0 for js in range(0, nst): azmuth = (90.0 + ang_azi[js]) * DTOR dip = (ang_dip[js]) * DTOR rotmat[0, js] = math.cos(azmuth) rotmat[1, js] = -1 * math.sin(azmuth) rotmat[2, js] = 0 rotmat[3, js] = math.cos(dip) * math.sin(azmuth) rotmat[4, js] = math.cos(dip) * math.cos(azmuth) rotmat[5, js] = -1 * math.sin(dip) rotmat[6, js] = math.sin(dip) * math.sin(azmuth) rotmat[7, js] = math.sin(dip) * math.cos(azmuth) rotmat[8, js] = math.cos(dip) if it[js] == 4: maxcov = maxcov + pmx else: maxcov = maxcov + cc[js] return rotmat, maxcov @jit(nopython=True) def cova3(x1, y1, z1, x2, y2, z2, nst, c0, pmx, cc, aa, it, anis, anis_v, rotmat, maxcov): """Calculate the covariance associated with a variogram model specified by a nugget effect and nested variogram structures. :param x1: x coordinate of first point :type x1: float :param y1: y coordinate of first point :type y1: float :param z1: z coordinate of first point :type z1: float :param x2: x coordinate of second point :type x2: float :param y2: y coordinate of second point :type y2: float :param z2: z coordinate of second point :type z2: float :param nst: number of nested structures (maximum of 4) :type nst: int :param c0: isotropic nugget constant (TODO: not used) :type c0: float :param pmx: Maximum variogram value needed for kriging when using Power model. Each nested structure that uses the power model uses a unique value of PMX. Therefore, PMX needs to be large enough to account for the singly largest structure that uses the Power model. :type pmx: float :param cc: multiplicative factor of each nested structure :type cc: an array :param aa: parameter `a` of each nested structure :type aa: an array :param it: Type of each nested structure: 1: spherical model of range `a` 2: exponential model of param `a` (practical range is 3`a`) 3: gaussian model of param `a` (practical range is `a`*sqrt(3)) 4: power model of power `a` (a must be 0 < `a` < 2). if linear model: a = 1; c = slope :type it: an array :param ang: Azmiuth angle for the principal direction of continuity (measured clockwise in degrees from y); TODO: not used :type ang: an array :param anis: Horizontal aspect ratio :type anis: an array :param anis_v: Vertical aspect ratio :type anis_v: an array :param rotmat: rotation matrices :type rotmat: an array :param maxcov: maximum covariance value :type maxcov: float :return: returns the covariance obtained from the variagram model :type return: float """ """ Revised from Wendi Liu's code """ EPSLON = 0.000001 # Check for very small distance dx = x2 - x1 dy = y2 - y1 dz = z2 - z1 if (dx * dx + dy * dy + dz * dz) < EPSLON: cova3_ = maxcov return cova3_ # Non-zero distance, loop over all the structures cova3_ = 0.0 for js in range(0, nst): # Compute the appropriate structural distance dx1 = dx * rotmat[0, js] + dy * rotmat[1, js] + dz * rotmat[2, js] dy1 = (dx * rotmat[3, js] + dy * rotmat[4, js] + dz * rotmat[5, js] ) / anis[js] dz1 = (dx * rotmat[6, js] + dy * rotmat[7, js] + dz * rotmat[8, js] ) / anis_v[js] h = math.sqrt(max((dx1 * dx1 + dy1 * dy1 + dz1 * dz1 ), 0.0)) if it[js] == 1: # Spherical model hr = h / aa[js] if hr < 1.0: cova3_ = cova3_ + cc[js] * (1.0 - hr * (1.5 - 0.5 * hr * hr)) elif it[js] == 2: # Exponential model cova3_ = cova3_ + cc[js] * np.exp(-3.0 * h / aa[js]) elif it[js] == 3: # Gaussian model hh = -3.0 * (h * h) / (aa[js] * aa[js]) cova3_ = cova3_ + cc[js] * np.exp(hh) elif it[js] == 4: # Power model cov1 = pmx - cc[js] * (h ** aa[js]) cova3_ = cova3_ + cov1 return cova3_ def gamv_3D( df, xcol, ycol, zcol, vcol, tmin, tmax, xlag, xltol, nlag, azm, dip, atol, dtol, bandwh, isill, ): """GSLIB's GAMV program (Deutsch and Journel, 1998) converted from the original Fortran to Python by Michael Pyrcz, the University of Texas at Austin (Nov, 2019). Note simplified for 2D, semivariogram only and one direction at a time. :param df: pandas DataFrame with the spatial data :param xcol: name of the x coordinate column :param ycol: name of the y coordinate column :param zcol: name of the z coordinate column :param vcol: name of the property column :param tmin: property trimming limit :param tmax: property trimming limit :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param dip: dip :param atol: azimuth tolerance :param dtol: dip tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :param isill: 1 for standardize sill :return: TODO """ # Load the data # Trim values outside tmin and tmax df_extract = df.loc[(df[vcol] >= tmin) & (df[vcol] <= tmax)] nd = len(df_extract) # TODO: not used x = df_extract[xcol].values y = df_extract[ycol].values z = df_extract[zcol].values vr = df_extract[vcol].values # Summary statistics for the data after trimming avg = vr.mean() # TODO: not used stdev = vr.std() sills = stdev ** 2.0 ssq = sills # TODO: not used vrmin = vr.min() # TODO: not used vrmax = vr.max() # TODO: not used # Define the distance tolerance if it isn't already if xltol < 0.0: xltol = 0.5 * xlag # Loop over combinatorial of data pairs to calculate the variogram dis, vario, npp = variogram_loop_3D( x, y, z, vr, xlag, xltol, nlag, azm, dip, atol, dtol, bandwh ) # Standardize sill to one by dividing all variogram values by the variance for il in range(0, nlag + 2): if isill == 1: vario[il] = vario[il] / sills # Apply 1/2 factor to go from variogram to semivariogram vario[il] = 0.5 * vario[il] return dis, vario, npp def cova(x, y, z, vr, xlag, xltol, nlag, azm, dip, atol, dtol, bandwh): """Calculate the variogram by looping over combinatorial of data pairs. :param x: x values :param y: y values :param z: z values :param vr: property values :param xlag: lag distance :param xltol: lag distance tolerance :param nlag: number of lags to calculate :param azm: azimuth :param dip: dip :param atol: azimuth tolerance :param dtol: dip tolerance :param bandwh: horizontal bandwidth / maximum distance offset orthogonal to azimuth :return: TODO """ # Allocate the needed memory nvarg = 1 mxdlv = nlag + 2 # in gamv the npp etc. arrays go to nlag + 2 dis = np.zeros(mxdlv) lag = np.zeros(mxdlv) # TODO: not used vario = np.zeros(mxdlv) hm = np.zeros(mxdlv) tm = np.zeros(mxdlv) hv = np.zeros(mxdlv) # TODO: not used npp = np.zeros(mxdlv) #ivtail = np.zeros(nvarg + 2) #ivhead = np.zeros(nvarg + 2) #ivtype = np.ones(nvarg + 2) #ivtail[0] = 0 #ivhead[0] = 0 #ivtype[0] = 0 EPSLON = 1.0e-20 nd = len(x) # The mathematical azimuth is measured counterclockwise from EW and # not clockwise from NS as the conventional azimuth is azmuth = (90.0 - azm) * math.pi / 180.0 dip = (dip) * math.pi / 180.0 uvxazm = math.cos(azmuth) * math.cos(dip) uvyazm = math.sin(azmuth) * math.cos(dip) uvzdip = math.sin(dip) if atol <= 0.0: csatol = math.cos(45.0 * math.pi / 180.0) else: csatol = math.cos(atol * math.pi / 180.0) if dtol <= 0.0: csdtol = math.cos(30.0 * math.pi / 180.0) else: csdtol = math.cos(dtol * math.pi / 180.0) # Initialize the arrays for each direction, variogram, and lag nsiz = nlag + 2 # TODO: not used dismxs = ((float(nlag) + 0.5 - EPSLON) * xlag) ** 2 # Main loop over all pairs for i in range(0, nd): for j in range(0, nd): # Definition of the lag corresponding to the current pair dx = x[j] - x[i] dy = y[j] - y[i] dz = z[j] - z[i] dxs = dx * dx dys = dy * dy dzs = dz * dz hs = dxs + dys + dzs if hs <= dismxs: if hs < 0.0: hs = 0.0 h = np.sqrt(hs) # Determine which lag this is and skip if outside the defined # distance tolerance if h <= EPSLON: lagbeg = 0 lagend = 0 else: lagbeg = -1 lagend = -1 for ilag in range(1, nlag + 1): # reduced to -1 if ( (xlag * float(ilag - 1) - xltol) <= h <= (xlag * float(ilag - 1) + xltol) ): if lagbeg < 0: lagbeg = ilag lagend = ilag if lagend >= 0: # Definition of the direction corresponding to the current # pair. All directions are considered (overlapping of # direction tolerance cones is allowed) # Check for an acceptable azimuth angle dxy = np.sqrt(max((dxs + dys), 0.0)) dxyz = np.sqrt(max((dxs + dys + dzs), 0.0)) if dxy < EPSLON: dcazm = 1.0 else: dcazm = (dx * uvxazm + dy * uvyazm) / dxy if dxyz < EPSLON: dcdip = 1.0 else: dcdip = (dx * uvxazm + dy * uvyazm + dz * uvzdip) / dxyz # Check the horizontal bandwidth criteria (maximum deviation # perpendicular to the specified direction azimuth) band = np.cross([dx,dy,dz], [uvxazm, uvyazm, uvzdip]) band = np.sqrt(band.dot(band)) # Apply all the previous checks at once to avoid a lot of # nested if statements if (abs(dcazm) >= csatol) and (abs(dcdip) >= csdtol) and (abs(band) <= bandwh): # Check whether or not an omni-directional variogram is # being computed omni = False if atol >= 90.0: omni = True # For this variogram, sort out which is the tail and # the head value # iv = 0 # hardcoded just one variogram # it = ivtype[iv] # TODO: not used if dcazm >= 0.0: vrh = vr[i] vrt = vr[j] if omni: vrtpr = vr[i] vrhpr = vr[j] else: vrh = vr[j] vrt = vr[i] if omni: vrtpr = vr[j] vrhpr = vr[i] # Reject this pair on the basis of missing values # Data was trimmed at the beginning # The Semivariogram (all other types of measures are # removed for now) for il in range(lagbeg, lagend + 1): npp[il] = npp[il] + 1 dis[il] = dis[il] + h tm[il] = tm[il] + vrt hm[il] = hm[il] + vrh vario[il] = vario[il] + ((vrh - vrt) * (vrh - vrt)) if omni: npp[il] = npp[il] + 1.0 dis[il] = dis[il] + h tm[il] = tm[il] + vrtpr hm[il] = hm[il] + vrhpr vario[il] = vario[il] + ( (vrhpr - vrtpr) * (vrhpr - vrtpr) ) # Get average values for gam, hm, tm, hv, and tv, then compute the correct # "variogram" measure for il in range(0, nlag + 2): i = il if npp[i] > 0: rnum = npp[i] dis[i] = dis[i] / rnum vario[i] = vario[i] / rnum hm[i] = hm[i] / rnum tm[i] = tm[i] / rnum return dis, vario, npp
36.29457
203
0.537044
79406b7cda8ca3fd218970e93ffa1d81f600b07e
6,473
py
Python
burplist/settings.py
ngshiheng/burplist
87c4340e63fde476b25c3e7674b9486e8225f87f
[ "MIT" ]
7
2021-11-02T03:19:23.000Z
2022-01-27T08:05:51.000Z
burplist/settings.py
ngshiheng/burplist
87c4340e63fde476b25c3e7674b9486e8225f87f
[ "MIT" ]
10
2021-11-10T08:20:50.000Z
2022-03-04T15:23:25.000Z
burplist/settings.py
ngshiheng/burplist
87c4340e63fde476b25c3e7674b9486e8225f87f
[ "MIT" ]
2
2021-11-05T04:27:02.000Z
2022-01-27T08:05:53.000Z
import copy import os import scrapy.utils.log from colorlog import ColoredFormatter # Logging color_formatter = ColoredFormatter( ( '%(log_color)s%(levelname)-5s%(reset)s ' '%(yellow)s[%(asctime)s]%(reset)s' '%(white)s %(name)s %(funcName)s %(bold_purple)s:%(lineno)d%(reset)s ' '%(log_color)s%(message)s%(reset)s' ), datefmt='%d-%B-%y %H:%M:%S', log_colors={ 'DEBUG': 'blue', 'INFO': 'bold_cyan', 'WARNING': 'red', 'ERROR': 'bg_bold_red', 'CRITICAL': 'red,bg_white', }, ) _get_handler = copy.copy(scrapy.utils.log._get_handler) def _get_handler_custom(*args, **kwargs): handler = _get_handler(*args, **kwargs) handler.setFormatter(color_formatter) return handler scrapy.utils.log._get_handler = _get_handler_custom # Burplist BOT_NAME = 'burplist' ENVIRONMENT = os.environ.get('ENVIRONMENT', 'development') SPIDER_MODULES = ['burplist.spiders'] NEWSPIDER_MODULE = 'burplist.spiders' # Scraper API SCRAPER_API_KEY = os.environ.get('SCRAPER_API_KEY') # Management Commands COMMANDS_MODULE = 'burplist.commands' # Crawl responsibly by identifying yourself (and your website) on the user-agent # USER_AGENT = 'burplist (+http://www.yourdomain.com)' # Obey robots.txt rules ROBOTSTXT_OBEY = os.environ.get('ROBOTSTXT_OBEY', True) # Configure maximum concurrent requests performed by Scrapy (default: 16) # Currently `CONCURRENT_REQUESTS` is set to 5 as we are using Scaper API free tier (https://www.scraperapi.com/pricing) CONCURRENT_REQUESTS = 5 if SCRAPER_API_KEY is not None else 16 RETRY_TIMES = os.environ.get('RETRY_TIMES', 10) # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs DOWNLOAD_DELAY = 0 if SCRAPER_API_KEY is not None else 2 # The download delay setting will honor only one of: # CONCURRENT_REQUESTS_PER_DOMAIN = 16 # CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) # COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) # TELNETCONSOLE_ENABLED = False # Override the default request headers: # DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', # } # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html # SPIDER_MIDDLEWARES = { # 'burplist.middlewares.BurplistSpiderMiddleware': 543, # 'scrapy_splash.SplashDeduplicateArgsMiddleware': 100, # } # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html DOWNLOADER_MIDDLEWARES = { # 'burplist.middlewares.BurplistDownloaderMiddleware': 543, 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None, 'scrapy.downloadermiddlewares.retry.RetryMiddleware': None, 'scrapy_fake_useragent.middleware.RandomUserAgentMiddleware': 400, 'scrapy_fake_useragent.middleware.RetryUserAgentMiddleware': 401, # 'scrapy_splash.SplashCookiesMiddleware': 723, # 'scrapy_splash.SplashMiddleware': 725, 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810, } # scrapy-fake-useragent # https://github.com/alecxe/scrapy-fake-useragent FAKEUSERAGENT_PROVIDERS = [ 'scrapy_fake_useragent.providers.FakeUserAgentProvider', # This is the first provider we'll try 'scrapy_fake_useragent.providers.FakerProvider', # If FakeUserAgentProvider fails, we'll use faker to generate a user-agent string for us 'scrapy_fake_useragent.providers.FixedUserAgentProvider', # Fall back to USER_AGENT value ] USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36' # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html EXTENSIONS = { 'burplist.extensions.SentryLogging': -1, # 'scrapy.extensions.telnet.TelnetConsole': None, } # if ENVIRONMENT == 'main': # EXTENSIONS['scrapy.extensions.statsmailer.StatsMailer'] = 500 # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html ITEM_PIPELINES = { 'burplist.pipelines.ExistingProductPricePipeline': 300, 'burplist.pipelines.NewProductPricePipeline': 400, } # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html AUTOTHROTTLE_ENABLED = True # The initial download delay AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: # AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings HTTPCACHE_ENABLED = True HTTPCACHE_EXPIRATION_SECS = os.environ.get('HTTPCACHE_EXPIRATION_SECS', 0) # HTTPCACHE_DIR = 'httpcache' # HTTPCACHE_IGNORE_HTTP_CODES = [] # HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage' # Splash # SPLASH_URL = 'http://localhost:8050' # DUPEFILTER_CLASS = 'scrapy_splash.SplashAwareDupeFilter' # HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage' # Sentry # https://stackoverflow.com/questions/25262765/handle-all-exception-in-scrapy-with-sentry SENTRY_DSN = os.environ.get('SENTRY_DSN') # PostgreSQL DATABASE_CONNECTION_STRING = '{drivername}://{user}:{password}@{host}:{port}/{db_name}'.format( drivername='postgresql', user=os.environ.get('PG_USERNAME', 'postgres'), password=os.environ.get('PG_PASSWORD', 'developmentpassword'), host=os.environ.get('PG_HOST', 'localhost'), port=os.environ.get('PG_PORT', '5432'), db_name=os.environ.get('PG_DATABASE', 'burplist'), ) # Email Settings MAIL_FROM = os.environ.get('MAIL_FROM') MAIL_HOST = os.environ.get('MAIL_HOST') MAIL_PORT = os.environ.get('MAIL_PORT') MAIL_USER = os.environ.get('MAIL_USER') MAIL_PASS = os.environ.get('MAIL_PASS') MAIL_TLS = os.environ.get('MAIL_TLS', True) MAIL_SSL = os.environ.get('MAIL_SSL', True) STATSMAILER_RCPTS = [os.environ.get('STATSMAILER_RCPTS')] # TODO: Get a list from environment variable
35.961111
142
0.753283
79406d8a9ec8f1bc3d6fb34d910f38ae9615b95c
11,044
py
Python
src/cone/app/tests/test_browser_sharing.py
lenadax/cone.app
b25c55aedb85e45a962003d2767a22a927cc61c0
[ "BSD-3-Clause" ]
1
2022-03-13T17:51:09.000Z
2022-03-13T17:51:09.000Z
src/cone/app/tests/test_browser_sharing.py
lenadax/cone.app
b25c55aedb85e45a962003d2767a22a927cc61c0
[ "BSD-3-Clause" ]
1
2021-08-06T08:12:00.000Z
2021-08-06T08:12:00.000Z
src/cone/app/tests/test_browser_sharing.py
lenadax/cone.app
b25c55aedb85e45a962003d2767a22a927cc61c0
[ "BSD-3-Clause" ]
null
null
null
from cone.app import testing from cone.app.browser.ajax import ajax_tile from cone.app.browser.sharing import sharing from cone.app.model import BaseNode from cone.app.testing.mock import SharingNode from cone.tile import render_tile from cone.tile.tests import TileTestCase from pyramid.exceptions import HTTPForbidden class TestBrowserSharing(TileTestCase): layer = testing.security def test_render_sharing_view(self): model = SharingNode(name='root') request = self.layer.new_request() err = self.expectError( HTTPForbidden, sharing, model, request ) self.checkOutput(""" ...Unauthorized: tile <cone.app.browser.sharing.SharingTile object at ...> failed permission check... """, str(err)) with self.layer.authenticated('manager'): res = sharing(model, request) self.assertTrue(res.text.find('<!DOCTYPE html>') > -1) def test_render_sharing_tile(self): root = SharingNode(name='root') request = self.layer.new_request() # Render sharing tile with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') self.checkOutput(""" ...<table class="table table-striped table-condensed" id="localacltable_table">... """, res) def test_search_principal(self): root = SharingNode(name='root') request = self.layer.new_request() # Render sharing tile with search term with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') self.assertFalse(res.find('Manager User') > -1) request.params['term'] = 'manager' with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') self.assertTrue(res.find('Manager User') > -1) request.params['term'] = 'group1' with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') self.assertTrue(res.find('Group 1') > -1) # Existing principal roles are not rendered if term found on request root.principal_roles['viewer'] = ['editor'] with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') expected = ( '<input checked="checked" ' 'class="add_remove_role_for_principal" ' 'id="input-viewer" name="viewer" type="checkbox" value="editor" />' ) self.assertFalse(res.find(expected) > -1) # Existing principal roles are rendered if no term found del request.params['term'] with self.layer.authenticated('manager'): res = render_tile(root, request, 'sharing') self.assertTrue(res.find(expected) > -1) def test_inherited_principal_roles(self): root = SharingNode(name='root') root.principal_roles['viewer'] = ['editor'] child = root['child'] = SharingNode() child.role_inheritance = True child.principal_roles['viewer'] = ['admin'] request = self.layer.new_request() with self.layer.authenticated('manager'): res = render_tile(child, request, 'sharing') expected = ( '<input checked="checked" ' 'class="add_remove_role_for_principal" disabled="disabled" ' 'id="input-viewer" name="viewer" type="checkbox" value="editor" />' ) self.assertTrue(res.find(expected) > -1) expected = ( '<input checked="checked" ' 'class="add_remove_role_for_principal" id="input-viewer" ' 'name="viewer" type="checkbox" value="admin" />' ) self.assertTrue(res.find(expected) > -1) expected = ( '<input class="add_remove_role_for_principal" ' 'id="input-viewer" name="viewer" type="checkbox" ' 'value="manager" />' ) self.assertTrue(res.find(expected) > -1) def test_table_sorting(self): root = SharingNode(name='root') child = root['child'] = SharingNode() child.principal_roles['viewer'] = ['admin'] child.principal_roles['editor'] = ['admin'] request = self.layer.new_request() # Sharing table sorting with self.layer.authenticated('manager'): res = render_tile(child, request, 'sharing') self.assertTrue(res.find('Editor User') > -1) self.assertTrue(res.find('Viewer User') > -1) self.assertTrue(res.find('Editor User') < res.find('Viewer User')) request.params['order'] = 'desc' with self.layer.authenticated('manager'): res = render_tile(child, request, 'sharing') self.assertTrue(res.find('Editor User') > -1) self.assertTrue(res.find('Viewer User') > -1) self.assertFalse(res.find('Editor User') < res.find('Viewer User')) del request.params['order'] def test_skip_inexistent(self): root = SharingNode(name='root') child = root['child'] = SharingNode() # Users defined in ``principal_roles`` but not exists in ugm are # skipped. This could happen if user was deleted but principal roles # were not child.principal_roles['inexistent'] = ['viewer'] request = self.layer.new_request() with self.layer.authenticated('manager'): res = render_tile(child, request, 'sharing') self.assertFalse(res.find('name="inexistent"') > -1) def test_add_role(self): root = SharingNode(name='root') child = root['child'] = SharingNode() child.principal_roles['viewer'] = ['admin'] child.principal_roles['editor'] = ['admin'] # Add role for user request = self.layer.new_request() request.params['id'] = 'viewer' request.params['role'] = 'manager' request.params['bdajax.action'] = 'add_principal_role' request.params['bdajax.mode'] = 'NONE' request.params['bdajax.selector'] = 'NONE' # Nothing happens if success with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': False, 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) # Principal roles have changed self.assertEqual(len(child.principal_roles), 2) self.assertEqual( sorted(child.principal_roles['viewer']), ['admin', 'manager'] ) self.assertEqual(child.principal_roles['editor'], ['admin']) # Add role for user not added yet request.params['id'] = 'otheruser' request.params['role'] = 'manager' with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': False, 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) self.assertEqual(len(child.principal_roles), 3) self.assertEqual( sorted(child.principal_roles['viewer']), ['admin', 'manager'] ) self.assertEqual(child.principal_roles['editor'], ['admin']) self.assertEqual(child.principal_roles['otheruser'], ['manager']) # If an error occurs, a message gets displayed invalid_node = BaseNode() request.params['id'] = 'viewer' with self.layer.authenticated('manager'): res = ajax_tile(invalid_node, request) self.assertEqual(res, { 'continuation': [{ 'flavor': 'error', 'type': 'message', 'payload': u"Can not add role 'manager' for principal 'viewer'", 'selector': None }], 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) def test_remove_role(self): root = SharingNode(name='root') child = root['child'] = SharingNode() child.principal_roles['viewer'] = ['admin', 'manager'] child.principal_roles['editor'] = ['admin'] child.principal_roles['otheruser'] = ['manager'] # Remove role for user request = self.layer.new_request() request.params['id'] = 'viewer' request.params['role'] = 'manager' request.params['bdajax.action'] = 'remove_principal_role' request.params['bdajax.mode'] = 'NONE' request.params['bdajax.selector'] = 'NONE' # Nothing happens if success with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': False, 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) # Principal roles has changed self.assertEqual(child.principal_roles, { 'viewer': ['admin'], 'editor': ['admin'], 'otheruser': ['manager'] }) # Principal id gets removed if no more roles left request.params['id'] = 'otheruser' request.params['role'] = 'manager' with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': False, 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) self.assertEqual(child.principal_roles, { 'viewer': ['admin'], 'editor': ['admin'] }) # If an error occurs, a message gets displayed. # Inexistent role request.params['id'] = 'viewer' request.params['role'] = 'inexistent' with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': [{ 'flavor': 'error', 'type': 'message', 'payload': u"Can not remove role 'inexistent' for principal 'viewer'", 'selector': None }], 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' }) # Inexistent userid request = self.layer.new_request() request.params['id'] = 'foo' request.params['role'] = 'manager' request.params['bdajax.action'] = 'remove_principal_role' request.params['bdajax.mode'] = 'NONE' request.params['bdajax.selector'] = 'NONE' with self.layer.authenticated('manager'): res = ajax_tile(child, request) self.assertEqual(res, { 'continuation': [{ 'flavor': 'error', 'type': 'message', 'payload': u"Can not remove role 'manager' for principal 'foo'", 'selector': None }], 'payload': u'', 'mode': 'NONE', 'selector': 'NONE' })
35.625806
86
0.566099
79406dd14bfbd45c61739c40ecb835536a0f6344
498
py
Python
env/lib/python3.8/site-packages/plotly/validators/layout/geo/_countrywidth.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
76
2020-07-06T14:44:05.000Z
2022-02-14T15:30:21.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/geo/_countrywidth.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-08-09T02:30:14.000Z
2022-03-12T00:50:14.000Z
env/lib/python3.8/site-packages/plotly/validators/layout/geo/_countrywidth.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11
2020-07-12T16:18:07.000Z
2022-02-05T16:48:35.000Z
import _plotly_utils.basevalidators class CountrywidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__(self, plotly_name="countrywidth", parent_name="layout.geo", **kwargs): super(CountrywidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), min=kwargs.pop("min", 0), role=kwargs.pop("role", "style"), **kwargs )
35.571429
87
0.646586
79406e5aa1041afe982444b0c01b398016e8c98c
1,626
py
Python
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_US.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_US.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
null
null
null
venv/lib/python3.6/site-packages/phonenumbers/shortdata/region_US.py
exdeam/opencrm
dfdcfdf99f0b42eb3959171927cb6574583f5ee0
[ "MIT" ]
null
null
null
"""Auto-generated file, do not edit by hand. US metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_US = PhoneMetadata(id='US', country_code=None, international_prefix=None, general_desc=PhoneNumberDesc(national_number_pattern='[1-9]\\d{2,5}', possible_length=(3, 4, 5, 6)), toll_free=PhoneNumberDesc(national_number_pattern='112|[69]11', example_number='112', possible_length=(3,)), premium_rate=PhoneNumberDesc(national_number_pattern='2(?:4280|5209|7(?:449|663))|3(?:2340|3786|5564|8(?:135|254))|4(?:1(?:366|463)|3355|6(?:15|32)7|7553|82(?:21|77))|5(?:2944|4892|5928|9(?:187|342))|69388|7(?:20(?:78|87)|3(?:288|909)|6426)|8(?:6234|9616)|9(?:5297|6(?:040|835)|7(?:294|688)|9(?:689|796))', example_number='24280', possible_length=(5,)), emergency=PhoneNumberDesc(national_number_pattern='112|911', example_number='112', possible_length=(3,)), short_code=PhoneNumberDesc(national_number_pattern='11(?:2|5[1-47]|[68]\\d|7[0-57]|98)|[2-9]\\d{3,5}|[2-9]11', example_number='112', possible_length=(3, 4, 5, 6)), standard_rate=PhoneNumberDesc(national_number_pattern='2(?:3333|(?:4224|7562|900)2|56447|6688)|3(?:1010|2665|7404)|40404|560560|6(?:0060|22639|5246|7622)|7(?:0701|3822|4666)|8(?:(?:3825|7226)5|4816)|99099', example_number='23333', possible_length=(5, 6)), carrier_specific=PhoneNumberDesc(national_number_pattern='336\\d\\d|[2-9]\\d{3}|[2356]11', example_number='211', possible_length=(3, 4, 5)), sms_services=PhoneNumberDesc(national_number_pattern='[2-9]\\d{4,5}', example_number='20000', possible_length=(5, 6)), short_data=True)
116.142857
357
0.712177
79406f3d5b496f317119afa17d667f503dfcf6e7
480
py
Python
demo/exclusive.py
abbudao/slides-pulsar
178bc49a9a73efc55147a7143c39f2438981da2f
[ "MIT" ]
null
null
null
demo/exclusive.py
abbudao/slides-pulsar
178bc49a9a73efc55147a7143c39f2438981da2f
[ "MIT" ]
null
null
null
demo/exclusive.py
abbudao/slides-pulsar
178bc49a9a73efc55147a7143c39f2438981da2f
[ "MIT" ]
null
null
null
from pulsar import Client, ConsumerType client = Client('pulsar://localhost:6650') consumer = client.subscribe( 'persistent://public/default/tick', 'i-am-exclusive', consumer_type=ConsumerType.Exclusive ) while True: msg = consumer.receive() try: data = msg.data().decode('utf-8') print(f"Received message {data} id={msg.message_id()}") consumer.acknowledge(msg) except: consumer.negative_acknowledge(msg) client.close()
24
63
0.670833
79406f497f2feb85887ffda612ec55e2d7bd746c
934
py
Python
python-katas/tests/test_console.py
rtimmons/katas
70aab07385c80125209de4f6ee6021a6b8bbf521
[ "MIT" ]
null
null
null
python-katas/tests/test_console.py
rtimmons/katas
70aab07385c80125209de4f6ee6021a6b8bbf521
[ "MIT" ]
null
null
null
python-katas/tests/test_console.py
rtimmons/katas
70aab07385c80125209de4f6ee6021a6b8bbf521
[ "MIT" ]
null
null
null
"""Test cases for the console module.""" from unittest.mock import Mock from click.testing import CliRunner import pytest from pytest_mock import MockFixture import requests from katas import console @pytest.fixture def runner() -> CliRunner: """Fixture for invoking command-line interfaces.""" return CliRunner() @pytest.fixture def mock_wikipedia_random_page(mocker: MockFixture) -> Mock: """Fixture for mocking wikipedia.random_page.""" return mocker.patch("katas.wikipedia.random_page") def test_main_succeeds(runner: CliRunner, mock_requests_get: Mock) -> None: """It exits with a status code of zero.""" result = runner.invoke(console.main) assert result.exit_code == 0 @pytest.mark.e2e def test_main_succeeds_in_production_env(runner: CliRunner) -> None: """It exits with a status code of zero (end-to-end).""" result = runner.invoke(console.main) assert result.exit_code == 0
26.685714
75
0.738758
79406fa62ec7b5536430f4eab04190ea7a4c5862
326
py
Python
prediction_flow/transformers/column/tests/test_log_transformer.py
dydcfg/prediction-flow
332068f521bba51acc8600fe72e36e92c331bef1
[ "MIT" ]
211
2019-08-02T23:04:40.000Z
2022-03-18T06:36:25.000Z
prediction_flow/transformers/column/tests/test_log_transformer.py
dydcfg/prediction-flow
332068f521bba51acc8600fe72e36e92c331bef1
[ "MIT" ]
18
2019-08-10T07:13:05.000Z
2022-03-17T10:45:30.000Z
prediction_flow/transformers/column/tests/test_log_transformer.py
dydcfg/prediction-flow
332068f521bba51acc8600fe72e36e92c331bef1
[ "MIT" ]
51
2019-08-02T23:04:41.000Z
2021-12-24T02:48:58.000Z
import numpy as np from prediction_flow.transformers.column import LogTransformer def test_normal(): log_transformer = LogTransformer() x = np.array([100, 10, 32]) log_transformer.fit(x) np.testing.assert_array_almost_equal( log_transformer.transform(x), np.array([4.615121, 2.397895, 3.496508]))
23.285714
79
0.723926
7940708b7c973ed49bebcb5ac4f45d85504d0a00
1,782
py
Python
main.py
EH30/To-Do-List
0a58c247bbd15f6828bcc8f72c334f67cc9f2b58
[ "Unlicense" ]
null
null
null
main.py
EH30/To-Do-List
0a58c247bbd15f6828bcc8f72c334f67cc9f2b58
[ "Unlicense" ]
1
2021-10-01T08:51:40.000Z
2021-10-01T08:51:40.000Z
main.py
EH30/To-Do-List
0a58c247bbd15f6828bcc8f72c334f67cc9f2b58
[ "Unlicense" ]
1
2021-10-01T08:10:21.000Z
2021-10-01T08:10:21.000Z
import platform import sys import json import todo import tkinter from tkinter.constants import RIGHT, BOTTOM # Created By EH # ----------------------- # this script was tested on python 3.9 if len(sys.argv) > 1: if type(sys.argv[1]) == str and sys.argv[1] == "--reset": with open("data.json", "w") as opn: opn.seek(0) json.dump({"data":[]}, opn, indent=4) opn.truncate() exit(0) if __name__ == "__main__": root = tkinter.Tk() mframe = tkinter.Frame(root) root.geometry("800x500") root.title("To-Do-List") if platform.system() == "Windows": root.iconbitmap("icon.ico") ver = tkinter.Label(root, text="v1.2") lbl_ent = tkinter.Label(mframe, text="Enter:") lbl_lbox = tkinter.Label(mframe, text="ListBox: ") lbl = tkinter.Label(root, text="To-Do-List", font=("", 20)) ver.place(x=0, y=0) lbl_lbox.place(x=0, y=0) lbl_ent.place(x=0, y=203) ent = todo.AppEntry(mframe) l_box = todo.AppBox(mframe) app = todo.App(mframe, l_box, ent) app.load_data() root.bind("<Return>", app.add) root.bind("<Delete>", app.delete) lbl.pack() mframe.pack(ipadx=55, ipady=70) l_box.vsbar.pack(side=RIGHT, fill="y") l_box.hsbar.pack(side=BOTTOM, fill="x") l_box.lb.pack() l_box.tframe.pack() app.errtxt.pack() app.count.place(x=333, y=0) ent.ent.place(width=200, x=58, y=203) app.btn.b_add.place(width=55,height=45, x=30, y=250) app.btn.b_delete.place(width=55,height=45, x=103, y=250) app.btn.b_check.place(width=55,height=45, x=175, y=250) app.btn.b_uncheck.place(width=55,height=45, x=250, y=250) root.mainloop()
27.415385
64
0.578002
7940709b9e9412b00c2c6325745e1775e6fb3b0f
4,384
py
Python
benchmark/startQiskit_noisy1591.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy1591.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
benchmark/startQiskit_noisy1591.py
UCLA-SEAL/QDiff
d968cbc47fe926b7f88b4adf10490f1edd6f8819
[ "BSD-3-Clause" ]
null
null
null
# qubit number=5 # total number=50 import cirq import qiskit from qiskit.providers.aer import QasmSimulator from qiskit.test.mock import FakeVigo from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister from qiskit import BasicAer, execute, transpile from pprint import pprint from qiskit.test.mock import FakeVigo from math import log2,floor, sqrt, pi import numpy as np import networkx as nx def build_oracle(n: int, f) -> QuantumCircuit: # implement the oracle O_f^\pm # NOTE: use U1 gate (P gate) with \lambda = 180 ==> CZ gate # or multi_control_Z_gate (issue #127) controls = QuantumRegister(n, "ofc") oracle = QuantumCircuit(controls, name="Zf") for i in range(2 ** n): rep = np.binary_repr(i, n) if f(rep) == "1": for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.h(controls[n]) if n >= 2: oracle.mcu1(pi, controls[1:], controls[0]) for j in range(n): if rep[j] == "0": oracle.x(controls[j]) # oracle.barrier() return oracle def make_circuit(n:int,f) -> QuantumCircuit: # circuit begin input_qubit = QuantumRegister(n,"qc") classical = ClassicalRegister(n, "qm") prog = QuantumCircuit(input_qubit, classical) prog.h(input_qubit[0]) # number=3 prog.h(input_qubit[1]) # number=4 prog.h(input_qubit[2]) # number=5 prog.h(input_qubit[3]) # number=6 prog.h(input_qubit[4]) # number=21 prog.h(input_qubit[0]) # number=44 prog.cz(input_qubit[3],input_qubit[0]) # number=45 prog.h(input_qubit[0]) # number=46 prog.z(input_qubit[3]) # number=33 prog.cx(input_qubit[3],input_qubit[0]) # number=34 prog.rx(0.11938052083641225,input_qubit[1]) # number=36 Zf = build_oracle(n, f) repeat = floor(sqrt(2 ** n) * pi / 4) for i in range(repeat): prog.append(Zf.to_gate(), [input_qubit[i] for i in range(n)]) prog.h(input_qubit[0]) # number=1 prog.rx(1.4765485471872026,input_qubit[2]) # number=35 prog.h(input_qubit[1]) # number=2 prog.h(input_qubit[2]) # number=7 prog.h(input_qubit[3]) # number=8 prog.cx(input_qubit[1],input_qubit[0]) # number=41 prog.x(input_qubit[0]) # number=42 prog.cx(input_qubit[1],input_qubit[0]) # number=43 prog.x(input_qubit[4]) # number=30 prog.cx(input_qubit[0],input_qubit[1]) # number=47 prog.x(input_qubit[1]) # number=48 prog.cx(input_qubit[0],input_qubit[1]) # number=49 prog.x(input_qubit[2]) # number=11 prog.rx(0.45238934211692994,input_qubit[3]) # number=38 prog.y(input_qubit[1]) # number=39 prog.rx(-2.5258404934861938,input_qubit[1]) # number=25 prog.h(input_qubit[3]) # number=29 prog.cx(input_qubit[0],input_qubit[3]) # number=22 prog.x(input_qubit[3]) # number=23 prog.cx(input_qubit[0],input_qubit[3]) # number=24 if n>=2: prog.mcu1(pi,input_qubit[1:],input_qubit[0]) prog.x(input_qubit[0]) # number=13 prog.rx(-0.0722566310325653,input_qubit[4]) # number=37 prog.x(input_qubit[1]) # number=14 prog.cx(input_qubit[0],input_qubit[2]) # number=26 prog.x(input_qubit[2]) # number=27 prog.h(input_qubit[4]) # number=40 prog.cx(input_qubit[0],input_qubit[2]) # number=28 prog.x(input_qubit[3]) # number=16 prog.h(input_qubit[0]) # number=17 prog.h(input_qubit[1]) # number=18 prog.h(input_qubit[2]) # number=19 prog.h(input_qubit[3]) # number=20 # circuit end for i in range(n): prog.measure(input_qubit[i], classical[i]) return prog if __name__ == '__main__': key = "00000" f = lambda rep: str(int(rep == key)) prog = make_circuit(5,f) backend = FakeVigo() sample_shot =7924 info = execute(prog, backend=backend, shots=sample_shot).result().get_counts() backend = FakeVigo() circuit1 = transpile(prog,backend,optimization_level=2) writefile = open("../data/startQiskit_noisy1591.csv","w") print(info,file=writefile) print("results end", file=writefile) print(circuit1.depth(),file=writefile) print(circuit1,file=writefile) writefile.close()
32.474074
82
0.619982
794070fb918a6fbe5d674ef6743f655648872977
2,688
py
Python
lib/aws_utils.py
murkyl/ecs_meta_search
0c02a5c1feece877c441569cc199424102ceca01
[ "MIT" ]
2
2019-06-05T04:43:54.000Z
2020-07-15T05:49:57.000Z
lib/aws_utils.py
murkyl/ecs_meta_search
0c02a5c1feece877c441569cc199424102ceca01
[ "MIT" ]
null
null
null
lib/aws_utils.py
murkyl/ecs_meta_search
0c02a5c1feece877c441569cc199424102ceca01
[ "MIT" ]
5
2020-02-21T22:47:35.000Z
2022-02-03T15:21:39.000Z
import time import datetime import base64 import hmac import hashlib try: from urllib import quote_plus, quote except: from urllib.parse import quote_plus, quote S3_SIGNED_URL_FORMAT = '%(prot)s://%(bucket)s/%(endpoint)s/%(obj)s?AWSAccessKeyId=%(id)s&Expires=%(expires)d&Signature=%(sig)s' ECS_SIGNED_URL_FORMAT = '%(prot)s://%(endpoint)s/%(bucket)s/%(obj)s?AWSAccessKeyId=%(id)s&Expires=%(expires)d&Signature=%(sig)s' def get_signed_url(endpoint, bucket, obj, id, key, type='s3', expire=3600): """ Get a signed URL for an object Parameters: endpoint (string): Base URL to access the resource. e.g. https://object.ecstestdrive.com or https://s3.amazonaws.com bucket (string): Name of the bucket containing the object obj (string): ID for the object. e.g. Something/File.ext id (string): User ID credentials key (string): The secret key for the User ID crendentials type (string): Optional - Either 's3' (default) or 'ecs'. This determines the URL style that will be returned. 's3' style uses bucket.endpoint/object 'ecs' style uses endpoint/bucket/object expire (int): Optional - Number of seconds from now that the URL will be valid. Default 3600 seconds. You can also pass in a datetime object. When this is done, the expiration time will be based on the datetime object only. Returns: Signed URL string value that can be used to access the object resource """ # Parse out the http:// or https:// portion of the URL if endpoint[0:8] == 'https://': prot = 'https' endpoint = endpoint[8:] elif endpoint [0:7] == 'http://': prot = 'http' endpoint = endpoint[7:] if not (type == 's3' or type == 'ecs'): type = 's3' url_format = S3_SIGNED_URL_FORMAT if type == 'ecs': url_format = ECS_SIGNED_URL_FORMAT if isinstance(expire, datetime.datetime): expiry_ts = int(expire.strftime('%s')) else: expiry_ts = int(time.time()) + expire h = hmac.new( bytes(key.encode('utf-8')), ("GET\n\n\n%d\n/%s/%s"%(expiry_ts, bucket, obj)).encode('utf-8'), hashlib.sha1) # Signature sig = quote_plus(base64.encodestring(h.digest()).strip().decode('utf-8')) # S3 and ECS require different URL encoding for the object name # S3 uses the standard quote_plus while ECS allows for extra characters if type == 's3': obj = quote_plus(obj) else: obg = quote(obj, '/') # Create full signed URL signed_url = url_format%{ 'prot': prot, 'endpoint': endpoint, 'bucket': bucket, 'obj': obj, 'id': id, 'key': key, 'expires': expiry_ts, 'sig': sig } return signed_url
34.909091
128
0.65439
794071014fb04ef3d875d2960ac65e8c93ccfdc7
1,519
py
Python
cifar10/trainer/discriminator.py
rahhul/GANs
cec9e2f81528099407b8a9d3dce2f1cf85e449be
[ "MIT" ]
null
null
null
cifar10/trainer/discriminator.py
rahhul/GANs
cec9e2f81528099407b8a9d3dce2f1cf85e449be
[ "MIT" ]
null
null
null
cifar10/trainer/discriminator.py
rahhul/GANs
cec9e2f81528099407b8a9d3dce2f1cf85e449be
[ "MIT" ]
null
null
null
# python3 import util import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Dropout, Flatten, LeakyReLU from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.optimizers import Adam from tensorflow.keras.initializers import RandomNormal, glorot_normal, VarianceScaling # Discriminator model def discriminator_model(in_shape=(32, 32, 3)): init = glorot_normal() model = Sequential() model.add(Conv2D(64, (3,3), padding='same', kernel_initializer=init, input_shape=in_shape)) # model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.2)) # downsample model.add(Conv2D(128, (3,3), strides=(2,2), kernel_initializer=init, padding='same')) # model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.2)) # downsample model.add(Conv2D(128, (3,3), strides=(2,2), kernel_initializer=init, padding='same')) # model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.2)) # downsample model.add(Conv2D(256, (3,3), strides=(2,2), kernel_initializer=init, padding='same')) # model.add(BatchNormalization()) model.add(LeakyReLU(alpha=0.2)) # classifier model.add(Flatten()) model.add(Dropout(0.4)) model.add(Dense(1, activation='sigmoid')) # compile model model.compile(loss='binary_crossentropy', optimizer=Adam(lr=2e-4, beta_1=0.5), metrics=['accuracy']) return model
37.04878
95
0.706386
7940710a28ff00624d3b55dca33112c911249d56
8,654
py
Python
manilaclient/common/cliutils.py
SolKuczala/python-manilaclient
9613c7fd2652dc3c7b8793c9af2b6357f42a4757
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
manilaclient/common/cliutils.py
SolKuczala/python-manilaclient
9613c7fd2652dc3c7b8793c9af2b6357f42a4757
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
manilaclient/common/cliutils.py
SolKuczala/python-manilaclient
9613c7fd2652dc3c7b8793c9af2b6357f42a4757
[ "CNRI-Python", "Apache-1.1" ]
null
null
null
# Copyright 2012 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # W0603: Using the global statement # W0621: Redefining name %s from outer scope # pylint: disable=W0603,W0621 import getpass import inspect import os import sys import textwrap from oslo_utils import encodeutils from oslo_utils import strutils import prettytable import six from six import moves from manilaclient.common._i18n import _ class MissingArgs(Exception): """Supplied arguments are not sufficient for calling a function.""" def __init__(self, missing): self.missing = missing msg = _("Missing arguments: %s") % ", ".join(missing) super(MissingArgs, self).__init__(msg) def validate_args(fn, *args, **kwargs): """Check that the supplied args are sufficient for calling a function. >>> validate_args(lambda a: None) Traceback (most recent call last): ... MissingArgs: Missing argument(s): a >>> validate_args(lambda a, b, c, d: None, 0, c=1) Traceback (most recent call last): ... MissingArgs: Missing argument(s): b, d :param fn: the function to check :param arg: the positional arguments supplied :param kwargs: the keyword arguments supplied """ argspec = inspect.getargspec(fn) num_defaults = len(argspec.defaults or []) required_args = argspec.args[:len(argspec.args) - num_defaults] def isbound(method): return getattr(method, '__self__', None) is not None if isbound(fn): required_args.pop(0) missing = [arg for arg in required_args if arg not in kwargs] missing = missing[len(args):] if missing: raise MissingArgs(missing) def arg(*args, **kwargs): """Decorator for CLI args. Example: >>> @arg("name", help="Name of the new entity") ... def entity_create(args): ... pass """ def _decorator(func): add_arg(func, *args, **kwargs) return func return _decorator def env(*args, **kwargs): """Returns the first environment variable set. If all are empty, defaults to '' or keyword arg `default`. """ for arg in args: value = os.environ.get(arg) if value: return value return kwargs.get('default', '') def add_arg(func, *args, **kwargs): """Bind CLI arguments to a shell.py `do_foo` function.""" if not hasattr(func, 'arguments'): func.arguments = [] # NOTE(sirp): avoid dups that can occur when the module is shared across # tests. if (args, kwargs) not in func.arguments: # Because of the semantics of decorator composition if we just append # to the options list positional options will appear to be backwards. func.arguments.insert(0, (args, kwargs)) def unauthenticated(func): """Adds 'unauthenticated' attribute to decorated function. Usage: >>> @unauthenticated ... def mymethod(f): ... pass """ func.unauthenticated = True return func def isunauthenticated(func): """Checks if the function does not require authentication. Mark such functions with the `@unauthenticated` decorator. :returns: bool """ return getattr(func, 'unauthenticated', False) def print_list(objs, fields, formatters=None, sortby_index=0, mixed_case_fields=None, field_labels=None): """Print a list or objects as a table, one row per object. :param objs: iterable of :class:`Resource` :param fields: attributes that correspond to columns, in order :param formatters: `dict` of callables for field formatting :param sortby_index: index of the field for sorting table rows :param mixed_case_fields: fields corresponding to object attributes that have mixed case names (e.g., 'serverId') :param field_labels: Labels to use in the heading of the table, default to fields. """ formatters = formatters or {} mixed_case_fields = mixed_case_fields or [] field_labels = field_labels or fields if len(field_labels) != len(fields): raise ValueError(_("Field labels list %(labels)s has different number " "of elements than fields list %(fields)s"), {'labels': field_labels, 'fields': fields}) if sortby_index is None: kwargs = {} else: kwargs = {'sortby': field_labels[sortby_index]} pt = prettytable.PrettyTable(field_labels) pt.align = 'l' for o in objs: row = [] for field in fields: if field in formatters: row.append(formatters[field](o)) else: if field in mixed_case_fields: field_name = field.replace(' ', '_') else: field_name = field.lower().replace(' ', '_') data = getattr(o, field_name, '') row.append(data) pt.add_row(row) if six.PY3: print(encodeutils.safe_encode(pt.get_string(**kwargs)).decode()) else: print(encodeutils.safe_encode(pt.get_string(**kwargs))) def print_dict(dct, dict_property="Property", wrap=0): """Print a `dict` as a table of two columns. :param dct: `dict` to print :param dict_property: name of the first column :param wrap: wrapping for the second column """ pt = prettytable.PrettyTable([dict_property, 'Value']) pt.align = 'l' for k, v in dct.items(): # convert dict to str to check length if isinstance(v, dict): v = six.text_type(v) if wrap > 0: v = textwrap.fill(six.text_type(v), wrap) # if value has a newline, add in multiple rows # e.g. fault with stacktrace if v and isinstance(v, six.string_types) and r'\n' in v: lines = v.strip().split(r'\n') col1 = k for line in lines: pt.add_row([col1, line]) col1 = '' else: pt.add_row([k, v]) if six.PY3: print(encodeutils.safe_encode(pt.get_string()).decode()) else: print(encodeutils.safe_encode(pt.get_string())) def get_password(max_password_prompts=3): """Read password from TTY.""" verify = strutils.bool_from_string(env("OS_VERIFY_PASSWORD")) pw = None if hasattr(sys.stdin, "isatty") and sys.stdin.isatty(): # Check for Ctrl-D try: for __ in moves.range(max_password_prompts): pw1 = getpass.getpass("OS Password: ") if verify: pw2 = getpass.getpass("Please verify: ") else: pw2 = pw1 if pw1 == pw2 and pw1: pw = pw1 break except EOFError: pass return pw def service_type(stype): """Adds 'service_type' attribute to decorated function. Usage: .. code-block:: python @service_type('volume') def mymethod(f): ... """ def inner(f): f.service_type = stype return f return inner def get_service_type(f): """Retrieves service type from function.""" return getattr(f, 'service_type', None) def pretty_choice_list(l): return ', '.join("'%s'" % i for i in l) def exit(msg=''): if msg: print(msg, file=sys.stderr) sys.exit(1) def transform_export_locations_to_string_view(export_locations): export_locations_string_view = '' replica_export_location_ignored_keys = ( 'replica_state', 'availability_zone', 'share_replica_id') for el in export_locations: if hasattr(el, '_info'): export_locations_dict = el._info else: export_locations_dict = el for k, v in export_locations_dict.items(): # NOTE(gouthamr): We don't want to show replica related info # twice in the output, so ignore those. if k not in replica_export_location_ignored_keys: export_locations_string_view += '\n%(k)s = %(v)s' % { 'k': k, 'v': v} return export_locations_string_view
30.048611
79
0.619598