prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
""" (c) 2013 <NAME> This source code is released under the Apache license. <EMAIL> Created on April 1, 2013 """ import datetime as dt import pandas as pd import numpy as np import random import csv from .order import Order from .fincommon import FinCommon import finpy.utils.fpdateutil as du from finpy.utils import utils as ut from finpy.financial.equity import get_tickdata class Portfolio(): """ Portfolio has three items. equities is a panda Panel of equity data. Reference by ticker. self.equities['AAPL'] cash is a pandas series with daily cash balance. total is the daily balance. order_list is a list of Order """ def __init__(self, equities, cash, dates, order_list=None): self.equities = pd.concat(equities, names=["tick", "date"]) self.equities.sort_index(inplace=True) # self.equities = self.equities.reorder_levels(order=["date", "tick"]) """ :var equities: is a Panel of equities. """ if order_list == None: self.order = pd.DataFrame(columns=['tick', 'date', 'action', 'shares', 'price']) self.order = self.order.set_index(["tick","date"]) else: ol = order_list ol.sort(key=lambda x: x.date) self.order = pd.DataFrame.from_records([s.to_dict() for s in ol]) self.order = self.order.set_index(["tick","date"]) xi = self.order[self.order["price"].isnull()].index self.order.loc[xi, "price"] = self.equities.loc[xi, "close"] self.cash = pd.Series(index=dates) self.cash[0] = cash self.total = pd.Series(index=dates) self.total[0] = self.dailysum(dates[0]) self.dates = dates def dailysum(self, date): " Calculate the total balance of the date." equities_total = np.nansum(self.equities.xs(key=date, level=1)['shares'] * self.equities.xs(key=date, level=1)['close']) total = equities_total + self.cash[date] return total def buy(self, shares, tick, price, date, update_ol=False): """ Portfolio Buy Calculate total, shares and cash upto the date. Before we buy, we need to update share numbers. " """ self.cal_total(date) last_valid = self.equities.loc[(tick,slice(None)),'shares'].last_valid_index()[1] self.equities.loc[(tick, slice(last_valid, date)), 'shares'] = self.equities.loc[(tick, last_valid), 'shares'] self.equities.loc[(tick, date), 'shares'] += shares self.cash[date] -= price*shares self.total[date] = self.dailysum(date) if update_ol: self.order = self.order.append(pd.DataFrame({"action": "buy", "shares" : shares, "price": self.equities.loc[(tick, date), 'close']}, [(tick, date)])) def sell(self, shares, tick, price, date, update_ol=False): """ Portfolio sell Calculate shares and cash upto the date. """ self.cal_total(date) last_valid = self.equities.loc[(tick,slice(None)),'shares'].last_valid_index()[1] self.equities.loc[(tick, slice(last_valid, date)), 'shares'] = self.equities.loc[(tick, last_valid), 'shares'] self.equities.loc[(tick, date), 'shares'] -= shares self.cash[date] += price*shares self.total[date] = self.dailysum(date) if update_ol: self.order = self.order.append(pd.DataFrame({"action": "sell", "shares" : shares, "price": self.equities.loc[(tick, date), 'close']}, [(tick, date)])) def fillna_cash(self, date): " fillna on cash up to date " update_start = self.cash.last_valid_index() update_end = date self.cash[update_start:update_end] = self.cash[update_start] return update_start, update_end def fillna(self, date): """ fillna cash and all equities. return update_start and update_end. """ update_start, update_end = self.fillna_cash(date) for tick in self.equities.index.unique(0).tolist(): self.equities.loc[(tick, slice(update_start, update_end)),'shares'] = self.equities.loc[(tick, update_start), 'shares'] return update_start, update_end def cal_total(self, date=None): """ Calculate total up to "date". """ if date == None: equities_sum = pd.Series(index=self.ldt_timestamps()) each_total = self.equities.loc[(slice(None),slice(None)),'close'] * self.equities.loc[(slice(None),slice(None)),'shares'] equities_sum = each_total.groupby(level=1).sum() self.total = self.cash + equities_sum else: start, end = self.fillna(date) equities_total_df = self.equities.loc[(slice(None),slice(start,end)),'shares'] * self.equities.loc[(slice(None),slice(start,end)),'close'] equities_total = equities_total_df.groupby(level=1).sum() self.total[start:end ] = equities_total + self.cash[start:end] def put_orders(self): """ Put the order list to the DataFrame. Update shares, cash columns of each Equity """ for o in self.order: if o.action.lower() == "buy": self.buy(date=o.date, shares=np.float(o.shares), price=np.float(o.price), tick=o.tick) elif o.action.lower() == "sell": self.sell(shares=np.float(o.shares), tick=o.tick, price=np.float(o.price), date=o.date) def sim(self, ldt_timestamps=None): """ Go through each day and calculate total and cash. """ self.put_orders() if ldt_timestamps == None: ldt_timestamps = self.ldt_timestamps() dt_end = ldt_timestamps[-1] self.cal_total() def csvwriter(self, equity_col=None, csv_file="pf.csv", total=True, cash=True, d=','): """ Write the content of the Portfolio to a csv file. If total is True, the total is printed to the csv file. If cash is True, the cash is printed to the csv file. equity_col specify which columns to print for an equity. The specified columns of each equity will be printed. """ lines = [] l = [] l.append("Date") if total: l.append("Total") if cash: l.append("Cash") if equity_col != None: for e in self.equities: for col in equity_col: label = e + col l.append(label) lines.append(l) for i in self.ldt_timestamps(): l = [] l.append(i.strftime("%Y-%m-%d")) if total: l.append(round(self.total[i], 2)) if cash: l.append(round(self.cash[i], 2)) if equity_col != None: for e in self.equities.index.droplevel(1).drop_duplicates(): for col in equity_col: l.append(round(self.equities.loc[(e, i), col], 2)) lines.append(l) with open(csv_file, 'w') as fp: cw = csv.writer(fp, lineterminator='\n', delimiter=d) for line in lines: cw.writerow(line) def write_order_csv(self, csv_file="pf_order.csv", d=','): self.order.reorder_levels(["date", "tick"]).to_csv(path_or_buf = csv_file, sep = d, header = False, columns = ["action", "shares"]) def daily_return(self,tick=None): """ Return the return rate of each day, a list. :param tick: The ticker of the equity. :type string: """ if tick == None: total = self.total else: total = self.equities.loc[(tick,slice(None)),'close'].droplevel(0) daily_rtn = total/total.shift(1)-1 daily_rtn[0] = 0 return np.array(daily_rtn) def avg_daily_return(self, tick=None): " Average of the daily_return list " return np.average(self.daily_return(tick)) def std(self, tick=None): " Standard Deviation of the daily_return " return np.std(self.daily_return(tick)) def normalized(self, tick=None): start = self.ldt_timestamps()[0] if tick == None: return self.total/self.total[0] else: return (self.equities.loc[(tick, slice(None)), 'close']/self.equities.loc[(tick, start), 'close']).droplevel(0) def normalized_price(self, tick): self.equities.loc[(tick, slice(None)),'open'] = self.equities.loc[(tick, slice(None)),'open'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] self.equities.loc[(tick, slice(None)),'high'] = self.equities.loc[(tick, slice(None)),'high'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] self.equities.loc[(tick, slice(None)),'low'] = self.equities.loc[(tick, slice(None)),'low'] * self.equities.loc[(tick, slice(None)),'close']/self.equities.loc[(tick, slice(None)),'actual_close'] def sortino(self, k=252, tick=None): """ Return Sortino Ratio. You can overwirte the coefficient with k. The default is 252. """ daily_rtn = self.daily_return(tick) negative_daily_rtn = daily_rtn[daily_rtn < 0] sortino_dev = np.std( negative_daily_rtn) sortino = (self.avg_daily_return(tick) / sortino_dev) * np.sqrt(k) return sortino def return_ratio(self, tick=None): " Return the return ratio of the period " if tick == None: return self.total[-1]/self.total[0] else: return self.equities.loc[(tick, self.ldt_timestamps()[-1]), 'close']/self.equities.loc[(tick, self.ldt_timestamps()[0]), 'close'] def moving_average(self, window=20, tick=None): """ Return an array of moving average. Window specified how many days in a window. """ if tick == None: ma = pd.stats.moments.rolling_mean(self.total, window=window) else: ma = self.equities[tick].stats.moments.rolling_mean(window=window) ma[0:window] = ma[window] return ma def drawdown(self, window=10): """ Find the peak within the retrospective window. Drawdown is the difference between the peak and the current value. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. merged_data = self.total[pd.Index(pre_timestamps[0]), ldt_timestamps[-1]] total_timestamps = merged_data.index dd = pd.Series(index=ldt_timestamps) j = 0 for i in range(len(pre_timestamps), len(total_timestamps)): win_start = total_timestamps[i - window] win_end = total_timestamps[i] ts_value = merged_data[win_start:win_end] current = merged_data[win_end] peak = np.amax(ts_value) dd[j] = (peak-current)/peak j += 1 return dd def random_choose_tick(self, exclude=[]): """ Randomly return a ticker in the portfolio. The items in exclude list are not in the select pool. """ ex_set = set(exclude) pf_set = set([x for x in self.equities]) sel_ls = [s for s in pf_set - ex_set] return random.choice(sel_ls) def equities_long(self, date): """ Return the list of long equities on the date. "Long equities" means the number of shares of the equity is greater than 0. """ return [x for x in self.equities if self.equities[x].shares[date] > 0] def ldt_timestamps(self): """ Return an array of datetime objects. """ ldt_index = self.total.index dt_start = ldt_index[0] dt_end = ldt_index[-1] dt_timeofday = dt.timedelta(hours=16) ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt_timeofday) return ldt_timestamps def excess_return(self, rf_tick="$TNX", tick=None): """ An excess return is the difference between an asset's return and the riskless rate. """ return self.daily_return(tick=tick) - ut.riskfree_return(self.ldt_timestamps(), rf_tick=rf_tick) def mean_excess_return(self, rf_tick="$TNX", tick=None): return np.mean(self.excess_return(rf_tick=rf_tick, tick=tick)) def residual_return(self, benchmark, rf_tick="$TNX", tick=None): """ A residual return is the excess return minus beta times the benchmark excess return. """ beta = self.beta(benchmark, tick) return self.excess_return(rf_tick=rf_tick, tick=tick) - beta * self.excess_return(rf_tick=rf_tick, tick=benchmark) def mean_residual_return(self, benchmark, rf_tick="$TNX", tick=None): return np.mean(self.residual_return(benchmark=benchmark, rf_tick=rf_tick, tick=tick)) def residual_risk(self, benchmark, rf_tick="$TNX", tick=None): """ Residual Risk is the standard deviation of the residual return. """ return np.std(self.residual_return(benchmark=benchmark, rf_tick=rf_tick, tick=tick)) def active_return(self, benchmark, tick=None): """ An active return is the difference between the benchmark and the actual return. """ return self.daily_return(tick=tick) - self.daily_return(tick=benchmark) def mean_active_return(self, benchmark, tick=None): return np.mean(self.active_return(benchmark, tick)) def beta_alpha(self, benchmark): """ benchmark is an Equity representing the market. It can be S&P 500, Russel 2000, or your choice of market indicator. This function uses polyfit in numpy to find the closest linear equation. """ beta, alpha = np.polyfit(self.daily_return(tick=benchmark), self.daily_return(), 1) return beta, alpha def beta(self, benchmark, tick=None): """ benchmark is an Equity representing the market. This function uses cov in numpy to calculate beta. """ benchmark_return = self.daily_return(tick=benchmark) C = np.cov(benchmark_return, self.daily_return(tick=tick))/np.var(benchmark_return) beta = C[0][1]/C[0][0] return beta def excess_risk(self, rf_tick="$TNX", tick=None): """ $FVX is another option. Five-Year treasury rate. An excess risk is the standard deviation of the excess return. """ return np.std(self.excess_return(rf_tick=rf_tick, tick=tick)) def active_risk(self, benchmark, tick=None): """ An active risk is the standard deviation of the active return. """ return np.std(self.active_return(benchmark, tick)) def info_ratio(self, benchmark, rf_tick="$TNX", tick=None): """ Information Ratio https://en.wikipedia.org/wiki/Information_ratio Information Ratio is defined as active return divided by active risk, where active return is the difference between the return of the security and the return of a selected benchmark index, and active risk is the standard deviation of the active return. """ return self.mean_active_return(benchmark=benchmark, tick=tick)/self.active_risk(benchmark=benchmark, tick=tick) def appraisal_ratio(self, benchmark, rf_tick="$TNX", tick=None): """ Appraisal Ratio https://en.wikipedia.org/wiki/Appraisal_ratio Appraisal Ratio is defined as residual return divided by residual risk, where residual return is the difference between the return of the security and the return of a selected benchmark index, and residual risk is the standard deviation of the residual return. """ return self.mean_residual_return(benchmark, rf_tick, tick)/self.residual_risk(benchmark, rf_tick, tick) def sharpe_ratio(self, rf_tick="$TNX", tick=None): """ Return the Original Sharpe Ratio. https://en.wikipedia.org/wiki/Sharpe_ratio rf_tick is Ten-Year treasury rate ticker at Yahoo. """ return self.mean_excess_return(rf_tick=rf_tick, tick=tick)/self.excess_risk(rf_tick=rf_tick, tick=tick) def up_ratio(self, date, tick, days=10): """ Return the ratio of the past up days. This function only applies to equities. """ ldt_index = self.ldt_timestamps() last = date first = date-days up = 0.0 dn = 0.0 for i in range(first, last+1): if self.equities.loc[(tick, ldt_index[i]), 'close'] < self.equities.loc[(tick, ldt_index[i-1]), 'close']: dn += 1 else: up += 1 ratio = up / (dn + up) return ratio def dn_ratio(self, date,tick , days=10): """ Return the ratio of the past down days. This function only applies to equities. """ ratio = 1.0 - self.up_ratio(date=date, tick=tick, days=days) return ratio def rolling_normalized_stdev(self, tick, window=50): """ Return the rolling standard deviation of normalized price. This function only applies to equities. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) all_timestamps = pre_timestamps.append(ldt_timestamps) merged_daily_rtn = (self.equities.loc[(tick,slice(None)),'close']/self.equities.loc[(tick,slice(None)),'close'].shift(1)-1) merged_daily_rtn[0] = 0 sigma = merged_daily_rtn.rolling(window).std() return sigma.droplevel(0)[self.ldt_timestamps()] def max_rise(self, tick, date, window=20): """ Find the maximum change percentage between the current date and the bottom of the retrospective window. :param tick: ticker :type tick: string :param date: date to calculate max_rise :type date: datetime :param window: The days of window to calculate max_rise. :type window: int """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) first = pre_timestamps[0] # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. try: self.equities.loc[(tick, first), 'close'] merged_data = self.equties.loc[(tick, slice(None)), 'close'] except: ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) if(isinstance(date , int)): int_date = ldt_timestamps[date] else: int_date = date merged_data = merged_data.droplevel(0) c = merged_data.index.get_loc(int_date) m = merged_data[c-window:c].min() r = (merged_data[c]-m)/merged_data[c] return r def max_fall(self, tick, date, window=20): """ Find the change percentage between the top and the bottom of the retrospective window. :param tick: ticker :type tick: string :param date: date to calculate max_rise :type date: datetime :param window: The days of window to calculate max_rise. :type window: int """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) first = pre_timestamps[0] # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. try: self.equities.loc[(tick, first), 'close'] merged_data = self.equties.loc[(tick, slice(None)), 'close'] except: ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]) if(isinstance(date , int)): int_date = ldt_timestamps[date] else: int_date = date merged_data = merged_data.droplevel(0) c = merged_data.index.get_loc(int_date) mx = merged_data[c-window:c].max() mn = merged_data[c-window:c].min() r = (mx-mn)/merged_data[c] return r def moving_average(self, tick, window=20): """ Return an array of moving average. Window specified how many days in a window. :param tick: ticker :type tick: string :param window: The days of window to calculate moving average. :type window: int """ mi = self.bollinger_band(tick=tick, window=window, mi_only=True) return mi def bollinger_band(self, tick, window=20, k=2, mi_only=False): """ Return four arrays for Bollinger Band. The upper band at k times an N-period standard deviation above the moving average. The lower band at k times an N-period below the moving average. :param tick: ticker :type tick: string :param window: The days of window to calculate Bollinger Band. :type window: int :param k: k * :return bo: bo['mi'] is the moving average. bo['lo'] is the lower band. bo['hi'] is the upper band. bo['ba'] is a seris of the position of the current price relative to the bollinger band. :type bo: A dictionary of series. """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, window) # ldf_data has the data prior to our current interest. # This is used to calculate moving average for the first window. ldf_data = get_tickdata([tick], pre_timestamps) pre_data = pd.concat(ldf_data, names=["tick", "date"]) merged_data = pd.concat([pre_data.loc[(tick, slice(None)), 'close'], self.equities.loc[(tick,slice(None)),'close']]).droplevel(0) bo = dict() bo['mi'] = merged_data.rolling(window).mean()[ldt_timestamps] if mi_only: return bo['mi'] else: sigma = merged_data.rolling(window).std() bo['hi'] = bo['mi'] + k * sigma[ldt_timestamps] bo['lo'] = bo['mi'] - k * sigma[ldt_timestamps] bo['ba'] = (merged_data[ldt_timestamps] - bo['mi']) / (k * sigma[ldt_timestamps]) return bo def RSI(self, tick): """ Relative Strength Index http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:relative_strength_index_rsi This function uses roughly 250 prior points to calculate RS. :param tick: The ticker to calculate RSI :type tick: string :return rsi[ldt_timestamps]: RSI series """ ldt_timestamps = self.ldt_timestamps() pre_timestamps = ut.pre_timestamps(ldt_timestamps, 250) ldf_data = get_tickdata([tick], pre_timestamps) merged_data = pd.concat([ldf_data[tick]['close'], self.equities[tick]['close']]) delta = merged_data.diff() gain = pd.Series(delta[delta > 0], index=delta.index).fillna(0) loss = pd.Series(delta[delta < 0], index=delta.index).fillna(0).abs() avg_gain =
pd.Series(index=delta.index)
pandas.Series
import pytorch_lightning as pl import torch import torch.nn.functional as F from nowcasting_utils.visualization.visualization import plot_example from nowcasting_utils.visualization.line import plot_batch_results from nowcasting_dataset.data_sources.nwp.nwp_data_source import NWP_VARIABLE_NAMES from nowcasting_utils.models.loss import WeightedLosses from nowcasting_utils.models.metrics import mae_each_forecast_horizon, mse_each_forecast_horizon from nowcasting_dataloader.batch import BatchML from nowcasting_utils.metrics.validation import make_validation_results, save_validation_results_to_logger import pandas as pd import numpy as np import logging logger = logging.getLogger(__name__) activities = [torch.profiler.ProfilerActivity.CPU] if torch.cuda.is_available(): activities.append(torch.profiler.ProfilerActivity.CUDA) default_output_variable = "pv_yield" class BaseModel(pl.LightningModule): # default batch_size batch_size = 32 # results file name results_file_name = "results_epoch" # list of results dataframes. This is used to save validation results results_dfs = [] def __init__(self): super().__init__() self.history_len_5 = ( self.history_minutes // 5 ) # the number of historic timestemps for 5 minutes data self.forecast_len_5 = ( self.forecast_minutes // 5 ) # the number of forecast timestemps for 5 minutes data self.history_len_30 = ( self.history_minutes // 30 ) # the number of historic timestemps for 5 minutes data self.forecast_len_30 = ( self.forecast_minutes // 30 ) # the number of forecast timestemps for 5 minutes data # the number of historic timesteps for 60 minutes data # Note that ceil is taken as for 30 minutes of history data, one history value will be used self.history_len_60 = int(np.ceil(self.history_minutes / 60)) self.forecast_len_60 = ( self.forecast_minutes // 60 ) # the number of forecast timestemps for 60 minutes data if not hasattr(self, "output_variable"): print("setting") self.output_variable = default_output_variable if self.output_variable == "pv_yield": self.forecast_len = self.forecast_len_5 self.history_len = self.history_len_5 self.number_of_samples_per_batch = 128 else: self.forecast_len = self.forecast_len_30 self.history_len = self.history_len_30 self.number_of_samples_per_batch = 32 self.number_of_pv_samples_per_batch = 128 self.weighted_losses = WeightedLosses(forecast_length=self.forecast_len) def _training_or_validation_step(self, batch, tag: str, return_model_outputs: bool = False): """ batch: The batch data tag: either 'Train', 'Validation' , 'Test' """ if type(batch) == dict: batch = BatchML(**batch) # put the batch data through the model y_hat = self(batch) # get the true result out. Select the first data point, as this is the pv system in the center of the image if self.output_variable == "gsp_yield": y = batch.gsp.gsp_yield else: y = batch.pv.pv_yield y = y[0 : self.batch_size, -self.forecast_len :, 0] # calculate mse, mae mse_loss = F.mse_loss(y_hat, y) nmae_loss = (y_hat - y).abs().mean() # calculate mse, mae with exp weighted loss mse_exp = self.weighted_losses.get_mse_exp(output=y_hat, target=y) mae_exp = self.weighted_losses.get_mae_exp(output=y_hat, target=y) # TODO: Compute correlation coef using np.corrcoef(tensor with # shape (2, num_timesteps))[0, 1] on each example, and taking # the mean across the batch? self.log_dict( { f"MSE/{tag}": mse_loss, f"NMAE/{tag}": nmae_loss, f"MSE_EXP/{tag}": mse_exp, f"MAE_EXP/{tag}": mae_exp, }, on_step=True, on_epoch=True, sync_dist=True # Required for distributed training # (even multi-GPU on signle machine). ) if tag != "Train": # add metrics for each forecast horizon mse_each_forecast_horizon_metric = mse_each_forecast_horizon(output=y_hat, target=y) mae_each_forecast_horizon_metric = mae_each_forecast_horizon(output=y_hat, target=y) metrics_mse = { f"MSE_forecast_horizon_{i}/{tag}": mse_each_forecast_horizon_metric[i] for i in range(self.forecast_len_30) } metrics_mae = { f"MSE_forecast_horizon_{i}/{tag}": mae_each_forecast_horizon_metric[i] for i in range(self.forecast_len_30) } self.log_dict( {**metrics_mse, **metrics_mae}, on_step=True, on_epoch=True, sync_dist=True # Required for distributed training # (even multi-GPU on signle machine). ) if return_model_outputs: return nmae_loss, y_hat else: return nmae_loss def training_step(self, batch, batch_idx): if (batch_idx == 0) and (self.current_epoch == 0): return self._training_or_validation_step(batch, tag="Train") else: return self._training_or_validation_step(batch, tag="Train") def validation_step(self, batch: BatchML, batch_idx): if type(batch) == dict: batch = BatchML(**batch) # get model outputs nmae_loss, model_output = self._training_or_validation_step( batch, tag="Validation", return_model_outputs=True ) INTERESTING_EXAMPLES = (1, 5, 6, 7, 9, 11, 17, 19) name = f"validation/plot/epoch_{self.current_epoch}_{batch_idx}" if batch_idx in [0, 1, 2, 3, 4]: # make sure the interesting example doesnt go above the batch size INTERESTING_EXAMPLES = (i for i in INTERESTING_EXAMPLES if i < self.batch_size) for example_i in INTERESTING_EXAMPLES: # 1. Plot example if 0: fig = plot_example( batch, model_output, history_minutes=self.history_len_5 * 5, forecast_minutes=self.forecast_len_5 * 5, nwp_channels=NWP_VARIABLE_NAMES, example_i=example_i, epoch=self.current_epoch, output_variable=self.output_variable, ) # save fig to log self.logger.experiment[-1].log_image(name, fig) try: fig.close() except Exception as _: # could not close figure pass # 2. plot summary batch of predictions and results # make x,y data if self.output_variable == "gsp_yield": y = batch.gsp.gsp_yield[0 : self.batch_size, :, 0].cpu().numpy() else: y = batch.pv.pv_yield[0 : self.batch_size, :, 0].cpu().numpy() y_hat = model_output[0 : self.batch_size].cpu().numpy() time = [ pd.to_datetime(x, unit="ns") for x in batch.gsp.gsp_datetime_index[0 : self.batch_size].cpu().numpy() ] time_hat = [ pd.to_datetime(x, unit="ns") for x in batch.gsp.gsp_datetime_index[ 0 : self.batch_size, self.history_len_30 + 1 : ] .cpu() .numpy() ] # plot and save to logger fig = plot_batch_results(model_name=self.name, y=y, y_hat=y_hat, x=time, x_hat=time_hat) fig.write_html(f"temp_{batch_idx}.html") try: self.logger.experiment[-1][name].upload(f"temp_{batch_idx}.html") except: pass # save validation results capacity = batch.gsp.gsp_capacity[:,-self.forecast_len_30:,0].cpu().numpy() predictions = model_output.cpu().numpy() truths = batch.gsp.gsp_yield[:, -self.forecast_len_30:, 0].cpu().numpy() predictions = predictions * capacity truths = truths * capacity results = make_validation_results(truths_mw=truths, predictions_mw=predictions, capacity_mwp=capacity, gsp_ids=batch.gsp.gsp_id[:, 0].cpu(), batch_idx=batch_idx, t0_datetimes_utc=
pd.to_datetime(batch.metadata.t0_datetime_utc)
pandas.to_datetime
""" pygemfxns_preprocessing.py is a list of the model functions that are used to preprocess the data into the proper format. """ # Built-in libraries import os import argparse # External libraries import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.ticker import MultipleLocator import numpy as np import pandas as pd from scipy.optimize import curve_fit import pygemfxns_modelsetup as modelsetup #import pygem_input as input print('\ndhdt analysis performed separately using shean_mb_parallel.py\n') # ===== INPUT DATA ===== hyps_fn = ('/Users/davidrounce/Documents/Dave_Rounce/HiMAT/IceThickness_Farinotti/output/' + 'area_km2_01_Farinotti2019_10m.csv') icethickness_fn = ('/Users/davidrounce/Documents/Dave_Rounce/HiMAT/IceThickness_Farinotti/output/' + 'thickness_m_01_Farinotti2019_10m.csv') #dataset_name = 'berthier' dataset_name = 'braun' if dataset_name == 'berthier': dems_output_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/DEMs/Berthier/output/' mb_summary_fn_list = ['AK_Pen_mb_20190912_2256.csv', 'AR_C_mb_20190913_0735.csv', 'AR_E_mb_20190913_0735.csv', 'AR_W_mb_20190913_0835.csv', 'Chugach_mb_20190913_0744.csv', 'Coast_mb_20190912_2308.csv', 'Kenai_mb_20190912_2301.csv', 'StElias_mb_20190913_0836.csv'] mb_summary_fn = 'AK_all_20190913.csv' mb_mwea_all_fn = 'AK_all_20190913_wextrapolations.csv' reg_t1_dict = {2: 1953., 3: 1950., 4: 1952., 5: 1968., 6: 1966, 9999: 1957.8} reg_t2_dict = {2: 2004.75, 3: 2007.75, 4: 2007.75, 5: 2006.75, 6: 2007.75, 9999: 2006.75} obs_type = 'mb_geo' elif dataset_name == 'braun': dems_output_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/DEMs/Braun/output/' mb_summary_fn_list = ['Braun_mb_20190924_all.csv'] mb_summary_fn = 'braun_AK_all_20190924.csv' mb_mwea_all_fn = 'braun_AK_all_20190924_wextrapolations.csv' reg_t1_dict = {1: 2000.128, 2: 2000.128, 3: 2000.128, 4: 2000.128, 5: 2000.128, 6: 2000.128, 9999: 2000.128} reg_t2_dict = {1: 2012., 2: 2012., 3: 2012., 4: 2012., 5: 2012., 6: 2012., 9999: 2012.} obs_type = 'mb_geo' binned_fp = dems_output_fp + 'csv/' fig_fp = dems_output_fp + 'figures/all/' if os.path.exists(fig_fp) == False: os.makedirs(fig_fp) valid_perc_threshold = 90 min_area_km2 = 3 mb_cn = 'mb_bin_med_mwea' mb_max = 2.5 mb_min = -5 option_normelev = 'huss' # Terminus = 1, Top = 0 #option_normelev = 'larsen' # Terminus = 0, Top = 1 #Binned CSV column name conversion dictionary # change column names so they are easier to work with (remove spaces, etc.) sheancoldict = {'# bin_center_elev_m': 'bin_center_elev_m', ' z1_bin_count_valid': 'z1_bin_count_valid', ' z1_bin_area_valid_km2': 'z1_bin_area_valid_km2', ' z1_bin_area_perc': 'z1_bin_area_perc', ' z2_bin_count_valid': 'z2_bin_count_valid', ' z2_bin_area_valid_km2': 'z2_bin_area_valid_km2', ' z2_bin_area_perc': 'z2_bin_area_perc', ' dhdt_bin_count' : 'dhdt_bin_count', ' dhdt_bin_area_valid_km2' : 'dhdt_bin_area_valid_km2', ' dhdt_bin_area_perc' : 'dhdt_bin_area_perc', ' dhdt_bin_med_ma': 'dhdt_bin_med_ma', ' dhdt_bin_mad_ma': 'dhdt_bin_mad_ma', ' dhdt_bin_mean_ma': 'dhdt_bin_mean_ma', ' dhdt_bin_std_ma': 'dhdt_bin_std_ma', ' mb_bin_med_mwea': 'mb_bin_med_mwea', ' mb_bin_mad_mwea': 'mb_bin_mad_mwea', ' mb_bin_mean_mwea': 'mb_bin_mean_mwea', ' mb_bin_std_mwea': 'mb_bin_std_mwea', ' debris_thick_med_m': 'debris_thick_med_m', ' debris_thick_mad_m': 'debris_thick_mad_m', ' perc_debris': 'perc_debris', ' perc_pond': 'perc_pond', ' perc_clean': 'perc_clean', ' dhdt_debris_med' : 'dhdt_debris_med', ' dhdt_pond_med' : 'dhdt_pond_med', ' dhdt_clean_med' : 'dhdt_clean_med', ' vm_med' : 'vm_med', ' vm_mad' : 'vm_mad', ' H_mean' : 'H_mean', ' H_std' : 'H_std'} def norm_stats(norm_list, option_normelev=option_normelev, option_norm_limits=False): """ Statistics associated with normalized elevation data Parameters ---------- norm_list : list of np.array each item is a np.array (col 1: normalized elevation, col 2: mb, dhdt, normalized mb, or normalized dhdt) option_norm_limits : boolean option to place limits on the normalized dh/dt of 0 and 1 Returns ------- norm_all_stats : pd.DataFrame statistics associated with the normalized values """ # Merge norm_list to make array of all glaciers with same elevation normalization space # max_length = len(max(norm_list,key=len)) #len of glac w most norm values # norm_all = np.zeros((max_length, len(norm_list)+1)) #array: each col a glac, each row a norm dhdt val to be interpolated # # First column is normalized elevation, pulled from the glac with most norm vals # norm_all[:,0] = max(norm_list,key=len)[:,0] # Interpolate to common normalized elevation for all glaciers norm_elev = np.arange(0,1.01,0.01) norm_all = np.zeros((len(norm_elev), len(norm_list)+1)) #array: each col a glac, each row norm dhdt val interpolated norm_all[:,0] = norm_elev # Loop through each glacier's normalized array (where col1 is elev_norm and col2 is mb or dhdt) for n, norm_single in enumerate(norm_list): if option_normelev == 'huss': norm_single = norm_single[::-1] # Fill in nan values for elev_norm of 0 and 1 with nearest neighbor nonan_idx = np.where(~np.isnan(norm_single[:,1]))[0] norm_single[0,1] = norm_single[nonan_idx[0], 1] norm_single[-1,1] = norm_single[nonan_idx[-1], 1] # Remove nan values. norm_single = norm_single[nonan_idx] elev_single = norm_single[:,0] #set name for first col of a given glac dhdt_single = norm_single[:,1] #set name for the second col of a given glac #loop through each dhdt value of the glacier, and add it and interpolate to add to the norm_all array. for r in range(0, norm_all.shape[0]): if r == 0: # put first value dhdt value into the norm_all. n+1 because the first col is taken by the elevnorms norm_all[r,n+1] = dhdt_single[0] elif r == (norm_all.shape[0] - 1): #put last value into the the last row for the glacier's 'stretched out'(interpolated) normalized curve norm_all[r,n+1] = dhdt_single[-1] else: # Find value need to interpolate to norm_elev_value = norm_all[r,0] #go through each row in the elev (col1) # Find index of value above it from dhdt_norm, which is a different size upper_idx = np.where(elev_single == elev_single[elev_single >= norm_elev_value].min())[0][0] # Find index of value below it lower_idx = np.where(elev_single == elev_single[elev_single < norm_elev_value].max())[0][0] #get the two values, based on the indices. upper_elev = elev_single[upper_idx] upper_value = dhdt_single[upper_idx] lower_elev = elev_single[lower_idx] lower_value = dhdt_single[lower_idx] #Linearly Interpolate between two values, and plug in interpolated value into norm_all norm_all[r,n+1] = (lower_value + (norm_elev_value - lower_elev) / (upper_elev - lower_elev) * (upper_value - lower_value)) # Compute mean and standard deviation norm_all_stats = pd.DataFrame() norm_all_stats['norm_elev'] = norm_all[:,0] norm_all_stats['norm_dhdt_med'] = np.nanmedian(norm_all[:,1:], axis=1) norm_all_stats['norm_dhdt_nmad'] = (1.483 * np.median(np.absolute((norm_all[:,1:] - norm_all_stats['norm_dhdt_med'][:,np.newaxis])), axis=1)) norm_all_stats['norm_dhdt_mean'] = np.nanmean(norm_all[:,1:], axis=1) norm_all_stats['norm_dhdt_std'] = np.nanstd(norm_all[:,1:], axis=1) norm_all_stats['norm_dhdt_68high'] = norm_all_stats['norm_dhdt_mean'] + norm_all_stats['norm_dhdt_std'] norm_all_stats['norm_dhdt_68low'] = norm_all_stats['norm_dhdt_mean'] - norm_all_stats['norm_dhdt_std'] if option_norm_limits: norm_all_stats.loc[norm_all_stats['norm_dhdt_68high'] > 1, 'norm_dhdt_68high'] = 1 norm_all_stats.loc[norm_all_stats['norm_dhdt_68low'] < 0, 'norm_dhdt_68low'] = 0 return norm_all_stats # ===== START PROCESSING ===== # Load mass balance summary data if os.path.exists(dems_output_fp + mb_summary_fn): mb_summary = pd.read_csv(dems_output_fp + mb_summary_fn) else: # Merge files for n_fn, fn in enumerate(mb_summary_fn_list): mb_summary_subset = pd.read_csv(dems_output_fp + fn) mb_summary_subset['region'] = fn.split('_mb')[0] if n_fn == 0: mb_summary = mb_summary_subset else: mb_summary = mb_summary.append(mb_summary_subset) # Sort and add glacier number mb_summary = mb_summary.sort_values('RGIId') mb_summary.reset_index(inplace=True, drop=True) mb_summary['glacno'] = [str(int(x)).zfill(2) + '.' + str(int(np.round(x%1*10**5))).zfill(5) for x in mb_summary['RGIId']] # Export dataset mb_summary.to_csv(dems_output_fp + mb_summary_fn, index=False) # ===== PROCESS DATA ===== print('Glaciers total:', mb_summary.shape[0]) if ~(type(mb_summary.loc[0,'glacno']) == str): mb_summary['glacno'] = [str(int(x)).zfill(2) + '.' + str(int(np.round(x%1*10**5))).zfill(5) for x in mb_summary['RGIId']] mb_summary = mb_summary.loc[mb_summary['valid_area_perc'] >= valid_perc_threshold] mb_summary.reset_index(inplace=True, drop=True) mb_summary = mb_summary.loc[mb_summary['area_m2'] / 1e6 >= min_area_km2] mb_summary.reset_index(inplace=True, drop=True) print('Glaciers total after % threshold:', mb_summary.shape[0]) glacno_list = list(mb_summary.glacno.values) main_glac_rgi = modelsetup.selectglaciersrgitable(glac_no=glacno_list) # ===== BINNED DATA ===== binned_list = [] for glacno in glacno_list: csv_str = str(int(glacno.split('.')[0])) + '.' + glacno.split('.')[1] for i in os.listdir(binned_fp): if i.startswith(csv_str) and i.endswith('_mb_bins.csv'): binned_ds = pd.read_csv(binned_fp + i, na_values=' nan') # Rename columns so they are easier to read binned_ds = binned_ds.rename(columns=sheancoldict) # Remove bad values of dhdt binned_ds.loc[binned_ds[mb_cn] > mb_max, mb_cn] = np.nan binned_ds.loc[binned_ds[mb_cn] < mb_min, mb_cn] = np.nan # If dhdt is nan, remove row null_bins = binned_ds.loc[pd.isnull(binned_ds[mb_cn])].index.values binned_ds = binned_ds.drop(null_bins) # ===== BINNED DATA NORMALIZATIONS ===== elev_cn = binned_ds.columns[0] glac_elev = binned_ds[elev_cn].values glac_mb = binned_ds[mb_cn].values.astype(float) # Larsen normalization (terminus = 0, top = 1) if option_normelev == 'larsen': binned_ds['elev_norm'] = (glac_elev - glac_elev[0]) / (glac_elev[-1] - glac_elev[0]) # Huss normalization (terminus = 1, top = 0) elif option_normelev == 'huss': binned_ds['elev_norm'] = (glac_elev[-1] - glac_elev) / (glac_elev[-1] - glac_elev[0]) # Normalized ice thickness change [ma] # dhdt / dhdt_max # Shifted normalized ice thickness change such that everything is negative binned_ds['mb_norm_shifted'] = (glac_mb - np.nanmax(glac_mb)) / np.nanmin(glac_mb - np.nanmax(glac_mb)) binned_ds.loc[binned_ds['mb_norm_shifted'] == -0, 'mb_norm_shifted'] = 0 # Replace positive values to zero glac_mb[glac_mb >= 0] = 0 binned_ds['mb_norm_huss'] = glac_mb / np.nanmin(glac_mb) binned_ds.loc[binned_ds['mb_norm_huss'] == -0, 'mb_norm_huss'] = 0 # Append to list binned_list.append(binned_ds) #%% ===== ELEVATION VS MASS BALANCE PLOTS====== # List of np.array where first column is elev_norm and second column is mass balance elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in binned_list] normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in binned_list] normelev_mb_stats = norm_stats(normelev_mb_list) # Estimate a curve def curve_func(x, a, b, c, d): return (x + a)**d + b * (x + a) + c p0 = [1,1,1,1] coeffs, matcov = curve_fit(curve_func, normelev_mb_stats['norm_elev'].values, normelev_mb_stats['norm_dhdt_med'].values, p0, maxfev=10000) curve_x = np.arange(0,1.01,0.01) curve_y = curve_func(curve_x, coeffs[0], coeffs[1], coeffs[2], coeffs[3]) # Plot figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(2, 1, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.4, 'hspace':0.25}) max_elev = 0 for n, i in enumerate(elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = normelev_mb_list[n][:,0] if glac_elev.max() > max_elev: max_elev = glac_elev.max() max_elev = np.ceil(max_elev/500)*500 # Elevation vs MB ax[0,0].plot(glac_elev, glac_mb, linewidth=0.5, alpha=0.5) # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[1,0].plot(glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) ax[1,0].plot(normelev_mb_stats['norm_elev'], normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[1,0].fill_between(normelev_mb_stats['norm_elev'], normelev_mb_stats['norm_dhdt_med'], normelev_mb_stats['norm_dhdt_med'] + normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[1,0].fill_between(normelev_mb_stats['norm_elev'], normelev_mb_stats['norm_dhdt_med'], normelev_mb_stats['norm_dhdt_med'] - normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[1,0].plot(curve_x, curve_y, color='k', linewidth=1, alpha=1, linestyle='--', zorder=2) # niceties - Elevation vs MB ax[0,0].set_xlabel('Elevation (m a.s.l.)', fontsize=12) ax[0,0].xaxis.set_major_locator(MultipleLocator(500)) ax[0,0].xaxis.set_minor_locator(MultipleLocator(100)) ax[0,0].set_xlim(0, max_elev) ax[0,0].set_ylabel('Mass Balance (m w.e. $\mathregular{yr{-1}}$)', fontsize=12, labelpad=10) ax[0,0].axhline(y=0, color='k', linestyle='-', linewidth=0.5) ax[0,0].yaxis.set_major_locator(MultipleLocator(0.5)) ax[0,0].yaxis.set_minor_locator(MultipleLocator(0.1)) # niceties - Norm Elevation vs MB ax[1,0].set_xlabel('Normalized Elevation (-)', fontsize=12) ax[1,0].xaxis.set_major_locator(MultipleLocator(0.25)) ax[1,0].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[1,0].set_xlim(0,1) ax[1,0].set_ylabel('Mass Balance (m w.e. $\mathregular{yr{-1}}$)', fontsize=12, labelpad=10) #ax[1,0].axhline(y=0, color='k', linestyle='--', linewidth=0.5) ax[1,0].yaxis.set_major_locator(MultipleLocator(0.5)) ax[1,0].yaxis.set_minor_locator(MultipleLocator(0.1)) ax[1,0].set_ylim(-3,1.5) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_all_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== REGIONAL ELEVATION VS MASS BALANCE PLOTS====== subregions = 'O2Regions' if subregions == 'Berthier': regions = sorted(set(mb_summary.region.values)) subregion_dict = {} for region in regions: subregion_dict[region] = region elif subregions == 'O2Regions': regions = sorted(set(main_glac_rgi.O2Region.values)) subregion_dict = {2:'Alaska Range', 3:'Alaska Pena', 4:'W Chugach Mtns', 5:'St Elias Mtns', 6:'N Coast Ranges', 9999:'All Alaska'} reg_normelev_mb_dict = {} regions.append(9999) ncols = 2 nrows = int(np.ceil(len(regions)/ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(nrows, ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for region in regions: if subregions == 'Berthier': reg_idx = list(np.where(mb_summary['region'] == region)[0]) elif subregions =='O2Regions': reg_idx = list(np.where(main_glac_rgi['O2Region'] == region)[0]) if region == 9999: reg_idx = main_glac_rgi.index.values print(subregion_dict[region], 'glacier area mean/median:', np.round(main_glac_rgi.loc[reg_idx, 'Area'].mean(),1), np.round(main_glac_rgi.loc[reg_idx, 'Area'].median(),1), np.round(main_glac_rgi.loc[reg_idx, 'Area'].std(),1)) reg_binned_list = [binned_list[i] for i in reg_idx] reg_elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_stats = norm_stats(reg_normelev_mb_list) reg_normelev_mb_dict[region] = dict(zip((reg_normelev_mb_stats['norm_elev'].values * 100).astype(int), reg_normelev_mb_stats['norm_dhdt_med'].values)) if region == 9999: normelev_all = reg_normelev_mb_stats['norm_elev'] dhdt_all = reg_normelev_mb_stats['norm_dhdt_med'] for n, i in enumerate(reg_elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = reg_normelev_mb_list[n][:,0] # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) # Regional curve ax[nrow,ncol].plot(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] + reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] - reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) # niceties - Norm Elevation vs MB ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(-3,1.5) # Title region_nglac = len(reg_normelev_mb_list) ax[nrow,ncol].text(0.5, 1.01, subregion_dict[region] + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == ncols: nrow += 1 ncol = 0 # Add All Alaska empirical curve to each glacier ncol = 0 nrow = 0 for region in regions: if region != 9999: ax[nrow,ncol].plot(normelev_all, dhdt_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == ncols: nrow += 1 ncol = 0 # Y-label fig.text(0.04, 0.5, 'Mass Balance (m w.e. $\mathregular{yr^{-1}}$)', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_regional_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ==== SIZE: ELEVATION VS MASS BALANCE PLOTS====== if min_area_km2 < 5: group_names = ['Area < 5 km$^{2}$', '5 km$^{2}$ < Area <= 20 km$^{2}$', 'Area > 20 km$^{2}$', 'All Alaska'] group_thresholds = [(0,5), (5, 20), (20, np.inf)] else: group_names = ['5 km$^{2}$ < Area <= 20 km$^{2}$', 'Area > 20 km$^{2}$', 'All Alaska'] group_thresholds = [(5, 20), (20, np.inf)] group_idx = [] for group_threshold in group_thresholds: group_idx.append(list(main_glac_rgi[(main_glac_rgi.Area > group_threshold[0]) & (main_glac_rgi.Area <= group_threshold[1])].index.values)) group_idx.append(list(main_glac_rgi.index.values)) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] reg_elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_stats = norm_stats(reg_normelev_mb_list) reg_normelev_mb_dict[region] = dict(zip((reg_normelev_mb_stats['norm_elev'].values * 100).astype(int), reg_normelev_mb_stats['norm_dhdt_med'].values)) if group_name in ['All Alaska']: normelev_all = reg_normelev_mb_stats['norm_elev'] dhdt_all = reg_normelev_mb_stats['norm_dhdt_med'] for n, i in enumerate(reg_elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = reg_normelev_mb_list[n][:,0] # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) # Regional curve ax[nrow,ncol].plot(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] + reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] - reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) # niceties - Norm Elevation vs MB ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(-5,1.5) # Title region_nglac = len(reg_normelev_mb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for group_name in group_names: if group_name not in ['All Alaska']: # Fitted curve ax[nrow,ncol].plot(normelev_all, dhdt_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Y-label fig.text(0.04, 0.5, 'Mass Balance (m w.e. $\mathregular{yr^{-1}}$)', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_SIZE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ==== TERIMNUS TYPE: ELEVATION VS MASS BALANCE PLOTS====== group_names = ['Land', 'Tidewater', 'Lake', 'All Alaska'] group_idx = [] for group_value in [0,1,2]: group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == group_value].index.values)) group_idx.append(list(main_glac_rgi.index.values)) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] reg_elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_stats = norm_stats(reg_normelev_mb_list) reg_normelev_mb_dict[region] = dict(zip((reg_normelev_mb_stats['norm_elev'].values * 100).astype(int), reg_normelev_mb_stats['norm_dhdt_med'].values)) if group_name in ['All Alaska']: normelev_all = reg_normelev_mb_stats['norm_elev'] dhdt_all = reg_normelev_mb_stats['norm_dhdt_med'] for n, i in enumerate(reg_elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = reg_normelev_mb_list[n][:,0] # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) # Regional curve ax[nrow,ncol].plot(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] + reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] - reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) # niceties - Norm Elevation vs MB ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(-5,1.5) # Title region_nglac = len(reg_normelev_mb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska empirical curve to each glacier ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): if group_name not in ['All Alaska']: ax[nrow,ncol].plot(normelev_all, dhdt_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Y-label fig.text(0.04, 0.5, 'Mass Balance (m w.e. $\mathregular{yr^{-1}}$)', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_TERMTYPE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ==== TERMINUS TYPE & SIZE: ELEVATION VS MASS BALANCE PLOTS====== group_names = ['Tidewater', 'Lake', 'Land (A < 5 km$^{2}$)', 'Land (5 < A < 20 km$^{2}$)', 'Land (A > 20 km$^{2}$)', 'All Alaska'] group_idx = [] for group_name in group_names: if group_name == 'Tidewater': group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == 1].index.values)) elif group_name == 'Lake': group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == 2].index.values)) elif group_name == 'Land (A < 5 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area <= 5)].index.values)) elif group_name == 'Land (5 < A < 20 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area > 5) & (main_glac_rgi.Area <= 20)].index.values)) elif group_name == 'Land (A > 20 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area > 20)].index.values)) elif group_name == 'All Alaska': group_idx.append(list(main_glac_rgi.index.values)) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] reg_elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_stats = norm_stats(reg_normelev_mb_list) reg_normelev_mb_dict[region] = dict(zip((reg_normelev_mb_stats['norm_elev'].values * 100).astype(int), reg_normelev_mb_stats['norm_dhdt_med'].values)) if group_name in ['All Alaska']: normelev_all = reg_normelev_mb_stats['norm_elev'] dhdt_all = reg_normelev_mb_stats['norm_dhdt_med'] for n, i in enumerate(reg_elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = reg_normelev_mb_list[n][:,0] # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) # Regional curve ax[nrow,ncol].plot(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] + reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[nrow,ncol].fill_between(reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] - reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) # niceties - Norm Elevation vs MB ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(-5,1.5) # Title region_nglac = len(reg_normelev_mb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for group_name in group_names: if group_name not in ['All Alaska']: # Fitted curve ax[nrow,ncol].plot(normelev_all, dhdt_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Y-label fig.text(0.04, 0.5, 'Mass Balance (m w.e. $\mathregular{yr^{-1}}$)', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_TERMTYPE-SIZE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ==== TERIMNUS TYPE - LARSEN: ELEVATION VS MASS BALANCE PLOTS====== group_names = ['Land', 'Lake', 'Tidewater'] group_idx = [] for group_value in [0,2,1]: group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == group_value].index.values)) figwidth, figheight = 3, 6.5 fig, ax = plt.subplots(3, 1, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.2}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] reg_elev_mb_list = [np.array([i[elev_cn].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_list = [np.array([i['elev_norm'].values, i[mb_cn].values]).transpose() for i in reg_binned_list] reg_normelev_mb_stats = norm_stats(reg_normelev_mb_list) reg_normelev_mb_dict[region] = dict(zip((reg_normelev_mb_stats['norm_elev'].values * 100).astype(int), reg_normelev_mb_stats['norm_dhdt_med'].values)) for n, i in enumerate(reg_elev_mb_list): glac_elev = i[:,0] glac_mb = i[:,1] glac_elev_norm = reg_normelev_mb_list[n][:,0] # Norm Elevation vs MB # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(1 - glac_elev_norm, glac_mb, linewidth=0.5, alpha=0.2, zorder=1) # Regional curve ax[nrow,ncol].plot(1 - reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], color='k', linewidth=1, alpha=1, zorder=2) ax[nrow,ncol].fill_between(1 - reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] + reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) ax[nrow,ncol].fill_between(1 - reg_normelev_mb_stats['norm_elev'], reg_normelev_mb_stats['norm_dhdt_med'], reg_normelev_mb_stats['norm_dhdt_med'] - reg_normelev_mb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=1) # niceties - Norm Elevation vs MB ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.2)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.1)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].tick_params(labelsize=10) if group_name in ['Land', 'Lake']: ax[nrow,ncol].set_ylim(-6,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.5)) elif group_name == 'Tidewater': ax[nrow,ncol].set_ylim(-10,12) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(5)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(1)) # Title region_nglac = len(reg_normelev_mb_list) ax[nrow,ncol].text(0.5, 0.05, group_name + ' (' + str(region_nglac) + ' glaciers)', size=12, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row nrow += 1 # Y-label fig.text(-0.02, 0.5, 'Mass Balance (m w.e. $\mathregular{yr^{-1}}$)', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.07, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'elev_mb_TERMTYPE-Larsen_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== REGIONAL: NORMALIZED ELEVATION VS NORMALIZED MASS BALANCE PLOT====== subregions = 'O2Regions' if subregions == 'Berthier': regions = sorted(set(mb_summary.region.values)) subregion_dict = {} for region in regions: subregion_dict[region] = region elif subregions == 'O2Regions': regions = sorted(set(main_glac_rgi.O2Region.values)) subregion_dict = {2:'Alaska Range', 3:'Alaska Pena', 4:'W Chugach Mtns', 5:'St Elias Mtns', 6:'N Coast Ranges', 9999:'All Alaska'} reg_normelev_mb_dict = {} regions.append(9999) ncols = 2 nrows = int(np.ceil(len(regions)/ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(nrows, ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for region in regions: if subregions == 'Berthier': reg_idx = list(np.where(mb_summary['region'] == region)[0]) elif subregions =='O2Regions': reg_idx = list(np.where(main_glac_rgi['O2Region'] == region)[0]) if region == 9999: reg_idx = main_glac_rgi.index.values reg_binned_list = [binned_list[i] for i in reg_idx] mb_norm_cn = 'mb_norm_huss' # If mb_norm_huss, then remove glaciers with all positive values if mb_norm_cn == 'mb_norm_huss': reg_idx_allnan = [] for n, reg_binned_data in enumerate(reg_binned_list): if np.isnan(reg_binned_data[mb_norm_cn]).any() == True: reg_idx_allnan.append(n) for n in sorted(reg_idx_allnan, reverse=True): del reg_binned_list[n] reg_normelev_normmb_list = [np.array([i['elev_norm'].values, i[mb_norm_cn].values]).transpose() for i in reg_binned_list] reg_normelev_normmb_stats = norm_stats(reg_normelev_normmb_list) # Estimate a curve # Two steps: (1) estimate d to nearest integer and avoid nan issues, (2) force d to be an integer and optimize # bounds ensure x = reg_normelev_normmb_stats['norm_elev'].values y = reg_normelev_normmb_stats['norm_dhdt_med'].values def curve_func_raw(x, a, b, c, d): y = (x + a)**d + b * (x + a) + c # avoid errors with np.arrays where negative number to power returns NaN - replace with 0 y = np.nan_to_num(y) return y def curve_func(x, a, b, c, d): # force d to be an integer d = int(np.round(d,0)) y = (x + a)**d + b * (x + a) + c return y p0 = [-0.02,0.12,0,3] bnd_low = [-np.inf, -np.inf, -np.inf, 0] bnd_high = [np.inf, np.inf, np.inf, np.inf] coeffs, matcov = curve_fit(curve_func_raw, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # specify integer for d p0[3] = int(np.round(coeffs[3],0)) coeffs, matcov = curve_fit(curve_func, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # Round coefficients coeffs[0] = np.round(coeffs[0],2) coeffs[1] = np.round(coeffs[1],2) coeffs[2] = np.round(coeffs[2],2) glac_elev_norm = np.arange(0,1.01,0.01) curve_y = curve_func(glac_elev_norm, coeffs[0], coeffs[1], coeffs[2], coeffs[3]) if region == 9999: curve_y_all = curve_y.copy() # Plot regional curves ax[nrow,ncol].plot(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], color='k', linewidth=2, alpha=0.5, zorder=4) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] + reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] - reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) # Fitted curve if region != 9999: color_curve = 'k' else: color_curve = 'y' ax[nrow,ncol].plot(glac_elev_norm, curve_y, color=color_curve, linewidth=1, alpha=1, linestyle='--', zorder=5) # Huss curve huss_y_lrg = (glac_elev_norm - 0.02)**6 + 0.12 * (glac_elev_norm - 0.02) huss_y_med = (glac_elev_norm - 0.05)**4 + 0.19 * (glac_elev_norm - 0.05) + 0.01 huss_y_sml = (glac_elev_norm - 0.30)**2 + 0.60 * (glac_elev_norm - 0.30) + 0.09 ax[nrow,ncol].plot(glac_elev_norm, huss_y_lrg, linewidth=1, color='red', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_med, linewidth=1, color='green', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_sml, linewidth=1, color='blue', linestyle='-.', alpha=1, zorder=3) # Individual curves for n, i in enumerate(reg_normelev_normmb_list): glac_elev_norm_single = reg_normelev_normmb_list[n][:,0] glac_mb_norm_single = reg_normelev_normmb_list[n][:,1] # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm_single, glac_mb_norm_single, linewidth=0.25, alpha=0.2, zorder=1) # Niceties ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(1.05,-0.05) # Title region_nglac = len(reg_normelev_normmb_list) ax[nrow,ncol].text(0.5, 1.01, subregion_dict[region] + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Equation signs = ['+', '+', '+'] for nsign, coeff in enumerate(coeffs[0:3]): if coeff < 0: signs[nsign] = '-' eqn_txt = 'dh=(x+a)$^{d}$+b(x+a)+c' ax[nrow,ncol].text(0.05, 0.45, 'a=' + '{:.2f}'.format(coeffs[0]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.35, 'b=' + '{:.2f}'.format(coeffs[1]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.25, 'c=' + '{:.2f}'.format(coeffs[2]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.15, 'd=' + str(int(coeffs[3])), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.05, eqn_txt, size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for region in regions: if region != 9999: # Fitted curve ax[nrow,ncol].plot(glac_elev_norm, curve_y_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == ncols: nrow += 1 ncol = 0 # Legend leg_labels = ['Median', 'Curve', 'Curve-all', 'H-small', 'H-medium', 'H-large'] #leg_labels = ['Median', 'Curve_fit', 'Huss-small', 'Huss-medium', 'Huss-large'] #leg_linestyles = ['-', '--', '--', '--', '--'] leg_linestyles = ['-', '--', '--', '-.', '-.', '-.'] leg_colors = ['dimgray', 'k', 'y', 'b', 'g', 'r'] leg_lines = [] for nline, label in enumerate(leg_labels): # line = Line2D([0,1],[0,1], color='white') # leg_lines.append(line) # leg_labels.append('') line = Line2D([0,0],[0,0], color=leg_colors[nline], linestyle=leg_linestyles[nline], linewidth=1.5) leg_lines.append(line) fig.legend(leg_lines, leg_labels, loc='lower center', bbox_to_anchor=(0.5,0.01), handlelength=1.5, handletextpad=0.25, borderpad=0.2, frameon=True, ncol=len(leg_labels), columnspacing=0.75) # Y-label fig.text(0.04, 0.5, 'Normalized Mass Balance', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'normelev_normmb_regional_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== GLACIER SIZE: NORMALIZED ELEVATION VS NORMALIZED MASS BALANCE PLOT====== if min_area_km2 < 5: group_names = ['Area < 5 km$^{2}$', '5 km$^{2}$ < Area <= 20 km$^{2}$', 'Area > 20 km$^{2}$', 'All Alaska'] group_thresholds = [(0,5), (5, 20), (20, np.inf)] else: group_names = ['5 km$^{2}$ < Area <= 20 km$^{2}$', 'Area > 20 km$^{2}$', 'All Alaska'] group_thresholds = [(5, 20), (20, np.inf)] group_idx = [] for group_threshold in group_thresholds: group_idx.append(list(main_glac_rgi[(main_glac_rgi.Area > group_threshold[0]) & (main_glac_rgi.Area <= group_threshold[1])].index.values)) group_idx.append(list(main_glac_rgi.index.values)) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): print(group_name) reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] mb_norm_cn = 'mb_norm_huss' # If mb_norm_huss, then remove glaciers with all positive values if mb_norm_cn == 'mb_norm_huss': reg_idx_allnan = [] for n, reg_binned_data in enumerate(reg_binned_list): if np.isnan(reg_binned_data[mb_norm_cn]).any() == True: reg_idx_allnan.append(n) for n in sorted(reg_idx_allnan, reverse=True): del reg_binned_list[n] reg_normelev_normmb_list = [np.array([i['elev_norm'].values, i[mb_norm_cn].values]).transpose() for i in reg_binned_list] reg_normelev_normmb_stats = norm_stats(reg_normelev_normmb_list) # Estimate a curve # Two steps: (1) estimate d to nearest integer and avoid nan issues, (2) force d to be an integer and optimize # bounds ensure x = reg_normelev_normmb_stats['norm_elev'].values y = reg_normelev_normmb_stats['norm_dhdt_med'].values def curve_func_raw(x, a, b, c, d): y = (x + a)**d + b * (x + a) + c # avoid errors with np.arrays where negative number to power returns NaN - replace with 0 y = np.nan_to_num(y) return y def curve_func(x, a, b, c, d): # force d to be an integer d = int(np.round(d,0)) y = (x + a)**d + b * (x + a) + c return y p0 = [-0.02,0.12,0,3] bnd_low = [-np.inf, -np.inf, -np.inf, 0] bnd_high = [np.inf, np.inf, np.inf, np.inf] coeffs, matcov = curve_fit(curve_func_raw, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # specify integer for d coeffs, matcov = curve_fit(curve_func, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # Round coefficients coeffs[0] = np.round(coeffs[0],2) coeffs[1] = np.round(coeffs[1],2) coeffs[2] = np.round(coeffs[2],2) glac_elev_norm = np.arange(0,1.01,0.01) curve_y = curve_func(glac_elev_norm, coeffs[0], coeffs[1], coeffs[2], coeffs[3]) if group_name in ['All Alaska']: curve_y_all = curve_y.copy() # Plot regional curves ax[nrow,ncol].plot(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], color='k', linewidth=2, alpha=0.5, zorder=4) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] + reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] - reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) # Fitted curve if group_name not in ['All Alaska']: color_curve = 'k' else: color_curve = 'y' ax[nrow,ncol].plot(glac_elev_norm, curve_y, color=color_curve, linewidth=1, alpha=1, linestyle='--', zorder=5) # Huss curve huss_y_lrg = (glac_elev_norm - 0.02)**6 + 0.12 * (glac_elev_norm - 0.02) huss_y_med = (glac_elev_norm - 0.05)**4 + 0.19 * (glac_elev_norm - 0.05) + 0.01 huss_y_sml = (glac_elev_norm - 0.30)**2 + 0.60 * (glac_elev_norm - 0.30) + 0.09 ax[nrow,ncol].plot(glac_elev_norm, huss_y_lrg, linewidth=1, color='red', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_med, linewidth=1, color='green', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_sml, linewidth=1, color='blue', linestyle='-.', alpha=1, zorder=3) # Individual curves for n, i in enumerate(reg_normelev_normmb_list): glac_elev_norm_single = reg_normelev_normmb_list[n][:,0] glac_mb_norm_single = reg_normelev_normmb_list[n][:,1] # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm_single, glac_mb_norm_single, linewidth=0.25, alpha=0.2, zorder=1) # Niceties ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(1.05,-0.05) # Title region_nglac = len(reg_normelev_normmb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Equation signs = ['+', '+', '+'] for nsign, coeff in enumerate(coeffs[0:3]): if coeff < 0: signs[nsign] = '-' eqn_txt = 'dh=(x+a)$^{d}$+b(x+a)+c' ax[nrow,ncol].text(0.05, 0.45, 'a=' + '{:.2f}'.format(coeffs[0]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.35, 'b=' + '{:.2f}'.format(coeffs[1]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.25, 'c=' + '{:.2f}'.format(coeffs[2]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.15, 'd=' + str(int(coeffs[3])), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.05, eqn_txt, size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for group_name in group_names: if group_name not in ['All Alaska']: # Fitted curve ax[nrow,ncol].plot(glac_elev_norm, curve_y_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Legend leg_labels = ['Median', 'Curve', 'Curve-all', 'H-small', 'H-medium', 'H-large'] #leg_labels = ['Median', 'Curve_fit', 'Huss-small', 'Huss-medium', 'Huss-large'] #leg_linestyles = ['-', '--', '--', '--', '--'] leg_linestyles = ['-', '--', '--', '-.', '-.', '-.'] leg_colors = ['dimgray', 'k', 'y', 'b', 'g', 'r'] leg_lines = [] for nline, label in enumerate(leg_labels): # line = Line2D([0,1],[0,1], color='white') # leg_lines.append(line) # leg_labels.append('') line = Line2D([0,0],[0,0], color=leg_colors[nline], linestyle=leg_linestyles[nline], linewidth=1.5) leg_lines.append(line) fig.legend(leg_lines, leg_labels, loc='lower center', bbox_to_anchor=(0.5,0.01), handlelength=1.5, handletextpad=0.25, borderpad=0.2, frameon=True, ncol=len(leg_labels), columnspacing=0.75) # Y-label fig.text(0.04, 0.5, 'Normalized Mass Balance', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'normelev_normmb_SIZE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== TERMINUS TYPE: NORMALIZED ELEVATION VS NORMALIZED MASS BALANCE PLOT====== group_names = ['Land', 'Lake', 'Tidewater', 'All Alaska'] group_idx = [] for group_value in [0,2,1]: group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == group_value].index.values)) group_idx.append(main_glac_rgi.index.values) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] mb_norm_cn = 'mb_norm_huss' # If mb_norm_huss, then remove glaciers with all positive values if mb_norm_cn == 'mb_norm_huss': reg_idx_allnan = [] for n, reg_binned_data in enumerate(reg_binned_list): if np.isnan(reg_binned_data[mb_norm_cn]).any() == True: reg_idx_allnan.append(n) for n in sorted(reg_idx_allnan, reverse=True): del reg_binned_list[n] reg_normelev_normmb_list = [np.array([i['elev_norm'].values, i[mb_norm_cn].values]).transpose() for i in reg_binned_list] reg_normelev_normmb_stats = norm_stats(reg_normelev_normmb_list) # Estimate a curve # Two steps: (1) estimate d to nearest integer and avoid nan issues, (2) force d to be an integer and optimize # bounds ensure x = reg_normelev_normmb_stats['norm_elev'].values y = reg_normelev_normmb_stats['norm_dhdt_med'].values def curve_func_raw(x, a, b, c, d): y = (x + a)**d + b * (x + a) + c # avoid errors with np.arrays where negative number to power returns NaN - replace with 0 y = np.nan_to_num(y) return y def curve_func(x, a, b, c, d): # force d to be an integer d = int(np.round(d,0)) y = (x + a)**d + b * (x + a) + c return y p0 = [-0.02,0.12,0,3] bnd_low = [-np.inf, -np.inf, -np.inf, 0] bnd_high = [np.inf, np.inf, np.inf, np.inf] coeffs, matcov = curve_fit(curve_func_raw, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # specify integer for d p0[3] = int(np.round(coeffs[3],0)) coeffs, matcov = curve_fit(curve_func, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # Round coefficients coeffs[0] = np.round(coeffs[0],2) coeffs[1] = np.round(coeffs[1],2) coeffs[2] = np.round(coeffs[2],2) glac_elev_norm = np.arange(0,1.01,0.01) curve_y = curve_func(glac_elev_norm, coeffs[0], coeffs[1], coeffs[2], coeffs[3]) if group_name in ['All Alaska']: curve_y_all = curve_y.copy() # Plot regional curves ax[nrow,ncol].plot(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], color='k', linewidth=2, alpha=0.5, zorder=4) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] + reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] - reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) # Fitted curve if group_name not in ['All Alaska']: color_curve = 'k' else: color_curve = 'y' ax[nrow,ncol].plot(glac_elev_norm, curve_y, color=color_curve, linewidth=1, alpha=1, linestyle='--', zorder=5) # Huss curve huss_y_lrg = (glac_elev_norm - 0.02)**6 + 0.12 * (glac_elev_norm - 0.02) huss_y_med = (glac_elev_norm - 0.05)**4 + 0.19 * (glac_elev_norm - 0.05) + 0.01 huss_y_sml = (glac_elev_norm - 0.30)**2 + 0.60 * (glac_elev_norm - 0.30) + 0.09 ax[nrow,ncol].plot(glac_elev_norm, huss_y_lrg, linewidth=1, color='red', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_med, linewidth=1, color='green', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_sml, linewidth=1, color='blue', linestyle='-.', alpha=1, zorder=3) # Individual curves for n, i in enumerate(reg_normelev_normmb_list): glac_elev_norm_single = reg_normelev_normmb_list[n][:,0] glac_mb_norm_single = reg_normelev_normmb_list[n][:,1] # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm_single, glac_mb_norm_single, linewidth=0.25, alpha=0.2, zorder=1) # Niceties ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(1.05,-0.05) # Title region_nglac = len(reg_normelev_normmb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Equation signs = ['+', '+', '+'] for nsign, coeff in enumerate(coeffs[0:3]): if coeff < 0: signs[nsign] = '-' eqn_txt = 'dh=(x+a)$^{d}$+b(x+a)+c' ax[nrow,ncol].text(0.05, 0.45, 'a=' + '{:.2f}'.format(coeffs[0]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.35, 'b=' + '{:.2f}'.format(coeffs[1]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.25, 'c=' + '{:.2f}'.format(coeffs[2]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.15, 'd=' + str(int(coeffs[3])), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.05, eqn_txt, size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for group_name in group_names: if group_name not in ['All Alaska']: # Fitted curve ax[nrow,ncol].plot(glac_elev_norm, curve_y_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Legend leg_labels = ['Median', 'Curve', 'Curve-all', 'H-small', 'H-medium', 'H-large'] #leg_labels = ['Median', 'Curve_fit', 'Huss-small', 'Huss-medium', 'Huss-large'] #leg_linestyles = ['-', '--', '--', '--', '--'] leg_linestyles = ['-', '--', '--', '-.', '-.', '-.'] leg_colors = ['dimgray', 'k', 'y', 'b', 'g', 'r'] leg_lines = [] for nline, label in enumerate(leg_labels): # line = Line2D([0,1],[0,1], color='white') # leg_lines.append(line) # leg_labels.append('') line = Line2D([0,0],[0,0], color=leg_colors[nline], linestyle=leg_linestyles[nline], linewidth=1.5) leg_lines.append(line) fig.legend(leg_lines, leg_labels, loc='lower center', bbox_to_anchor=(0.5,0.01), handlelength=1.5, handletextpad=0.25, borderpad=0.2, frameon=True, ncol=len(leg_labels), columnspacing=0.75) # Y-label fig.text(0.04, 0.5, 'Normalized Mass Balance', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'normelev_normmb_TERMTYPE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== TERMTYPE AND SIZE: NORMALIZED ELEVATION VS NORMALIZED MASS BALANCE PLOT====== group_names = ['Tidewater', 'Lake', 'Land (A < 5 km$^{2}$)', 'Land (5 < A < 20 km$^{2}$)', 'Land (A > 20 km$^{2}$)', 'All Alaska'] group_idx = [] for group_name in group_names: if group_name == 'Tidewater': group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == 1].index.values)) elif group_name == 'Lake': group_idx.append(list(main_glac_rgi[main_glac_rgi.TermType == 2].index.values)) elif group_name == 'Land (A < 5 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area <= 5)].index.values)) elif group_name == 'Land (5 < A < 20 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area > 5) & (main_glac_rgi.Area <= 20)].index.values)) elif group_name == 'Land (A > 20 km$^{2}$)': group_idx.append(list(main_glac_rgi[(main_glac_rgi.TermType == 0) & (main_glac_rgi.Area > 20)].index.values)) elif group_name == 'All Alaska': group_idx.append(list(main_glac_rgi.index.values)) group_ncols = 2 group_nrows = int(np.ceil(len(group_names)/group_ncols)) figwidth, figheight = 6.5, 8 fig, ax = plt.subplots(group_nrows, group_ncols, squeeze=False, sharex=False, sharey=False, figsize=(figwidth,figheight), gridspec_kw = {'wspace':0.25, 'hspace':0.4}) ncol = 0 nrow = 0 for ngroup, group_name in enumerate(group_names): reg_idx = group_idx[ngroup] reg_binned_list = [binned_list[i] for i in reg_idx] mb_norm_cn = 'mb_norm_huss' # If mb_norm_huss, then remove glaciers with all positive values if mb_norm_cn == 'mb_norm_huss': reg_idx_allnan = [] for n, reg_binned_data in enumerate(reg_binned_list): if np.isnan(reg_binned_data[mb_norm_cn]).any() == True: reg_idx_allnan.append(n) for n in sorted(reg_idx_allnan, reverse=True): del reg_binned_list[n] reg_normelev_normmb_list = [np.array([i['elev_norm'].values, i[mb_norm_cn].values]).transpose() for i in reg_binned_list] reg_normelev_normmb_stats = norm_stats(reg_normelev_normmb_list) # Estimate a curve # Two steps: (1) estimate d to nearest integer and avoid nan issues, (2) force d to be an integer and optimize # bounds ensure x = reg_normelev_normmb_stats['norm_elev'].values y = reg_normelev_normmb_stats['norm_dhdt_med'].values def curve_func_raw(x, a, b, c, d): y = (x + a)**d + b * (x + a) + c # avoid errors with np.arrays where negative number to power returns NaN - replace with 0 y = np.nan_to_num(y) return y def curve_func(x, a, b, c, d): # force d to be an integer d = int(np.round(d,0)) y = (x + a)**d + b * (x + a) + c return y p0 = [-0.02,0.12,0,3] bnd_low = [-np.inf, -np.inf, -np.inf, 0] bnd_high = [np.inf, np.inf, np.inf, np.inf] coeffs, matcov = curve_fit(curve_func_raw, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # specify integer for d p0[3] = int(np.round(coeffs[3],0)) coeffs, matcov = curve_fit(curve_func, x, y, p0, bounds=(bnd_low, bnd_high), maxfev=10000) # Round coefficients coeffs[0] = np.round(coeffs[0],2) coeffs[1] = np.round(coeffs[1],2) coeffs[2] = np.round(coeffs[2],2) glac_elev_norm = np.arange(0,1.01,0.01) curve_y = curve_func(glac_elev_norm, coeffs[0], coeffs[1], coeffs[2], coeffs[3]) if group_name in ['All Alaska']: curve_y_all = curve_y.copy() # Plot regional curves ax[nrow,ncol].plot(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], color='k', linewidth=2, alpha=0.5, zorder=4) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] + reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) ax[nrow,ncol].fill_between(reg_normelev_normmb_stats['norm_elev'], reg_normelev_normmb_stats['norm_dhdt_med'], reg_normelev_normmb_stats['norm_dhdt_med'] - reg_normelev_normmb_stats['norm_dhdt_nmad'], color='dimgray', alpha=0.5, zorder=2) # Fitted curve if group_name not in ['All Alaska']: color_curve = 'k' else: color_curve = 'y' ax[nrow,ncol].plot(glac_elev_norm, curve_y, color=color_curve, linewidth=1, alpha=1, linestyle='--', zorder=5) # Huss curve huss_y_lrg = (glac_elev_norm - 0.02)**6 + 0.12 * (glac_elev_norm - 0.02) huss_y_med = (glac_elev_norm - 0.05)**4 + 0.19 * (glac_elev_norm - 0.05) + 0.01 huss_y_sml = (glac_elev_norm - 0.30)**2 + 0.60 * (glac_elev_norm - 0.30) + 0.09 ax[nrow,ncol].plot(glac_elev_norm, huss_y_lrg, linewidth=1, color='red', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_med, linewidth=1, color='green', linestyle='-.', alpha=1, zorder=3) ax[nrow,ncol].plot(glac_elev_norm, huss_y_sml, linewidth=1, color='blue', linestyle='-.', alpha=1, zorder=3) # Individual curves for n, i in enumerate(reg_normelev_normmb_list): glac_elev_norm_single = reg_normelev_normmb_list[n][:,0] glac_mb_norm_single = reg_normelev_normmb_list[n][:,1] # note: zorder overrides alpha, only alpha if same zorder ax[nrow,ncol].plot(glac_elev_norm_single, glac_mb_norm_single, linewidth=0.25, alpha=0.2, zorder=1) # Niceties ax[nrow,ncol].xaxis.set_major_locator(MultipleLocator(0.25)) ax[nrow,ncol].xaxis.set_minor_locator(MultipleLocator(0.05)) ax[nrow,ncol].set_xlim(0,1) ax[nrow,ncol].yaxis.set_major_locator(MultipleLocator(1)) ax[nrow,ncol].yaxis.set_minor_locator(MultipleLocator(0.25)) ax[nrow,ncol].set_ylim(1.05,-0.05) # Title region_nglac = len(reg_normelev_normmb_list) ax[nrow,ncol].text(0.5, 1.01, group_name + ' (' + str(region_nglac) + ' glaciers)', size=10, horizontalalignment='center', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Equation signs = ['+', '+', '+'] for nsign, coeff in enumerate(coeffs[0:3]): if coeff < 0: signs[nsign] = '-' eqn_txt = 'dh=(x+a)$^{d}$+b(x+a)+c' ax[nrow,ncol].text(0.05, 0.45, 'a=' + '{:.2f}'.format(coeffs[0]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.35, 'b=' + '{:.2f}'.format(coeffs[1]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.25, 'c=' + '{:.2f}'.format(coeffs[2]), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.15, 'd=' + str(int(coeffs[3])), size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) ax[nrow,ncol].text(0.05, 0.05, eqn_txt, size=10, horizontalalignment='left', verticalalignment='bottom', transform=ax[nrow,ncol].transAxes) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Add All Alaska curve to each glacier ncol = 0 nrow = 0 for group_name in group_names: if group_name not in ['All Alaska']: # Fitted curve ax[nrow,ncol].plot(glac_elev_norm, curve_y_all, color='y', linewidth=1, alpha=1, linestyle='--', zorder=4) # Adjust row and column ncol += 1 if ncol == group_ncols: nrow += 1 ncol = 0 # Legend leg_labels = ['Median', 'Curve', 'Curve-all', 'H-small', 'H-medium', 'H-large'] leg_linestyles = ['-', '--', '--', '-.', '-.', '-.'] leg_colors = ['dimgray', 'k', 'y', 'b', 'g', 'r'] leg_lines = [] for nline, label in enumerate(leg_labels): # line = Line2D([0,1],[0,1], color='white') # leg_lines.append(line) # leg_labels.append('') line = Line2D([0,0],[0,0], color=leg_colors[nline], linestyle=leg_linestyles[nline], linewidth=1.5) leg_lines.append(line) fig.legend(leg_lines, leg_labels, loc='lower center', bbox_to_anchor=(0.5,0.01), handlelength=1.5, handletextpad=0.25, borderpad=0.2, frameon=True, ncol=len(leg_labels), columnspacing=0.75) # Y-label fig.text(0.04, 0.5, 'Normalized Mass Balance', va='center', ha='center', rotation='vertical', size=12) fig.text(0.5, 0.08, 'Normalized Elevation', va='center', ha='center', size=12) # Save figure fig.set_size_inches(figwidth,figheight) figure_fn = 'normelev_normmb_TERMTYPE-SIZE_gt' + str(valid_perc_threshold) + 'pct_gt' + str(min_area_km2) + 'km2.png' fig.savefig(fig_fp + figure_fn, bbox_inches='tight', dpi=300) #%% ===== EXTRAPOLATE MASS BALANCE CURVES TO EVERY GLACIER ===== main_glac_rgi_all = modelsetup.selectglaciersrgitable(rgi_regionsO1=[1], rgi_regionsO2='all', rgi_glac_number='all') # Load hypsometry data glac_hyps_all_df =
pd.read_csv(hyps_fn)
pandas.read_csv
import matplotlib.pyplot as plt import matplotlib.dates as mdates #import stationary_block_bootstrap as sbb import pandas as pd import numpy as np import scipy.stats import numpy import time import random #import state_variables import os import scipy.stats import sklearn.feature_selection import matplotlib.gridspec as gridspec import copy from argotools.config import * from argotools.forecastlib.handlers import * from argotools.forecastlib.functions import * import argotools.forecastlib.stationary_block_bootstrap as sbb from argotools.dataFormatter import * import seaborn as sns import matplotlib.ticker as mticker import math from matplotlib.ticker import MaxNLocator,IndexFormatter, FormatStrFormatter class OutputVis: # Variables : top_n = 3, ranking_metric = 'rmse', ranking_season ='ALL_PERIOD', preds (vector/PD containing all predictions), metrics (matrix/PD containing all metrics), # Load predictions and csvs from file, # get name of models, number of models, name of metrics, table variable names (season1, season2... allPeriod). # Get RANKING METRIC or all models in the file. Check if theres more than one first. # FUNC STATISTICS BETWEEN THE MODELS : MEAN, VARIANCE, BEST MODEL, WORST MODEL # figure 1 : Time-series, error and percent error # figure 2: metric / plot def __init__(self, folder_dir=None, ids=None, overview_folder='_overview'): # Loading tables and files if folder_dir is None: print('WARNING! No main folder directory specified. Add it as an attribute \ specify it on every function call that requires it.') self.folder_main = folder_dir self.ids = ids self.overview_folder = overview_folder print('Visualizer initialized') # imported VARS def plot_SEC(self, series_filepath=None, coeff_filepath=None, target_name='ILI', models=None, color_dict=None, start_period=None, end_period=None, alpha_dict=None, output_filename=None, ext='png', mode='save', n_coeff=20, cmap_color='RdBu_r', error_type='Error', vmin=-1, vmax=1, font_path=None): if font_path: from matplotlib import font_manager prop = font_manager.FontProperties(fname=font_path) if color_dict is None: color_dict = dict(zip(models, [tuple(np.random.random(3)) for mod in models])) if alpha_dict is None: alpha_dict = dict(zip(models, [1 for mod in models])) series_df = pd.read_csv(series_filepath, index_col=0) coeff_df = pd.read_csv(coeff_filepath, index_col=0) if start_period is None: start_period = series_df.index[0] if end_period is None: end_period = series_df.index[-1] series_df = series_df[start_period:end_period] coeff_df = coeff_df[start_period:end_period] target = series_df[target_name].values series = {} errors = {} for mod in models: series[mod] = series_df[mod].values errors[mod] = np.abs(target - series[mod]) indices = list(series_df[target_name].index.values) #plotting target f, axarr = plt.subplots(3,2, gridspec_kw = {'height_ratios':[2,1,3], 'width_ratios':[16,1]}) axarr[0,0].fill_between(x=list(range(len(indices))),y1=target, facecolor='gray', alpha=0.5, label=target_name) #plotting series for mod in models: axarr[0,0].plot(series[mod], label=mod, color=color_dict[mod], alpha=alpha_dict[mod]) axarr[1,0].plot(errors[mod], color=color_dict[mod], alpha=alpha_dict[mod]) if n_coeff is None: n_coeff = coeff_df.shape[1] means = coeff_df.mean(axis=0) coeff_names = list(coeff_df) ordered_names = [ name for v, name in sorted(zip(means, coeff_names), key=lambda x: x[0], reverse=True)] coeff_df = coeff_df[ordered_names[:n_coeff]] sns.heatmap(coeff_df.T, vmin=vmin, vmax=vmax, cmap=cmap_color, center=None, \ robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0,\ linecolor='white', cbar=True, cbar_kws=None, cbar_ax=axarr[2,1], square=False,\ xticklabels='auto', yticklabels=True, mask=None, ax=axarr[2,0]) plt.gcf().set_size_inches([10, int(n_coeff/2)]) plt.sca(axarr[0,0]) plt.legend(frameon=False, ncol=len(models)) plt.xlim([0, len(indices)]) plt.ylim(bottom=0) plt.xticks(range(len(indices)),indices, rotation=0) plt.gca().xaxis.set_major_formatter(IndexFormatter(indices)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(6)) plt.gca().set_xticklabels([]) plt.grid(linestyle = 'dotted', linewidth = .6) plt.sca(axarr[1,0]) plt.xlim([0, len(indices)]) plt.xticks(range(len(indices)),indices, rotation=0) plt.gca().xaxis.set_major_formatter(IndexFormatter(indices)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(6)) plt.gca().set_xticklabels([]) plt.grid(linestyle = 'dotted', linewidth = .6) plt.sca(axarr[0,1]) plt.axis('off') plt.sca(axarr[1,1]) plt.axis('off') plt.sca(axarr[2,0]) plt.xticks(range(len(indices)),indices, rotation=0) plt.gca().xaxis.set_major_formatter(IndexFormatter(indices)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(6)) plt.gca().set_yticklabels(ordered_names[:n_coeff], fontproperties=prop) # STYLE axarr[0,0].spines['right'].set_visible(False) axarr[0,0].spines['top'].set_visible(False) axarr[1,0].spines['right'].set_visible(False) axarr[1,0].spines['top'].set_visible(False) axarr[0,0].set_ylabel(target_name) axarr[1,0].set_ylabel(error_type) plt.subplots_adjust(left=.2, bottom=.1, right=.95, top=.9, wspace=.05, hspace=.20) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_coefficients'.format(model) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, id_, output_filename, ext), format=ext) else: plt.savefig(output_filename+'.{0}'.format(ext), format=ext) plt.close() def plot_coefficients(self, id_=None, model=None, coefficients_filepath=None, cmap_color='RdBu_r',\ n_coeff=None, filename='_coefficients.csv', output_filename=None, ext='png', mode='show'): if coefficients_filepath: coefficients = pd.read_csv(coefficients_filepath, index_col=0) else: coefficients = pd.read_csv('{0}/{1}/{2}'.format(self.folder_main, id_, model), index_col=0) coefficients.fillna(0) if n_coeff is None: n_coeff = coefficients.shape[1] means = coefficients.mean(axis=0) coeff_names = list(coefficients) ordered_names = [ name for v, name in sorted(zip(means, coeff_names), key=lambda x: x[0], reverse=True)] coefficients = coefficients[ordered_names[:n_coeff]] sns.heatmap(coefficients.T, vmin=None, vmax=None, cmap=cmap_color, center=None, \ robust=False, annot=None, fmt='.2g', annot_kws=None, linewidths=0,\ linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, square=False,\ xticklabels='auto', yticklabels=True, mask=None, ax=None) plt.gcf().set_size_inches([10, int(n_coeff/3)]) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_coefficients'.format(model) plt.savefig('{0}/{1}/{2}.{3}'.format(folder_main, id_, output_filename, ext), format=ext) else: plt.savefig(output_filename+'.{0}'.format(ext), format=ext) plt.close() def inter_group_lollipop_comparison(ids_dict, path_dict, metric, period, models, benchmark, color_dict=None, alpha_dict=None, metric_filename='metrics.csv', bar_separation_multiplier=1.5, mode='show', output_filename='LollipopTest', plot_domain=None, ext='png'): """ Plots the ratio of the metric score for each of the models against a benchmark in a lollipop plot to compare between experiments. Parameters __________ ids_dict: dict Dictionary containing the list of ids for each experiment path_dict: dict Dictionary containing the path to the experiment folders (must coincide with the keys of ids_dict) metric: str String containing the name of the metric to look for in the predictions file period: str Column name containing the values to plot models: List, optional (default None) String list containing the names of the models to plot benchmark: str The name within "models" which will serve as the benchmark color_dict : dict Dictionary containing specific colors for the models to plot metric_filename : str, optional (default metrics.csv) mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time' alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1 output_filename : str, optional (default is None) If set to None, output_filename is set metricname_barplot ext : str, optional (default is png) Extension formal to save the barplot. plot_domain : list, optional (default is [0,1]) list of two integers that sets the limits in the plot (plt.xlim) bar_separation_multiplier : float, optional (default is 1) Parameter that functions as multiplier for the separion between bars in the plot. if set to 1, then bars are plotted in locations 1,2,3... if set to 2, then 2,4,6, etc """ fig, axarr = plt.subplots(len(ids_dict.keys()),1) axes = axarr.ravel() if color_dict is None: color_dict = dict(zip(models, ['b']*len(models))) if alpha_dict is None: alpha_dict = dict(zip(models, [1]*len(models))) for i, (experiment, folder_main) in enumerate(path_dict.items()): plt.sca(axes[i]) ids = ids_dict[experiment] values_dict = dict(zip(models, [[] for mod in models])) min_val = float('inf') max_val = float('-inf') indices = [] overview_path = '{0}/{1}'.format(folder_main, '_overview') for i, id_ in enumerate(ids): indices.append(i*bar_separation_multiplier) id_path = '{0}/{1}'.format(folder_main, id_) df = pd.read_csv('{0}/{1}'.format(id_path, metric_filename)) df = df[df['METRIC']==metric] for j, mod in enumerate(models): ratio = copy.copy(df[df['MODEL']==mod][period].values[0]/df[df['MODEL']==benchmark][period].values[0]) if metric in ['ERROR', 'RMSE', 'NRMSE', 'MAPE']: ratio=(1/ratio) values_dict[mod].append(ratio) if ratio < min_val: min_val = ratio if ratio > max_val: max_val = ratio bar_width = 1/len(models) indices = np.array(indices) for i, mod in enumerate(models): heights = values_dict[mod] bar_positions = indices + bar_width*i (markers, stemlines, baseline) = plt.stem(bar_positions, heights, linefmt='--') plt.setp(markers, marker='o', markersize=7, color=color_dict[mod], alpha=alpha_dict[mod], label=mod) plt.setp(stemlines, color=color_dict[mod], linewidth=1) plt.setp(baseline, visible=False) # Black line plt.plot([0,bar_positions[-1]], [1,1],'--',color='.6', alpha=.6) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) if experiment == 'State': ids = [id_[-3:] for id_ in ids] plt.xticks(indices+bar_width*((len(models)-1)/2), ids) plt.ylim([min_val*.95, max_val*1.05]) plt.xlim([-.3, bar_positions[-1]+.3]) if i == 0: axes[i].legend(frameon=False, ncol=len(models)) plt.title('{0} barplot'.format(metric)) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_barplot'.format(metric) plt.gcf().set_size_inches([6,15]) plt.savefig('{0}/{1}.{2}'.format(overview_path, output_filename, ext), format=ext) plt.close() def group_lollipop_ratio(ids, metric, period, models, benchmark, folder_main = None, color_dict=None, alpha_dict=None, metric_filename='metrics.csv', bar_separation_multiplier=1.5, mode='show', output_filename='LollipopTest', plot_domain=None, ext='png'): """ Plots the ratio of the metric score for each of the models against a benchmark in a lollipop plot. Parameters __________ id_: str Identifier for the region to look for metric: str String containing the name of the metric to look for in the predictions file period: str Column name containing the values to plot models: List, optional (default None) String list containing the names of the models to plot benchmark: str The name within "models" which will serve as the benchmark color_dict : dict Dictionary containing specific colors for the models to plot metric_filename : str, optional (default metrics.csv) mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time' alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1 output_filename : str, optional (default is None) If set to None, output_filename is set metricname_barplot ext : str, optional (default is png) Extension formal to save the barplot. plot_domain : list, optional (default is [0,1]) list of two integers that sets the limits in the plot (plt.xlim) bar_separation_multiplier : float, optional (default is 1) Parameter that functions as multiplier for the separion between bars in the plot. if set to 1, then bars are plotted in locations 1,2,3... if set to 2, then 2,4,6, etc """ if color_dict is None: color_dict = dict(zip(models, ['b']*len(models))) if alpha_dict is None: alpha_dict = dict(zip(models, [1]*len(models))) if folder_main is None: folder_main = self.folder_main values_dict = dict(zip(models, [[] for mod in models])) min_val = float('inf') max_val = float('-inf') indices = [] overview_path = '{0}/{1}'.format(folder_main, '_overview') for i, id_ in enumerate(ids): indices.append(i*bar_separation_multiplier) id_path = '{0}/{1}'.format(folder_main, id_) df = pd.read_csv('{0}/{1}'.format(id_path, metric_filename)) df = df[df['METRIC']==metric] for j, mod in enumerate(models): ratio = copy.copy(df[df['MODEL']==mod][period].values[0]/df[df['MODEL']==benchmark][period].values[0]) if metric in ['ERROR', 'RMSE', 'NRMSE', 'MAPE']: ratio=(1/ratio) values_dict[mod].append(ratio) if ratio < min_val: min_val = ratio if ratio > max_val: max_val = ratio bar_width = 1/len(models) indices = np.array(indices) for i, mod in enumerate(models): heights = values_dict[mod] bar_positions = indices + bar_width*i (markers, stemlines, baseline) = plt.stem(bar_positions, heights, linefmt='--') plt.setp(markers, marker='o', markersize=7, color=color_dict[mod], alpha=alpha_dict[mod], label=mod) plt.setp(stemlines, color=color_dict[mod], linewidth=1) plt.setp(baseline, visible=False) # Black line plt.plot([0,bar_positions[-1]], [1,1],'--',color='.6', alpha=.6) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.title('{0} barplot'.format(metric)) plt.xticks(indices+bar_width*((len(models)-1)/2), ids) plt.ylim([min_val*.95, max_val*1.05]) plt.xlim([-.3, bar_positions[-1]+.3]) plt.legend(frameon=False, ncol=len(models)) if plot_domain: plt.xlim(plot_domain) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_barplot'.format(metric) plt.gcf().set_size_inches([6,15]) plt.savefig('{0}/{1}.{2}'.format(overview_path, output_filename, ext), format=ext) plt.close() def inter_season_analysis(self,ids, main_folders, periods, series_names, metric = 'RMSE', filename='metrics_condensed.csv', output_filename='season_analysis', color_dict=None, alpha_dict=None, mode='save', ext='png'): ''' Performs seasonal analysis of data based on periods decided from the user. The top part of the plot shows violin plots (https://seaborn.pydata.org/generated/seaborn.violinplot.html) and display the model's metric scores in a boxplot/distribution schemeself. Bottom part shows a heatmap representing the distribution of ranking along all periods. I.E. If Each timeseries case contain 4 periods and there's 4 cases, the total number of periods is 4*4 = 16. Each period has a metric for each model. inter_season_analysis compare this metric within the period and ranks the models from first to nth place, and each place generats a +1 count onto the heatmap in the column representing the model and the row representing the rank. __________ ids : dict The dict of lists containing the identifiers for the regions. main_folders : dict The path to the experiments. Dictionary keys have to be consistent with the ids keys periods : list list containing the periods (should be available within the metrics table) filename : str String containing the filename to read the series from (using pandas). start_period : str, timeseries Pandas dataframe starting index. end_period : str timeseries ending index in the pandas dataframe. n_col : int, optional (default is one) series_names : list, optional (default is None) Names of the timeseries to plot. If set to None, then model plots all of them. output_filename : str, optional (default is series) Name of the graphics file containing the plots. color_dict : dict Dictionary containing specific colors for the models to plot. mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time'. alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1. ext : str, optional (default is png) Extension formal to save the graphics file. Defines the number of columns to define the plotting array. Function organizes plots in n_col then ''' default_colors = ['royalblue', 'darkorange', 'forestgreen', 'firebrick'] if color_dict is None: color_dict = dict(zip(series_names, default_colors[0:len(series_names)])) score_periods = {} ranks = {} for title, ids_ in ids.items(): metrics_df = pd.read_csv(main_folders[title] + '/_overview/'+ filename) score_periods[title] = [] ranks[title] = getRanks(metrics_df, metric, ids_, series_names, periods) for mod in series_names: score_periods[title].append(get_all_periods(metrics_df, mod, metric, periods)) score_periods[title] = pd.DataFrame(np.hstack(score_periods[title]), columns=series_names) f, axarr = plt.subplots(2, len(ids.keys())) axes = axarr.ravel() places_dict = get_places(ranks, series_names) places = ['4th', '3rd', '2nd', '1st'] for i, title in enumerate(ids.keys()): places_list = places_dict[title] sns.violinplot(data=score_periods[title], ax=axes[i], cut=0, inner='box') ''' sns.heatmap(data=ranks[metric], ax=axes[i+len(ids.keys())], cmap='Reds', cbar=False, annot=True) axes[i+len(ids.keys())].set_yticklabels(['1th', '2th', '3th', '4th', '5th'], rotation='horizontal') axes[i+len(ids.keys())].set_xticklabels(series_names, rotation='horizontal') ''' print(title, i) for j, ord_list in enumerate(reversed(places_list)): for (mod, height) in ord_list: axes[i+len(ids.keys())].barh(j, height, color=color_dict[mod]) plt.sca(axes[i+len(ids.keys())]) plt.yticks(range(len(places_list)), places) axes[i].set_title(title) axes[i].set_xticklabels(series_names) if i == 0: axes[i+len(ids.keys())].set_xlabel('No. of States') elif i == 1: axes[i+len(ids.keys())].set_xlabel('No. of Regions') elif i == 2: axes[i+len(ids.keys())].set_xlabel('No. of Countries') if i == 0: axes[i].set_ylabel('{0}'.format(metric)) axes[+len(ids.keys())].set_ylabel('Ranking Proportions') if mode == 'show': plt.show() if mode == 'save': plt.gcf().set_size_inches([9, 5]) plt.subplots_adjust(left=.1, bottom=.12, right=.97, top=.91, wspace=.25, hspace=.20) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, OVERVIEW_FOLDER, output_filename,ext),fmt=ext) plt.close() return def group_seriesbars(self, ids=None, start_period=None, end_period=None, series_names=None, folder_dir=None, metric_filename='metrics.csv', preds_filename='preds.csv', output_filename='series', color_dict=None, alpha_dict=None, mode='show', ext='png', n_col=1, width_ratios=[6,1], metric=None, metric_period=None, target_name=None): default_colors = ['g', 'b', 'r', 'indigo'] default_linewidths = [1.5,1.4,1.6,1] ''' Gathers information from all region and does a group plot using matplotlib, along with a barplot, showing a metric. regions are ordered based on the original ordering from the ids list from left to right, top to bottom Parameters __________ ids : list The list containing the identifiers for the regions. preds_filename : str String containing the preds_filename to read the series from (using pandas). start_period : str, timeseries Pandas dataframe starting indices. end_period : str timeseries ending indices in the pandas dataframe. n_col : int, optional (default is one) series_names : list, optional (default is None) Names of the timeseries to plot. If set to None, then model plots all of them. output_preds_filename : str, optional (default is series) Name of the graphics file containing the plots. color_dict : dict Dictionary containing specific colors for the models to plot. mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time'. alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1. ext : str, optional (default is png) Extension formal to save the graphics file. Defines the number of columns to define the plotting array. Function organizes plots in n_col then ''' if not ids: ids = self.ids if folder_dir is None: folder_dir = self.folder_main n_ids = len(ids) n_rows = math.ceil(n_ids/n_col) fig, axarr = plt.subplots(n_rows,n_col*2, gridspec_kw = {'width_ratios':width_ratios*n_col}) axes = axarr.ravel() if color_dict is None: color_dict = {} for i, mod in enumerate(series_names): color_dict[mod] = default_colors[i] if alpha_dict is None: alpha_dict = {} for i, mod in enumerate(series_names): alpha_dict[mod] = .8 for i, id_ in enumerate(ids): df = pd.read_csv('{0}/{1}/{2}'.format(folder_dir, id_, preds_filename), index_col=[0]) metric_df = pd.read_csv('{0}/{1}/{2}'.format(folder_dir, id_, metric_filename)) series = [] indices = copy.copy(df[start_period:end_period].index.values) for kk in range(np.size(indices)): v = indices[kk][2:7] indices[kk] = v col_names = list(df) if target_name: zeros=np.zeros(np.size(df[start_period:end_period][target_name].values)) curve_max = np.amax(np.size(df[start_period:end_period][target_name].values)) #axes[i*2].plot(df[start_period:end_period][target_name].values, label=target_name, linewidth=.1) axes[i*2].fill_between(x=list(range(len(indices))),y1=df[start_period:end_period][target_name].values, facecolor='gray', alpha=0.5, label=target_name) for k, col in enumerate(series_names): if col in col_names: # create top panel axes[i*2].plot(df[start_period:end_period][col].values, label=col, linewidth=default_linewidths[k]) else: print('WARNING! {0} not in {1} timeseries list'.format(col, id_)) if color_dict: for j, l in enumerate(axes[i*2].get_lines()): l.set_color(color_dict[series_names[j]]) if alpha_dict: for j, l in enumerate(axes[i*2].get_lines()): l.set_alpha(alpha_dict[series_names[j]]) ###### metric_df = metric_df[metric_df['METRIC']==metric][['MODEL', metric_period]] bar_width = .5 hs = [] for k, mod in enumerate(series_names): heights = metric_df[metric_df['MODEL'] == mod][metric_period].values bar_positions = k rects = axes[i*2+1].bar(bar_positions, heights, bar_width, label=mod, color=color_dict[mod], alpha=alpha_dict[mod]) hs.append(copy.copy(heights)) max_height = np.amax(hs) min_height = np.amin(hs) axes[i*2+1].set_ylim([min_height*.90, max_height*1.1]) axes[i*2+1].set_yticks([min_height, max_height]) axes[i*2+1].yaxis.set_major_formatter(FormatStrFormatter('%.3f')) ##### if i == 0: if target_name: n_cols = len(series_names)+1 else: n_cols = len(series_names) axes[i*2].legend(ncol=n_cols, frameon=False, loc='upper left', \ bbox_to_anchor=(.0,1.20)) axes[i*2].text(.10,.9, id_, weight = 'bold', horizontalalignment='left', transform=axes[i*2].transAxes) #axes[i*2+1].yaxis.set_major_locator(mticker.MaxNLocator(2)) axes[i*2].yaxis.set_major_locator(mticker.MaxNLocator(2)) axes[i*2+1].set_xticks([]) # SPINES axes[i*2].spines['top'].set_visible(False) axes[i*2].spines['right'].set_visible(False) #axes[i*2].spines['left'].set_visible(False) yticks=axes[i*2].get_yticks() ylim = axes[i*2].get_ylim() axes[i*2].spines['left'].set_bounds(0,yticks[2]) axes[i*2+1].spines['left'].set_bounds(min_height,max_height) axes[i*2].set_ylim(0,ylim[1]) axes[i*2+1].spines['top'].set_visible(False) axes[i*2+1].spines['right'].set_visible(False) #axes[i*2+1].spines['left'].set_visible(False) if i == 0: plt.ylabel('Estimates') if i > n_col*(n_rows - 1)-1: axes[i*2].set_xlabel('Date') plt.sca(axes[i*2]) plt.xticks(range(len(indices)),indices, rotation=0) plt.gca().xaxis.set_major_formatter(IndexFormatter(indices)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(4)) xticks = axes[i*2].get_xticks() axes[i*2].spines['bottom'].set_bounds(xticks[1], xticks[-2]) else: plt.sca(axes[i*2]) plt.xticks(range(len(indices)),indices, rotation=0) plt.gca().xaxis.set_major_formatter(IndexFormatter(indices)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(4)) xticks = axes[i*2].get_xticks() axes[i*2].spines['bottom'].set_bounds(xticks[1], xticks[-2]) #axes[i*2].set_xticklabels([]) if i < np.size(axes)/2-1: for j in range(i+1,int(np.size(axes)/2)): axes[j*2+1].spines['top'].set_visible(False) axes[j*2+1].spines['right'].set_visible(False) axes[j*2+1].spines['left'].set_visible(False) axes[j*2+1].spines['bottom'].set_visible(False) axes[j*2].spines['top'].set_visible(False) axes[j*2].spines['right'].set_visible(False) axes[j*2].spines['left'].set_visible(False) axes[j*2].spines['bottom'].set_visible(False) axes[j*2].set_yticks([]) axes[j*2].set_xticks([]) axes[j*2+1].set_yticks([]) axes[j*2+1].set_xticks([]) axes[j*2].set_title('') axes[j*2+1].set_title('') plt.subplots_adjust(left=.03, bottom=.05, right=.99, top=.95, wspace=.25, hspace=.15) if mode == 'show': plt.show() plt.close() if mode == 'save': fig.set_size_inches([7*n_col,2.5*n_rows]) plt.savefig('{0}/{1}/{2}.{3}'.format(folder_dir, OVERVIEW_FOLDER, output_filename,ext),fmt=ext) plt.close() def rank_ids_by_metric(self, ids, models, period, metric='RMSE', reverse=False, metric_filename='metrics.csv'): ''' rank_ids_by_metric compares the performance of two models specified in the models list and the selected metric. Function substracts model[0] from model[1] (i.e. model[1]-model[0]) and orders the results based on decreasing order. Parameters __________ ids : list List of strings containing the region identifiers to rank. models : list A list of two models to compare metric : str, optional (default is RMSE) The metric to use as comparison order : Boolean, optional (default is False) If False, orders in increasing order. If set to True, orders in decreasing order metric_filename : str, optionall (default is 'metric.csv') period : str Specify the period of the metric Returns _______ ids = An ordered list of IDs based on the results of the comparison ''' metric_values = [] for id_ in ids: metric_df = pd.read_csv('{0}/{1}/{2}'.format(self.folder_main, id_, metric_filename)) mod0_val = metric_df[ (metric_df['METRIC'] == metric) & (metric_df['MODEL'] == models[0])][period].values mod1_val = metric_df[(metric_df['METRIC'] == metric) & (metric_df['MODEL'] == models[1])][period].values ratio = mod0_val/mod1_val if metric in ['RMSE', 'NRMSE', 'ERROR', 'MAPE']: ratio = 1/ratio metric_values.append(copy.copy(ratio)) ord_values = [] ord_ids = [] for id_, val in sorted(zip(ids, metric_values), key = lambda x : x[1], reverse=reverse): ord_values.append(val) ord_ids.append(id_) return ord_ids def group_weekly_winner(self, ids=None, cmap='BuPu', models=None, start_period=None, end_period=None, output_filename='weekly_winners', folder_main=None, filename='preds.csv', mode='show', ext='png'): """ Fir each ID, chooses the weekly winner out of the models list in a prediction file and plots all of them together in heatmap. Parameters __________ ids : list The list containing the identifiers for the regions. filename : str String containing the filename to read the series from (using pandas). start_period : str, timeseries Pandas dataframe starting index. end_period : str timeseries ending index in the pandas dataframe. output_filename : str, optional (default is series) Name of the graphics file containing the plots. mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time'. ext : str, optional (default is png) Extension formal to save the graphics file. cmap : str, optional (default is 'BuPu') colormap style to display in the plot. List of colormaps is provided by Matplotlib. folder_main : str, optiona (default is None) Path to folder with data. If None, uses default class attribute. """ if folder_main is None: folder_main = self.folder_main #Getting winners in each id winners_dict = {} ind = list(range(len(models))) map_dict =dict(zip(models, ind)) for i, id_ in enumerate(ids): df = pd.read_csv('{0}/{1}/{2}'.format(folder_main, id_, filename), index_col=[0]) if i == 0: if start_period is None: start_period = df.index[0] if end_period is None: end_period = df.index[-1] df = df[start_period:end_period] winners = get_winners_from_df(df, models=models) winners=winners.replace({"winners" : map_dict }) winners_dict[id_] = winners['winners'].values index = df[start_period:end_period].index.values winners_df = pd.DataFrame(winners_dict, index=index) ax= sns.heatmap(data=winners_df.transpose(), linewidths=.6, yticklabels=True, cbar_kws={"ticks":ind}) ax.collections[0].colorbar.ax.set_yticklabels(models) #plt.matshow(winners_df.transpose(), origin='lower', aspect='auto', cmap='BuPu') #cb = plt.colorbar(orientation='vertical', ticks=ind, shrink=.5) #cb.ax.set_yticklabels(models) #plt.xticks(range(len(index)),index, rotation=45) #plt.gca().xaxis.set_major_formatter(IndexFormatter(index)) #plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(6)) if mode == 'show': plt.show() plt.close() if mode == 'save': plt.gcf().set_size_inches([10,6]) plt.subplots_adjust(left=.10, bottom = .15, right = 1, top=.95, wspace=.20, hspace=.20) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, self.overview_folder, output_filename, ext),fmt=ext) plt.close() def plot_series(self,folder_dir=None, id_=None, filename=None, output_filename='series', series_names=None, color_dict=None, alpha_dict=None, start_period=None, end_period=None, mode='save', ext='png', add_weekly_winner=False, winner_models=None): if folder_dir is None: folder_dir = self.folder_main if filename is None: filename = ID_PREDS df = pd.read_csv('{0}/{1}/{2}'.format(self.folder_main, id_, filename), index_col=[0]) if start_period is None: start_period = df.index[0] if end_period is None: end_period = df.index[-2] series = [] index = df.index.values if add_weekly_winner: n_rows = 2 gridspec_kw = {'height_ratios':[6,1]} else: n_rows = 1 gridspec_kw = None fig, axes = plt.subplots(n_rows, 1, gridspec_kw = gridspec_kw) col_names = list(df) if series_names is None: series_names = col_names for col in series_names: # create top panel axes[0].plot(df[start_period:end_period][col].values, label=col) #a = ax.plot_date(x=dates, y=ILI) # fmt="-",color='.20', linewidth=3.2, label='ILI', alpha = 1) if color_dict: for i, l in enumerate(axes[0].get_lines()): l.set_color(color_dict[series_names[i]]) if alpha_dict: for i, l in enumerate(axes[0].get_lines()): l.set_alpha(alpha_dict[series_names[i]]) if add_weekly_winner: winners = get_winners_from_df(df, models=winner_models) ind = list(range(len(winner_models))) map_dict =dict(zip(winner_models, ind)) winners=winners.replace({"winners" : map_dict }) im = axes[1].matshow(winners['winners'].values.reshape([1,-1]), origin='lower', aspect='auto', cmap='BuPu') cb = plt.colorbar(im, ax=axes[1], orientation='horizontal', ticks=ind) cb.ax.set_xticklabels(winner_models) axes[0].legend(ncol=len(series_names), frameon=False) axes[0].set_title('{0}'.format(id_)) axes[0].set_ylabel('Estimates') axes[0].set_xlabel('Index') axes[0].spines['top'].set_visible(False) axes[0].spines['right'].set_visible(False) plt.xticks(range(len(index)),index, rotation=45) axes[0].xaxis.set_major_formatter(IndexFormatter(index)) axes[0].xaxis.set_major_locator(mticker.MaxNLocator(6)) axes[1].set_xticks([]) axes[1].set_yticks([]) axes[0].autoscale(enable=True, axis='x', tight=True) #plt.locator_params(nbins=8) if mode == 'show': plt.show() plt.close() if mode == 'save': fig.set_size_inches([10,5]) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, id_, output_filename,ext),fmt=ext) plt.close() def season_analysis(self, ids, periods, series_names, folder_main=None, metrics = ['PEARSON', 'NRMSE'], filename='metrics_condensed.csv', output_filename='season_analysis', color_dict=None, alpha_dict=None, mode='save', ext='png'): ''' Gathers information from all region and does a group plot using matplotlib. regions are ordered in based on the original ordering from the ids list from left to right, top to bottom Parameters __________ ids : list The list containing the identifiers for the regions. periods : list list containing the periods (should be available within the metrics table) filename : str String containing the filename to read the series from (using pandas). start_period : str, timeseries Pandas dataframe starting index. end_period : str timeseries ending index in the pandas dataframe. n_col : int, optional (default is one) series_names : list, optional (default is None) Names of the timeseries to plot. If set to None, then model plots all of them. output_filename : str, optional (default is series) Name of the graphics file containing the plots. color_dict : dict Dictionary containing specific colors for the models to plot. mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time'. alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1. ext : str, optional (default is png) Extension formal to save the graphics file. Defines the number of columns to define the plotting array. Function organizes plots in n_col then ''' if not folder_main: folder_main = self.folder_main metrics_df = pd.read_csv(folder_main + '/_overview/'+ filename) score_periods = {} ranks = {} for metric in metrics: score_periods[metric] = [] ranks[metric] = getRanks(metrics_df, metric, ids, series_names, periods) for mod in series_names: score_periods[metric].append(get_all_periods(metrics_df, mod, metric, periods)) score_periods[metric] = pd.DataFrame(np.hstack(score_periods[metric]), columns=series_names) f, axarr = plt.subplots(2, len(metrics)) axes = axarr.ravel() for i, metric in enumerate(metrics): sns.violinplot(data=score_periods[metric], ax=axes[i], cut=0) sns.heatmap(data=ranks[metric], ax=axes[i+2], cmap='Reds', cbar=False, annot=True) axes[i].set_title(metric) axes[i+2].set_yticklabels(['1th', '2th', '3th', '4th', '5th'], rotation='horizontal') axes[i+2].set_xticklabels(series_names, rotation='horizontal') if mode == 'show': plt.show() if mode == 'save': plt.gcf().set_size_inches([7, 4]) plt.subplots_adjust(left=.08, bottom=.09, right=.97, top=.91, wspace=.25, hspace=.20) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, OVERVIEW_FOLDER, output_filename,ext),fmt=ext) plt.close() def group_plot_series(self, ids=None, start_period=None, end_period=None, series_names=None, folder_dir=None, filename='preds.csv', output_filename='series', color_dict=None, alpha_dict=None, mode='save', ext='png', n_col=1): ''' Gathers information from all region and does a group plot using matplotlib. regions are ordered in based on the original ordering from the ids list from left to right, top to bottom Parameters __________ ids : list The list containing the identifiers for the regions. filename : str String containing the filename to read the series from (using pandas). start_period : str, timeseries Pandas dataframe starting index. end_period : str timeseries ending index in the pandas dataframe. n_col : int, optional (default is one) series_names : list, optional (default is None) Names of the timeseries to plot. If set to None, then model plots all of them. output_filename : str, optional (default is series) Name of the graphics file containing the plots. color_dict : dict Dictionary containing specific colors for the models to plot. mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time'. alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1. ext : str, optional (default is png) Extension formal to save the graphics file. Defines the number of columns to define the plotting array. Function organizes plots in n_col then ''' if folder_dir is None: folder_dir = self.folder_main n_ids = len(ids) n_rows = math.ceil(n_ids/n_col) fig, axarr = plt.subplots(n_rows,n_col) axes = axarr.ravel() for i, id_ in enumerate(ids): df = pd.read_csv('{0}/{1}/{2}'.format(self.folder_main, id_, filename), index_col=[0]) series = [] index = df[start_period:end_period].index.values col_names = list(df) for col in series_names: if col in col_names: # create top panel axes[i].plot(df[start_period:end_period][col].values, label=col) else: print('WARNING! {0} not in {1} timeseries list'.format(col, id_)) if color_dict: for j, l in enumerate(axes[i].get_lines()): l.set_color(color_dict[series_names[j]]) if alpha_dict: for j, l in enumerate(axes[i].get_lines()): l.set_alpha(alpha_dict[series_names[j]]) if i == 0: axes[i].legend(ncol=len(series_names), frameon=False, loc='upper left', \ bbox_to_anchor=(.0,1.20)) axes[i].text(.80,.9, id_, weight = 'bold', horizontalalignment='left', transform=axes[i].transAxes) axes[i].spines['top'].set_visible(False) axes[i].spines['right'].set_visible(False) if i%n_col == 0: plt.ylabel('Estimates') if i > n_col*(n_rows - 1)-1: time.sleep(3) axes[i].set_xlabel('Index') plt.sca(axes[i]) plt.xticks(range(len(index)),index, rotation=45) plt.gca().xaxis.set_major_formatter(IndexFormatter(index)) plt.gca().xaxis.set_major_locator(mticker.MaxNLocator(6)) #plt.locator_params(nbins=8) else: axes[i].set_xticks([]) if mode == 'show': plt.show() plt.close() if mode == 'save': fig.set_size_inches([5*n_col,3*n_rows]) plt.savefig('{0}/{1}/{2}.{3}'.format(self.folder_main, OVERVIEW_FOLDER, output_filename,ext),fmt=ext) plt.close() def merge_models(filename, filename2, output_filename, models=None, start_period=None, end_period=None, erase_duplicates=True): """ merges two dataframes for an specified period of time, substracts the models, and stores them in output_filepath. PARAMETERS: ___________ filename : str, Path to first dataframe (CSV) filename2 : str output_filename : str, New absolute location of the merged dataframe. Path to second dataframe models : list, optional (Default is None) Name of models to let into the new Dataframe. If set to None, then lets all models in start_period : str, optional (default is None) First index in dataframe to merge, if set to None, then grabs the first index of filename's dataframe end_period : str, optional (default is None) """ df1 = pd.read_csv(filename, index_col = [0]) df2 = pd.read_csv(filename2, index_col = [0]) df3 = pd.concat([df1,df2], axis=1) if start_period and (start_period in df3.index): pass elif start_period is None: start_period = df3.index[0] else: print('Unable to identify start_period {0} as valid start reference.\ please review'.format(start_period)) return if end_period and end_period in df3.index: pass elif end_period is None: end_period = df3.index[-1] else: print('Unable to identify end_period {0} as valid start reference.\ please review'.format(start_period)) return if models is None: models = df3.columns df3 = df3[start_period:end_period][models] if erase_duplicates: df3=df3.T.drop_duplicates().T df3.to_csv(output_filename) def group_barplot_metric(self, ids, metric, period, models, color_dict=None, alpha_dict=None, metric_filename='metrics.csv', bar_separation_multiplier=1.5, mode='save', output_filename=None, plot_domain=None, ext='png', show_values=False, ordering=None): """ Produces a bar plot of the desired metric and models for an specific ids. If looking to make a id group plot, please check group_metric_bargraph() Parameters __________ id_: str Identifier for the region to look for metric: str String containing the name of the metric to look for in the predictions file period: str Column name containing the values to plot models: List, optiona (default None) String list containing the names of the models to plot color_dict : dict Dictionary containing specific colors for the models to plot metric_filename : str, optional (default metrics.csv) mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time' alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1 output_filename : str, optional (default is None) If set to None, output_filename is set metricname_barplot ext : str, optional (default is png) Extension formal to save the barplot. plot_domain : list, optional (default is [0,1]) list of two integers that sets the limits in the plot (plt.xlim) show_values : boolean, optional (default is False) plots the values of the metric within the barplot. bar_separation_multiplier : float, optional (default is 1) Parameter that functions as multiplier for the separion between bars in the plot. if set to 1, then bars are plotted in locations 1,2,3... if set to 2, then 2,4,6, etc """ if color_dict is None: color_dict = dict(zip(models, ['b']*len(models))) if alpha_dict is None: alpha_dict = dict(zip(models, [1]*len(models))) values_dict = dict(zip(models, [[] for mod in models])) indices = [] overview_path = '{0}/{1}'.format(self.folder_main, OVERVIEW_FOLDER) for i, id_ in enumerate(ids): indices.append(i*bar_separation_multiplier) id_path = '{0}/{1}'.format(self.folder_main, id_) df = pd.read_csv('{0}/{1}'.format(id_path, metric_filename)) df = df[df['METRIC']==metric] for j, mod in enumerate(models): try: values_dict[mod].append(df[df['MODEL']==mod][period].values[0]) except Exception as t: print(t) print('\n Missing data in model:{0} for id:{1}'.format(mod, id_)) return bar_width = 1/len(models) indices = np.array(indices) for i, mod in enumerate(models): heights = values_dict[mod] bar_positions = indices + bar_width*i rects = plt.barh(bar_positions, heights, bar_width, label=mod, color=color_dict[mod], alpha=alpha_dict[mod]) if show_values: for j, rect in enumerate(rects): yloc = bar_positions[j] clr = 'black' p = heights[j] xloc = heights[j] plt.gca().text(xloc, yloc, p, horizontalalignment='center', verticalalignment='center', color=clr, weight='bold') plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.title('{0} barplot'.format(metric)) plt.yticks(indices+bar_width*(len(models)/2), ids) if len(models) > 5: plt.legend(frameon=False, ncol=1) else: plt.legend(frameon=False, ncol=len(models)) if plot_domain: plt.xlim(plot_domain) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_barplot'.format(metric) plt.gcf().set_size_inches([6,15]) plt.savefig('{0}/{1}.{2}'.format(overview_path, output_filename, ext), format=ext) plt.close() def barplot_metric(self, id_, metric, period, models=None, color_dict=None, alpha_dict=None, metric_filename='metrics.csv', bar_width=1, bar_separation_multiplier=1, mode='save', output_filename=None, plot_domain=None, ext='png', show_values=True): """ Produces a bar plot of the desired metric and models for an specific id. If looking to make a id group plot, please check group_metric_bargraph() Parameters __________ id_: str Identifier for the region to look for metric: str String containing the name of the metric to look for in the predictions file period: str Column name containing the values to plot models: List, optiona (default None) String list containing the names of the models to plot color_dict : dict Dictionary containing specific colors for the models to plot metric_filename : str, optional (default metrics.csv) bar_width : float, optional (default is 1) Bar width in the plots (0 to 1, any more will make bars be on top of each other). bar_separation_multiplier : float, optional (default is 1) Parameter that functions as multiplier for the separion between bars in the plot. if set to 1, then bars are plotted in locations 1,2,3... if set to 2, then 2,4,6, etc mode : str, optional (default is 'save') If 'save', then function saves plot on the id_ specific folder. if 'show, then function plots and used plt.show to pop up the plot real time' alpha_dict : dict, optional (default is None) dictionary specifying the opacity of the bars in the plot (alpha argument in matplotlib). If set to None, then all opacities are set to 1 output_filename : str, optional (default is None) If set to None, output_filename is set metricname_barplot ext : str, optional (default is png) Extension formal to save the barplot. plot_domain : list, optional (default is [0,1]) list of two integers that sets the limits in the plot (plt.xlim) show_values : boolean, optional (default is False) plots the values of the metric within the barplot. """ if id_ in self.ids: id_path = '{0}/{1}'.format(self.folder_main, id_) df = pd.read_csv('{0}/{1}'.format(id_path, metric_filename)) df = df[df['METRIC']==metric] if models is None: models = df['MODEL'].values if color_dict is None: color_dict = dict(zip(models, ['b']*len(models))) if alpha_dict is None: alpha_dict = dict(zip(models, [1]*len(models))) indices = [] for i, mod in enumerate(models): height = df[df['MODEL']==mod][period].values[0] indices.append(i*bar_separation_multiplier) rects = plt.barh(indices[i], height, bar_width, color=color_dict[mod], alpha=alpha_dict[mod]) if show_values: for rect in rects: yloc = indices[i] clr = 'black' p = height xloc = height plt.gca().text(xloc, yloc, p, horizontalalignment='center', verticalalignment='center', color=clr, weight='bold') else: print(' {1} ID is not in data. current ids : {0}'.format(self.ids, id_)) plt.gca().spines['top'].set_visible(False) plt.gca().spines['right'].set_visible(False) plt.title('{0} barplot'.format(metric)) plt.yticks(indices, models) plt.legend(frameon=False, ncol=len(models)) if plot_domain: plt.xlim(plot_domain) if mode == 'show': plt.show() elif mode == 'save': if output_filename is None: output_filename = '{0}_barplot'.format(metric) plt.gcf().set_size_inches([10,7]) plt.savefig('{0}/{1}.{2}'.format(id_path, output_filename, ext), format=ext) plt.close() def extract_metrics(self, ids = None, filename = None, folder_main = None, \ metrics=['RMSE', 'PEARSON'], models= ['AR12GO'], seasons=None): if ids is None: ids = self.ids if folder_main is None: folder_main = self.folder_main+'/'+OVERVIEW_FOLDER if filename is None: filename = CSV_METRICS_CONDENSED df = pd.read_csv(folder_main+'/'+filename, index_col=0) if models is not None: df = df[main_df['MODEL'].isin(models)] if metrics is not None: df = df[main_df['METRIC'].isin(metrics)] extracted_df.to_csv(folder_main + '/metrics_extracted.csv') def group_compute_metrics(self, intervals, interval_labels, which_ids = 'all_ids', \ which_metrics = ['PEARSON', 'RMSE'], remove_missing_values=[0.5, 0], input_file_name=None, output_file_name=None, \ verbose=False, target = None, write_to_overview=False): ''' For each of the ids analyzed, computes a set of metrics (metris available in the metric_handler variable). Input: intervals = a binary tuple list with start and end labels. interval_labels which_ids = list that specifies which of the ids to compute the metrics for, if not, computes for all. which_metrics = (dictionary with per-id lists or list) Specifies which metrics to compute for the ids. remove_missing_values = list of float numbers to assig which values to ignore in the metric computation ''' if input_file_name is None: input_file_name = ID_PREDS if output_file_name is None: output_file_name = ID_METRICS if target is None: target = TARGET if which_ids == 'all_ids': which_ids = self.ids else: for i, id_ in enumerate(which_ids): if id_ not in self.ids: which_ids.remove(id_) print('{0} not found in experiment object ids. Removing Please check.'.format(id_)) if isinstance(intervals, list) and isinstance(intervals[0], tuple): print('Non-specified id intervals received. Using intervals in all ids') intervals = dict(which_ids, [intervals]*len(which_ids)) elif isinstance(intervals, dict) and isinstance(interval_labels, dict): for i, id_ in enumerate(which_ids): try: if len(intervals[id_]) != len(interval_labels[id_]): print(' WARNING! Mismatch between interval and interval_labels in id: {0}.'.format(id_)) interval_labels[id_] = [] for i in range(0,len(interval_labels)): interval_labels[id_].append('s{0}'.format(i)) except KeyError: print('ID not found within interval data. Please review.') else: print('Mismatch between intervals and interval labels types (Non-dictionaries). Please check input parameters') return if write_to_overview: id_dfs = [] if verbose: print('Reading on {0}'.format(self.folder_main)) for id_folder in os.listdir(self.folder_main): if id_folder in which_ids: file_preds = self.folder_main + '/' + id_folder + '/' + input_file_name if verbose: print('Checking for data in {0}'.format(file_preds)) if os.path.exists(file_preds): preds_pd = pd.read_csv(file_preds, index_col = 0) if verbose: print('Successfully loaded preds \n \n {0}'.format(preds_pd)) time.sleep(10) id_interval = intervals[id_folder] id_interval_labels = interval_labels[id_folder] model_list = list(preds_pd) model_list.remove(target) metric_dict = {} if verbose: print('id: {0} \nid_intervals: {1}\n id_interval_labels{2}\n Models_available{3}'.format(id_folder, id_interval, id_interval_labels, model_list)) time.sleep(10) # generating multi index for pandas dataframe levels = [which_metrics, model_list] labels = [[], []] names = ['METRIC', 'MODEL'] for i, (start_interval, end_interval) in enumerate(id_interval): metric_dict[id_interval_labels[i]] = [] sub_pd = copy.deepcopy(preds_pd[start_interval:end_interval]) for j, metric in enumerate(which_metrics): for k, model in enumerate(model_list): model_timeseries = sub_pd[model].values target_s = sub_pd[target].values if remove_missing_values: model_timeseries, target_s = timeseries_rmv_values(model_timeseries, target_s, remove_missing_values) #print(preds_pd, model_timeseries, target_s) #time.sleep(100) val = metric_handler[metric](model_timeseries, target_s) metric_dict[id_interval_labels[i]].append(val) if i == 0: labels[0].append(j) labels[1].append(k) ind = pd.MultiIndex(levels=levels, labels=labels, names=names) metric_pd = pd.DataFrame(metric_dict, index = ind) #print(metric_pd) metric_pd.to_csv(self.folder_main + '/' + id_folder + '/' + output_file_name ) metric_pd['ID'] = np.array([id_folder]*len(labels[0])) if write_to_overview : id_dfs.append( metric_pd.set_index('ID', append=True, inplace=False)) else: print('Not able to find results file for {0}. Please check your folder'.format(id_folder)) print('Finished iterating over all ids. Writing out condensed file in {0} folder'.format(OVERVIEW_FOLDER)) if write_to_overview: id_dfs = pd.concat(id_dfs) id_dfs.to_csv(self.folder_main+ '/' + OVERVIEW_FOLDER + '/' + CSV_METRICS_CONDENSED) def efficiency_test(self, id_folder, periods, period_labels,\ model_to_compare, ignore_models=['GFT'],\ confidence_interval=.90, samples = 10000, p=1./52, filename = None, output_file_name=None, remove_values=None, write=True, op='MSE'): ''' Performs efficiency test based on politis and romano 1994 https://www.tandfonline.com/doi/abs/10.1080/01621459.1994.10476870 ''' # create path to csv file if filename is None: file_path = id_folder +'/'+ID_PREDS else: file_path = id_folder +'/'+ filename if output_file_name is None: output_file_name = ID_EFFTEST # load columns preds_pd = pd.read_csv(file_path, index_col=0) if remove_values is not None: rmv_values(preds_pd, ignore = remove_values, verbose = True) bbts = {} model_names = list(preds_pd) model_names.remove(TARGET) # Removing movels in ignore_models for i, model in enumerate(ignore_models): if model in model_names: del preds_pd[model] model_names.remove(model) n_models = len(model_names) #multiindexing levels = [['BBT', 'lower_bound', 'upper_bound'], model_names] labels = [ [0]*n_models + [1]*n_models + [2]*n_models, list(range(n_models))*3 ] names =['Efficiency_test', 'Model'] ind = pd.MultiIndex(levels = levels, labels = labels, names = names) print('Computing the efficiency test on {0}'.format(id_folder)) #Main computation loop for i, period in enumerate(periods): print('Computing the efficiency test on {0}'.format(period)) bbts[period_labels[i]] = self.bbt(preds_pd,\ model_to_compare=model_to_compare,period=period, \ confidence_interval=confidence_interval, \ samples = samples, p = p, op=op) eff_pd = pd.DataFrame(bbts, index =ind) if write: eff_pd.to_csv(id_folder + '/' + output_file_name ) return eff_pd def bbt(self, preds_pd, model_to_compare='AR12',\ seed='random', period=('2012-01-01', '2016-12-25'), verbose = True,\ samples=10000, p=1./52, confidence_interval=.90, op='MSE'): ''' Performs timeseries bootstrap to calculate the ratio of MSEs between model_to_compare and all other available models Inputs: preds_pd = pandas dataframe containing the data to analyze model_to_compare = Str naming the model (must be inside the csv file) seed = specify a numpy and random seed, otherwise use 'random' to not use any period = a 2 tuple containing the first index and last index comprising the period to analyze ''' if isinstance(seed,int): random.seed(seed) np.random.seed(seed) model_names = list(preds_pd) if verbose == True: print('Successfully loaded dataframe. \n \n Target name in Config : {0} \n \n model_names found: {1}'.format(TARGET, model_names)) model_preds = [] model_names.remove(TARGET) # Always place target preds at start for i, model in enumerate(model_names): if i == 0: model_preds.append(preds_pd[TARGET][period[0]:period[1]]) model_preds.append(preds_pd[model][period[0]:period[1]]) methods = np.column_stack(model_preds) n_models = len(model_names) eff_obs = np.zeros(n_models) # calculate observed relative efficiency for i in range(n_models): eff_obs[i] = metric_handler[op](methods[:, 0], methods[:, i + 1]) eff_obs = eff_obs / eff_obs[model_names.index(model_to_compare)] # perform bootstrap scores = np.zeros((samples, n_models)) for iteration in range(samples): # construct bootstrap resample new, n1, n2 = sbb.resample(methods, p) # calculate sample relative efficiencies for model in range(n_models): scores[iteration, model] = metric_handler[op](new[:, 0], new[:, model + 1]) scores[iteration] = scores[iteration] / scores[iteration,model_names.index(model_to_compare)] if op == 'PEARSON': eff_obs = 1/eff_obs scores = 1/scores # define the variable containing the deviations from the observed rel eff scores_residual = scores - eff_obs # construct output array report_array = np.zeros(3*n_models) for comp in range(n_models): tmp = scores_residual[:, comp] # 95% confidence interval by sorting the deviations and choosing the endpoints of the 95% region tmp = np.sort(tmp) ignored_tail_size = (1-confidence_interval)/2 report_array[comp] = eff_obs[comp] report_array[n_models*1+comp] = eff_obs[comp] + tmp[int(round(samples * (0.0+ignored_tail_size)))] report_array[n_models*2+comp] = eff_obs[comp] + tmp[int(round(samples * (1.0-ignored_tail_size)))] return report_array def mat_load(self, state_dir = None, filename = None, dates_bol = True, verbose = True): if state_dir is not None: self.state_dir = state_dir if filename is not None: self.filename = filename self.preds_pd = pd.read_csv(self.state_dir + self.filename + '_preds.csv') self.metrics_pd = pd.read_csv(self.state_dir + self.filename + '_table.csv') if dates_bol == True: self.dates = self.preds_pd['Week'].values del self.preds_pd['Week'] self.model_names = list(self.preds_pd) self.season_names = list(self.metrics_pd) # Removing Gold standard from model list and 'metrics' from metrics list self.target_name = self.model_names[0] self.model_names.remove(self.target_name) del self.season_names[0] self.ranking = self.model_names self.target_pred = self.preds_pd[self.target_name].values print('Loaded data for : {0} \n Models found : {1} \n Seasons found : {2} \n \n '.format(self.state_name, self.model_names, self.season_names)) def mat_metricRank(self, metric = None, season = None, verbose = False): if metric is not None: self.ranking_metric = metric if season is not None: self.ranking_season = season if verbose == True: print('Ranking models based on {0} metric for {1} season. \n \n'.format(self.ranking_metric, self.ranking_season)) metrics_pd = self.metrics_pd model_names = self.model_names n_models = np.size(model_names) if verbose == True: print('Number of models found = {0}'.format(n_models)) season_names = self.season_names # Check if metric is in metrics_and_models = list(metrics_pd['Metric'].values) season_vals = metrics_pd[self.ranking_season].values if verbose == True: print('Table metric and models list : \n', metrics_and_models) print('Season Values : \n ', season_vals) if self.ranking_metric in metrics_and_models: i = metrics_and_models.index(self.ranking_metric) metric_column = season_vals[i+1:i+n_models+1] self.ranking_values = metric_column #metric_column = mat_metricColumn(metrics_pd, self.ranking_metric, self.ranking_season, n_models, verbose) # Sorted default ordering is minimum to maximum. For correlations we look for highest positive (??). if self.ranking_metric == 'PEARSON': metric_column *= -1 # To compare RMSEs values have to be normalized based on gold standard's MS value. if self.ranking_metric == 'RMSE': metric_column /= np.sqrt(np.mean(np.power(self.target_pred,2))) ranking = [model for (metric, model) in sorted(zip(metric_column, model_names), key=lambda pair: pair[0])] if verbose == True: print('Old Ranking: {0} \n Values for metric: {2} \n New ranking: {1} \n \n'.format(self.ranking, ranking, self.ranking_values )) self.ranking = ranking else: print('Ranking metric not available. Please use another metric') def mat_predsAndErrors(self, which_rank = None, verbose = False, start_season = 3, n_top_models = None ,dates_bol = True, gft_bol = True): ''' Makes time series, error, and % error plot for the specified number of models. Models are chosen based on the ranking. -If there is no ranking, it plots the models in the order they were written on the prediction csv. -If the specified number is bigger than the number of models available, it plots all. ''' # Get predictions for the top n if n_top_models is None: n_top_models = self.n_top_models ranking = self.ranking model_names = self.model_names preds_pd = self.preds_pd gold_std = self.target_pred n_lags = self.n_lags gstd_rmse = np.sqrt(np.mean(np.power(gold_std,2))) season_indices = self.season_indices - n_lags season_indices[season_indices<0] = 0 season_names = self.season_names if season_indices[1] < 1: print('Warning! Season indices values may conflict with code', season_indices) ax2_limit = 2 season_names.remove('ALL_PERIOD') if gft_bol == True: season_names.remove('GFT_PERIOD') if which_rank is None: which_rank = range(0, n_top_models) if np.amax(which_rank) > len(ranking)-1: print('Not accessible rank detected {0}. Please modify value'.format(np.amax(which_rank))) time.sleep(2) return if len(which_rank) > n_top_models: n_top_models = len(which_rank) if verbose == True: print('Initializing predsAndErrors function with following values: \n Ranking = {0}, \n Season names = {1} \n Gold standard MS = {2} \n Start season ={3} \n which_rank = {4}'.format(ranking, season_names, gstd_rmse, start_season, which_rank)) print ('Gold standard shape {0} \n, season indices'.format(np.shape(gold_std), season_indices)) time.sleep(2) # Adjusting plot ticks and plot length stind = self.season_indices[(start_season-1)*2]-1 season_indices -= stind plot_names = [ranking[i] for i in which_rank] if verbose == True: print('start index {0} \n season_indices {1} \n plot_names ={2} '.format(stind, season_indices, plot_names)) time.sleep(2) # Create figure and axes fig = plt.figure() ax = plt.subplot(4, 1, (1, 2)) ax1 = plt.subplot(4, 1, 3) ax2 = plt.subplot(4, 1, 4) # Plot gold standard ax.plot(gold_std[stind:],color='.20', linewidth=6.0, label=self.target_name, alpha = 1) # Compute error and percent error then plot model % CHANGe for i in range(0, n_top_models): series = preds_pd[plot_names[i]].values series_err = series - gold_std series_errp = np.divide(series_err,gold_std) series_rmse = np.sqrt(np.mean(np.power(series_err,2))) norm_rmse = (series_rmse/gstd_rmse) series_errp[np.isinf(series_errp) ] = float('NaN') if ax2_limit < norm_rmse: ax2_limit = norm_rmse ''' ax.plot(series[stind:], linewidth=2, label=plot_names[i] , alpha = .6) ax1.plot(series_err[stind:], linewidth=3, label=plot_names[i] , alpha = .6) ax2.plot(series_errp[stind:], linewidth=2, label=plot_names[i] , alpha = .6) ''' # TEMP FOR TOP 3 if i == 0: ax.plot(series[stind:], color='b',label=plot_names[i] , alpha = .8,linewidth=2.3) ax1.plot(series_err[stind:], color='b', label=plot_names[i] , alpha = .8,linewidth=2.3) ax2.plot(series_errp[stind:], color='b', label=plot_names[i] , alpha = .8,linewidth=2.3) if i == 1: ax.plot(series[stind:], color = 'r',label=plot_names[i] , alpha = .6,linewidth=2.5) ax1.plot(series_err[stind:], color = 'r', alpha = .6,linewidth=2.5) ax2.plot(series_errp[stind:], color = 'r', alpha = .6,linewidth=2.5) if i == 2: ax.plot(series[stind:], color ='.75', label=plot_names[i] , alpha = .9,linewidth=1.5, linestyle = 'dashed') ax1.plot(series_err[stind:], color ='.75', alpha = .9,linewidth=1.5, linestyle = 'dashed') ax2.plot(series_errp[stind:], color ='.75', alpha = .9,linewidth=1.5, linestyle = 'dashed') if gft_bol == True: GFTSERIES = preds_pd['GFT'].values GFTSERIES = GFTSERIES[:,np.newaxis] ax.plot(GFTSERIES[stind:], color='g', label = 'GFT', linewidth=2.5) # Add format to plots ax.tick_params(labelsize=14) ax1.tick_params(labelsize=14) ax2.tick_params(labelsize=14) ax.grid(linestyle = 'dotted', linewidth = .8) ax1.grid(linestyle = 'dotted', linewidth = .8) ax2.grid(linestyle = 'dotted', linewidth = .8) ax.set_ylabel('ILI activity', fontsize = 16) ax1.set_ylabel('Error', fontsize = 16) ax2.set_ylabel(' Error (Normalized)', fontsize = 14) x= gold_std x[np.isnan(x)]=0 ax.set_ylim([-np.max(x)*.05,np.max(x)*1.05]) ax2.set_ylim([-ax2_limit,ax2_limit]) # Change limits based on mean of error mean above and below zero. ax1.axhline(0, 0, 1, color='gray') ax2.axhline(0, 0, 1, color='gray') ax.set_title('{0}'.format(self.state_name), fontsize = 16, weight='bold') ax.legend( fontsize = 14) plt.setp(ax.get_xticklabels(), visible=False) plt.setp(ax1.get_xticklabels(), visible=False) # Not good, change # Yearly n_seasons = len(season_indices)/2 tick_indices = [season_indices[i*2][0] for i in range(start_season-1, n_seasons)] # Seasonal # tick_indices = [season_indices[i][0] for i in range((start_season-1)*2, len(tick_indices))] if dates_bol == True: tick_labels = self.dates[stind+tick_indices] else: tick_labels = sorted(season_names[start_season-1:]*2) ax.set_xticks(tick_indices, minor=False) ax1.set_xticks(tick_indices, minor=False) ax2.set_xticks(tick_indices, minor=False) ax2.set_xticklabels(tick_labels, minor=False, rotation=75) # save figure fig = plt.gcf() fig.set_size_inches(12, 9) fig.savefig(self.state_dir+'/pyplots/{0}/series_errs.png'.format(self.filename) , format='png', dpi=300) # fig.savefig(self.state_folder+'/_pyplots/_series_errs_'+ self.state_name+'_'+self.filename+ '.png', format='png', dpi=300) def mat_metric_bargraph(self, verbose = False, which_metric=['RMSE', 'PEARSON']): # Get table dataframe rfile = self.svars.mat_ST_RANKS vfile = self.svars.mat_ST_RANKS_V color_list = self.svars.colors ranking_pd = pd.read_csv(self.state_dir + rfile, index_col =0) values_pd = pd.read_csv(self.state_dir + vfile, index_col =0) for i, metric in enumerate(which_metric): r = ranking_pd[metric].values v = values_pd[metric].values if i == 0: #color_dict = color_assign(r,color_list) color_dict = self.svars.STATE_COLOR_DICT orderedColors = [] for k, model in enumerate(r): orderedColors.append(color_dict[model]) fig = plt.figure() # CHANGE SO IT PLOTS EVERYTHING IN ONE GRAPH, GIVE FORMAT objects = r y_pos = np.arange(len(objects)) performance = v plt.bar(y_pos, performance, align='center', alpha=0.8, color= orderedColors) plt.xticks(y_pos, objects, rotation=90) if metric == 'RMSE': ylab = 'RMSE / gold standard MS.' elif metric == 'PEARSON': ylab = 'Coefficient value.' plt.ylim([np.min(v)*.7,1]) plt.ylabel(ylab) plt.title('{0} for {1}'.format(metric, self.state_name), fontsize = 16) plt.grid(linestyle = 'dotted', linewidth = .8) fig.set_size_inches(7 , 9) fig.savefig(self.state_dir+'/pyplots/{0}/bar_'.format(self.filename)+ metric+ '.png', format='png', dpi=300) #fig.savefig(self.state_folder+'/_pyplots/_bars_'+ self.state_name+'_'+metric+'_'+self.filename+ '.png', format='png', dpi=300) plt.close() def mat_all_ranks2csv(self, verbose = False, which_metric = ['PEARSON', 'RMSE']): # Get table dataframe metrics_pd = self.metrics_pd model_names = self.model_names season = self.ranking_season n_models = len(model_names) gold_std = self.target_pred ranking_dict = {} values_dict = {} if verbose == True: print('Initializing function ranks2csv with following parameters: \n metrics_pd: {0} \n model_names: {1} \n season: {2} \n n_models: {3}'.format(metrics_pd, model_names, season, n_models)) for i,metric in enumerate(which_metric): print('Looking for {0} values'.format(metric)) metric_column = mat_metricColumn(metrics_pd, metric, season, n_models, verbose) ranking, values =mat_getRank(model_names, metric_column, metric, verbose = False, gold_std = gold_std) if verbose == True: print('Metric = {0} \n metric_column = {1} \n model_names {2} \n ranking: {3} \n \n \n'.format(metric, metric_column, model_names, ranking)) time.sleep(2) ranking_dict[metric] = ranking values_dict[metric] = values ranking_pd = pd.DataFrame(ranking_dict) values_pd = pd.DataFrame(values_dict) if verbose == True: print('Ranking table looks like this : {0}. \n'.format(ranking_pd)) print('Writing down data') ranking_pd.to_csv(self.state_dir + '/mat_metric_rankings.csv') values_pd.to_csv(self.state_dir + '/mat_metric_values.csv') def mat_eff_matrix_plot(self, bbt_file_name ='BBT_mse_matrix.csv', verbose = False, save_name = None ): # Plots values for efficiency matrix models specified in the horizontal direction of matrix eff_matrix_pd = pd.read_csv(self.state_dir + bbt_file_name, index_col =0) model_names_columns = list(eff_matrix_pd) model_names_rows = list(eff_matrix_pd.transpose()) if verbose == True: print(model_names_columns, model_names_rows) time.sleep(2) n_model_names_columns = len(model_names_columns) n_model_names_rows = len(model_names_rows) n_div = n_model_names_rows -1 average_eff = [] # Entering summing loop for c, model_c in enumerate(model_names_columns): sum_eff = 0 if verbose == True: print(c, model_c) time.sleep(1) for r, model_r in enumerate(model_names_rows): if verbose == True: print(r,model_r) time.sleep(1) if model_r not in model_c: sum_eff += eff_matrix_pd.get_value(model_r, model_c, takeable=False) average_eff.append(sum_eff/n_div) saving_dir = self.state_dir+'/pyplots/bbt_' if save_name is not None: saving_dir += save_name saving_dir += self.filename average_eff = np.vstack(average_eff) average_eff[average_eff > 2] == 2 bar_graph(model_names_columns , average_eff, '(No units)', 'Average efficiency', saving_dir ) def mat_eff_matrix(self, filename='', period='all'): random.seed(2) np.random.seed(2) state_name = self.state_name RESULTS_DIR = self.state_folder gold_std_name = self.target_name verbose = True # load columns preds_pd = self.preds_pd model_names = list(preds_pd) if verbose == True: print('Successfully loaded dataframe. \n \n gold_standard_name {0} \n \n model_names {1}'.format(gold_std_name, model_names)) model_preds = [] for i, model in enumerate(model_names): if period == 'gft': model_preds.append(preds_pd[model].values[143:241]) elif period == 'all': # check target for zeros if i == 0: mask = (preds_pd[model].values == 0) model_preds.append(preds_pd[model].values[~mask]) model_names.remove(gold_std_name) # comment or uncomment the following blocks for either WEEK 1 or WEEK 2 horizon. horizon = 0 #methods = np.column_stack((target_1, ar_1, argo_1)) methods = np.column_stack(model_preds) # implementation p = 1./52 samples = 10000 n_models = methods.shape[1] - 1 efficiency_matrix = np.zeros([n_models, n_models]) # calculate observed relative efficiency for ii in range(n_models): eff_obs = np.zeros(n_models) for i in range(n_models): eff_obs[i] = mse(methods[:, 0], methods[:, i + 1]) eff_obs = eff_obs / eff_obs[ii] # perform bootstrap scores = np.zeros((samples, n_models)) for iteration in range(samples): # construct bootstrap resample new, n1, n2 = sbb.resample(methods, p) # calculate sample relative efficiencies for model in range(n_models): scores[iteration, model] = mse(new[:, 0], new[:, model + 1]) scores[iteration] = scores[iteration] / scores[iteration, -1] # define the variable containing the deviations from the observed rel eff scores_residual = scores - eff_obs # construct output array report_array = np.zeros((3,n_models)) for comp in range(n_models): tmp = scores_residual[:, comp] # 95% confidence interval by sorting the deviations and choosing the endpoints of the 95% region tmp = np.sort(tmp) report_array[0, comp] = eff_obs[comp] report_array[1, comp] = eff_obs[comp] + tmp[int(round(samples * 0.050))] report_array[2, comp] = eff_obs[comp] + tmp[int(round(samples * 0.950))] efficiency_matrix[:,ii] = report_array[0,:].reshape(n_models) print(efficiency_matrix) efficiency_matrix_pd = pd.DataFrame(data = efficiency_matrix, index=model_names, columns = model_names) efficiency_matrix_pd.to_csv(RESULTS_DIR + state_name + '/' + 'BBT_mse_matrix.csv') def insert_gft(self): preds_pd = pd.read_csv(self.state_dir + self.filename + '_preds.csv') gft_pd = pd.read_csv(self.state_dir+'GFT_scaled.csv') preds_pd['GFT'] = gft_pd['GFT'] print(preds_pd) preds_pd.to_csv(self.state_dir + self.filename + '_preds.csv') def term_scatters(self, n_terms = 8, start_date = '2010-01-03', end_date = '2016-12-25',start_window = 26,\ plot_date = ['2012-01-01', '2016-12-25'], window = 'extending', verbose = False): # Makes a scatter and correlation plot for the top n_terms based on average correlation during whole period specified by # start_date and end_date. Correlation starts a number of values specified by start_window # 1.- <NAME> window_size =104 terms_pd = pd.read_csv(self.state_dir + self.state_name + self.svars.TERM_FILE) del terms_pd['GFT'] ''' Remove terms terms_pd.fillna(0, inplace=True) print len(term_names) for i,name in enumerate(term_names): series = terms_pd[name].values nzeros = np.size(series[series == 0]) zvector = np.size(np.zeros_like(series)) print i if nzeros > zvector*.5: terms_pd =terms_pd.drop(name, axis =1) term_names = list(terms_pd) ''' # Adding auto regression terms gstd = terms_pd['ILI'].values for i in range(0,12): ar_term = np.hstack([gstd[1+i:len(gstd)], np.zeros(1+i)]) terms_pd['AR{0}'.format(1+i)] =
pd.Series(ar_term, index=terms_pd.index)
pandas.Series
# -*- coding: utf-8 -*- """ Created on Thu Jun 1 12:55:16 2017 @author: rdk10 """ import os import pandas as pd import sitchensis.Functions as f import tkinter as tk from tkinter.filedialog import askopenfilename import pdb ############# Functions below ############################################# def getFileName(): cwd = os.getcwd() root = tk.Tk() root.lift() root.attributes('-topmost',True) filename = askopenfilename(initialdir = cwd ,title = "Select a tree file and directory", filetypes = [("Excel","*.xlsx"),("Excel","*.xlsm")]) #Ask user to pick files root.after_idle(root.attributes,'-topmost',False) root.withdraw() fileName = filename.rsplit('/')[-1] #Excludes path to file filePath = os.path.dirname(filename) return(filePath, fileName) def importExcelTree(fullFileName): """This section assumed one excel file per tree with a tabe for each type of measurements (trunk, segment, or branch)""" #Import data all at once treeData = pd.read_excel(fullFileName, sheet_name = None) #,converters={'name':str,'ref':str, 'referenceType':str}) ####IMPORTANT if version of pandas is <21 then sheet_name is not recognized and needs to be sheetname. better to update pandas #list of dictionary keys keys = [key for key in treeData] #This tests for types of data present and assigns keys if any(['trunk' in t.lower() for t in treeData]): trunkKey = keys[[i for i, key in enumerate(keys) if 'trunk' in key.lower()][0]] if len(treeData[trunkKey])>0: trunkBool = True else:trunkBool = False else:trunkBool = False if any(['seg' in t.lower() for t in treeData]): segKey = keys[[i for i, key in enumerate(keys) if 'seg' in key.lower()][0]] if len(treeData[segKey])>0: segBool = True else:segBool = False else:segBool = False if any(['branch' in t.lower() for t in treeData]): brKey = keys[[i for i, key in enumerate(keys) if 'branch' in key.lower()][0]] if len(treeData[brKey])>0: branchBool = True else:branchBool = False else:branchBool = False #Assign declination to variable if any(['declin' in t.lower() for t in treeData]): if len([i for i, key in enumerate(keys) if 'declin' in key.lower()])>0: declinKey = keys[[i for i, key in enumerate(keys) if 'declin' in key.lower()][0]] declinRefs = pd.read_excel(fullFileName, sheet_name = declinKey ,converters={'name':str}) declinRefs.columns = [x.lower() for x in declinRefs.columns] declination = declinRefs['declination'].iloc[0] #extract number declination = declination.item() # convert to python float from numpy.float64 else: declination = 0.00 #Assign cust refs to dataFrame if len([i for i, key in enumerate(keys) if 'cust' in key.lower()])>0: custKey = keys[[i for i, key in enumerate(keys) if 'cust' in key.lower()][0]] custRefs = pd.read_excel(fullFileName, sheet_name = custKey ,converters={'name':str}) custRefs.columns = [x.lower() for x in custRefs.columns] custRefs['azi'] = custRefs['azi'] + declination custRefs = f.calcCustRefs(custRefs) else: custRefs = [] #Saves the data if it exists and makes changes to columns so they work in the program if trunkBool: trunkDat = pd.read_excel(fullFileName, sheet_name = trunkKey, converters={'name':str,'ref':str})#, 'ref type':str}) trunkDat.columns = [x.lower() for x in trunkDat.columns] trunkDat['name'] = trunkDat['name'].str.upper() trunkDat['name'] = trunkDat['name'].str.replace(" ","") trunkDat['azi'] = trunkDat['azi'] + declination if any(pd.isnull(trunkDat.index)): trunkDat = trunkDat.reset_index(drop = True) if segBool: segs = pd.read_excel(fullFileName, parse_dates = False, sheet_name = segKey, converters={'name':str,'O/E':str,'base ref':str, 'top ref':str,'midsegment ref':str}) segs.columns = [x.lower() for x in segs.columns] segs['name'] = segs['name'].str.replace(" ","") if segs['base azi'].dtype == 'O': print("Make sure there is no text in the 'base azi' column such as 'CALC' \n or there will be problems later") else: segs['base azi'] = segs['base azi'] + declination segs['top azi'] = segs['top azi'] + declination if any(pd.isnull(segs.index)): segs = segs.reset_index(drop = True) if 'base ht' in segs.columns and 'top ht' in segs.columns: segs['base z'] = segs['base ht'] segs['top z'] = segs['top ht'] else: print("Warning: you must have segment columns labeled 'base ht' and 'top ht'") if any(pd.isnull(segs['name'])): print('These is at least one missing name in the segments file, please rectify this.') names = f.splitName(segs['name']) segs['top name'] = names['topNames'] segs['base name'] = names['baseNames'] if branchBool: branches = pd.read_excel(fullFileName, parse_dates = False , sheet_name = brKey, converters={'name':str,'O/E':str, 'L/D':str,'origin':str,'base ref':str, 'top ref':str,'midsegment ref':str}) branches.columns = [x.lower() for x in branches.columns] branches['name'] = branches['name'].str.replace(" ","") branches['origin'] = branches['origin'].str.replace(" ","") branches['orig azi'] = branches['orig azi'] + declination branches['cent azi'] = branches['cent azi'] + declination if any(pd.isnull(branches.index)): branches = branches.reset_index(drop = True) if 'base ht' in branches.columns and 'top ht' in branches.columns: branches['base z'] = branches['base ht'] branches['top z'] = branches['top ht'] else: print("Warning: you must have a branch columns labeled 'base ht' and 'top ht'") if trunkBool == True: if segBool == False and branchBool == False: mapType = 'trunk map' treeData = {'trunk':trunkDat} elif segBool == True and branchBool == False: #There are trunks only mapType = 'segement map' treeData = {'trunk':trunkDat, 'segments':segs} elif segBool == False and branchBool == True: mapType = 'trunk and branch map' treeData = {'trunk':trunkDat, 'branches':branches} elif segBool == True and branchBool == True: mapType = 'full map' treeData = {'trunk':trunkDat, 'segments':segs, 'branches': branches} else: print('There were not trunk data specified, also check your version of pandas, you need version 21 or greater.') return(treeData, custRefs, mapType) def renameNotesCol(treeData, treeName, newname = 'notes'): #logFileName = '{0}_ErrorScan.txt'.format(treeName) for data in treeData: i = 0 for col in treeData[data].columns: if 'notes' in col: ind = i i = i + 1 #pdb.set_trace() currentName = treeData[data].columns.values[ind] treeData[data] = treeData[data].rename(columns = {currentName:newname}) #textout = 'The notes column labeled {0} for {1} data was changed to "{2}"'.format(currentName, data, newname) #f.print2Log(logFileName, textout) noteColChanges = {'treePart':data , 'oldNoteName': currentName, 'renamedTo':newname} return (treeData, noteColChanges) def excelExport(treeData, outPath, treeName): #Brings in raw data and fileName (with full path), and exports and excel file to that location and name #Appends the current date in daymonthyear format. date = pd.Timestamp("today").strftime("%d%b%Y").lstrip('0') #segs.name = segs.name.apply(repr) #branches.origin = branches.origin.apply(repr) #branches.to_csv("brFromNode.csv") #This tests for types of data present trunkBool = any(['trunk' in t.lower() for t in treeData]) segBool = any(['segment' in t.lower() for t in treeData] ) branchBool = any(['branch' in t.lower() for t in treeData] ) # Create a Pandas Excel writer using XlsxWriter as the engine. #Makes new directory for output files writer = pd.ExcelWriter('{0}_{1}.xlsx'.format(outPath + '/' + treeName, date), engine='xlsxwriter') #Need to make this prettier # Write each dataframe to a different worksheet. if trunkBool: treeData['trunk'].to_excel(writer, sheet_name='main trunk', index = False) if segBool: treeData['segments'].to_excel(writer, sheet_name='segments', index = False) if branchBool: treeData['branches'].to_excel(writer, sheet_name='branches', index = False) # Close the Pandas Excel writer and output the Excel file. writer.save() def importForAcadTree(fileName): """This section assumed one excel file per tree with a tabe for each type of measurements (trunk, segment, or branch)""" #Import data all at once treeData = pd.read_excel(fileName, sheet_name = None) #,converters={'name':str,'ref':str, 'referenceType':str}) #list of dictionary keys keys = [key for key in treeData] #This tests for types of data present and assigns keys if any(['trunk' in t.lower() for t in treeData]): trunkKey = keys[[i for i, key in enumerate(keys) if 'trunk' in key.lower()][0]] if len(treeData[trunkKey])>0: trunkBool = True else:trunkBool = False else:trunkBool = False if any(['seg' in t.lower() for t in treeData]): segKey = keys[[i for i, key in enumerate(keys) if 'seg' in key.lower()][0]] if len(treeData[segKey])>0: segBool = True else:segBool = False else:segBool = False if any(['branch' in t.lower() for t in treeData]): brKey = keys[[i for i, key in enumerate(keys) if 'branch' in key.lower()][0]] if len(treeData[brKey])>0: branchBool = True else:branchBool = False else:branchBool = False #Saves the data if it exists and makes changes to columns so they work in the program if trunkBool: trunkDat = pd.read_excel("{0}.xlsx".format(fileName), sheet_name = trunkKey, converters={'name':str,'ref':str})#, 'ref type':str}) trunkDat.columns = [x.lower() for x in trunkDat.columns] trunkDat['name'] = trunkDat['name'].str.upper() trunkDat['name'] = trunkDat['name'].str.replace(" ","") if any(pd.isnull(trunkDat.index)): trunkDat = trunkDat.reset_index(drop = True) if segBool: segs = pd.read_excel("{0}.xlsx".format(fileName),parse_dates = False, sheet_name = segKey, converters={'name':str,'O/E':str,'base ref':str, 'top ref':str,'midsegment ref':str}) segs.columns = [x.lower() for x in segs.columns] segs['name'] = segs['name'].str.replace(" ","") if any(pd.isnull(segs.index)): segs = segs.reset_index(drop = True) if 'base ht' in segs.columns and 'top ht' in segs.columns: segs['base z'] = segs['base ht'] segs['top z'] = segs['top ht'] else: print("Warning: you must have segment columns labeled 'base ht' and 'top ht'") names = f.splitName(segs['name']) segs['top name'] = names['topNames'] segs['base name'] = names['baseNames'] if branchBool: branches = pd.read_excel("{0}.xlsx".format(fileName),parse_dates = False , sheet_name = brKey, converters={'name':str,'O/E':str, 'L/D':str,'origin':str,'base ref':str, 'top ref':str,'midsegment ref':str}) branches.columns = [x.lower() for x in branches.columns] branches['name'] = branches['name'].str.replace(" ","") branches['origin'] = branches['origin'].str.replace(" ","") if any(
pd.isnull(branches.index)
pandas.isnull
""" Name : c9_44_equal_weighted_vs_value_weighted.py Book : Python for Finance (2nd ed.) Publisher: Packt Publishing Ltd. Author : <NAME> Date : 6/6/2017 email : <EMAIL> <EMAIL> """ import pandas as pd import scipy as sp x=pd.read_pickle("c:/temp/yanMonthly.pkl") def ret_f(ticker): a=x[x.index==ticker] p=sp.array(a['VALUE']) ddate=a['DATE'][1:] ret=p[1:]/p[:-1]-1 out1=pd.DataFrame(p[1:],index=ddate) out2=
pd.DataFrame(ret,index=ddate)
pandas.DataFrame
# Spectral_Analysis_Amp_and_Phase.py import os import numpy as np import pandas as pd import scipy.linalg as la import matplotlib.pyplot as plt # Import time from the data or define it t = np.arange(0.015, 0.021, 10**-7) dt = 10**-7 # Define trainsize and number of modes trainsize = 20000 # Number of snapshots used as training data. num_modes = 44 # Number of POD modes. reg = 0 # Just an input in case we regularize DMDc. # Locate the full data of snapshots FOM and ROMs (INPUT) Folder_name_data = 'C:\\Users\\Admin\\Desktop\\combustion\\' file_name_FOM = 'traces_gems_60k_final.npy' file_name_ROM_DMDc = 'traces_rom_DMDc_rsvd.npy' file_name_ROM_cubic_r25 = 'traces_rom_cubic_tripple_reg_r25.npy' file_name_ROM_cubic_r44 = 'traces_rom_cubic_r44.npy' file_name_ROM_Quad_r44 = 'traces_rom_60k_100_30000.npy' # Define output file location and file names to identify phase and amplitudes (OUTPUT) folder_name = "C:\\Users\\Admin\\Desktop\\combustion\\spectral\\Final_plots\\" Amp_name = folder_name + "\\" + "Amp" # Amplitude plots Phase_name = folder_name + "\\" + "Phase" # Phase plots # Load the data FOM_ = np.load(Folder_name_data + file_name_FOM) ROM_DMDc = np.load(Folder_name_data + file_name_ROM_DMDc) ROM_cubic_r25 = np.load(Folder_name_data + file_name_ROM_cubic_r25) ROM_cubic_r44 = np.load(Folder_name_data + file_name_ROM_cubic_r44) ROM_Quad_r44 = np.load(Folder_name_data + file_name_ROM_Quad_r44) # Plotting adjustments End_plot_at = 60000 # 59990 # 40000 freq_limit_to_plot = 15000 # ============================================================================= def lineplots_timeseries(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, datanumber, unit, savefile): """Plots for comparision of data in time. Check the saved data in folder_name. Parameters ---------- FOM_ Full order model data input ROM_Quad_r44 Q-OPINF at r = 44 ROM_cubic_r25 C-OPINF at r = 25 ROM_cubic_r44 C-OPINF at r = 44 ROM_DMDc DMDc results datanumber Defines the state parameter * -12 = Pressure * -8 = Vx * -4 = Vy * 0 = Temperature * 8 = [CH4] * 12 = [O2] * 16 = [H2O] * 20 = [CO2] unit Unit for each variable (Pa, Kelvin...) savefile Suffix to save the file name """ print("Time series plots") plt.xlim([0.015, 0.021]) # set axis limits plt.plot(t[0:End_plot_at], pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at], label='FOM', linestyle='solid', c='k') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:End_plot_at], label='Q-OPINF', linestyle='dashed', c='#ff7f0e') # plt.plot(t[0:End_plot_at], # pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:End_plot_at], # label='C-OPINF_r25', linestyle='dashed') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:End_plot_at], label='C-OPINF', linestyle='dashed', c='b') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][0:End_plot_at], label='DMDc', linestyle='dashdot', c='r') plt.xlabel('time') plt.ylabel(unit) plt.axvline(x=t[0] + trainsize*dt, color='black') plt.legend() fname = f"{T_st}_ts_{trainsize}_r_{num_modes}_reg_{reg}{savefile}.pdf" plt.savefig(os.path.join(folder_name, fname), bbox_inches="tight", dpi=200) plt.show() def L2errorplots(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, datanumber, unit): """Plot L2 norm error comparision between all the ROMs. Parameters ---------- FOM_ Full order model data input ROM_Quad_r44 Q-OPINF at r = 44 ROM_cubic_r25 C-OPINF at r = 25 ROM_cubic_r44 C-OPINF at r = 44 ROM_DMDc DMDc results datanumber Defines the state parameter * -12 = Pressure * -8 = Vx * -4 = Vy * 0 = Temperature * 8 = [CH4] * 12 = [O2] * 16 = [H2O] * 20 = [CO2] unit Unit for each variable (Pa, Kelvin...) """ print("L2 norm error plot") e_ROM_Quad_r44 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_cubic_r25 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_cubic_r44 = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) e_ROM_DMDc = (la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at] - pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][0:End_plot_at]))/la.norm(pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at]) plt.plot(t[0:End_plot_at], pd.DataFrame(FOM_).loc[T_st + datanumber][0:End_plot_at], label='FOM', linestyle='solid') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:End_plot_at], label='Q-OPINF', linestyle='dashed') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:End_plot_at], label='C-OPINF_r25', linestyle='dashed') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:End_plot_at], label='C-OPINF_r44', linestyle='dashed') plt.plot(t[0:End_plot_at], pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][0:End_plot_at], label='DMDc', linestyle='dashdot') x_axis = ['ROM_Quad_r44', 'ROM_cubic_r25', 'ROM_cubic_r44', 'ROM_DMDc'] y_axis = [e_ROM_Quad_r44, e_ROM_cubic_r25, e_ROM_cubic_r44, e_ROM_DMDc] plt.scatter(x_axis,y_axis, s=100) plt.xlabel('time') plt.ylabel(unit) plt.title("L2 norm Error Plot") plt.legend() fnm = f"Error_plot_{T_st}_ts_{trainsize}_r_{num_modes}_reg_{reg}{unit}.pdf" plt.savefig(os.path.join(folder_name, fnm), bbox_inches="tight", dpi=200) plt.show() def get_freq_and_amplitude(T_ROM): """ Parameters ---------- T_ROM = any input signal Returns ------- frequency and amplitude transformation of the signal """ fft1 = np.fft.fft(T_ROM) fftfreq1 = np.fft.fftfreq(len(T_ROM), d=dt) amplitude_DMD = abs(fft1) return fftfreq1, amplitude_DMD, fft1 def amplitude_plots(fftfreq, fftfreq_Quad_r44, fftfreq_cubic_r25, fftfreq_cubic_r44, fftfreq_DMDc, amplitude, amplitude_Quad_r44, amplitude_cubic_r25, amplitude_cubic_r44, amplitude_DMDc, unit, savefile, title_test_or_train="Training results plotted in the frequency domain", save_id="_ts_"): """Amplitude plot comparision and save files in the Amp name folder Eg. for the test data filename will be : Amp_test_12_ts_20000_r_44_reg_0CO2 For the training data filename will be : Amp12_ts_20000_r_44_reg_0CO2 Parameters ---------- fftfreq frequency content of the FOM fftfreq_Quad_r44 frequency content of the Q-OPINF at r = 44 fftfreq_cubic_r25 frequency content of the C-OPINF at r = 25 fftfreq_cubic_r44 frequency content of the C-OPINF at r = 44 fftfreq_DMDc frequency content of the DMDc at r = 44 amplitude Amplitude content of the FOM amplitude_Quad_r44 Amplitude content of the Q-OPINF at r = 44 amplitude_cubic_r25 Amplitude content of the C-OPINF at r = 25 amplitude_cubic_r44 Amplitude content of the C-OPINF at r = 44 amplitude_DMDc Amplitude content of the DMDc at r = 44 unit unit for each variable (Pa, Kelvin...) savefile Filename to be saved title_test_or_train "Training results plotted in the frequency domain" save_id '_ts_' for traindata, '_test_' for testing data """ st = 1 end = 60 plt.xlim([0,freq_limit_to_plot]) plt.scatter(fftfreq[st:end], amplitude[st:end], s=50, label='FOM', marker='o', alpha=0.5, c='k') plt.scatter(fftfreq_Quad_r44[st:end], amplitude_Quad_r44[st:end], s=50, label='Q-OPINF', marker='s', alpha=0.5, c='#ff7f0e') # plt.scatter(fftfreq_cubic_r25[st:end], amplitude_cubic_r25[st:end], # s=50, label='C-OPINF_r25', marker='p', alpha=0.5) plt.scatter(fftfreq_cubic_r44[st:end], amplitude_cubic_r44[st:end], s=50, label='C-OPINF', marker='*', alpha=0.5, c='b') plt.scatter(fftfreq_DMDc[st:end], amplitude_DMDc[st:end], s=50, label='DMDc', marker='+', alpha=0.5, c='r') plt.plot(fftfreq[st:end], amplitude[st:end], linestyle='solid', c='k') plt.plot(fftfreq_Quad_r44[st:end], amplitude_Quad_r44[st:end], linestyle='dashed', c='#ff7f0e') # plt.plot(fftfreq_cubic_r25[st:end], amplitude_cubic_r25[st:end], # linestyle='dashed') plt.plot(fftfreq_cubic_r44[st:end], amplitude_cubic_r44[st:end], linestyle='dashed', c='b') plt.plot(fftfreq_DMDc[st:end], amplitude_DMDc[st:end], linestyle='dashdot', c='r') plt.xlabel('freq') plt.ylabel('Amplitude') plt.legend() # plt.title(title_test_or_train) if save_id == "_ts_": fname = f"{Amp_name}{T_st}{save_id}{trainsize}_r_{num_modes}" fname += f"_reg_{reg}{savefile}.pdf" elif save_id == "_test_": fname = f"{Amp_name}{save_id}{T_st}_ts_{trainsize}_r_{num_modes}" fname += f"_reg_{reg}{savefile}.pdf" else: raise ValueError(f"invalid save_id '{save_id}'") plt.savefig(fname, bbox_inches="tight", dpi=200) plt.show() def get_min(X): """ Parameters ---------- X Phase angle array Returns ------- min(X, 360-X) """ b = abs(X) a = abs(360-b) return np.minimum(a,b) def phase_plots(fftfreq, fftfreq_Quad_r44, fftfreq_cubic_r25, fftfreq_cubic_r44, fftfreq_DMDc, Phase_FOM, Phase_Quad_r44, Phase_cubic_r25, Phase_cubic_r44, Phase_DMDc, unit, savefile, title_test_or_train="Training results plotted in the frequency domain", save_id="_ts_"): """Phase plot comparision and save files in the Amp name folder. For the test data filename will be : Phase_test_12_ts_20000_r_44_reg_0CO2 For the training data filename will be : Phase12_ts_20000_r_44_reg_0CO2 Parameters ---------- fftfreq frequency content of the FOM fftfreq_Quad_r44 frequency content of the Q-OPINF at r = 44 fftfreq_cubic_r25 frequency content of the C-OPINF at r = 25 fftfreq_cubic_r44 frequency content of the C-OPINF at r = 44 fftfreq_DMDc frequency content of the DMDc at r = 44 Phase_FOM Phase content of the FOM Phase_Quad_r44 Phase content of the Q-OPINF at r = 44 Phase_cubic_r25 Phase content of the C-OPINF at r = 25 Phase_cubic_r44 Phase content of the C-OPINF at r = 44 Phase_DMDc Phase content of the DMDc at r = 44 unit unit for each variable (Pa, Kelvin...) savefile Filename to be saved title_test_or_train "Training results plotted in the frequency domain" save_id '_ts_' for traindata, '_test_' for testing data """ st = 1 end = 60 plt.xlim([0, freq_limit_to_plot]) # plt.scatter(fftfreq[st:end], Phase_FOM[st:end], # s=50, label='FOM', marker='o', alpha=0.5, c='k') plt.scatter(fftfreq_Quad_r44[st:end], get_min(Phase_FOM[st:end] - Phase_Quad_r44[st:end]), s=50, label='Q-OPINF', marker='s', alpha=0.5, c='#ff7f0e') # plt.scatter(fftfreq_cubic_r25[st:end], amplitude_cubic_r25[st:end], # s=50, label='C-OPINF_r25', marker='p', alpha=0.5) plt.scatter(fftfreq_cubic_r44[st:end], get_min(Phase_FOM[st:end] - Phase_cubic_r44[st:end]), s=50, label='C-OPINF', marker='*', alpha=0.5, c='b') plt.scatter(fftfreq_DMDc[st:end], get_min(Phase_FOM[st:end] - Phase_DMDc[st:end]), s=50, label='DMDc', marker='+', alpha=0.5, c='r') # plt.plot(fftfreq[st:end],Phase_FOM[st:end], linestyle='solid', c='k') plt.plot(fftfreq_Quad_r44[st:end], get_min(Phase_FOM[st:end] - Phase_Quad_r44[st:end]), linestyle='dashed', c='#ff7f0e') # plt.plot(fftfreq_cubic_r25[st:end], amplitude_cubic_r25[st:end], # linestyle='dashed') plt.plot(fftfreq_cubic_r44[st:end], get_min(Phase_FOM[st:end] - Phase_cubic_r44[st:end]), linestyle='dashed', c='b') plt.plot(fftfreq_DMDc[st:end], get_min(Phase_FOM[st:end] - Phase_DMDc[st:end]), linestyle='dashdot', c='r') plt.xlabel('freq') plt.ylabel('Phase angle difference FOM-ROM (degree)') plt.legend() # plt.title(title_test_or_train) if save_id == "_ts_": fname = f"{Phase_name}{T_st}{save_id}{trainsize}_r_{num_modes}" fname += f"_reg_{reg}{savefile}.pdf" if save_id == "_test_": fname = f"{Phase_name}{save_id}{T_st}_ts_{trainsize}_r_{num_modes}" fname += f"_reg_{reg}{savefile}.pdf" else: raise ValueError(f"invalid save_id '{save_id}'") plt.savefig(fname, bbox_inches="tight", dpi=200) plt.show() def fftoutput_train(T_st, t, trainsize, num_modes, reg, unit='Temperature in Kelvin', datanumber=0, savefile='filename'): """Amplitude and phase plots for training dataset. Parameters ---------- T_st monitor location code * 12: Monitor location 1 * 13: Monitor location 2 * 14: Monitor location 3 * 15: Monitor location 4 t as defined in input trainsize as defined in input num_modes as defined in input reg as defined in input unit unit for each variable (Pa, Kelvin...) datanumber defines the state parameter * -12: Pressure * -8: Vx * -4: Vy * 0: Temperature * 8: [CH4] * 12: [O2] * 16: [H2O] * 20: [CO2] savefile Suffix to save the file name """ # fmax = 1/dt ROM_S = trainsize # 20000 FOM_S = trainsize # 20000 T = pd.DataFrame(FOM_).loc[13][0:FOM_S] # T_ROM = pd.DataFrame(ROM_DMDc).loc[13][0:ROM_S] # df = 1/dt/trainsize # fdomain = np.arange(0,fmax,df) T = pd.DataFrame(FOM_).loc[T_st + datanumber][0:FOM_S] T_ROM_Quad_r44 = pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber][0:ROM_S] T_ROM_DMDc = pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][0:ROM_S] T_ROM_cubic_r25 = pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][0:ROM_S] T_ROM_cubic_r44 = pd.DataFrame(ROM_cubic_r44).loc[T_st + datanumber][0:ROM_S] lineplots_timeseries(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, datanumber,unit,savefile) # L2errorplots(FOM_, ROM_Quad_r44, ROM_cubic_r25, ROM_cubic_r44, ROM_DMDc, # datanumber, unit) # fftfreq1, amplitude_DMD, fft1 = get_freq_and_amplitude(T_ROM_DMD) fftfreq_DMDc, amplitude_DMDc, fft_DMDc = get_freq_and_amplitude(T_ROM_DMDc) fftfreq_Quad_r44, amplitude_Quad_r44, fft_Quad_r44 = get_freq_and_amplitude(T_ROM_Quad_r44) fftfreq_cubic_r25, amplitude_cubic_r25, fft_cubic_r25 = get_freq_and_amplitude(T_ROM_cubic_r25) fftfreq_cubic_r44, amplitude_cubic_r44, fft_cubic_r44 = get_freq_and_amplitude(T_ROM_cubic_r44) fftfreq, amplitude, fft = get_freq_and_amplitude(T) amplitude_plots(fftfreq, fftfreq_Quad_r44, fftfreq_cubic_r25, fftfreq_cubic_r44, fftfreq_DMDc, amplitude, amplitude_Quad_r44, amplitude_cubic_r25, amplitude_cubic_r44, amplitude_DMDc, unit, savefile, title_test_or_train="Training results plotted in the frequency domain", save_id="_ts_") Phase_FOM = np.angle(fft, deg=True) Phase_Quad_r44 = np.angle(fft_Quad_r44, deg=True) Phase_cubic_r25 = np.angle(fft_cubic_r25, deg=True) Phase_cubic_r44 = np.angle(fft_cubic_r44, deg=True) Phase_DMDc = np.angle(fft_DMDc, deg=True) phase_plots(fftfreq, fftfreq_Quad_r44, fftfreq_cubic_r25, fftfreq_cubic_r44, fftfreq_DMDc, Phase_FOM, Phase_Quad_r44, Phase_cubic_r25, Phase_cubic_r44, Phase_DMDc, unit, savefile, title_test_or_train="Training results plotted in the frequency domain", save_id="_ts_") def fftoutput_test(T_st, t, trainsize, num_modes, reg, unit='Temperature in Kelvin', datanumber=0, savefile='filename'): """ T_st = monitor location code code number for each location: 12 - Monitor location 1 13 - Monitor location 2 14 - Monitor location 3 15 - Monitor location 4 t = as defined in input trainsize = as defined in input num_modes = as defined in input reg = as defined in input unit = unit for each variable (Pa, Kelvin...) datanumber = to define the state parameter -12 = Pressure -8 = Vx -4 = Vy 0 = Temperature 8 = [CH4] 12 = [O2] 16 = [H2O] 20 = [CO2] savefile = Suffix to save the file name Returns ------- The calculation of amplitude and phase plots for testing dataset """ # fmax = 1/dt # ROM_S = len(t[0:End_plot_at]) - trainsize FOM_S = len(t[0:End_plot_at]) - trainsize T = pd.DataFrame(FOM_).loc[13][FOM_S::] # T_ROM = pd.DataFrame(ROM_DMDc).loc[13][ROM_S::] # df = 1/dt/(len(t[0:End_plot_at]) - trainsize) # fdomain = np.arange(0,fmax,df) T = pd.DataFrame(FOM_).loc[T_st + datanumber][trainsize:len(t[0:End_plot_at])] # T_ROM_DMD = pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][trainsize:len(t[0:End_plot_at])] T_ROM_DMDc = pd.DataFrame(ROM_DMDc).loc[T_st + datanumber][trainsize:len(t[0:End_plot_at])] T_ROM_Quad_r44 = pd.DataFrame(ROM_Quad_r44).loc[T_st + datanumber] T_ROM_cubic_r25 = pd.DataFrame(ROM_cubic_r25).loc[T_st + datanumber][trainsize:len(t[0:End_plot_at])] T_ROM_cubic_r44 =
pd.DataFrame(ROM_cubic_r44)
pandas.DataFrame
"""Parses vcf output from VEP/LOFTEE to a table where rows are rare variants and columns are the annotations """ import os import sys import argparse import numpy as np import pandas as pd from pysam import VariantFile def get_info_fields(vcf): """Get info fields in vcf Parameters ---------- vcf : pysam.libcbcf.VariantFile VCF file read in by pysam Returns ------- list """ info_fields = ( vcf.header.info["CSQ"] .record["Description"] .split("Format: ")[-1] .strip('"') .split("|") ) return info_fields def get_info_dictionary(rec, info_fields): """Parses info into a dictionary with info fields as the keys Parameters ---------- rec : pysam.libcbcf.VariantRecord Obatined from iterating over pysam.VariantFile.fetch() info_fields : list List of info fields in the vcf Returns ------- dict Info field parsed into a dictionary """ info_data = rec.info["CSQ"] info_dict = [ dict(zip(info_fields, x.split("|"))) for x in info_data if len(x.split("|")) == len(info_fields) ] return info_dict def vcf_to_dataframe(vcf_filepath): """Parse info from vcf into dataframes with genomic coordinates and info fields as the columns. Makes a dataframe for each chromosome and returns list of paths to the saved dataframe. Parameters ---------- vcf_filepath : str Path to the VEP/LOFTEE output vcf Returns ------- list """ # Read vcf vcf = VariantFile(vcf_filepath) info_fields = get_info_fields(vcf) # Parse info from vcf into dataframe df_list = [] cur_chrom = None write_path_list = [] for i, rec in enumerate(vcf.fetch()): # Keep track of current chrom chrom = "chr" + rec.chrom if cur_chrom is None: # Starting chromosome cur_chrom = chrom if chrom != "chr22": continue cur_chrom = chrom if cur_chrom != chrom: # Save and print the chromosome dataframe info_df = pd.concat(df_list, ignore_index=True) write_path = ( vcf_filepath.split(".vcf.gz")[0] + "." + cur_chrom + ".info.tsv" ) info_df.to_csv(write_path, sep="\t") print(f"VCF info dataframe saved to\n{write_path}") # Reset list of dataframes and update current chromosome del info_df # Delete to save on memory df_list = [] cur_chrom = chrom # Parse info from vcf info_dict = get_info_dictionary(rec, info_fields) df = pd.DataFrame(info_dict) df.insert(0, "Alt", rec.alts[0]) df.insert(0, "Pos", rec.pos) df.insert(0, "Chrom", chrom) df_list.append(df) # Save and print the final chromosome info_df = pd.concat(df_list, ignore_index=True) write_path = vcf_filepath.split(".vcf.gz")[0] + "." + cur_chrom + ".info.tsv" info_df.to_csv(write_path, sep="\t") print(f"VCF info dataframe saved to\n{write_path}") def get_annotations_from_df(info_df): """Extracts annotations from the `Consequence` and `LoF` columns Parameters ---------- info_df : pandas.Dataframe Dataframe created by vcf_to_dataframe Returns ------- pandas.Dataframe """ # Genomic coordinates coord_df = info_df[["Chrom", "Pos", "Alt", "Allele"]] # VEP annotations vep_df = pd.get_dummies(info_df["Consequence"]) # Obtain splice_region_variant from combined consequences splice_col_list = [col for col in vep_df.columns if "splice_region_variant" in col] splice_region_variant = np.amax(vep_df[splice_col_list].values, axis=1) vep_df["splice_region_variant"] = splice_region_variant # LOFTEE annotations lof_df = pd.get_dummies(info_df["LoF"]) return coord_df.join(vep_df).join(lof_df) def test_get_annotations_from_df(info_df, anno_df): """Check that output of `get_annoations_from_df` is correctly representing the annotations from info_df (Excluding `splice_region_variant` since it is combined with other consequences) """ # Get list of annoations from info_df vep_list = list(info_df["Consequence"].unique()) lof_list = [x for x in info_df["LoF"].unique() if isinstance(x, str)] anno_list = vep_list + lof_list test_result = {} for anno in anno_list: anno_df_num = len(anno_df[anno_df[anno] == 1]) if anno in lof_list: info_df_num = len(info_df[info_df["LoF"] == anno]) else: info_df_num = len(info_df[info_df["Consequence"] == anno]) test_result[anno] = anno_df_num == info_df_num for anno in anno_list: if not test_result[anno]: print(test_result) return test_result[anno] return True def dataframe_to_tidy(info_df): """Extracts annotations from the `Consqeuence` and `LoF` columns. Returns a tidy dataframe with the columns Chrom | Pos | Alt | Allele | annotations... Parameters ---------- info_df : pandas.Dataframe Dataframe created by vcf_to_dataframe Returns ------- pandas.Dataframe """ anno_list = [ "Chrom", "Pos", "Alt", "Allele", "3_prime_UTR_variant", "5_prime_UTR_variant", "TF_binding_site_variant", "downstream_gene_variant", "intergenic_variant", "intron_variant", "missense_variant", "non_coding_transcript_exon_variant", "regulatory_region_variant", "splice_acceptor_variant", "splice_donor_variant", "splice_region_variant", "stop_gained", "synonymous_variant", "upstream_gene_variant", "LoF_HC", "LoF_LC", ] anno_df = get_annotations_from_df(info_df) # check that annotations were properly extracted if test_get_annotations_from_df(info_df, anno_df): # Rename and select for annotation columns to be consistent with the # Watershed paper table S3 anno_df.rename(columns={"HC": "LoF_HC", "LC": "LoF_LC"}, inplace=True) anno_df = anno_df[anno_list] # Collapse transcripts by taking maximum so we get SNV level # annotations anno_snv_df = anno_df.groupby( ["Chrom", "Pos", "Alt", "Allele"], as_index=False ).max() # Set LoF_LC to 0 if LoF_HC is 1 lof_hc = anno_snv_df["LoF_HC"].values lof_lc = anno_snv_df["LoF_LC"].values anno_snv_df["LoF_LC"] = [0 if hc == 1 else lc for hc, lc in zip(lof_hc, lof_lc)] return anno_snv_df return None def main(): # filename = "/scratch/groups/abattle4/victor/WatershedAFR/data/annotation/gene-AFR-rv.vep.loftee.vcf.gz" usage = "Parses VCF output from VEP/LOFTEE to a table where rows are rare variants and columns are the annotations" parser = argparse.ArgumentParser(description=usage) parser.add_argument( "--anno", required=True, help="Annotations from VEP and LOFTEE as vcf.gz format. Needs to be tbi indexed.", ) args = parser.parse_args() filename = args.anno if not filename.endswith(".vcf.gz"): print("Annotation file needs to be bgzipped and tabix indexed") sys.exit(1) # Info field from VCF parsed to dataframe df_path_list = [ filename.split(".vcf.gz")[0] + ".chr" + str(x) + ".info.tsv" for x in range(1, 23) ] if not os.path.isfile(df_path_list[0]): vcf_to_dataframe(filename) # Combine tidy dataframes for each chromosome into one file anno_snv_all_df = None for df_path in df_path_list: # Open info field from vcf parsed to dataframe info_df =
pd.read_csv(df_path, sep="\t", index_col=0)
pandas.read_csv
import pandas as pd from utils import Insert_row, check_size_invalidity from prettytable import PrettyTable class FirstFit(): def __init__(self, partitions:list, processes:list): process = { "Processes": [f"p{i+1}" for i in range(len(processes))], "Size": processes, } partition = { "Partition": [f"m{i+1}" for i in range(len(partitions))], "Size": partitions, } self.processes = pd.DataFrame(process) self.partitions =
pd.DataFrame(partition)
pandas.DataFrame
import os import glob import lzma import gzip import numpy as np import pandas as pd import attrdict def get_open_function(path): """Choose an open function based on the file's extension.""" if path.endswith('xz'): return lzma.open elif path.endswith('gz'): return gzip.open return open def load_simpoint_weights(simpoints_dir, trace): """Load simpoint weights for a given trace.""" simpoints = pd.DataFrame(columns=['trace', 'weight']) for f in glob.glob(os.path.join(simpoints_dir, '*.csv')): df = pd.read_csv(f) simpoints =
pd.concat((simpoints, df))
pandas.concat
import numpy as np import pytest from pandas.errors import NullFrequencyError import pandas as pd from pandas import ( DatetimeIndex, Index, NaT, Series, TimedeltaIndex, date_range, offsets, ) import pandas._testing as tm from pandas.tseries.offsets import BDay class TestShift: @pytest.mark.parametrize( "ser", [ Series([np.arange(5)]), date_range("1/1/2011", periods=24, freq="H"), Series(range(5), index=date_range("2017", periods=5)), ], ) @pytest.mark.parametrize("shift_size", [0, 1, 2]) def test_shift_always_copy(self, ser, shift_size): # GH22397 assert ser.shift(shift_size) is not ser @pytest.mark.parametrize("move_by_freq", [pd.Timedelta("1D"), pd.Timedelta("1min")]) def test_datetime_shift_always_copy(self, move_by_freq): # GH#22397 ser = Series(range(5), index=date_range("2017", periods=5)) assert ser.shift(freq=move_by_freq) is not ser def test_shift(self, datetime_series): shifted = datetime_series.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, datetime_series.index) tm.assert_index_equal(unshifted.index, datetime_series.index) tm.assert_numpy_array_equal( unshifted.dropna().values, datetime_series.values[:-1] ) offset = BDay() shifted = datetime_series.shift(1, freq=offset) unshifted = shifted.shift(-1, freq=offset) tm.assert_series_equal(unshifted, datetime_series) unshifted = datetime_series.shift(0, freq=offset) tm.assert_series_equal(unshifted, datetime_series) shifted = datetime_series.shift(1, freq="B") unshifted = shifted.shift(-1, freq="B") tm.assert_series_equal(unshifted, datetime_series) # corner case unshifted = datetime_series.shift(0) tm.assert_series_equal(unshifted, datetime_series) # Shifting with PeriodIndex ps = tm.makePeriodSeries() shifted = ps.shift(1) unshifted = shifted.shift(-1) tm.assert_index_equal(shifted.index, ps.index) tm.assert_index_equal(unshifted.index, ps.index) tm.assert_numpy_array_equal(unshifted.dropna().values, ps.values[:-1]) shifted2 = ps.shift(1, "B") shifted3 = ps.shift(1, BDay()) tm.assert_series_equal(shifted2, shifted3) tm.assert_series_equal(ps, shifted2.shift(-1, "B")) msg = "Given freq D does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.shift(freq="D") # legacy support shifted4 = ps.shift(1, freq="B") tm.assert_series_equal(shifted2, shifted4) shifted5 = ps.shift(1, freq=BDay()) tm.assert_series_equal(shifted5, shifted4) # 32-bit taking # GH#8129 index = date_range("2000-01-01", periods=5) for dtype in ["int32", "int64"]: s1 = Series(np.arange(5, dtype=dtype), index=index) p = s1.iloc[1] result = s1.shift(periods=p) expected = Series([np.nan, 0, 1, 2, 3], index=index) tm.assert_series_equal(result, expected) # GH#8260 # with tz s = Series( date_range("2000-01-01 09:00:00", periods=5, tz="US/Eastern"), name="foo" ) result = s - s.shift() exp = Series(TimedeltaIndex(["NaT"] + ["1 days"] * 4), name="foo") tm.assert_series_equal(result, exp) # incompat tz s2 = Series(date_range("2000-01-01 09:00:00", periods=5, tz="CET"), name="foo") msg = "DatetimeArray subtraction must have the same timezones or no timezones" with pytest.raises(TypeError, match=msg): s - s2 def test_shift2(self): ts = Series( np.random.randn(5), index=date_range("1/1/2000", periods=5, freq="H") ) result = ts.shift(1, freq="5T") exp_index = ts.index.shift(1, freq="5T") tm.assert_index_equal(result.index, exp_index) # GH#1063, multiple of same base result = ts.shift(1, freq="4H") exp_index = ts.index + offsets.Hour(4) tm.assert_index_equal(result.index, exp_index) idx = DatetimeIndex(["2000-01-01", "2000-01-02", "2000-01-04"]) msg = "Cannot shift with no freq" with pytest.raises(NullFrequencyError, match=msg): idx.shift(1) def test_shift_fill_value(self): # GH#24128 ts = Series( [1.0, 2.0, 3.0, 4.0, 5.0], index=date_range("1/1/2000", periods=5, freq="H") ) exp = Series( [0.0, 1.0, 2.0, 3.0, 4.0], index=date_range("1/1/2000", periods=5, freq="H") ) # check that fill value works result = ts.shift(1, fill_value=0.0) tm.assert_series_equal(result, exp) exp = Series( [0.0, 0.0, 1.0, 2.0, 3.0], index=date_range("1/1/2000", periods=5, freq="H") ) result = ts.shift(2, fill_value=0.0) tm.assert_series_equal(result, exp) ts = Series([1, 2, 3]) res = ts.shift(2, fill_value=0) assert res.dtype == ts.dtype def test_shift_categorical_fill_value(self): ts = Series(["a", "b", "c", "d"], dtype="category") res = ts.shift(1, fill_value="a") expected = Series( pd.Categorical( ["a", "a", "b", "c"], categories=["a", "b", "c", "d"], ordered=False ) ) tm.assert_equal(res, expected) # check for incorrect fill_value msg = "'fill_value=f' is not present in this Categorical's categories" with pytest.raises(TypeError, match=msg): ts.shift(1, fill_value="f") def test_shift_dst(self): # GH#13926 dates = date_range("2016-11-06", freq="H", periods=10, tz="US/Eastern") s = Series(dates) res = s.shift(0) tm.assert_series_equal(res, s) assert res.dtype == "datetime64[ns, US/Eastern]" res = s.shift(1) exp_vals = [NaT] + dates.astype(object).values.tolist()[:9] exp = Series(exp_vals) tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" res = s.shift(-2) exp_vals = dates.astype(object).values.tolist()[2:] + [NaT, NaT] exp = Series(exp_vals) tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" for ex in [10, -10, 20, -20]: res = s.shift(ex) exp = Series([NaT] * 10, dtype="datetime64[ns, US/Eastern]") tm.assert_series_equal(res, exp) assert res.dtype == "datetime64[ns, US/Eastern]" @pytest.mark.filterwarnings("ignore:tshift is deprecated:FutureWarning") def test_tshift(self, datetime_series): # TODO: remove this test when tshift deprecation is enforced # PeriodIndex ps = tm.makePeriodSeries() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) tm.assert_series_equal(unshifted, ps) shifted2 = ps.tshift(freq="B") tm.assert_series_equal(shifted, shifted2) shifted3 = ps.tshift(freq=BDay()) tm.assert_series_equal(shifted, shifted3) msg = "Given freq M does not match PeriodIndex freq B" with pytest.raises(ValueError, match=msg): ps.tshift(freq="M") # DatetimeIndex shifted = datetime_series.tshift(1) unshifted = shifted.tshift(-1) tm.assert_series_equal(datetime_series, unshifted) shifted2 = datetime_series.tshift(freq=datetime_series.index.freq) tm.assert_series_equal(shifted, shifted2) inferred_ts = Series( datetime_series.values, Index(np.asarray(datetime_series.index)), name="ts" ) shifted = inferred_ts.tshift(1) expected = datetime_series.tshift(1) expected.index = expected.index._with_freq(None) tm.assert_series_equal(shifted, expected) unshifted = shifted.tshift(-1) tm.assert_series_equal(unshifted, inferred_ts) no_freq = datetime_series[[0, 5, 7]] msg = "Freq was not set in the index hence cannot be inferred" with pytest.raises(ValueError, match=msg): no_freq.tshift() def test_tshift_deprecated(self, datetime_series): # GH#11631 with tm.assert_produces_warning(FutureWarning): datetime_series.tshift() def test_period_index_series_shift_with_freq(self): ps = tm.makePeriodSeries() shifted = ps.shift(1, freq="infer") unshifted = shifted.shift(-1, freq="infer") tm.assert_series_equal(unshifted, ps) shifted2 = ps.shift(freq="B") tm.assert_series_equal(shifted, shifted2) shifted3 = ps.shift(freq=BDay())
tm.assert_series_equal(shifted, shifted3)
pandas._testing.assert_series_equal
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import pandas as pd import numpy as np import re import pickle import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import nltk nltk.download("stopwords") with open("C:\\Users\\Prathamesh\\Desktop\\Side projects\\Spam classifier\\SMSSpamCollection.txt") as f: lines = f.readlines() messages = pd.DataFrame([i.split("\t") for i in lines], columns=["label", "message"]) # Stopwords are words in the messages like [the if in a to] which we have to remove from nltk.corpus import stopwords # For stemming purpose to find the base root of the word from nltk.stem.porter import PorterStemmer ps = PorterStemmer() from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() corpus = [] for sms in tqdm(messages["message"]): # Removing unnecessary punctuations, numbers and replacing them with space review = re.sub("[^a-zA-Z]", " ", sms) # Convert the message to lowercase review = review.lower() # Split each word and create a list review = review.split() # Removing all stopwords in english language from the message and getting to the root of each word review = [ps.stem(w) for w in review if w not in stopwords.words("english")] # Convert back to full sentence format after cleaning review = " ".join(review) # Append to corpus corpus.append(review) from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from imblearn.over_sampling import SMOTE from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score, classification_report # Creating features using Tf-idf Vectorization tfidf = TfidfVectorizer(max_features=3000) X = tfidf.fit_transform(corpus).toarray() y =
pd.get_dummies(messages["label"])
pandas.get_dummies
########################################################### # Encode ########################################################### import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn import preprocessing,model_selection, ensemble from sklearn.preprocessing import LabelEncoder import scipy.stats as ss from sklearn.externals import joblib from scipy.sparse import csr_matrix def cat2MedianShiftEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y med_y = np.median(y) enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_medshftenc'] = datax['y_median']-med_y datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(0) datatst = datatst.join(datax,on=[c], how='left').fillna(0) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_medshftenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) return train_df, test_df def cat2MeanShiftEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y mean_y = np.mean(y) enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_meanshftenc'] = datax['y_mean'] - mean_y datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(0) datatst = datatst.join(datax,on=[c], how='left').fillna(0) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold*nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_meanshftenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat.reset_index(drop = True),train_df.reset_index(drop = True)), axis=1) test_df = pd.concat([enc_mat_test.reset_index(drop = True),test_df.reset_index(drop = True)],axis=1) return train_df, test_df def cat2MeanEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() rn = np.mean(y) for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_meanenc'] = datax['y_mean'] datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(rn) datatst = datatst.join(datax,on=[c], how='left').fillna(rn) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold*nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_meanenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat,train_df), axis=1) test_df = pd.concat([enc_mat_test,test_df],axis=1) return train_df, test_df def cat2MedianEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() rn = np.mean(y) for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_medianenc'] = datax['y_mean'] datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(rn) datatst = datatst.join(datax,on=[c], how='left').fillna(rn) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold*nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_medianenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat,train_df), axis=1) test_df = pd.concat([enc_mat_test,test_df],axis=1) return train_df, test_df def countEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() rn = 999 for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_countenc'] = datax['y_len'] datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(rn) datatst = datatst.join(datax,on=[c], how='left').fillna(rn) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= nbag enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_countenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat,train_df), axis=1) test_df = pd.concat([enc_mat_test,test_df],axis=1) return train_df, test_df def rankCountEncode(train_char, test_char, y, nbag = 10, nfold = 20, minCount = 3): train_df = train_char.copy() test_df = test_char.copy() rn = 999 for c in train_char.columns: data = train_char[[c]].copy() data['y'] = y enc_mat = np.zeros((y.shape[0],1)) enc_mat_test = np.zeros((test_char.shape[0],1)) for bag in np.arange(nbag): kf = model_selection.KFold(n_splits= nfold, shuffle=True, random_state=2017*bag) for dev_index, val_index in kf.split(range(data['y'].shape[0])): dev_X, val_X = data.iloc[dev_index,:], data.iloc[val_index,:] datax = dev_X.groupby(c).agg([len,np.mean,np.std, np.median]) datax.columns = ['_'.join(col).strip() for col in datax.columns.values] datax = datax.loc[datax.y_len > minCount] datax[c+'_rankenc'] = datax['y_len'] datax[c+'_rankenc'] = ss.rankdata(datax[c+'_rankenc'].values) datax.drop(['y_len','y_mean','y_std','y_median'],axis=1,inplace=True) print(datax.columns) datatst = test_char[[c]].copy() val_X = val_X.join(datax,on=[c], how='left').fillna(rn) datatst = datatst.join(datax,on=[c], how='left').fillna(rn) enc_mat[val_index,...] += val_X[list(set(datax.columns)-set([c]))] enc_mat_test += datatst[list(set(datax.columns)-set([c]))] enc_mat_test /= (nfold * nbag) enc_mat /= (nbag) enc_mat = pd.DataFrame(enc_mat) enc_mat.columns=[c+'_rankenc'+str(x) for x in enc_mat.columns] enc_mat_test = pd.DataFrame(enc_mat_test) enc_mat_test.columns=[enc_mat.columns] train_df = pd.concat((enc_mat,train_df), axis=1) test_df = pd.concat([enc_mat_test,test_df],axis=1) return train_df, test_df def catLabelEncode(train_char, test_char): train_df = train_char.copy() test_df = test_char.copy() train_test = pd.concat((train_df,test_df)) for feat in train_df.columns: train_test[feat] = pd.factorize(train_test[feat])[0] train_df = train_test.iloc[:train_char.shape[0],:] test_df = train_test.iloc[train_char.shape[0]:,:] return train_df, test_df def OHCEncode(train_char, test_char): train_df = train_char.copy() test_df = test_char.copy() train_test = pd.concat((train_df,test_df)) ohe = csr_matrix(pd.get_dummies(train_test, dummy_na=False, sparse=True)) train_df = ohe[:train_df.shape[0],:] test_df = ohe[train_df.shape[0]:,:] return train_df, test_df ########################################################### # START ########################################################### import pandas as pd import numpy as np import datetime as dt import gc from sklearn.preprocessing import MinMaxScaler from sklearn.externals import joblib #from low_memory import reduce_mem_usage print('Loading train data ...') train1 = pd.read_csv('../input/train_2016_v2.csv') train2 = pd.read_csv('../input/train_2017.csv') #prop1 = pd.read_csv('../input/properties_2016.csv') prop2 = pd.read_csv('../input/properties_2017.csv') print('Binding to float32') for c, dtype in zip(prop2.columns, prop2.dtypes): if dtype == np.float64: # prop1[c] = prop1[c].astype(np.float32) prop2[c] = prop2[c].astype(np.float32) train1 = train1.merge(prop2, how='left', on='parcelid') # change this to prop2 train2 = train2.merge(prop2, how='left', on='parcelid') dftrain = pd.concat((train1, train2)) del(train1, train2); gc.collect() trainx = dftrain[['parcelid', 'transactiondate']].groupby(['parcelid','transactiondate']).agg('size').groupby(level=[0]).cumsum() trainx = trainx.reset_index() trainx = trainx[trainx[0] > 1] dftrain['resell'] = 0 keys = ['parcelid', 'transactiondate'] i1 = dftrain.set_index(keys).index i2 = trainx.set_index(keys).index dftrain.loc[i1.isin(i2), 'resell'] = 1 dftrain.reset_index(drop = True, inplace = True) del(trainx, i2); gc.collect() ########################################### sample = pd.read_csv('../input/sample_submission.csv') test = sample[['ParcelId']] test.columns = ['parcelid'] dftest = test.merge(prop2, how='left', on='parcelid')# change this to prop2 dftest['transactiondate'] = '2017-10-01' dftest['logerror'] = 0 dftest['resell'] = 0 keys = ['parcelid'] i1 = dftrain.set_index(keys).index i2 = dftest.set_index(keys).index dftest.loc[i2.isin(i1), 'resell'] = 1 del(i1, i2, test, sample, prop2)#prop1, gc.collect() def featureGen(x): x['countnullcol'] = x.isnull().sum(axis = 1) x["transactiondate"] = pd.to_datetime(x["transactiondate"]) x["yr"] = pd.DatetimeIndex(x["transactiondate"]).year x["month"] = pd.DatetimeIndex(x["transactiondate"]).month x["qtr"] = pd.DatetimeIndex(x["transactiondate"]).quarter x['latitudetrim'] = x['latitude'].fillna(999999999)/10000 x['latitudetrim'] = x['latitudetrim'].astype(int) x['longitudetrim'] = x['longitude'].fillna(999999999)/10000 x['longitudetrim'] = x['longitudetrim'].astype(int) x['yearbuilt'] = x['yearbuilt'].fillna(1700) x['yearbuilt'] = 2017 - x.yearbuilt ## Binary columns for features -> Zero means its has it and 1 means feature is absent x['hasaircond'] = np.isnan(x.airconditioningtypeid).astype(int) x['hasdeck'] = np.isnan(x.decktypeid).astype(int) x['has34bath'] = np.isnan(x.threequarterbathnbr).astype(int) x['hasfullbath'] = np.isnan(x.fullbathcnt).astype(int) x['hashottuborspa'] = x.hashottuborspa.fillna(False).astype(int) x['hasheat'] = np.isnan(x.heatingorsystemtypeid).astype(int) x['hasstories'] = np.isnan(x.numberofstories).astype(int) x['haspatio'] = np.isnan(x.yardbuildingsqft17).astype(int) x['taxdelinquencyyear'] = 2017 - x['taxdelinquencyyear'] return x #['regionidzip_meanshftenc0', 'buildingclasstypeid_meanshftenc0', 'propertycountylandusecode_meanshftenc0', 'propertyzoningdesc_meanshftenc0', 'rawcensustractandblock_meanshftenc0', 'taxdelinquencyflag_meanshftenc0', 'countnullcol', 'regionidneighborhood_meanshftenc0'] print("Start ftr gen..") dftest = featureGen(dftest) #joblib.dump(dftest,"../input/testNewFtr1.pkl") dftrain = featureGen(dftrain) #joblib.dump(dftrain,"../input/trainNewFtr1.pkl") catcols = ['bathroomcnt', 'bedroomcnt', 'buildingqualitytypeid', 'buildingclasstypeid', 'calculatedbathnbr', 'decktypeid', 'threequarterbathnbr', 'fips', 'fireplacecnt', 'fireplaceflag', 'fullbathcnt', 'garagecarcnt', 'hashottuborspa', 'heatingorsystemtypeid', 'numberofstories', 'poolcnt', 'pooltypeid10', 'pooltypeid2', 'pooltypeid7', 'propertycountylandusecode', 'propertylandusetypeid', 'propertyzoningdesc', 'rawcensustractandblock', 'censustractandblock', 'regionidcounty', 'regionidcity', 'regionidzip', 'regionidneighborhood','storytypeid', 'typeconstructiontypeid', 'unitcnt', 'yardbuildingsqft17', 'yardbuildingsqft26', 'assessmentyear','taxdelinquencyflag','taxdelinquencyyear', 'roomcnt', 'latitudetrim', 'longitudetrim','airconditioningtypeid','architecturalstyletypeid'] numcols = ['countnullcol', 'latitude', 'longitude', 'yearbuilt', 'hasaircond', 'hasdeck', 'has34bath', 'hasfullbath', 'hasheat', 'hasstories', 'haspatio', 'basementsqft', 'finishedfloor1squarefeet', 'calculatedfinishedsquarefeet', 'finishedsquarefeet6', 'finishedsquarefeet12', 'finishedsquarefeet13', 'finishedsquarefeet15', 'finishedsquarefeet50', 'lotsizesquarefeet', 'garagetotalsqft', 'poolsizesum','taxvaluedollarcnt', 'structuretaxvaluedollarcnt', 'landtaxvaluedollarcnt', 'taxamount', 'logerror','parcelid', 'yr','month','qtr', 'resell']# ,'transactiondate' ### numerical processing print("Num processing..") dftrainnum = dftrain[numcols].fillna(-9) dftestnum = dftest[numcols].fillna(-9) ############################ dftraincat = dftrain[catcols].fillna(-9) dftestcat = dftest[catcols].fillna(-9) ntrain = dftrain.shape[0] print("Cat Processing..") #from encoding import cat2MeanShiftEncode, catLabelEncode, countEncode, cat2MedianEncode, cat2MeanEncode, cat2MedianShiftEncode train, test = cat2MeanShiftEncode(dftraincat.copy(), dftestcat.copy(), dftrainnum.logerror.values, nbag = 10, nfold = 20, minCount = 10) trainmn = train.iloc[:,:41].copy() testmn = test.iloc[:,:41].copy() joblib.dump(trainmn,"../input/train_catMeanshftenc_v2.pkl") joblib.dump(testmn,"../input/testcat_catMeanshftenc_v2.pkl") #train, test = cat2MedianEncode(dftraincat.copy(), dftestcat.copy(), y, nbag = 10, nfold = 20, minCount = 10) #joblib.dump(train.iloc[:,:41],"../input/train_catMedianenc.pkl") #joblib.dump(test.iloc[:,:41],"../input/testcat_catMedianenc.pkl") #train, test = cat2MeanEncode(dftraincat.copy(), dftestcat.copy(), y, nbag = 10, nfold = 20, minCount = 10) #joblib.dump(train.iloc[:,:41],"../input/train_catMeanenc.pkl") #joblib.dump(test.iloc[:,:41],"../input/testcat_catMeanenc.pkl") train, test = catLabelEncode(dftraincat.copy(), dftestcat.copy()) trainlbl = train.iloc[:,:41].copy() testlbl = test.iloc[:,:41].copy() joblib.dump(trainlbl,"../input/trainlblcat_v2.pkl") joblib.dump(testlbl,"../input/testcatlblcat_v2.pkl") train, test = countEncode(dftraincat.copy(), dftestcat.copy(), dftrainnum.logerror.values, nbag = 1, nfold = 20, minCount = 10) traincnt = train.iloc[:,:41].copy() testcnt = test.iloc[:,:41].copy() joblib.dump(traincnt,"../input/train_countenc_v2.pkl") joblib.dump(testcnt,"../input/testcat_countenc_v2.pkl") del(train, test) gc.collect() #joblib.dump(dftrainnum,"../input/trainnum9Impute.pkl") #joblib.dump(dftestnum,"../input/testnum9Impute.pkl") #traincnt = traincnt.iloc[:,:41] #trainlbl = trainlbl.iloc[:,:41] #trainmn = trainmn.iloc[:,:41] ########## # Big DS train = pd.concat((dftrainnum, traincnt, trainmn, trainlbl), axis =1) test = pd.concat((dftestnum, testcnt, testmn, testlbl), axis =1) del(dftrainnum, traincnt, trainmn, trainlbl); gc.collect() del(dftestnum, testcnt, testmn, testlbl); gc.collect() joblib.dump(train,"../input/trainmod.pkl") joblib.dump(test,"../input/testmod.pkl") ######################## # Get stat Ftrs import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from sklearn import preprocessing,model_selection, ensemble from sklearn.preprocessing import LabelEncoder import scipy.stats as ss from sklearn.externals import joblib from scipy.sparse import csr_matrix train = joblib.load("../input/trainmod.pkl") test = joblib.load("../input/testmod.pkl") print("Statistical Ftr Gen..") train['yrmonth'] = train.apply(lambda x: str(int(x.yr)) + '-' + str(int(x.month)), axis = 1) test['yrmonth'] = test.apply(lambda x: str(int(x.yr)) + '-' + str(int(x.month)), axis = 1) def getStatsFtr(dftrain, dftest, skipmon =0, yrmonNum='2016-09', aggPer = 6, colLst=[], ind = '1'): start = pd.Period(yrmonNum) - skipmon - aggPer end =
pd.Period(yrmonNum)
pandas.Period
""" Unit Test for the deactivated_participants module Ensures that get_token function fetches the access token properly, get_deactivated_participants fetches all deactivated participants information, and store_participant_data properly stores all the fetched deactivated participant data Original Issues: DC-797, DC-971 (sub-task), DC-972 (sub-task) The intent of this module is to check that GCR access token is generated properly, the list of deactivated participants returned contains `participantID`, `suspensionStatus`, and `suspensionTime`, and that the fetched deactivated participants data is stored properly in a BigQuery dataset. """ # Python imports import unittest import mock # Third Party imports import pandas import pandas.testing # Project imports import utils.participant_summary_requests as psr class ParticipantSummaryRequests(unittest.TestCase): @classmethod def setUpClass(cls): print('**************************************************************') print(cls.__name__) print('**************************************************************') def setUp(self): # Input parameters expected by the class self.project_id = 'foo_project' self.dataset_id = 'bar_dataset' self.tablename = 'baz_table' self.destination_table = 'bar_dataset.foo_table' self.fake_url = 'www.fake_site.com' self.fake_headers = { 'content-type': 'application/json', 'Authorization': 'Bearer ya29.12345' } self.columns = ['participantId', 'suspensionStatus', 'suspensionTime'] self.deactivated_participants = [[ 'P111', 'NO_CONTACT', '2018-12-07T08:21:14' ], ['P222', 'NO_CONTACT', '2018-12-07T08:21:14']] self.updated_deactivated_participants = [[ 111, 'NO_CONTACT', '2018-12-07T08:21:14' ], [222, 'NO_CONTACT', '2018-12-07T08:21:14']] self.fake_dataframe = pandas.DataFrame( self.updated_deactivated_participants, columns=self.columns) self.participant_data = [{ 'fullUrl': 'https//foo_project.appspot.com/rdr/v1/Participant/P111/Summary', 'resource': { 'participantId': 'P111', 'suspensionStatus': 'NO_CONTACT', 'suspensionTime': '2018-12-07T08:21:14' } }, { 'fullUrl': 'https//foo_project.appspot.com/rdr/v1/Participant/P222/Summary', 'resource': { 'participantId': 'P222', 'suspensionStatus': 'NO_CONTACT', 'suspensionTime': '2018-12-07T08:21:14' } }] self.json_response_entry = { 'entry': [{ 'fullUrl': 'https//foo_project.appspot.com/rdr/v1/Participant/P111/Summary', 'resource': { 'participantId': 'P111', 'suspensionStatus': 'NO_CONTACT', 'suspensionTime': '2018-12-07T08:21:14' } }, { 'fullUrl': 'https//foo_project.appspot.com/rdr/v1/Participant/P222/Summary', 'resource': { 'participantId': 'P222', 'suspensionStatus': 'NO_CONTACT', 'suspensionTime': '2018-12-07T08:21:14' } }] } @mock.patch('utils.participant_summary_requests.default') @mock.patch('utils.participant_summary_requests.auth') @mock.patch('utils.participant_summary_requests.req') def test_get_access_token(self, mock_req, mock_auth, mock_default): # pre conditions scopes = [ 'https://www.googleapis.com/auth/cloud-platform', 'email', 'profile' ] creds = mock.MagicMock() mock_default.return_value = (creds, None) req = mock.MagicMock() mock_req.Request.return_value = req # test actual_token = psr.get_access_token() # post conditions mock_default.assert_called_once_with() mock_auth.delegated_credentials.assert_called_once_with(creds, scopes=scopes) mock_req.Request.assert_called_once_with() # assert the credential refresh still happens mock_auth.delegated_credentials().refresh.assert_called_once_with(req) self.assertEqual(mock_auth.delegated_credentials().token, actual_token) @mock.patch('utils.participant_summary_requests.requests.get') def test_get_participant_data(self, mock_get): mock_get.return_value.status_code = 200 mock_get.return_value.json.return_value = self.json_response_entry expected_response = psr.get_participant_data(self.fake_url, self.fake_headers) self.assertEqual(expected_response, self.participant_data) @mock.patch('utils.participant_summary_requests.store_participant_data') @mock.patch( 'utils.participant_summary_requests.get_deactivated_participants') def test_get_deactivated_participants(self, mock_get_deactivated_participants, mock_store_participant_data): # pre conditions mock_get_deactivated_participants.return_value = self.fake_dataframe # tests dataframe_response = psr.get_deactivated_participants( self.project_id, self.dataset_id, self.tablename, self.columns) dataset_response = psr.store_participant_data(dataframe_response, self.project_id, self.destination_table) expected_response = mock_store_participant_data(dataframe_response, self.project_id, self.destination_table) # post conditions pandas.testing.assert_frame_equal( dataframe_response, pandas.DataFrame(self.updated_deactivated_participants, columns=self.columns)) self.assertEqual(expected_response, dataset_response) def test_participant_id_to_int(self): # pre conditions columns = ['suspensionStatus', 'participantId', 'suspensionTime'] deactivated_participants = [[ 'NO_CONTACT', 'P111', '2018-12-07T08:21:14' ]] updated_deactivated_participants = [[ 'NO_CONTACT', 111, '2018-12-07T08:21:14' ]] dataframe =
pandas.DataFrame(deactivated_participants, columns=columns)
pandas.DataFrame
''''' Authors: <NAME> (@anabab1999) and <NAME> (@felipezara2013) ''' from calendars import DayCounts import pandas as pd from pandas.tseries.offsets import DateOffset from bloomberg import BBG import numpy as np bbg = BBG() #Puxando os tickers para a curva zero tickers_zero_curve = ['S0023Z 1Y BLC2 Curncy', 'S0023Z 1D BLC2 Curncy', 'S0023Z 3M BLC2 Curncy', 'S0023Z 1W BLC2 Curncy', 'S0023Z 10Y BLC2 Curncy', 'S0023Z 1M BLC2 Curncy', 'S0023Z 2Y BLC2 Curncy', 'S0023Z 6M BLC2 Curncy', 'S0023Z 2M BLC2 Curncy', 'S0023Z 5Y BLC2 Curncy', 'S0023Z 4M BLC2 Curncy', 'S0023Z 2D BLC2 Curncy', 'S0023Z 9M BLC2 Curncy', 'S0023Z 3Y BLC2 Curncy', 'S0023Z 4Y BLC2 Curncy', 'S0023Z 50Y BLC2 Curncy', 'S0023Z 12Y BLC2 Curncy', 'S0023Z 18M BLC2 Curncy', 'S0023Z 7Y BLC2 Curncy', 'S0023Z 5M BLC2 Curncy', 'S0023Z 6Y BLC2 Curncy', 'S0023Z 2W BLC2 Curncy', 'S0023Z 11M BLC2 Curncy', 'S0023Z 15M BLC2 Curncy', 'S0023Z 21M BLC2 Curncy', 'S0023Z 15Y BLC2 Curncy', 'S0023Z 25Y BLC2 Curncy', 'S0023Z 8Y BLC2 Curncy', 'S0023Z 10M BLC2 Curncy', 'S0023Z 20Y BLC2 Curncy', 'S0023Z 33M BLC2 Curncy', 'S0023Z 7M BLC2 Curncy', 'S0023Z 8M BLC2 Curncy', 'S0023Z 11Y BLC2 Curncy', 'S0023Z 14Y BLC2 Curncy', 'S0023Z 18Y BLC2 Curncy', 'S0023Z 19Y BLC2 Curncy', 'S0023Z 23D BLC2 Curncy', 'S0023Z 9Y BLC2 Curncy', 'S0023Z 17M BLC2 Curncy', 'S0023Z 1I BLC2 Curncy', 'S0023Z 22Y BLC2 Curncy', 'S0023Z 28Y BLC2 Curncy', 'S0023Z 2I BLC2 Curncy', 'S0023Z 30Y BLC2 Curncy', 'S0023Z 31Y BLC2 Curncy', 'S0023Z 32Y BLC2 Curncy', 'S0023Z 38Y BLC2 Curncy', 'S0023Z 39Y BLC2 Curncy', 'S0023Z 40Y BLC2 Curncy', 'S0023Z 42D BLC2 Curncy', 'S0023Z 48Y BLC2 Curncy'] df_bbg = bbg.fetch_series(tickers_zero_curve, "PX_LAST", startdate = pd.to_datetime('today'), enddate = pd.to_datetime('today')) df_bbg = df_bbg.transpose() df_bbg_m = bbg.fetch_contract_parameter(tickers_zero_curve, "MATURITY") '''' The Zero curve will be used on the interpolation, to discover the rate for a specific term. ''' # fazendo a curva zero zero_curve = pd.concat([df_bbg, df_bbg_m], axis=1, sort= True).set_index('MATURITY').sort_index() zero_curve = zero_curve.astype(float) zero_curve = zero_curve.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='backward', limit_area=None, downcast=None) zero_curve.index = pd.to_datetime(zero_curve.index) #def que calcula a parte fixa do contrato de swap '''' The function below will calculate the value of swap fixed leg for a specific term. It calculates based on the interpolation of the Zero curve. ''' def swap_fixed_leg_pv(today, rate, busdays, calendartype, maturity=10, periodcupons=6, notional=1000000): global zero_curve dc1 = DayCounts(busdays, calendar=calendartype) today = pd.to_datetime(today) date_range = pd.date_range(start=today, end=today + DateOffset(years=maturity), freq=DateOffset(months=periodcupons)) date_range = dc1.modified_following(date_range) df = pd.DataFrame(data=date_range[:-1], columns=['Accrual Start']) df['Accrual End'] = date_range[1:] df['days'] = (df['Accrual End'] - df['Accrual Start']).dt.days df['Notional'] = notional df['Principal'] = 0 lastline = df.tail(1) df.loc[lastline.index, 'Principal'] = notional df['Payment'] = (df['days']/ 360) * rate * df['Notional'] df['Cash Flow'] = df['Payment'] + df['Principal'] df['Cumulative Days'] = df['days'].cumsum() days = pd.DataFrame(index = df['Accrual End']) zero_curve_discount = pd.concat([zero_curve, days], sort=True).sort_index() zero_curve_discount = zero_curve_discount.interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None) zero_curve_discount = zero_curve_discount.drop(index = zero_curve.index) zero_curve_discount = pd.DataFrame (data = zero_curve_discount.values) df['zero_curve_discount'] = zero_curve_discount/100 df['Discount'] = 1/(1+(df['zero_curve_discount']*df['Cumulative Days']/360)) df['Present Value'] = (df['Cash Flow'] * df['Discount']) fixed = np.sum(df['Present Value']) return fixed #criando uma variavel para a parte float swap_fixed = swap_fixed_leg_pv('2019-04-04', 0.02336, 'ACT/360', 'us_trading', 5, 6, 10000000) # puxando tickers para floating leg tickers_floating_leg = ["USSWAP2 BGN Curncy", "USSWAP3 BGN Curncy", "USSWAP4 BGN Curncy", "USSWAP5 BGN Curncy", "USSW6 BGN Curncy", "USSWAP7 BGN Curncy", "USSW8 BGN Curncy", "USSW9 BGN Curncy", "USSWAP10 BGN Curncy", "USSWAP11 BGN Curncy", "USSWAP12 BGN Curncy", "USSWAP15 BGN Curncy", "USSWAP20 BGN Curncy", "USSWAP25 BGN Curncy", "USSWAP30 BGN Curncy", "USSWAP40 BGN Curncy", "USSWAP50 BGN Curncy"] bbg_floating_leg = bbg.fetch_series(tickers_floating_leg, "PX_LAST", startdate =
pd.to_datetime('today')
pandas.to_datetime
# -*- coding: utf-8 -*- r""" general helper functions """ # Import standard library import os import logging import itertools from pathlib import Path from glob import glob from operator import concat from functools import reduce from os.path import join, exists from pprint import pprint # Import from module # from matplotlib.figure import Figure # from matplotlib.image import AxesImage # from loguru import logger from uncertainties import unumpy from tqdm import tqdm import numpy as np import pandas as pd from scipy.stats import norm from scipy.ndimage import zoom import matplotlib.pyplot as pl import lightkurve as lk from astropy.visualization import hist from astropy import units as u from astropy import constants as c from astropy.timeseries import LombScargle from astropy.modeling import models, fitting from astropy.io import ascii from astropy.coordinates import ( SkyCoord, Distance, sky_coordinate, Galactocentric, match_coordinates_3d, ) from skimage import measure from astroquery.vizier import Vizier from astroquery.mast import Catalogs, tesscut from astroquery.gaia import Gaia import deepdish as dd # Import from package from chronos import target from chronos import cluster from chronos import gls from chronos.config import DATA_PATH log = logging.getLogger(__name__) __all__ = [ "get_nexsci_archive", "get_tess_ccd_info", "get_all_campaigns", "get_all_sectors", "get_sector_cam_ccd", "get_tois", "get_toi", "get_ctois", "get_ctoi", "get_target_coord", "get_epicid_from_k2name", "get_target_coord_3d", "get_transformed_coord", "query_gaia_params_of_all_tois", "get_mamajek_table", "get_distance", "get_excess_from_extiction", "get_absolute_color_index", "get_absolute_gmag", "parse_aperture_mask", "make_round_mask", "make_square_mask", "remove_bad_data", "is_point_inside_mask", "get_fluxes_within_mask", "get_harps_bank", "get_specs_table_from_tfop", "get_rotation_period", "get_transit_mask", "get_mag_err_from_flux", "get_err_quadrature", "get_phase", "bin_data", "map_float", "map_int", "flatten_list", "detrend", "query_tpf", "query_tpf_tesscut", "is_gaiaid_in_cluster", "get_pix_area_threshold", "get_above_lower_limit", "get_below_upper_limit", "get_between_limits", "get_RV_K", "get_RM_K", "get_tois_mass_RV_K", "get_vizier_tables", "get_mist_eep_table", "get_tepcat", ] # Ax/Av extinction_ratios = { "U": 1.531, "B": 1.324, "V": 1.0, "R": 0.748, "I": 0.482, "J": 0.282, "H": 0.175, "K": 0.112, "G": 0.85926, "Bp": 1.06794, "Rp": 0.65199, } def query_WDSC(): """ Washington Double Star Catalog """ url = "http://www.astro.gsu.edu/wds/Webtextfiles/wdsnewframe.html" df = pd.read_csv(url) return df def get_tepcat(catalog="all"): """ TEPCat https://www.astro.keele.ac.uk/jkt/tepcat/ Choices: all, homogenerous, planning, obliquity """ base_url = "https://www.astro.keele.ac.uk/jkt/tepcat/" if catalog == "all": full_url = base_url + "allplanets-csv.csv" elif catalog == "homogeneous": full_url = base_url + "homogeneous-par-csv.csv" elif catalog == "planning": full_url = base_url + "observables.csv" elif catalog == "obliquity": full_url = base_url + "obliquity.csv" else: raise ValueError("catalog=[all,homogeneous,planning,obliquity]") df = pd.read_csv(full_url) return df def get_mist_eep_table(): """ For eep phases, see http://waps.cfa.harvard.edu/MIST/README_tables.pdf """ fp = Path(DATA_PATH, "mist_eep_table.csv") return pd.read_csv(fp, comment="#") def get_nexsci_archive(table="all"): base_url = "https://exoplanetarchive.ipac.caltech.edu/" settings = "cgi-bin/nstedAPI/nph-nstedAPI?table=" if table == "all": url = base_url + settings + "exomultpars" elif table == "confirmed": url = base_url + settings + "exoplanets" elif table == "composite": url = base_url + settings + "compositepars" else: raise ValueError("table=[all, confirmed, composite]") df = pd.read_csv(url) return df def get_vizier_tables(key, tab_index=None, row_limit=50, verbose=True): """ Parameters ---------- key : str vizier catalog key tab_index : int table index to download and parse Returns ------- tables if tab_index is None else parsed df """ if row_limit == -1: msg = f"Downloading all tables in " else: msg = f"Downloading the first {row_limit} rows of each table in " msg += f"{key} from vizier." if verbose: print(msg) # set row limit Vizier.ROW_LIMIT = row_limit tables = Vizier.get_catalogs(key) errmsg = f"No data returned from Vizier." assert tables is not None, errmsg if tab_index is None: if verbose: print({k: tables[k]._meta["description"] for k in tables.keys()}) return tables else: df = tables[tab_index].to_pandas() df = df.applymap( lambda x: x.decode("ascii") if isinstance(x, bytes) else x ) return df def get_tois_mass_RV_K(clobber=False): fp = Path(DATA_PATH, "TOIs2.csv") if clobber: try: from mrexo import predict_from_measurement, generate_lookup_table except Exception: raise ModuleNotFoundError("pip install mrexo") tois = get_tois() masses = {} for key, row in tqdm(tois.iterrows()): toi = row["TOI"] Rp = row["Planet Radius (R_Earth)"] Rp_err = row["Planet Radius (R_Earth) err"] Mp, (Mp_lo, Mp_hi), iron_planet = predict_from_measurement( measurement=Rp, measurement_sigma=Rp_err, qtl=[0.16, 0.84], dataset="kepler", ) masses[toi] = (Mp, Mp_lo, Mp_hi) df = pd.DataFrame(masses).T df.columns = [ "Planet mass (Mp_Earth)", "Planet mass (Mp_Earth) lo", "Planet mass (Mp_Earth) hi", ] df.index.name = "TOI" df = df.reset_index() df["RV_K_lo"] = get_RV_K( tois["Period (days)"], tois["Stellar Radius (R_Sun)"], # should be Mstar df["Planet mass (Mp_Earth) lo"], with_unit=True, ) df["RV_K_hi"] = get_RV_K( tois["Period (days)"], tois["Stellar Radius (R_Sun)"], # should be Mstar df["Planet mass (Mp_Earth) hi"], with_unit=True, ) joint = pd.merge(tois, df, on="TOI") joint.to_csv(fp, index=False) print(f"Saved: {fp}") else: joint = pd.read_csv(fp) print(f"Loaded: {fp}") return joint def get_phase(time, period, epoch, offset=0.5): """phase offset -0.5,0.5 """ phase = (((((time - epoch) / period) + offset) % 1) / offset) - 1 return phase def bin_data(array, binsize, func=np.mean): """ """ a_b = [] for i in range(0, array.shape[0], binsize): a_b.append(func(array[i : i + binsize], axis=0)) return a_b def get_tess_ccd_info(target_coord): """use search_targetpixelfile like get_all_sectors?""" ccd_info = tesscut.Tesscut.get_sectors(target_coord) errmsg = f"Target not found in any TESS sectors" assert len(ccd_info) > 0, errmsg return ccd_info.to_pandas() def get_all_sectors(target_coord): """ """ ccd_info = get_tess_ccd_info(target_coord) all_sectors = [int(i) for i in ccd_info["sector"].values] return np.array(all_sectors) def get_all_campaigns(epicid): """ """ res = lk.search_targetpixelfile( f"K2 {epicid}", campaign=None, mission="K2" ) errmsg = "No data found" assert len(res) > 0, errmsg df = res.table.to_pandas() campaigns = df["observation"].apply(lambda x: x.split()[-1]).values return np.array([int(c) for c in campaigns]) def get_sector_cam_ccd(target_coord, sector=None): """get TESS sector, camera, and ccd numbers using Tesscut """ df = get_tess_ccd_info(target_coord) all_sectors = [int(i) for i in df["sector"].values] if sector is not None: sector_idx = df["sector"][df["sector"].isin([sector])].index.tolist() if len(sector_idx) == 0: raise ValueError(f"Available sector(s): {all_sectors}") cam = str(df.iloc[sector_idx]["camera"].values[0]) ccd = str(df.iloc[sector_idx]["ccd"].values[0]) else: sector_idx = 0 sector = str(df.iloc[sector_idx]["sector"]) cam = str(df.iloc[sector_idx]["camera"]) ccd = str(df.iloc[sector_idx]["ccd"]) return sector, cam, ccd def is_gaiaid_in_cluster( gaiaid, cluster_name=None, catalog_name="Bouma2019", verbose=True ): """ See scripts/check_target_in_cluster """ # reduce the redundant names above gaiaid = int(gaiaid) if cluster_name is None: cc = cluster.ClusterCatalog(catalog_name=catalog_name, verbose=False) df_mem = cc.query_catalog(return_members=True) else: c = cluster.Cluster( catalog_name=catalog_name, cluster_name=cluster_name, verbose=False ) df_mem = c.query_cluster_members() idx = df_mem.source_id.isin([gaiaid]) if idx.sum() > 0: if verbose: if cluster_name is None: cluster_match = df_mem[idx].Cluster.values[0] else: # TODO: what if cluster_match != cluster_name? cluster_match = cluster_name print( f"Gaia DR2 {gaiaid} is IN {cluster_match} cluster based on {catalog_name} catalog!" ) return True else: if verbose: print(f"Gaia DR2 {gaiaid} is NOT in {catalog_name} catalog!") return False def query_tpf( query_str, sector=None, campaign=None, quality_bitmask="default", apply_data_quality_mask=False, mission="TESS", verbose=True, ): """ """ if verbose: print(f"Searching targetpixelfile for {query_str} using lightkurve") tpf = lk.search_targetpixelfile( query_str, mission=mission, sector=sector, campaign=campaign ).download() if apply_data_quality_mask: tpf = remove_bad_data(tpf, sector=sector, verbose=verbose) return tpf def query_tpf_tesscut( query_str, sector=None, quality_bitmask="default", cutout_size=(15, 15), apply_data_quality_mask=False, verbose=True, ): """ """ if verbose: if isinstance(query_str, sky_coordinate.SkyCoord): query = f"ra,dec=({query_str.to_string()})" else: query = query_str print(f"Searching targetpixelfile for {query} using Tesscut") tpf = lk.search_tesscut(query_str, sector=sector).download( quality_bitmask=quality_bitmask, cutout_size=cutout_size ) assert tpf is not None, "No results from Tesscut search." # remove zeros zero_mask = (tpf.flux_err == 0).all(axis=(1, 2)) if zero_mask.sum() > 0: tpf = tpf[~zero_mask] if apply_data_quality_mask: tpf = remove_bad_data(tpf, sector=sector, verbose=verbose) return tpf def detrend(self, polyorder=1, break_tolerance=10): """mainly to be added as method to lk.LightCurve """ lc = self.copy() half = lc.time.shape[0] // 2 if half % 2 == 0: # add 1 if even half += 1 return lc.flatten( window_length=half, polyorder=polyorder, break_tolerance=break_tolerance, ) def get_rotation_period( time, flux, flux_err=None, min_per=0.5, max_per=None, method="ls", npoints=20, plot=True, verbose=True, ): """ time, flux : array time and flux min_period, max_period : float minimum & maxmimum period (default=half baseline e.g. ~13 days) method : str ls = lomb-scargle; gls = generalized ls npoints : int datapoints around which to fit a Gaussian Note: 1. Transits are assumed to be masked already 2. The period and uncertainty were determined from the mean and the half-width at half-maximum of a Gaussian fit to the periodogram peak, respectively See also: https://arxiv.org/abs/1702.03885 """ baseline = int(time[-1] - time[0]) max_per = max_per if max_per is not None else baseline / 2 if method == "ls": if verbose: print("Using Lomb-Scargle method") ls = LombScargle(time, flux, dy=flux_err) frequencies, powers = ls.autopower( minimum_frequency=1.0 / max_per, maximum_frequency=1.0 / min_per ) idx = np.argmax(powers) while npoints > idx: npoints -= 1 best_freq = frequencies[idx] best_period = 1.0 / best_freq # specify which points to fit a gaussian x = (1 / frequencies)[idx - npoints : idx + npoints] y = powers[idx - npoints : idx + npoints] # Fit the data using a 1-D Gaussian g_init = models.Gaussian1D(amplitude=0.5, mean=best_period, stddev=1) fit_g = fitting.LevMarLSQFitter() g = fit_g(g_init, x, y) label = f"P={g.mean.value:.2f}+/-{g.stddev.value:.2f} d" if plot: # Plot the data with the best-fit model pl.plot(x, y, "ko", label="_nolegend_") pl.plot(x, g(x), label="_nolegend_") pl.ylabel("Lomb-Scargle Power") pl.xlabel("Period [days]") pl.axvline(g.mean, 0, 1, ls="--", c="r", label=label) pl.legend() if verbose: print(label) return (g.mean.value, g.stddev.value) elif method == "gls": if verbose: print("Using Generalized Lomb-Scargle method") data = (time, flux, flux_err) ls = gls.Gls(data, Pbeg=min_per, Pend=max_per, verbose=verbose) prot, prot_err = ls.hpstat["P"], ls.hpstat["e_P"] if plot: _ = ls.plot(block=False, figsize=(10, 8)) return (prot, prot_err) else: raise ValueError("Use method=[ls | gls]") def get_transit_mask(lc, period, epoch, duration_hours): """ lc : lk.LightCurve lightcurve that contains time and flux properties mask = [] t0 += np.ceil((time[0] - dur - t0) / period) * period for t in np.arange(t0, time[-1] + dur, period): mask.extend(np.where(np.abs(time - t) < dur / 2.)[0]) return np.array(mask) """ assert isinstance(lc, lk.LightCurve) assert ( (period is not None) & (epoch is not None) & (duration_hours is not None) ) temp_fold = lc.fold(period, t0=epoch) fractional_duration = (duration_hours / 24.0) / period phase_mask = np.abs(temp_fold.phase) < (fractional_duration * 1.5) transit_mask = np.in1d(lc.time, temp_fold.time_original[phase_mask]) return transit_mask def get_harps_bank( target_coord, separation=30, outdir=DATA_PATH, verbose=True ): """ Check if target has archival HARPS data from: http://www.mpia.de/homes/trifonov/HARPS_RVBank.html See also https://github.com/3fon3fonov/HARPS_RVBank For column meanings: https://www2.mpia-hd.mpg.de/homes/trifonov/HARPS_RVBank_header.txt """ homeurl = "http://www.mpia.de/homes/trifonov/HARPS_RVBank.html" fp = os.path.join(outdir, "HARPS_RVBank_table.csv") if os.path.exists(fp): df = pd.read_csv(fp) msg = f"Loaded: {fp}\n" else: if verbose: print( f"Downloading HARPS bank from {homeurl}. This may take a while." ) # csvurl = "http://www.mpia.de/homes/trifonov/HARPS_RVBank_v1.csv" # df = pd.read_csv(csvurl) df = pd.read_html(homeurl, header=0)[0] # choose first table df.to_csv(fp, index=False) msg = f"Saved: {fp}\n" if verbose: print(msg) # coordinates coords = SkyCoord( ra=df["RA"], dec=df["DEC"], distance=df["Dist [pc]"], unit=(u.hourangle, u.deg, u.pc), ) # check which falls within `separation` idxs = target_coord.separation(coords) < separation * u.arcsec if idxs.sum() > 0: # result may be multiple objects res = df[idxs] if verbose: targets = res["Target"].values print(f"There are {len(res)} matches: {targets}") print(f"{df.loc[idxs, df.columns[7:14]].T}\n\n") return res else: # find the nearest HARPS object in the database to target # idx, sep2d, dist3d = match_coordinates_3d( # target_coord, coords, nthneighbor=1) idx = target_coord.separation(coords).argmin() sep2d = target_coord.separation(coords[idx]) nearest_obj = df.iloc[idx]["Target"] ra, dec = df.iloc[idx][["RA", "DEC"]] print( f"Nearest HARPS object is\n{nearest_obj}: ra,dec=({ra},{dec}) @ d={sep2d.arcsec/60:.2f} arcmin\n" ) return None # def get_harps_bank(url, verbose=True): # """ # Download archival HARPS data from url # http://www.mpia.de/homes/trifonov/HARPS_RVBank.html # """ # homeurl = "" # fp = os.path.join(outdir, "HARPS_RVBank_table.csv") # return def get_mamajek_table(clobber=False, verbose=True, data_loc=DATA_PATH): fp = join(data_loc, f"mamajek_table.csv") if not exists(fp) or clobber: url = "http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt" # cols="SpT Teff logT BCv Mv logL B-V Bt-Vt G-V U-B V-Rc V-Ic V-Ks J-H H-Ks Ks-W1 W1-W2 W1-W3 W1-W4 Msun logAge b-y M_J M_Ks Mbol i-z z-Y R_Rsun".split(' ') df = pd.read_csv( url, skiprows=21, skipfooter=524, delim_whitespace=True, engine="python", ) # tab = ascii.read(url, guess=None, data_start=0, data_end=124) # df = tab.to_pandas() # replace ... with NaN df = df.replace(["...", "....", "....."], np.nan) # replace header # df.columns = cols # drop last duplicate column df = df.drop(df.columns[-1], axis=1) # df['#SpT_num'] = range(df.shape[0]) # df['#SpT'] = df['#SpT'].astype('category') # remove the : type in M_J column df["M_J"] = df["M_J"].apply(lambda x: str(x).split(":")[0]) # convert columns to float for col in df.columns: if col == "#SpT": df[col] = df[col].astype("category") else: df[col] = df[col].astype(float) # if col=='SpT': # df[col] = df[col].astype('categorical') # else: # df[col] = df[col].astype(float) df.to_csv(fp, index=False) print(f"Saved: {fp}") else: df =
pd.read_csv(fp)
pandas.read_csv
import pandas as pd from datetime import datetime def get_daily_data(name, start="2010-01-01", end=None, modify=1): """ Get daily open/high/low/close/volume data from Daum Finance (finance.daum.net) Parameters ---------- name : string of ticker, e.g. '000660' start : string, e.g. '2010-01-01' end : string, e.g. '2018-01-31' modify : int 0: close 1: adj close Returns ------- ret : DataFrame """ start = datetime.strptime(start, "%Y-%m-%d") if end is None: end = datetime.now() frames = [] page = 1 while True: url_form = "http://finance.daum.net/item/quote_yyyymmdd_sub.daum?page=%d&code=%s&modify=%d" url = url_form % (page, name, modify) page += 1 dfs = pd.read_html(url, header=0) df = dfs[0] if df.empty: break # delete N/A rows df = df.dropna() date =
pd.to_datetime(df['일자'], format="%y.%m.%d")
pandas.to_datetime
"""This module provides access to the Vicon and biplane fluoroscopy filesystem-based database.""" from pathlib import Path import itertools import functools import numpy as np import pandas as pd import quaternion from lazy import lazy from typing import Union, Callable, Type, Tuple from biokinepy.cs import ht_r, change_cs, ht_inv from ..kinematics.joint_cs import torso_cs_isb, torso_cs_v3d from ..kinematics.segments import StaticTorsoSegment from .db_common import TrialDescription, ViconEndpts, SubjectDescription, ViconCSTransform, trial_descriptor_df, MARKERS from biokinepy.trajectory import PoseTrajectory from ..misc.python_utils import NestedDescriptor BIPLANE_FILE_HEADERS = {'frame': np.int32, 'pos_x': np.float64, 'pos_y': np.float64, 'pos_z': np.float64, 'quat_w': np.float64, 'quat_x': np.float64, 'quat_y': np.float64, 'quat_z': np.float64} TORSO_FILE_HEADERS = {'pos_x': np.float64, 'pos_y': np.float64, 'pos_z': np.float64, 'quat_w': np.float64, 'quat_x': np.float64, 'quat_y': np.float64, 'quat_z': np.float64} LANDMARKS_FILE_HEADERS = {'Landmark': 'string', 'X': np.float64, 'Y': np.float64, 'Z': np.float64} TORSO_TRACKING_MARKERS = ['STRN', 'C7', 'T5', 'T10', 'CLAV'] def csv_get_item_method(csv_data: pd.DataFrame, marker_name: str) -> np.ndarray: """Return the marker data, (n, 3) numpy array view, associated with marker_name.""" return csv_data.loc[:, marker_name:(marker_name + '.2')].to_numpy() def landmark_get_item_method(csv_data: pd.DataFrame, landmark_name: str) -> np.ndarray: """Return the landmark data, (3,) numpy array view, associated with landmark_name.""" return csv_data.loc[landmark_name, 'X':'Z'].to_numpy() def csv_get_item_method_squeeze(csv_data: pd.DataFrame, marker_name: str) -> np.ndarray: """Return the marker data, (n, 3) numpy array view, associated with marker_name.""" return np.squeeze(csv_get_item_method(csv_data, marker_name)) def insert_nans(func: Callable) -> Callable: """Return a new dataframe derived from the original dataframe with appended columns filled with NaNs for missing markers.""" @functools.wraps(func) def wrapper(self) -> pd.DataFrame: orig_data = func(self) if not self.nan_missing_markers: return orig_data new_columns = [marker for marker in MARKERS if marker not in orig_data.columns] new_columns1 = [col + '.1' for col in new_columns] new_columns2 = [col + '.2' for col in new_columns] raw_data = orig_data.to_numpy() data_with_nan = np.concatenate((raw_data, np.full((orig_data.shape[0], len(new_columns) * 3), np.nan)), 1) all_columns = itertools.chain(orig_data.columns, itertools.chain.from_iterable(zip(new_columns, new_columns1, new_columns2))) return pd.DataFrame(data=data_with_nan, columns=all_columns, dtype=np.float64) return wrapper class ViconCsvTrial(TrialDescription, ViconEndpts): """A Vicon trial that has been exported to CSV format. Enables lazy (and cached) access to the labeled and filled Vicon Data. Attributes ---------- trial_dir_path: pathlib.Path or str Path to the directory where the Vicon CSV trial data resides. vicon_csv_file_labeled: pathlib.Path Path to the labeled marker data for the Vicon CSV trial. vicon_csv_file_filled: pathlib.Path Path to the filled marker data for the Vicon CSV trial. nan_missing_markers: bool Specifies whether to insert NaNs in the dataset for missing markers """ def __init__(self, trial_dir: Union[str, Path], nan_missing_markers: bool = False, **kwargs): self.nan_missing_markers = nan_missing_markers self.trial_dir_path = trial_dir if isinstance(trial_dir, Path) else Path(trial_dir) super().__init__(trial_dir_path=self.trial_dir_path, endpts_file=lambda: self.trial_dir_path / (self.trial_name + '_vicon_endpts.csv'), **kwargs) # file paths self.vicon_csv_file_labeled = self.trial_dir_path / (self.trial_name + '_vicon_labeled.csv') self.vicon_csv_file_filled = self.trial_dir_path / (self.trial_name + '_vicon_filled.csv') # make sure the files are actually there assert (self.vicon_csv_file_labeled.is_file()) assert (self.vicon_csv_file_filled.is_file()) @lazy @insert_nans def vicon_csv_data_labeled(self) -> pd.DataFrame: """Pandas dataframe with the labeled Vicon CSV data.""" # TODO: this works fine for now and by using the accessor method below we get a view (rather than a copy) of the # data, however it probably makes sense to using something like structured arrays or xarray. Note that # multi-level column labels should not be used (i.e. header=[0, 1) because a copy of the data, not a view is # returned return pd.read_csv(self.vicon_csv_file_labeled, header=[0], skiprows=[1], dtype=np.float64) @lazy @insert_nans def vicon_csv_data_filled(self) -> pd.DataFrame: """Pandas dataframe with the filled Vicon CSV data.""" return pd.read_csv(self.vicon_csv_file_filled, header=[0], skiprows=[1], dtype=np.float64) @lazy def labeled(self) -> NestedDescriptor: """Descriptor that allows marker indexed ([marker_name]) access to labeled CSV data. The indexed access returns a (n, 3) numpy array view.""" return NestedDescriptor(self.vicon_csv_data_labeled, csv_get_item_method) @lazy def filled(self) -> NestedDescriptor: """Descriptor that allows marker indexed ([marker_name]) access to filled CSV data. The indexed access return a (n, 3) numpy array view.""" return NestedDescriptor(self.vicon_csv_data_filled, csv_get_item_method) class ViconCsvSubject(SubjectDescription): """A subject that contains multiple Vicon CSV trials. Attributes ---------- subject_dir_path: pathlib.Path Path to directory containing subject data. trials: list of biplane_kine.database.biplane_vicon_db.ViconCsvTrial List of trials for the subject. """ def __init__(self, subj_dir: Union[str, Path], **kwargs): self.subject_dir_path = subj_dir if isinstance(subj_dir, Path) else Path(subj_dir) super().__init__(subject_dir_path=self.subject_dir_path, **kwargs) self.trials = [ViconCsvTrial(folder) for folder in self.subject_dir_path.iterdir() if (folder.is_dir() and folder.stem != 'Static')] @lazy def subject_df(self) -> pd.DataFrame: """A Pandas dataframe summarizing the Vicon CSV trials belonging to the subject.""" df = trial_descriptor_df(self.subject_name, self.trials) df['Trial'] = pd.Series(self.trials, dtype=object) return df class BiplaneViconTrial(ViconCsvTrial): """A trial that contains both biplane and Vicon data. Attributes ---------- vicon_csv_file_smoothed: pathlib.Path Path to the smoothed marker data for the Vicon CSV trial. humerus_biplane_file: pathlib.Path File path to the raw kinematic trajectory for the humerus as derived from biplane fluoroscopy scapula_biplane_file: pathlib.Path File path to the raw kinematic trajectory for the scapula as derived from biplane fluoroscopy humerus_biplane_file_avg_smooth: pathlib.Path File path to the smoothed kinematic trajectory for the humerus as derived from biplane fluoroscopy scapula_biplane_file_avg_smooth: pathlib.Path File path to the smoothed kinematic trajectory for the scapula as derived from biplane fluoroscopy torso_vicon_file: pathlib.Path File path to the kinematic trajectory for the torso (ISB definition) as derived from skin markers torso_vicon_file_v3d: pathlib.Path File path to the kinematic trajectory for the torso (V3D definition) as derived from skin markers subject: biplane_kine.database.vicon_accuracy.BiplaneViconSubject Pointer to the subject that contains this trial. """ def __init__(self, trial_dir: Union[str, Path], subject: 'BiplaneViconSubject', nan_missing_markers: bool = True, **kwargs): super().__init__(trial_dir, nan_missing_markers, **kwargs) self.subject = subject # file paths self.vicon_csv_file_smoothed = self.trial_dir_path / (self.trial_name + '_vicon_smoothed.csv') self.humerus_biplane_file = self.trial_dir_path / (self.trial_name + '_humerus_biplane.csv') self.humerus_biplane_file_avg_smooth = self.trial_dir_path / (self.trial_name + '_humerus_biplane_avgSmooth.csv') self.scapula_biplane_file = self.trial_dir_path / (self.trial_name + '_scapula_biplane.csv') self.scapula_biplane_file_avg_smooth = self.trial_dir_path / (self.trial_name + '_scapula_biplane_avgSmooth.csv') self.torso_vicon_file = self.trial_dir_path / (self.trial_name + '_torso.csv') self.torso_vicon_file_v3d = self.trial_dir_path / (self.trial_name + '_torso_v3d.csv') # make sure the files are actually there assert (self.vicon_csv_file_smoothed.is_file()) assert (self.humerus_biplane_file.is_file()) assert (self.scapula_biplane_file.is_file()) assert (self.humerus_biplane_file_avg_smooth.is_file()) assert (self.scapula_biplane_file_avg_smooth.is_file()) assert (self.torso_vicon_file.is_file()) assert (self.torso_vicon_file_v3d.is_file()) @lazy @insert_nans def vicon_csv_data_smoothed(self) -> pd.DataFrame: """Pandas dataframe with the smoothed Vicon CSV data.""" return pd.read_csv(self.vicon_csv_file_smoothed, header=[0], skiprows=[1], dtype=np.float64) @lazy def smoothed(self) -> NestedDescriptor: """Descriptor that allows marker indexed ([marker_name]) access to smoothed CSV data. The indexed access returns a (n, 3) numpy array view.""" return NestedDescriptor(self.vicon_csv_data_smoothed, csv_get_item_method) @lazy def humerus_biplane_data(self) -> pd.DataFrame: """Humerus raw biplane data.""" return
pd.read_csv(self.humerus_biplane_file, header=0, dtype=BIPLANE_FILE_HEADERS, index_col='frame')
pandas.read_csv
#!/usr/bin/python3 # Module with dataframe operations. # - # append to a dataframe a.append(pd.DataFrame({'close':99.99},index=[datetime.datetime.now()]) import pandas as pd from scipy import signal import numpy from numpy import NaN import matplotlib.pyplot as plt import datetime from scipy.stats import linregress # Creates DataFrame line def CreateHorizontalLine(indexes, startValue, endValue, allIndexes=False): data = pd.DataFrame() # Only start and begin if (allIndexes == False): data = data.append(pd.DataFrame( {'value': startValue}, index=[indexes[0]])) data = data.append(pd.DataFrame( {'value': endValue}, index=[indexes[-1]])) # All data else: N = len(indexes) alpha = (endValue - startValue) / N for i in range(len(indexes)): data = data.append(pd.DataFrame( {'value': alpha * i + startValue}, index=[indexes[i]])) return data # Creates DataFrame line def CreateVerticalLine(index, startValue, endValue): data = pd.DataFrame() data = data.append(pd.DataFrame({'value': startValue}, index=[index])) data = data.append(pd.DataFrame({'value': endValue}, index=[index])) return data # Creates DataFrame rect def CreateRect(index1, value1, index2, value2): data = pd.DataFrame() data = data.append(
pd.DataFrame({'value': value1}, index=[index1])
pandas.DataFrame
import pandas as pd data = pd.read_csv("../data/features/brand_3_12_market_features.csv") print(data.shape) def grouped(data, col: str = "", shifter: int = 1): aux = data.groupby(["month", "region"])[col].sum().shift(shifter).reset_index() title = col + "shift" + str(shifter) aux.columns = ["month", "region", title] return pd.merge(data, aux, on=["month", "region"]) for col in ["sales_brand_3", "sales_brand_3_market", "sales_brand_12_market"]: for i in range(-12, 12): data = grouped(data, col=col, shifter=i) print(data.shape) reg3 = data.groupby("region")["sales_brand_3_market"].sum().reset_index() reg12 = data.groupby("region")["sales_brand_12_market"].sum().reset_index() reg3.columns = ["region", "sales_brand_3_market_per_region"] reg12.columns = ["region", "sales_brand_12_market_per_region"] data = pd.merge(data, reg3, on="region") data =
pd.merge(data, reg12, on="region")
pandas.merge
import numpy as np from selenium import webdriver from selenium.webdriver.common.by import By import time from tqdm import tqdm import pandas as pd def init_driver(player_url=None): options = webdriver.ChromeOptions() options.add_experimental_option('excludeSwitches', ['enable-logging']) options.headless = True # Avoid google chrome GUI driver = webdriver.Chrome(options=options) chrome_prefs = {} # Avoid loading images to speed up scraping options.experimental_options["prefs"] = chrome_prefs chrome_prefs["profile.default_content_settings"] = {"images": 2} chrome_prefs["profile.managed_default_content_settings"] = {"images": 2} if player_url: # In case we init just a player url driver.get(player_url) else: # In case we are scraping the urls driver.get("https://www.trackingthepros.com/players/") time.sleep(1) return driver def scrape_one_page(driver): one_page_players_url = [] element = driver.find_elements(By.XPATH, "//tbody//tr") for x in element: td = x.find_elements(By.XPATH, "td") a = td[0].text player_name = a[6:] player_link = f"https://www.trackingthepros.com/player/{player_name}/" one_page_players_url.append(player_link) # print("\n SCRAPED : ", len(one_page_players_url), "PRO PAGES") return one_page_players_url def scrape_all_pages(): print("SCRAPING ALL PLAYER URLS ON EACH PAGES ...") all_pages_players_url = [] driver = init_driver() # Init our driver pagination = driver.find_element(By.CLASS_NAME, "pagination") # Gets the first occurence of .pagination last_page = int(pagination.text[-7:-4]) # Gets the last pages (the one before "next") # last_page = 2 # For debug purpose all_pages_players_url.append(scrape_one_page(driver)) # Scrapes first page for page_number in tqdm(range(2, last_page+1)): # print("SCRAPING PAGE NUMBER :", page_number) pagination = driver.find_element(By.CLASS_NAME, "pagination") # Refresh our pagination class lis = pagination.find_elements(By.TAG_NAME, "li") # Regresh our lists tag for x in lis: try: # Avoid debugging because the html of trackingthepros is kinda clunky links = x.find_elements(By.TAG_NAME, "a") for link in links: case_found = int(link.get_attribute("data-dt-idx")) # Gets the index of the case if case_found > 5: case_found = 5 # The index is the same than the page until page 5, where the next case index will always be 5 if case_found == page_number or case_found == 5: # Check that we are going to click and scrape the right page # time.sleep(1) # print("CLICKED ON PAGE :", page_number) link.click() # Click to next page # time.sleep(1) all_pages_players_url.append(scrape_one_page(driver)) # Scrape the page except: pass driver.close() # Close the page since now we are going to go through all the player pages to get their informations return np.array(all_pages_players_url).flatten() # Flatten because we don't care about the pages number def scrape_one_player_infos(player_driver): player_infos = [] url_str = str(player_driver.current_url) name = url_str.split("/")[-2] if name == "player": # Sometimes there is a player in table but url doesn't work return [] # So we return empty array player_infos.append(name) trs = player_driver.find_elements(By.XPATH, "//tbody//tr") country = "MISSING" age = "MISSING" server = "MISSING" role = "MISSING" residency = "MISSING" summoner_names = [] for tr in trs: tds = tr.find_elements(By.XPATH, "td") for i, td in enumerate(tds): if td.text == "Birthplace": country = tds[i+1].text elif td.text == "Birthday": age_string = tds[i+1].text age = int(age_string[age_string.find('(')+1:age_string.find(')')]) elif "[" in td.text: string = tds[i].text server = string[string.find('[')+1:string.find(']')] # Server is between [ ] summoner_name = string.replace(server, "").replace("]", "").replace("[", "").lstrip() summoner_names.append(summoner_name) elif td.text == "Role": role = tds[i+1].text.lstrip() elif td.text == "Residency": residency = tds[i+1].text.lstrip() player_infos.append(role) player_infos.append(age) player_infos.append(country) player_infos.append(residency) player_infos.append(server) player_infos.append(summoner_names) return player_infos def scrape_players_infos(all_players_pages): print("SCRAPING EACH PLAYER INFOS ON THEIR PERSONAL PAGES ...") all_data = [] for player_url in tqdm(all_players_pages): player_driver = init_driver(player_url) all_data.append(scrape_one_player_infos(player_driver)) player_driver.close() return all_data def save_data(data): print("SAVING DATA ...") df =
pd.DataFrame(data)
pandas.DataFrame
# Write collated data to new file import pandas as pd class Write: # Write the collated and formated data to a new file def To_File(self, data, dir): print(f'Writing Processed Data to File in directory "{dir}" ....') # Create separate DataFrames for each sheet in the Migration Template df_member = pd.DataFrame.from_dict(data['Member']) df_membership = pd.DataFrame.from_dict(data['Membership']) df_membership_category = pd.DataFrame.from_dict(data['Membership Category']) df_teams = pd.DataFrame.from_dict(data['Teams']) df_training_fee = pd.DataFrame.from_dict(data['Training fee']) df_training_locations = pd.DataFrame.from_dict(data['Training locations']) df_department = pd.DataFrame.from_dict(data['Department info']) df_club = pd.DataFrame.from_dict(data['Club info']) df_committees =
pd.DataFrame.from_dict(data['Committees'])
pandas.DataFrame.from_dict
# -*- coding: utf-8 -*- # Arithmetc tests for DataFrame/Series/Index/Array classes that should # behave identically. from datetime import timedelta import operator import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas.compat import long from pandas.core import ops from pandas.errors import NullFrequencyError, PerformanceWarning from pandas._libs.tslibs import IncompatibleFrequency from pandas import ( timedelta_range, Timedelta, Timestamp, NaT, Series, TimedeltaIndex, DatetimeIndex) # ------------------------------------------------------------------ # Fixtures @pytest.fixture def tdser(): """ Return a Series with dtype='timedelta64[ns]', including a NaT. """ return Series(['59 Days', '59 Days', 'NaT'], dtype='timedelta64[ns]') @pytest.fixture(params=[pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)], ids=lambda x: type(x).__name__) def delta(request): """ Several ways of representing two hours """ return request.param @pytest.fixture(params=[timedelta(minutes=5, seconds=4), Timedelta('5m4s'), Timedelta('5m4s').to_timedelta64()], ids=lambda x: type(x).__name__) def scalar_td(request): """ Several variants of Timedelta scalars representing 5 minutes and 4 seconds """ return request.param @pytest.fixture(params=[pd.Index, Series, pd.DataFrame], ids=lambda x: x.__name__) def box(request): """ Several array-like containers that should have effectively identical behavior with respect to arithmetic operations. """ return request.param @pytest.fixture(params=[pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(strict=True))], ids=lambda x: x.__name__) def box_df_fail(request): """ Fixture equivalent to `box` fixture but xfailing the DataFrame case. """ return request.param # ------------------------------------------------------------------ # Numeric dtypes Arithmetic with Timedelta Scalar class TestNumericArraylikeArithmeticWithTimedeltaScalar(object): @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="block.eval incorrect", strict=True)) ]) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 11)), pd.UInt64Index(range(1, 11)), pd.Float64Index(range(1, 11)), pd.RangeIndex(1, 11)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_mul_tdscalar(self, scalar_td, index, box): # GH#19333 if (box is Series and type(scalar_td) is timedelta and index.dtype == 'f8'): raise pytest.xfail(reason="Cannot multiply timedelta by float") expected = timedelta_range('1 days', '10 days') index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = index * scalar_td tm.assert_equal(result, expected) commute = scalar_td * index tm.assert_equal(commute, expected) @pytest.mark.parametrize('index', [ pd.Int64Index(range(1, 3)), pd.UInt64Index(range(1, 3)), pd.Float64Index(range(1, 3)), pd.RangeIndex(1, 3)], ids=lambda x: type(x).__name__) @pytest.mark.parametrize('scalar_td', [ Timedelta(days=1), Timedelta(days=1).to_timedelta64(), Timedelta(days=1).to_pytimedelta()], ids=lambda x: type(x).__name__) def test_numeric_arr_rdiv_tdscalar(self, scalar_td, index, box): if box is Series and type(scalar_td) is timedelta: raise pytest.xfail(reason="TODO: Figure out why this case fails") if box is pd.DataFrame and isinstance(scalar_td, timedelta): raise pytest.xfail(reason="TODO: Figure out why this case fails") expected = TimedeltaIndex(['1 Day', '12 Hours']) index = tm.box_expected(index, box) expected = tm.box_expected(expected, box) result = scalar_td / index tm.assert_equal(result, expected) with pytest.raises(TypeError): index / scalar_td # ------------------------------------------------------------------ # Timedelta64[ns] dtype Arithmetic Operations class TestTimedeltaArraylikeAddSubOps(object): # Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ # ------------------------------------------------------------- # Invalid Operations def test_td64arr_add_str_invalid(self, box): # GH#13624 tdi = TimedeltaIndex(['1 day', '2 days']) tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi + 'a' with pytest.raises(TypeError): 'a' + tdi @pytest.mark.parametrize('other', [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize('op', [operator.add, ops.radd, operator.sub, ops.rsub], ids=lambda x: x.__name__) def test_td64arr_add_sub_float(self, box, op, other): tdi = TimedeltaIndex(['-1 days', '-1 days']) tdi = tm.box_expected(tdi, box) if box is pd.DataFrame and op in [operator.add, operator.sub]: pytest.xfail(reason="Tries to align incorrectly, " "raises ValueError") with pytest.raises(TypeError): op(tdi, other) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to cast df to " "Period", strict=True, raises=IncompatibleFrequency)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('freq', [None, 'H']) def test_td64arr_sub_period(self, box, freq): # GH#13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') idx = TimedeltaIndex(['1 hours', '2 hours'], freq=freq) idx = tm.box_expected(idx, box) with pytest.raises(TypeError): idx - p with pytest.raises(TypeError): p - idx @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="broadcasts along " "wrong axis", raises=ValueError, strict=True)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('pi_freq', ['D', 'W', 'Q', 'H']) @pytest.mark.parametrize('tdi_freq', [None, 'H']) def test_td64arr_sub_pi(self, box, tdi_freq, pi_freq): # GH#20049 subtracting PeriodIndex should raise TypeError tdi = TimedeltaIndex(['1 hours', '2 hours'], freq=tdi_freq) dti = Timestamp('2018-03-07 17:16:40') + tdi pi = dti.to_period(pi_freq) # TODO: parametrize over box for pi? tdi = tm.box_expected(tdi, box) with pytest.raises(TypeError): tdi - pi # ------------------------------------------------------------- # Binary operations td64 arraylike and datetime-like def test_td64arr_sub_timestamp_raises(self, box): idx = TimedeltaIndex(['1 day', '2 day']) idx = tm.box_expected(idx, box) msg = "cannot subtract a datelike from|Could not operate" with tm.assert_raises_regex(TypeError, msg): idx - Timestamp('2011-01-01') @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) result = idx + Timestamp('2011-01-01') tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype", strict=True)) ], ids=lambda x: x.__name__) def test_td64_radd_timestamp(self, box): idx = TimedeltaIndex(['1 day', '2 day']) expected = DatetimeIndex(['2011-01-02', '2011-01-03']) idx = tm.box_expected(idx, box) expected = tm.box_expected(expected, box) # TODO: parametrize over scalar datetime types? result = Timestamp('2011-01-01') + idx tm.assert_equal(result, expected) @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Returns object dtype " "instead of " "datetime64[ns]", strict=True)) ], ids=lambda x: x.__name__) def test_td64arr_add_sub_timestamp(self, box): # GH#11925 ts = Timestamp('2012-01-01') # TODO: parametrize over types of datetime scalar? tdser = Series(timedelta_range('1 day', periods=3)) expected = Series(pd.date_range('2012-01-02', periods=3)) tdser = tm.box_expected(tdser, box) expected = tm.box_expected(expected, box) tm.assert_equal(ts + tdser, expected) tm.assert_equal(tdser + ts, expected) expected2 = Series(pd.date_range('2011-12-31', periods=3, freq='-1D')) expected2 = tm.box_expected(expected2, box) tm.assert_equal(ts - tdser, expected2) tm.assert_equal(ts + (-tdser), expected2) with pytest.raises(TypeError): tdser - ts def test_tdi_sub_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) - tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) with pytest.raises(TypeError): tdi - dtarr # TimedeltaIndex.__rsub__ result = dtarr - tdi tm.assert_equal(result, expected) def test_tdi_add_dt64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) dtarr = dti.values expected = pd.DatetimeIndex(dtarr) + tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + dtarr tm.assert_equal(result, expected) result = dtarr + tdi tm.assert_equal(result, expected) # ------------------------------------------------------------------ # Operations with int-like others @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser + Series([2, 3, 4]) @pytest.mark.parametrize('box', [ pd.Index, pytest.param(Series, marks=pytest.mark.xfail(reason="GH#19123 integer " "interpreted as " "nanoseconds", strict=True)), pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_radd_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): Series([2, 3, 4]) + tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_sub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) err = TypeError if box is not pd.Index else NullFrequencyError with pytest.raises(err): tdser - Series([2, 3, 4]) @pytest.mark.xfail(reason='GH#19123 integer interpreted as nanoseconds', strict=True) def test_td64arr_rsub_int_series_invalid(self, box, tdser): tdser = tm.box_expected(tdser, box) with pytest.raises(TypeError): Series([2, 3, 4]) - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Attempts to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) def test_td64arr_add_intlike(self, box): # GH#19123 tdi = TimedeltaIndex(['59 days', '59 days', 'NaT']) ser = tm.box_expected(tdi, box) err = TypeError if box is not pd.Index else NullFrequencyError other = Series([20, 30, 40], dtype='uint8') # TODO: separate/parametrize with pytest.raises(err): ser + 1 with pytest.raises(err): ser - 1 with pytest.raises(err): ser + other with pytest.raises(err): ser - other with pytest.raises(err): ser + np.array(other) with pytest.raises(err): ser - np.array(other) with pytest.raises(err): ser + pd.Index(other) with pytest.raises(err): ser - pd.Index(other) @pytest.mark.parametrize('scalar', [1, 1.5, np.array(2)]) def test_td64arr_add_sub_numeric_scalar_invalid(self, box, scalar, tdser): if box is pd.DataFrame and isinstance(scalar, np.ndarray): # raises ValueError pytest.xfail(reason="DataFrame to broadcast incorrectly") tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not isinstance(scalar, float): err = NullFrequencyError with pytest.raises(err): tdser + scalar with pytest.raises(err): scalar + tdser with pytest.raises(err): tdser - scalar with pytest.raises(err): scalar - tdser @pytest.mark.parametrize('box', [ pd.Index, Series, pytest.param(pd.DataFrame, marks=pytest.mark.xfail(reason="Tries to broadcast " "incorrectly", strict=True, raises=ValueError)) ], ids=lambda x: x.__name__) @pytest.mark.parametrize('dtype', ['int64', 'int32', 'int16', 'uint64', 'uint32', 'uint16', 'uint8', 'float64', 'float32', 'float16']) @pytest.mark.parametrize('vec', [ np.array([1, 2, 3]), pd.Index([1, 2, 3]), Series([1, 2, 3]) # TODO: Add DataFrame in here? ], ids=lambda x: type(x).__name__) def test_td64arr_add_sub_numeric_arr_invalid(self, box, vec, dtype, tdser): if type(vec) is Series and not dtype.startswith('float'): pytest.xfail(reason='GH#19123 integer interpreted as nanos') tdser = tm.box_expected(tdser, box) err = TypeError if box is pd.Index and not dtype.startswith('float'): err = NullFrequencyError vector = vec.astype(dtype) # TODO: parametrize over these four ops? with pytest.raises(err): tdser + vector with pytest.raises(err): vector + tdser with pytest.raises(err): tdser - vector with pytest.raises(err): vector - tdser # ------------------------------------------------------------------ # Operations with timedelta-like others def test_td64arr_add_td64_array(self, box_df_fail): box = box_df_fail # DataFrame tries to broadcast incorrectly dti = pd.date_range('2016-01-01', periods=3) tdi = dti - dti.shift(1) tdarr = tdi.values expected = 2 * tdi tdi = tm.box_expected(tdi, box) expected = tm.box_expected(expected, box) result = tdi + tdarr tm.assert_equal(result, expected) result = tdarr + tdi
tm.assert_equal(result, expected)
pandas.util.testing.assert_equal
# # Copyright 2013 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import collections from datetime import ( datetime, timedelta, ) import logging import operator import unittest from nose_parameterized import parameterized import nose.tools as nt import pytz import itertools import pandas as pd import numpy as np from six.moves import range, zip import zipline.utils.factory as factory import zipline.finance.performance as perf from zipline.finance.performance import position_tracker from zipline.finance.slippage import Transaction, create_transaction import zipline.utils.math_utils as zp_math from zipline.gens.composites import date_sorted_sources from zipline.finance.trading import SimulationParameters from zipline.finance.blotter import Order from zipline.finance.commission import PerShare, PerTrade, PerDollar from zipline.finance.trading import TradingEnvironment from zipline.utils.factory import create_simulation_parameters from zipline.utils.serialization_utils import ( loads_with_persistent_ids, dumps_with_persistent_ids ) import zipline.protocol as zp from zipline.protocol import Event, DATASOURCE_TYPE from zipline.sources.data_frame_source import DataPanelSource logger = logging.getLogger('Test Perf Tracking') onesec = timedelta(seconds=1) oneday = timedelta(days=1) tradingday = timedelta(hours=6, minutes=30) # nose.tools changed name in python 3 if not hasattr(nt, 'assert_count_equal'): nt.assert_count_equal = nt.assert_items_equal def check_perf_period(pp, gross_leverage, net_leverage, long_exposure, longs_count, short_exposure, shorts_count): perf_data = pp.to_dict() np.testing.assert_allclose( gross_leverage, perf_data['gross_leverage'], rtol=1e-3) np.testing.assert_allclose( net_leverage, perf_data['net_leverage'], rtol=1e-3) np.testing.assert_allclose( long_exposure, perf_data['long_exposure'], rtol=1e-3) np.testing.assert_allclose( longs_count, perf_data['longs_count'], rtol=1e-3) np.testing.assert_allclose( short_exposure, perf_data['short_exposure'], rtol=1e-3) np.testing.assert_allclose( shorts_count, perf_data['shorts_count'], rtol=1e-3) def check_account(account, settled_cash, equity_with_loan, total_positions_value, regt_equity, available_funds, excess_liquidity, cushion, leverage, net_leverage, net_liquidation): # this is a long only portfolio that is only partially invested # so net and gross leverage are equal. np.testing.assert_allclose(settled_cash, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(equity_with_loan, account['equity_with_loan'], rtol=1e-3) np.testing.assert_allclose(total_positions_value, account['total_positions_value'], rtol=1e-3) np.testing.assert_allclose(regt_equity, account['regt_equity'], rtol=1e-3) np.testing.assert_allclose(available_funds, account['available_funds'], rtol=1e-3) np.testing.assert_allclose(excess_liquidity, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(cushion, account['cushion'], rtol=1e-3) np.testing.assert_allclose(leverage, account['leverage'], rtol=1e-3) np.testing.assert_allclose(net_leverage, account['net_leverage'], rtol=1e-3) np.testing.assert_allclose(net_liquidation, account['net_liquidation'], rtol=1e-3) def create_txn(trade_event, price, amount): """ Create a fake transaction to be filled and processed prior to the execution of a given trade event. """ mock_order = Order(trade_event.dt, trade_event.sid, amount, id=None) return create_transaction(trade_event, mock_order, price, amount) def benchmark_events_in_range(sim_params, env): return [ Event({'dt': dt, 'returns': ret, 'type': zp.DATASOURCE_TYPE.BENCHMARK, # We explicitly rely on the behavior that benchmarks sort before # any other events. 'source_id': '1Abenchmarks'}) for dt, ret in env.benchmark_returns.iteritems() if dt.date() >= sim_params.period_start.date() and dt.date() <= sim_params.period_end.date() ] def calculate_results(sim_params, env, benchmark_events, trade_events, dividend_events=None, splits=None, txns=None): """ Run the given events through a stripped down version of the loop in AlgorithmSimulator.transform. IMPORTANT NOTE FOR TEST WRITERS/READERS: This loop has some wonky logic for the order of event processing for datasource types. This exists mostly to accomodate legacy tests accomodate existing tests that were making assumptions about how events would be sorted. In particular: - Dividends passed for a given date are processed PRIOR to any events for that date. - Splits passed for a given date are process AFTER any events for that date. Tests that use this helper should not be considered useful guarantees of the behavior of AlgorithmSimulator on a stream containing the same events unless the subgroups have been explicitly re-sorted in this way. """ txns = txns or [] splits = splits or [] perf_tracker = perf.PerformanceTracker(sim_params, env) if dividend_events is not None: dividend_frame = pd.DataFrame( [ event.to_series(index=zp.DIVIDEND_FIELDS) for event in dividend_events ], ) perf_tracker.update_dividends(dividend_frame) # Raw trades trade_events = sorted(trade_events, key=lambda ev: (ev.dt, ev.source_id)) # Add a benchmark event for each date. trades_plus_bm = date_sorted_sources(trade_events, benchmark_events) # Filter out benchmark events that are later than the last trade date. filtered_trades_plus_bm = (filt_event for filt_event in trades_plus_bm if filt_event.dt <= trade_events[-1].dt) grouped_trades_plus_bm = itertools.groupby(filtered_trades_plus_bm, lambda x: x.dt) results = [] bm_updated = False for date, group in grouped_trades_plus_bm: for txn in filter(lambda txn: txn.dt == date, txns): # Process txns for this date. perf_tracker.process_transaction(txn) for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: perf_tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.DIVIDEND: perf_tracker.process_dividend(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: perf_tracker.process_benchmark(event) bm_updated = True elif event.type == zp.DATASOURCE_TYPE.COMMISSION: perf_tracker.process_commission(event) for split in filter(lambda split: split.dt == date, splits): # Process splits for this date. perf_tracker.process_split(split) if bm_updated: msg = perf_tracker.handle_market_close_daily() msg['account'] = perf_tracker.get_account(True) results.append(msg) bm_updated = False return results def check_perf_tracker_serialization(perf_tracker): scalar_keys = [ 'emission_rate', 'txn_count', 'market_open', 'last_close', '_dividend_count', 'period_start', 'day_count', 'capital_base', 'market_close', 'saved_dt', 'period_end', 'total_days', ] p_string = dumps_with_persistent_ids(perf_tracker) test = loads_with_persistent_ids(p_string, env=perf_tracker.env) for k in scalar_keys: nt.assert_equal(getattr(test, k), getattr(perf_tracker, k), k) for period in test.perf_periods: nt.assert_true(hasattr(period, '_position_tracker')) class TestSplitPerformance(unittest.TestCase): def setUp(self): self.env = TradingEnvironment() self.env.write_data(equities_identifiers=[1]) self.sim_params = create_simulation_parameters(num_days=2) # start with $10,000 self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_split_long_position(self): events = factory.create_trade_history( 1, [20, 20], [100, 100], oneday, self.sim_params, env=self.env ) # set up a long position in sid 1 # 100 shares at $20 apiece = $2000 position txns = [create_txn(events[0], 20, 100)] # set up a split with ratio 3 occurring at the start of the second # day. splits = [ factory.create_split( 1, 3, events[1].dt, ), ] results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns, splits=splits) # should have 33 shares (at $60 apiece) and $20 in cash self.assertEqual(2, len(results)) latest_positions = results[1]['daily_perf']['positions'] self.assertEqual(1, len(latest_positions)) # check the last position to make sure it's been updated position = latest_positions[0] self.assertEqual(1, position['sid']) self.assertEqual(33, position['amount']) self.assertEqual(60, position['cost_basis']) self.assertEqual(60, position['last_sale_price']) # since we started with $10000, and we spent $2000 on the # position, but then got $20 back, we should have $8020 # (or close to it) in cash. # we won't get exactly 8020 because sometimes a split is # denoted as a ratio like 0.3333, and we lose some digits # of precision. thus, make sure we're pretty close. daily_perf = results[1]['daily_perf'] self.assertTrue( zp_math.tolerant_equals(8020, daily_perf['ending_cash'], 1)) # Validate that the account attributes were updated. account = results[1]['account'] self.assertEqual(float('inf'), account['day_trades_remaining']) # this is a long only portfolio that is only partially invested # so net and gross leverage are equal. np.testing.assert_allclose(0.198, account['leverage'], rtol=1e-3) np.testing.assert_allclose(0.198, account['net_leverage'], rtol=1e-3) np.testing.assert_allclose(8020, account['regt_equity'], rtol=1e-3) self.assertEqual(float('inf'), account['regt_margin']) np.testing.assert_allclose(8020, account['available_funds'], rtol=1e-3) self.assertEqual(0, account['maintenance_margin_requirement']) np.testing.assert_allclose(10000, account['equity_with_loan'], rtol=1e-3) self.assertEqual(float('inf'), account['buying_power']) self.assertEqual(0, account['initial_margin_requirement']) np.testing.assert_allclose(8020, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(8020, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(10000, account['net_liquidation'], rtol=1e-3) np.testing.assert_allclose(0.802, account['cushion'], rtol=1e-3) np.testing.assert_allclose(1980, account['total_positions_value'], rtol=1e-3) self.assertEqual(0, account['accrued_interest']) for i, result in enumerate(results): for perf_kind in ('daily_perf', 'cumulative_perf'): perf_result = result[perf_kind] # prices aren't changing, so pnl and returns should be 0.0 self.assertEqual(0.0, perf_result['pnl'], "day %s %s pnl %s instead of 0.0" % (i, perf_kind, perf_result['pnl'])) self.assertEqual(0.0, perf_result['returns'], "day %s %s returns %s instead of 0.0" % (i, perf_kind, perf_result['returns'])) class TestCommissionEvents(unittest.TestCase): def setUp(self): self.env = TradingEnvironment() self.env.write_data( equities_identifiers=[0, 1, 133] ) self.sim_params = create_simulation_parameters(num_days=5) logger.info("sim_params: %s" % self.sim_params) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_commission_event(self): events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Test commission models and validate result # Expected commission amounts: # PerShare commission: 1.00, 1.00, 1.50 = $3.50 # PerTrade commission: 5.00, 5.00, 5.00 = $15.00 # PerDollar commission: 1.50, 3.00, 4.50 = $9.00 # Total commission = $3.50 + $15.00 + $9.00 = $27.50 # Create 3 transactions: 50, 100, 150 shares traded @ $20 transactions = [create_txn(events[0], 20, i) for i in [50, 100, 150]] # Create commission models and validate that produce expected # commissions. models = [PerShare(cost=0.01, min_trade_cost=1.00), PerTrade(cost=5.00), PerDollar(cost=0.0015)] expected_results = [3.50, 15.0, 9.0] for model, expected in zip(models, expected_results): total_commission = 0 for trade in transactions: total_commission += model.calculate(trade)[1] self.assertEqual(total_commission, expected) # Verify that commission events are handled correctly by # PerformanceTracker. cash_adj_dt = events[0].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) # Insert a purchase order. txns = [create_txn(events[0], 20, 1)] results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns) # Validate that we lost 320 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9680) # Validate that the cost basis of our position changed. self.assertEqual(results[-1]['daily_perf']['positions'] [0]['cost_basis'], 320.0) # Validate that the account attributes were updated. account = results[1]['account'] self.assertEqual(float('inf'), account['day_trades_remaining']) np.testing.assert_allclose(0.001, account['leverage'], rtol=1e-3, atol=1e-4) np.testing.assert_allclose(9680, account['regt_equity'], rtol=1e-3) self.assertEqual(float('inf'), account['regt_margin']) np.testing.assert_allclose(9680, account['available_funds'], rtol=1e-3) self.assertEqual(0, account['maintenance_margin_requirement']) np.testing.assert_allclose(9690, account['equity_with_loan'], rtol=1e-3) self.assertEqual(float('inf'), account['buying_power']) self.assertEqual(0, account['initial_margin_requirement']) np.testing.assert_allclose(9680, account['excess_liquidity'], rtol=1e-3) np.testing.assert_allclose(9680, account['settled_cash'], rtol=1e-3) np.testing.assert_allclose(9690, account['net_liquidation'], rtol=1e-3) np.testing.assert_allclose(0.999, account['cushion'], rtol=1e-3) np.testing.assert_allclose(10, account['total_positions_value'], rtol=1e-3) self.assertEqual(0, account['accrued_interest']) def test_commission_zero_position(self): """ Ensure no div-by-zero errors. """ events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Buy and sell the same sid so that we have a zero position by the # time of events[3]. txns = [ create_txn(events[0], 20, 1), create_txn(events[1], 20, -1), ] # Add a cash adjustment at the time of event[3]. cash_adj_dt = events[3].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) results = calculate_results(self.sim_params, self.env, self.benchmark_events, events, txns=txns) # Validate that we lost 300 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9700) def test_commission_no_position(self): """ Ensure no position-not-found or sid-not-found errors. """ events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) # Add a cash adjustment at the time of event[3]. cash_adj_dt = events[3].dt cash_adjustment = factory.create_commission(1, 300.0, cash_adj_dt) events.append(cash_adjustment) results = calculate_results(self.sim_params, self.env, self.benchmark_events, events) # Validate that we lost 300 dollars from our cash pool. self.assertEqual(results[-1]['cumulative_perf']['ending_cash'], 9700) class TestDividendPerformance(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2]) @classmethod def tearDownClass(cls): del cls.env def setUp(self): self.sim_params = create_simulation_parameters(num_days=6) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_market_hours_calculations(self): # DST in US/Eastern began on Sunday March 14, 2010 before = datetime(2010, 3, 12, 14, 31, tzinfo=pytz.utc) after = factory.get_next_trading_dt( before, timedelta(days=1), self.env, ) self.assertEqual(after.hour, 13) def test_long_position_receives_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[1].dt, # pay date, when the algorithm receives the dividend. events[2].dt ) # Simulate a transaction being filled prior to the ex_date. txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.1, 0.1, 0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.10, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 1000, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 0, 0]) cash_pos = \ [event['cumulative_perf']['ending_cash'] for event in results] self.assertEqual(cash_pos, [9000, 9000, 10000, 10000, 10000]) def test_long_position_receives_stock_dividend(self): # post some trades in the market events = [] for sid in (1, 2): events.extend( factory.create_trade_history( sid, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env) ) dividend = factory.create_stock_dividend( 1, payment_sid=2, ratio=2, # declared date, when the algorithm finds out about # the dividend declared_date=events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend ex_date=events[1].dt, # pay date, when the algorithm receives the dividend. pay_date=events[2].dt ) txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.2, 0.2, 0.2]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.2, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000] * 5) cash_pos = \ [event['cumulative_perf']['ending_cash'] for event in results] self.assertEqual(cash_pos, [9000] * 5) def test_long_position_purchased_on_ex_date_receives_no_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, # Declared date events[1].dt, # Exclusion date events[2].dt # Pay date ) # Simulate a transaction being filled on the ex_date. txns = [create_txn(events[1], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, -1000, -1000, -1000, -1000]) def test_selling_before_dividend_payment_still_gets_paid(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, # Declared date events[1].dt, # Exclusion date events[3].dt # Pay date ) buy_txn = create_txn(events[0], 10.0, 100) sell_txn = create_txn(events[2], 10.0, -100) txns = [buy_txn, sell_txn] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0.1, 0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0.1, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 1000, 1000, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, 0, 1000, 1000]) def test_buy_and_sell_before_ex(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10, 10], [100, 100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[3].dt, events[4].dt, events[5].dt ) buy_txn = create_txn(events[1], 10.0, 100) sell_txn = create_txn(events[2], 10.0, -100) txns = [buy_txn, sell_txn] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 6) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0, 0, 0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, -1000, 0, 0, 0, 0]) def test_ending_before_pay_date(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) pay_date = self.sim_params.first_open # find pay date that is much later. for i in range(30): pay_date = factory.get_next_trading_dt(pay_date, oneday, self.env) dividend = factory.create_dividend( 1, 10.00, events[0].dt, events[0].dt, pay_date ) txns = [create_txn(events[1], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0, 0, 0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0, 0, 0, 0, 0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, -1000, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual( cumulative_cash_flows, [0, -1000, -1000, -1000, -1000] ) def test_short_position_pays_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declare at open of test events[0].dt, # ex_date same as trade 2 events[2].dt, events[3].dt ) txns = [create_txn(events[1], 10.0, -100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, -0.1, -0.1]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, -0.1, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, 1000, 0, -1000, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, 1000, 1000, 0, 0]) def test_no_position_receives_no_dividend(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, events[0].dt, events[1].dt, events[2].dt ) results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [0, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [0, 0, 0, 0, 0]) def test_no_dividend_at_simulation_end(self): # post some trades in the market events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, self.sim_params, env=self.env ) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[-3].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[-2].dt, # pay date, when the algorithm receives the dividend. # This pays out on the day after the last event self.env.next_trading_day(events[-1].dt) ) # Set the last day to be the last event self.sim_params.period_end = events[-1].dt self.sim_params.update_internal_from_env(self.env) # Simulate a transaction being filled prior to the ex_date. txns = [create_txn(events[0], 10.0, 100)] results = calculate_results( self.sim_params, self.env, self.benchmark_events, events, dividend_events=[dividend], txns=txns, ) self.assertEqual(len(results), 5) cumulative_returns = \ [event['cumulative_perf']['returns'] for event in results] self.assertEqual(cumulative_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) daily_returns = [event['daily_perf']['returns'] for event in results] self.assertEqual(daily_returns, [0.0, 0.0, 0.0, 0.0, 0.0]) cash_flows = [event['daily_perf']['capital_used'] for event in results] self.assertEqual(cash_flows, [-1000, 0, 0, 0, 0]) cumulative_cash_flows = \ [event['cumulative_perf']['capital_used'] for event in results] self.assertEqual(cumulative_cash_flows, [-1000, -1000, -1000, -1000, -1000]) class TestDividendPerformanceHolidayStyle(TestDividendPerformance): # The holiday tests begins the simulation on the day # before Thanksgiving, so that the next trading day is # two days ahead. Any tests that hard code events # to be start + oneday will fail, since those events will # be skipped by the simulation. def setUp(self): self.dt = datetime(2003, 11, 30, tzinfo=pytz.utc) self.end_dt = datetime(2004, 11, 25, tzinfo=pytz.utc) self.sim_params = SimulationParameters( self.dt, self.end_dt, env=self.env) self.sim_params.capital_base = 10e3 self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) class TestPositionPerformance(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2]) @classmethod def tearDownClass(cls): del cls.env def setUp(self): self.sim_params = create_simulation_parameters(num_days=4) self.finder = self.env.asset_finder self.benchmark_events = benchmark_events_in_range(self.sim_params, self.env) def test_long_short_positions(self): """ start with $1000 buy 100 stock1 shares at $10 sell short 100 stock2 shares at $10 stock1 then goes down to $9 stock2 goes to $11 """ trades_1 = factory.create_trade_history( 1, [10, 10, 10, 9], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) trades_2 = factory.create_trade_history( 2, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn1 = create_txn(trades_1[1], 10.0, 100) txn2 = create_txn(trades_2[1], 10.0, -100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn1) pp.handle_execution(txn1) pt.execute_transaction(txn2) pp.handle_execution(txn2) for trade in itertools.chain(trades_1[:-2], trades_2[:-2]): pt.update_last_sale(trade) pp.calculate_performance() check_perf_period( pp, gross_leverage=2.0, net_leverage=0.0, long_exposure=1000.0, longs_count=1, short_exposure=-1000.0, shorts_count=1) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=1000.0, equity_with_loan=1000.0, total_positions_value=0.0, regt_equity=1000.0, available_funds=1000.0, excess_liquidity=1000.0, cushion=1.0, leverage=2.0, net_leverage=0.0, net_liquidation=1000.0) # now simulate stock1 going to $9 pt.update_last_sale(trades_1[-1]) # and stock2 going to $11 pt.update_last_sale(trades_2[-1]) pp.calculate_performance() # Validate that the account attributes were updated. account = pp.as_account() check_perf_period( pp, gross_leverage=2.5, net_leverage=-0.25, long_exposure=900.0, longs_count=1, short_exposure=-1100.0, shorts_count=1) check_account(account, settled_cash=1000.0, equity_with_loan=800.0, total_positions_value=-200.0, regt_equity=1000.0, available_funds=1000.0, excess_liquidity=1000.0, cushion=1.25, leverage=2.5, net_leverage=-0.25, net_liquidation=800.0) def test_levered_long_position(self): """ start with $1,000, then buy 1000 shares at $10. price goes to $11 """ # post some trades in the market trades = factory.create_trade_history( 1, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn = create_txn(trades[1], 10.0, 1000) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) for trade in trades[:-2]: pt.update_last_sale(trade) pp.calculate_performance() check_perf_period( pp, gross_leverage=10.0, net_leverage=10.0, long_exposure=10000.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=-9000.0, equity_with_loan=1000.0, total_positions_value=10000.0, regt_equity=-9000.0, available_funds=-9000.0, excess_liquidity=-9000.0, cushion=-9.0, leverage=10.0, net_leverage=10.0, net_liquidation=1000.0) # now simulate a price jump to $11 pt.update_last_sale(trades[-1]) pp.calculate_performance() check_perf_period( pp, gross_leverage=5.5, net_leverage=5.5, long_exposure=11000.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=-9000.0, equity_with_loan=2000.0, total_positions_value=11000.0, regt_equity=-9000.0, available_funds=-9000.0, excess_liquidity=-9000.0, cushion=-4.5, leverage=5.5, net_leverage=5.5, net_liquidation=2000.0) def test_long_position(self): """ verify that the performance period calculates properly for a single buy transaction """ # post some trades in the market trades = factory.create_trade_history( 1, [10, 10, 10, 11], [100, 100, 100, 100], onesec, self.sim_params, env=self.env ) txn = create_txn(trades[1], 10.0, 100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) # This verifies that the last sale price is being correctly # set in the positions. If this is not the case then returns can # incorrectly show as sharply dipping if a transaction arrives # before a trade. This is caused by returns being based on holding # stocks with a last sale price of 0. self.assertEqual(pp.positions[1].last_sale_price, 10.0) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction \ cost of sole txn in test" ) self.assertEqual( len(pp.positions), 1, "should be just one position") self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security with id 1") self.assertEqual( pp.positions[1].amount, txn.amount, "should have a position of {sharecount} shares".format( sharecount=txn.amount ) ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades[-1]['price'], "last sale should be same as last trade. \ expected {exp} actual {act}".format( exp=trades[-1]['price'], act=pp.positions[1].last_sale_price) ) self.assertEqual( pp.ending_value, 1100, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual(pp.pnl, 100, "gain of 1 on 100 shares should be 100") check_perf_period( pp, gross_leverage=1.0, net_leverage=1.0, long_exposure=1100.0, longs_count=1, short_exposure=0.0, shorts_count=0) # Validate that the account attributes were updated. account = pp.as_account() check_account(account, settled_cash=0.0, equity_with_loan=1100.0, total_positions_value=1100.0, regt_equity=0.0, available_funds=0.0, excess_liquidity=0.0, cushion=0.0, leverage=1.0, net_leverage=1.0, net_liquidation=1100.0) def test_short_position(self): """verify that the performance period calculates properly for a \ single short-sale transaction""" trades = factory.create_trade_history( 1, [10, 10, 10, 11, 10, 9], [100, 100, 100, 100, 100, 100], onesec, self.sim_params, env=self.env ) trades_1 = trades[:-2] txn = create_txn(trades[1], 10.0, -100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(txn) pp.handle_execution(txn) for trade in trades_1: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction\ cost of sole txn in test" ) self.assertEqual( len(pp.positions), 1, "should be just one position") self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades_1[-1]['price'], "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, -1100, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual(pp.pnl, -100, "gain of 1 on 100 shares should be 100") # simulate additional trades, and ensure that the position value # reflects the new price trades_2 = trades[-2:] # simulate a rollover to a new period pp.rollover() for trade in trades_2: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.period_cash_flow, 0, "capital used should be zero, there were no transactions in \ performance period" ) self.assertEqual( len(pp.positions), 1, "should be just one position" ) self.assertEqual( pp.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( pp.positions[1].last_sale_price, trades_2[-1].price, "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, -900, "ending value should be price of last trade times number of \ shares in position") self.assertEqual( pp.pnl, 200, "drop of 2 on -100 shares should be 200" ) # now run a performance period encompassing the entire trade sample. ptTotal = perf.PositionTracker(self.env.asset_finder) ppTotal = perf.PerformancePeriod(1000.0, self.env.asset_finder) ppTotal.position_tracker = pt for trade in trades_1: ptTotal.update_last_sale(trade) ptTotal.execute_transaction(txn) ppTotal.handle_execution(txn) for trade in trades_2: ptTotal.update_last_sale(trade) ppTotal.calculate_performance() self.assertEqual( ppTotal.period_cash_flow, -1 * txn.price * txn.amount, "capital used should be equal to the opposite of the transaction \ cost of sole txn in test" ) self.assertEqual( len(ppTotal.positions), 1, "should be just one position" ) self.assertEqual( ppTotal.positions[1].sid, txn.sid, "position should be in security from the transaction" ) self.assertEqual( ppTotal.positions[1].amount, -100, "should have a position of -100 shares" ) self.assertEqual( ppTotal.positions[1].cost_basis, txn.price, "should have a cost basis of 10" ) self.assertEqual( ppTotal.positions[1].last_sale_price, trades_2[-1].price, "last sale should be price of last trade" ) self.assertEqual( ppTotal.ending_value, -900, "ending value should be price of last trade times number of \ shares in position") self.assertEqual( ppTotal.pnl, 100, "drop of 1 on -100 shares should be 100" ) check_perf_period( pp, gross_leverage=0.8181, net_leverage=-0.8181, long_exposure=0.0, longs_count=0, short_exposure=-900.0, shorts_count=1) # Validate that the account attributes. account = ppTotal.as_account() check_account(account, settled_cash=2000.0, equity_with_loan=1100.0, total_positions_value=-900.0, regt_equity=2000.0, available_funds=2000.0, excess_liquidity=2000.0, cushion=1.8181, leverage=0.8181, net_leverage=-0.8181, net_liquidation=1100.0) def test_covering_short(self): """verify performance where short is bought and covered, and shares \ trade after cover""" trades = factory.create_trade_history( 1, [10, 10, 10, 11, 9, 8, 7, 8, 9, 10], [100, 100, 100, 100, 100, 100, 100, 100, 100, 100], onesec, self.sim_params, env=self.env ) short_txn = create_txn( trades[1], 10.0, -100, ) cover_txn = create_txn(trades[6], 7.0, 100) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt pt.execute_transaction(short_txn) pp.handle_execution(short_txn) pt.execute_transaction(cover_txn) pp.handle_execution(cover_txn) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() short_txn_cost = short_txn.price * short_txn.amount cover_txn_cost = cover_txn.price * cover_txn.amount self.assertEqual( pp.period_cash_flow, -1 * short_txn_cost - cover_txn_cost, "capital used should be equal to the net transaction costs" ) self.assertEqual( len(pp.positions), 1, "should be just one position" ) self.assertEqual( pp.positions[1].sid, short_txn.sid, "position should be in security from the transaction" ) self.assertEqual( pp.positions[1].amount, 0, "should have a position of -100 shares" ) self.assertEqual( pp.positions[1].cost_basis, 0, "a covered position should have a cost basis of 0" ) self.assertEqual( pp.positions[1].last_sale_price, trades[-1].price, "last sale should be price of last trade" ) self.assertEqual( pp.ending_value, 0, "ending value should be price of last trade times number of \ shares in position" ) self.assertEqual( pp.pnl, 300, "gain of 1 on 100 shares should be 300" ) check_perf_period( pp, gross_leverage=0.0, net_leverage=0.0, long_exposure=0.0, longs_count=0, short_exposure=0.0, shorts_count=0) account = pp.as_account() check_account(account, settled_cash=1300.0, equity_with_loan=1300.0, total_positions_value=0.0, regt_equity=1300.0, available_funds=1300.0, excess_liquidity=1300.0, cushion=1.0, leverage=0.0, net_leverage=0.0, net_liquidation=1300.0) def test_cost_basis_calc(self): history_args = ( 1, [10, 11, 11, 12], [100, 100, 100, 100], onesec, self.sim_params, self.env ) trades = factory.create_trade_history(*history_args) transactions = factory.create_txn_history(*history_args) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt average_cost = 0 for i, txn in enumerate(transactions): pt.execute_transaction(txn) pp.handle_execution(txn) average_cost = (average_cost * i + txn.price) / (i + 1) self.assertEqual(pp.positions[1].cost_basis, average_cost) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual( pp.positions[1].last_sale_price, trades[-1].price, "should have a last sale of 12, got {val}".format( val=pp.positions[1].last_sale_price) ) self.assertEqual( pp.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual( pp.pnl, 400 ) down_tick = factory.create_trade( 1, 10.0, 100, trades[-1].dt + onesec) sale_txn = create_txn( down_tick, 10.0, -100) pp.rollover() pt.execute_transaction(sale_txn) pp.handle_execution(sale_txn) pt.update_last_sale(down_tick) pp.calculate_performance() self.assertEqual( pp.positions[1].last_sale_price, 10, "should have a last sale of 10, was {val}".format( val=pp.positions[1].last_sale_price) ) self.assertEqual( pp.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual(pp.pnl, -800, "this period goes from +400 to -400") pt3 = perf.PositionTracker(self.env.asset_finder) pp3 = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp3.position_tracker = pt3 average_cost = 0 for i, txn in enumerate(transactions): pt3.execute_transaction(txn) pp3.handle_execution(txn) average_cost = (average_cost * i + txn.price) / (i + 1) self.assertEqual(pp3.positions[1].cost_basis, average_cost) pt3.execute_transaction(sale_txn) pp3.handle_execution(sale_txn) trades.append(down_tick) for trade in trades: pt3.update_last_sale(trade) pp3.calculate_performance() self.assertEqual( pp3.positions[1].last_sale_price, 10, "should have a last sale of 10" ) self.assertEqual( pp3.positions[1].cost_basis, 11, "should have a cost basis of 11" ) self.assertEqual( pp3.pnl, -400, "should be -400 for all trades and transactions in period" ) def test_cost_basis_calc_close_pos(self): history_args = ( 1, [10, 9, 11, 8, 9, 12, 13, 14], [200, -100, -100, 100, -300, 100, 500, 400], onesec, self.sim_params, self.env ) cost_bases = [10, 10, 0, 8, 9, 9, 13, 13.5] trades = factory.create_trade_history(*history_args) transactions = factory.create_txn_history(*history_args) pt = perf.PositionTracker(self.env.asset_finder) pp = perf.PerformancePeriod(1000.0, self.env.asset_finder) pp.position_tracker = pt for txn, cb in zip(transactions, cost_bases): pt.execute_transaction(txn) pp.handle_execution(txn) self.assertEqual(pp.positions[1].cost_basis, cb) for trade in trades: pt.update_last_sale(trade) pp.calculate_performance() self.assertEqual(pp.positions[1].cost_basis, cost_bases[-1]) class TestPerformanceTracker(unittest.TestCase): @classmethod def setUpClass(cls): cls.env = TradingEnvironment() cls.env.write_data(equities_identifiers=[1, 2, 133, 134]) @classmethod def tearDownClass(cls): del cls.env NumDaysToDelete = collections.namedtuple( 'NumDaysToDelete', ('start', 'middle', 'end')) @parameterized.expand([ ("Don't delete any events", NumDaysToDelete(start=0, middle=0, end=0)), ("Delete first day of events", NumDaysToDelete(start=1, middle=0, end=0)), ("Delete first two days of events", NumDaysToDelete(start=2, middle=0, end=0)), ("Delete one day of events from the middle", NumDaysToDelete(start=0, middle=1, end=0)), ("Delete two events from the middle", NumDaysToDelete(start=0, middle=2, end=0)), ("Delete last day of events", NumDaysToDelete(start=0, middle=0, end=1)), ("Delete last two days of events", NumDaysToDelete(start=0, middle=0, end=2)), ("Delete all but one event.", NumDaysToDelete(start=2, middle=1, end=2)), ]) def test_tracker(self, parameter_comment, days_to_delete): """ @days_to_delete - configures which days in the data set we should remove, used for ensuring that we still return performance messages even when there is no data. """ # This date range covers Columbus day, # however Columbus day is not a market holiday # # October 2008 # Su Mo Tu We Th Fr Sa # 1 2 3 4 # 5 6 7 8 9 10 11 # 12 13 14 15 16 17 18 # 19 20 21 22 23 24 25 # 26 27 28 29 30 31 start_dt = datetime(year=2008, month=10, day=9, tzinfo=pytz.utc) end_dt = datetime(year=2008, month=10, day=16, tzinfo=pytz.utc) trade_count = 6 sid = 133 price = 10.1 price_list = [price] * trade_count volume = [100] * trade_count trade_time_increment = timedelta(days=1) sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, env=self.env, ) benchmark_events = benchmark_events_in_range(sim_params, self.env) trade_history = factory.create_trade_history( sid, price_list, volume, trade_time_increment, sim_params, source_id="factory1", env=self.env ) sid2 = 134 price2 = 12.12 price2_list = [price2] * trade_count trade_history2 = factory.create_trade_history( sid2, price2_list, volume, trade_time_increment, sim_params, source_id="factory2", env=self.env ) # 'middle' start of 3 depends on number of days == 7 middle = 3 # First delete from middle if days_to_delete.middle: del trade_history[middle:(middle + days_to_delete.middle)] del trade_history2[middle:(middle + days_to_delete.middle)] # Delete start if days_to_delete.start: del trade_history[:days_to_delete.start] del trade_history2[:days_to_delete.start] # Delete from end if days_to_delete.end: del trade_history[-days_to_delete.end:] del trade_history2[-days_to_delete.end:] sim_params.capital_base = 1000.0 sim_params.frame_index = [ 'sid', 'volume', 'dt', 'price', 'changed'] perf_tracker = perf.PerformanceTracker( sim_params, self.env ) events = date_sorted_sources(trade_history, trade_history2) events = [event for event in self.trades_with_txns(events, trade_history[0].dt)] # Extract events with transactions to use for verification. txns = [event for event in events if event.type == zp.DATASOURCE_TYPE.TRANSACTION] orders = [event for event in events if event.type == zp.DATASOURCE_TYPE.ORDER] all_events = date_sorted_sources(events, benchmark_events) filtered_events = [filt_event for filt_event in all_events if filt_event.dt <= end_dt] filtered_events.sort(key=lambda x: x.dt) grouped_events = itertools.groupby(filtered_events, lambda x: x.dt) perf_messages = [] for date, group in grouped_events: for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: perf_tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.ORDER: perf_tracker.process_order(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: perf_tracker.process_benchmark(event) elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: perf_tracker.process_transaction(event) msg = perf_tracker.handle_market_close_daily() perf_messages.append(msg) self.assertEqual(perf_tracker.txn_count, len(txns)) self.assertEqual(perf_tracker.txn_count, len(orders)) positions = perf_tracker.cumulative_performance.positions if len(txns) == 0: self.assertNotIn(sid, positions) else: expected_size = len(txns) / 2 * -25 cumulative_pos = positions[sid] self.assertEqual(cumulative_pos.amount, expected_size) self.assertEqual(len(perf_messages), sim_params.days_in_period) check_perf_tracker_serialization(perf_tracker) def trades_with_txns(self, events, no_txn_dt): for event in events: # create a transaction for all but # first trade in each sid, to simulate None transaction if event.dt != no_txn_dt: order = Order( sid=event.sid, amount=-25, dt=event.dt ) order.source_id = 'MockOrderSource' yield order yield event txn = Transaction( sid=event.sid, amount=-25, dt=event.dt, price=10.0, commission=0.50, order_id=order.id ) txn.source_id = 'MockTransactionSource' yield txn else: yield event def test_minute_tracker(self): """ Tests minute performance tracking.""" start_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 9, 31)) end_dt = self.env.exchange_dt_in_utc(datetime(2013, 3, 1, 16, 0)) foosid = 1 barsid = 2 sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, emission_rate='minute', env=self.env, ) tracker = perf.PerformanceTracker(sim_params, env=self.env) foo_event_1 = factory.create_trade(foosid, 10.0, 20, start_dt) order_event_1 = Order(sid=foo_event_1.sid, amount=-25, dt=foo_event_1.dt) bar_event_1 = factory.create_trade(barsid, 100.0, 200, start_dt) txn_event_1 = Transaction(sid=foo_event_1.sid, amount=-25, dt=foo_event_1.dt, price=10.0, commission=0.50, order_id=order_event_1.id) benchmark_event_1 = Event({ 'dt': start_dt, 'returns': 0.01, 'type': zp.DATASOURCE_TYPE.BENCHMARK }) foo_event_2 = factory.create_trade( foosid, 11.0, 20, start_dt + timedelta(minutes=1)) bar_event_2 = factory.create_trade( barsid, 11.0, 20, start_dt + timedelta(minutes=1)) benchmark_event_2 = Event({ 'dt': start_dt + timedelta(minutes=1), 'returns': 0.02, 'type': zp.DATASOURCE_TYPE.BENCHMARK }) events = [ foo_event_1, order_event_1, benchmark_event_1, txn_event_1, bar_event_1, foo_event_2, benchmark_event_2, bar_event_2, ] grouped_events = itertools.groupby( events, operator.attrgetter('dt')) messages = {} for date, group in grouped_events: tracker.set_date(date) for event in group: if event.type == zp.DATASOURCE_TYPE.TRADE: tracker.process_trade(event) elif event.type == zp.DATASOURCE_TYPE.BENCHMARK: tracker.process_benchmark(event) elif event.type == zp.DATASOURCE_TYPE.ORDER: tracker.process_order(event) elif event.type == zp.DATASOURCE_TYPE.TRANSACTION: tracker.process_transaction(event) msg, _ = tracker.handle_minute_close(date) messages[date] = msg self.assertEquals(2, len(messages)) msg_1 = messages[foo_event_1.dt] msg_2 = messages[foo_event_2.dt] self.assertEquals(1, len(msg_1['minute_perf']['transactions']), "The first message should contain one " "transaction.") # Check that transactions aren't emitted for previous events. self.assertEquals(0, len(msg_2['minute_perf']['transactions']), "The second message should have no " "transactions.") self.assertEquals(1, len(msg_1['minute_perf']['orders']), "The first message should contain one orders.") # Check that orders aren't emitted for previous events. self.assertEquals(0, len(msg_2['minute_perf']['orders']), "The second message should have no orders.") # Ensure that period_close moves through time. # Also, ensure that the period_closes are the expected dts. self.assertEquals(foo_event_1.dt, msg_1['minute_perf']['period_close']) self.assertEquals(foo_event_2.dt, msg_2['minute_perf']['period_close']) # In this test event1 transactions arrive on the first bar. # This leads to no returns as the price is constant. # Sharpe ratio cannot be computed and is None. # In the second bar we can start establishing a sharpe ratio. self.assertIsNone(msg_1['cumulative_risk_metrics']['sharpe']) self.assertIsNotNone(msg_2['cumulative_risk_metrics']['sharpe']) check_perf_tracker_serialization(tracker) def test_close_position_event(self): pt = perf.PositionTracker(asset_finder=self.env.asset_finder) dt = pd.Timestamp("1984/03/06 3:00PM") pos1 = perf.Position(1, amount=np.float64(120.0), last_sale_date=dt, last_sale_price=3.4) pos2 = perf.Position(2, amount=np.float64(-100.0), last_sale_date=dt, last_sale_price=3.4) pt.update_positions({1: pos1, 2: pos2}) event_type = DATASOURCE_TYPE.CLOSE_POSITION index = [dt + timedelta(days=1)] pan = pd.Panel({1: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index), 2: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index), 3: pd.DataFrame({'price': 1, 'volume': 0, 'type': event_type}, index=index)}) source = DataPanelSource(pan) for i, event in enumerate(source): txn = pt.maybe_create_close_position_transaction(event) if event.sid == 1: # Test owned long self.assertEqual(-120, txn.amount) elif event.sid == 2: # Test owned short self.assertEqual(100, txn.amount) elif event.sid == 3: # Test not-owned SID self.assertIsNone(txn) def test_handle_sid_removed_from_universe(self): # post some trades in the market sim_params = create_simulation_parameters(num_days=5) events = factory.create_trade_history( 1, [10, 10, 10, 10, 10], [100, 100, 100, 100, 100], oneday, sim_params, env=self.env ) # Create a tracker and a dividend perf_tracker = perf.PerformanceTracker(sim_params, env=self.env) dividend = factory.create_dividend( 1, 10.00, # declared date, when the algorithm finds out about # the dividend events[0].dt, # ex_date, the date before which the algorithm must hold stock # to receive the dividend events[1].dt, # pay date, when the algorithm receives the dividend. events[2].dt ) dividend_frame = pd.DataFrame( [dividend.to_series(index=zp.DIVIDEND_FIELDS)], ) perf_tracker.update_dividends(dividend_frame) # Ensure that the dividend is in the tracker self.assertIn(1, perf_tracker.dividend_frame['sid'].values) # Inform the tracker that sid 1 has been removed from the universe perf_tracker.handle_sid_removed_from_universe(1) # Ensure that the dividend for sid 1 has been removed from dividend # frame self.assertNotIn(1, perf_tracker.dividend_frame['sid'].values) def test_serialization(self): start_dt = datetime(year=2008, month=10, day=9, tzinfo=pytz.utc) end_dt = datetime(year=2008, month=10, day=16, tzinfo=pytz.utc) sim_params = SimulationParameters( period_start=start_dt, period_end=end_dt, env=self.env, ) perf_tracker = perf.PerformanceTracker( sim_params, env=self.env ) check_perf_tracker_serialization(perf_tracker) class TestPosition(unittest.TestCase): def setUp(self): pass def test_serialization(self): dt =
pd.Timestamp("1984/03/06 3:00PM")
pandas.Timestamp
import time from collections import Counter import warnings; warnings.filterwarnings('ignore') import numpy as np import random import pandas as pd import matplotlib.pyplot as plt from algorithms import ShapeletTransformer from extractors.extractor import MultiGeneticExtractor from data.load_all_datasets import load_data_train_test from sklearn.metrics import accuracy_score, log_loss from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from tslearn.shapelets import ShapeletModel def grabocka_params_to_shapelet_size_dict(n_ts, ts_sz, n_shapelets, l, r): base_size = int(l * ts_sz) d = {} for sz_idx in range(r): shp_sz = base_size * (sz_idx + 1) d[shp_sz] = n_shapelets return d np.random.seed(1337) random.seed(1337) TRAIN_PATH = 'data/partitioned/MoteStrain/MoteStrain_train.csv' TEST_PATH = 'data/partitioned/MoteStrain/MoteStrain_test.csv' # Load the training and testing dataset (features + label vector) train_df = pd.read_csv(TRAIN_PATH) test_df = pd.read_csv(TEST_PATH) X_train = train_df.drop('target', axis=1).values y_train = train_df['target'] X_test = test_df.drop('target', axis=1).values y_test = test_df['target'] map_dict = {} for j, c in enumerate(np.unique(y_train)): map_dict[c] = j y_train = y_train.map(map_dict) y_test = y_test.map(map_dict) print(set(y_train), set(y_test)) y_train = y_train.values y_test = y_test.values nr_shap, l, r, reg, max_it = 0.05, 0.075, 2, 0.01, 5000 measurements = [] for _nr_shap in np.arange(0.05, 0.55, 0.05): shapelet_dict = grabocka_params_to_shapelet_size_dict( X_train.shape[0], X_train.shape[1], int(_nr_shap*X_train.shape[1]), l, r ) clf = ShapeletModel(n_shapelets_per_size=shapelet_dict, max_iter=max_it, verbose_level=0, batch_size=8, optimizer='sgd', weight_regularizer=reg) start = time.time() clf.fit( np.reshape( X_train, (X_train.shape[0], X_train.shape[1], 1) ), y_train ) learning_time = time.time() - start X_distances_train = clf.transform(X_train) X_distances_test = clf.transform(X_test) lr = GridSearchCV(LogisticRegression(), {'penalty': ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1.0, 10.0]}) lr.fit(X_distances_train, y_train) print('[K]', _nr_shap, accuracy_score(y_test, lr.predict(X_distances_test))) measurements.append([_nr_shap, accuracy_score(y_test, lr.predict(X_distances_test))]) plt.figure() plt.plot([x[0] for x in measurements], [x[1] for x in measurements]) plt.title('Sensitive of LTS on hyper-parameter K') plt.show() measurements_df = pd.DataFrame(measurements, columns=['nr_shap', 'accuracy']) measurements_df.to_csv('lts_param_K.csv') measurements = [] for _l in np.arange(0.075, 0.4, 0.075): shapelet_dict = grabocka_params_to_shapelet_size_dict( X_train.shape[0], X_train.shape[1], int(nr_shap*X_train.shape[1]), _l, r ) clf = ShapeletModel(n_shapelets_per_size=shapelet_dict, max_iter=max_it, verbose_level=0, batch_size=8, optimizer='sgd', weight_regularizer=reg) start = time.time() clf.fit( np.reshape( X_train, (X_train.shape[0], X_train.shape[1], 1) ), y_train ) learning_time = time.time() - start X_distances_train = clf.transform(X_train) X_distances_test = clf.transform(X_test) lr = GridSearchCV(LogisticRegression(), {'penalty': ['l1', 'l2'], 'C': [0.001, 0.01, 0.1, 1.0, 10.0]}) lr.fit(X_distances_train, y_train) print('[L', _l, accuracy_score(y_test, lr.predict(X_distances_test))) measurements.append([_l, accuracy_score(y_test, lr.predict(X_distances_test))]) plt.figure() plt.plot([x[0] for x in measurements], [x[1] for x in measurements]) plt.title('Sensitive of LTS on hyper-parameter L (ItalyPowerDemand)') plt.show() measurements_df =
pd.DataFrame(measurements, columns=['l', 'accuracy'])
pandas.DataFrame
import pandas as pd from sodapy import Socrata import datetime import definitions # global variables for main data: hhs_data, test_data, nyt_data_us, nyt_data_state, max_hosp_date = [],[],[],[],[] """ get_data() Fetches data from API, filters, cleans, and combines with provisional. After running, global variables are filled for use in subsequent functions """ def get_data(): global nyt_data_us global nyt_data_state global test_data global hhs_data global max_hosp_date nyt_data_us = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us.csv") nyt_data_state = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19-data/master/rolling-averages/us-states.csv") client = Socrata("healthdata.gov", None) results = client.get("g62h-syeh", limit=2000000) test_results = client.get("j8mb-icvb", limit=2000000) print("LOG: Fetched all raw data") # Filter data to get columns of interest hhs_data = pd.DataFrame.from_records(results)[['state', 'date', 'inpatient_beds_used_covid']] hhs_data.inpatient_beds_used_covid = hhs_data.inpatient_beds_used_covid.fillna(0) hhs_data = hhs_data.astype({'inpatient_beds_used_covid': 'int32'}) test_data = pd.DataFrame.from_records(test_results)[['state', 'date', 'overall_outcome', 'new_results_reported']] test_data.new_results_reported = test_data.new_results_reported.fillna(0) test_data = test_data.astype({'new_results_reported': 'int32'}) print("LOG: Filtered Data") # For provisional data, gets days since most recent update of HHS time series max_date = hhs_data.date.max() max_hosp_date = max_date provisional = client.get("4cnb-m4rz", limit=2000000, where=f"update_date > '{max_date}'") hhs_provisional = pd.DataFrame.from_records(provisional)[['update_date', 'archive_link']] hhs_provisional.update_date = hhs_provisional.update_date.apply(lambda x: x[:10]) hhs_provisional.update_date = pd.to_datetime(hhs_provisional.update_date) # Gets last archive of every day group = hhs_provisional.groupby(['update_date']) hhs_provisional = group.last() # Add provisional data to HHS data frames = [] for a in hhs_provisional.iterrows(): date = a[0] url = a[1].item()['url'] df = pd.read_csv(url)[['state', 'inpatient_beds_used_covid']] df['date']=date if date > pd.Timestamp(max_date): # Avoids double counting if provisional update came after real update frames.append(df) frames.append(hhs_data) hhs_data = (pd.concat(frames)) print("LOG: Added HHS Provisional data") # Make date columns in proper format # hhs_data.date = hhs_data.date.apply(lambda x: x[:10]) hhs_data.date= pd.to_datetime(hhs_data.date) # hhs_data.to_csv("../data/hospitalizations.csv") print("LOG: Wrote HHS data to CSV") test_data.date = test_data.date.apply(lambda x: x[:10]) test_data.date = pd.to_datetime(test_data.date) nyt_data_us.date = pd.to_datetime(nyt_data_us.date) nyt_data_state.date = pd.to_datetime(nyt_data_state.date) print("LOG: Done getting data") """ get_state_cases Creates dataframe of time series date and cases for given state inputs: state_codes: List of 2-letter codes of states to query start_date (pd.Timestamp): starting date, defaults to 1-1-2020 end_date (pd.Timestamp): ending date, defaults to today returns: df with 'date' and 'test_positivity' """ def get_state_cases(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today(), normalize=True): curr_date = start_date input_states = [definitions.states[s] for s in state_codes] state_data = nyt_data_state[nyt_data_state.state.isin(input_states)][:] max_date = state_data.date.max() states_population = sum([definitions.populations[s] for s in input_states]) lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = state_data[state_data.date == str(curr_date)] if normalize: case_sum = day_data.cases.sum() / states_population * 1000000 else: case_sum = day_data.cases.sum() newRow = {'date': curr_date, 'cases': case_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) def get_us_cases(start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today()): us_data = nyt_data_us[(nyt_data_us.date >= start_date) & (nyt_data_us.date <= end_date)] return us_data[['date', 'cases']] """ get_state_deaths Same as above, deaths """ def get_state_deaths(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today(), normalize=True): curr_date = start_date input_states = [definitions.states[s] for s in state_codes] state_data = nyt_data_state[nyt_data_state.state.isin(input_states)] max_date = state_data.date.max() states_population = sum([definitions.populations[s] for s in input_states]) lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = state_data[state_data.date == str(curr_date)] if normalize: case_sum = day_data.deaths.sum() / states_population * 1000000 else: case_sum = day_data.deaths.sum() newRow = {'date': curr_date, 'deaths': case_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) def get_us_deaths(start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today()): us_data = nyt_data_us[(nyt_data_us.date >= start_date) & (nyt_data_us.date <= end_date)] return us_data[['date', 'deaths']] """ get_state_hospitalizations Same as above, hospitalizations """ def get_state_hospitalizations(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today(), normalize=True): curr_date = start_date state_data = hhs_data[hhs_data.state.isin(state_codes)] input_states = [definitions.states[s] for s in state_codes] max_date = state_data.date.max() states_population = sum([definitions.populations[s] for s in input_states]) lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = state_data[state_data.date == str(curr_date)] if normalize: hosp_sum = day_data.inpatient_beds_used_covid.sum() / states_population * 1000000 else: hosp_sum = day_data.inpatient_beds_used_covid.sum() newRow = {'date': curr_date, 'hospitalizations': hosp_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) """ get_us_hospitalizations Same as above, hospitalizations """ def get_us_hospitalizations(start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today()): curr_date = start_date max_date = hhs_data.date.max() lst = [] while(curr_date <= end_date and curr_date <= max_date): day_data = hhs_data[hhs_data.date == str(curr_date)] hosp_sum = day_data.inpatient_beds_used_covid.sum() newRow = {'date': curr_date, 'inpatient_beds_used_covid': hosp_sum} lst.append(newRow) curr_date += datetime.timedelta(1) return pd.DataFrame(lst) """ get_state_positivity Creates dataframe of time series date and test positivity for given state inputs: state_code: list of 2-letter codes of states start_date (pd.Timestamp): starting date, defaults to 1-1-2020 end_date (pd.Timestamp): ending date, defaults to today returns: df with 'date' and 'test_positivity' """ def get_state_positivity(state_codes, start_date = pd.Timestamp(2020,1,1), end_date = pd.Timestamp.today()): test_data_state = test_data[test_data.state.isin(state_codes)] # Get only data from input State max_date = test_data_state.date.max() curr_date = start_date lst = [] while(curr_date <= end_date and curr_date <= max_date): # Loop through all unique dates day_data = test_data_state[test_data_state.date == str(curr_date)] test_pos = day_data[day_data.overall_outcome == "Positive"].new_results_reported # Get num positive tests test_pos = test_pos.sum() if test_pos.any() else 0 # Extract number if exists test_neg = day_data[day_data.overall_outcome == "Negative"].new_results_reported # Get num negative tests test_neg = test_neg.sum() if test_neg.any() else 0 # Extract number if exists if(test_pos == 0 and test_neg == 0): test_pct = 0 # Fixes divide by zero issue else: test_pct = test_pos/ (test_pos + test_neg) * 100 newRow = {"date": curr_date, "test_positivity": test_pct, "positive_tests" : test_pos, "negative_tests" : test_neg} lst.append(newRow) curr_date += datetime.timedelta(1) df = pd.DataFrame(lst) # Create dataframe with all dates and test positivity a = df.rolling(7).sum() df['avg'] = a.apply(lambda x: (100* (x.positive_tests / (x.positive_tests + x.negative_tests))) if (x.positive_tests + x.negative_tests) > 0 else None, axis=1) return df """ get_us_positivity Constructs a data table of the entire US test positivity start_date (datetime.date) : Starting date of table end_date (datetime.date) : Ending date of table returns: dataframe with date, test positivity """ def get_us_positivity(start_date = pd.Timestamp(2020,1,1), end_date =
pd.Timestamp.today()
pandas.Timestamp.today
#%% import pandas as pd import glob import numpy as np import math #%% def parse_single(year): PUS_start = pd.DataFrame() useful_cols = [ "WAGP", "SEX", "AGEP", "DECADE", "RAC2P", "RAC1P", "SCHL", "WKW", "WKHP", "OCCP", "POWSP", "ST", "HISP", ] path = "data/data_raw/%s" % year PUS_start = pd.concat( [pd.read_csv(f, usecols=useful_cols) for f in glob.glob(path + "/*.csv")], ignore_index=True, ) return PUS_start def mapping_features(df): # entry date df["RACE"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else y if y <= 58 else "Hispanic" if y == 70 else np.nan ) df["DECADE"] = df["DECADE"].replace(np.nan, 0) df["DECADE"] = df["DECADE"].map( lambda y: "Born in US" if y == 0 else "Before 1950" if y == 1 else "1950 - 1959" if y == 2 else "1960 - 1969" if y == 3 else "1970 - 1979" if y == 4 else "1980 - 1989" if y == 5 else "1990 - 1999" if y == 6 else "2000 - 2009" if y == 7 else "2010 or later" if y == 8 else np.nan ) # Race df["RAC2P"] = np.where(df["HISP"] == 1, df["RAC2P"], 70) df["RACE"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else y if y <= 58 else "Hispanic" if y == 70 else np.nan ) df["RAC2P"] = np.where(df["HISP"] == 1, df["RAC2P"], 70) df["RACE2"] = df["RAC2P"].map( lambda y: "White" if y == 1 else "Black" if y == 2 else "American Indian" if y <= 29 else "Native Alaskan" if y <= 37 else "Asian" if y <= 58 else "Hispanic" if y == 70 else np.nan ) # Sex df["SEX"] = df["SEX"].map( lambda y: "Male" if y == 1 else "Female" if y == 2 else "na" ) # AGE df["AGE"] = df["AGEP"].map( lambda y: "0-17" if y <= 18 else "18-24" if y <= 24 else "25-54" if y <= 54 else "55-64" if y <= 64 else "65+" ) # Education df["EDU"] = df["SCHL"].map( lambda y: "No_Highschool" if y <= 15 else "Highschool" if y <= 17 else "Some_College" if y <= 19 else "Some_College" if y == 20 else "B.S._Degree" if y == 21 else "M.S._Degree" if y == 22 else "PhD_or_Prof" if y <= 24 else np.nan ) # Occupation df["JOB"] = df["OCCP"].map( lambda y: "Business" if y <= 960 else "Science" if y <= 1980 else "Art" if y <= 2970 else "Healthcare" if y <= 3550 else "Services" if y <= 4655 else "Sales" if y <= 5940 else "Maintenance" if y <= 7640 else "Production" if y <= 8990 else "Transport" if y <= 9760 else "Military" if y <= 9830 else np.nan ) return df # %% df_raw = parse_single(2018) #%% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE", "DECADE"] agg_df = df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result["% Total Pop"] = result["ST"] / result["ST"].sum() asian_result = result.dropna() asian_result["% Asian Pop"] = asian_result["ST"] / asian_result["ST"].sum() recomb_df = pd.DataFrame() for race in asian_result["Asian"].unique(): subset_df = asian_result[asian_result["Asian"] == race] subset_df = asian_result[asian_result["Asian"] == race] asian_result.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df = pd.concat([recomb_df, subset_df]) def panda_strip(x): r = [] for y in x: if isinstance(y, str): y = y.strip() r.append(y) return pd.Series(r) recomb_df = recomb_df.apply(lambda x: panda_strip(x)) recomb_df[["Asian"]] = recomb_df[["Asian"]].apply(lambda x: x.str.split().str[0]) wide_format = recomb_df.pivot( index="Asian", columns="DECADE", values="% Race Pop" ).reset_index() wide_format = wide_format[ [ "Asian", "Born in US", "Before 1950", "1950 - 1959", "1960 - 1969", "1970 - 1979", "1980 - 1989", "1990 - 1999", "2000 - 2009", "2010 or later", ] ] wide_format["% Immigrated"] = 1 - wide_format["Born in US"] wide_format = wide_format.rename(columns={"Asian": "RACE2"}) wide_format = wide_format.replace(np.nan, 0) wide_format.to_csv("data/data_output/imm_output.csv") # %% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE2", "DECADE"] agg_df = df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] recomb_df2 = pd.DataFrame() for race in agg_df["RACE2"].unique(): subset_df = agg_df[agg_df["RACE2"] == race] subset_df.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df2 = pd.concat([recomb_df2, subset_df]) wide_format2 = recomb_df2.pivot( index="RACE2", columns="DECADE", values="% Race Pop" ).reset_index() wide_format2 = wide_format2[ [ "RACE2", "Born in US", "Before 1950", "1950 - 1959", "1960 - 1969", "1970 - 1979", "1980 - 1989", "1990 - 1999", "2000 - 2009", "2010 or later", ] ] wide_format2["% Immigrated"] = 1 - wide_format2["Born in US"] wide_format2.to_csv("data/data_output/imm_all_output.csv") wide_format_comb = pd.concat([wide_format, wide_format2]) for col in wide_format_comb: if col != "RACE2": wide_format_comb[col] = wide_format_comb[col].astype(float).map("{:.2%}".format) wide_format_comb.to_csv("data/data_output/imm_comb_output.csv") recomb_df = recomb_df.rename(columns={"Asian": "RACE2"}) recomb_df["% Race Pop"] = recomb_df["% Race Pop"].astype(float).map("{:.2%}".format) recomb_df2["% Race Pop"] = recomb_df2["% Race Pop"].astype(float).map("{:.2%}".format) recomb_full = pd.concat([recomb_df, recomb_df2]) recomb_full.to_csv("data/data_output/imm_long.csv") recomb_df.to_csv("data/data_output/imm_long1.csv") recomb_df2.to_csv("data/data_output/imm_long2.csv") #%% df_raw = parse_single(2018) df = mapping_features(df_raw) groupby_col = ["RACE", "EDU"] agg_df = df[df["AGE"] != "0-17"] agg_df = agg_df.groupby(groupby_col).count().reset_index() agg_df = agg_df.iloc[:, 0 : len(groupby_col) + 1] coding_df = pd.read_csv("data/data_raw/race_coding.csv") result = pd.merge(agg_df, coding_df, how="left", on="RACE") result["% Total Pop"] = result["ST"] / result["ST"].sum() asian_result = result.dropna() asian_result["% Asian Pop"] = asian_result["ST"] / asian_result["ST"].sum() recomb_df = pd.DataFrame() for race in asian_result["Asian"].unique(): subset_df = asian_result[asian_result["Asian"] == race] subset_df = asian_result[asian_result["Asian"] == race] asian_result.iloc[:, 1] != "na" subset_df["% Race Pop"] = subset_df["ST"] / subset_df["ST"].sum() recomb_df =
pd.concat([recomb_df, subset_df])
pandas.concat
import numpy as np from collections import defaultdict import gc import time from pandas import DataFrame from pandas.util.testing import rands import random N = 10000 indices = np.array([rands(10) for _ in xrange(N)], dtype='O') indices2 = np.array([
rands(10)
pandas.util.testing.rands
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 =
DataFrame({"a": [1, 2, 3]}, dtype="i8")
pandas.DataFrame
from __future__ import annotations from typing import Any, cast, Generator, Iterable, Optional, TYPE_CHECKING, Union import numpy as np import pandas as pd from pandas.core.frame import DataFrame from pandas.core.series import Series from tanuki.data_store.data_type import DataType from tanuki.data_store.index.index import Index from tanuki.data_store.index.pandas_index import PandasIndex from tanuki.database.data_token import DataToken from .data_backend import DataBackend, ILocIndexer, LocIndexer if TYPE_CHECKING: from tanuki.data_store.index.index_alias import IndexAlias from tanuki.data_store.query import Query class PandasBackend(DataBackend): _data: DataFrame _index: PandasIndex _loc: _LocIndexer _iloc: _ILocIndexer def __init__( self, data: Optional[Union(Series, DataFrame, dict[str, list])] = None, index: Optional[PandasIndex] = None, ) -> None: if data is None: self._data = DataFrame(dtype="object") elif type(data) is Series: self._data = cast(Series, data).to_frame().transpose() elif type(data) is DataFrame: self._data = DataFrame(data) elif type(data) is dict: sample_value = next(iter(data.values())) if not isinstance(sample_value, Iterable) or isinstance(sample_value, str): self._data = Series(data).to_frame().transpose() else: self._data =
DataFrame(data)
pandas.core.frame.DataFrame
import numpy as np import pandas as pd from numpy import nan from pvlib import modelchain, pvsystem from pvlib.modelchain import ModelChain from pvlib.pvsystem import PVSystem from pvlib.tracking import SingleAxisTracker from pvlib.location import Location from pandas.util.testing import assert_series_equal, assert_frame_equal import pytest from test_pvsystem import sam_data from conftest import requires_scipy @pytest.fixture def system(sam_data): modules = sam_data['sandiamod'] module_parameters = modules['Canadian_Solar_CS5P_220M___2009_'].copy() inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def cec_dc_snl_ac_system(sam_data): modules = sam_data['cecmod'] module_parameters = modules['Canadian_Solar_CS5P_220M'].copy() module_parameters['b'] = 0.05 module_parameters['EgRef'] = 1.121 module_parameters['dEgdT'] = -0.0002677 inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_snl_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverters = sam_data['cecinverter'] inverter = inverters['ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_'].copy() system = PVSystem(module_parameters=module_parameters, inverter_parameters=inverter) return system @pytest.fixture def pvwatts_dc_pvwatts_ac_system(sam_data): module_parameters = {'pdc0': 220, 'gamma_pdc': -0.003} inverter_parameters = {'eta_inv_nom': 0.95} system = PVSystem(module_parameters=module_parameters, inverter_parameters=inverter_parameters) return system @pytest.fixture() def location(): return Location(32.2, -111, altitude=700) def test_ModelChain_creation(system, location): mc = ModelChain(system, location) def test_orientation_strategy(system, location): strategies = {} @pytest.mark.parametrize('strategy,expected', [ (None, (0, 180)), ('None', (0, 180)), ('flat', (0, 180)), ('south_at_latitude_tilt', (32.2, 180)) ]) def test_orientation_strategy(strategy, expected, system, location): mc = ModelChain(system, location, orientation_strategy=strategy) # the || accounts for the coercion of 'None' to None assert (mc.orientation_strategy == strategy or mc.orientation_strategy is None) assert system.surface_tilt == expected[0] assert system.surface_azimuth == expected[1] @requires_scipy def test_run_model(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([ 1.82033564e+02, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) def test_run_model_with_irradiance(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, irradiance=irradiance).ac expected = pd.Series(np.array([ 1.90054749e+02, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_perez(system, location): mc = ModelChain(system, location, transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, irradiance=irradiance).ac expected = pd.Series(np.array([ 190.194545796, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) def test_run_model_gueymard_perez(system, location): mc = ModelChain(system, location, airmass_model='gueymard1993', transposition_model='perez') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') irradiance = pd.DataFrame({'dni':900, 'ghi':600, 'dhi':150}, index=times) ac = mc.run_model(times, irradiance=irradiance).ac expected = pd.Series(np.array([ 190.194760203, -2.00000000e-02]), index=times) assert_series_equal(ac, expected) @requires_scipy def test_run_model_with_weather(system, location): mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') weather = pd.DataFrame({'wind_speed':5, 'temp_air':10}, index=times) ac = mc.run_model(times, weather=weather).ac expected = pd.Series(np.array([ 1.99952400e+02, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) @requires_scipy def test_run_model_tracker(system, location): system = SingleAxisTracker(module_parameters=system.module_parameters, inverter_parameters=system.inverter_parameters) mc = ModelChain(system, location) times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array([ 121.421719, -2.00000000e-02]), index=times) assert_series_equal(ac, expected, check_less_precise=2) expected = pd.DataFrame(np. array([[ 54.82513187, 90. , 11.0039221 , 11.0039221 ], [ nan, 0. , 0. , nan]]), columns=['aoi', 'surface_azimuth', 'surface_tilt', 'tracker_theta'], index=times) assert_frame_equal(mc.tracking, expected, check_less_precise=2) def poadc(mc): mc.dc = mc.total_irrad['poa_global'] * 0.2 mc.dc.name = None # assert_series_equal will fail without this @requires_scipy @pytest.mark.parametrize('dc_model,expected', [ ('sapm', [180.13735116, -2.00000000e-02]), ('singlediode', [179.7178188, -2.00000000e-02]), ('pvwatts', [188.400994862, 0]), (poadc, [187.361841505, 0]) # user supplied function ]) def test_dc_models(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, dc_model, expected): dc_systems = {'sapm': system, 'singlediode': cec_dc_snl_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, poadc: pvwatts_dc_pvwatts_ac_system} system = dc_systems[dc_model] mc = ModelChain(system, location, dc_model=dc_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times) assert_series_equal(ac, expected, check_less_precise=2) def acdc(mc): mc.ac = mc.dc @requires_scipy @pytest.mark.parametrize('ac_model,expected', [ ('snlinverter', [180.13735116, -2.00000000e-02]), pytest.mark.xfail(raises=NotImplementedError) (('adrinverter', [179.7178188, -2.00000000e-02])), ('pvwatts', [188.400994862, 0]), (acdc, [198.11956073, 0]) # user supplied function ]) def test_ac_models(system, cec_dc_snl_ac_system, pvwatts_dc_pvwatts_ac_system, location, ac_model, expected): ac_systems = {'snlinverter': system, 'adrinverter': cec_dc_snl_ac_system, 'pvwatts': pvwatts_dc_pvwatts_ac_system, acdc: pvwatts_dc_pvwatts_ac_system} system = ac_systems[ac_model] mc = ModelChain(system, location, ac_model=ac_model, aoi_model='no_loss', spectral_model='no_loss') times = pd.date_range('20160101 1200-0700', periods=2, freq='6H') ac = mc.run_model(times).ac expected = pd.Series(np.array(expected), index=times)
assert_series_equal(ac, expected, check_less_precise=2)
pandas.util.testing.assert_series_equal
# Copyright 2017 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Data Commons Python Client API unit tests. Unit tests for core methods in the Data Commons Python Client API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from pandas.util.testing import assert_series_equal, assert_frame_equal from unittest import mock import datacommons as dc import datacommons.utils as utils import pandas as pd import json import unittest def post_request_mock(*args, **kwargs): """ A mock POST requests sent in the requests package. """ # Create the mock response object. class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code def json(self): return self.json_data # Get the request json req = kwargs['json'] headers = kwargs['headers'] # If the API key does not match, then return 403 Forbidden if 'x-api-key' not in headers or headers['x-api-key'] != 'TEST-API-KEY': return MockResponse({}, 403) # Mock responses for post requests to get_property_labels. if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_property_labels']: if req['dcids'] == ['geoId/0649670']: # Response for sending a single dcid to get_property_labels out_arcs = ['containedInPlace', 'name', 'geoId', 'typeOf'] res_json = json.dumps({ 'geoId/0649670': { 'inLabels': [], 'outLabels': out_arcs } }) return MockResponse({"payload": res_json}, 200) elif req['dcids'] == ['State', 'County', 'City']: # Response for sending multiple dcids to get_property_labels in_arcs = ['typeOf'] out_arcs = ['name', 'provenance', 'subClassOf', 'typeOf', 'url'] res_json = json.dumps({ 'City': {'inLabels': in_arcs, 'outLabels': out_arcs}, 'County': {'inLabels': in_arcs, 'outLabels': out_arcs}, 'State': {'inLabels': in_arcs, 'outLabels': out_arcs} }) return MockResponse({'payload': res_json}, 200) elif req['dcids'] == ['dc/MadDcid']: # Response for sending a dcid that doesn't exist to get_property_labels res_json = json.dumps({ 'dc/MadDcid': { 'inLabels': [], 'outLabels': [] } }) return MockResponse({'payload': res_json}, 200) elif req['dcids'] == []: # Response for sending no dcids to get_property_labels res_json = json.dumps({}) return MockResponse({'payload': res_json}, 200) # Mock responses for post requests to get_property_values if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_property_values']: if req['dcids'] == ['geoId/06085', 'geoId/24031']\ and req['property'] == 'containedInPlace'\ and req['value_type'] == 'Town': # Response for sending a request for getting Towns containedInPlace of # Santa Clara County and Montgomery County. res_json = json.dumps({ 'geoId/06085': { 'in': [ { 'dcid': 'geoId/0644112', 'name': 'Los Gatos', 'provenanceId': 'dc/sm3m2w3', 'types': [ 'City', 'Town' ] }, { 'dcid': 'geoId/0643294', 'name': '<NAME>', 'provenanceId': 'dc/sm3m2w3', 'types': [ 'City', 'Town' ] } ], 'out': [] }, 'geoId/24031': { 'in': [ { 'dcid': 'geoId/2462850', 'name': 'Poolesville', 'provenanceId': 'dc/sm3m2w3', 'types': [ 'City', 'Town' ] }, ], 'out': [] } }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['geoId/06085', 'geoId/24031']\ and req['property'] == 'name': # Response for sending a request for the name of multiple dcids. res_json = json.dumps({ 'geoId/06085': { 'in': [], 'out': [ { 'value': 'Santa Clara County', 'provenanceId': 'dc/sm3m2w3', }, ] }, 'geoId/24031': { 'in': [], 'out': [ { 'value': 'Montgomery County', 'provenanceId': 'dc/sm3m2w3', }, ] } }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['geoId/06085', 'geoId/24031']\ and req['property'] == 'madProperty': # Response for sending a request with a property that does not exist. res_json = json.dumps({ 'geoId/06085': { 'in': [], 'out': [] }, 'geoId/24031': { 'in': [], 'out': [] } }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['geoId/06085', 'dc/MadDcid']\ and req['property'] == 'containedInPlace': # Response for sending a request with a single dcid that does not exist. res_json = json.dumps({ 'geoId/06085': { 'in': [ { 'dcid': 'geoId/0644112', 'name': '<NAME>', 'provenanceId': 'dc/sm3m2w3', 'types': [ 'City', 'Town' ] }, ], 'out': [] }, 'dc/MadDcid': { 'in': [], 'out': [] } }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['dc/MadDcid', 'dc/MadderDcid']: # Response for sending a request where both dcids do not exist. res_json = json.dumps({ 'dc/MadDcid': { 'in': [], 'out': [] }, 'dc/MadderDcid': { 'in': [], 'out': [] } }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == [] and req['property'] == 'containedInPlace': # Response for sending a request where no dcids are given. res_json = json.dumps({}) return MockResponse({'payload': res_json}, 200) # Mock responses for post requests to get_triples if args[0] == utils._API_ROOT + utils._API_ENDPOINTS['get_triples']: if req['dcids'] == ['geoId/06085', 'geoId/24031']: # Response for sending a request with two valid dcids. res_json = json.dumps({ 'geoId/06085': [ { "subjectId": "geoId/06085", "predicate": "name", "objectValue": "Santa Clara County" }, { "subjectId": "geoId/0649670", "subjectName": "Mountain View", "subjectTypes": [ "City" ], "predicate": "containedInPlace", "objectId": "geoId/06085", "objectName": "Santa Clara County" }, { "subjectId": "geoId/06085", "predicate": "containedInPlace", "objectId": "geoId/06", "objectName": "California" }, ], 'geoId/24031': [ { "subjectId": "geoId/24031", "predicate": "name", "objectValue": "Montgomery County" }, { "subjectId": "geoId/2467675", "subjectName": "Rockville", "subjectTypes": [ "City" ], "predicate": "containedInPlace", "objectId": "geoId/24031", "objectName": "Montgomery County" }, { "subjectId": "geoId/24031", "predicate": "containedInPlace", "objectId": "geoId/24", "objectName": "Maryland" }, ] }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['geoId/06085', 'dc/MadDcid']: # Response for sending a request where one dcid does not exist. res_json = json.dumps({ 'geoId/06085': [ { "subjectId": "geoId/06085", "predicate": "name", "objectValue": "Santa Clara County" }, { "subjectId": "geoId/0649670", "subjectName": "Mountain View", "subjectTypes": [ "City" ], "predicate": "containedInPlace", "objectId": "geoId/06085", "objectName": "Santa Clara County" }, { "subjectId": "geoId/06085", "predicate": "containedInPlace", "objectId": "geoId/06", "objectName": "California" }, ], 'dc/MadDcid': [] }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == ['dc/MadDcid', 'dc/MadderDcid']: # Response for sending a request where both dcids do not exist. res_json = json.dumps({ 'dc/MadDcid': [], 'dc/MadderDcid': [] }) return MockResponse({'payload': res_json}, 200) if req['dcids'] == []: # Response for sending a request where no dcids are given. res_json = json.dumps({}) return MockResponse({'payload': res_json}, 200) # Otherwise, return an empty response and a 404. return MockResponse({}, 404) class TestGetPropertyLabels(unittest.TestCase): """ Unit tests for get_property_labels. """ @mock.patch('requests.post', side_effect=post_request_mock) def test_single_dcid(self, post_mock): """ Calling get_property_labels with a single dcid returns a valid result. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Test for outgoing property labels out_props = dc.get_property_labels(['geoId/0649670']) self.assertDictEqual(out_props, {'geoId/0649670': ["containedInPlace", "name", "geoId", "typeOf"]}) # Test with out=False in_props = dc.get_property_labels(['geoId/0649670'], out=False) self.assertDictEqual(in_props, {'geoId/0649670': []}) @mock.patch('requests.post', side_effect=post_request_mock) def test_multiple_dcids(self, post_mock): """ Calling get_property_labels returns valid results with multiple dcids. """ # Set the API key dc.set_api_key('TEST-API-KEY') dcids = ['State', 'County', 'City'] expected_in = ["typeOf"] expected_out = ["name", "provenance", "subClassOf", "typeOf", "url"] # Test for outgoing property labels out_props = dc.get_property_labels(dcids) self.assertDictEqual(out_props, { 'State': expected_out, 'County': expected_out, 'City': expected_out, }) # Test for incoming property labels in_props = dc.get_property_labels(dcids, out=False) self.assertDictEqual(in_props, { 'State': expected_in, 'County': expected_in, 'City': expected_in, }) @mock.patch('requests.post', side_effect=post_request_mock) def test_bad_dcids(self, post_mock): """ Calling get_property_labels with dcids that do not exist returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Test for outgoing property labels out_props = dc.get_property_labels(['dc/MadDcid']) self.assertDictEqual(out_props, {'dc/MadDcid': []}) # Test for incoming property labels in_props = dc.get_property_labels(['dc/MadDcid'], out=False) self.assertDictEqual(in_props, {'dc/MadDcid': []}) @mock.patch('requests.post', side_effect=post_request_mock) def test_no_dcids(self, post_mock): """ Calling get_property_labels with no dcids returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Test for outgoing property labels out_props = dc.get_property_labels([]) self.assertDictEqual(out_props, {}) # Test for incoming property labels in_props = dc.get_property_labels([], out=False) self.assertDictEqual(in_props, {}) class TestGetPropertyValues(unittest.TestCase): """ Unit tests for get_property_values. """ # --------------------------- STANDARD UNIT TESTS --------------------------- @mock.patch('requests.post', side_effect=post_request_mock) def test_multiple_dcids(self, post_mock): """ Calling get_property_values with multiple dcids returns valid results. """ # Set the API key dc.set_api_key('TEST-API-KEY') dcids = ['geoId/06085', 'geoId/24031'] # Get the containedInPlace Towns for Santa Clara and Montgomery County. towns = dc.get_property_values( dcids, 'containedInPlace', out=False, value_type='Town') self.assertDictEqual(towns, { 'geoId/06085': ['geoId/0643294', 'geoId/0644112'], 'geoId/24031': ['geoId/2462850'] }) # Get the name of Santa Clara and Montgomery County. names = dc.get_property_values(dcids, 'name') self.assertDictEqual(names, { 'geoId/06085': ['Santa Clara County'], 'geoId/24031': ['Montgomery County'] }) @mock.patch('requests.post', side_effect=post_request_mock) def test_bad_dcids(self, post_mock): """ Calling get_property_values with dcids that do not exist returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') bad_dcids_1 = ['geoId/06085', 'dc/MadDcid'] bad_dcids_2 = ['dc/MadDcid', 'dc/MadderDcid'] # Get entities containedInPlace of Santa Clara County and a dcid that does # not exist. contained_1 = dc.get_property_values(bad_dcids_1, 'containedInPlace', out=False) self.assertDictEqual(contained_1, { 'geoId/06085': ['geoId/0644112'], 'dc/MadDcid': [] }) # Get entities containedInPlace for two dcids that do not exist. contained_2 = dc.get_property_values(bad_dcids_2, 'containedInPlace') self.assertDictEqual(contained_2, { 'dc/MadDcid': [], 'dc/MadderDcid': [] }) @mock.patch('requests.post', side_effect=post_request_mock) def test_bad_property(self, post_mock): """ Calling get_property_values with a property that does not exist returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Get propery values for a property that does not exist. prop_vals = dc.get_property_values( ['geoId/06085', 'geoId/24031'], 'madProperty') self.assertDictEqual(prop_vals, { 'geoId/06085': [], 'geoId/24031': [] }) @mock.patch('requests.post', side_effect=post_request_mock) def test_no_dcids(self, post_mock): """ Calling get_property_values with no dcids returns empty results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # Get property values with an empty list of dcids. prop_vals = dc.get_property_values([], 'containedInPlace') self.assertDictEqual(prop_vals, {}) # ---------------------------- PANDAS UNIT TESTS ---------------------------- @mock.patch('requests.post', side_effect=post_request_mock) def test_series(self, post_mock): """ Calling get_property_values with a Pandas Series returns the correct results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # The given and expected series. dcids = pd.Series(['geoId/06085', 'geoId/24031']) expected = pd.Series([ ['geoId/0643294', 'geoId/0644112'], ['geoId/2462850'] ]) # Call get_property_values with the series as input actual = dc.get_property_values( dcids, 'containedInPlace', out=False, value_type='Town') assert_series_equal(actual, expected) @mock.patch('requests.post', side_effect=post_request_mock) def test_series_bad_dcids(self, post_mock): """ Calling get_property_values with a Pandas Series and dcids that does not exist resturns an empty result. """ # Set the API key dc.set_api_key('TEST-API-KEY') # The given and expected series bad_dcids_1 = pd.Series(['geoId/06085', 'dc/MadDcid']) bad_dcids_2 = pd.Series(['dc/MadDcid', 'dc/MadderDcid']) expected_1 = pd.Series([['geoId/0644112'], []]) expected_2 = pd.Series([[], []]) # Call get_property_values with series as input actual_1 = dc.get_property_values(bad_dcids_1, 'containedInPlace', out=False) actual_2 = dc.get_property_values(bad_dcids_2, 'containedInPlace', out=False) # Assert the results are correct assert_series_equal(actual_1, expected_1) assert_series_equal(actual_2, expected_2) @mock.patch('requests.post', side_effect=post_request_mock) def test_series_bad_property(self, post_mock): """ Calling get_property_values with a Pandas Series and a property that does not exist returns an empty result. """ # Set the API key dc.set_api_key('TEST-API-KEY') # The input and expected series dcids = pd.Series(['geoId/06085', 'geoId/24031']) expected = pd.Series([[], []]) # Call get_property_values and assert the results are correct. actual = dc.get_property_values(dcids, 'madProperty') assert_series_equal(actual, expected) @mock.patch('requests.post', side_effect=post_request_mock) def test_series_no_dcid(self, post_mock): # The input and expected series dcids = pd.Series([]) expected = pd.Series([]) # Call get_property_values and assert the results are correct. actual = dc.get_property_values(dcids, 'containedInPlace') assert_series_equal(actual, expected) @mock.patch('requests.post', side_effect=post_request_mock) def test_dataframe(self, post_mock): """ Calling get_property_values with a Pandas DataFrame returns the correct results. """ # Set the API key dc.set_api_key('TEST-API-KEY') # The given and expected series. dcids = pd.DataFrame({'dcids': ['geoId/06085', 'geoId/24031']}) expected = pd.Series([ ['geoId/0643294', 'geoId/0644112'], ['geoId/2462850'] ]) # Call get_property_values with the series as input actual = dc.get_property_values( dcids, 'containedInPlace', out=False, value_type='Town')
assert_series_equal(actual, expected)
pandas.util.testing.assert_series_equal
import numpy as np from matplotlib import pyplot as plt import seaborn as sns import tensorlayer as tl from sklearn import preprocessing from scipy.stats import spearmanr import pandas as pd ''' These code comes from Basset:Deep convolutional neural networks for DNA sequence analysis https://github.com/davek44/Basset/blob/master/src/basset_motifs.py I made some modification to fit my own dataset. ''' def get_motif_proteins(meme_db_files): ''' Hash motif_id's to protein names using the MEME DB file ''' motif_protein = {} for meme_db_file in meme_db_files: for line in open(meme_db_file): a = line.split() if len(a) > 0 and a[0] == 'MOTIF': if len(a) == 2: motif_protein[a[1]] = a[1] continue if a[2][0] == '(': motif_protein[a[1]] = a[2][1:a[2].find(')')] else: motif_protein[a[1]] = a[2] return motif_protein def info_content(pwm, transpose=False, bg_gc=0.415): ''' Compute PWM information content. In the original analysis, I used a bg_gc=0.5. For any future analysis, I ought to switch to the true hg19 value of 0.415. ''' pseudoc = 1e-9 if transpose: pwm = np.transpose(pwm) bg_pwm = [1-bg_gc, bg_gc, bg_gc, 1-bg_gc] ic = 0 for i in range(pwm.shape[0]): for j in range(4): # ic += 0.5 + pwm[i][j]*np.log2(pseudoc+pwm[i][j]) ic += -bg_pwm[j]*np.log2(bg_pwm[j]) + pwm[i][j]*np.log2(pseudoc+pwm[i][j]) return ic def make_filter_pwm(filter_fasta): ''' Make a PWM for this filter from its top hits ''' nts = {'A':0, 'T':1, 'C':2, 'G':3} pwm_counts = [] nsites = 4 # pseudocounts for line in open(filter_fasta): if line[0] != '>': seq = line.rstrip() nsites += 1 if len(pwm_counts) == 0: # initialize with the length for i in range(len(seq)): pwm_counts.append(np.array([1.0]*4)) # count for i in range(len(seq)): try: pwm_counts[i][nts[seq[i]]] += 1 except KeyError: pwm_counts[i] += np.array([0.25]*4) # normalize pwm_freqs = [] for i in range(len(pwm_counts)): pwm_freqs.append([pwm_counts[i][j]/float(nsites) for j in range(4)]) return np.array(pwm_freqs), nsites-4 def plot_filter_heat(param_matrix, out_pdf): param_range = abs(param_matrix).max() sns.set(font_scale=2) plt.figure(figsize=(param_matrix.shape[1], 4)) sns.heatmap(param_matrix, cmap='PRGn', linewidths=0.2, vmin=-param_range, vmax=param_range) ax = plt.gca() ax.set_xticklabels(range(1,param_matrix.shape[1]+1)) ax.set_yticklabels('ATCG', rotation='horizontal') # , size=10) plt.savefig(out_pdf) plt.close() def filter_possum(param_matrix, motif_id, possum_file, trim_filters=False, mult=200): # possible trim trim_start = 0 trim_end = param_matrix.shape[1]-1 trim_t = 0.3 if trim_filters: # trim PWM of uninformative prefix while trim_start < param_matrix.shape[1] and np.max(param_matrix[:,trim_start]) - np.min(param_matrix[:,trim_start]) < trim_t: trim_start += 1 # trim PWM of uninformative suffix while trim_end >= 0 and np.max(param_matrix[:,trim_end]) - np.min(param_matrix[:,trim_end]) < trim_t: trim_end -= 1 if trim_start < trim_end: fp = open(possum_file, 'w') fp.write('BEGIN GROUP\n')#, possum_out)# >> possum_out, 'BEGIN GROUP' fp.write('BEGIN FLOAT\n')#,possum_out) #>> possum_out, fp.write('ID %s\n'%motif_id)# % motif_id,possum_out)# >> possum_out, 'ID %s' % motif_id fp.write('AP DNA\n')#,possum_out)# >> possum_out, 'AP DNA' fp.write('LE %d\n' % (trim_end+1-trim_start))#,possum_out)# >> possum_out, 'LE %d' % (trim_end+1-trim_start) for ci in range(trim_start,trim_end+1): fp.write('MA %s\n' % ' '.join(['%.2f'%(mult*n) for n in param_matrix[:,ci]]))#,possum_out)# >> possum_out, 'MA %s' % ' '.join(['%.2f'%(mult*n) for n in param_matrix[:,ci]]) fp.write('END\n')#,possum_out) #>> possum_out, 'END' fp.write('END\n')#,possum_out)#print >> possum_out, 'END' fp.close() import subprocess weblogo_opts = '-X NO -Y NO --errorbars NO --fineprint "" --resolution 600' weblogo_opts += ' -C "#CB2026" A A' weblogo_opts += ' -C "#34459C" C C' weblogo_opts += ' -C "#FBB116" G G' weblogo_opts += ' -C "#0C8040" T T' def plot_filter_logo(filter_outs, filter_size, seqs, out_prefix, raw_t=0, maxpct_t=None): #tl.files.exists_or_mkdir(out_prefix) #name = out_prefix + out_prefix.split('/')[-1] if maxpct_t: all_outs = np.ravel(filter_outs) all_outs_mean = all_outs.mean() all_outs_norm = all_outs - all_outs_mean raw_t = maxpct_t * all_outs_norm.max() + all_outs_mean # SAME padding pad_side = (filter_size - 1) // 2 # print fasta file of positive outputs fp = open('%s.fa' % out_prefix, 'w') filter_count = 0 for i in range(filter_outs.shape[0]): for j in range(pad_side, filter_outs.shape[1]-pad_side): if filter_outs[i,j] > raw_t: js = (j - pad_side) kmer = seqs[i][js:js+filter_size] if len(kmer.strip()) < filter_size: continue fp.write('>%d_%d\n' % (i,j)) fp.write(kmer+'\n') filter_count += 1 fp.close() ''' # make weblogo if filter_count > 0: meme_cmd = f'meme {out_prefix}.fa -dna -oc {out_prefix} -nostatus -time 18000 -mod zoops -nmotifs 2 -minw 6 -maxw 50 -objfun classic -revcomp -markov_order 0' #meme_cmd = 'meme %s.fa -dna -mod zoops -pal -o %s -nmotifs 2'%(out_prefix, out_prefix) #weblogo_cmd = 'weblogo %s < %s.fa > %s.eps&' % (weblogo_opts, out_prefix, out_prefix) #print(weblogo_cmd) subprocess.call(meme_cmd, shell=True) ''' def meme_add(meme_out, f, filter_pwm, nsites, trim_filters=False): ''' Print a filter to the growing MEME file Attrs: meme_out : open file f (int) : filter index # filter_pwm (array) : filter PWM array nsites (int) : number of filter sites ''' if not trim_filters: ic_start = 0 ic_end = filter_pwm.shape[0]-1 else: ic_t = 0.2 # trim PWM of uninformative prefix ic_start = 0 while ic_start < filter_pwm.shape[0] and info_content(filter_pwm[ic_start:ic_start+1]) < ic_t: ic_start += 1 # trim PWM of uninformative suffix ic_end = filter_pwm.shape[0]-1 while ic_end >= 0 and info_content(filter_pwm[ic_end:ic_end+1]) < ic_t: ic_end -= 1 if ic_start < ic_end: meme_out.write('MOTIF filter%d\n' % f)# z3print >> meme_out.write( 'letter-probability matrix: alength= 4 w= %d nsites= %d\n' % (ic_end-ic_start+1, nsites))#print >> for i in range(ic_start, ic_end+1): meme_out.write( '%.4f %.4f %.4f %.4f\n' % tuple(filter_pwm[i]))#print >> meme_out.write('\n')#print >> def meme_intro(meme_file, seqs): ''' Open MEME motif format file and print intro Attrs: meme_file (str) : filename seqs [str] : list of strings for obtaining background freqs Returns: mem_out : open MEME file ''' nts = {'A':0, 'T':1, 'C':2, 'G':3} # count nt_counts = [1]*4 for i in range(len(seqs)): for nt in seqs[i]: try: nt_counts[nts[nt]] += 1 except KeyError: pass # normalize nt_sum = float(sum(nt_counts)) nt_freqs = [nt_counts[i]/nt_sum for i in range(4)] # open file for writing meme_out = open(meme_file, 'w') # print intro material meme_out.write( 'MEME version 4\n')#print >> meme_out.write('\n')#print >> meme_out.write( 'ALPHABET= ACGT\n')#print >> meme_out.write( '\n')#print >> meme_out.write('Background letter frequencies:\n')#print >> meme_out.write('A %.4f C %.4f G %.4f T %.4f\n' % tuple(nt_freqs))#print >> meme_out.write('\n')#print >> return meme_out def name_filters(num_filters, tomtom_file, meme_db_file): ''' Name the filters using Tomtom matches. Attrs: num_filters (int) : total number of filters tomtom_file (str) : filename of Tomtom output table. meme_db_file (str) : filename of MEME db Returns: filter_names [str] : ''' # name by number #filter_names = ['f%d'%fi for fi in range(num_filters)] # name by protein if tomtom_file is not None and meme_db_file is not None: motif_protein = get_motif_proteins(meme_db_file) # hash motifs and q-value's by filter filter_motifs = [] try: tt_in = open(tomtom_file) except: return '' for line in tt_in: a = line.split() if len(a)==0 or a[0].startswith('Q') or a[0].startswith('#'): continue #fi = int(a[0][6:]) print(tomtom_file) print(a) motif_id = a[1] pval = float(a[3]) evals = float(a[4]) qval = float(a[5]) filter_motifs.append((evals, pval, qval,motif_id)) tt_in.close() # assign filter's best match try: tmp = sorted(filter_motifs)[0] top_motif = tmp[-1] pval = tmp[1] evals = tmp[0] qval = tmp[2] filter_names = 'test_%s_%f_%f_%f' % (motif_protein[top_motif], pval, evals, qval) except: filter_names = ''#'test_test_test_test_test' return filter_names ################################################################################ # plot_target_corr # # Plot a clustered heatmap of correlations between filter activations and # targets. # # Input # filter_outs: # filter_names: # target_names: # out_pdf: ################################################################################ def plot_target_corr(filter_outs, seq_targets, filter_names, target_names, out_pdf, seq_op='mean'): num_seqs = filter_outs.shape[0] num_targets = len(target_names) if seq_op == 'mean': filter_outs_seq = filter_outs.mean(axis=2) else: filter_outs_seq = filter_outs.max(axis=2) # std is sequence by filter. filter_seqs_std = filter_outs_seq.std(axis=0) filter_outs_seq = filter_outs_seq[:,filter_seqs_std > 0] filter_names_live = filter_names[filter_seqs_std > 0] filter_target_cors = np.zeros((len(filter_names_live),num_targets)) for fi in range(len(filter_names_live)): for ti in range(num_targets): cor, p = spearmanr(filter_outs_seq[:,fi], seq_targets[:num_seqs,ti]) filter_target_cors[fi,ti] = cor cor_df =
pd.DataFrame(filter_target_cors, index=filter_names_live, columns=target_names)
pandas.DataFrame
"""Class managing the model inference """ import os import os.path as osp import random import numpy as np import pandas as pd from tqdm import tqdm import scipy.stats import torch import torchvision.transforms as transforms from torch.utils.data.sampler import WeightedRandomSampler from torch_geometric.data import DataLoader from n2j.trainval_data.graphs.cosmodc2_graph import CosmoDC2Graph import n2j.models as models import n2j.inference.infer_utils as iutils import matplotlib.pyplot as plt import corner from n2j.trainval_data.utils.transform_utils import (ComposeXYLocal, Standardizer, Slicer, MagErrorSimulatorTorch, Rejector, get_bands_in_x, get_idx) import n2j.inference.summary_stats_baseline as ssb import n2j.inference.calibration as calib class InferenceManager: def __init__(self, device_type, checkpoint_dir, out_dir, seed=123): """Inference tool Parameters ---------- device_type : str checkpoint_dir : os.path or str training checkpoint_dir (same as one used to instantiate `Trainer`) out_dir : os.path or str output directory for inference results """ self.device_type = device_type self.device = torch.device(self.device_type) self.seed = seed self.seed_everything() self.checkpoint_dir = checkpoint_dir os.makedirs(self.checkpoint_dir, exist_ok=True) self.out_dir = out_dir os.makedirs(self.out_dir, exist_ok=True) self._include_los = slice(None) # do not exclude los from inference def seed_everything(self): """Seed the training and sampling for reproducibility """ np.random.seed(self.seed) random.seed(self.seed) torch.manual_seed(self.seed) torch.cuda.manual_seed(self.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def load_dataset(self, data_kwargs, is_train, batch_size, sub_features=None, sub_target=None, sub_target_local=None, rebin=False, num_workers=2, noise_kwargs={'mag': {'override_kwargs': None, 'depth': 5}}, detection_kwargs={}): """Load dataset and dataloader for training or validation Note ---- Should be called for training data first, to set the normalizing stats used for both training and validation! """ self.num_workers = num_workers if is_train: self.batch_size = batch_size else: self.val_batch_size = batch_size # X metadata features = data_kwargs['features'] self.sub_features = sub_features if sub_features else features self.X_dim = len(self.sub_features) # Global y metadata target = ['final_kappa', 'final_gamma1', 'final_gamma2'] self.sub_target = sub_target if sub_target else target self.Y_dim = len(self.sub_target) # Lobal y metadata target_local = ['halo_mass', 'stellar_mass', 'redshift'] self.sub_target_local = sub_target_local if sub_target_local else target_local self.Y_local_dim = len(self.sub_target_local) dataset = CosmoDC2Graph(num_workers=self.num_workers, **data_kwargs) ############ # Training # ############ if is_train: self.train_dataset = dataset if osp.exists(osp.join(self.checkpoint_dir, 'stats.pt')): stats = torch.load(osp.join(self.checkpoint_dir, 'stats.pt')) else: stats = self.train_dataset.data_stats torch.save(stats, osp.join(self.checkpoint_dir, 'stats.pt')) # Transforming X idx = get_idx(features, self.sub_features) self.X_mean = stats['X_mean'][:, idx] self.X_std = stats['X_std'][:, idx] slicing = Slicer(idx) mag_idx, which_bands = get_bands_in_x(self.sub_features) print(f"Mag errors added to {which_bands}") magerr = MagErrorSimulatorTorch(mag_idx=mag_idx, which_bands=which_bands, **noise_kwargs['mag']) magcut = Rejector(self.sub_features, **detection_kwargs) norming = Standardizer(self.X_mean, self.X_std) editing_X_meta = Metadata(self.sub_features, ['ra_true', 'dec_true']) norming_X_meta = Standardizer(stats['X_meta_mean'], stats['X_meta_std']) # Transforming local Y idx_Y_local = get_idx(target_local, self.sub_target_local) self.Y_local_mean = stats['Y_local_mean'][:, idx_Y_local] self.Y_local_std = stats['Y_local_std'][:, idx_Y_local] slicing_Y_local = Slicer(idx_Y_local) norming_Y_local = Standardizer(self.Y_local_mean, self.Y_local_std) # TODO: normalization is based on pre-magcut population self.transform_X_Y_local = ComposeXYLocal([slicing, magerr], [slicing_Y_local], [magcut], [norming], [norming_Y_local], [editing_X_meta, norming_X_meta]) # Transforming global Y idx_Y = get_idx(target, self.sub_target) self.Y_mean = stats['Y_mean'][:, idx_Y] self.Y_std = stats['Y_std'][:, idx_Y] slicing_Y = Slicer(idx_Y) norming_Y = Standardizer(self.Y_mean, self.Y_std) self.transform_Y = transforms.Compose([slicing_Y, norming_Y]) self.train_dataset.transform_X_Y_local = self.transform_X_Y_local self.train_dataset.transform_Y = self.transform_Y # Loading option 1: Subsample from a distribution if data_kwargs['subsample_pdf_func'] is not None: self.class_weight = None train_subset = torch.utils.data.Subset(self.train_dataset, stats['subsample_idx']) self.train_dataset = train_subset self.train_loader = DataLoader(self.train_dataset, batch_size=batch_size, shuffle=False, # no need here num_workers=self.num_workers, drop_last=True) else: # Loading option 2: Over/undersample according to inverse frequency if rebin: self.class_weight = stats['class_weight'] sampler = WeightedRandomSampler(stats['y_weight'], num_samples=len(self.train_dataset)) self.train_loader = DataLoader(self.train_dataset, batch_size=batch_size, sampler=sampler, num_workers=self.num_workers, drop_last=True) # Loading option 3: No special sampling, just shuffle else: self.class_weight = None self.train_loader = DataLoader(self.train_dataset, batch_size=batch_size, shuffle=False, # no need here num_workers=self.num_workers, drop_last=True) print(f"Train dataset size: {len(self.train_dataset)}") ################### # Validation/Test # ################### else: self.test_dataset = dataset # Compute or retrieve stats necessary for resampling # before setting any kind of transforms # Note: stats_test.pt is in inference out_dir, not checkpoint_dir if data_kwargs['subsample_pdf_func'] is not None: stats_test_path = osp.join(self.out_dir, 'stats_test.pt') if osp.exists(stats_test_path): stats_test = torch.load(stats_test_path) else: stats_test = self.test_dataset.data_stats_valtest torch.save(stats_test, stats_test_path) self.test_dataset.transform_X_Y_local = self.transform_X_Y_local self.test_dataset.transform_Y = self.transform_Y self.set_valtest_loading(stats_test['subsample_idx']) print(f"Test dataset size: {len(self.test_dataset)}") def set_valtest_loading(self, sub_idx): """Set the loading options for val/test set. Should be called whenever there are changes to the test dataset, to update the dataloader. Parameters ---------- subsample_pdf_func : callable Description sub_idx : TYPE Description """ self.class_weight = None test_subset = torch.utils.data.Subset(self.test_dataset, sub_idx) self.test_dataset = test_subset self.test_loader = DataLoader(self.test_dataset, batch_size=self.val_batch_size, shuffle=False, num_workers=self.num_workers, drop_last=False) def configure_model(self, model_name, model_kwargs={}): self.model_name = model_name self.model_kwargs = model_kwargs self.model = getattr(models, model_name)(**self.model_kwargs) self.model.to(self.device) if self.class_weight is not None: self.model.class_weight = self.class_weight.to(self.device) n_params = sum(p.numel() for p in self.model.parameters() if p.requires_grad) print(f"Number of params: {n_params}") def load_state(self, state_path): """Load the state dict of the past training Parameters ---------- state_path : str or os.path object path of the state dict to load """ state = torch.load(state_path, map_location=torch.device(self.device_type)) self.model.load_state_dict(state['model']) self.model.to(self.device) self.epoch = state['epoch'] train_loss = state['train_loss'] val_loss = state['val_loss'] print("Loaded weights at {:s}".format(state_path)) print("Epoch [{}]: TRAIN Loss: {:.4f}".format(self.epoch, train_loss)) print("Epoch [{}]: VALID Loss: {:.4f}".format(self.epoch, val_loss)) self.last_saved_val_loss = val_loss @property def include_los(self): """Indices to include in inference. Useful when there are faulty examples in the test set you want to exclude. """ return self._include_los @include_los.setter def include_los(self, value): if value is None: # Do nothing return value = list(value) self._include_los = value self.set_valtest_loading(value) max_guess = max(value) excluded = np.arange(max_guess)[~np.isin(np.arange(max_guess), value)] print(f"Assuming there were {max_guess+1} sightlines in test set, " f" now excluding indices: {excluded}") @property def n_test(self): return len(self.test_dataset) @property def bnn_kappa_path(self): return osp.join(self.out_dir, 'k_bnn.npy') def get_bnn_kappa(self, n_samples=50, n_mc_dropout=20, flatten=True): """Get the samples from the BNN Parameters ---------- n_samples : int number of samples per MC iterate n_mc_dropout : int number of MC iterates Returns ------- np.array of shape `[n_test, self.Y_dim, n_samples*n_mc_dropout]` """ if osp.exists(self.bnn_kappa_path): samples = np.load(self.bnn_kappa_path) if flatten: samples = samples.reshape([self.n_test, self.Y_dim, -1]) return samples # Fetch precomputed Y_mean, Y_std to de-standardize samples Y_mean = self.Y_mean.to(self.device) Y_std = self.Y_std.to(self.device) self.model.eval() with torch.no_grad(): samples = np.empty([self.n_test, n_mc_dropout, n_samples, self.Y_dim]) for i, batch in enumerate(self.test_loader): batch = batch.to(self.device) for mc_iter in range(n_mc_dropout): x, u = self.model(batch) B = u.shape[0] # [this batch size] # Get pred samples for this MC iterate self.model.global_nll.set_trained_pred(u) mc_samples = self.model.global_nll.sample(Y_mean, Y_std, n_samples) samples[i*B: (i+1)*B, mc_iter, :, :] = mc_samples # Transpose dims to get [n_test, Y_dim, n_mc_dropout, n_samples] samples = samples.transpose(0, 3, 1, 2) np.save(self.bnn_kappa_path, samples) if flatten: samples = samples.reshape([self.n_test, self.Y_dim, -1]) return samples @property def true_train_kappa_path(self): return osp.join(self.out_dir, 'k_train.npy') @property def train_summary_stats_path(self): return osp.join(self.out_dir, 'summary_stats_train.npy') @property def true_test_kappa_path(self): return osp.join(self.out_dir, 'k_test.npy') @property def test_summary_stats_path(self): return osp.join(self.out_dir, 'summary_stats_test.npy') @property def matching_dir(self): return osp.join(self.out_dir, 'matching') @property def log_p_k_given_omega_int_path(self): return osp.join(self.out_dir, 'log_p_k_given_omega_int.npy') @property def reweighted_grid_dir(self): return osp.join(self.out_dir, 'reweighted_grid') @property def reweighted_per_sample_dir(self): return osp.join(self.out_dir, 'reweighted_per_sample') @property def reweighted_bnn_kappa_grid_path(self): return osp.join(self.reweighted_grid_dir, 'k_bnn_reweighted_grid.npy') @property def reweighted_bnn_kappa_per_sample_path(self): return osp.join(self.reweighted_per_sample_dir, 'k_bnn_reweighted_per_sample.npy') def delete_previous(self): """Delete previously stored files related to the test set and inference results, while leaving any training-set related caches, which take longer to generate. """ import shutil files = [self.true_test_kappa_path, self.test_summary_stats_path] files += [self.bnn_kappa_path, self.log_p_k_given_omega_int_path] files += [self.reweighted_bnn_kappa_grid_path] files += [self.reweighted_bnn_kappa_per_sample_path] for f in files: if osp.exists(f): print(f"Deleting {f}...") os.remove(f) dirs = [self.matching_dir] dirs += [self.reweighted_grid_dir, self.reweighted_per_sample_dir] for d in dirs: if osp.exists(d): print(f"Deleting {d} and all its contents...") shutil.rmtree(d) def get_true_kappa(self, is_train, compute_summary=True, save=True): """Fetch true kappa (for train/val/test) Parameters ---------- is_train : bool Whether to get true kappas for train (test otherwise) compute_summary : bool, optional Whether to compute summary stats in the loop save : bool, optional Whether to store the kappa to disk Returns ------- np.ndarray true kappas of shape `[n_data, Y_dim]` """ # Decide which dataset we're collecting kappa labels for if is_train: loader = self.train_loader path = self.true_train_kappa_path n_data = len(self.train_dataset) ss_path = self.train_summary_stats_path else: loader = self.test_loader path = self.true_test_kappa_path n_data = self.n_test ss_path = self.test_summary_stats_path if osp.exists(path): if compute_summary and osp.exists(ss_path): true_kappa = np.load(path) return true_kappa print(f"Saving {path}...") # Fetch precomputed Y_mean, Y_std to de-standardize samples Y_mean = self.Y_mean.to(self.device) Y_std = self.Y_std.to(self.device) if compute_summary: pos_indices = get_idx(self.sub_features, ['ra_true', 'dec_true']) ss_obj = ssb.SummaryStats(n_data, pos_indices) # Init empty array true_kappa = np.empty([n_data, self.Y_dim]) with torch.no_grad(): # Populate `true_kappa` by batches for i, batch in enumerate(loader): # Update summary stats using CPU batch if compute_summary: ss_obj.update(batch, i) batch = batch.to(self.device) B = batch.y.shape[0] # [this batch size]ss_obj true_kappa[i*B: (i+1)*B, :] = (batch.y*Y_std + Y_mean).cpu().numpy() if save: np.save(path, true_kappa) if compute_summary: ss_obj.export_stats(ss_path) return true_kappa def get_summary_stats(self, thresholds, interim_pdf_func=None, match=True, min_matches=1000): """Save accepted samples from summary statistics matching Parameters ---------- thresholds : dict Matching thresholds for summary stats Keys should be one or both of 'N' and 'N_inv_dist'. """ train_k = self.get_true_kappa(is_train=True, compute_summary=True) test_k = self.get_true_kappa(is_train=False, compute_summary=True) pos_indices = get_idx(self.sub_features, ['ra_true', 'dec_true']) train_ss_obj = ssb.SummaryStats(len(self.train_dataset), pos_indices) train_ss_obj.set_stats(self.train_summary_stats_path) test_ss_obj = ssb.SummaryStats(len(self.test_dataset), pos_indices) test_ss_obj.set_stats(self.test_summary_stats_path) self.matcher = ssb.Matcher(train_ss_obj, test_ss_obj, train_k, self.matching_dir, test_k) if match: self.matcher.match_summary_stats(thresholds, interim_pdf_func, min_matches=min_matches) overview = self.matcher.get_overview_table() return overview def get_log_p_k_given_omega_int(self, n_samples, n_mc_dropout, interim_pdf_func): """Compute log(p_k|Omega_int) for BNN samples p_k Parameters ---------- n_samples : int Number of BNN samples per MC iterate per sightline n_mc_dropout : int Number of MC dropout iterates per sightline interim_pdf_func : callable Function that evaluates the PDF of the interim prior Returns ------- np.ndarray Probabilities log(p_k|Omega_int) of shape `[n_test, n_mc_dropout*n_samples]` """ if osp.exists(self.log_p_k_given_omega_int_path): return np.load(self.log_p_k_given_omega_int_path) k_train = self.get_true_kappa(is_train=True).squeeze(1) k_bnn = self.get_bnn_kappa(n_samples=n_samples, n_mc_dropout=n_mc_dropout).squeeze(1) log_p_k_given_omega_int = iutils.get_log_p_k_given_omega_int_analytic(k_train=k_train, k_bnn=k_bnn, interim_pdf_func=interim_pdf_func) np.save(self.log_p_k_given_omega_int_path, log_p_k_given_omega_int) return log_p_k_given_omega_int def get_log_p_k_given_omega_int_loop(self, interim_pdf_func, bnn=False, ss_name='N'): """Compute log(p_k|Omega_int) for BNN or summary stats samples p_k. Useful when the number of samples differs across sightlines, so the computation is not trivially vectorizable. Parameters ---------- interim_pdf_func : callable Function that evaluates the PDF of the interim prior bnn : bool, optional Whether the samples are BNN's. If False, understood to be summary stats matched samples. ss_name : str, optional Summary stats name. Only used if `bnn` is False. Default: 'N' """ sample_type = 'bnn' if bnn else 'ss' if bnn: raise NotImplementedError("Use the vectorized version for BNN!") path = osp.join(self.matching_dir, f'log_p_k_given_omega_int_{sample_type}_list.npy') if osp.exists(path): return np.load(path) log_p_k_given_omega_int_list = [] for i in range(self.n_test): samples_i = self.matcher.get_samples(idx=i, ss_name=ss_name, threshold=None) samples_i = samples_i.reshape([1, -1]) # artificial n_test of 1 log_p_i = iutils.get_log_p_k_given_omega_int_analytic(k_train=None, k_bnn=samples_i, interim_pdf_func=interim_pdf_func) # log_p_i ~ [1, len(samples_i)] so squeeze log_p_k_given_omega_int_list.append(log_p_i.squeeze()) return log_p_k_given_omega_int_list def run_mcmc_for_omega_post(self, n_samples, n_mc_dropout, mcmc_kwargs, interim_pdf_func, bounds_lower=-np.inf, bounds_upper=np.inf): """Run EMCEE to obtain the posterior on test hyperparams, omega Parameters ---------- n_samples : int Number of BNN samples per MC iterate per sightline n_mc_dropout : int Number of MC dropout iterates mcmc_kwargs : dict Config going into `infer_utils.run_mcmc` bounds_lower : np.ndarray or float, optional Lower bound for target quantities bounds_upper : np.ndarray or float, optional Upper bound for target quantities """ k_bnn = self.get_bnn_kappa(n_samples=n_samples, n_mc_dropout=n_mc_dropout) log_p_k_given_omega_int = self.get_log_p_k_given_omega_int(n_samples, n_mc_dropout, interim_pdf_func) iutils.get_omega_post(k_bnn, log_p_k_given_omega_int, mcmc_kwargs, bounds_lower, bounds_upper) def run_mcmc_for_omega_post_summary_stats(self, ss_name, mcmc_kwargs, interim_pdf_func, bounds_lower=-np.inf, bounds_upper=np.inf): """Run EMCEE to obtain the posterior on test hyperparams, omega using the matched summary statistics samples, rather than BNN posterior samples Parameters ---------- ss_name : str What kind of summary stats to query (one of 'N', 'N_inv_dist') mcmc_kwargs : dict Config going into `infer_utils.run_mcmc` bounds_lower : np.ndarray or float, optional Lower bound for target quantities bounds_upper : np.ndarray or float, optional Upper bound for target quantities """ log_p_k_given_omega_int_list = self.get_log_p_k_given_omega_int_loop(interim_pdf_func, bnn=False, ss_name=ss_name) samples = [] for i in range(self.n_test): samples_i = self.matcher.get_samples(idx=i, ss_name=ss_name, threshold=None) samples.append(samples_i) iutils.get_omega_post_loop(samples, log_p_k_given_omega_int_list, mcmc_kwargs, bounds_lower, bounds_upper) def get_kappa_log_weights(self, idx, n_samples=None, n_mc_dropout=None, interim_pdf_func=None, grid=None): """Get log weights for reweighted kappa posterior per sample Parameters ---------- idx : int Index of sightline in test set n_samples : int Number of samples per dropout, for getting kappa samples. (May be overridden with what was used previously, if kappa samples were already drawn and stored) n_mc_dropout : int Number of dropout iterates, for getting kappa samples. (May be overridden with what was used previously, if kappa samples were already drawn and stored) interim_pdf_func : callable Function that returns the density of the interim prior grid : None, optional Unused but kept for consistency with `get_kappa_log_weigths_grid` Returns ------- np.ndarray log weights for each of the BNN samples for this sightline """ os.makedirs(self.reweighted_per_sample_dir, exist_ok=True) path = osp.join(self.reweighted_per_sample_dir, f'log_weights_{idx}.npy') k_bnn = self.get_bnn_kappa(n_samples=n_samples, n_mc_dropout=n_mc_dropout) log_p_k_given_omega_int = self.get_log_p_k_given_omega_int(n_samples, n_mc_dropout, interim_pdf_func) # omega_post_samples = iutils.get_mcmc_samples(chain_path, chain_kwargs) log_weights = iutils.get_kappa_log_weights(k_bnn[idx, :], log_p_k_given_omega_int[idx, :]) np.save(path, log_weights) return log_weights def get_kappa_log_weights_grid(self, idx, grid=None, n_samples=None, n_mc_dropout=None, interim_pdf_func=None): """Get log weights for reweighted kappa posterior, analytically on a grid Parameters ---------- idx : int Index of sightline in test set grid : np.ndarray, optional Grid of kappa values at which to evaluate log weights (May be overridden with what was used previously, if kappa samples were already drawn and stored) n_samples : int, optional Number of samples per dropout, for getting kappa samples. (May be overridden with what was used previously, if kappa samples were already drawn and stored) n_mc_dropout : int, optional Number of dropout iterates, for getting kappa samples. (May be overridden with what was used previously, if kappa samples were already drawn and stored) interim_pdf_func : callable, optional Function that returns the density of the interim prior Note ---- log doesn't help with numerical stability since we divide probabilities directly, but we're keeping this just for consistency Returns ------- np.ndarray kappa grid, log weights for each of the BNN samples for this sightline """ os.makedirs(self.reweighted_grid_dir, exist_ok=True) path = osp.join(self.reweighted_grid_dir, f'log_weights_{idx}.npy') if osp.exists(path): return np.load(path) # Get unflattened, i.e. [n_test, 1, n_mc_dropout, n_samples] k_bnn = self.get_bnn_kappa(n_samples=n_samples, n_mc_dropout=n_mc_dropout, flatten=False) k_bnn = k_bnn[idx, 0, :, :] # [n_mc_dropout, n_samples] n_mc_dropout, n_samples = k_bnn.shape numer = np.zeros(grid.shape) # init numerator # Fit a normal for each MC dropout for d in range(n_mc_dropout): samples_d = k_bnn[d, :] norm_d = scipy.stats.norm(loc=samples_d.mean(), scale=samples_d.std()) bnn_prob_d = norm_d.pdf(grid) numer += (bnn_prob_d - numer)/(d+1) # running mean # Useful for debugging np.save(osp.join(self.reweighted_grid_dir, f'grid_bnn_gmm_{idx}.npy'), numer) denom = interim_pdf_func(grid) log_weights = np.log(numer/denom) log_weights_grid = np.stack([grid, log_weights], axis=0) np.save(path, log_weights_grid) return log_weights_grid def get_reweighted_bnn_kappa(self, n_resamples, grid_kappa_kwargs, ): """Get the reweighted BNN kappa samples, reweighted either on a grid or per sample Parameters ---------- n_resamples : int Number of resamples from the reweighted distribution grid_kappa_kwargs : dict Kwargs for Returns ------- tuple Two arrays of shape [n_test, 1, n_resamples], first of which is resamples using the grid reweighting and second of which is resamples using the per-sample reweighting """ if osp.exists(self.reweighted_bnn_kappa_grid_path): if osp.exists(self.reweighted_bnn_kappa_per_sample_path): print("Reading existing reweighted BNN kappa...") grid = np.load(self.reweighted_bnn_kappa_grid_path) per_sample = np.load(self.reweighted_bnn_kappa_per_sample_path) return grid, per_sample n_test = len(self.test_dataset) k_bnn = self.get_bnn_kappa(n_samples=grid_kappa_kwargs['n_samples'], n_mc_dropout=grid_kappa_kwargs['n_mc_dropout']) # Init reweighted arrays k_reweighted_grid = np.empty([n_test, 1, n_resamples]) k_reweighted_per_sample = np.empty([n_test, 1, n_resamples]) for idx in tqdm(range(n_test), desc='evaluating, resampling'): # On a grid grid, log_p = self.get_kappa_log_weights_grid(idx, **grid_kappa_kwargs) per_grid = iutils.resample_from_pdf(grid, log_p, n_resamples) k_reweighted_grid[idx, 0, :] = per_grid # Per sample log_p_sample = self.get_kappa_log_weights(idx, **grid_kappa_kwargs) plot_path = osp.join(self.reweighted_per_sample_dir, f'kde_{idx}.png') per_sample = iutils.resample_from_samples(k_bnn[idx], np.exp(log_p_sample), n_resamples, plot_path) k_reweighted_per_sample[idx, 0, :] = per_sample # Grid resamples for all sightlines np.save(self.reweighted_bnn_kappa_grid_path, k_reweighted_grid) # Per-sample resamples for all sightlines np.save(self.reweighted_bnn_kappa_per_sample_path, k_reweighted_per_sample) return k_reweighted_grid, k_reweighted_per_sample def visualize_omega_post(self, chain_path, chain_kwargs, corner_kwargs, log_idx=None): # MCMC samples ~ [n_omega, 2] omega_post_samples = iutils.get_mcmc_samples(chain_path, chain_kwargs) if log_idx is not None: omega_post_samples[:, log_idx] = np.exp(omega_post_samples[:, log_idx]) print(f"Plotting {omega_post_samples.shape[0]} samples...") fig = corner.corner(omega_post_samples, **corner_kwargs) fig.savefig(osp.join(self.out_dir, 'omega_post.pdf')) def visualize_kappa_post(self, idx, n_samples, n_mc_dropout, interim_pdf_func, grid=None): log_weights = self.get_kappa_log_weights(idx, n_samples, n_mc_dropout, interim_pdf_func) # [n_samples] grid, log_w_grid = self.get_kappa_log_weights_grid(idx, grid, n_samples, n_mc_dropout, interim_pdf_func) w_grid = np.exp(log_w_grid) k_bnn = self.get_bnn_kappa(n_samples=n_samples, n_mc_dropout=n_mc_dropout) # [n_test, n_samples] true_k = self.get_true_kappa(is_train=False) fig, ax = plt.subplots() # Original posterior bins = np.histogram_bin_edges(k_bnn[idx].squeeze(), bins='scott',) ax.hist(k_bnn[idx].squeeze(), histtype='step', bins=bins, density=True, color='#8ca252', label='original') # Reweighted posterior, per sample ax.hist(k_bnn[idx].squeeze(), histtype='step', bins=25, density=True, weights=np.exp(log_weights), color='#d6616b', label='reweighted per sample') # Reweighted posterior, analytical reweighted_k_bnn, _ = self.get_reweighted_bnn_kappa(None, None) reweighted_k_bnn = reweighted_k_bnn[idx, 0, :] bin_vals, bin_edges = np.histogram(reweighted_k_bnn, bins='scott', density=True) norm_factor = np.max(bin_vals)/np.max(w_grid) ax.plot(grid, norm_factor*w_grid, color='#d6616b', label='reweighted on grid') # Truth ax.axvline(true_k[idx].squeeze(), color='k', label='truth') ax.set_xlabel(r'$\kappa$') ax.legend() @property def pre_reweighting_metrics_path(self): return osp.join(self.out_dir, 'pre_metrics.csv') @property def pre_reweighting_metrics(self): return pd.read_csv(self.pre_reweighting_metrics_path, index_col=False) @property def post_reweighting_metrics_path(self): return osp.join(self.out_dir, 'post_metrics.csv') @property def post_reweighting_metrics(self): return pd.read_csv(self.post_reweighting_metrics_path, index_col=False) def compute_metrics(self): """Evaluate metrics for model selection, based on per-sample reweighting for fair comparison to summary stats metrics """ columns = ['minus_sig', 'med', 'plus_sig'] columns += ['log_p', 'mad', 'mae'] # mae = median absolute errors, robust measure of accuracy # mad = median absolute deviation, robust measure of precision # Metrics on pre-reweighting BNN posteriors k_bnn_pre = self.get_bnn_kappa() pre_metrics = pd.DataFrame(columns=columns) # Metrics on post-reweighting BNN posteriors _, k_bnn_post = self.get_reweighted_bnn_kappa(None, None) post_metrics =
pd.DataFrame(columns=columns)
pandas.DataFrame
# -*-coding: utf-8 -*- import pandas as pd import hyperflex_recommend.enpity.DataBase as db MEAL_TYPE = [1, 2, 3] def load_data(): query = 'select ' \ 'm.user_id, user_name, m.food_code, food_name, meal_type, eat_time ' \ 'from ' \ 'User u ' \ 'right join ' \ 'Meal m on u.user_id = m.user_id ' \ 'left join ' \ 'Food f on m.food_code=f.food_code;' cur, connect = db.DataBaes().connect_db() cur.execute(query) data = cur.fetchall() return data def analyze_single_user_info(result=load_data()): """ :param result: :return: examp: {user_id: 1, meal_info: {breakfast:{food_name:菜名,times:次数}}, {early_dinner:{...}}, {supper:{...}}} """ result =
pd.DataFrame(result, columns=['user_id', 'user_name', 'food_code', 'food_name', 'meal_type', 'eat_time'])
pandas.DataFrame
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.3 # kernelspec: # display_name: Python 3 (ipykernel) # language: python # name: python3 # --- # %% [markdown] # # Plot focal mechanisms using PyGMT # # Based on example by <NAME> at https://docs.generic-mapping-tools.org/latest/animations/anim14.html. # # Data are from the [Global Centroid-Moment-Tensor (CMT)](https://www.globalcmt.org/) Project: # * <NAME>., <NAME> and <NAME>, Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 86, 2825-2852, 1981. doi:10.1029/JB086iB04p02825 # * <NAME>., <NAME>, and <NAME>, The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 200-201, 1-9, 2012. doi:10.1016/j.pepi.2012.04.002) # %% import pandas as pd import pygmt # %% # Select points for the cross section profile =
pd.DataFrame(data={"x": [-75.02, -63.65], "y": [-33.5, -31]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Apr 11 15:05:17 2020 @author: <NAME> """ import pickle import igraph as ig import pandas as pd import numpy as np import networkx as nx import osmnx as ox import os from shapely.geometry import Point from shapely.ops import cascaded_union import pyproj from functools import partial from shapely.ops import transform, unary_union import geopandas as gpd from tools.graph_operations import * def read_pickle(path): return pickle.load(open(path,'rb')) def graph_from_circle(query, radius=1000, network_type='all_private', dual = False, return_igraph = False, save_pickle=False, fname='graphs\\city_graph', osmnx_query_kws = {}): """ Like fetching a graph with osmnx but with a circle instead of a square. Parameters ---------- query : string or dict Location to query Nominatim. radius: float Radius of the circle. network_type: string see osmnx network types dual: bool if true converts graph to its dual form return_igraph: bool if true retruns the graph as iGraph save_pickle: bool if True saves file as a pickle in fname directory fname: string Directory to save. osmnx_query_kws: dict options for osmnx query. See osmnx properties at https://osmnx.readthedocs.io/en/stable/osmnx.html. Returns ------- iGraph or NetworkX graph """ pt = ox.geocode(query) poly = circle_from_lat_lon(*pt, radius) G = ox.graph_from_polygon(poly, network_type=network_type, **osmnx_query_kws) G.graph['kind'] = 'primal' if dual: G = get_dual(G) if return_igraph: G=get_full_igraph(G) if save_pickle and return_igraph: _save_pickle_file(G,fname, extention='ig') elif save_pickle and not return_igraph: _save_pickle_file(G,fname, extention='nx') return G def graph_from_address(query, distance=1000, network_type='all_private', dual = False, return_igraph = False, save_pickle=False, fname='graphs\\city_graph', osmnx_query_kws = {}): """ Like fetching a graph with osmnx but with additional functionality. Parameters ---------- query : string or dict Location to query Nominatim. distance: float distance of the sides of square from the center. network_type: string see osmnx network types dual: bool if true converts graph to its dual form return_igraph: bool if true retruns the graph as iGraph save_pickle: bool if True saves file as a pickle in fname directory fname: string Directory to save. osmnx_query_kws: dict options for osmnx query. See osmnx properties at https://osmnx.readthedocs.io/en/stable/osmnx.html. Returns ------- iGraph or NetworkX graph """ G = ox.graph_from_address(query, distance=distance, network_type=network_type, **osmnx_query_kws) G.graph['kind'] = 'primal' if dual: G = get_dual(G) if return_igraph: G=get_full_igraph(G) if save_pickle and return_igraph: _save_pickle_file(G,fname, extention='ig') elif save_pickle and not return_igraph: _save_pickle_file(G,fname, extention='nx') return G def graph_from_place(query, network_type='all_private', dual = False, return_igraph = False, save_pickle=False, fname='graphs\\city_graph', osmnx_query_kws = {}): """ Like fetching a graph with osmnx but with additional functionality. Parameters ---------- query : string or dict Location to query Nominatim. network_type: string see osmnx network types dual: bool if true converts graph to its dual form return_igraph: bool if true retruns the graph as iGraph save_pickle: bool if True saves file as a pickle in fname directory fname: string Directory to save. osmnx_query_kws: dict options for osmnx query. See osmnx properties at https://osmnx.readthedocs.io/en/stable/osmnx.html. Returns ------- iGraph or NetworkX graph """ G = ox.graph_from_place(query, network_type=network_type, **osmnx_query_kws) G.graph['kind'] = 'primal' if dual: G = get_dual(G) if return_igraph: G=get_full_igraph(G) if save_pickle and return_igraph: _save_pickle_file(G,fname, extention='ig') elif save_pickle and not return_igraph: _save_pickle_file(G,fname, extention='nx') return G def graph_from_point(point, buffer=0, buffer_type='circle', network_type='all_private', dual = False, return_igraph = False, save_pickle=False, fname='graphs\\city_graph', osmnx_query_kws = {}): """ Like fetching a graph with osmnx but with option of a circle or square. Parameters ---------- point : float Central point as (lat, lon). buffer: float Radius of the circle or half the side of the square. network_type: string see osmnx network types dual: bool if true converts graph to its dual form return_igraph: bool if true retruns the graph as iGraph save_pickle: bool if True saves file as a pickle in fname directory fname: string Directory to save. osmnx_query_kws: dict options for osmnx query. See osmnx properties at https://osmnx.readthedocs.io/en/stable/osmnx.html. Returns ------- iGraph or NetworkX graph """ if buffer_type=='circle': poly = circle_from_lat_lon(*point, buffer) G = ox.graph_from_polygon(poly, network_type=network_type, **osmnx_query_kws) elif buffer_type=='square': G = ox.graph_from_point(point, distance=buffer, network_type=network_type, **osmnx_query_kws) G.graph['kind'] = 'primal' if dual: G = get_dual(G) if return_igraph: G=get_full_igraph(G) if save_pickle and return_igraph: _save_pickle_file(G,fname, extention='ig') elif save_pickle and not return_igraph: _save_pickle_file(G,fname, extention='nx') return G def graph_from_traffic_zones(shp_directory, network_type='all_private', mark_traffic_zones_to_nodes = False, zone_column=None, convex_hull=False, dual = False, return_igraph = False, save_pickle=False, fname='graphs\\city_graph', osmnx_query_kws={}): """ Get graph from a polygon shapefile of traffic zones. Parameters ---------- shp_directory : string Shapefile directory. network_type: string See osmnx network types mark_traffic_zones_to_nodes: bool If True, add an attribute to nodes marking what zone they belong to. zone_column: bool The column of GeoDataFrame with the names of the zones. required to mark_traffic_zones_to_nodes. convex_hull: bool If True, don't use only traffic zones, but the convex hull of the shapes. This may correct imperfections in traffic zones, but may add nodes not contained in the area analysed. dual: bool If true converts graph to its dual form return_igraph: bool If true retruns the graph as iGraph save_pickle: bool If True saves file as a pickle in fname directory fname: string Directory to save. osmnx_query_kws: dict options for osmnx query. See osmnx properties at https://osmnx.readthedocs.io/en/stable/osmnx.html. Returns ------- iGraph or NetworkX graph """ gdf = gpd.read_file('ZTs') gdf = gdf.to_crs(epsg=4326) polygons = [poly for poly in gdf.geometry] if convex_hull: boundary = gpd.GeoSeries(unary_union(polygons)).convex_hull[0] else: boundary = gpd.GeoSeries(unary_union(polygons))[0] G = ox.graph_from_polygon(boundary, network_type=network_type, **osmnx_query_kws) G.graph['kind'] = 'primal' if mark_traffic_zones_to_nodes: if zone_column == None: raise ValueError('Missing zone column name. If mark_traffic_zones_to_nodes is True, must pass zone_column attribute.') G = add_traffic_zones_to_nodes(G, gdf, zone_column) if dual: G = get_dual(G) if return_igraph: G=get_full_igraph(G) if save_pickle and return_igraph: _save_pickle_file(G,fname, extention='ig') elif save_pickle and not return_igraph: _save_pickle_file(G,fname, extention='nx') return G def add_traffic_zones_to_nodes(G, gdf, zone_column): """ Adds traffic zones to nodes of a graph. Parameters ---------- G : NetworkX Graph or DiGraph Graph for info to be added. gdf: GeoDataFrame GeoDataFrame of the traffic zones zone_column: string Name of the column. zone_column: bool The column of GeoDataFrame with the names of the zones. Returns ------- NetworkX graph """ gdf_g = ox.graph_to_gdfs(G)[0] gdf_g = gdf_g.to_crs(epsg=4326) join = gpd.sjoin(gdf,gdf_g, op='contains') for zone, osmid in zip(join[zone_column], join.osmid): G.nodes[osmid]['zone'] = zone for node in G.nodes: try: G.nodes[node]['zone'] except: G.nodes[node]['zone']=None return G def _reverse_bearing(x): return x + 180 if x < 180 else x - 180 def _count_and_merge(n, bearings): # make twice as many bins as desired, then merge them in pairs # prevents bin-edge effects around common values like 0° and 90° n = n * 2 bins = np.arange(n + 1) * 360 / n count, _ = np.histogram(bearings, bins=bins) # move the last bin to the front, so eg 0.01° and 359.99° will be binned together count = np.roll(count, 1) return count[::2] + count[1::2] def get_orientation_entropy(G, weight=None): Gu = ox.add_edge_bearings(ox.get_undirected(G)) if weight != None: # weight bearings by NUMERIC attribute city_bearings = [] for u, v, k, d in Gu.edges(keys=True, data=True): city_bearings.extend([d['bearing']] * int(d[weight])) b =
pd.Series(city_bearings)
pandas.Series
from caes import friction_coeff import CoolProp.CoolProp as CP # http://www.coolprop.org/coolprop/HighLevelAPI.html#propssi-function from math import pi import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # fixed inputs T = 290 # [K] p = 15.0 # pressures [MPa] depth = 1420 # depth [m] d = 0.53 # diameter [m] # parameters to sweep m_dots = np.arange(0.0, 420, 20) # flow rates [kg/s] epsilons = np.arange(0.002, 0.0061, 0.002) * 1.0e-3 # roughness [m] pressures = np.arange(10.0, 15.0, 1.0) # pressures [MPa] # dataframe to store results attributes = ['T', 'p', 'epsilon', 'd', 'm_dot', 'rho', 'mu', # inputs 'A', 'U', 'Re', 'f'] # results df = pd.DataFrame(columns=attributes) # perform parameter sweep for m_dot in m_dots: for epsilon in epsilons: for p in pressures: # fluid properties, inputs are degrees K and Pa rho = CP.PropsSI('D', 'T', T, 'P', p * 1e6, "Air.mix") # density [kg/m3] mu = CP.PropsSI('V', 'T', T, 'P', p * 1e6, "Air.mix") # viscosity [Pa*s] # velocity A = pi / 4.0 * d ** 2.0 # pipe cross-sectional area [m^2] U = m_dot / (rho * A) # velocity [m/s] # Reynolds number Re = rho * d * abs(U) / mu f = friction_coeff(Re=Re, epsilon=epsilon, d=d) # save results s =
pd.Series(index=attributes)
pandas.Series
# -*- coding: utf-8 -*- import collections from functools import partial import numpy as np import pytest from pandas import Series, Timestamp from pandas.core import ( common as com, ops, ) def test_get_callable_name(): getname = com.get_callable_name def fn(x): return x lambda_ = lambda x: x # noqa: E731 part1 = partial(fn) part2 = partial(part1) class somecall(object): def __call__(self): return x # noqa assert getname(fn) == 'fn' assert getname(lambda_) assert getname(part1) == 'fn' assert getname(part2) == 'fn' assert getname(somecall()) == 'somecall' assert getname(1) is None def test_any_none(): assert (com._any_none(1, 2, 3, None)) assert (not com._any_none(1, 2, 3, 4)) def test_all_not_none(): assert (com._all_not_none(1, 2, 3, 4)) assert (not com._all_not_none(1, 2, 3, None)) assert (not com._all_not_none(None, None, None, None)) def test_random_state(): import numpy.random as npr # Check with seed state = com.random_state(5) assert state.uniform() == npr.RandomState(5).uniform() # Check with random state object state2 = npr.RandomState(10) assert com.random_state(state2).uniform() == npr.RandomState(10).uniform() # check with no arg random state assert com.random_state() is np.random # Error for floats or strings with pytest.raises(ValueError): com.random_state('test') with pytest.raises(ValueError): com.random_state(5.5) @pytest.mark.parametrize('left, right, expected', [ (Series([1], name='x'), Series([2], name='x'), 'x'), (
Series([1], name='x')
pandas.Series
''' Este programa: 1. Lee los archivos de una ruta si son de Nielsen y los clasifica segun su extension. 2. Los transforma hasta convertirlos en una única tabla. 3. Exporta el resultado en un archivo .csv Se asume que el nombre de los archivo sigue esta estructura: Nielsen - Extraccion Papel Higienico Wm_Nacional y areas a P10'20.xlsx ''' import os import pandas as pd from datetime import datetime, date, timedelta import win32com.client import csv import sys from tempfile import NamedTemporaryFile # Variables de los archivos den entrada y salida folder = 'c:\\Users\\erick\\Desktop\\Archivos' lista_campos = ['Periodo', 'Region', 'Country', 'Item Type'] nombre_primera_columa = 'Region' ruta_de_salida = 'c:\\Users\\erick\\Desktop\\' excel_password = 'password' xlApp = win32com.client.Dispatch("Excel.Application") def inicio_del_mes(): #Devuelve el primer día del mes actual en formato de fecha return datetime.now().date().replace(day=1) def anio(): # Año actual en formato YY convertido a texto return str((inicio_del_mes() - timedelta(days=1)).year)[-2:] def mes(): # Mes anterior al actual en formato MM convertido a texto return ("00" + str((inicio_del_mes() - timedelta(days=1)).month))[-2:] def mes_ant(): # Mes anterior a mes() en formato MM, el lag de 32 dias garantiza dos meses de retraso return ("00" + str((inicio_del_mes() - timedelta(days=32)).month))[-2:] def valid_period(file_name): # Valida que el periodo del archivo se encuentre entre los dos meses anteriores if file_name.split('.')[0][-5:][-2:] == anio() and file_name.split('.')[0][-5:][:2] in [mes(), mes_ant()]: return True else: return False def valid_extension(file_name): # Valida si un archivo tiene la extensión correcta if file_name.endswith(".xls") or file_name.endswith(".xlsx"): return True elif file_name.endswith(".xlsb"): return True else: return False def valid_file(file_name): # Comprueba que el archivo cumpla las tres condiciones para considerarse valido if valid_extension(file_name) and valid_period(file_name) and file_name.startswith("Nielsen"): return True else: return False all_files = [] def list_of_files(file_path): # Crea una lista con los archivos del directorio que son validos en fecha y extensión for subfolder, folder, files in os.walk(file_path): [all_files.append(subfolder + os.sep + file) for file in files if valid_file(file)] def export_to_csv(df, filename): # Guarda el DF en un archivo CSV en la ruta de la variable ruta_de_salida df.to_csv(ruta_de_salida + filename, index = False) def delete_top_rows(dataframe): # Identifica en que fila se encuentra el primer encabezado (variable nombre_primera_columa) top_row = dataframe.index[dataframe[dataframe.columns[0]] == nombre_primera_columa].tolist() # Elimina las primeras filas que no tienen datos dataframe = dataframe.iloc[top_row[0]:] dataframe = dataframe.reset_index(drop=True) # Promover primera fila como encabezado de columna new_header = dataframe.iloc[0] dataframe = dataframe[1:] dataframe.columns = new_header return dataframe def select_columns(filename, old_df): # Toma del nombre del archivo el último periodo con datos row_value = filename.split('.')[0][-6:-3] + "'" + filename.split('.')[0][-2:] # Selecciona columnas especificadas en lista_campos + ultimo periodo old_df['Periodo'] = row_value old_df = old_df[lista_campos + [row_value]] old_df.rename(columns = {row_value:'Value'}, inplace = True) return old_df def excel_with_password(filename): # Abre el archivo xlApp = win32com.client.Dispatch("Excel.Application") xlwb = xlApp.Workbooks.Open(filename, False, True, None, excel_password) # Selecciona la pestaña del archivo xlws = xlwb.Sheets(1) # Indice de la pestaña (empieza en 1) #print (xlws.Name) #print (xlws.Cells(1, 1)) # Crea un archivo temporal en donde deposita los datos f = NamedTemporaryFile(delete=False, suffix='.csv') f.close() os.unlink(f.name) # Guarda los datos en un csv y luego los lee con pandas xlCSVWindows = 0x17 # Convierte los datos en formato CSV (Windows) xlws.SaveAs(Filename=f.name, FileFormat=xlCSVWindows) # Salva a CSV return f.name def main(): list_of_files(folder) # DF vacío al que se le anexa cada archivo valido en el sig. for loop data = pd.DataFrame(columns=lista_campos + ['Value']) for file in all_files: if file.endswith(".xlsb"): # Leer archivo binario Excel df = pd.read_excel(file, engine='pyxlsb') elif file.endswith(".xls") or file.endswith(".xlsx"): try: df =
pd.read_excel(file)
pandas.read_excel
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not
tables.which_lib_version("lzo")
pandas.tests.io.pytables.common.tables.which_lib_version
#!/usr/bin/env python3 # author : <NAME> # date : 10.01.2019 # license : BSD-3 # ============================================================================== import os.path import sys import time import argparse import numpy as np import pandas as pd import sqlite3 as sql from collections import defaultdict from pmapper.pharmacophore import Pharmacophore def create_parser(): parser = argparse.ArgumentParser( description='Iteratively create ligand-based pharmacophore models.') parser.add_argument('-adb', '--in_active_database', metavar='active.db', required=True, help='input SQL database file with active compounds') parser.add_argument('-idb', '--in_inactive_database', metavar='inactive.db', required=True, help='input SQL database file with active compounds') parser.add_argument('-ats', '--in_active_trainset', metavar='active_training_set.txt', required=True, help='txt file with information about active models: ' 'model, hash, stereo, nact, ninact, nact/ninact, conf_id, feature_ids') parser.add_argument('-its', '--in_inactive_trainset', metavar='inactive_training_set.txt', required=True, help='txt file with information about active models: ' 'model, hash, stereo, nact, ninact, nact/ninact, conf_id, feature_ids') parser.add_argument('-o', '--output_path', metavar='output/path', required=False, default=None, help='output path to the models of pharmacophores. ' 'If None, the path will be generated automatically.') parser.add_argument('-tol', '--tolerance', default=0, help='tolerance volume for the calculation of the stereo sign. If the volume of the ' 'tetrahedron created by four points less than tolerance then those points are considered ' 'lying on the same plane (flat; stereo sign is 0).') parser.add_argument('-l', '--lower', default=4, help='number of features of input models') return parser def _keep_best_models(df, df_sub_act, df_sub_inact, df_ph_act, df_ph_inact, save_files): df_sub_act = pd.merge(df_sub_act, df[['hash']], on='hash', how='inner').reset_index(drop=True) df_ph_act = pd.merge(df_ph_act, df_sub_act[['conf_id']].drop_duplicates(subset=['conf_id']), on='conf_id', how='inner').reset_index(drop=True) if not df_ph_inact.empty: df_sub_inact = pd.merge(df_sub_inact, df[['hash']], on='hash', how='inner').reset_index(drop=True) df_ph_inact = pd.merge(df_ph_inact, df_sub_inact[['conf_id']].drop_duplicates(subset=['conf_id']), on='conf_id', how='inner').reset_index(drop=True) if save_files: path_internal = os.path.join(save_files[0], 'internal_statistics_{}_pharm{}.txt'.format(save_files[1], save_files[2])) path_sub_act = os.path.join(save_files[0], 'ph_active_{}_pharm{}.txt'.format(save_files[1], save_files[2])) df.to_csv(path_internal, index=None, sep='\t') df_sub_act.to_csv(path_sub_act, index=None, sep='\t') if not df_sub_inact.empty: path_sub_inact = os.path.join(save_files[0], 'ph_inactive_{}_pharm{}.txt'.format(save_files[1], save_files[2])) df_sub_inact.to_csv(path_sub_inact, index=None, sep='\t') return df_sub_act, df_sub_inact, df_ph_act, df_ph_inact # generator return mol_name, conf_id, hash, labels def _gen_quadruplets(df_ph, lower, tol): for mol_name, conf_id, pharm in zip(df_ph['mol_name'], df_ph['conf_id'], df_ph['pharm']): if pharm: for hash, labels in pharm.iterate_pharm(lower, lower, tol): yield mol_name, conf_id, hash, labels # generator return mol_name, conf_id, hash, labels def _plus_one_feature(df_ph, df_sub): for mol_name, conf_id, pharm in zip(df_ph['mol_name'], df_ph['conf_id'], df_ph['pharm']): list_ids = df_sub[df_sub['conf_id'] == conf_id] list_ids = [tuple(map(int, l.split(','))) for l in list_ids['feature_ids']] if pharm: for hash, labels in pharm.iterate_pharm1(list_ids): yield mol_name, conf_id, hash, labels # return type DataFrame: columns=['hash', 'count', 'mol_name', 'conf_id', 'feature_ids'] def gen_models(def_generator, df_0): dct = defaultdict(list) for mol_name, conf_id, hash, labels in def_generator: dct['hash'].append(hash) dct['mol_name'].append(mol_name) dct['conf_id'].append(conf_id) dct['feature_ids'].append(','.join(map(str, labels))) df = pd.DataFrame(dct) if df.empty: return df_0, df count_df = df.drop_duplicates(subset=['mol_name', 'hash']) count_df = count_df.groupby(['hash'], sort=True).size().reset_index(name='count') df = pd.merge(df, count_df, on='hash', how='right') df = df.sort_values(by=['count', 'hash'], ascending=False) return df_0, df[['hash', 'count', 'mol_name', 'conf_id', 'feature_ids']] # return DataFrame of pharmacophore representation molecules: columns=['mol_name', 'conf_id', 'pharm'] def load_pharmacophores(in_db, in_training_set): mol_names = [name.strip().split('\t')[1] for name in open(in_training_set).readlines()] confs_pharm = defaultdict(list) with sql.connect(in_db) as con: cur = con.cursor() cur.execute("SELECT bin_step FROM settings") db_bin_step = cur.fetchone()[0] for mol_name in mol_names: cur.execute("SELECT conf_id, feature_label, x, y, z FROM feature_coords WHERE conf_id IN " "(SELECT conf_id from conformers WHERE mol_name = ?)", (mol_name,)) res = cur.fetchall() confs = defaultdict(list) for r in res: confs[r[0]].append((r[1], tuple(r[2:]))) # dict(conf_id: (feature_label, x, y, z)) for conf_id, coord in confs.items(): p = Pharmacophore(bin_step=db_bin_step, cached=True) p.load_from_feature_coords(coord) confs_pharm['mol_name'].append(mol_name) confs_pharm['conf_id'].append(conf_id) confs_pharm['pharm'].append(p) return
pd.DataFrame(confs_pharm)
pandas.DataFrame
import lxml.etree as ET import pandas as pd import numpy as np import xml.sax try: from emeraldtriangles.io._landxml import parse except: class LandXMLHandler(xml.sax.ContentHandler): chunk_size = 1024 def __init__(self): self.path = [] self.meta = {} self.surfaces = {} self.content = "" def add_meta(self, path, meta, attributes): if len(path) == 0: meta.update(attributes) else: if path[0] not in meta: meta[path[0]] = {} self.add_meta(path[1:], meta[path[0]], attributes) def startElement(self, tag, attributes): self.path.append(tag) if self.path[:2] == ["LandXML", "Surfaces"]: if self.path == ["LandXML", "Surfaces", "Surface"]: self.surfaces[attributes["name"]] = self.surface = { "vertices": [], "triangles": [] } self.vertices = None self.triangles = None self.vertice_idx = 0 self.triangle_idx = 0 if tag in ("P", "F"): self.content = "" else: self.add_meta(self.path[1:], self.meta, attributes) def endElement(self, tag): if tag == "P": self.append_point([float(val) for val in self.content.strip().split(" ")]) self.content = "" elif tag == "F": self.append_triangle([int(val) for val in self.content.strip().split(" ")]) self.content = "" elif tag == "Surface": self.surface["vertices"] = pd.concat(self.surface["vertices"]).loc[:self.vertice_idx - 1] self.surface["triangles"] =
pd.concat(self.surface["triangles"])
pandas.concat
""" This is technical indicator Relative strength index """ __author__ = '<EMAIL>' import datetime import pandas as pd from Indicator import Indicator class Rsi(Indicator): def __init__(self, **kwargs): super(Rsi, self).__init__(**kwargs) self._data = pd.DataFrame(data=self.feed()["dataset_data"]["data"], columns=self.feed()["dataset_data"]["column_names"]) def simulation(self, plot=None, startDate=None, endDate=None, window_length=14, sma=False): """ :param sma: :param window_length: :param plot: :param startDate: :param endDate: :return: """ self._data['Date'] =
pd.to_datetime(self._data['Date'], format='%Y-%m-%d')
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Nov 30 22:09:32 2018 @author: <NAME>, <NAME>, <NAME>, <NAME> """ import numpy as np import surprise from surprise import BaselineOnly from surprise import Dataset from surprise import get_dataset_dir from surprise.model_selection import train_test_split import pandas as pd from surprise import accuracy from surprise import PredictionImpossible from surprise import Prediction from operator import itemgetter from surprise import AlgoBase from surprise import NMF from surprise import SVD from surprise.model_selection.split import get_cv #Parameter Declaration ############################################ Prediction Model ######################################### def predict(uid, iid, r_ui=None, clip=True, verbose=False): """Compute the rating prediction for given user and item. The ``predict`` method converts raw ids to inner ids and then calls the ``estimate`` method which is defined in every derived class. If the prediction is impossible (e.g. because the user and/or the item is unkown), the prediction is set according to :meth:`default_prediction() <surprise.prediction_algorithms.algo_base.AlgoBase.default_prediction>`. Args: uid: (Raw) id of the user. See :ref:`this note<raw_inner_note>`. iid: (Raw) id of the item. See :ref:`this note<raw_inner_note>`. r_ui(float): The true rating :math:`r_{ui}`. Optional, default is ``None``. clip(bool): Whether to clip the estimation into the rating scale, that was set during dataset creation. For example, if :math:`\\hat{r}_{ui}` is :math:`5.5` while the rating scale is :math:`[1, 5]`, then :math:`\\hat{r}_{ui}` is set to :math:`5`. Same goes if :math:`\\hat{r}_{ui} < 1`. Default is ``True``. verbose(bool): Whether to print details of the prediction. Default is False. Returns: A :obj:`Prediction\ <surprise.prediction_algorithms.predictions.Prediction>` object containing: - The (raw) user id ``uid``. - The (raw) item id ``iid``. - The true rating ``r_ui`` (:math:`\\hat{r}_{ui}`). - The estimated ratino ig (:math:`\\hat{r}_{ui}`). - Some additional details about the prediction that might be useful for later analysis. """ # Convert raw ids to inner ids # print("inner ids: ", uid, ", ", iid) try: iuid = WholeSet.to_inner_uid(uid) # print('uid = ',uid,'iuid = ', iuid) except ValueError: print("545: uid error!") iuid = 'UKN__' + str(uid) try: iiid = WholeSet.to_inner_iid(iid) except ValueError: print("545: iid error!") iiid = 'UKN__' + str(iid) details = {} try: est = 0.0 for mm in range(m): ############################################ Estimation from Adaboost Prediction Model ######################################### est += ABPredictM[mm][iuid][iiid] * recm_w[mm] # If the details dict was also returned if isinstance(est, tuple): est, details = est details['was_impossible'] = False except PredictionImpossible as e: est = default_prediction() details['was_impossible'] = True details['reason'] = str(e) # clip estimate into [lower_bound, higher_bound] if clip: lower_bound, higher_bound = trainset.rating_scale est = min(higher_bound, est) est = max(lower_bound, est) pred = Prediction(uid, iid, r_ui, est, details,abs(r_ui - est)) if verbose: print(pred) return pred m = 1 # Number of Adaboost iterations D = 5-1 # Rating range yita = 0.5 # yita denotes how much the average sample error influences the update process, set 0.5 by experience rho = 0.2 # Adaboost update rate, rho falls within [0.2,0.3,0.4,0.5,0.6] recm_w = np.ones(m) # Adaboost weight # Data declaration and spliting into train & test data = Dataset.load_builtin('ml-100k') # data = Dataset.load_builtin('ml-1m') WholeSet = data.build_full_trainset() # Total data set for universal indexing # choosing algorithm: ItemBased / UserBased # sim_options = {'name': 'pearson_baseline', 'user_based': False} sim_options = {'user_based': False} bsl_options = {'method': 'sgd', 'learning_rate': .00005, 'reg_all': 0.02} cv = get_cv(None) CrossVRMSE = np.zeros(5,dtype=float) Crossiter = 0 for (trainset, ABtestset) in cv.split(data): # Initialize testset T_train for Adaboost iterations, it is identical with trainset testset = [None]*trainset.n_ratings iter = 0 for uid,iid,ratings in trainset.all_ratings(): # print("is uid,iid int or not?", isinstance(uid, int)) ruid = trainset.to_raw_uid(uid) riid = trainset.to_raw_iid(iid) # print("and raw ids are:",ruid,riid) testset[iter] = [ruid,riid,ratings] # print("testset element are:", testset[iter]) iter+=1 # Output testset to a csv file PM = pd.DataFrame(testset) PM.to_csv("TestSet.csv") # Initializing algorithm with predefined options # algo = NMF(biased = True) algo = SVD(biased = True) # algo = KNNBaseline() # Initializing sizes for Adaboost parameter matrices size_ui = (trainset.n_users + 1, trainset.n_items + 1) size_mui = (m,trainset.n_users + 1, trainset.n_items + 1) size_wmui = (m,WholeSet.n_users + 1, WholeSet.n_items + 1) # Initializing weight matrix W = np.ones(size_ui) # Initializing Adaboost Prediction matrix from ABtestset ABPredictM = np.zeros(size_wmui) # Initializing weight-update Prediction matrix from T_train PredictM = np.zeros(size_mui) # Initializing RMSE vector to store RMSE of ABtestset from each model in Adaboost iteration ABRMSE = np.zeros(m,dtype=float) # Initializing Rating Matrix to store true ratings from T_train RatingM = np.zeros(size_ui) for uid, iid, rating in trainset.all_ratings(): RatingM[uid,iid] = rating # Starting the main Adaboost loop for mm in range(m): #Obtain prediction using current W ############################################ Adaboost Step 1 ######################################### # algo = BaselineOnly(bsl_options = bsl_options) algo.weightUpdate(W) predictions = algo.fit(trainset).test(ABtestset) # predictions = algo.test(ABtestset) ABRMSE[mm] = accuracy.rmse(predictions) for (ruid, riid, _, est, _,_) in predictions: # print("predictM loop: ", ruid,riid,est) uid = WholeSet.to_inner_uid(ruid) iid = WholeSet.to_inner_iid(riid) ABPredictM[mm, uid, iid] = est ############################################ Adaboost Step 2 ######################################### # predictions = algo.fit(trainset).test(testset) # algo = BaselineOnly(bsl_options = bsl_options) # algo.weightUpdate(W) predictions = algo.fit(trainset).test(testset) # predictions = algo.test(testset) # PM = pd.DataFrame(predictions) # PM.to_csv("CurrentPredictions.csv") # accuracy.rmse(predictions) #print current RMSE accuracy # sortedlist = sorted(predictions, key=lambda tup: tup[5], reverse=True)[:T] #Sort prediction in descending order of rating errors for the fist T element # print("trainset size:", trainset.n_users, trainset.n_items) # print("trainset iid:", trainset.to_inner_iid('1080')) # print("wholeset iid:", WholeSet.to_inner_iid('1080')) for (ruid, riid, _, est, _,_) in predictions: #Update current weight-update Prediction matrix # print("predictM loop: ", ruid,riid,est) uid = trainset.to_inner_uid(ruid) iid = trainset.to_inner_iid(riid) PredictM[mm][uid][iid] = est UE = np.ones(size_ui) #Initializing Adaboost parameters SGNM = (trainset.n_users+1)*[(trainset.n_items+1)*[None]] errRate = 0 w_err_sum = 0 ############################################ Adaboost Iteration loop######################################### for ruid, riid, rating in testset: # from raw ids to inner ids uid = trainset.to_inner_uid(ruid) iid = trainset.to_inner_iid(riid) ######################################################### # Formula (11) # ######################################################### abs_err = abs(rating - PredictM[mm][uid][iid]) ######################################################## # Formula(13) # ######################################################## UE[uid][iid] = 1 + yita * rating for mmm in range(mm+1): ######################################################## # Formula(13) # ######################################################## UE[uid][iid] -= yita * PredictM[mmm][uid][iid] / (mm+1) / D ######################################################## # Formula(11) # ######################################################## w_err_sum += W[uid][iid] ######################################################## # Formula(11) # ######################################################## errRate += W[uid][iid]*(abs_err)/D ######################################################## # Formula(11) # ######################################################## errRate = errRate / w_err_sum recm_w[mm] = np.log((1 - errRate) / errRate ) # Calculating Adaboost Prediction Model weights PM =
pd.DataFrame(UE)
pandas.DataFrame
from typing import Dict from pint import DimensionalityError, UndefinedUnitError from portfolyo.core.pfline import interop as io from portfolyo.tools.nits import Q_ import pandas as pd import numpy as np import pytest idx1 = pd.date_range("2020", freq="MS", periods=12) val1 = 100 + 20 * np.random.random(len(idx1)) s1 = pd.Series(val1, idx1) idx2 = pd.date_range("2020-08", freq="MS", periods=12) val2 = 200 + 50 * np.random.random(len(idx2)) s2 = pd.Series(val2, idx2) idx_i = idx1.intersection(idx2).sort_values() s1_i = s1.loc[idx_i] s2_i = s2.loc[idx_i] idx_u = idx1.union(idx2).sort_values() s1_u = pd.Series((s1.get(i) for i in idx_u), idx_u) s2_u = pd.Series((s2.get(i) for i in idx_u), idx_u) def id_fn(data): if isinstance(data, Dict): return str({key: id_fn(val) for key, val in data.items()}) if isinstance(data, pd.Series): if isinstance(data.index, pd.DatetimeIndex): return "ts" else: return f"series (idx: {''.join(str(i) for i in data.index)})" if isinstance(data, pd.DataFrame): return f"df (columns: {''.join(str(c) for c in data.columns)})" if isinstance(data, io.InOp): return "" return str(data) @pytest.mark.parametrize( ("data_in", "expected_io", "expected_io2"), [ # One value # . unit-agnostic ( 23.0, io.InOp(agn=23.0), ValueError, ), # . unitless ( Q_(23.0, ""), io.InOp(nodim=23.0), ValueError, ), # . known unit ( Q_(-120.0, "MW"), io.InOp(w=-120), ValueError, ), ( Q_(120e-3, "GW"), io.InOp(w=120), ValueError, ), ( Q_(432e9, "J/h"), io.InOp(w=120), ValueError, ), ( Q_(90_000.0, "MWh"), io.InOp(q=90_000), ValueError, ), ( Q_(90.0, "GWh"), io.InOp(q=90_000), ValueError, ), ( Q_(50.0, "Eur/MWh"), io.InOp(p=50), ValueError, ), ( Q_(5.0, "ctEur/kWh"), io.InOp(p=50), ValueError, ), ( Q_(4_500_000.0, "Eur"), io.InOp(r=4_500_000), ValueError, ), ( Q_(4.5, "MEur"), io.InOp(r=4_500_000), ValueError, ), # . unknown unit ( Q_(4.5, "MWh/Eur"), UndefinedUnitError, None, ), # One or several values # . name but no unit ( {"nodim": 120.0}, io.InOp(nodim=120), ValueError, ), ( pd.Series({"nodim": 120.0}), io.InOp(nodim=120), ValueError, ), ( {"w": 120.0}, io.InOp(w=120), ValueError, ), ( pd.Series({"w": 120.0}), io.InOp(w=120), ValueError, ), ( {"q": -90_000.0}, io.InOp(q=-90_000), ValueError, ), ( pd.Series({"q": -90_000.0}), io.InOp(q=-90_000), ValueError, ), ( {"p": 50.0}, io.InOp(p=50), ValueError, ), ( pd.Series({"p": 50.0}), io.InOp(p=50), ValueError, ), ( {"r": 4.5e6}, io.InOp(r=4_500_000), ValueError, ), ( pd.Series({"r": 4.5e6}), io.InOp(r=4_500_000), ValueError, ), ( {"w": 120.0, "q": -90_000}, io.InOp(w=120, q=-90_000), ValueError, ), ( pd.Series({"w": 120.0, "q": -90_000}), io.InOp(w=120.0, q=-90_000), ValueError, ), ( {"w": 120.0, "p": 50}, io.InOp(w=120.0, p=50), ValueError, ), ( pd.Series({"w": 120.0, "p": 50}), io.InOp(w=120.0, p=50), ValueError, ), ( {"w": 120.0, "p": 50.0, "r": 4.5e6}, io.InOp(w=120.0, p=50.0, r=4.5e6), ValueError, ), ( pd.Series({"w": 120.0, "p": 50.0, "r": 4.5e6}), io.InOp(w=120.0, p=50.0, r=4.5e6), ValueError, ), ( {"w": 120.0, "p": 50.0, "r": 4.5e6}, io.InOp(w=120.0, p=50.0, r=4.5e6), ValueError, ), ( pd.Series({"w": 120.0, "p": 50.0, "r": 4.5e6}), io.InOp(w=120.0, p=50.0, r=4.5e6), ValueError, ), # . name and correct unit ( {"p": Q_(50.0, "Eur/MWh")}, io.InOp(p=50), ValueError, ), ( pd.Series({"p": Q_(50.0, "Eur/MWh")}), io.InOp(p=50), ValueError, ), ( pd.Series({"p": 50}).astype("pint[Eur/MWh]"), io.InOp(p=50), ValueError, ), ( {"r": Q_(4.5, "MEur")}, io.InOp(r=4_500_000), ValueError, ), ( pd.Series({"r": Q_(4.5, "MEur")}), io.InOp(r=4_500_000), ValueError, ), ( pd.Series({"r": 4.5}).astype("pint[MEur]"), io.InOp(r=4_500_000), ValueError, ), ( {"w": 120.0, "q": Q_(-90_000.0, "MWh")}, io.InOp(w=120.0, q=-90_000), ValueError, ), ( pd.Series({"w": 120.0, "q": Q_(-90_000.0, "MWh")}), io.InOp(w=120.0, q=-90_000), ValueError, ), ( pd.Series({"w": 120.0, "q": Q_(-90.0, "GWh")}), io.InOp(w=120.0, q=-90_000), ValueError, ), # . unknown name -> KeyError ( {"z": 28.0}, KeyError, None, ), ( pd.Series({"z": 28.0}), KeyError, None, ), ( {"z": Q_(120.0, "MWh")}, KeyError, None, ), ( pd.Series({"z": Q_(120.0, "MWh")}), KeyError, None, ), # . mix of know and unknown names -> KeyError ( {"w": 120.0, "z": 28.0}, KeyError, None, ), ( pd.Series({"w": 120.0, "z": 28.0}), KeyError, None, ), ( {"w": 120.0, "p": 50.0, "z": 28.0}, KeyError, None, ), ( pd.Series({"w": 120.0, "p": 50.0, "z": 28.0}), KeyError, None, ), # . combination of name with incorrect unit -> error ( {"w": Q_(90.0, "MWh")}, DimensionalityError, None, ), ( pd.Series({"w": Q_(90.0, "MWh")}), DimensionalityError, None, ), ( pd.Series({"w": 90}).astype("pint[MWh]"), DimensionalityError, None, ), ( {"p": Q_(90.0, "MWh")}, DimensionalityError, None, ), ( pd.Series({"p": Q_(90.0, "MWh")}), DimensionalityError, None, ), ( {"p": 50.0, "w": Q_(90.0, "MWh")}, DimensionalityError, None, ), ( pd.Series({"p": 50.0, "w": Q_(90.0, "MWh")}), DimensionalityError, None, ), # One timeseries # . unit-agnostic ( s1, io.InOp(agn=s1), io.InOp(agn=s1), ), # . unitless # (s1.astype("pint[dimensionless]"), io.InterOp(nodim=s1)), # TODO: fix # . known unit ( s1.astype("pint[MW]"), io.InOp(w=s1), io.InOp(w=s1), ), ( (s1 / 1000).astype("pint[GW]"), # series with pint unit io.InOp(w=s1), io.InOp(w=s1), ), ( pd.Series([Q_(v, "MW") for v in val1], idx1), # series of Quantities io.InOp(w=s1), io.InOp(w=s1), ), ( s1.astype("pint[GWh]"), io.InOp(q=s1 * 1000), io.InOp(q=s1 * 1000), ), ( s1.astype("pint[Eur/MWh]"), io.InOp(p=s1), io.InOp(p=s1), ), ( s1.astype("pint[MEur]"), io.InOp(r=s1 * 1e6), io.InOp(r=s1 * 1e6), ), # . unknown unit ( s1.astype("pint[Wh/MEur]"), UndefinedUnitError, None, ), # One or several timeseries # . name but no unit ( {"w": s1}, io.InOp(w=s1), io.InOp(w=s1), ), (
pd.DataFrame({"w": s1})
pandas.DataFrame
import numpy as np import matplotlib.pyplot as plt import pandas as pd import math import scipy.stats as stats from matplotlib import gridspec from matplotlib.lines import Line2D from .util import * import seaborn as sns from matplotlib.ticker import FormatStrFormatter import matplotlib.pylab as pl import matplotlib.dates as mdates from matplotlib.patches import Patch from matplotlib.lines import Line2D import matplotlib.patheffects as pe from .sanker import Sanker import imageio class Visualizer(): def __init__(self, district_list, private_list, city_list, contract_list, bank_list, leiu_list): self.district_list = district_list.copy() self.private_list = private_list.copy() for x in city_list: self.private_list.append(x) self.contract_list = contract_list self.bank_list = bank_list self.leiu_list = leiu_list self.private_districts = {} for x in self.private_list: self.private_districts[x.name] = [] for xx in x.district_list: self.private_districts[x.name].append(xx) inflow_inputs = pd.read_csv('calfews_src/data/input/calfews_src-data.csv', index_col=0, parse_dates=True) x2_results = pd.read_csv('calfews_src/data/input/x2DAYFLOW.csv', index_col=0, parse_dates=True) self.observations = inflow_inputs.join(x2_results) self.observations['delta_outflow'] = self.observations['delta_inflow'] + self.observations['delta_depletions'] - self.observations['HRO_pump'] - self.observations['TRP_pump'] self.index_o = self.observations.index self.T_o = len(self.observations) self.day_month_o = self.index_o.day self.month_o = self.index_o.month self.year_o = self.index_o.year kern_bank_observations = pd.read_csv('calfews_src/data/input/kern_water_bank_historical.csv') kern_bank_observations = kern_bank_observations.set_index('Year') semitropic_bank_observations = pd.read_csv('calfews_src/data/input/semitropic_bank_historical.csv') semitropic_bank_observations = semitropic_bank_observations.set_index('Year') total_bank_kwb = np.zeros(self.T_o) total_bank_smi = np.zeros(self.T_o) for x in range(0, self.T_o): if self.month_o[x] > 9: year_str = self.year_o[x] else: year_str = self.year_o[x] - 1 if self.month_o[x] == 9 and self.day_month_o[x] == 30: year_str = self.year_o[x] total_bank_kwb[x] = kern_bank_observations.loc[year_str, 'Ag'] + kern_bank_observations.loc[year_str, 'Mixed Purpose'] deposit_history = semitropic_bank_observations[semitropic_bank_observations.index <= year_str] total_bank_smi[x] = deposit_history['Metropolitan'].sum() + deposit_history['South Bay'].sum() self.observations['kwb_accounts'] = pd.Series(total_bank_kwb, index=self.observations.index) self.observations['smi_accounts'] = pd.Series(total_bank_smi, index=self.observations.index) def get_results_sensitivity_number(self, results_file, sensitivity_number, start_month, start_year, start_day): self.values = {} numdays_index = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] with h5py.File(results_file, 'r') as f: data = f['s' + sensitivity_number] names = data.attrs['columns'] names = list(map(lambda x: str(x).split("'")[1], names)) df_data = pd.DataFrame(data[:], columns=names) for x in df_data: self.values[x] = df_data[x] datetime_index = [] monthcount = start_month yearcount = start_year daycount = start_day leapcount = np.remainder(start_year, 4) for t in range(0, len(self.values[x])): datetime_index.append(str(yearcount) + '-' + str(monthcount) + '-' + str(daycount)) daycount += 1 if leapcount == 0 and monthcount == 2: numdays_month = numdays_index[monthcount - 1] + 1 else: numdays_month = numdays_index[monthcount - 1] if daycount > numdays_month: daycount = 1 monthcount += 1 if monthcount == 13: monthcount = 1 yearcount += 1 leapcount += 1 if leapcount == 4: leapcount = 0 self.values['Datetime'] = pd.to_datetime(datetime_index) self.values = pd.DataFrame(self.values) self.values = self.values.set_index('Datetime') self.index = self.values.index self.T = len(self.values.index) self.day_year = self.index.dayofyear self.day_month = self.index.day self.month = self.index.month self.year = self.index.year self.starting_year = self.index.year[0] self.ending_year = self.index.year[-1] self.number_years = self.ending_year - self.starting_year total_kwb_sim = np.zeros(len(self.values)) total_smi_sim = np.zeros(len(self.values)) for district_partner in ['DLR', 'KCWA', 'ID4', 'SMI', 'TJC', 'WON', 'WRM']: total_kwb_sim += self.values['kwb_' + district_partner] self.values['kwb_total'] = pd.Series(total_kwb_sim, index = self.values.index) for district_partner in ['SOB', 'MET']: total_smi_sim += self.values['semitropic_' + district_partner] self.values['smi_total'] = pd.Series(total_smi_sim, index = self.values.index) def set_figure_params(self): self.figure_params = {} self.figure_params['delta_pumping'] = {} self.figure_params['delta_pumping']['extended_simulation'] = {} self.figure_params['delta_pumping']['extended_simulation']['outflow_list'] = ['delta_outflow', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['pump1_list'] = ['delta_HRO_pump', 'HRO_pump'] self.figure_params['delta_pumping']['extended_simulation']['pump2_list'] = ['delta_TRP_pump', 'TRP_pump'] self.figure_params['delta_pumping']['extended_simulation']['scenario_labels'] = ['Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['simulation_labels'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['observation_labels'] = ['HRO_pump', 'TRP_pump', 'delta_outflow'] self.figure_params['delta_pumping']['extended_simulation']['agg_list'] = ['AS-OCT', 'AS-OCT', 'D'] self.figure_params['delta_pumping']['extended_simulation']['unit_mult'] = [1.0, 1.0, cfs_tafd] self.figure_params['delta_pumping']['extended_simulation']['max_value_list'] = [5000, 5000, 15] self.figure_params['delta_pumping']['extended_simulation']['use_log_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['use_cdf_list'] = [False, False, True] self.figure_params['delta_pumping']['extended_simulation']['scenario_type_list'] = ['observation', 'validation', 'scenario'] self.figure_params['delta_pumping']['extended_simulation']['x_label_list'] = ['Total Pumping, SWP Delta Pumps (tAF/year)', 'Total Pumping, CVP Delta Pumps (tAF/year)', 'Daily Exceedence Probability', ''] self.figure_params['delta_pumping']['extended_simulation']['y_label_list'] = ['Probability Density', 'Probability Density', 'Daily Delta Outflow (tAF)', 'Relative Frequency of Water-year Types within Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names1'] = ['Historical (1996-2016) Observations', 'Historical (1996-2016) Model Validation', 'Extended Simulation'] self.figure_params['delta_pumping']['extended_simulation']['legend_label_names2'] = ['Critical', 'Dry', 'Below Normal', 'Above Normal', 'Wet'] self.figure_params['state_estimation'] = {} for x in ['publication', 'sacramento', 'sanjoaquin', 'tulare']: self.figure_params['state_estimation'][x] = {} self.figure_params['state_estimation'][x]['non_log'] = ['Snowpack (SWE)',] self.figure_params['state_estimation'][x]['predictor values'] = ['Mean Inflow, Prior 30 Days (tAF/day)','Snowpack (SWE)'] self.figure_params['state_estimation'][x]['colorbar_label_index'] = [0, 30, 60, 90, 120, 150, 180] self.figure_params['state_estimation'][x]['colorbar_label_list'] = ['Oct', 'Nov', 'Dec', 'Jan', 'Feb', 'Mar', 'Apr'] self.figure_params['state_estimation'][x]['subplot_annotations'] = ['A', 'B', 'C', 'D'] self.figure_params['state_estimation'][x]['forecast_periods'] = [30,'SNOWMELT'] self.figure_params['state_estimation'][x]['all_cols'] = ['DOWY', 'Snowpack', '30MA'] self.figure_params['state_estimation'][x]['forecast_values'] = [] for forecast_days in self.figure_params['state_estimation'][x]['forecast_periods']: if forecast_days == 'SNOWMELT': self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Snowmelt Season (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append('Snowmelt Flow') else: self.figure_params['state_estimation'][x]['forecast_values'].append('Flow Estimation, Next ' + str(forecast_days) + ' Days (tAF)') self.figure_params['state_estimation'][x]['all_cols'].append(str(forecast_days) + ' Day Flow') self.figure_params['state_estimation']['publication']['watershed_keys'] = ['SHA', 'ORO', 'MIL', 'ISB'] self.figure_params['state_estimation']['publication']['watershed_labels'] = ['Shasta', 'Oroville', 'Millerton', 'Isabella'] self.figure_params['state_estimation']['sacramento']['watershed_keys'] = ['SHA', 'ORO', 'FOL', 'YRS'] self.figure_params['state_estimation']['sacramento']['watershed_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar'] self.figure_params['state_estimation']['sanjoaquin']['watershed_keys'] = ['NML', 'DNP', 'EXC', 'MIL'] self.figure_params['state_estimation']['sanjoaquin']['watershed_labels'] = ['New Melones', '<NAME>', 'Exchequer', 'Millerton'] self.figure_params['state_estimation']['tulare']['watershed_keys'] = ['PFT', 'KWH', 'SUC', 'ISB'] self.figure_params['state_estimation']['tulare']['watershed_labels'] = ['Pine Flat', 'Kaweah', 'Success', 'Isabella'] self.figure_params['model_validation'] = {} for x in ['delta', 'sierra', 'sanluis', 'bank']: self.figure_params['model_validation'][x] = {} self.figure_params['model_validation']['delta']['title_labels'] = ['State Water Project Pumping', 'Central Valley Project Pumping', 'Delta X2 Location'] num_subplots = len(self.figure_params['model_validation']['delta']['title_labels']) self.figure_params['model_validation']['delta']['label_name_1'] = ['delta_HRO_pump', 'delta_TRP_pump', 'delta_x2'] self.figure_params['model_validation']['delta']['label_name_2'] = ['HRO_pump', 'TRP_pump', 'DAY_X2'] self.figure_params['model_validation']['delta']['unit_converstion_1'] = [1.0, 1.0, 1.0] self.figure_params['model_validation']['delta']['unit_converstion_2'] = [cfs_tafd, cfs_tafd, 1.0] self.figure_params['model_validation']['delta']['y_label_timeseries'] = ['Pumping (tAF/week)', 'Pumping (tAF/week)', 'X2 inland distance (km)'] self.figure_params['model_validation']['delta']['y_label_scatter'] = ['(tAF/yr)', '(tAF/yr)', '(km)'] self.figure_params['model_validation']['delta']['timeseries_timestep'] = ['W', 'W', 'W'] self.figure_params['model_validation']['delta']['scatter_timestep'] = ['AS-OCT', 'AS-OCT', 'M'] self.figure_params['model_validation']['delta']['aggregation_methods'] = ['sum', 'sum', 'mean'] self.figure_params['model_validation']['delta']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['delta']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['sierra']['title_labels'] = ['Shasta', 'Oroville', 'Folsom', 'New Bullards Bar', 'New Melones', '<NAME>', 'Exchequer', 'Millerton', 'Pine Flat', 'Kaweah', 'Success', 'Isabella'] num_subplots = len(self.figure_params['model_validation']['sierra']['title_labels']) self.figure_params['model_validation']['sierra']['label_name_1'] = ['shasta_S', 'oroville_S', 'folsom_S', 'yuba_S', 'newmelones_S', 'donpedro_S', 'exchequer_S', 'millerton_S', 'pineflat_S', 'kaweah_S', 'success_S', 'isabella_S'] self.figure_params['model_validation']['sierra']['label_name_2'] = ['SHA_storage', 'ORO_storage', 'FOL_storage', 'YRS_storage', 'NML_storage', 'DNP_storage', 'EXC_storage', 'MIL_storage', 'PFT_storage', 'KWH_storage', 'SUC_storage', 'ISB_storage'] self.figure_params['model_validation']['sierra']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sierra']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sierra']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sierra']['y_label_scatter'] = [] self.figure_params['model_validation']['sierra']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sierra']['scatter_timestep'] = [] self.figure_params['model_validation']['sierra']['aggregation_methods'] = ['mean'] * num_subplots self.figure_params['model_validation']['sierra']['notation_location'] = ['bottom'] * num_subplots self.figure_params['model_validation']['sierra']['show_legend'] = [False] * num_subplots counter_kaweah = self.figure_params['model_validation']['sierra']['title_labels'].index('Kaweah') counter_success = self.figure_params['model_validation']['sierra']['title_labels'].index('Success') counter_isabella = self.figure_params['model_validation']['sierra']['title_labels'].index('Isabella') self.figure_params['model_validation']['sierra']['notation_location'][counter_kaweah] = 'top' self.figure_params['model_validation']['sierra']['notation_location'][counter_success] = 'topright' self.figure_params['model_validation']['sierra']['show_legend'][counter_isabella] = True self.figure_params['model_validation']['sanluis']['title_labels'] = ['State (SWP) Portion, San Luis Reservoir', 'Federal (CVP) Portion, San Luis Reservoir'] num_subplots = len(self.figure_params['model_validation']['sanluis']['title_labels']) self.figure_params['model_validation']['sanluis']['label_name_1'] = ['sanluisstate_S', 'sanluisfederal_S'] self.figure_params['model_validation']['sanluis']['label_name_2'] = ['SLS_storage', 'SLF_storage'] self.figure_params['model_validation']['sanluis']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['sanluis']['unit_converstion_2'] = [1.0/1000000.0] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['sanluis']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['sanluis']['scatter_timestep'] = ['M'] * num_subplots self.figure_params['model_validation']['sanluis']['aggregation_methods'] = ['point'] * num_subplots self.figure_params['model_validation']['sanluis']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['sanluis']['show_legend'] = [True] * num_subplots self.figure_params['model_validation']['bank']['title_labels'] = ['Kern Water Bank Accounts', 'Semitropic Water Bank Accounts'] num_subplots = len(self.figure_params['model_validation']['bank']['title_labels']) self.figure_params['model_validation']['bank']['label_name_1'] = ['kwb_total', 'smi_total'] self.figure_params['model_validation']['bank']['label_name_2'] = ['kwb_accounts', 'smi_accounts'] self.figure_params['model_validation']['bank']['unit_converstion_1'] = [1.0/1000.0] * num_subplots self.figure_params['model_validation']['bank']['unit_converstion_2'] = [1.0/1000000.0, 1.0/1000.0] self.figure_params['model_validation']['bank']['y_label_timeseries'] = ['Storage (mAF)'] * num_subplots self.figure_params['model_validation']['bank']['y_label_scatter'] = ['(mAF)'] * num_subplots self.figure_params['model_validation']['bank']['timeseries_timestep'] = ['W'] * num_subplots self.figure_params['model_validation']['bank']['scatter_timestep'] = ['AS-OCT'] * num_subplots self.figure_params['model_validation']['bank']['aggregation_methods'] = ['change'] * num_subplots self.figure_params['model_validation']['bank']['notation_location'] = ['top'] * num_subplots self.figure_params['model_validation']['bank']['show_legend'] = [False] * num_subplots self.figure_params['model_validation']['bank']['show_legend'][0] = True self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_losthills'] = {} self.figure_params['state_response']['sanluisstate_losthills']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_losthills']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_losthills']['groundwater_account_names'] = ['LHL','WON'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'steelblue'] self.figure_params['state_response']['sanluisstate_losthills']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_losthills']['subplot_titles'] = ['State Water Project Delta Operations', 'Lost Hills Drought Management', 'San Luis Reservoir Operations', 'Lost Hills Flood Management'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_losthills']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharged from Contract Allocation' 'Recharge of Uncontrolled Flood Spills'] self.figure_params['state_response'] = {} self.figure_params['state_response']['sanluisstate_wheeler'] = {} self.figure_params['state_response']['sanluisstate_wheeler']['contract_list'] = ['swpdelta',] self.figure_params['state_response']['sanluisstate_wheeler']['contributing_reservoirs'] = ['delta_uncontrolled_swp', 'oroville', 'yuba'] self.figure_params['state_response']['sanluisstate_wheeler']['groundwater_account_names'] = ['WRM'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_features'] = ['S', 'days_til_full', 'flood_deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['reservoir_feature_colors'] = ['teal', '#3A506B', '#74B3CE', 'lightsteelblue'] self.figure_params['state_response']['sanluisstate_wheeler']['district_contracts'] = ['tableA',] self.figure_params['state_response']['sanluisstate_wheeler']['subplot_titles'] = ['State Water Project Delta Operations', 'Wheeler Ridge Drought Management', 'San Luis Reservoir Operations', 'Wheeler Ridge Flood Management'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_1'] = ['Y.T.D Delta Pumping', 'Projected Unstored Exports', 'Projected Stored Exports, Oroville', 'Projected Stored Exports, New Bullards'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_2'] = ['Storage', 'Projected Days to Fill', 'Flood Release Deliveries'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_3'] = ['Remaining SW Allocation', 'SW Deliveries', 'Private GW Pumping', 'District GW Bank Recovery', 'Remaining GW Bank Recovery Capacity'] self.figure_params['state_response']['sanluisstate_wheeler']['legend_list_4'] = ['Carryover Recharge Capacity', 'Recharge of Uncontrolled Flood Spills', 'Recharged from Contract Allocation'] self.figure_params['district_water_use'] = {} self.figure_params['district_water_use']['physical'] = {} self.figure_params['district_water_use']['physical']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors', 'Groundwater Banks'] self.figure_params['district_water_use']['physical']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['physical']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler', 'northkern', 'kerntulare'] self.figure_params['district_water_use']['physical']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['physical']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['physical']['Groundwater Banks'] = ['stockdale', 'kernriverbed', 'poso', 'pioneer', 'kwb', 'b2800', 'irvineranch', 'northkernwb'] self.figure_params['district_water_use']['physical']['subplot columns'] = 2 self.figure_params['district_water_use']['physical']['color map'] = 'YlGbBu_r' self.figure_params['district_water_use']['physical']['write file'] = True self.figure_params['district_water_use']['annual'] = {} self.figure_params['district_water_use']['annual']['district_groups'] = ['Municipal Districts', 'Kern County Water Agency', 'CVP - Friant Contractors', 'CVP - San Luis Contractors'] self.figure_params['district_water_use']['annual']['Municipal Districts'] = ['bakersfield', 'ID4', 'fresno', 'southbay', 'socal', 'centralcoast'] self.figure_params['district_water_use']['annual']['Kern County Water Agency'] = ['berrenda', 'belridge', 'buenavista', 'cawelo', 'henrymiller', 'losthills', 'rosedale', 'semitropic', 'tehachapi', 'tejon', 'westkern', 'wheeler'] self.figure_params['district_water_use']['annual']['CVP - Friant Contractors'] = ['arvin', 'delano', 'pixley', 'exeter', 'kerntulare', 'lindmore', 'lindsay', 'lowertule', 'porterville', 'saucelito', 'shaffer', 'sosanjoaquin', 'teapot', 'terra', 'chowchilla', 'maderairr', 'tulare', 'fresnoid'] self.figure_params['district_water_use']['annual']['CVP - San Luis Contractors'] = ['westlands', 'panoche', 'sanluiswater', 'delpuerto'] self.figure_params['district_water_use']['annual']['subplot columns'] = 2 self.figure_params['district_water_use']['annual']['color map'] = 'BrBG_r' self.figure_params['district_water_use']['annual']['write file'] = True self.figure_params['flow_diagram'] = {} self.figure_params['flow_diagram']['tulare'] = {} self.figure_params['flow_diagram']['tulare']['column1'] = ['Shasta', 'Folsom', 'Oroville', 'New Bullards', 'Uncontrolled'] self.figure_params['flow_diagram']['tulare']['row1'] = ['Delta Outflow', 'Carryover',] self.figure_params['flow_diagram']['tulare']['column2'] = ['San Luis (Fed)', 'San Luis (State)', 'Millerton', 'Isabella', 'Pine Flat', 'Kaweah', 'Success'] self.figure_params['flow_diagram']['tulare']['row2'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column3'] = ['Exchange', 'CVP-Delta', 'Cross Valley', 'State Water Project', 'Friant Class 1','Friant Class 2', 'Kern River', 'Kings River', 'Kaweah River', 'Tule River', 'Flood'] self.figure_params['flow_diagram']['tulare']['row3'] = ['Private Pumping', 'GW Banks'] self.figure_params['flow_diagram']['tulare']['column4'] = ['Exchange', 'CVP-Delta', 'Urban', 'KCWA', 'CVP-Friant','Other'] self.figure_params['flow_diagram']['tulare']['row4'] = ['Carryover',] self.figure_params['flow_diagram']['tulare']['column5'] = ['Irrigation', 'Urban', 'In-Lieu Recharge', 'Direct Recharge'] self.figure_params['flow_diagram']['tulare']['titles'] = ['Sacramento Basin\nSupplies', 'Tulare Basin\nSupplies', 'Surface Water\nContract Allocations', 'Contractor Groups', 'Water Use Type'] def scenario_compare(self, folder_name, figure_name, plot_name, validation_values, show_plot): outflow_list = self.figure_params[figure_name][plot_name]['outflow_list'] pump1_list = self.figure_params[figure_name][plot_name]['pump1_list'] pump2_list = self.figure_params[figure_name][plot_name]['pump2_list'] scenario_labels = self.figure_params[figure_name][plot_name]['scenario_labels'] simulation_labels = self.figure_params[figure_name][plot_name]['simulation_labels'] observation_labels = self.figure_params[figure_name][plot_name]['observation_labels'] agg_list = self.figure_params[figure_name][plot_name]['agg_list'] unit_mult = self.figure_params[figure_name][plot_name]['unit_mult'] max_value_list = self.figure_params[figure_name][plot_name]['max_value_list'] use_log_list = self.figure_params[figure_name][plot_name]['use_log_list'] use_cdf_list = self.figure_params[figure_name][plot_name]['use_cdf_list'] scenario_type_list = self.figure_params[figure_name][plot_name]['scenario_type_list'] x_label_list = self.figure_params[figure_name][plot_name]['x_label_list'] y_label_list = self.figure_params[figure_name][plot_name]['y_label_list'] legend_label_names1 = self.figure_params[figure_name][plot_name]['legend_label_names1'] legend_label_names2 = self.figure_params[figure_name][plot_name]['legend_label_names2'] color1 = sns.color_palette('spring', n_colors = 3) color2 = sns.color_palette('summer', n_colors = 3) color_list = np.array([color1[0], color1[2], color2[0]]) max_y_val = np.zeros(len(simulation_labels)) fig = plt.figure(figsize = (20, 16)) gs = gridspec.GridSpec(3,2, width_ratios=[3,1], figure = fig) ax1 = plt.subplot(gs[0, 0]) ax2 = plt.subplot(gs[1, 0]) ax3 = plt.subplot(gs[2, 0]) ax4 = plt.subplot(gs[:, 1]) axes_list = [ax1, ax2, ax3] counter = 0 for sim_label, obs_label, agg, max_value, use_log, use_cdf, ax_loop in zip(simulation_labels, observation_labels, agg_list, max_value_list, use_log_list, use_cdf_list, axes_list): data_type_dict = {} data_type_dict['scenario'] = self.values[sim_label].resample(agg).sum() * unit_mult[0] data_type_dict['validation'] = validation_values[sim_label].resample(agg).sum() * unit_mult[1] data_type_dict['observation'] = self.observations[obs_label].resample(agg).sum() * unit_mult[2] if use_log: for scen_type in scenario_type_list: values_int = data_type_dict[scen_type] data_type_dict[scen_type] = np.log(values_int[values_int > 0]) for scen_type in scenario_type_list: max_y_val[counter] = max([max(data_type_dict[scen_type]), max_y_val[counter]]) counter += 1 if use_cdf: for scen_type, color_loop in zip(scenario_type_list, color_list): cdf_values = np.zeros(100) values_int = data_type_dict[scen_type] for x in range(0, 100): x_val = int(np.ceil(max_value)) * (x/100) cdf_values[x] = len(values_int[values_int > x_val])/len(values_int) ax_loop.plot(cdf_values, np.arange(0, int(np.ceil(max_value)), int(np.ceil(max_value))/100), linewidth = 3, color = color_loop) else: pos = np.linspace(0, max_value, 101) for scen_type, color_loop in zip(scenario_type_list, color_list): kde_est = stats.gaussian_kde(data_type_dict[scen_type]) ax_loop.fill_between(pos, kde_est(pos), edgecolor = 'black', alpha = 0.6, facecolor = color_loop) sri_dict = {} sri_dict['validation'] = validation_values['delta_forecastSRI'] sri_dict['scenario'] = self.values['delta_forecastSRI'] sri_cutoffs = {} sri_cutoffs['W'] = [9.2, 100] sri_cutoffs['AN'] = [7.8, 9.2] sri_cutoffs['BN'] = [6.6, 7.8] sri_cutoffs['D'] = [5.4, 6.6] sri_cutoffs['C'] = [0.0, 5.4] wyt_list = ['W', 'AN', 'BN', 'D', 'C'] scenario_type_list = ['validation', 'scenario'] colors = sns.color_palette('RdBu_r', n_colors = 5) percent_years = {} for wyt in wyt_list: percent_years[wyt] = np.zeros(len(scenario_type_list)) for scen_cnt, scen_type in enumerate(scenario_type_list): ann_sri = [] for x_cnt, x in enumerate(sri_dict[scen_type]): if sri_dict[scen_type].index.month[x_cnt] == 9 and sri_dict[scen_type].index.day[x_cnt] == 30: ann_sri.append(x) ann_sri = np.array(ann_sri) for x_cnt, wyt in enumerate(wyt_list): mask_value = (ann_sri >= sri_cutoffs[wyt][0]) & (ann_sri < sri_cutoffs[wyt][1]) percent_years[wyt][scen_cnt] = len(ann_sri[mask_value])/len(ann_sri) colors = sns.color_palette('RdBu_r', n_colors = 5) last_type = np.zeros(len(scenario_type_list)) for cnt, x in enumerate(wyt_list): ax4.bar(['Validated Period\n(1997-2016)', 'Extended Simulation\n(1906-2016)'], percent_years[x], alpha = 1.0, label = wyt, facecolor = colors[cnt], edgecolor = 'black', bottom = last_type) last_type += percent_years[x] ax1.set_xlim([0.0, 500.0* np.ceil(max_y_val[0]/500.0)]) ax2.set_xlim([0.0, 500.0* np.ceil(max_y_val[1]/500.0)]) ax3.set_xlim([0.0, 1.0]) ax4.set_ylim([0, 1.15]) ax1.set_yticklabels('') ax2.set_yticklabels('') label_list = [] loc_list = [] for value_x in range(0, 120, 20): label_list.append(str(value_x) + ' %') loc_list.append(value_x/100.0) ax4.set_yticklabels(label_list) ax4.set_yticks(loc_list) ax3.set_xticklabels(label_list) ax3.set_xticks(loc_list) ax3.set_yticklabels(['4', '8', '16', '32', '64', '125', '250', '500', '1000', '2000', '4000']) ax3.set_yticks([np.log(4), np.log(8), np.log(16), np.log(32), np.log(64), np.log(125), np.log(250), np.log(500), np.log(1000), np.log(2000), np.log(4000)]) ax3.set_ylim([np.log(4), np.log(4000)]) for ax, x_lab, y_lab in zip([ax1, ax2, ax3, ax4], x_label_list, y_label_list): ax.set_xlabel(x_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.set_ylabel(y_lab, fontsize = 16, fontname = 'Gill Sans MT', fontweight = 'bold') ax.grid(False) for tick in ax.get_xticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) for tick in ax.get_yticklabels(): tick.set_fontname('Gill Sans MT') tick.set_fontsize(14) legend_elements = [] for x_cnt, x in enumerate(legend_label_names1): legend_elements.append(Patch(facecolor = color_list[x_cnt], edgecolor = 'black', label = x)) ax1.legend(handles = legend_elements, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) legend_elements_2 = [] for x_cnt, x in enumerate(legend_label_names2): legend_elements_2.append(Patch(facecolor = colors[x_cnt], edgecolor = 'black', label = x)) ax4.legend(handles = legend_elements_2, loc = 'upper left', framealpha = 0.7, shadow = True, prop={'family':'Gill Sans MT','weight':'bold','size':14}) plt.savefig(folder_name + figure_name + '_' + plot_name + '.png', dpi = 150, bbox_inches = 'tight', pad_inches = 0.0) if show_plot: plt.show() plt.close() def make_deliveries_by_district(self, folder_name, figure_name, plot_name, scenario_name, show_plot): if plot_name == 'annual': name_bridge = {} name_bridge['semitropic'] = 'KER01' name_bridge['westkern'] = 'KER02' name_bridge['wheeler'] = 'KER03' name_bridge['kerndelta'] = 'KER04' name_bridge['arvin'] = 'KER05' name_bridge['belridge'] = 'KER06' name_bridge['losthills'] = 'KER07' name_bridge['northkern'] = 'KER08' name_bridge['northkernwb'] = 'KER08' name_bridge['ID4'] = 'KER09' name_bridge['sosanjoaquin'] = 'KER10' name_bridge['berrenda'] = 'KER11' name_bridge['buenavista'] = 'KER12' name_bridge['cawelo'] = 'KER13' name_bridge['rosedale'] = 'KER14' name_bridge['shaffer'] = 'KER15' name_bridge['henrymiller'] = 'KER16' name_bridge['kwb'] = 'KER17' name_bridge['b2800'] = 'KER17' name_bridge['pioneer'] = 'KER17' name_bridge['irvineranch'] = 'KER17' name_bridge['kernriverbed'] = 'KER17' name_bridge['poso'] = 'KER17' name_bridge['stockdale'] = 'KER17' name_bridge['delano'] = 'KeT01' name_bridge['kerntulare'] = 'KeT02' name_bridge['lowertule'] = 'TUL01' name_bridge['tulare'] = 'TUL02' name_bridge['lindmore'] = 'TUL03' name_bridge['saucelito'] = 'TUL04' name_bridge['porterville'] = 'TUL05' name_bridge['lindsay'] = 'TUL06' name_bridge['exeter'] = 'TUL07' name_bridge['terra'] = 'TUL08' name_bridge['teapot'] = 'TUL09' name_bridge['bakersfield'] = 'BAK' name_bridge['fresno'] = 'FRE' name_bridge['southbay'] = 'SOB' name_bridge['socal'] = 'SOC' name_bridge['tehachapi'] = 'TEH' name_bridge['tejon'] = 'TEJ' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'PIX' name_bridge['chowchilla'] = 'CHW' name_bridge['maderairr'] = 'MAD' name_bridge['fresnoid'] = 'FSI' name_bridge['westlands'] = 'WTL' name_bridge['panoche'] = 'PAN' name_bridge['sanluiswater'] = 'SLW' name_bridge['delpuerto'] = 'DEL' elif plot_name == 'monthly': name_bridge = {} name_bridge['semitropic'] = 'Semitropic Water Storage District' name_bridge['westkern'] = 'West Kern Water District' name_bridge['wheeler'] = 'Wheeler Ridge-Maricopa Water Storage District' name_bridge['kerndelta'] = 'Kern Delta Water District' name_bridge['arvin'] = 'Arvin-Edison Water Storage District' name_bridge['belridge'] = 'Belridge Water Storage District' name_bridge['losthills'] = 'Lost Hills Water District' name_bridge['northkern'] = 'North Kern Water Storage District' name_bridge['northkernwb'] = 'North Kern Water Storage District' name_bridge['ID4'] = 'Urban' name_bridge['sosanjoaquin'] = 'Southern San Joaquin Municipal Utility District' name_bridge['berrenda'] = 'Berrenda Mesa Water District' name_bridge['buenavista'] = 'Buena Vista Water Storage District' name_bridge['cawelo'] = 'Cawelo Water District' name_bridge['rosedale'] = 'Rosedale-Rio Bravo Water Storage District' name_bridge['shaffer'] = 'Shafter-Wasco Irrigation District' name_bridge['henrymiller'] = 'Henry Miller Water District' name_bridge['kwb'] = 'Kern Water Bank Authority' name_bridge['b2800'] = 'Kern Water Bank Authority' name_bridge['pioneer'] = 'Kern Water Bank Authority' name_bridge['irvineranch'] = 'Kern Water Bank Authority' name_bridge['kernriverbed'] = 'Kern Water Bank Authority' name_bridge['poso'] = 'Kern Water Bank Authority' name_bridge['stockdale'] = 'Kern Water Bank Authority' name_bridge['delano'] = 'Delano-Earlimart Irrigation District' name_bridge['kerntulare'] = 'Kern-Tulare Water District' name_bridge['lowertule'] = 'Lower Tule River Irrigation District' name_bridge['tulare'] = 'Tulare Irrigation District' name_bridge['lindmore'] = 'Lindmore Irrigation District' name_bridge['saucelito'] = 'Saucelito Irrigation District' name_bridge['porterville'] = 'Porterville Irrigation District' name_bridge['lindsay'] = 'Lindsay-Strathmore Irrigation District' name_bridge['exeter'] = 'Exeter Irrigation District' name_bridge['terra'] = 'Terra Bella Irrigation District' name_bridge['teapot'] = 'Tea Pot Dome Water District' name_bridge['bakersfield'] = 'Urban' name_bridge['fresno'] = 'Urban' name_bridge['southbay'] = 'Urban' name_bridge['socal'] = 'Urban' name_bridge['tehachapi'] = 'Tehachapi - Cummings County Water District' name_bridge['tejon'] = 'Tejon-Castac Water District' name_bridge['centralcoast'] = 'SLO' name_bridge['pixley'] = 'Pixley Irrigation District' name_bridge['chowchilla'] = 'Chowchilla Water District' name_bridge['maderairr'] = 'Madera Irrigation District' name_bridge['fresnoid'] = 'Fresno Irrigation District' name_bridge['westlands'] = 'Westlands Water District' name_bridge['panoche'] = 'Panoche Water District' name_bridge['sanluiswater'] = 'San Luis Water District' name_bridge['delpuerto'] = 'Del Puerto Water District' name_bridge['alta'] = 'Alta Irrigation District' name_bridge['consolidated'] = 'Consolidated Irrigation District' location_type = plot_name self.total_irrigation = {} self.total_recharge = {} self.total_pumping = {} self.total_flood_purchases = {} self.total_recovery_rebate = {} self.total_recharge_sales = {} self.total_recharge_purchases = {} self.total_recovery_sales = {} self.total_recovery_purchases = {} for bank in self.bank_list: self.total_irrigation[bank.name] = np.zeros(self.number_years*12) self.total_recharge[bank.name] = np.zeros(self.number_years*12) self.total_pumping[bank.name] = np.zeros(self.number_years*12) self.total_flood_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[bank.name] = np.zeros(self.number_years*12) self.total_recharge_sales[bank.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[bank.name] = np.zeros(self.number_years*12) self.total_recovery_sales[bank.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[bank.name] = np.zeros(self.number_years*12) for district in self.district_list: self.total_irrigation[district.name] = np.zeros(self.number_years*12) self.total_recharge[district.name] = np.zeros(self.number_years*12) self.total_pumping[district.name] = np.zeros(self.number_years*12) self.total_flood_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_rebate[district.name] = np.zeros(self.number_years*12) self.total_recharge_sales[district.name] = np.zeros(self.number_years*12) self.total_recharge_purchases[district.name] = np.zeros(self.number_years*12) self.total_recovery_sales[district.name] = np.zeros(self.number_years*12) self.total_recovery_purchases[district.name] = np.zeros(self.number_years*12) date_list_labels = [] for year_num in range(self.starting_year, 2017): start_month = 1 end_month = 13 if year_num == self.starting_year: start_month = 10 if year_num == 2016: end_month = 10 for month_num in range(start_month, end_month): date_string_start = str(year_num) + '-' + str(month_num) + '-01' date_list_labels.append(date_string_start) for district in self.district_list: inleiu_name = district.name + '_inleiu_irrigation' inleiu_recharge_name = district.name + '_inleiu_recharge' direct_recover_name = district.name + '_recover_banked' indirect_surface_name = district.name + '_exchanged_SW' indirect_ground_name = district.name + '_exchanged_GW' inleiu_pumping_name = district.name + '_leiupumping' pumping_name = district.name + '_pumping' recharge_name = district.name + '_' + district.key + '_recharged' numdays_month = [31, 28, 31, 30, 31, 30, 31, 31, 29, 31, 30, 31] for year_num in range(0, self.number_years+1): year_str = str(year_num + self.starting_year) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year - 1) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_delivery if inleiu_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_recharge_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_recharge #GW recovery if direct_recover_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), direct_recover_name].values[0] #if classifying by physical location, attribute to district recieving water (as irrigation) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumnping for inleiu recovery if inleiu_pumping_name in self.values: if month_num == 10: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] else: total_leiupumping = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_pumping_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_pumping_name].values[0] #if classifying by physical location, to district operating the bank self.total_pumping[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_sales[district.name][year_num*12 + month_num - 10] += total_leiupumping self.total_recovery_rebate[district.name][year_num*12 + month_num - 10] += total_leiupumping #Recharge, in- and out- of district if recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_name].values[0] self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.bank_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge[bank_name.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge for bank_name in self.leiu_list: bank_recharge_name = district.name + '_' + bank_name.key + '_recharged' if bank_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), bank_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), bank_recharge_name].values[0] self.total_recharge_purchases[district.name][year_num*12 + month_num - 10] += total_recharge #Contract deliveries for contract in self.contract_list: delivery_name = district.name + '_' + contract.name + '_delivery' recharge_contract_name = district.name + '_' + contract.name + '_recharged' flood_irr_name = district.name + '_' + contract.name + '_flood_irrigation' flood_name = district.name + '_' + contract.name + '_flood' ###All deliveries made from a district's contract if delivery_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), delivery_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), delivery_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ##Deliveries made for recharge are subtracted from the overall contract deliveries if recharge_contract_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), recharge_contract_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), recharge_contract_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] -= total_recharge #flood water used for irrigation - always attribute as irrigation if flood_irr_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_irr_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_irr_name].values[0] self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery if flood_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), flood_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), flood_name].values[0] self.total_flood_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##Pumping (daily values aggregated by year) if pumping_name in self.values: annual_pumping = 0.0 for x in range(0, len(self.index)): monthly_index = (self.year[x] - self.starting_year)*12 + self.month[x] - 10 if self.day_month[x] == 1: self.total_pumping[district.name][monthly_index] += annual_pumping annual_pumping = 0.0 else: annual_pumping += self.values.loc[self.index[x], pumping_name] self.total_pumping[district.name][-1] += annual_pumping #Get values for any private entities within the district for private_name in self.private_list: private = private_name.name if district.key in self.private_districts[private]: inleiu_name = private + '_' + district.key + '_inleiu_irrigation' inleiu_recharge_name = private + '_' + district.key + '_inleiu_irrigation' direct_recover_name = private + '_' + district.key + '_recover_banked' indirect_surface_name = private + '_' + district.key + '_exchanged_SW' indirect_ground_name = private + '_' + district.key + '_exchanged_GW' inleiu_pumping_name = private + '_' + district.key + '_leiupumping' pumping_name = private + '_' + district.key + '_pumping' recharge_name = private + '_' + district.key + '_' + district.key + '_recharged' for year_num in range(0, self.number_years - 1): year_str = str(year_num + self.starting_year + 1) start_month = 1 end_month = 13 if year_num == 0: start_month = 10 if year_num == self.number_years - 1: end_month = 10 for month_num in range(start_month, end_month): if month_num == 1: month_num_prev = '12' year_str_prior = str(year_num + self.starting_year) end_day_prior = str(numdays_month[11]) else: month_num_prev = str(month_num - 1) year_str_prior = str(year_num + self.starting_year + 1) end_day_prior = str(numdays_month[month_num-2]) date_string_current = year_str + '-' + str(month_num) + '-' + str(numdays_month[month_num-1]) date_string_prior = year_str_prior + '-' + month_num_prev + '-' + end_day_prior ###GW/SW exchanges, if indirect_surface_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_surface_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_surface_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery ###GW/SW exchanges, if indirect_ground_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), indirect_ground_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), indirect_ground_name].values[0] #count irrigation deliveries for district that gave up SW (for GW in canal) self.total_recovery_purchases[district.name][year_num*12 + month_num - 10] += total_delivery ##In leiu deliveries for irrigation if inleiu_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_irrigation[district.name][year_num*12 + month_num - 10] += total_delivery self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_delivery if inleiu_recharge_name in self.values: if month_num == 10: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] else: total_recharge = self.values.loc[pd.DatetimeIndex([date_string_current]), inleiu_recharge_name].values[0] - self.values.loc[pd.DatetimeIndex([date_string_prior]), inleiu_recharge_name].values[0] #attibute inleiu deliveries for irrigation to district operating the bank self.total_recharge[district.name][year_num*12 + month_num - 10] += total_recharge self.total_recharge_sales[district.name][year_num*12 + month_num - 10] += total_recharge #GW recovery if direct_recover_name in self.values: if month_num == 10: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] else: total_delivery = self.values.loc[pd.DatetimeIndex([date_string_current]), direct_recover_name].values[0] - self.values.loc[
pd.DatetimeIndex([date_string_prior])
pandas.DatetimeIndex
import matplotlib.pyplot as plt import os import numpy as np import pandas as pd from matplotlib import cm # import matplotlib from adjustText import adjust_text import re import matplotlib.patheffects as pe import scipy.stats as st # deprecated def plot_hist_exp_1(results, household_size, pool_size, prevalence): fnr_indep = results[:, 0] fnr_correlated = results[:, 1] eff_indep = results[:, 2] eff_correlated = results[:, 3] test_indep = results[:, 4] test_correlated = results[:, 5] fig, [ax0, ax1] = plt.subplots(1,2, figsize=(10,6)) ax0.hist([fnr_indep, fnr_correlated], label=['naive pooling', 'correlated pooling'], color=['mediumaquamarine', 'mediumpurple']) ax0.legend(loc='upper right') ax0.set_xlabel('$FNR$') ax0.set_ylabel('Frequency') ax0.set_title('FNR values under naive and\ncorrelated pooling') ax1.hist(fnr_indep - fnr_correlated, color='lightskyblue', rwidth=0.7) ax1.set_title('difference in FNR values') ax1.set_ylabel('Frequency') plt.tight_layout() plt.savefig('../figs/experiment_1/fnr_diff_pool-size={}_household-size={}_prevalence={}.pdf'.format(pool_size, household_size, prevalence)) plt.close() fig, [ax0, ax1] = plt.subplots(1,2, figsize=(10,6)) ax0.hist([test_indep, test_correlated], label=['naive pooling', 'correlated pooling'], color=['mediumaquamarine', 'mediumpurple']) ax0.legend(loc='upper right') ax0.set_xlabel('$\#$ followup tests per positive identified') ax0.set_ylabel('Frequency') ax0.set_title('$\#$ followup tests per positive identified under\nnaive and correlated pooling') ax1.hist(test_indep - test_correlated, color='lightskyblue', rwidth=0.7) ax1.set_title('difference in $\#$ followup tests per positive identified') ax1.set_ylabel('Frequency') plt.tight_layout() plt.savefig('../figs/experiment_1/relative_test_consumption_pool-size={}_household-size={}_prevalence={}.pdf'.format(pool_size, household_size, prevalence)) plt.close() return # deprecated def generate_heatmap_plots_for_exp_1(): dir = '../results/experiment_1' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store" or not filename.endswith('.data'): continue parts = re.split('=|[.](?!\d)|_', filename) print(parts) household_size = int(parts[4]) prevalence = float(parts[6]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prevalence, household_size)] = avgs df_agg = pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['indep fnr', 'corr fnr', 'indep eff', 'corr eff', 'indep test', 'corr test']) df_agg.index = pd.MultiIndex.from_tuples(df_agg.index, names=['prevalence', 'household size']) df_agg = df_agg.reset_index() df_agg = df_agg.sort_values(by=['prevalence', 'household size']) df_agg['indep sn'] = 1 - df_agg['indep fnr'] df_agg['corr sn'] = 1 - df_agg['corr fnr'] df_agg['sn diff'] = df_agg['corr sn'] - df_agg['indep sn'] df_agg['rel test consumption'] = df_agg['corr test'] / df_agg['indep test'] fig, [ax0, ax1] = plt.subplots(1, 2, figsize=(8, 4)) table_sn = pd.pivot_table(df_agg, values='sn diff', index=['household size'], columns=['prevalence']) print(table_sn) heatmap = ax0.pcolor(table_sn, cmap=cm.BuPu) ax0.set_aspect('equal') ax0.set_yticks(np.arange(0.5, len(table_sn.index), 1)) ax0.set_yticklabels(table_sn.index) ax0.set_xticks(np.arange(0.5, len(table_sn.columns), 1)) ax0.set_xticklabels(table_sn.columns) ax0.set_xlabel('prevalence') ax0.set_ylabel('household size') ax0.set_title('Difference in FNR') fig.colorbar(heatmap, ax=ax0, orientation="horizontal") table_test = pd.pivot_table(df_agg, values='rel test consumption', index=['household size'], columns=['prevalence']) heatmap = ax1.pcolor(table_test, cmap=cm.YlGn_r) ax1.set_aspect('equal') ax1.set_yticks(np.arange(0.5, len(table_test.index), 1)) ax1.set_yticklabels(table_test.index) ax1.set_xticks(np.arange(0.5, len(table_test.columns), 1)) ax1.set_xticklabels(table_test.columns) ax1.set_xlabel('prevalence') ax1.set_ylabel('household size') ax1.set_title('Relative test consumption') fig.colorbar(heatmap, ax=ax1, orientation="horizontal") fig.tight_layout() fig.savefig('../figs/experiment_1/tmp_heapmap_for_fnr_and_test.pdf', bbox_inches='tight') plt.clf() return def plot_hist_exp_2(results, param, val=None): fnr_indep = results[:, 0] fnr_correlated = results[:, 1] eff_indep = results[:, 2] eff_correlated = results[:, 3] # print Sn (naive), Sn (correlated), Eff (naive), Eff (correlated) num_iters = results.shape[0] pool_size = 6. f = open(f"../results/experiment_2/nominal_scenario_results_{num_iters}.txt", "w") f.write(f"sensitivity: {1 - np.mean(fnr_indep):.1%} (naive), {1 - np.mean(fnr_correlated):.1%} (correlated);\ efficiency: {np.mean(eff_indep):.2f} (naive), {np.mean(eff_correlated):.2f} (correlated)\n") f.write(f"standard error: {np.std(fnr_indep)/np.sqrt(num_iters)}, {np.std(fnr_correlated)/np.sqrt(num_iters)}, \ {np.std(eff_indep)/np.sqrt(num_iters)}, {np.std(eff_correlated)/np.sqrt(num_iters)}\n") f.write(f"improvement: {(1 - np.mean(fnr_correlated)) / (1 - np.mean(fnr_indep))-1:.2%} (sensitivity); \ {np.mean(eff_correlated) / np.mean(eff_indep)-1:.2%} (efficiency)\n") frac_sample_indiv_test_naive = 1 / np.mean(eff_indep) - 1 / pool_size frac_sample_indiv_test_correlated = 1 / np.mean(eff_correlated) - 1 / pool_size frac_positive_sample_indiv_test_naive = 0.01 * (1 - np.mean(fnr_indep)) / 0.95 frac_positive_sample_indiv_test_correlated = 0.01 * (1 - np.mean(fnr_correlated)) / 0.95 frac_negative_sample_indiv_test_naive = frac_sample_indiv_test_naive - frac_positive_sample_indiv_test_naive frac_negative_sample_indiv_test_correlated = frac_sample_indiv_test_correlated - frac_positive_sample_indiv_test_correlated f.write(f"fraction of samples tested individually: {frac_sample_indiv_test_naive:.2%} (naive), {frac_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"fraction of positive samples tested individually: {frac_positive_sample_indiv_test_naive:.2%} (naive), {frac_positive_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"fraction of negative samples tested individually: {frac_negative_sample_indiv_test_naive:.2%} (naive), {frac_negative_sample_indiv_test_correlated:.2%} (correlated)\n") f.write(f"implied FPR: {frac_negative_sample_indiv_test_naive * 0.0001} (naive), {frac_negative_sample_indiv_test_correlated * 0.0001} (correlated)\n") f.close() ax1 = plt.subplot(111) n, bins, patches = ax1.hist(results[:, :2], label=['naive', 'correlated'], color=['mediumaquamarine', 'mediumpurple']) hatches = [".", '//'] for patch_set, hatch in zip(patches, hatches): for patch in patch_set.patches: patch.set_hatch(hatch) patch.set_edgecolor('k') plt.legend(loc='upper right') plt.xlabel('False negative rate') plt.ylabel('Frequency') if param == 'nominal': plt.title('Histogram of FNR values under {} scenario'.format(param)) plt.savefig('../figs/experiment_2/fnr_{}_scenario.pdf'.format(param)) else: plt.title('Histogram of FNR values for one-stage group testing \n under {} = {}'.format(param, val)) plt.savefig('../figs/experiment_2/fnr_{}={}.pdf'.format(param, val), dpi=600) plt.close() ax2 = plt.subplot(111) n, bins, patches = ax2.hist(results[:, 2:], label=['naive', 'correlated'], color=['mediumaquamarine', 'mediumpurple']) hatches = ["..", '//'] for patch_set, hatch in zip(patches, hatches): for patch in patch_set.patches: patch.set_hatch(hatch) plt.legend(loc='upper right') plt.xlabel('Efficiency') plt.ylabel('Frequency') if param == 'nominal': plt.title('Histogram of testing efficiency under {} scenario'.format(param)) plt.savefig('../figs/experiment_2/eff_{}_scenario.pdf'.format(param)) else: plt.title('Histogram of testing efficiency for one-stage group testing \n under {} = {}'.format(param, val)) plt.savefig('../figs/experiment_2/eff_{}={}.pdf'.format(param, val), dpi=600) plt.close() return def generate_sensitivity_plots(param): dir = '../results/experiment_2/sensitivity_analysis_2000/' fnr_indep = [] fnr_corr = [] eff_indep = [] eff_corr = [] index = [] for filename in os.listdir(dir): if param in filename: val = filename.split(param, 1)[1][:-5] val = val.split('_', 1)[0][1:] val = int(val) if param == 'pool size' else val if param == 'household dist' else float(val) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) fnr_indep.append(avgs[0]) fnr_corr.append(avgs[1]) eff_indep.append(avgs[2]) eff_corr.append(avgs[3]) index.append(val) df = pd.DataFrame({'FNR (naive)': fnr_indep, 'FNR (correlated)': fnr_corr, 'efficiency (naive)': eff_indep,'efficiency (correlated)': eff_corr}, index=index) df = df.sort_index() df = df.rename_axis(param).reset_index() df['sensitivity (naive)'] = 1 - df['FNR (naive)'] df['sensitivity (correlated)'] = 1 - df['FNR (correlated)'] fig, ax = plt.subplots() ax2 = ax.twinx() #fnrs = df[['FNR (naive)', 'FNR (correlated)']].plot.bar(ax=ax, legend=False, color=['mediumaquamarine', 'mediumpurple'], alpha=1) sns = df[['sensitivity (naive)', 'sensitivity (correlated)']].plot.bar(ax=ax, legend=False, color=['mediumaquamarine', 'mediumpurple'], alpha=1) l = df.shape[0] bars = ax.patches hatches = [".."] * l + ['//'] * l for bar, hatch in zip(bars, hatches): bar.set_hatch(hatch) df[['efficiency (naive)']].plot.line(ax=ax2, legend=False, marker='^', markeredgecolor='w', markeredgewidth=0, \ color=['mediumaquamarine'], path_effects=[pe.Stroke(linewidth=3, foreground='w'), pe.Normal()]) df[['efficiency (correlated)']].plot.line(ax=ax2, legend=False, marker='o', markeredgecolor='w', markeredgewidth=0, \ color=['mediumpurple'], path_effects=[pe.Stroke(linewidth=3, foreground='w'), pe.Normal()]) ax.set_xticklabels(df[param]) ax.set_ylabel('sensitivity') ax.set_ylim(0.6) ax2.set_ylabel('efficiency') ax2.set_ylim(1) if param in ['prevalence', 'pool size'] else ax2.set_ylim(4.5) if param == 'FNR': ax.set_xlabel('population-average individual test FNR') elif param == 'household dist': ax.set_xlabel('household size distribution') else: ax.set_xlabel(param) h, l = ax.get_legend_handles_labels() h2, l2 = ax2.get_legend_handles_labels() ax.legend(h + h2, l + l2, loc='lower left', bbox_to_anchor=(0, 1.02, 0.6, 1.02), ncol=2) fig.savefig('../figs/experiment_2/sensitivity_plots/sensitivity_for_{}_new.pdf'.format(param), bbox_inches='tight', dpi=600) plt.clf() return def generate_pareto_fontier_plots(): dir = '../results/experiment_2/pareto_analysis_2000/' aggregate_results = {} for filename in os.listdir(dir): if filename == ".DS_Store": continue parts = re.split('=|[.](?!\d)|_', filename) prev = float(parts[2]) pool_size = int(parts[4]) filedir = os.path.join(dir, filename) with open(filedir) as f: results = np.loadtxt(f) avgs = np.mean(results, axis=0) aggregate_results[(prev, pool_size)] = avgs df_agg =
pd.DataFrame.from_dict(aggregate_results, orient='index', columns=['fnr (naive)', 'fnr (correlated)', 'eff (naive)', 'eff (correlated)'])
pandas.DataFrame.from_dict
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from statistics import median import os, json, random def calculateTimeFromMidnight(actual_datetime): midnight = actual_datetime.replace(hour=0, minute=0, second=0, microsecond=0) timesincemidnight = (actual_datetime - midnight).total_seconds() return timesincemidnight def createActivityFeatures(line, starttime, lastevtime, caseID, current_activity_end_date): activityTimestamp = line[1] activity = [] activity.append(caseID) for feature in line[2:]: activity.append(feature) #add features: time from trace start, time from last_startdate_event, time from midnight, weekday activity.append((activityTimestamp - starttime).total_seconds()) activity.append((activityTimestamp - lastevtime).total_seconds()) activity.append(calculateTimeFromMidnight(activityTimestamp)) activity.append(activityTimestamp.weekday()) # if there is also end_date add features time from last_enddate_event and event_duration if current_activity_end_date is not None: activity.append((current_activity_end_date - activityTimestamp).total_seconds()) # add timestamp end or start to calculate remaining time later activity.append(current_activity_end_date) else: activity.append(activityTimestamp) return activity def move_essential_columns(df, case_id_position, start_date_position): columns = df.columns.to_list() # move case_id column and start_date column to always know their position case = columns[case_id_position] start = columns[start_date_position] columns.pop(columns.index(case)) columns.pop(columns.index(start)) df = df[[case, start] + columns] return df def one_hot_encoding(df): #case id not encoded for column in df.columns[1:]: # if column don't numbers encode if not np.issubdtype(df[column], np.number): # Possibile modifica: encodare le colonne di tipo data, o facciamo la diff da 1970 in secondi e poi normalizziamo # One hot encoding - eventual categorical nans will be ignored one_hot = pd.get_dummies(df[column], prefix=column, prefix_sep='=') print("Encoded column:{} - Different keys: {}".format(column, one_hot.shape[1])) # Drop column as it is now encoded df = df.drop(column, axis=1) # Join the encoded df df = df.join(one_hot) print("Categorical columns encoded") return df def convert_strings_to_datetime(df, date_format): # convert string columns that contain datetime to datetime for column in df.columns: try: #if a number do nothing if np.issubdtype(df[column], np.number): continue df[column] = pd.to_datetime(df[column], format=date_format) # exception means it is really a string except (ValueError, TypeError, OverflowError): pass return df def find_case_finish_time(trace, num_activities): # we find the max finishtime for the actual case for i in range(num_activities): if i == 0: finishtime = trace[-i-1][-1] else: if trace[-i-1][-1] > finishtime: finishtime = trace[-i-1][-1] return finishtime def calculate_remaining_time_for_actual_case(traces, num_activities): finishtime = find_case_finish_time(traces, num_activities) for i in range(num_activities): # calculate remaining time to finish the case for every activity in the actual case traces[-(i + 1)][-1] = (finishtime - traces[-(i + 1)][-1]).total_seconds() return traces def fill_missing_end_dates(df, start_date_position, end_date_position): df[df.columns[end_date_position]] = df.apply(lambda row: row[start_date_position] if row[end_date_position] == 0 else row[end_date_position], axis=1) return df def convert_datetime_columns_to_seconds(df): for column in df.columns: try: if np.issubdtype(df[column], np.number): continue df[column] = pd.to_datetime(df[column]) df[column] = (df[column] -
pd.to_datetime('1970-01-01 00:00:00')
pandas.to_datetime
import os import pandas as pd import tweepy import sys from danlp.download import DATASETS, download_dataset, DEFAULT_CACHE_DIR, _unzip_process_func from danlp.utils import extract_single_file_from_zip class EuroparlSentiment1: """ Class for loading the Europarl Sentiment dataset. :param str cache_dir: the directory for storing cached models """ def __init__(self, cache_dir: str = DEFAULT_CACHE_DIR): self.dataset_name = 'europarl.sentiment1' self.file_extension = DATASETS[self.dataset_name]['file_extension'] self.dataset_dir = download_dataset(self.dataset_name, cache_dir=cache_dir) self.file_path = os.path.join(self.dataset_dir, self.dataset_name + self.file_extension) def load_with_pandas(self): """ Loads the dataset in a dataframe and drop duplicates and nan values :return: a dataframe """ df = pd.read_csv(self.file_path, sep=',', index_col=0, encoding='utf-8') df = df[['valence', 'text']].dropna() return df.drop_duplicates() class EuroparlSentiment2: """ Class for loading the Europarl Sentiment dataset. :param str cache_dir: the directory for storing cached models """ def __init__(self, cache_dir: str = DEFAULT_CACHE_DIR): self.dataset_name = 'europarl.sentiment2' self.dataset_dir = download_dataset(self.dataset_name, cache_dir=cache_dir, process_func=_unzip_process_func) self.file_path = os.path.join(cache_dir, self.dataset_name + '.csv') def load_with_pandas(self): """ Loads the dataset as a dataframe :return: a dataframe """ return pd.read_csv(self.file_path, sep=',', encoding='utf-8') class LccSentiment: """ Class for loading the LCC Sentiment dataset. :param str cache_dir: the directory for storing cached models """ def __init__(self, cache_dir: str = DEFAULT_CACHE_DIR): self.dataset_name1 = 'lcc1.sentiment' self.file_extension1 = DATASETS[self.dataset_name1]['file_extension'] self.dataset_dir1 = download_dataset(self.dataset_name1, cache_dir=cache_dir) self.file_path1 = os.path.join(self.dataset_dir1, self.dataset_name1 + self.file_extension1) self.dataset_name2 = 'lcc2.sentiment' self.file_extension2 = DATASETS[self.dataset_name2]['file_extension'] self.dataset_dir2 = download_dataset(self.dataset_name2, cache_dir=cache_dir) self.file_path2 = os.path.join(self.dataset_dir2, self.dataset_name2 + self.file_extension2) def load_with_pandas(self): """ Loads the dataset in a dataframe, combines and drops duplicates and nan values :return: a dataframe """ df1 = pd.read_csv(self.file_path1, sep=',', encoding='utf-8') df2 = pd.read_csv(self.file_path2, sep=',', encoding='utf-8') df = df1.append(df2, sort=False) df = df[['valence', 'text']].dropna() return df class TwitterSent: """ Class for loading the Twitter Sentiment dataset. :param str cache_dir: the directory for storing cached models """ def __init__(self, cache_dir: str = DEFAULT_CACHE_DIR): self.dataset_name = 'twitter.sentiment' self.dataset_dir = download_dataset(self.dataset_name, cache_dir=cache_dir, process_func=_twitter_data_process_func) self.file_path = os.path.join(cache_dir, self.dataset_name + '.csv') def load_with_pandas(self): """ Loads the dataset in a dataframe. :return: a dataframe of the test set and a dataframe of the train set """ df=pd.read_csv(self.file_path, sep=',', encoding='utf-8') return df[df['part'] == 'test'].drop(columns=['part']), df[df['part'] == 'train'].drop(columns=['part']) class AngryTweets: """ Class for loading the AngryTweets Sentiment dataset. :param str cache_dir: the directory for storing cached models """ def __init__(self, cache_dir: str = DEFAULT_CACHE_DIR): self.dataset_name = 'angrytweets.sentiment' self.dataset_dir = download_dataset(self.dataset_name, cache_dir=cache_dir, process_func=_twitter_data_process_func) self.file_path = os.path.join(cache_dir, self.dataset_name + '.csv') def load_with_pandas(self): """ Loads the dataset in a dataframe. :return: a dataframe """ return pd.read_csv(self.file_path, sep=',', encoding='utf-8') def _lookup_tweets(tweet_ids, api): import tweepy full_tweets = [] tweet_count = len(tweet_ids) try: for i in range(int(tweet_count/100)+1): # Catch the last group if it is less than 100 tweets end_loc = min((i + 1) * 100, tweet_count) full_tweets.extend( api.statuses_lookup(id_=tweet_ids[i * 100:end_loc], tweet_mode='extended', trim_user=True) ) return full_tweets except tweepy.TweepError: print("Failed fetching tweets") def _twitter_data_process_func(tmp_file_path: str, meta_info: dict, cache_dir: str = DEFAULT_CACHE_DIR, clean_up_raw_data: bool = True, verbose: bool = True): from zipfile import ZipFile twitter_api = _construct_twitter_api_connection() model_name = meta_info['name'] full_path = os.path.join(cache_dir, model_name) + meta_info['file_extension'] with ZipFile(tmp_file_path, 'r') as zip_file: # Extract files to cache_dir file_list = zip_file.namelist() extract_single_file_from_zip(cache_dir, file_list[0], full_path, zip_file) file_path = os.path.join(cache_dir, model_name + '.csv') df =
pd.read_csv(file_path)
pandas.read_csv
import pandas as pd from tqdm import tqdm from src.configs.variables_const import VariablesConsts from src.evaluation.metrics import Metrics class EvaluationMethod: def __init__(self, product_ids: dict): self.product_ids = product_ids # TODO: Improve performance here def _calculate_distances(self, data_dict: dict, vector_space_to_search, evaluate_column: str): distances_df =
pd.DataFrame(columns=[evaluate_column, VariablesConsts.PRODUCT_ID, VariablesConsts.DISTANCE])
pandas.DataFrame
import pandas as pd import os from .objects import ECause, EState, trade_from_dict from .enums import * from decimal import ROUND_DOWN, Decimal import logging from logging.handlers import TimedRotatingFileHandler import time from .safe_operators import * def calculate_fee(amount, fee, digit=8): return round(safe_multiply(amount,fee), digit) def time_scale_to_minute(interval: str): seconds_per_unit = { "m": 1, "h": 60, "d": 24 * 60, "w": 7 * 24 * 60, } try: return int(interval[:-1]) * seconds_per_unit[interval[-1]] except (ValueError, KeyError): return None def round_step_downward(quantity, step_size): # NOTE: if the step_size is '1.0', 1.2389196468651802 is rounded as 1.2 instead of 1. # Thus if the step_size is an integer then we should approach properly if step_size.is_integer(): step_size = int(step_size) return float(Decimal(str(quantity)).quantize(Decimal(str(step_size)), rounding=ROUND_DOWN)) def truncate(num,n): temp = str(num) for x in range(len(temp)): if temp[x] == '.': try: return float(temp[:x+n+1]) except: return float(temp) return float(temp) def time_scale_to_second(interval: str): return time_scale_to_minute(interval) * 60 def time_scale_to_milisecond(interval: str): return time_scale_to_minute(interval) * 60 * 1000 def eval_total_capital(df_balance, live_trade_list, quote_currency, max_capital_use_ratio=1): # Toal capital: Free QC + LTO_enter free_qc = df_balance.loc[quote_currency,'free'] # NOTE: In-trade balance is calculated only by considering the LTOs of the Ikarus # Using only the df_balance requires live updates and evaluation of each asset in terms of QC # NOTE: If state of a TO is: # 'closed': then the amount that is used by this TO is reflected back to main capital (df_balance in backtest (by lto_update)) # : these LTOs needs be omitted # 'enter_expire': then it is marked to be handled by the their strategy but the balance is still locked in LTO in_trade_qc = eval_total_capital_in_lto(live_trade_list) total_qc = safe_sum(free_qc, in_trade_qc) return safe_multiply(total_qc, max_capital_use_ratio) def eval_total_capital_in_lto(trade_list): in_trade_qc = 0 for trade in trade_list: # Omit the LTOs that are closed, because their use of amount returned to df_balance (by broker or by lto_update of test-engine) if trade.status != EState.CLOSED: # NOTE: It is assumed that each object may only have 1 TYPE of exit or enter in_trade_qc = safe_sum(in_trade_qc, trade.enter.amount) return in_trade_qc async def get_closed_hto(config, mongocli, query={'result.cause':ECause.CLOSED}): # TODO: NEXT: All statistics needs to be changed a bit to integrate market orders # Read Database to get hist-trades and dump to a DataFrame hto_list = await mongocli.do_find('hist-trades',query) hto_closed = [] for hto in hto_list: trade = trade_from_dict(hto) hto_dict = { "_id": trade._id, "strategy": trade.strategy, "decision_time": trade.decision_time, "enterTime": trade.result.enter.time, "enterPrice": trade.enter.price, "exitTime": trade.result.exit.time, "exitPrice": trade.exit.price, "sellPrice": trade.result.exit.price } # NOTE: No trade.result.enter.price is used because in each case Limit/Market enter the price value will be used directly hto_closed.append(hto_dict) df = pd.DataFrame(hto_closed) return df async def get_enter_expire_hto(mongocli, query={'result.cause':ECause.ENTER_EXP}): # Read Database to get hist-trades and dump to a DataFrame hto_list = await mongocli.do_find('hist-trades',query) hto_ent_exp_list = [] for hto in hto_list: # NOTE: HIGH: We dont know it the exit type is limit or not trade = trade_from_dict(hto) hto_dict = { "_id": trade._id, "strategy": trade.strategy, "decision_time": trade.decision_time, "enterExpire": trade.enter.expire, # TODO: TYPE_LIMIT | TODO: use result enter price "enterPrice": trade.enter.price, } hto_ent_exp_list.append(hto_dict) df = pd.DataFrame(hto_ent_exp_list) return df async def get_exit_expire_hto(config, mongocli, query={'result.cause':STAT_EXIT_EXP}): # Read Database to get hist-trades and dump to a DataFrame hto_list = await mongocli.do_find('hist-trades',query) hto_closed_list = [] for hto in hto_list: enter_type = config['strategy'][hto['strategy']]['enter']['type'] exit_type = config['strategy'][hto['strategy']]['exit']['type'] if exit_type == TYPE_OCO: plannedPriceName = 'limitPrice' elif exit_type == TYPE_LIMIT: plannedPriceName = 'price' # Initial (ideal) exit module is saved to update_history list initial_exit_module = hto['update_history'][0] # TODO: Rename the update_history with some proper name hto_dict = { "_id": hto['_id'], "strategy": hto['strategy'], "decision_time": hto['decision_time'], "enterTime": hto['result']['enter']['time'], "enterPrice": hto['enter'][enter_type]['price'], # Ideally enter limit orders are executed with the exact prices "exitPrice": initial_exit_module[plannedPriceName], "sellPrice": hto['result']['exit']['price'], "exitExpire": initial_exit_module['expire'] } hto_closed_list.append(hto_dict) df =
pd.DataFrame(hto_closed_list)
pandas.DataFrame
# from daily_weather_obs_chart import read_weather_obs_csv import os import sys import glob import datetime import dateutil from datetime import timedelta from pathlib import Path import functools import time import csv import re import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.dates import DateFormatter import logging logger = logging.getLogger('weather_obs_f') trace = True def trace_print(level, first_string, *optional_strings): """ central logging function """ global trace global logger trace_out = first_string + ''.join(optional_strings) if (trace == True): if (level == 1): logger.debug(trace_out) elif (level == 2): logger.critcal(trace_out) elif (level == 3): logger.warning(trace_out) elif (level == 4): logger.info(trace_out) else: print("level not known: ", trace_out, flush=True) def read_weather_obs_csv(target_csv): """ read csv and return dataframe """ # handle no_value_provided as NAN try: # ignore time zone for parse here - times local to observation def date_utc(x): return dateutil.parser.parse(x[:20], ignoretz=True) obs1 = pd.read_csv(target_csv, parse_dates=[9], date_parser=date_utc, dtype = { 'wind_mph': 'float64'}, na_values = "<no_value_provided>") except OSError: trace_print( 4, "file not found: ", target_csv) # return empty dataframe obs1 =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest from pandas.core.dtypes.generic import ABCIndex import pandas as pd import pandas._testing as tm from pandas.core.arrays.integer import ( Int8Dtype, UInt32Dtype, ) def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize("op", ["sum", "min", "max", "prod"]) def test_preserve_dtypes(op): # TODO(#22346): preserve Int64 dtype # for ops that enable (mean would actually work here # but generally it is a float return value) df = pd.DataFrame( { "A": ["a", "b", "b"], "B": [1, None, 3], "C": pd.array([1, None, 3], dtype="Int64"), } ) # op result = getattr(df.C, op)() if op in {"sum", "prod", "min", "max"}: assert isinstance(result, np.int64) else: assert isinstance(result, int) # groupby result = getattr(df.groupby("A"), op)() expected = pd.DataFrame( {"B": np.array([1.0, 3.0]), "C": pd.array([1, 3], dtype="Int64")}, index=pd.Index(["a", "b"], name="A"), ) tm.assert_frame_equal(result, expected) def test_astype_nansafe(): # see gh-22343 arr = pd.array([np.nan, 1, 2], dtype="Int8") msg = "cannot convert to 'uint32'-dtype NumPy array with missing values." with pytest.raises(ValueError, match=msg): arr.astype("uint32") @pytest.mark.parametrize("dropna", [True, False]) def test_construct_index(all_data, dropna): # ensure that we do not coerce to Float64Index, rather # keep as Index all_data = all_data[:10] if dropna: other = np.array(all_data[~all_data.isna()]) else: other = all_data result = pd.Index(pd.array(other, dtype=all_data.dtype)) expected = pd.Index(other, dtype=object) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("dropna", [True, False]) def test_astype_index(all_data, dropna): # as an int/uint index to Index all_data = all_data[:10] if dropna: other = all_data[~all_data.isna()] else: other = all_data dtype = all_data.dtype idx = pd.Index._with_infer(np.array(other)) assert isinstance(idx, ABCIndex) result = idx.astype(dtype) expected = idx.astype(object).astype(dtype) tm.assert_index_equal(result, expected) def test_astype(all_data): all_data = all_data[:10] ints = all_data[~all_data.isna()] mixed = all_data dtype = Int8Dtype() # coerce to same type - ints s = pd.Series(ints) result = s.astype(all_data.dtype) expected = pd.Series(ints) tm.assert_series_equal(result, expected) # coerce to same other - ints s = pd.Series(ints) result = s.astype(dtype) expected = pd.Series(ints, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - ints s = pd.Series(ints) result = s.astype(all_data.dtype.numpy_dtype) expected = pd.Series(ints._data.astype(all_data.dtype.numpy_dtype)) tm.assert_series_equal(result, expected) # coerce to same type - mixed s = pd.Series(mixed) result = s.astype(all_data.dtype) expected = pd.Series(mixed) tm.assert_series_equal(result, expected) # coerce to same other - mixed s = pd.Series(mixed) result = s.astype(dtype) expected = pd.Series(mixed, dtype=dtype) tm.assert_series_equal(result, expected) # coerce to same numpy_dtype - mixed s = pd.Series(mixed) msg = r"cannot convert to .*-dtype NumPy array with missing values.*" with pytest.raises(ValueError, match=msg): s.astype(all_data.dtype.numpy_dtype) # coerce to object s = pd.Series(mixed) result = s.astype("object") expected = pd.Series(np.asarray(mixed)) tm.assert_series_equal(result, expected) def test_astype_copy(): arr = pd.array([1, 2, 3, None], dtype="Int64") orig = pd.array([1, 2, 3, None], dtype="Int64") # copy=True -> ensure both data and mask are actual copies result = arr.astype("Int64", copy=True) assert result is not arr assert not tm.shares_memory(result, arr) result[0] = 10 tm.assert_extension_array_equal(arr, orig) result[0] = pd.NA tm.assert_extension_array_equal(arr, orig) # copy=False result = arr.astype("Int64", copy=False) assert result is arr assert np.shares_memory(result._data, arr._data) assert np.shares_memory(result._mask, arr._mask) result[0] = 10 assert arr[0] == 10 result[0] = pd.NA assert arr[0] is pd.NA # astype to different dtype -> always needs a copy -> even with copy=False # we need to ensure that also the mask is actually copied arr = pd.array([1, 2, 3, None], dtype="Int64") orig = pd.array([1, 2, 3, None], dtype="Int64") result = arr.astype("Int32", copy=False) assert not tm.shares_memory(result, arr) result[0] = 10 tm.assert_extension_array_equal(arr, orig) result[0] = pd.NA tm.assert_extension_array_equal(arr, orig) def test_astype_to_larger_numpy(): a = pd.array([1, 2], dtype="Int32") result = a.astype("int64") expected = np.array([1, 2], dtype="int64") tm.assert_numpy_array_equal(result, expected) a = pd.array([1, 2], dtype="UInt32") result = a.astype("uint64") expected = np.array([1, 2], dtype="uint64") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("dtype", [Int8Dtype(), "Int8", UInt32Dtype(), "UInt32"]) def test_astype_specific_casting(dtype): s = pd.Series([1, 2, 3], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3], dtype=dtype) tm.assert_series_equal(result, expected) s = pd.Series([1, 2, 3, None], dtype="Int64") result = s.astype(dtype) expected = pd.Series([1, 2, 3, None], dtype=dtype) tm.assert_series_equal(result, expected) def test_astype_floating(): arr = pd.array([1, 2, None], dtype="Int64") result = arr.astype("Float64") expected = pd.array([1.0, 2.0, None], dtype="Float64") tm.assert_extension_array_equal(result, expected) def test_astype_dt64(): # GH#32435 arr = pd.array([1, 2, 3, pd.NA]) * 10 ** 9 result = arr.astype("datetime64[ns]") expected = np.array([1, 2, 3, "NaT"], dtype="M8[s]").astype("M8[ns]") tm.assert_numpy_array_equal(result, expected) def test_construct_cast_invalid(dtype): msg = "cannot safely" arr = [1.2, 2.3, 3.7] with pytest.raises(TypeError, match=msg): pd.array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) arr = [1.2, 2.3, 3.7, np.nan] with pytest.raises(TypeError, match=msg): pd.array(arr, dtype=dtype) with pytest.raises(TypeError, match=msg): pd.Series(arr).astype(dtype) @pytest.mark.parametrize("in_series", [True, False]) def test_to_numpy_na_nan(in_series): a = pd.array([0, 1, None], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([0.0, 1.0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="int64", na_value=-1) expected = np.array([0, 1, -1], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = a.to_numpy(dtype="bool", na_value=False) expected = np.array([False, True, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) @pytest.mark.parametrize("in_series", [True, False]) @pytest.mark.parametrize("dtype", ["int32", "int64", "bool"]) def test_to_numpy_dtype(dtype, in_series): a = pd.array([0, 1], dtype="Int64") if in_series: a = pd.Series(a) result = a.to_numpy(dtype=dtype) expected = np.array([0, 1], dtype=dtype)
tm.assert_numpy_array_equal(result, expected)
pandas._testing.assert_numpy_array_equal
# updated to take info from excel and check corrosponding image for input verification. import cv2 import cvlib as cv import sys import numpy as np import pandas as pd import glob # All files ending with .txt with depth of 2 folder candidate_list =
pd.read_excel("ViewEnrollmentData_CutOFFDate.xlsx")
pandas.read_excel
import pytest from xarray import DataArray import scipy.stats as st from numpy import ( argmin, array, concatenate, dot, exp, eye, kron, nan, reshape, sqrt, zeros, ) from numpy.random import RandomState from numpy.testing import assert_allclose, assert_array_equal from pandas import DataFrame from limix.qc import normalise_covariance from limix.qtl import scan from limix.stats import linear_kinship, multivariate_normal as mvn def _test_qtl_scan_st(lik): random = RandomState(0) n = 30 ncovariates = 3 M = random.randn(n, ncovariates) v0 = random.rand() v1 = random.rand() G = random.randn(n, 4) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = random.randn(ncovariates) alpha = random.randn(G.shape[1]) m = M @ beta + G @ alpha y = mvn(random, m, v0 * K + v1 * eye(n)) idx = [[0, 1], 2, [3]] if lik == "poisson": y = random.poisson(exp(y)) elif lik == "bernoulli": y = random.binomial(1, 1 / (1 + exp(-y))) elif lik == "probit": y = random.binomial(1, st.norm.cdf(y)) elif lik == "binomial": ntrials = random.randint(0, 30, len(y)) y = random.binomial(ntrials, 1 / (1 + exp(-y))) lik = (lik, ntrials) r = scan(G, y, lik=lik, idx=idx, K=K, M=M, verbose=False) str(r) str(r.stats.head()) str(r.effsizes["h2"].head()) str(r.h0.trait) str(r.h0.likelihood) str(r.h0.lml) str(r.h0.effsizes) str(r.h0.variances) def test_qtl_scan_st(): _test_qtl_scan_st("normal") _test_qtl_scan_st("poisson") _test_qtl_scan_st("bernoulli") _test_qtl_scan_st("probit") _test_qtl_scan_st("binomial") def test_qtl_scan_three_hypotheses_mt(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A0 = random.randn(ntraits, 1) A1 = random.randn(ntraits, 2) A01 = concatenate((A0, A1), axis=1) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A01.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A01, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, A0=A0, A1=A1, verbose=False) str(r) def test_qtl_scan_two_hypotheses_mt(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A0 = random.randn(ntraits, 1) A1 = random.randn(ntraits, 2) A01 = concatenate((A0, A1), axis=1) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A01.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A01, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, A1=A1, verbose=False) str(r) def test_qtl_scan_two_hypotheses_mt_A0A1_none(): random = RandomState(0) n = 30 ntraits = 2 ncovariates = 3 A = random.randn(ntraits, ntraits) A = A @ A.T M = random.randn(n, ncovariates) C0 = random.randn(ntraits, ntraits) C0 = C0 @ C0.T C1 = random.randn(ntraits, ntraits) C1 = C1 @ C1.T G = random.randn(n, 4) A1 = eye(ntraits) K = random.randn(n, n + 1) K = normalise_covariance(K @ K.T) beta = vec(random.randn(ntraits, ncovariates)) alpha = vec(random.randn(A1.shape[1], G.shape[1])) m = kron(A, M) @ beta + kron(A1, G) @ alpha Y = unvec(mvn(random, m, kron(C0, K) + kron(C1, eye(n))), (n, -1)) Y = DataArray(Y, dims=["sample", "trait"], coords={"trait": ["WA", "Cx"]}) idx = [[0, 1], 2, [3]] r = scan(G, Y, idx=idx, K=K, M=M, A=A, verbose=False) df = r.effsizes["h2"] df = df[df["test"] == 0] assert_array_equal(df["trait"], ["WA"] * 3 + ["Cx"] * 3 + [None] * 4) assert_array_equal( df["env"], [None] * 6 + ["env1_WA", "env1_WA", "env1_Cx", "env1_Cx"] ) str(r) def test_qtl_scan_lmm(): random = RandomState(0) nsamples = 50 G = random.randn(50, 100) K = linear_kinship(G[:, 0:80], verbose=False) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) M = G[:, :5] X = G[:, 68:70] result = scan(X, y, lik="normal", K=K, M=M, verbose=False) pv = result.stats["pv20"] ix_best_snp = argmin(array(pv)) M = concatenate((M, X[:, [ix_best_snp]]), axis=1) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, atol=1e-6) def test_qtl_scan_lmm_nokinship(): random = RandomState(0) nsamples = 50 G = random.randn(50, 100) K = linear_kinship(G[:, 0:80], verbose=False) y = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) M = G[:, :5] X = G[:, 68:70] result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"].values assert_allclose(pv[:2], [8.159539103135342e-05, 0.10807353641893498], atol=1e-5) def test_qtl_scan_lmm_repeat_samples_by_index(): random = RandomState(0) nsamples = 30 samples = ["sample{}".format(i) for i in range(nsamples)] G = random.randn(nsamples, 100) G = DataFrame(data=G, index=samples) K = linear_kinship(G.values[:, 0:80], verbose=False) K = DataFrame(data=K, index=samples, columns=samples) y0 = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) y1 = dot(G, random.randn(100)) / sqrt(100) + 0.2 * random.randn(nsamples) y = concatenate((y0, y1)) y = DataFrame(data=y, index=samples + samples) M = G.values[:, :5] X = G.values[:, 68:70] M = DataFrame(data=M, index=samples) X = DataFrame(data=X, index=samples) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv.values[0], 0.9920306566395604, rtol=1e-6) ix_best_snp = argmin(array(result.stats["pv20"])) M = concatenate((M, X.loc[:, [ix_best_snp]]), axis=1) M = DataFrame(data=M, index=samples) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, rtol=1e-6) assert_allclose(pv.values[0], 0.6684700834450028, rtol=1e-6) X.sort_index(inplace=True, ascending=False) X = DataFrame(X.values, index=X.index.values) result = scan(X, y, "normal", K, M=M, verbose=False) pv = result.stats["pv20"] assert_allclose(pv[ix_best_snp], 1.0, rtol=1e-6) assert_allclose(pv.values[0], 0.6684700834450028, rtol=1e-6) def test_qtl_scan_lmm_different_samples_order(): random = RandomState(0) nsamples = 50 samples = ["sample{}".format(i) for i in range(nsamples)] G = random.randn(nsamples, 100) G = DataFrame(data=G, index=samples) K = linear_kinship(G.values[:, 0:80], verbose=False) K =
DataFrame(data=K, index=samples, columns=samples)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas.compat as compat from pandas.compat import range import pandas as pd from pandas import ( Categorical, DataFrame, Index, NaT, Series, bdate_range, date_range, isna) from pandas.core import ops import pandas.core.nanops as nanops import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) from .common import TestData class TestSeriesLogicalOps(object): @pytest.mark.parametrize('bool_op', [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_operators_bitwise(self): # GH#9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) with pytest.raises(TypeError): s_1111 & 'a' with pytest.raises(TypeError): s_1111 & ['a', 'b', 'c', 'd'] with pytest.raises(TypeError): s_0123 & np.NaN with pytest.raises(TypeError): s_0123 & 3.14 with pytest.raises(TypeError): s_0123 & [0.1, 4, 3.14, 2] # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 &
Series([0.1, 4, -3.14, 2])
pandas.Series
# -*- coding: utf-8 -*- """ Important Variable Selection with SNPs Created on Fri Jan 31 16:31:01 2020 @author: <NAME> """ # Import the libraries import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV, train_test_split from sklearn.svm import SVR from sklearn.linear_model import MultiTaskLassoCV, MultiTaskElasticNetCV, LassoCV, ElasticNetCV, MultiTaskElasticNet, MultiTaskLasso from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import r2_score, mean_squared_error # Using chunk size to read rice data def read_x_cont(): chunksize = 100 X_ct = pd.DataFrame() for chunk in pd.read_csv("X_cont_ls_el.csv",low_memory=False, chunksize=chunksize, memory_map=True): X_ct = pd.concat([X_ct, chunk]) return(X_ct) # Function of data preprocessing def process_variable(X, y): # Drop 'IID' columns X = X.drop('IID', axis = 1) # Split data to training and testing set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=10) # Convert from integer to float X_train= X_train.astype(float, 32) X_test = X_test.astype(float, 32) # Apply the same scaling to both datasets scaler = StandardScaler() X_train_scl = scaler.fit_transform(X_train) X_test_scl = scaler.transform(X_test) # we transform rather than fit_transform return(X_train_scl, X_test_scl, y_train, y_test) """Random Forest Regressor""" #Function to run random forest with grid search and k-fold cross-validation. def get_rf_model(X_train, y_train, X_test, y_test): # Hyperparameters search grid rf_param_grid = {'bootstrap': [False, True], 'n_estimators': [60, 70, 80, 90, 100], 'max_features': [0.6, 0.65, 0.7, 0.75, 0.8], 'min_samples_leaf': [1], 'min_samples_split': [2] } # Instantiate random forest regressor rf_estimator = RandomForestRegressor(random_state=None) # Create the GridSearchCV object rf_model = GridSearchCV(estimator=rf_estimator, param_grid=rf_param_grid, cv=10, scoring='neg_mean_squared_error', n_jobs=-1, iid = True) # Train the regressor rf_model.fit(X_train, y_train) # Get the best model rf_model_best = rf_model.best_estimator_ # Make predictions using the optimised parameters rf_pred = rf_model_best.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, rf_pred) # Find r-squared r2 = r2_score(y_test, rf_pred) best_prs = rf_model.best_params_ print("Best Parameters:\n", rf_model.best_params_) print("Best Score:\n", 'mse:', mse, 'r2:', r2) return(mse, r2, best_prs) """Support Vector Regressor""" #Function to run support vector machine with grid search and k-fold cross-validation. def get_svm_model(X_train, y_train, X_test, y_test): # Parameter grid svm_param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001, 10], "kernel": ["rbf"]} # Create SVM grid search regressor svm_grid = GridSearchCV(estimator = SVR(), param_grid= svm_param_grid, cv=10, scoring='neg_mean_squared_error', n_jobs=-1, iid = True) # Train the regressor svm_grid.fit(X_train, y_train) # Get the best model svm_model_best = svm_grid.best_estimator_ # Make predictions using the optimised parameters svm_pred = svm_model_best.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, svm_pred) # Find r-squared r2 = r2_score(y_test, svm_pred) best_prs = svm_grid.best_params_ print("Best Parameters:\n", svm_grid.best_params_) print("Best Score:\n", 'mse:', mse, 'r2:', r2) return(mse, r2, best_prs) """Lasso and Multi Task Lasso""" #Lasso def get_lasso_cv(X_train, y_train, X_test, y_test, cols): # Create Lasso CV ls_grid = LassoCV(cv = 10, random_state = 0, n_jobs = -1) # Train the regressor ls_grid.fit(X_train, y_train) # Make predictions using the optimised parameters ls_pred = ls_grid.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, ls_pred) # Find r-squared r2 = r2_score(y_test, ls_pred) best_prs = ls_grid.alpha_ print("Best Parameters:\n", best_prs) print("Best Score:\n", 'mse:', mse, 'r2:', r2) # Get coefficients of the model coef = pd.DataFrame(ls_grid.coef_.T, index = cols) var = list(coef[coef[0] != 0].index) print(coef.head()) print("Lasso picked " + str(sum(coef[0] != 0)) + " variables and eliminated the other " + str(sum(coef[0] == 0)) + " variables") return(mse, r2, var, best_prs) # Multi-task Lasso def get_multitask_lasso_cv(X_train, y_train, X_test, y_test, cols): # Create Multi-task Lasso CV ls_grid = MultiTaskLassoCV(cv = 10, random_state = 0, n_jobs = -1) # Train the regressor ls_grid.fit(X_train, y_train) # Make predictions using the optimised parameters ls_pred = ls_grid.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, ls_pred) # Find r-squared r2 = r2_score(y_test, ls_pred) best_prs = ls_grid.alpha_ print("Best Parameters:\n", best_prs) print("Best Score:\n", 'mse:', mse, 'r2:', r2) # Get coefficients of the model coef = pd.DataFrame(ls_grid.coef_.T, index = cols) var = list(coef[coef[0] != 0].index) print(coef.head()) print("Multit-task Lasso picked " + str(sum(coef[0] != 0)) + " variables and eliminated the other " + str(sum(coef[0] == 0)) + " variables") return(mse, r2, var, best_prs) """Elastic Net and Multi Task Elastic Net""" # Elastic Net def get_elasticnet_cv(X_train, y_train, X_test, y_test, cols): # Create Elastic Net CV el_grid = ElasticNetCV(cv = 10, random_state = 0, n_jobs = -1) # Train the regressor el_grid.fit(X_train, y_train) # Make predictions using the optimised parameters el_pred = el_grid.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, el_pred) # Find r-squared r2 = r2_score(y_test, el_pred) best_prs = [el_grid.alpha_] best_prs.append(el_grid.l1_ratio_) print("Best Parameters:\n", best_prs) print("Best Score:\n", 'mse:', mse, 'r-squared:', r2) # Get coefficients of the model coef = pd.DataFrame(el_grid.coef_.T, index = cols) var = list(coef[coef[0] != 0].index) print(coef.head()) print("ElasticNet picked " + str(sum(coef[0] != 0)) + " variables and eliminated the other " + str(sum(coef[0] == 0)) + " variables") return(mse, r2, var, best_prs) # Multi-task Elastic Net def get_multitask_elasticnet_cv(X_train, y_train, X_test, y_test, cols): # Create Multi Task Elastic Net CV el_grid = MultiTaskElasticNetCV(cv = 10, random_state = 0, n_jobs = -1) # Train the regressor el_grid.fit(X_train, y_train) # Make predictions using the optimised parameters el_pred = el_grid.predict(X_test) # Find mean squared error mse = mean_squared_error(y_test, el_pred) # Find r-squared r2 = r2_score(y_test, el_pred) best_prs = [el_grid.alpha_] best_prs.append(el_grid.l1_ratio_) print("Best Parameters:\n", best_prs) print("Best Score:\n", 'mse:', mse, 'r-squared:', r2) # Get coefficients of the model coef = pd.DataFrame(el_grid.coef_.T, index = cols) var = list(coef[coef[0] != 0].index) print(coef.head()) print("Multi-task ElasticNet picked " + str(sum(coef[0] != 0)) + " variables and eliminated the other " + str(sum(coef[0] == 0)) + " variables") return(mse, r2, var, best_prs) # Evaluation each trait by multi-task Lasso def eval_mtls_split_trait(alpha, X_train, Y_train, X_test, Y_test): # Create Multi-Task Lasso ls_tfl_grw = MultiTaskLasso(alpha, random_state = 0) # Train the regressor ls_tfl_grw.fit(X_train, Y_train) # Make predictions using the optimised parameters ls_pred = ls_tfl_grw.predict(X_test) # Find mean squared error mse_tfl = mean_squared_error(Y_test[:, 0], ls_pred[:, 0]) mse_grw= mean_squared_error(Y_test[:, 1], ls_pred[:, 1]) # Find r-squared r2_tfl = r2_score(Y_test[:, 0], ls_pred[:, 0]) r2_grw = r2_score(Y_test[:, 1], ls_pred[:, 1]) return(mse_tfl, mse_grw, r2_tfl, r2_grw) # Evaluation each trait by multi-task Elastic Net def eval_mtel_split_trait(alpha, l1_ratio, X_train, Y_train, X_test, Y_test): # Create Multi-Task Lasso el_tfl_grw = MultiTaskElasticNet(alpha, l1_ratio, random_state = 0) # Train the regressor el_tfl_grw.fit(X_train, Y_train) # Make predictions using the optimised parameters el_pred = el_tfl_grw.predict(X_test) # Find mean squared error mse_tfl = mean_squared_error(Y_test[:, 0], el_pred[:, 0]) mse_grw= mean_squared_error(Y_test[:, 1], el_pred[:, 1]) # Find r-squared r2_tfl = r2_score(Y_test[:, 0], el_pred[:, 0]) r2_grw = r2_score(Y_test[:, 1], el_pred[:, 1]) return(mse_tfl, mse_grw, r2_tfl, r2_grw) if __name__ == '__main__': print("") print("") print("|============================================================================|") print("| |") print("| ----- IMPORTANT VARIABLE SELECTION WITH SNPS ----- |") print("| |") print("|============================================================================|") print("") print("") print("********************************* INPUT DATA *********************************") print("") print("Import data may take several minutes, please wait...") print("") # Import data X_cont = read_x_cont() cols = X_cont.columns[1::] # Load data after pre-processinng y_tfl = pd.read_csv("y_tfl.csv", header=None) y_grw = pd.read_csv("y_grw.csv", header=None) y_tfl_grw = pd.read_csv("y_tfl_grw.csv", header=None) X_grw_2 = pd.read_csv("X_grw_2.csv", header='infer') X_grw_3 = pd.read_csv("X_grw_3.csv", header='infer') X_grw_4 = pd.read_csv("X_grw_4.csv", header='infer') X_grw_5 = pd.read_csv("X_grw_5.csv", header='infer') X_tfl_2 = pd.read_csv("X_tfl_2.csv", header='infer') X_tfl_3 = pd.read_csv("X_tfl_3.csv", header='infer') X_tfl_4 = pd.read_csv("X_tfl_4.csv", header='infer') X_tfl_5 = pd.read_csv("X_tfl_5.csv", header='infer') X_tfl_6 = pd.read_csv("X_tfl_6.csv", header='infer') X_tfl_grw_2 = pd.read_csv("X_tfl_grw_2.csv", header='infer') X_tfl_grw_25 = pd.read_csv("X_tfl_grw_25.csv", header='infer') X_tfl_grw_1 = pd.read_csv("X_tfl_grw_1.csv", header='infer') X_tfl_grw_75 = pd.read_csv("X_tfl_grw_75.csv", header='infer') X_tfl_grw_3 = pd.read_csv("X_tfl_grw_3.csv", header='infer') print("") # Transform response variables to matrix type. y_tfl = y_tfl.values.ravel() y_grw = y_grw.values.ravel() y_tfl_grw = y_tfl_grw.values # Normalize rice data X_grw_2_train, X_grw_2_test, y_grw_2_train, y_grw_2_test = process_variable(X_grw_2, y_grw) X_grw_3_train, X_grw_3_test, y_grw_3_train, y_grw_3_test = process_variable(X_grw_3, y_grw) X_grw_4_train, X_grw_4_test, y_grw_4_train, y_grw_4_test = process_variable(X_grw_4, y_grw) X_grw_5_train, X_grw_5_test, y_grw_5_train, y_grw_5_test = process_variable(X_grw_5, y_grw) X_tfl_2_train, X_tfl_2_test, y_tfl_2_train, y_tfl_2_test = process_variable(X_tfl_2, y_tfl) X_tfl_3_train, X_tfl_3_test, y_tfl_3_train, y_tfl_3_test = process_variable(X_tfl_3, y_tfl) X_tfl_4_train, X_tfl_4_test, y_tfl_4_train, y_tfl_4_test = process_variable(X_tfl_4, y_tfl) X_tfl_5_train, X_tfl_5_test, y_tfl_5_train, y_tfl_5_test = process_variable(X_tfl_5, y_tfl) X_tfl_6_train, X_tfl_6_test, y_tfl_6_train, y_tfl_6_test = process_variable(X_tfl_6, y_tfl) X_tfl_grw_2_train, X_tfl_grw_2_test, y_tfl_grw_2_train, y_tfl_grw_2_test = process_variable(X_tfl_grw_2, y_tfl_grw) X_tfl_grw_25_train, X_tfl_grw_25_test, y_tfl_grw_25_train, y_tfl_grw_25_test = process_variable(X_tfl_grw_25, y_tfl_grw) X_tfl_grw_1_train, X_tfl_grw_1_test, y_tfl_grw_1_train, y_tfl_grw_1_test = process_variable(X_tfl_grw_1, y_tfl_grw) X_tfl_grw_75_train, X_tfl_grw_75_test, y_tfl_grw_75_train, y_tfl_grw_75_test = process_variable(X_tfl_grw_75, y_tfl_grw) X_tfl_grw_3_train, X_tfl_grw_3_test, y_tfl_grw_3_train, y_tfl_grw_3_test = process_variable(X_tfl_grw_3, y_tfl_grw) X_grw_train, X_grw_test, y_grw_train, y_grw_test = process_variable(X_cont, y_grw) X_tfl_train, X_tfl_test, y_tfl_train, y_tfl_test = process_variable(X_cont, y_tfl) X_tfl_grw_train, X_tfl_grw_test, y_tfl_grw_train, y_tfl_grw_test = process_variable(X_cont, y_tfl_grw) print("") print("******************************* TRAINING MODELS *****************************") print("") rf_grw_mse = [] rf_grw_r2 = [] rf_tfl_mse = [] rf_tfl_r2 = [] rf_grw_prs = [] rf_tfl_prs = [] rf_tfl_grw_mse_0 = [] rf_tfl_grw_r2_0 = [] rf_tfl_grw_prs_0 = [] rf_tfl_grw_mse_1 = [] rf_tfl_grw_r2_1 = [] rf_tfl_grw_prs_1 = [] svr_grw_mse = [] svr_grw_r2 = [] svr_tfl_mse = [] svr_tfl_r2 = [] svr_grw_prs = [] svr_tfl_prs = [] svr_tfl_grw_mse_0 = [] svr_tfl_grw_r2_0 = [] svr_tfl_grw_prs_0 = [] svr_tfl_grw_mse_1 = [] svr_tfl_grw_r2_1 = [] svr_tfl_grw_prs_1 = [] # Filtering variables by p_value. p_value = ['<=5e-6', '<=5e-5', '<=5e-4', '<=5e-3', '<=5e-2'] p_value_2 = ['<=5e-3','<=7.5e-3', '<=1e-2', '<=2.5e-2', '<=5e-2'] print("Find mse and r-squared for random forest model of grain weight...") rf_grw_mse_2, rf_grw_r2_2, rf_grw_prs_2 = get_rf_model(X_grw_2_train, y_grw_2_train, X_grw_2_test, y_grw_2_test) rf_grw_mse.append(rf_grw_mse_2) rf_grw_r2.append(rf_grw_r2_2) rf_grw_prs.append(rf_grw_prs_2) rf_grw_mse_3, rf_grw_r2_3, rf_grw_prs_3 = get_rf_model(X_grw_3_train, y_grw_3_train, X_grw_3_test, y_grw_3_test) rf_grw_mse.append(rf_grw_mse_3) rf_grw_r2.append(rf_grw_r2_3) rf_grw_prs.append(rf_grw_prs_3) rf_grw_mse_4, rf_grw_r2_4, rf_grw_prs_4 = get_rf_model(X_grw_4_train, y_grw_4_train, X_grw_4_test, y_grw_4_test) rf_grw_mse.append(rf_grw_mse_4) rf_grw_r2.append(rf_grw_r2_4) rf_grw_prs.append(rf_grw_prs_4) rf_grw_mse_5, rf_grw_r2_5, rf_grw_prs_5 = get_rf_model(X_grw_5_train, y_grw_5_train, X_grw_5_test, y_grw_5_test) rf_grw_mse.append(rf_grw_mse_5) rf_grw_r2.append(rf_grw_r2_5) rf_grw_prs.append(rf_grw_prs_5) rf_grw = pd.DataFrame({'rf_grw_mse':rf_grw_mse[::-1], 'rf_grw_r2':rf_grw_r2[::-1], 'rf_grw_prs':rf_grw_prs[::-1]}) rf_grw.set_index(pd.Index(p_value[1:5]), 'p_value', inplace = True) rf_grw.to_csv('rf_grw.csv') print('RF of grain weight is saved') print("Find mse and r-squared for random forest model of time to flowering...") rf_tfl_mse_2, rf_tfl_r2_2, rf_tfl_prs_2 = get_rf_model(X_tfl_2_train, y_tfl_2_train, X_tfl_2_test, y_tfl_2_test) rf_tfl_mse.append(rf_tfl_mse_2) rf_tfl_r2.append(rf_tfl_r2_2) rf_tfl_prs.append(rf_tfl_prs_2) rf_tfl_mse_3, rf_tfl_r2_3, rf_tfl_prs_3 = get_rf_model(X_tfl_3_train, y_tfl_3_train, X_tfl_3_test, y_tfl_3_test) rf_tfl_mse.append(rf_tfl_mse_3) rf_tfl_r2.append(rf_tfl_r2_3) rf_tfl_prs.append(rf_tfl_prs_3) rf_tfl_mse_4, rf_tfl_r2_4, rf_tfl_prs_4 = get_rf_model(X_tfl_4_train, y_tfl_4_train, X_tfl_4_test, y_tfl_4_test) rf_tfl_mse.append(rf_tfl_mse_4) rf_tfl_r2.append(rf_tfl_r2_4) rf_tfl_prs.append(rf_tfl_prs_4) rf_tfl_mse_5, rf_tfl_r2_5, rf_tfl_prs_5 = get_rf_model(X_tfl_5_train, y_tfl_5_train, X_tfl_5_test, y_tfl_5_test) rf_tfl_mse.append(rf_tfl_mse_5) rf_tfl_r2.append(rf_tfl_r2_5) rf_tfl_prs.append(rf_tfl_prs_5) rf_tfl_mse_6, rf_tfl_r2_6, rf_tfl_prs_6 = get_rf_model(X_tfl_6_train, y_tfl_6_train, X_tfl_6_test, y_tfl_6_test) rf_tfl_mse.append(rf_tfl_mse_6) rf_tfl_r2.append(rf_tfl_r2_6) rf_tfl_prs.append(rf_tfl_prs_6) rf_tfl = pd.DataFrame({'rf_tfl_mse':rf_tfl_mse[::-1], 'rf_tfl_r2':rf_tfl_r2[::-1], 'rf_tfl_prs':rf_tfl_prs[::-1]}) rf_tfl.set_index(pd.Index(p_value), 'p_value', inplace = True) rf_tfl.to_csv('rf_tfl.csv') print('RF of time to flowering is saved') print("Find mse and r-squared for random forest model of time to flowering and grain weight...") # Output is time to flowering rf_tfl_grw_mse_2_0, rf_tfl_grw_r2_2_0, rf_tfl_grw_prs_2_0 = get_rf_model(X_tfl_grw_2_train, y_tfl_grw_2_train[:, 0], X_tfl_grw_2_test, y_tfl_grw_2_test[:, 0]) rf_tfl_grw_mse_0.append(rf_tfl_grw_mse_2_0) rf_tfl_grw_r2_0.append(rf_tfl_grw_r2_2_0) rf_tfl_grw_prs_0.append(rf_tfl_grw_prs_2_0) rf_tfl_grw_mse_25_0, rf_tfl_grw_r2_25_0, rf_tfl_grw_prs_25_0 = get_rf_model(X_tfl_grw_25_train, y_tfl_grw_25_train[:, 0], X_tfl_grw_25_test, y_tfl_grw_25_test[:, 0]) rf_tfl_grw_mse_0.append(rf_tfl_grw_mse_25_0) rf_tfl_grw_r2_0.append(rf_tfl_grw_r2_25_0) rf_tfl_grw_prs_0.append(rf_tfl_grw_prs_25_0) rf_tfl_grw_mse_1_0, rf_tfl_grw_r2_1_0, rf_tfl_grw_prs_1_0 = get_rf_model(X_tfl_grw_1_train, y_tfl_grw_1_train[:, 0], X_tfl_grw_1_test, y_tfl_grw_1_test[:, 0]) rf_tfl_grw_mse_0.append(rf_tfl_grw_mse_1_0) rf_tfl_grw_r2_0.append(rf_tfl_grw_r2_1_0) rf_tfl_grw_prs_0.append(rf_tfl_grw_prs_1_0) rf_tfl_grw_mse_75_0, rf_tfl_grw_r2_75_0, rf_tfl_grw_prs_75_0 = get_rf_model(X_tfl_grw_75_train, y_tfl_grw_75_train[:, 0], X_tfl_grw_75_test, y_tfl_grw_75_test[:, 0]) rf_tfl_grw_mse_0.append(rf_tfl_grw_mse_75_0) rf_tfl_grw_r2_0.append(rf_tfl_grw_r2_75_0) rf_tfl_grw_prs_0.append(rf_tfl_grw_prs_75_0) rf_tfl_grw_mse_3_0, rf_tfl_grw_r2_3_0, rf_tfl_grw_prs_3_0 = get_rf_model(X_tfl_grw_3_train, y_tfl_grw_3_train[:, 0], X_tfl_grw_3_test, y_tfl_grw_3_test[:, 0]) rf_tfl_grw_mse_0.append(rf_tfl_grw_mse_3_0) rf_tfl_grw_r2_0.append(rf_tfl_grw_r2_3_0) rf_tfl_grw_prs_0.append(rf_tfl_grw_prs_3_0) rf_tfl_grw_0 = pd.DataFrame({'rf_tfl_grw_mse_0':rf_tfl_grw_mse_0[::-1], 'rf_tfl_grw_r2_0':rf_tfl_grw_r2_0[::-1], 'rf_tfl_grw_prs_0':rf_tfl_grw_prs_0[::-1]}) rf_tfl_grw_0.set_index(pd.Index(p_value_2), 'p_value', inplace = True) rf_tfl_grw_0.to_csv('rf_tfl_grw_0.csv') # Output is grain weight rf_tfl_grw_mse_2_1, rf_tfl_grw_r2_2_1, rf_tfl_grw_prs_2_1 = get_rf_model(X_tfl_grw_2_train, y_tfl_grw_2_train[:, 1], X_tfl_grw_2_test, y_tfl_grw_2_test[:, 1]) rf_tfl_grw_mse_1.append(rf_tfl_grw_mse_2_1) rf_tfl_grw_r2_1.append(rf_tfl_grw_r2_2_1) rf_tfl_grw_prs_1.append(rf_tfl_grw_prs_2_1) rf_tfl_grw_mse_25_1, rf_tfl_grw_r2_25_1, rf_tfl_grw_prs_25_1 = get_rf_model(X_tfl_grw_25_train, y_tfl_grw_25_train[:, 1], X_tfl_grw_25_test, y_tfl_grw_25_test[:, 1]) rf_tfl_grw_mse_1.append(rf_tfl_grw_mse_25_1) rf_tfl_grw_r2_1.append(rf_tfl_grw_r2_25_1) rf_tfl_grw_prs_1.append(rf_tfl_grw_prs_25_1) rf_tfl_grw_mse_1_1, rf_tfl_grw_r2_1_1, rf_tfl_grw_prs_1_1 = get_rf_model(X_tfl_grw_1_train, y_tfl_grw_1_train[:, 1], X_tfl_grw_1_test, y_tfl_grw_1_test[:, 1]) rf_tfl_grw_mse_1.append(rf_tfl_grw_mse_1_1) rf_tfl_grw_r2_1.append(rf_tfl_grw_r2_1_1) rf_tfl_grw_prs_1.append(rf_tfl_grw_prs_1_1) rf_tfl_grw_mse_75_1, rf_tfl_grw_r2_75_1, rf_tfl_grw_prs_75_1 = get_rf_model(X_tfl_grw_75_train, y_tfl_grw_75_train[:, 1], X_tfl_grw_75_test, y_tfl_grw_75_test[:, 1]) rf_tfl_grw_mse_1.append(rf_tfl_grw_mse_75_1) rf_tfl_grw_r2_1.append(rf_tfl_grw_r2_75_1) rf_tfl_grw_prs_1.append(rf_tfl_grw_prs_75_1) rf_tfl_grw_mse_3_1, rf_tfl_grw_r2_3_1, rf_tfl_grw_prs_3_1 = get_rf_model(X_tfl_grw_3_train, y_tfl_grw_3_train[:, 1], X_tfl_grw_3_test, y_tfl_grw_3_test[:, 1]) rf_tfl_grw_mse_1.append(rf_tfl_grw_mse_3_1) rf_tfl_grw_r2_1.append(rf_tfl_grw_r2_3_1) rf_tfl_grw_prs_1.append(rf_tfl_grw_prs_3_1) rf_tfl_grw_1 = pd.DataFrame({'rf_tfl_grw_mse_1':rf_tfl_grw_mse_1[::-1], 'rf_tfl_grw_r2_1':rf_tfl_grw_r2_1[::-1], 'rf_tfl_grw_prs_1':rf_tfl_grw_prs_1[::-1]}) rf_tfl_grw_1.set_index(pd.Index(p_value_2), 'p_value', inplace = True) rf_tfl_grw_1.to_csv('rf_tfl_grw_1.csv') print('RF of time to flowering and grain weight is saved') print("Find mse and r-squared for svm model of grain weight...") svr_grw_mse_2, svr_grw_r2_2, svr_grw_prs_2 = get_svm_model(X_grw_2_train, y_grw_2_train, X_grw_2_test, y_grw_2_test) svr_grw_mse.append(svr_grw_mse_2) svr_grw_r2.append(svr_grw_r2_2) svr_grw_prs.append(svr_grw_prs_2) svr_grw_mse_3, svr_grw_r2_3, svr_grw_prs_3 = get_svm_model(X_grw_3_train, y_grw_3_train, X_grw_3_test, y_grw_3_test) svr_grw_mse.append(svr_grw_mse_3) svr_grw_r2.append(svr_grw_r2_3) svr_grw_prs.append(svr_grw_prs_3) svr_grw_mse_4, svr_grw_r2_4, svr_grw_prs_4 = get_svm_model(X_grw_4_train, y_grw_4_train, X_grw_4_test, y_grw_4_test) svr_grw_mse.append(svr_grw_mse_4) svr_grw_r2.append(svr_grw_r2_4) svr_grw_prs.append(svr_grw_prs_4) svr_grw_mse_5, svr_grw_r2_5, svr_grw_prs_5 = get_svm_model(X_grw_5_train, y_grw_5_train, X_grw_5_test, y_grw_5_test) svr_grw_mse.append(svr_grw_mse_5) svr_grw_r2.append(svr_grw_r2_5) svr_grw_prs.append(svr_grw_prs_5) svr_grw = pd.DataFrame({'svr_grw_mse':svr_grw_mse[::-1], 'svr_grw_r2':svr_grw_r2[::-1], 'svr_grw_prs':svr_grw_prs[::-1]}) svr_grw.set_index(pd.Index(p_value[1:5]), 'p_value', inplace = True) svr_grw.to_csv('svr_grw.csv') print('SVR of grain weight is saved') print("Find mse and r-squared for svm model of time to flowering...") svr_tfl_mse_2, svr_tfl_r2_2, svr_tfl_prs_2 = get_svm_model(X_tfl_2_train, y_tfl_2_train, X_tfl_2_test, y_tfl_2_test) svr_tfl_mse.append(svr_tfl_mse_2) svr_tfl_r2.append(svr_tfl_r2_2) svr_tfl_prs.append(svr_tfl_prs_2) svr_tfl_mse_3, svr_tfl_r2_3, svr_tfl_prs_3 = get_svm_model(X_tfl_3_train, y_tfl_3_train, X_tfl_3_test, y_tfl_3_test) svr_tfl_mse.append(svr_tfl_mse_3) svr_tfl_r2.append(svr_tfl_r2_3) svr_tfl_prs.append(svr_tfl_prs_3) svr_tfl_mse_4, svr_tfl_r2_4, svr_tfl_prs_4 = get_svm_model(X_tfl_4_train, y_tfl_4_train, X_tfl_4_test, y_tfl_4_test) svr_tfl_mse.append(svr_tfl_mse_4) svr_tfl_r2.append(svr_tfl_r2_4) svr_tfl_prs.append(svr_tfl_prs_4) svr_tfl_mse_5, svr_tfl_r2_5, svr_tfl_prs_5 = get_svm_model(X_tfl_5_train, y_tfl_5_train, X_tfl_5_test, y_tfl_5_test) svr_tfl_mse.append(svr_tfl_mse_5) svr_tfl_r2.append(svr_tfl_r2_5) svr_tfl_prs.append(svr_tfl_prs_5) svr_tfl_mse_6, svr_tfl_r2_6, svr_tfl_prs_6 = get_svm_model(X_tfl_6_train, y_tfl_6_train, X_tfl_6_test, y_tfl_6_test) svr_tfl_mse.append(svr_tfl_mse_6) svr_tfl_r2.append(svr_tfl_r2_6) svr_tfl_prs.append(svr_tfl_prs_6) svr_tfl = pd.DataFrame({'svr_tfl_mse':svr_tfl_mse[::-1], 'svr_tfl_r2':svr_tfl_r2[::-1], 'svr_tfl_prs':svr_tfl_prs[::-1]}) svr_tfl.set_index(pd.Index(p_value), 'p_value', inplace = True) svr_tfl.to_csv('svr_tfl.csv') print('SVR of time to flowering is saved') print("Find mse and r-squared for svm model of time to flowering and grain weight... ") # Output is time to flowering svr_tfl_grw_mse_2_0, svr_tfl_grw_r2_2_0, svr_tfl_grw_prs_2_0 = get_svm_model(X_tfl_grw_2_train, y_tfl_grw_2_train[:, 0], X_tfl_grw_2_test, y_tfl_grw_2_test[:, 0]) svr_tfl_grw_mse_0.append(svr_tfl_grw_mse_2_0) svr_tfl_grw_r2_0.append(svr_tfl_grw_r2_2_0) svr_tfl_grw_prs_0.append(svr_tfl_grw_prs_2_0) svr_tfl_grw_mse_25_0, svr_tfl_grw_r2_25_0, svr_tfl_grw_prs_25_0 = get_svm_model(X_tfl_grw_25_train, y_tfl_grw_25_train[:, 0], X_tfl_grw_25_test, y_tfl_grw_25_test[:, 0]) svr_tfl_grw_mse_0.append(svr_tfl_grw_mse_25_0) svr_tfl_grw_r2_0.append(svr_tfl_grw_r2_25_0) svr_tfl_grw_prs_0.append(svr_tfl_grw_prs_25_0) svr_tfl_grw_mse_1_0, svr_tfl_grw_r2_1_0, svr_tfl_grw_prs_1_0 = get_svm_model(X_tfl_grw_1_train, y_tfl_grw_1_train[:, 0], X_tfl_grw_1_test, y_tfl_grw_1_test[:, 0]) svr_tfl_grw_mse_0.append(svr_tfl_grw_mse_1_0) svr_tfl_grw_r2_0.append(svr_tfl_grw_r2_1_0) svr_tfl_grw_prs_0.append(svr_tfl_grw_prs_1_0) svr_tfl_grw_mse_75_0, svr_tfl_grw_r2_75_0, svr_tfl_grw_prs_75_0 = get_svm_model(X_tfl_grw_75_train, y_tfl_grw_75_train[:, 0], X_tfl_grw_75_test, y_tfl_grw_75_test[:, 0]) svr_tfl_grw_mse_0.append(svr_tfl_grw_mse_75_0) svr_tfl_grw_r2_0.append(svr_tfl_grw_r2_75_0) svr_tfl_grw_prs_0.append(svr_tfl_grw_prs_75_0) svr_tfl_grw_mse_3_0, svr_tfl_grw_r2_3_0, svr_tfl_grw_prs_3_0 = get_svm_model(X_tfl_grw_3_train, y_tfl_grw_3_train[:, 0], X_tfl_grw_3_test, y_tfl_grw_3_test[:, 0]) svr_tfl_grw_mse_0.append(svr_tfl_grw_mse_3_0) svr_tfl_grw_r2_0.append(svr_tfl_grw_r2_3_0) svr_tfl_grw_prs_0.append(svr_tfl_grw_prs_3_0) svr_tfl_grw_0 = pd.DataFrame({'svr_tfl_grw_mse_0':svr_tfl_grw_mse_0[::-1], 'svr_tfl_grw_r2_0':svr_tfl_grw_r2_0[::-1], 'svr_tfl_grw_prs_0':svr_tfl_grw_prs_0[::-1]}) svr_tfl_grw_0.set_index(pd.Index(p_value_2), 'p_value', inplace = True) svr_tfl_grw_0.to_csv('svr_tfl_grw_0.csv') # Output is grain weight svr_tfl_grw_mse_2_1, svr_tfl_grw_r2_2_1, svr_tfl_grw_prs_2_1 = get_svm_model(X_tfl_grw_2_train, y_tfl_grw_2_train[:, 1], X_tfl_grw_2_test, y_tfl_grw_2_test[:, 1]) svr_tfl_grw_mse_1.append(svr_tfl_grw_mse_2_1) svr_tfl_grw_r2_1.append(svr_tfl_grw_r2_2_1) svr_tfl_grw_prs_1.append(svr_tfl_grw_prs_2_1) svr_tfl_grw_mse_25_1, svr_tfl_grw_r2_25_1, svr_tfl_grw_prs_25_1 = get_svm_model(X_tfl_grw_25_train, y_tfl_grw_25_train[:, 1], X_tfl_grw_25_test, y_tfl_grw_25_test[:, 1]) svr_tfl_grw_mse_1.append(svr_tfl_grw_mse_25_1) svr_tfl_grw_r2_1.append(svr_tfl_grw_r2_25_1) svr_tfl_grw_prs_1.append(svr_tfl_grw_prs_25_1) svr_tfl_grw_mse_1_1, svr_tfl_grw_r2_1_1, svr_tfl_grw_prs_1_1 = get_svm_model(X_tfl_grw_1_train, y_tfl_grw_1_train[:, 1], X_tfl_grw_1_test, y_tfl_grw_1_test[:, 1]) svr_tfl_grw_mse_1.append(svr_tfl_grw_mse_1_1) svr_tfl_grw_r2_1.append(svr_tfl_grw_r2_1_1) svr_tfl_grw_prs_1.append(svr_tfl_grw_prs_1_1) svr_tfl_grw_mse_75_1, svr_tfl_grw_r2_75_1, svr_tfl_grw_prs_75_1 = get_svm_model(X_tfl_grw_75_train, y_tfl_grw_75_train[:, 1], X_tfl_grw_75_test, y_tfl_grw_75_test[:, 1]) svr_tfl_grw_mse_1.append(svr_tfl_grw_mse_75_1) svr_tfl_grw_r2_1.append(svr_tfl_grw_r2_75_1) svr_tfl_grw_prs_1.append(svr_tfl_grw_prs_75_1) svr_tfl_grw_mse_3_1, svr_tfl_grw_r2_3_1, svr_tfl_grw_prs_3_1 = get_svm_model(X_tfl_grw_3_train, y_tfl_grw_3_train[:, 1], X_tfl_grw_3_test, y_tfl_grw_3_test[:, 1]) svr_tfl_grw_mse_1.append(svr_tfl_grw_mse_3_1) svr_tfl_grw_r2_1.append(svr_tfl_grw_r2_3_1) svr_tfl_grw_prs_1.append(svr_tfl_grw_prs_3_1) svr_tfl_grw_1 = pd.DataFrame({'svr_tfl_grw_mse_1':svr_tfl_grw_mse_1[::-1], 'svr_tfl_grw_r2_1':svr_tfl_grw_r2_1[::-1], 'svr_tfl_grw_prs_1':svr_tfl_grw_prs_1[::-1]}) svr_tfl_grw_1.set_index(pd.Index(p_value_2), 'p_value', inplace = True) svr_tfl_grw_1.to_csv('svr_tfl_grw_1.csv') print("") print("Create data frames...") print("") grw_mse = pd.DataFrame({'rf_grw_mse':rf_grw_mse[::-1], 'svr_grw_mse':svr_grw_mse[::-1]}) grw_mse.set_index(pd.Index(p_value[1:5]), 'p_value', inplace = True) grw_r2 = pd.DataFrame({'rf_grw_r2':rf_grw_r2[::-1], 'svr_grw_r2':svr_grw_r2[::-1]}) grw_r2.set_index(pd.Index(p_value[1:5]), 'p_value', inplace = True) tfl_mse = pd.DataFrame({'rf_tfl_mse':rf_tfl_mse[::-1], 'svr_tfl_mse':svr_tfl_mse[::-1]}) tfl_mse.set_index(pd.Index(p_value), 'p_value', inplace = True) tfl_r2 = pd.DataFrame({'rf_tfl_r2':rf_tfl_r2[::-1], 'svr_tfl_r2':svr_tfl_r2[::-1]}) tfl_r2.set_index(pd.Index(p_value), 'p_value', inplace = True) tfl_grw_mse = pd.DataFrame({'rf_tfl_mse':rf_tfl_grw_mse_0[::-1], 'rf_grw_mse':rf_tfl_grw_mse_1[::-1], 'svr_tfl_mse':svr_tfl_grw_mse_0[::-1], 'svr_grw_mse':svr_tfl_grw_mse_1[::-1]}) tfl_grw_mse.set_index(pd.Index(p_value_2), 'p_value', inplace = True) tfl_grw_r2 = pd.DataFrame({'rf_tfl_r2':rf_tfl_grw_r2_0[::-1], 'rf_grw_r2':rf_tfl_grw_r2_1[::-1], 'svr_tfl_r2':svr_tfl_grw_r2_0[::-1], 'svr_grw_r2':svr_tfl_grw_r2_1[::-1]}) tfl_grw_r2.set_index(pd.Index(p_value_2), 'p_value', inplace = True) print("") print("Find mse and r-squared for lasso and multitasklasso model...") print("") print("For grain weight...") print("") mse_grw_ls, r2_grw_ls, var_grw_ls, ls_grw_prs = get_lasso_cv(X_grw_train, y_grw_train, X_grw_test, y_grw_test, cols) print("") print("For time to flowering...") print("") mse_tfl_ls, r2_tfl_ls, var_tfl_ls, ls_tfl_prs = get_lasso_cv(X_tfl_train, y_tfl_train, X_tfl_test, y_tfl_test, cols) print("") print("For time to flowering and grain weight...") print("") mse_tfl_grw_ls, r2_tfl_grw_ls, var_tfl_grw_ls, ls_tfl_grw_prs = get_multitask_lasso_cv(X_tfl_grw_train, y_tfl_grw_train, X_tfl_grw_test, y_tfl_grw_test, cols) print("") print("Find mse and r-squared for elasticnet and multitaskelasticnet model...") print("") print("For grain weight...") print("") mse_grw_el, r2_grw_el, var_grw_el, el_grw_prs = get_elasticnet_cv(X_grw_train, y_grw_train, X_grw_test, y_grw_test, cols) print("") print("For time to flowering...") print("") mse_tfl_el, r2_tfl_el, var_tfl_el, el_tfl_prs = get_elasticnet_cv(X_tfl_train, y_tfl_train, X_tfl_test, y_tfl_test, cols) print("") print("For time to flowering and grain weight...") print("") mse_tfl_grw_el, r2_tfl_grw_el, var_tfl_grw_el, el_tfl_grw_prs = get_multitask_elasticnet_cv(X_tfl_grw_train, y_tfl_grw_train, X_tfl_grw_test, y_tfl_grw_test, cols) # Mse, r2 of each trait with the multi-task problem mtls_mse_tfl, mtls_mse_grw, mtls_r2_tfl, mtls_r2_grw = eval_mtls_split_trait(2.41812258083032, X_tfl_grw_train, y_tfl_grw_train, X_tfl_grw_test, y_tfl_grw_test) mtel_mse_tfl, mtel_mse_grw, mtel_r2_tfl, mtel_r2_grw = eval_mtel_split_trait(4.20631940576943, 0.5, X_tfl_grw_train, y_tfl_grw_train, X_tfl_grw_test, y_tfl_grw_test) ls_table = pd.DataFrame({'mse_grw_ls':[mse_grw_ls], 'r2_grw_ls':[r2_grw_ls], 'mse_tfl_ls':[mse_tfl_ls], 'r2_tfl_ls':[r2_tfl_ls], 'mse_tfl_grw_ls':[mse_tfl_grw_ls], 'r2_tfl_grw_ls':[r2_tfl_grw_ls], 'ls_grw_prs':[ls_grw_prs], 'ls_tfl_prs':[ls_tfl_prs], 'ls_tfl_grw_prs':[ls_tfl_grw_prs]}) el_table = pd.DataFrame({'mse_grw_el':[mse_grw_el], 'r2_grw_el':[r2_grw_el], 'mse_tfl_el':[mse_tfl_el], 'r2_tfl_el':[r2_tfl_el], 'mse_tfl_grw_el':[mse_tfl_grw_el], 'r2_tfl_grw_el':[r2_tfl_grw_el], 'el_grw_prs':[el_grw_prs], 'el_tfl_prs':[el_tfl_prs], 'el_tfl_grw_prs':[el_tfl_grw_prs]}) ls_split_trait = pd.DataFrame({'mtls_mse_tfl':[mtls_mse_tfl],'mtls_mse_grw':[mtls_mse_grw], 'mtls_r2_tfl':[mtls_r2_tfl], 'mtls_r2_grw':[mtls_r2_grw]}) el_split_trait = pd.DataFrame({'mtel_mse_tfl':[mtel_mse_tfl],'mtel_mse_grw':[mtel_mse_grw], 'mtel_r2_tfl':[mtel_r2_tfl], 'mtel_r2_grw':[mtel_r2_grw]}) var_tfl_ls = pd.DataFrame({'var_tfl_ls':var_tfl_ls}) var_grw_ls = pd.DataFrame({'var_grw_ls':var_grw_ls}) var_tfl_grw_ls = pd.DataFrame({'var_tfl_grw_ls':var_tfl_grw_ls}) var_tfl_el = pd.DataFrame({'var_tfl_el':var_tfl_el}) var_grw_el =
pd.DataFrame({'var_grw_el':var_grw_el})
pandas.DataFrame
#Import modules import os import pandas as pd import numpy as np from pandas import DatetimeIndex import dask import scipy from scipy.optimize import minimize, LinearConstraint import time from sklearn.preprocessing import MinMaxScaler, StandardScaler import pickle #Define Column Name indexName = 'date' indexExpiry = 'optionExpiry' indexTenor = 'underlyingTerm' indexStrike = 'Strike' indexRelStrike = 'RelativeStrike' def getTTMFromCoordinates(dfList): return dfList[1].applymap(lambda x : x[0]) def getMoneynessFromCoordinates(dfList): return dfList[1].applymap(lambda x : x[1]) def readfile(file): print("file") print(file) def iterateOnFolderContent(folderName): for elt in os.scandir(folderName): if os.DirEntry.is_dir(elt): print("Folder") print(elt) iterateOnFolderContent(elt) else : readfile(elt) def parseTerm(stringTerm): if 'M' == stringTerm[-1]: return float(stringTerm[:-1])/12 elif 'Y' == stringTerm[-1]: return float(stringTerm[:-1]) else : raise Exception("Can not parse term") def parseTenor(row): return [parseTerm(row['underlyingTerm']), parseTerm(row['optionExpiry'])] def smileFromSkew(skew): atmVol = skew['A'] #smile = atmVol + skew[skewShift] #return smile#.append(skew.drop(smile.index)) return atmVol + skew.drop('A') def parseStrike(relStrike): if relStrike.name[3] == 'A': return relStrike['forward'] if "+" in relStrike.name[3]: shift = int(relStrike.name[3].split("+")[1]) return relStrike['forward'] + shift/1000 if "-" in relStrike.name[3]: shift = int(relStrike.name[3].split("-")[1]) return relStrike['forward'] - shift/1000 raise Exception(' Can not parse Strike ') #intersection of all dates across history def intersectionGrid(grid) : nbDates = grid.index.get_level_values(0).unique().shape[0] if nbDates <= 1: return grid.index.droplevel(0) else : midDate = grid.index.get_level_values(0).unique()[int(nbDates/2)] g1 = grid[grid.index.get_level_values(0) < midDate] g2 = grid[grid.index.get_level_values(0) >= midDate] return intersectionGrid(g1).intersection(intersectionGrid(g2)) def splitTrainTestDataRandomly(gridHistory, trainingSetPercentage): nbDates = gridHistory.index.get_level_values(0).unique().shape[0] trainingDates = np.random.choice(gridHistory.index.get_level_values(0).unique(), replace=False, size=int(nbDates * trainingSetPercentage)) trainingData = gridHistory.loc[pd.IndexSlice[trainingDates,:,:], :] testingData = gridHistory.drop(trainingData.index) trainingData.index = trainingData.index.droplevel([1,2]) testingData.index = testingData.index.droplevel([1,2]) return trainingData, testingData def splitTrainTestDataChronologically(gridHistory, trainingSetPercentage): firstTestingDate = int(gridHistory.index.get_level_values(0).unique().shape[0] * trainingSetPercentage) trainingDates = gridHistory.index.get_level_values(0).unique()[:firstTestingDate] trainingData = gridHistory.loc[pd.IndexSlice[trainingDates,:,:], :] testingData = gridHistory.drop(trainingData.index) trainingData.index = trainingData.index.droplevel([1,2]) testingData.index = testingData.index.droplevel([1,2]) return trainingData, testingData def sampleBatchOfDays(dataSet, nbDrawn): trainingDates = np.random.choice(dataSet.index.get_level_values(0).unique(), replace=False, size=nbDrawn) return dataSet.loc[trainingDates, :] def splitHistory(history, colName): return pd.pivot_table(history, values = colName, index = history.index.names, columns=['Expiry','Tenor']) def extractDataFromCSV(dataSetPath): #Read csv file data = pd.read_csv(dataSetPath) #Parse tenor and expiry as float years data['Tenor'],data['Expiry'] = zip(*data.apply(parseTenor,axis=1)) #Parse date as a datetime data[indexName] = pd.to_datetime(data['businessDate'], dayfirst=True) #Set Index as as a three dimension vector and sort observation indexedData = data.set_index([indexExpiry, indexTenor, indexName]).sort_index() #Keep relevant features #Columns used for representing a Strike Value skewShift = [shift for shift in indexedData.columns if ('A' in shift )]#and 'A' != shift #Other Columns to keep otherColumns = ['forward', 'Tenor', 'Expiry'] #Get columns indexed by a relative strike skewHistory = indexedData[skewShift + otherColumns]#.apply(smileFromSkew,axis=1) #Merge with other useful columns #Stacking Smile #Left outer Join on (tenor, expiry, date) joinColumns = skewHistory.index.names leftTable = skewHistory.drop(otherColumns, axis = 1).stack().rename("Vol")#Features depending on strike value leftTable.index.names = [leftTable.index.names[0], leftTable.index.names[1], leftTable.index.names[2], 'RelativeStrike'] formattedHistory = leftTable.reset_index().merge(skewHistory[otherColumns].reset_index(), on=joinColumns, validate = "m:1").set_index(leftTable.index.names).sort_index() #Convert strike shift as a float from a stringTerm formattedHistory[indexStrike] = formattedHistory.apply(parseStrike,axis=1) return formattedHistory def equalDf(df1, df2): if df1.shape == df2.shape : if np.sum(np.isnan(df1.values)) != np.sum(np.isnan(df2.values)) : print("Not the same number of nan") return False tol = 1e-6 gap = np.nansum(np.abs(df1.values - df2.values)) if gap < tol : return True else : print("Large df error : ", gap) return False print("Not the same shape") return False def sampleSwaptionsToDelete(dataSet, completionRate): return dataSet.iloc[0].sample(frac = completionRate).index def removeSwaptionsToDelete(dataSet): listToDelete = [(0.08333333333333333,0.25),(0.08333333333333333,10.0), (0.08333333333333333,30.0),(0.5,2.0),(0.5,15.0), (5.0,1.0),(5.0,20.0),(10.0,5.0)] return dataSet.iloc[0].index.difference(listToDelete) #Different from minmax scaler of scikit learn #Min and Max are computed on the dataset, not column wise class customMinMaxScale: def __init__(self, feature_range = (0,1)): self.min = feature_range[0] self.max = feature_range[1] #We can enforce the minimum if we expect smaller data in the testing set def fit(self, dataset, enforceDataSetMin = None, enforceDataSetMax = None): self.datasetMin = dataset.min().min() if enforceDataSetMin is not None : self.datasetMin = min(enforceDataSetMin, self.datasetMin) self.datasetMax = dataset.max().max() if enforceDataSetMax is not None : self.datasetMax = max(enforceDataSetMax, self.datasetMax) return def transform(self, dataset): scale = (self.max - self.min) / (self.datasetMax - self.datasetMin) return (dataset - self.datasetMin) * scale + self.min def inverse_transform(self, scaledDataset): scale = (self.max - self.min) / (self.datasetMax - self.datasetMin) return (scaledDataset - self.min) / scale + self.datasetMin #Encapsulation class for Sklearn Standard scaling class customMeanStdScale: def __init__(self, feature_range = (0,1)): self.scalerList = [] #We can enforce the minimum if we expect smaller data in the testing set def fit(self, dataset, enforceDataSetMin = None, enforceDataSetMax = None): hasTupleElt = (type(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0])==type(tuple())) if hasTupleElt : tupleSize = len(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0]) self.scalerList = [StandardScaler() for i in range(tupleSize)] for k in range(tupleSize): funcAccess = lambda x : x[k] scaler = self.scalerList[k] dfElt = dataset.applymap(funcAccess) if (type(dataset) != type(pd.Series())) else dataset.map(funcAccess) scaler.fit(dfElt) else : self.scalerList = [] self.scalerList.append(StandardScaler()) self.scalerList[0].fit(dataset) return def transformSingleDf(self, scaler, dfElt): totalVariance = np.sum(scaler.var_) if totalVariance <= 1e-6 : #Avoid mean scaling for constant data return dfElt if type(dfElt) == type(pd.Series()): return pd.Series(np.ravel(scaler.transform(dfElt.values.reshape(1, -1))), index = dfElt.index).rename(dfElt.name) return pd.DataFrame(scaler.transform(dfElt), index = dfElt.index, columns = dfElt.columns) def transform(self, dataset): hasTupleElt = (type(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0])==type(tuple())) if hasTupleElt : tupleSize = len(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0]) scaledDfList = [] for k in range(tupleSize): funcAccess = lambda x : x[k] dfElt = dataset.applymap(funcAccess) if (type(dataset) != type(pd.Series())) else dataset.map(funcAccess) scaler = self.scalerList[k] scaledDfList.append(np.ravel(self.transformSingleDf(scaler, dfElt).values)) #Flattened list of tuples tupleList= list(zip(*scaledDfList)) #Merge all datasets into a single structure if dataset.ndim==2 : reshapedList = [tupleList[(i*dataset.shape[1]):((i+1)*dataset.shape[1])] for i in range(dataset.shape[0])] return pd.DataFrame(reshapedList, index = dataset.index, columns = dataset.columns) else : reshapedList = tupleList return pd.Series(reshapedList, index = dataset.index) else : return self.transformSingleDf(self.scalerList[0], dataset) return None def inverTransformSingleDf(self, scaler, dfElt): totalVariance = np.sum(scaler.var_) if totalVariance <= 1e-6 : #Avoid mean scaling for constant data return dfElt if type(dfElt) == type(pd.Series()): return pd.Series(np.ravel(scaler.inverse_transform(dfElt.values.reshape(1, -1))), index = dfElt.index).rename(dfElt.name) return pd.DataFrame(scaler.inverse_transform(dfElt), index = dfElt.index, columns = dfElt.columns) def inverse_transform(self, scaledDataset): hasTupleElt = (type(scaledDataset.iloc[0,0] if scaledDataset.ndim==2 else scaledDataset.iloc[0])==type(tuple())) if hasTupleElt : tupleSize = len(scaledDataset.iloc[0,0] if scaledDataset.ndim==2 else scaledDataset.iloc[0]) scaledDfList = [] for k in range(tupleSize): funcAccess = lambda x : x[k] dfElt = scaledDataset.applymap(funcAccess) if (type(scaledDataset) != type(pd.Series())) else scaledDataset.map(funcAccess) scaler = self.scalerList[k] scaledDfList.append(np.ravel(self.inverTransformSingleDf(scaler, dfElt).values)) #Flattened list of tuples tupleList= list(zip(*scaledDfList)) #Merge all datasets into a single structure if scaledDataset.ndim==2 : reshapedList = [tupleList[(i*scaledDataset.shape[1]):((i+1)*scaledDataset.shape[1])] for i in range(scaledDataset.shape[0])] return pd.DataFrame(reshapedList, index = scaledDataset.index, columns = scaledDataset.columns) else : reshapedList = tupleList return pd.Series(reshapedList, index = scaledDataset.index) else : return self.inverTransformSingleDf(self.scalerList[0], scaledDataset) return None #Encapsulation class for Sklearn min max scaling class standardMinMaxScale(customMeanStdScale): def __init__(self, feature_range = (0,1)): super().__init__() #We can enforce the minimum if we expect smaller data in the testing set def fit(self, dataset, enforceDataSetMin = None, enforceDataSetMax = None): hasTupleElt = (type(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0])==type(tuple())) if hasTupleElt : tupleSize = len(dataset.iloc[0,0] if dataset.ndim==2 else dataset.iloc[0]) self.scalerList = [MinMaxScaler() for i in range(tupleSize)] for k in range(tupleSize): funcAccess = lambda x : x[k] scaler = self.scalerList[k] dfElt = dataset.applymap(funcAccess) if (type(dataset) != type(pd.Series())) else dataset.map(funcAccess) scaler.fit(dfElt) else : self.scalerList = [] self.scalerList.append(MinMaxScaler()) self.scalerList[0].fit(dataset) return def selectLessCorrelatedFeatures(featureCorr, nbPoints): objectiveFunction = lambda x : x.T @ featureCorr.values @ x gradient = lambda x : (featureCorr.values + featureCorr.values.T) @ x hessian = lambda x : featureCorr.values + featureCorr.values.T nbRestart = 5 x0s = np.random.uniform(size=(nbRestart , featureCorr.shape[1])) x0s = x0s * nbPoints / np.sum(x0s, axis = 1, keepdims=True) bestSol = x0s[0,:] bestVar = featureCorr.shape[1] bounds = [[0,1]] * featureCorr.shape[1] budgetAllocation = LinearConstraint(np.ones((1,featureCorr.shape[1])), [nbPoints], [nbPoints], keep_feasible = True) for k in range(nbRestart): res = minimize(objectiveFunction, x0s[k,:], bounds = bounds, constraints = budgetAllocation, method = "trust-constr", jac = gradient, hess = hessian) if (res.fun < bestVar) or (k==0) : bestSol = res.x bestVar = res.fun print("Attempt no ", k, " ; best solution : ", bestSol, " ; best inertia : ", bestVar) topnbPointsValue = -(np.sort(-bestSol)[nbPoints - 1]) optimalAllocation = pd.Series(bestSol, index = featureCorr.index) return optimalAllocation[optimalAllocation >= topnbPointsValue].index def isCSVFile(filename): extension = filename[-3:] return (extension == "csv") #These class are responsible for : # - passing the right data to the model for trainingData # - converting data to the original format for plotting class datasetATM: def __init__(self, pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = False): self.trainingSetPercentage = trainingSetPercentage self.pathToDataset = pathToDataset self.activateScaling = scaleFeatures self.isGridStable = True self.testVol = None self.trainVol = None self.VolSerie = None self.volScaler = None self.scaledTrainVol = None self.scaledTestVol = None self.testCoordinates = None self.trainCoordinates = None self.CoordinatesSerie = None self.coordinatesScaler = None self.scaledTrainCoordinates = None self.scaledTestCoordinates = None self.testFwd = None self.trainFwd = None self.FwdSerie = None self.fwdScaler = None self.scaledTrainFwd = None self.scaledTestFwd = None self.testStrike = None self.trainStrike = None self.StrikeSerie = None self.loadData() self.scaleDataSets() lambdaAppend = (lambda x : x[0].append(x[1]) if x[0] is not None else None) self.fullHistory = list(map(lambdaAppend, zip(self.getTrainingDataForModel(),self.getTestingDataForModel()))) self.fullScaler = [self.volScaler, self.coordinatesScaler, self.fwdScaler, None] self.gridSize = self.getTestingDataForModel()[0].shape[1] return def loadData(self): raise NotImplementedError("Abstract class") return def sanityCheck(self): print("Testing formatModelDataAsDataSet") assert(equalDf(self.testVol.dropna(how="all").head(), self.formatModelDataAsDataSet(self.getTestingDataForModel())[0].head())) origData = self.formatModelDataAsDataSet(self.getTrainingDataForModel()) print("Testing coordinates") assert(equalDf(self.trainCoordinates.head().applymap(lambda x : x[0]), origData[1].head().applymap(lambda x : x[0]))) assert(equalDf(self.trainCoordinates.head().applymap(lambda x : x[1]), origData[1].head().applymap(lambda x : x[1]))) print("Testing Forward") assert(equalDf(self.getTrainingDataForModel()[2].head(), self.convertRealDataToModelFormat(self.formatModelDataAsDataSet(self.getTrainingDataForModel()))[2].head())) print("Testing masking function") maskedDf = self.maskDataset(self.getTrainingDataForModel()[1]).dropna(how="all",axis=1).head() assert(maskedDf.shape[1] == (self.gridSize - self.maskedPoints.size)) print("Testing convertRealDataToModelFormat") assert(equalDf(self.trainVol.loc[origData[0].index].head(), self.formatModelDataAsDataSet(self.convertRealDataToModelFormat(origData))[0].head())) print("Success") return #When the grid is not fixed - i.e. volatilities time to maturities are sliding - #we need to decide which instruments can be compared between two dates def decideInvestableInstruments(self): coordinatesDf = self.formatModelDataAsDataSet(self.getDataForModel())[1] pairIndexHistory = []#series of pair of index nextTTMDf = coordinatesDf.shift(-1).dropna(how = "all") for serie in coordinatesDf.head(-1).iterrows(): currentDay = serie[1] nextDay = nextTTMDf.loc[serie[0]] currentRankForHedgeablePoints = currentDay.index nextRankForHedgeablePoints = nextDay.index pairIndexHistory.append((currentRankForHedgeablePoints, nextRankForHedgeablePoints)) pairIndexHistory.append((nextRankForHedgeablePoints, nextRankForHedgeablePoints)) pairIndexHistory = pd.Series(pairIndexHistory, index = coordinatesDf.index) return pairIndexHistory #List Format : First position vol, second position coordinates, third position forward, fourth position strike def getTestingDataForModel(self): return [self.scaledTestVol, self.scaledTestCoordinates, self.scaledTestFwd, self.testStrike] def getTrainingDataForModel(self): return [self.scaledTrainVol, self.scaledTrainCoordinates, self.scaledTrainFwd, self.trainStrike] def getDataForModel(self, dates = None): if dates is None : return self.fullHistory funcExtractDate = lambda x : x.loc[dates] if x is not None else None return list(map(funcExtractDate, self.fullHistory)) #Tranform synthetic surfaces as model data #Name of surfaces should be the date def convertRealDataToModelFormat(self, unformattedSurface): if(self.activateScaling): if (type(unformattedSurface)==type(list())) and (len(unformattedSurface)==4): lambdaTransform = lambda x : x[0] if x[1] is None else x[1].transform(x[0]) return list(map(lambdaTransform, zip(unformattedSurface, self.fullScaler))) elif (type(unformattedSurface)!=type(list())) : return self.volScaler.transform(unformattedSurface) else : raise("Can not format as model data") return return unformattedSurface #Format data returned by a model to format #For instance variation are transformed as level with yesterday volatilities def formatModelDataAsDataSet(self, modelData): if(self.activateScaling): if (type(modelData)==type(list())) and (len(modelData)==4): lambdaTransform = lambda x : x[0] if x[1] is None else x[1].inverse_transform(x[0]) return list(map(lambdaTransform, zip(modelData, self.fullScaler))) elif (type(modelData)!=type(list())) : return self.volScaler.inverse_transform(modelData) else : raise("Can not format as model data") return return modelData def scaleDataSets(self): if(self.activateScaling): #Define MinMax scaling for volatility self.volScaler = customMeanStdScale() #customMinMaxScale() self.volScaler.fit(self.trainVol, enforceDataSetMin = 0)#Positive volatilities of course self.scaledTrainVol = self.volScaler.transform(self.trainVol) self.scaledTestVol = self.volScaler.transform(self.testVol) #Define MinMax scaling for volatility self.coordinatesScaler = customMeanStdScale() #customMinMaxScale() self.coordinatesScaler.fit(self.trainCoordinates, enforceDataSetMin = 0)#Positive volatilities of course self.scaledTrainCoordinates = self.coordinatesScaler.transform(self.trainCoordinates) self.scaledTestCoordinates = self.coordinatesScaler.transform(self.testCoordinates) #Define MinMax scaling for forward swap rates self.fwdScaler = customMeanStdScale() # customMinMaxScale() self.fwdScaler.fit(self.trainFwd) self.scaledTrainFwd = self.fwdScaler.transform(self.trainFwd) self.scaledTestFwd = self.fwdScaler.transform(self.testFwd) else : self.scaledTrainVol = self.trainVol self.scaledTestVol = self.testVol self.scaledTrainCoordinates = self.trainCoordinates self.scaledTestCoordinates = self.testCoordinates self.scaledTrainFwd = self.trainFwd self.scaledTestFwd = self.testFwd return def getATMDataFromCSV(dataSetPath, trainingSetPercentage=0.8): formattedHistory = extractDataFromCSV(dataSetPath) #Filter only ATM volatility ATMHistory = (formattedHistory[formattedHistory.index.get_level_values(indexRelStrike)=='A'] .reorder_levels([indexName, indexExpiry, indexTenor, indexRelStrike]) .sort_index()) #Remove strike from index as we consider only ATM ATMHistory.index = ATMHistory.index.droplevel(3) #Get Expiry and tenors shared by all dates commonGridPoints = intersectionGrid(ATMHistory) #Get indexer for multiindex idx = pd.IndexSlice #Filter data for Expiry and tenors common to all dates commonATMHistory = ATMHistory.loc[idx[:,commonGridPoints.get_level_values(0), commonGridPoints.get_level_values(1)],:] #Feeding Data #Take the first 80% dates as training set and the remaining ones as testing set trainTmp,testTmp = splitTrainTestDataChronologically(commonATMHistory,trainingSetPercentage) #Separate features between volatility, forward rate and Strike testVol = splitHistory(testTmp,"Vol") trainVol = splitHistory(trainTmp,"Vol") testFwd = splitHistory(testTmp,"forward") trainFwd = splitHistory(trainTmp,"forward") testStrike = None trainStrike = None indexFunc = lambda x : pd.Series(x.index.values, index = x.index) trainCoordinates = trainVol.apply(indexFunc, axis=1) testCoordinates = testVol.apply(indexFunc, axis=1) trainVol = pd.DataFrame(trainVol.values, index=trainVol.index) testVol = pd.DataFrame(testVol.values, index=testVol.index) trainCoordinates = pd.DataFrame(trainCoordinates.values, index=trainCoordinates.index) testCoordinates = pd.DataFrame(testCoordinates.values, index=testCoordinates.index) return testVol, trainVol, testFwd, trainFwd, testCoordinates, trainCoordinates, testStrike, trainStrike class dataSetATMCSV(datasetATM): def __init__(self, pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = False): self.nbExpiry = 0 self.nbTenors = 0 self.minExpiry = minExpiry self.expiryTenorToRankSerie = None super().__init__(pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = scaleFeatures) listTokeep = [(0.08333333333333333,0.25),(0.08333333333333333,10.0), (0.08333333333333333,30.0),(0.5,2.0),(0.5,15.0), (5.0,1.0),(5.0,20.0),(10.0,5.0)] self.setMaskedPoints(listTokeep) def setMaskedPoints(self, completionPoints): # self.maskedPoints = sampleSwaptionsToDelete(self.getTestingDataForModel(), # completionRate) fullObs = self.getTestingDataForModel()[1] self.maskedPoints = fullObs.columns.difference(completionPoints) if self.isGridStable :#Surface coordinates are the same for each day #Matrix where True indicates that this point is completed (i.e. hidden on the market), false otherwise maskMatrix = pd.Series(False, index = self.expiryTenorToRankSerie.index) maskMatrix.loc[fullObs.iloc[0].loc[self.maskedPoints]] = True self.maskSerie = pd.Series(maskMatrix.values, index = self.expiryTenorToRankSerie.values) self.maskMatrix = maskMatrix.unstack(level=-1) #Return a deep copy with masked values def maskDataset(self, completeDataset): maskedRank = self.maskedPoints maskedDataset = completeDataset.copy() if completeDataset.ndim == 1 : maskedDataset.loc[maskedRank] = np.NaN elif completeDataset.ndim == 2 : maskedDataset[maskedRank] = np.NaN return maskedDataset def removeShortestExpiry(self, dataset): if dataset is None : return #remove data with expiry inferior than minExpiry hasExpiryColumn = ("Expiry" in dataset.columns.names) columnsFilter = ((dataset.columns.get_level_values("Expiry")>=self.minExpiry) if hasExpiryColumn else self.expiryTenorToRankSerie[self.expiryTenorToRankSerie.index.get_level_values("Expiry")>=self.minExpiry].values) return dataset.filter(items=dataset.columns[columnsFilter]) def loadData(self): tmp = getATMDataFromCSV(self.pathToDataset, self.trainingSetPercentage) self.expiryTenorToRankSerie = pd.Series(tmp[4].columns, index = pd.MultiIndex.from_tuples(tmp[4].iloc[0].values, names=('Expiry', 'Tenor'))) self.expiryTenorToRankSerie = self.expiryTenorToRankSerie[self.expiryTenorToRankSerie.index.get_level_values("Expiry")>=self.minExpiry] self.testVol = self.removeShortestExpiry(tmp[0]) self.trainVol = self.removeShortestExpiry(tmp[1]) self.testCoordinates = self.removeShortestExpiry(tmp[4]) self.trainCoordinates = self.removeShortestExpiry(tmp[5]) self.testFwd = self.removeShortestExpiry(tmp[2]) self.trainFwd = self.removeShortestExpiry(tmp[3]) self.testStrike = self.removeShortestExpiry(tmp[6]) self.trainStrike = self.removeShortestExpiry(tmp[7]) self.nbExpiry = self.trainFwd.columns.get_level_values("Expiry").unique().size self.nbTenors = self.trainFwd.columns.get_level_values("Tenor").unique().size self.gridSize = self.trainFwd.columns.size return def datasetSummary(self): print("Number of days in dataset", self.getDataForModel()[0].shape[0]) print("Number of days for testing", self.getTestingDataForModel()[0].shape[0]) print("Number of days for training", self.getTrainingDataForModel()[0].shape[0]) print("Working on ATM volatility level") print("Number of points in the grid : ", self.gridSize) print("Number of expiries : ", self.nbExpiry) print("List : ", self.getTrainingDataForModel()[2].columns.get_level_values("Expiry").unique()) print("Number of tenors : ", self.nbTenors) print("List : ", self.getTrainingDataForModel()[2].columns.get_level_values("Tenor").unique()) return def getATMDataFromPickle(dataSetPath, trainingSetPercentage=0.8, minStrikeIndex = 0, maturityStrikeIndex = 0): with open(dataSetPath, "rb") as f : objectRead = pickle.load(f) def rankCalDays(dfDay): return dfDay["nBizDays"].rank() listRank = list(map(rankCalDays, objectRead)) dfRank = pd.concat(listRank) dfConcat = pd.concat(objectRead) dfConcat["Rank"] = dfRank volDf = dfConcat.reset_index().set_index(["index", "Rank"]).drop(["Date", "Forwards", "nBizDays", "nCalDays", "diff Days"], axis=1, errors="ignore").unstack() volDf.columns = volDf.columns.set_names("Moneyness",level=0) volDf = volDf.dropna(how="all",axis=1).astype("float64") fwdDf = dfConcat.reset_index().set_index(["index", "Rank"])["Forwards"].unstack() coordinatesRankDf = dfConcat.reset_index().set_index(["index", "Rank"])["nBizDays"].unstack() def bindBizDays(rows): bizDays = coordinatesRankDf.loc[rows.name].astype("float64") return pd.Series(list(zip(bizDays[rows.index.get_level_values("Rank")].values / 252.0, np.log(rows.index.get_level_values("Moneyness").astype("float64")) )), index = rows.index) coordinatesDf = volDf.apply(bindBizDays, axis=1) def getFwd(rowVol): ttmRank = rowVol.index.get_level_values("Rank") return pd.Series(fwdDf.loc[rowVol.name, ttmRank].values, index = rowVol.index) #Search for point in the vol dataframe the corresponding forward fwdDf = volDf.apply(getFwd, axis=1).dropna(how="all",axis=1).astype("float64") firstTestingDate = int(volDf.index.shape[0] * trainingSetPercentage) trainingDates = volDf.index[:firstTestingDate] trainVol = volDf.loc[trainingDates] testVol = volDf.drop(trainVol.index) trainVol = pd.DataFrame(trainVol.values, index=trainVol.index) testVol = pd.DataFrame(testVol.values, index=testVol.index) trainFwd = fwdDf.loc[trainVol.index] trainFwd = pd.DataFrame(trainFwd.values, index=trainFwd.index)[trainVol.columns] testFwd = fwdDf.drop(trainVol.index) testFwd = pd.DataFrame(testFwd.values, index=testFwd.index)[testVol.columns] testStrike = None trainStrike = None trainCoordinates = coordinatesDf.loc[trainingDates] trainCoordinates = pd.DataFrame(trainCoordinates.values, index=trainCoordinates.index)[trainVol.columns] testCoordinates = coordinatesDf.drop(trainVol.index) testCoordinates = pd.DataFrame(testCoordinates.values, index=testCoordinates.index)[testVol.columns] strikeDf = trainCoordinates.applymap(lambda x : x[1]).iloc[0] strikeList = np.sort(strikeDf.unique()) minStrike = strikeList[minStrikeIndex] strikesKept = strikeDf[strikeDf >= minStrike].index maturityDf = trainCoordinates.applymap(lambda x : x[0]).iloc[0][strikesKept] maturityList = np.sort(maturityDf.unique()) minMaturity = maturityList[minStrikeIndex] maturityKept = maturityDf[maturityDf >= minMaturity].index testVol = testVol[maturityKept] trainVol = trainVol[maturityKept] trainCoordinates = trainCoordinates[maturityKept] testCoordinates = testCoordinates[maturityKept] trainFwd = trainFwd[maturityKept] testFwd = testFwd[maturityKept] return testVol, trainVol, testFwd, trainFwd, testCoordinates, trainCoordinates, testStrike, trainStrike def saveInterpolationResult(pathFile, paramDf, interpDf): pathTestFileInterp = pathFile + 'Interp' dictPickle = {} dictPickle["InterpParam"] = paramDf dictPickle["InterpolatedDf"] = interpDf with open(pathTestFileInterp, "wb") as f : pickle.dump(dictPickle, f, protocol=3) return def removePointsWithInvalidCoordinates(incompleteSurface, coordinates): #Filter location with incomplete observations def invalidCoordinates(x): if isinstance(x, tuple): return not any(np.isnan(x)) return not np.isnan(x) filteredCoordinates = np.array(list(map(invalidCoordinates, coordinates))) return incompleteSurface[filteredCoordinates], coordinates[filteredCoordinates] def readInterpolationResult(pathFile): pathTestFileInterp = pathFile + 'Interp' with open(pathTestFileInterp, "rb") as f : dictPickle = pickle.load(f) return dictPickle["InterpParam"], dictPickle["InterpolatedDf"] class dataSetATMPickle(datasetATM): def __init__(self, pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = False): self.nbMoneyness = 0 self.MoneynessList = [] self.nbTTM = 0 self.ttmList = [] self.minTTM = None self.isGridStable = False self.minStrike = 4 self.minMaturity = 0 self.logTransform = True super().__init__(pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = scaleFeatures) listTokeep = [1.0, 2.0, 3.0, 4.0] self.setMaskedPoints(listTokeep) def datasetSummary(self): print("Number of days in dataset", self.getDataForModel()[0].shape[0]) print("Number of days for testing", self.getTestingDataForModel()[0].shape[0]) print("Number of days for training", self.getTrainingDataForModel()[0].shape[0]) print("Working on Equity volatility level") print("Number of points in the grid : ", self.gridSize) print("Number of Moneyness : ", self.nbMoneyness) print("List : ", self.MoneynessList) print("Number of Time to maturities : ", self.nbTTM) print("List : ", self.ttmList) return def loadData(self): tmp = getATMDataFromPickle(self.pathToDataset, self.trainingSetPercentage, self.minStrike, self.minMaturity) self.testVol = tmp[0] self.trainVol = tmp[1] self.testCoordinates = tmp[4] self.trainCoordinates = tmp[5] self.testFwd = tmp[2] self.trainFwd = tmp[3] self.testStrike = tmp[6] self.trainStrike = tmp[7] def extractSingleton(df, coordIndex): valueList = np.unique(list(map(lambda x : x[coordIndex], np.ravel(df.values)))) return valueList[~np.isnan(valueList)] fullCoordinatedDf = self.testCoordinates.append(self.trainCoordinates) self.MoneynessList = extractSingleton(fullCoordinatedDf, 1) self.ttmList = extractSingleton(fullCoordinatedDf, 0) self.nbMoneyness = self.MoneynessList.size self.nbTTM = self.ttmList.size self.gridSize = self.trainVol.columns.size return def setMaskedPoints(self, completionPoints): # self.maskedPoints = sampleSwaptionsToDelete(self.getTestingDataForModel(), # completionRate) fullObs = self.getTestingDataForModel()[0].iloc[0] self.maskedPoints = fullObs.index.difference(completionPoints) #Matrix where True indicates that this point is completed (i.e. hidden on the market), false otherwise maskMatrix = pd.Series(False, index = fullObs.index) maskMatrix.loc[self.maskedPoints] = True self.maskSerie = maskMatrix #self.maskMatrix = maskMatrix.unstack(level=-1) #Return a deep copy with masked values def maskDataset(self, completeDataset): maskedRank = self.maskedPoints maskedDataset = completeDataset.copy() if completeDataset.ndim == 1 : maskedDataset.loc[maskedRank] = np.NaN elif completeDataset.ndim == 2 : maskedDataset[maskedRank] = np.NaN return maskedDataset #When the grid is not fixed - i.e. volatilities time to maturities are sliding - #we need to decide which instruments can be compared between two dates def decideInvestableInstruments(self): ttmDf = getTTMFromCoordinates(self.formatModelDataAsDataSet(self.getDataForModel())) pairIndexHistory = []#series of pair of index nextTTMDf = ttmDf.shift(-1).dropna(how = "all") for serie in ttmDf.head(-1).iterrows(): currentDay = serie[1] nextDay = nextTTMDf.loc[serie[0]] currentRankForHedgeablePoints = currentDay[(currentDay - 1).isin(nextDay) & (~currentDay.isna())].index nextRankForHedgeablePoints = nextDay[(nextDay).isin(currentDay - 1) & (~nextDay.isna())].index if currentRankForHedgeablePoints.empty :#case where current or day is not considered as a business day currentRankForHedgeablePoints = currentDay[(currentDay).isin(nextDay) & (~currentDay.isna())].index nextRankForHedgeablePoints = nextDay[(nextDay).isin(currentDay) & (~nextDay.isna())].index pairIndexHistory.append((currentRankForHedgeablePoints, nextRankForHedgeablePoints)) #Last day pairIndexHistory.append((nextRankForHedgeablePoints, nextRankForHedgeablePoints)) pairIndexHistory = pd.Series(pairIndexHistory, index = ttmDf.index) return pairIndexHistory class datasetATMVariation(dataSetATMCSV): def __init__(self, pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = False): self.trainingVolVariation = None self.testingVolVariation = None self.yesterdayVolSerie = None self.trainingCoordinatesVariation = None self.testingCoordinatesVariation = None self.trainingFwdVariation = None self.testingFwdVariation = None self.yesterdayFwdSerie = None self.trainingStrikeVariation = None self.testingStrikeVariation = None self.yesterdayStrikeSerie = None #No variation super().__init__(pathToDataset, trainingSetPercentage, minExpiry, completionRate, scaleFeatures = scaleFeatures) def addYesterdayLevel(self, variationDataset, levelDataSet): if variationDataset.ndim == 1 : return variationDataset + levelDataSet.loc[variationDataset.name] elif variationDataset.ndim == 2 : return variationDataset + levelDataSet.loc[variationDataset.index] raise ValueError("Incorrect tensor order !") return None def removeYesterdayLevel(self, todayDataset, yesterdayDataSet): if todayDataset.ndim == 1 : return todayDataset - yesterdayDataSet.loc[todayDataset.name] elif todayDataset.ndim == 2 : return todayDataset - yesterdayDataSet.loc[todayDataset.index] raise ValueError("Incorrect tensor order !") return None #Apply scaling and various transform to fall on model data #Name of surface should be the date def convertRealDataToModelFormat(self, unformattedSurface): if (type(unformattedSurface)==type(list())) and (len(unformattedSurface)==4): date = unformattedSurface[0].index variation = [unformattedSurface[0] - self.yesterdayVolSerie.loc[date], unformattedSurface[1], unformattedSurface[2] - self.yesterdayFwdSerie.loc[unformattedSurface[2].index], unformattedSurface[3]] if(self.activateScaling): lambdaTransform = lambda x : x[0] if x[1] is None else x[1].transform(x[0]) return list(map(lambdaTransform, zip(variation, self.fullScaler))) else : return variation elif (type(unformattedSurface)!=type(list())) : date = unformattedSurface.name variation = unformattedSurface - self.yesterdayVolSerie.loc[date] if(self.activateScaling): return self.volScaler.transform(variation) else : return variation else : raise("Can not format as model data") return None #Format data returned by a model to format #For instance variation are transformed as level with yesterday def formatModelDataAsDataSet(self,modelData): unScaledModelData = super().formatModelDataAsDataSet(modelData) if (type(modelData)==type(list())) and (len(modelData)==4): originalFormat = [self.addYesterdayLevel(unScaledModelData[0], self.yesterdayVolSerie), unScaledModelData[1], self.addYesterdayLevel(unScaledModelData[2], self.yesterdayFwdSerie), unScaledModelData[3]] elif (type(modelData)!=type(list())) : originalFormat = self.addYesterdayLevel(unScaledModelData, self.yesterdayVolSerie) else : raise("Can not format as model data") return originalFormat def formatDataAsVariation(self, trainingDataSet, testingDataSet): trainingVariation = trainingDataSet.diff().dropna(how='all') testingVariation = testingDataSet.diff() testingVariation.iloc[0] = testingDataSet.iloc[0] - trainingDataSet.iloc[-1] #Shift date to have a serie of past values yesterdayTraining = trainingDataSet.shift().dropna(how='all') yesterdayTesting = testingDataSet.shift() yesterdayTesting.iloc[0] = trainingDataSet.iloc[-1] return trainingVariation, testingVariation, yesterdayTraining.append(yesterdayTesting) def loadData(self): super().loadData() tmp1 = self.formatDataAsVariation(self.trainVol, self.testVol) self.trainingVolVariation = tmp1[0] self.testingVolVariation = tmp1[1] self.yesterdayVolSerie = tmp1[2] #Coordiantes are not formatted as variation self.trainingCoordinatesVariation = self.trainCoordinates.loc[self.trainingVolVariation.index] self.testingCoordinatesVariation = self.testCoordinates.loc[self.testingVolVariation.index] tmp2 = self.formatDataAsVariation(self.trainFwd, self.testFwd) self.trainingFwdVariation = tmp2[0] self.testingFwdVariation = tmp2[1] self.yesterdayFwdSerie = tmp2[2] # tmp3 = self.formatDataAsVariation(self.trainStrike, self.testStrike) # self.trainingStrikeVariation = tmp3[0] # self.testingStrikeVariation = tmp3[1] # self.yesterdayStrikeSerie = tmp3[2] return def scaleDataSets(self): if(self.activateScaling): #Define MinMax scaling for volatility self.volScaler = customMeanStdScale() #customMinMaxScale() self.volScaler.fit(self.trainingVolVariation)#Positive volatilities of course self.scaledTrainVol = self.volScaler.transform(self.trainingVolVariation) self.scaledTestVol = self.volScaler.transform(self.testingVolVariation) #Define MinMax scaling for volatility self.coordinatesScaler = customMeanStdScale() #customMinMaxScale() self.coordinatesScaler.fit(self.trainCoordinates, enforceDataSetMin = 0)#Positive volatilities of course self.scaledTrainCoordinates = self.coordinatesScaler.transform(self.trainingCoordinatesVariation) self.scaledTestCoordinates = self.coordinatesScaler.transform(self.testingCoordinatesVariation) #Define MinMax scaling for forward swap rates self.fwdScaler = customMeanStdScale() #customMinMaxScale() self.fwdScaler.fit(self.trainingFwdVariation) self.scaledTrainFwd = self.fwdScaler.transform(self.trainingFwdVariation) self.scaledTestFwd = self.fwdScaler.transform(self.testingFwdVariation) else : self.scaledTrainVol = self.trainingVolVariation self.scaledTestVol = self.testingVolVariation self.scaledTrainCoordinates = self.trainingCoordinatesVariation self.scaledTestCoordinates = self.testingCoordinatesVariation self.scaledTrainFwd = self.trainingFwdVariation self.scaledTestFwd = self.testingFwdVariation return def getSkewDataFromCSV(dataSetPath, trainingSetPercentage=0.8): formattedHistory = (extractDataFromCSV(dataSetPath) .reorder_levels([indexName, indexExpiry, indexTenor, indexRelStrike]) .sort_index()) #Get Expiry and tenors shared by all dates commonGridPoints = intersectionGrid(formattedHistory) #Get indexer for multiindex idx = pd.IndexSlice #Filter data for Expiry, Tenors and Strike common to all dates commonHistory = formattedHistory.loc[idx[:,commonGridPoints.get_level_values(0), commonGridPoints.get_level_values(1), commonGridPoints.get_level_values(2)],:] #Feeding Data #Take the first 80% dates as training set and the remaining ones as testing set trainTmp,testTmp = splitTrainTestDataChronologically(commonHistory,trainingSetPercentage) #Separate features between volatility, forward rate and Strike testVol = splitHistory(testTmp,"Vol") trainVol = splitHistory(trainTmp,"Vol") trainVol = pd.DataFrame(trainVol.values, index=trainVol.index) testVol = pd.DataFrame(testVol.values, index=testVol.index) testFwd = splitHistory(testTmp,"forward") trainFwd = splitHistory(trainTmp,"forward") testStrike = splitHistory(testTmp,indexStrike) trainStrike = splitHistory(trainTmp,indexStrike) indexFunc = lambda x : pd.Series(x.index.values, index = x.index) trainCoordinates = trainVol.apply(indexFunc, axis=1) testCoordinates = testVol.apply(indexFunc, axis=1) trainCoordinates = pd.DataFrame(trainCoordinates.values, index=trainCoordinates.index) testCoordinates =
pd.DataFrame(testCoordinates.values, index=testCoordinates.index)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Assignment_7 # # Submitted By - <NAME> # In[18]: import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import patches # In[19]: df=
pd.read_csv("pima-indians-diabetes.csv")
pandas.read_csv
from dataset import Dataset from dataset_csv import Dataset_CSV from dataset_ravdess import Ravdess from feats_opensmile import Opensmileset from runmanager import Runmanager from util import Util import glob_conf from plots import Plots from demo_predictor import Demo_predictor import ast # To convert strings to objects import pandas as pd from sklearn.preprocessing import LabelEncoder from scaler import Scaler import pickle class Experiment: """Main class specifying an experiment""" def __init__(self, config_obj): """ Parameters ---------- config_obj : a config parser object that sets the experiment parameters and being set as a global object. """ self.set_globals(config_obj) self.name = glob_conf.config['EXP']['name'] self.util = Util() def set_globals(self, config_obj): """install a config object in the global space""" glob_conf.init_config(config_obj) def load_datasets(self): """Load all databases specified in the configuration and map the labels""" ds = ast.literal_eval(glob_conf.config['DATA']['databases']) self.datasets = {} for d in ds: if d == 'ravdess': data = Ravdess() else: ds_type = self.util.config_val('DATA', d+'.type', 'audformat') if ds_type == 'audformat': data = Dataset(d) elif ds_type == 'csv': data = Dataset_CSV(d) else: self.util.error(f'unknown data type: {ds_type}') data.load() self.datasets.update({d: data}) self.target = self.util.config_val('DATA', 'target', 'emotion') def fill_train_and_tests(self): """Set up train and development sets. The method should be specified in the config.""" self.df_train, self.df_test =
pd.DataFrame()
pandas.DataFrame
from typing import Dict from typing import Tuple from typing import Union import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset frequencies = ["D", "15min"] DistributionDict = Dict[str, pd.DataFrame] @pytest.fixture(params=frequencies, ids=frequencies) def date_range(request) -> pd.DatetimeIndex: """Create pd.Series with range of dates.""" freq = request.param dtr = pd.date_range(start="2020-01-01", end="2020-03-01", freq=freq) return dtr @pytest.fixture def all_date_present_df(date_range: pd.Series) -> pd.DataFrame: """Create pd.DataFrame that contains some target on given range of dates without gaps.""" df = pd.DataFrame({"timestamp": date_range}) df["target"] = [i for i in range(len(df))] df.set_index("timestamp", inplace=True) return df @pytest.fixture def all_date_present_df_two_segments(all_date_present_df: pd.Series) -> pd.DataFrame: """Create pd.DataFrame that contains two segments with some targets on given range of dates without gaps.""" df_1 = all_date_present_df.reset_index() df_2 = all_date_present_df.copy().reset_index() df_1["segment"] = "segment_1" df_2["segment"] = "segment_2" classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) return df @pytest.fixture def df_with_missing_value_x_index(random_seed, all_date_present_df: pd.DataFrame) -> Tuple[pd.DataFrame, int]: """Create pd.DataFrame that contains some target on given range of dates with one gap.""" # index cannot be first or last value, # because Imputer should know starting and ending dates timestamps = sorted(all_date_present_df.index)[1:-1] idx = np.random.choice(timestamps) df = all_date_present_df df.loc[idx, "target"] = np.NaN return df, idx @pytest.fixture def df_with_missing_range_x_index(all_date_present_df: pd.DataFrame) -> Tuple[pd.DataFrame, list]: """Create pd.DataFrame that contains some target on given range of dates with range of gaps.""" timestamps = sorted(all_date_present_df.index) rng = timestamps[2:7] df = all_date_present_df df.loc[rng, "target"] = np.NaN return df, rng @pytest.fixture def df_with_missing_range_x_index_two_segments( df_with_missing_range_x_index: pd.DataFrame, ) -> Tuple[pd.DataFrame, list]: """Create pd.DataFrame that contains some target on given range of dates with range of gaps.""" df_one_segment, rng = df_with_missing_range_x_index df_1 = df_one_segment.reset_index() df_2 = df_one_segment.copy().reset_index() df_1["segment"] = "segment_1" df_2["segment"] = "segment_2" classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) return df, rng @pytest.fixture def df_all_missing(all_date_present_df: pd.DataFrame) -> pd.DataFrame: """Create pd.DataFrame with all values set to nan.""" all_date_present_df.loc[:, :] = np.NaN return all_date_present_df @pytest.fixture def df_all_missing_two_segments(all_date_present_df_two_segments: pd.DataFrame) -> pd.DataFrame: """Create pd.DataFrame with all values set to nan.""" all_date_present_df_two_segments.loc[:, :] = np.NaN return all_date_present_df_two_segments @pytest.fixture def daily_exog_ts() -> Dict[str, Union[TSDataset, DistributionDict]]: df1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_1", "target": 1, } ) df2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_2", "target": [1] + 23 * [0] + [1] + 23 * [0], } ) df = pd.concat([df1, df2], ignore_index=True) df_exog1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="D", periods=3), "segment": "segment_1", "regressor_exog": 2, } ) df_exog2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="D", periods=3), "segment": "segment_2", "regressor_exog": 40, } ) df_exog = pd.concat([df_exog1, df_exog2], ignore_index=True) target1 = pd.DataFrame( { "fold": list(range(24)), "distribution": 1 / 24, } ) target2 = pd.DataFrame( { "fold": list(range(24)), "distribution": [1] + 23 * [0], } ) ts = TSDataset(df=TSDataset.to_dataset(df), freq="H", df_exog=TSDataset.to_dataset(df_exog), known_future="all") distribution = {"segment_1": target1, "segment_2": target2} return {"ts": ts, "distribution": distribution} @pytest.fixture() def daily_exog_ts_diff_endings(daily_exog_ts): ts = daily_exog_ts["ts"] ts.loc[ts.index[-5] :, pd.IndexSlice["segment_1", "target"]] = np.NAN return ts @pytest.fixture def inplace_resampled_daily_exog_ts() -> TSDataset: df1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_1", "target": 1, } ) df2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_2", "target": [1] + 23 * [0] + [1] + 23 * [0], } ) df = pd.concat([df1, df2], ignore_index=True) df_exog1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=72), "segment": "segment_1", "regressor_exog": 2 / 24, } ) df_exog2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=72), "segment": "segment_2", "regressor_exog": [40] + 23 * [0] + [40] + 23 * [0] + [40] + 23 * [0], } ) df_exog = pd.concat([df_exog1, df_exog2], ignore_index=True) ts = TSDataset(df=TSDataset.to_dataset(df), freq="H", df_exog=TSDataset.to_dataset(df_exog), known_future="all") return ts @pytest.fixture def noninplace_resampled_daily_exog_ts() -> TSDataset: df1 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_1", "target": 1, } ) df2 = pd.DataFrame( { "timestamp": pd.date_range(start="2020-01-05", freq="H", periods=48), "segment": "segment_2", "target": [1] + 23 * [0] + [1] + 23 * [0], } ) df =
pd.concat([df1, df2], ignore_index=True)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[1]: import wisps import numpy as np import matplotlib.pyplot as plt import wisps.simulations as wispsim import pandas as pd from tqdm import tqdm import seaborn as sns from matplotlib.colors import Normalize import astropy.units as u import wisps.simulations.effective_numbers as eff import seaborn as sns import matplotlib import popsims import itertools #plt.style.use('dark_background') #get_ipython().run_line_magic('matplotlib', 'inline') # In[2]: wispsim.MAG_LIMITS # In[3]: import popsims import splat # In[4]: sgrid=wispsim.SPGRID pnts=pd.read_pickle(wisps.OUTPUT_FILES+'/pointings_correctedf110.pkl') corr_pols=wisps.POLYNOMIAL_RELATIONS['mag_limit_corrections'] klf=pd.read_csv('/users/caganze/research/wisps/data/kirkpatricklf.txt', delimiter=',') klf['bin_center']=np.mean(np.array([klf.t0.values, klf.tf.values]), axis=0) klf=klf.replace(0.0,np.nan) ucds=pd.read_pickle(wisps.LIBRARIES+'/new_real_ucds.pkl') #cands=cands[(cands.spt >=17) & (cands.snr1>=3)].reset_index(drop=True) cands=(ucds[ucds.selection!='']).reset_index(drop=True) tab=wisps.Annotator.reformat_table(cands) pnt_names=[x.name for x in pnts] # In[5]: #spgrid # In[6]: #cmap= sns.color_palette("coolwarm", 8, as_cmap=True) cmap=matplotlib.cm.get_cmap('coolwarm') cnorm=Normalize(wispsim.HS[0], (wispsim.HS[-1])) # In[7]: kirkpatrick2020LF={'bin_center':np.flip(np.array([2025, 1875, 1725, 1575, 1425, 1275, 1125 , 975, 825, 675, 525])), 'values':np.flip(np.array([0.72, 0.50,0.78, 0.81,0.94, 1.95, 1.11, 1.72, 1.99, 2.80, 4.24])), 'unc':np.flip(([0.18, 0.17, 0.20,0.20, 0.22, 0.3, 0.25, 0.3, 0.32, 0.37, 0.70]))} # In[8]: MODEL_NAMES=['burrows1997', 'burrows2001', 'baraffe2003', 'saumon2008', 'marley2019', 'phillips2020'] MODEL_SHORT_NAMES=['B97', 'B01', 'B03', 'SM08', 'M19', 'P20'] # In[9]: def bin_by_spt_bin(sp_types, number, ltonly=False): ranges=[[17, 20], [20, 25], [25, 30], [30, 35], [35, 40]] if ltonly: ranges=[[17, 20], [20, 30], [30, 41]] numbers=[] for r in ranges: idx= np.logical_and((r[0]<=sp_types), (r[1]>sp_types)) numbers.append(np.nansum(number[idx])) return numbers def get_all_numbers(): #Distribute the parameter sets evenly across the cores func=lambda x, y: get_simulated_number_model(y, x) paramlist=[(i, j) for i, j in itertools.product(MODEL_NAMES, wispsim.HS)] res = [func(x, y) for x,y in tqdm(paramlist)] nbrs = {} for k in MODEL_NAMES: ds0={} for j in res: if k in j.keys(): key=[x for x in j[k].keys()][0] ds0.update({key: [(j[k][key])[yi] for yi in wispsim.SPGRID]}) #print (ds0) nbrs[k]=np.array([ds0[k] for k in wispsim.HS]) return nbrs def get_pointing(grism_id): if grism_id.startswith('par'): pntname=grism_id.lower().split('-')[0] else: pntname=grism_id.lower().split('-g141')[0] loc=pnt_names.index(pntname) return np.array(pnts)[loc] def iswithin_mag_limits(mags, pnt, spt): #mgs is a dictionary flags=[] for k in pnt.mag_limits.keys(): if k =='F110' and pnt.survey =='hst3d': flags.append(True) else: flags.append(mags[k] <= pnt.mag_limits[k]+ (corr_pols[k+'W'][0])(spt)) return np.logical_or.reduce(flags) def get_simulated_number_model(hidx, model): #hidx is a scale height, model is evolutionary model df=pd.read_hdf(wisps.OUTPUT_FILES+'/final_simulated_sample_cut_binaries.h5', key=str(model)+str(hidx)+str('spt_abs_mag')) cutdf=(df[~df.is_cut]).rename(columns={'temperature': 'teff', 'slprob': 'sl'}) #cutdf=pd.read_hdf(wisps.OUTPUT_FILES+'/final_simulated_sample_cut.h5', key=str(model)+str('h')+str(hidx)+'F110_corrected') #scl_dict=pd.read_pickle(wisps.OUTPUT_FILES+'/lf_scales.pkl') #scales=scl_dict[model] scale=[cutdf.scale.mean(), cutdf.scale_unc.mean(), cutdf.scale_times_model.mean()] #scale=scale_lf_teff(cutdf.teff) NSIM=dict(zip(wispsim.SPGRID,np.zeros((len(wispsim.SPGRID), 2)))) cutdf['spt_r']=cutdf.spt.apply(np.round) for g in cutdf.groupby('spt_r'): sn= len(cutdf.teff[np.logical_and(cutdf.teff>=450, cutdf.teff<=2100)]) n0=scale[-1]/scale[0] #print (n0) scln=np.array([scale[0]*n0/sn, (scale[1]*scale[-1])/(sn*scale[0])]) #scln=np.array(scale) #assert scln[0] > scale[0] NSIM[g[0]]=np.nansum(g[1].sl)*scln del cutdf return {model: {hidx:NSIM}} # In[10]: MODEL_NAMES # In[ ]: # In[11]: #cutdf.scale # In[12]: def plot_one(NUMBERS, VOLUMES, filename='/oberved_numbers_one_panel.pdf'): data_to_save={} # In[ ]: nall=wisps.custom_histogram(cands.spt.apply(wisps.make_spt_number), sgrid, 1) y2=bin_by_spt_bin(wispsim.SPGRID,nobs, ltonly=False)-THICK yall=bin_by_spt_bin(wispsim.SPGRID,nall, ltonly=False)-THICK dy2=np.sqrt(y2) dyall=np.sqrt(yall) #add this to the dictionary data_to_save['nall']=nall data_to_save['nobs']=nobs data_to_save['yall']=yall data_to_save['y2']=y2 fig, a=plt.subplots(figsize=(8, 6)) #for model, a in zip(['baraffe2003', 'saumon2008', 'marley2019', 'phillips2020'], np.concatenate(ax)): model='baraffe2003' for idx, h in enumerate(wispsim.HS): ns=None ns=((NUMBERS[model])[idx])[:,0]*VOLUMES[idx] nuncs=((NUMBERS[model])[idx])[:,1]*VOLUMES[idx] a.plot(spgrid2, bin_by_spt_bin(wispsim.SPGRID,ns, ltonly=False), color= cmap(cnorm(h)), linewidth=3, drawstyle="steps-mid") a.fill_between(spgrid2, bin_by_spt_bin(wispsim.SPGRID,ns+nuncs, ltonly=False), bin_by_spt_bin(wispsim.SPGRID,ns-nuncs, ltonly=False), alpha=0.5, color= cmap(cnorm(h/100)), step="mid") a.set_yscale('log') #a.errorbar(spgrid2,y2, yerr=dy2,fmt='o', color='#111111') #a.errorbar(spgrid2,yall, yerr=dyall,color='#B10DC9', mfc='white', fmt='o') a.set_xlabel('SpT',fontsize=18) a.set_ylabel('N',fontsize=18) a.minorticks_on() #a.set_title('Model= SM08', fontsize=18) a.set_title('Model= B03', fontsize=18) #a.set_title('Model= M19', fontsize=18) #a.set_title('Model= P20', fontsize=18) a.errorbar(spgrid2,y2, yerr=dy2,fmt='o', label='Mag Limited') #a.errorbar(spgrid2,yall, yerr=dyall, fmt='o', label='All Observations') cax = fig.add_axes([.5, 0.7, .3, 0.03]) mp=matplotlib.cm.ScalarMappable(norm=cnorm, cmap=cmap) cbar=plt.colorbar(mp, cax=cax, orientation='horizontal') cbar.ax.set_xlabel(r'Scaleheight (H)', fontsize=18) #cbar.ax.set_yticks([1, 3, 5, 10]) #a.legend(fontsize=14, loc='upper left') plt.tight_layout() plt.savefig(wisps.OUTPUT_FIGURES+filename, bbox_inches='tight') # In[13]: #d=pd.read_pickle(wisps.OUTPUT_FILES+'/distance_samples{}'.format(h)) # In[14]: #expectted counts from thick disk THICK=np.array([8.79798048, 2.30571423, 0.14145726, 0.08853498, 0.01784511]) # In[15]: tab['pnt']=tab['grism_id'].apply(get_pointing) tab['spt_val']=np.vstack(tab.spt.values)[:,0] obsmgs=tab[['F140W', 'F110W', 'F160W']].rename(columns={"F110W": "F110", "F140W": "F140", "F160W": "F160"}).to_dict('records') flags=[iswithin_mag_limits(x, y, z) for x, y, z in zip(obsmgs, tab.pnt.values,tab.spt.values )] #let's see what happens if we include all objects #flags=np.ones(len(flags)).astype(bool) cdf_to_use=tab[flags] nobs=wisps.custom_histogram(cdf_to_use.spt_val.apply(wisps.make_spt_number), sgrid, 1) spgrid2=['M7-L0', 'L0-L5', 'L5-T0', 'T0-T5', 'T5-Y0'] spgrid3=['Late M', 'L', 'T'] # In[16]: sgrid, # In[17]: #for k in ['F140', 'F110', 'F160']: # tab['lim_{}'.format(k)]=tab.pnt.apply(lambda x: x.mag_limits[k]) # tab['detected_{}'.format(k)]= tab[k+'W'] < tab['lim_{}'.format(k)] # In[18]: flags=np.array(flags) # In[19]: spgrid=np.arange(17, 42) # In[20]: fig, ax=plt.subplots(figsize=(12, 4), ncols=3) ax[0].errorbar(tab.spt[flags], tab.F110W[flags], xerr=tab.spt_er[flags], yerr=tab.F110W_er[flags], fmt='o', c='k') ax[0].errorbar(tab.spt[~flags], tab.F110W[~flags], xerr=tab.spt_er[~flags], yerr=tab.F110W_er[~flags], mfc='white', fmt='o') ax[1].errorbar(tab.spt[flags], tab.F140W[flags], xerr=tab.spt_er[flags], yerr=tab.F140W_er[flags], fmt='o', c='k') ax[1].errorbar(tab.spt[~flags], tab.F140W[~flags], xerr=tab.spt_er[~flags], yerr=tab.F140W_er[~flags], mfc='white', fmt='o') ax[-1].errorbar(tab.spt[flags], tab.F160W[flags], xerr=tab.spt_er[flags], yerr=tab.F160W_er[flags], fmt='o', c='k') ax[-1].errorbar(tab.spt[~flags], tab.F160W[~flags], xerr=tab.spt_er[~flags], yerr=tab.F160W_er[~flags], mfc='white', fmt='o') for p in pnts: ax[0].plot(spgrid, p.mag_limits['F110']+(corr_pols['F110'+'W'][0])(spgrid), alpha=0.01, c='b') ax[1].plot(spgrid, p.mag_limits['F140']+(corr_pols['F140'+'W'][0])(spgrid), alpha=0.01, c='b') ax[-1].plot(spgrid, p.mag_limits['F160']+(corr_pols['F160'+'W'][0])(spgrid), alpha=0.01, c='b') ax[0].set_xlabel('F110') ax[1].set_xlabel('F140') ax[-1].set_xlabel('F160') ax[0].set_ylabel('SpT') ax[1].set_ylabel('SpT') ax[-1].set_ylabel('SpT') for a in ax: a.minorticks_on() plt.tight_layout() # In[21]: #wisps.POLYNOMIALS # In[22]: #.MAG_LIMITS # In[23]: subtab=(tab[tab.spt.between(30, 35)]).reset_index(drop=True) # In[24]: #with pd.option_context('display.max_rows', None, 'display.max_columns', None): # more options can be specified also # print( subtab[['F140W', 'F160W', 'lim_F140', 'lim_F160', 'detected_F140', 'detected_F160', 'grism_id', # 'spt']]) # In[ ]: # In[25]: #NUMBERS=pd.read_pickle(wisps.OUTPUT_FILES+'/numbers_simulated.pkl') NUMBERS=get_all_numbers() # In[26]: NUMBERS.keys() # In[27]: #plt.hist(np.log10(NUMBERS['baraffe2003'][0][:,1])) # In[28]: volumes=[] for pnt in pnts: vs=[] for h in wispsim.HS: vsx=[] for g in wispsim.SPGRID: vsx.append((pnt.volumes[h])[g]) vs.append(vsx) volumes.append(vs) volumes=np.array(volumes) VOLUMES=(np.nansum(volumes, axis=0))*4.1*(u.arcmin**2).to(u.radian**2) # In[29]: MODEL_NAMES, MODEL_SHORT_NAMES # In[30]: def plot(NUMBERS, VOLUMES, filename='/oberved_numbers.pdf'): # In[ ]: nall=wisps.custom_histogram(cands.spt.apply(wisps.make_spt_number), sgrid, 1) y2=bin_by_spt_bin(wispsim.SPGRID,nobs, ltonly=False)-THICK yall=bin_by_spt_bin(wispsim.SPGRID,nall, ltonly=False) dy2=np.sqrt(y2) dyall=np.sqrt(yall) fig, ax=plt.subplots(figsize=(14, 8), ncols=3, nrows=2, sharey=True, sharex=False) for model, name, a in zip(MODEL_NAMES, MODEL_SHORT_NAMES, np.concatenate(ax)): for idx, h in enumerate(wispsim.HS): ns=None ns=((NUMBERS[model])[idx])[:,0]*VOLUMES[idx] nuncs=((NUMBERS[model])[idx])[:,1]*VOLUMES[idx] a.plot(spgrid2, bin_by_spt_bin(wispsim.SPGRID,ns, ltonly=False), color= cmap(cnorm(h)), linewidth=3, drawstyle="steps-mid") #a.fill_between(spgrid2, bin_by_spt_bin(wispsim.SPGRID,ns+nuncs, ltonly=False), # bin_by_spt_bin(wispsim.SPGRID,ns-nuncs, ltonly=False), alpha=0.5, # color= cmap(cnorm(h/100)), step="mid") a.set_yscale('log') a.errorbar(spgrid2,y2, yerr=dy2,fmt='o', color='#111111') a.errorbar(spgrid2,yall, yerr=dyall,color='#B10DC9', mfc='white', fmt='o') a.set_xlabel('SpT',fontsize=18) a.set_ylabel('N',fontsize=18) a.minorticks_on() a.set_title('Model= {}'.format(name), fontsize=18) ax[1][-2].errorbar(spgrid2,y2, yerr=dy2,fmt='o', label='Mag Limited', color='#111111') ax[1][-2].errorbar(spgrid2,yall, yerr=dyall,color='#B10DC9', fmt='o', mfc='white', label='All Observations') #ax[-1][-2].legend(fontsize=14, bbox_to_anchor=(1.05, 1), loc='upper left') #fig.delaxes(np.concatenate(ax)[-1]) ax[1][-2].legend( fontsize=14, loc='upper right') cax = fig.add_axes([1.01, 0.25, .015, 0.5]) mp=matplotlib.cm.ScalarMappable(norm=cnorm, cmap=cmap) cbar=plt.colorbar(mp, cax=cax, orientation='vertical') cbar.ax.set_ylabel(r'Scaleheight (H, pc)', fontsize=18) #cbar.ax.set_yticks([1, 3, 5, 10]) #np.concatenate(ax)[-2].legend(loc='center left', bbox_to_anchor=(1, 1.5), fontsize=14) plt.tight_layout() plt.savefig(wisps.OUTPUT_FIGURES+filename, bbox_inches='tight') # In[31]: plot(NUMBERS, VOLUMES, filename='/obs_numbers_plus_binaries.pdf') # In[32]: #save into pickle file #NUMBERS counts_numbers={'volumes': VOLUMES, 'densities': NUMBERS, 'scaleheights': wispsim.HS, 'nobs': nobs} import pickle with open(wisps.OUTPUT_FILES+'/expected_numbers_wisps_plus_binaries.pkl', 'wb') as file: pickle.dump(counts_numbers,file) # In[33]: nall=wisps.custom_histogram(cands.spt.apply(wisps.make_spt_number), sgrid, 1) y2=bin_by_spt_bin(wispsim.SPGRID,nobs, ltonly=False)-THICK # In[34]: def asymetric_errors(vals): if len(vals)<1: return [np.nan, np.nan] else: med= np.nanmedian(vals) up= np.nanpercentile(vals, 86) dn= np.nanpercentile(vals, 14) return np.array([med-dn, up-med]) # In[35]: np.nanpercentile(wispsim.HS, 10) # In[ ]: # In[36]: #just for L dwarfs and T dwarfs y3=bin_by_spt_bin(wispsim.SPGRID,nall, ltonly=False)-THICK y4=bin_by_spt_bin(wispsim.SPGRID,nobs, ltonly=True)#-THICK y5= np.nansum(y4) print ('all ----- {}'.format(y3)) print ('used ----- {}'.format(y2)) print ('MLT ----{}'.format(y4)) print ('All ----{}'.format(y5)) # In[37]: #PRINT THE BEST FIT NUMBER #best_fit={} numbers_fit={} #predictions for all numbers_fit_lt={} #predictions for M, L, T #numbers_fit_total={} #predictions for total number counts for model in MODEL_NAMES: model_number_lt={} model_number={} for idx, h in enumerate(wispsim.HS): ns=None ns=((NUMBERS[model])[idx])[:,0]*VOLUMES[idx] nuncs=((NUMBERS[model])[idx])[:,1]*VOLUMES[idx] binned=np.array(bin_by_spt_bin(wispsim.SPGRID,ns, ltonly=False)) binned_lt= np.array(bin_by_spt_bin(wispsim.SPGRID,ns, ltonly=True)) #binned_unc=np.array(bin_by_spt_bin(wispsim.SPGRID,nuncs, ltonly=False)) #add L and #compute chi-squared #print (ns) #chisq= abs((y2-binned)**2/(y2)) #model_fit.update({h: chisq}) #binned_total=np.append(binned, binned_lt) #binned_total=np.append(binned, binned_lt) model_number.update({h: binned}) model_number_lt.update({h: binned_lt}) # best_fit.update({model: model_fit}) numbers_fit.update({model: model_number}) numbers_fit_lt.update({model: model_number_lt}) # In[38]: #chisq_dicts=pd.DataFrame.from_records(best_fit) pred_number_dicts=pd.DataFrame.from_records(numbers_fit) pred_number_lt_dicts=
pd.DataFrame.from_records(numbers_fit_lt)
pandas.DataFrame.from_records
import pandas as pd import numpy as np from KLS_Data import name_set_list, blamed_list, karachi_ls_df, kls_df def name_set_length_lister(name_set_list): '''Returns a list of the lengths of a passed iterable.''' name_set_length_list = [len(name_set) for name_set in name_set_list] return name_set_length_list kls_df.T.info() blamed_percent = pd.DataFrame([kls_df.loc[blamed].value_counts(normalize = True) for blamed in kls_df.T]) blamed_percent.plot.bar() # Find the length of the name_set_list name_set_lengths = name_set_length_lister(name_set_list) # Create a dictionary of the blamed entities and the number of times each entity is blamed blamed_dict = dict(zip(blamed_list, name_set_lengths)) print(blamed_dict) # Create a pandas Series out of the dictionary times_blamed =
pd.Series(blamed_dict)
pandas.Series
import argparse import json import os import pandas as pd import requests def get_parser(): parser = argparse.ArgumentParser(description=__doc__) input_group = parser.add_mutually_exclusive_group(required=True) input_group.add_argument('-i', "--infile", action='store', help="""Path to .txt file containing accessions of experiments to process. The txt file must contain two columns with 1 header row, one labeled 'accession' and another labeled 'align_only'. It can optionally include 'custom_message' and 'custom_crop_length' columns.""") parser.add_argument('-o', '--outputpath', action='store', default='', help="""Optional path to output folder. Defaults to current path.""") parser.add_argument('-g', '--gcpath', action='store', default='', help="""Optional path where the input.json will be uploaded to the Google Cloud instance. Only affects the list of caper commands that is generated.""") parser.add_argument('--wdl', action='store', default=False, help="""Path to .wdl file.""") parser.add_argument('-s', '--server', action='store', default='https://www.encodeproject.org', help="""Optional specification of server using the full URL. Defaults to production server.""") parser.add_argument('--use-s3-uris', action='store_true', default=False, help="""Optional flag to use s3_uri links. Otherwise, defaults to using @@download links from the ENCODE portal.""") input_group.add_argument("--accessions", action='store', help="""List of accessions separated by commas.""") parser.add_argument('--align-only', action='store', default=False, help="""Pipeline will end after alignments step if True.""") parser.add_argument('--custom-message', action='store', help="""An additional custom string to be appended to the messages in the caper submit commands.""") parser.add_argument('--caper-commands-file-message', action='store', default='', help="""An additional custom string to be appended to the file name of the caper submit commands.""") parser.add_argument('--custom-crop-length', action='store', default='', help="""Custom value for the crop length.""") parser.add_argument('--multiple-controls', action='store', default='', help="""Pipeline will assume multiple controls should be used.""") parser.add_argument('--force-se', action='store', default='', help="""Pipeline will map as single-ended regardless of input fastqs.""") parser.add_argument('--redacted', action='store', default='', help="""Control experiment has redacted alignments.""") return parser def check_path_trailing_slash(path): if path.endswith('/'): return path.rstrip('/') else: return path def build_experiment_report_query(experiment_list, server): joined_list = '&accession='.join(experiment_list) return server + '/report/?type=Experiment' + \ f'&accession={joined_list}' + \ '&field=@id' + \ '&field=accession' + \ '&field=assay_title' + \ '&field=control_type' + \ '&field=possible_controls' + \ '&field=replicates.antibody.targets' + \ '&field=files.s3_uri' + \ '&field=files.href' + \ '&field=replicates.library.biosample.organism.scientific_name' + \ '&limit=all' + \ '&format=json' def build_file_report_query(experiment_list, server, file_format): joined_list = '&dataset='.join(experiment_list) if file_format == 'fastq': format_parameter = '&file_format=fastq' award_parameter = '' output_type_parameter = '&output_type=reads' elif file_format == 'bam': format_parameter = '&file_format=bam' award_parameter = '&award.rfa=ENCODE4' output_type_parameter = '&output_type=alignments&output_type=redacted alignments' return server + '/report/?type=File' + \ f'&dataset={joined_list}' + \ '&status=released' + \ '&status=in+progress' + \ award_parameter + \ '&assembly!=hg19' + \ '&assembly!=mm9' + \ format_parameter + \ output_type_parameter + \ '&field=@id' + \ '&field=dataset' + \ '&field=file_format' + \ '&field=biological_replicates' + \ '&field=paired_end' + \ '&field=paired_with' + \ '&field=run_type' + \ '&field=mapped_run_type' + \ '&field=read_length' + \ '&field=cropped_read_length' + \ '&field=cropped_read_length_tolerance' + \ '&field=status' + \ '&field=s3_uri' + \ '&field=href' + \ '&field=replicate.status' + \ '&limit=all' + \ '&format=json' def parse_infile(infile): try: infile_df = pd.read_csv(infile, '\t') infile_df['align_only'].astype('bool') infile_df['multiple_controls'].astype('bool') infile_df['force_se'].astype('bool') return infile_df except FileNotFoundError as e: print(e) exit() except KeyError: print('Missing required align_only column in input file.') exit() def strs2bool(strings): out = [] for string in strings: if string == "True": out.append(True) elif string == "False": out.append(False) return out def get_data_from_portal(infile_df, server, keypair, link_prefix, link_src): # Retrieve experiment report view json with necessary fields and store as DataFrame. experiment_input_df = pd.DataFrame() experiment_accessions = infile_df['accession'].tolist() # Chunk the list to avoid sending queries longer than the character limit chunked_experiment_accessions = [experiment_accessions[x:x+100] for x in range(0, len(experiment_accessions), 100)] for chunk in chunked_experiment_accessions: experiment_report = requests.get( build_experiment_report_query(chunk, server), auth=keypair, headers={'content-type': 'application/json'}) experiment_report_json = json.loads(experiment_report.text) experiment_df_temp = pd.json_normalize(experiment_report_json['@graph']) experiment_input_df = experiment_input_df.append(experiment_df_temp, ignore_index=True, sort=True) experiment_input_df.sort_values(by=['accession'], inplace=True) # Fill in columns that may be missing if 'control_type' not in experiment_input_df: experiment_input_df['control_type'] = None # Retrieve list of wildtype controls wildtype_ctl_query_res = requests.get( link_prefix+'/search/?type=Experiment&assay_title=Control+ChIP-seq&replicates.library.biosample.applied_modifications%21=%2A&limit=all', auth=keypair, headers={'content-type': 'application/json'}) wildtype_ctl_ids = [ctl['@id'] for ctl in json.loads(wildtype_ctl_query_res.text)['@graph']] # Gather list of controls from the list of experiments to query for their files. datasets_to_retrieve = experiment_input_df.get('@id').tolist() for ctl in experiment_input_df.get('possible_controls'): for item in ctl: datasets_to_retrieve.append(item['@id']) # Retrieve file report view json with necessary fields and store as DataFrame. file_input_df = pd.DataFrame() chunked_dataset_accessions = [datasets_to_retrieve[x:x+100] for x in range(0, len(datasets_to_retrieve), 100)] for chunk in chunked_dataset_accessions: for file_format in ['fastq', 'bam']: file_report = requests.get( build_file_report_query(chunk, server, file_format), auth=keypair, headers={'content-type': 'application/json'}) file_report_json = json.loads(file_report.text) file_df_temp = pd.json_normalize(file_report_json['@graph']) file_input_df = file_input_df.append(file_df_temp, ignore_index=True, sort=True) file_input_df.set_index(link_src, inplace=True) file_df_required_fields = ['paired_end', 'paired_with', 'mapped_run_type'] for field in file_df_required_fields: if field not in file_input_df: file_input_df[field] = None file_input_df['biorep_scalar'] = [x[0] for x in file_input_df['biological_replicates']] return experiment_input_df, wildtype_ctl_ids, file_input_df # Simple function to count the number of replicates per input.json def count_reps(row): x = 0 for value in row: if None in value or value == []: continue else: x = x+1 return x def main(): keypair = (os.environ.get('DCC_API_KEY'), os.environ.get('DCC_SECRET_KEY')) parser = get_parser() args = parser.parse_args() allowed_statuses = ['released', 'in progress'] output_path = check_path_trailing_slash(args.outputpath) wdl_path = args.wdl gc_path = args.gcpath caper_commands_file_message = args.caper_commands_file_message server = check_path_trailing_slash(args.server) use_s3 = args.use_s3_uris if use_s3: link_prefix = '' link_src = 's3_uri' else: link_prefix = server link_src = 'href' if args.infile: infile_df = parse_infile(args.infile) infile_df.sort_values(by=['accession'], inplace=True) infile_df.drop_duplicates(subset=['accession'],inplace=True) elif args.accessions: accession_list = args.accessions.split(',') align_only = strs2bool(args.align_only.split(',')) message = args.custom_message.split(',') custom_crop_length = args.custom_crop_length.split(',') multiple_controls = strs2bool(args.multiple_controls.split(',')) force_se = strs2bool(args.force_se.split(',')) redacted = strs2bool(args.redacted.split(',')) infile_df = pd.DataFrame({ 'accession': accession_list, 'align_only': align_only, 'custom_message': message, 'crop_length': custom_crop_length, 'multiple_controls': multiple_controls, 'force_se': force_se, 'redacted': redacted }) infile_df.sort_values(by=['accession'], inplace=True) use_custom_crop_length_flag = False if 'custom_crop_length' in infile_df: use_custom_crop_length_flag = True custom_crop_lengths = infile_df['custom_crop_length'].tolist() else: custom_crop_lengths = [None] * len(infile_df['accession']) force_se_flag = False if 'force_se' in infile_df: force_se_flag = True force_ses = infile_df['force_se'].tolist() else: force_ses = False * len(infile_df['accession']) if 'redacted' in infile_df: redacted_flags = [x if x is True else None for x in infile_df['redacted'].tolist()] else: redacted_flags = [None] * len(infile_df['accession']) if 'multiple_controls' in infile_df: multiple_controls = infile_df['multiple_controls'].tolist() else: multiple_controls = False * len(infile_df['accession']) # Arrays to store lists of potential errors. ERROR_no_fastqs = [] ERROR_missing_fastq_pairs = [] ERROR_control_error_detected = [] ERROR_not_matching_endedness = [] # Fetch data from the ENCODE portal experiment_input_df, wildtype_ctl_ids, file_input_df = get_data_from_portal(infile_df, server, keypair, link_prefix, link_src) # Create output_df to store all data for the final input.json files. output_df = pd.DataFrame() output_df['chip.title'] = infile_df['accession'] output_df['chip.align_only'] = infile_df['align_only'] if 'custom_message' in infile_df: output_df['custom_message'] = infile_df['custom_message'] output_df['custom_message'].fillna('', inplace=True) else: output_df['custom_message'] = '' output_df.set_index('chip.title', inplace=True, drop=False) output_df['assay_title'] = experiment_input_df['assay_title'].to_list() ''' Experiment sorting section ''' # Assign blacklist(s) and genome reference file. blacklist = [] blacklist2 = [] genome_tsv = [] chrom_sizes = [] ref_fa = [] bowtie2 = [] # Only (human) Mint-ChIP-seq should have bwa_idx_tar value. bwa_index = [] for assay, replicates in zip(experiment_input_df.get('assay_title'), experiment_input_df.get('replicates')): organism = set() for rep in replicates: organism.add(rep['library']['biosample']['organism']['scientific_name']) if ''.join(organism) == 'Homo sapiens': genome_tsv.append('https://storage.googleapis.com/encode-pipeline-genome-data/genome_tsv/v3/hg38.tsv') chrom_sizes.append('https://www.encodeproject.org/files/GRCh38_EBV.chrom.sizes/@@download/GRCh38_EBV.chrom.sizes.tsv') ref_fa.append('https://www.encodeproject.org/files/GRCh38_no_alt_analysis_set_GCA_000001405.15/@@download/GRCh38_no_alt_analysis_set_GCA_000001405.15.fasta.gz') if assay in ['Mint-ChIP-seq', 'Control Mint-ChIP-seq']: blacklist.append('https://www.encodeproject.org/files/ENCFF356LFX/@@download/ENCFF356LFX.bed.gz') blacklist2.append('https://www.encodeproject.org/files/ENCFF023CZC/@@download/ENCFF023CZC.bed.gz') bowtie2.append(None) bwa_index.append('https://www.encodeproject.org/files/ENCFF643CGH/@@download/ENCFF643CGH.tar.gz') elif assay in ['Histone ChIP-seq', 'TF ChIP-seq', 'Control ChIP-seq']: blacklist.append('https://www.encodeproject.org/files/ENCFF356LFX/@@download/ENCFF356LFX.bed.gz') blacklist2.append(None) bowtie2.append('https://www.encodeproject.org/files/ENCFF110MCL/@@download/ENCFF110MCL.tar.gz') bwa_index.append(None) elif ''.join(organism) == 'Mus musculus': genome_tsv.append('https://storage.googleapis.com/encode-pipeline-genome-data/genome_tsv/v3/mm10.tsv') chrom_sizes.append('https://www.encodeproject.org/files/mm10_no_alt.chrom.sizes/@@download/mm10_no_alt.chrom.sizes.tsv') ref_fa.append('https://www.encodeproject.org/files/mm10_no_alt_analysis_set_ENCODE/@@download/mm10_no_alt_analysis_set_ENCODE.fasta.gz') if assay in ['Mint-ChIP-seq', 'Control Mint-ChIP-seq']: blacklist.append(None) blacklist2.append(None) bowtie2.append(None) bwa_index.append(None) elif assay in ['Histone ChIP-seq', 'TF ChIP-seq', 'Control ChIP-seq']: blacklist.append('https://www.encodeproject.org/files/ENCFF547MET/@@download/ENCFF547MET.bed.gz') blacklist2.append(None) bowtie2.append('https://www.encodeproject.org/files/ENCFF309GLL/@@download/ENCFF309GLL.tar.gz') bwa_index.append(None) output_df['chip.blacklist'] = blacklist output_df['chip.blacklist2'] = blacklist2 output_df['chip.genome_tsv'] = genome_tsv output_df['chip.chrsz'] = chrom_sizes output_df['chip.ref_fa'] = ref_fa output_df['chip.bowtie2_idx_tar'] = bowtie2 output_df['chip.bwa_idx_tar'] = bwa_index # Determine pipeline types and bwa related properties for Mint pipeline_types = [] aligners = [] use_bwa_mem_for_pes = [] bwa_mem_read_len_limits = [] for assay, ctl_type in zip(experiment_input_df.get('assay_title'), experiment_input_df.get('control_type')): if
pd.notna(ctl_type)
pandas.notna
import pandas as pd from prep import get_ratio from datetime import datetime, timedelta stime, etime = 'formatted_start_time', 'formatted_end_time' dformat = '%Y-%m-%d %H:%M:%S' def get_between_with_duration(df0, target, merge_way, s, e, duration=None): df = df0.copy() df[stime] = pd.to_datetime(df[stime]) df[etime] = pd.to_datetime(df[etime]) df_avg = None if duration is None: duration = 'manual_duration' df[duration] = (df[etime] - df[stime]).apply(lambda x: x.total_seconds()) df = df[['timestamps', stime, etime, 'enSN', target, duration]] df_avg = pd.DataFrame(columns=df.columns) df1 = df[(df[etime] >= s) & (df[stime] < e)].reset_index(drop=True).copy() if len(df1) == 0: df1 = pd.DataFrame({'timestamps': df0['timestamps'].iat[0], 'enSN': df0['enSN'].iat[0], target: 0.0, duration: 0.0}, index=[0]) else: ratios = df1.apply(lambda r: get_ratio(r[stime], r[etime], s, e), axis=1) df1[duration] *= ratios if merge_way == 'mean': df1[target] = df1[target] * df1[duration] df1 = df1.groupby(['timestamps', 'enSN'])[target, duration].sum().reset_index() df1[target] = df1[target] / df1[duration] if merge_way == 'sum': df1[target] *= ratios df1 = df1.groupby(['timestamps', 'enSN'])[target, duration].sum().reset_index() df1[stime], df1[etime]= s, e df_avg = df_avg.append(df1, ignore_index=True) df_avg[target] = pd.to_numeric(df_avg[target]) #df_avg.drop(columns=[duration], inplace=True) df_avg[duration] = pd.to_numeric(df_avg[duration]) #df_avg[stime] = df_avg[stime].apply(lambda s: datetime.strftime(s, dformat)) #df_avg[etime] = df_avg[etime].apply(lambda s: datetime.strftime(s, dformat)) return df_avg[target].iat[0], df_avg[duration].iat[0] def get_between(df0, target, merge_way, s, e, duration=None): targ, _ = get_between_with_duration(df0, target, merge_way, s, e, duration) return targ def get_point(df0, target, t, default_value=0): df = df0.copy() df[stime] = pd.to_datetime(df[stime]) df[etime] = pd.to_datetime(df[etime]) df1 = df[(df[etime] >= t) & (df[stime] <= t)] if len(df1) == 0: return default_value else: return df1[target].iat[0] def get_mode(df, target, t, default_value=1): d = {1: [1, 0, 0, 0], 2: [0, 1, 0, 0], 4: [0, 0, 1, 0], 5: [0, 0, 0, 1]} if int(get_point(df, target, t, default_value)) == 0: print(target, t) return d[int(get_point(df, target, t, default_value))] def get_bright_session_num(df, t, duration=10): t_before = t - timedelta(minutes=duration) return len(df[(df['last_bright_start_time'] <= t) & (df['last_bright_start_time'] >= t_before)]) def get_app_num(df_disp, t, duration=10): df_disp = df_disp.copy() t_before = t - timedelta(minutes=duration) df_disp[stime] =
pd.to_datetime(df_disp[stime])
pandas.to_datetime
from __future__ import division from datetime import timedelta from functools import partial import itertools from nose.tools import assert_true from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain import platform if platform.system() != 'Windows': from zipline.pipeline.loaders.blaze.estimates import ( BlazeNextEstimatesLoader, BlazeNextSplitAdjustedEstimatesLoader, BlazePreviousEstimatesLoader, BlazePreviousSplitAdjustedEstimatesLoader, ) from zipline.pipeline.loaders.earnings_estimates import ( INVALID_NUM_QTRS_MESSAGE, NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal, assert_raises_regex from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import platform import unittest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, 'estimate', 'knowledge_date']) df = df.pivot_table(columns=SID_FIELD_NAME, values='estimate', index='knowledge_date') df = df.reindex( pd.date_range(start_date, end_date) ) # Index name is lost during reindex. df.index = df.index.rename('knowledge_date') df['at_date'] = end_date.tz_localize('utc') df = df.set_index(['at_date', df.index.tz_localize('utc')]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp('2014-12-28') END_DATE = pd.Timestamp('2015-02-04') @classmethod def make_loader(cls, events, columns): raise NotImplementedError('make_loader') @classmethod def make_events(cls): raise NotImplementedError('make_events') @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ 's' + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader(cls.events, {column.name: val for column, val in cls.columns.items()}) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: 'event_date', MultipleColumnsEstimates.fiscal_quarter: 'fiscal_quarter', MultipleColumnsEstimates.fiscal_year: 'fiscal_year', MultipleColumnsEstimates.estimate1: 'estimate1', MultipleColumnsEstimates.estimate2: 'estimate2' } @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate1': [1., 2.], 'estimate2': [3., 4.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def make_expected_out(cls): raise NotImplementedError('make_expected_out') @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp('2015-01-15', tz='utc'), end_date=pd.Timestamp('2015-01-15', tz='utc'), ) assert_frame_equal(results, self.expected_out) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-10'), 'estimate1': 1., 'estimate2': 3., FISCAL_QUARTER_FIELD_NAME: 1., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp('2015-01-20'), 'estimate1': 2., 'estimate2': 4., FISCAL_QUARTER_FIELD_NAME: 2., FISCAL_YEAR_FIELD_NAME: 2015., }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp('2015-01-15', tz='utc'), cls.sid0),) ) ) dummy_df = pd.DataFrame({SID_FIELD_NAME: 0}, columns=[SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, 'estimate'], index=[0]) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = {c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns} p = Pipeline(columns) with self.assertRaises(ValueError) as e: engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) assert_raises_regex(e, INVALID_NUM_QTRS_MESSAGE % "-1,-2") def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with self.assertRaises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = ["split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof"] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand(itertools.product( (NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader), )) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: 'event_date', Estimates.fiscal_quarter: 'fiscal_quarter', Estimates.fiscal_year: 'fiscal_year', Estimates.estimate: 'estimate' } with self.assertRaises(ValueError): loader(dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01")) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp('2015-01-28') q1_knowledge_dates = [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-04'), pd.Timestamp('2015-01-07'), pd.Timestamp('2015-01-11')] q2_knowledge_dates = [pd.Timestamp('2015-01-14'), pd.Timestamp('2015-01-17'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-23')] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-14')] # One day late q2_release_dates = [pd.Timestamp('2015-01-25'), # One day early pd.Timestamp('2015-01-26')] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if (q1e1 < q1e2 and q2e1 < q2e2 and # All estimates are < Q2's event, so just constrain Q1 # estimates. q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0]): sid_estimates.append(cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid)) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-26')], 'estimate': [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid }) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame({ EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, 'estimate': [.1, .2, .3, .4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, }) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert_true(sid_estimates.isnull().all().all()) else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [self.get_expected_estimate( q1_knowledge[q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], q2_knowledge[q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None)], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index], axis=0) assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateLoaderTestCase(NextEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if (not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q2_knowledge.iloc[-1:] elif (not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateLoaderTestCase(PreviousEstimate): """ Run the same tests as EventsLoaderTestCase, but using a BlazeEventsLoader. """ @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp('2015-01-01'), pd.Timestamp('2015-01-06')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-10'), pd.Timestamp('2015-01-20')], 'estimate': [1., 2.], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015] }) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame(columns=[cls.columns[col] + '1' for col in cls.columns] + [cls.columns[col] + '2' for col in cls.columns], index=cls.trading_days) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ('1', '2') ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime( expected[expected_name] ) else: expected[expected_name] = expected[ expected_name ].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge([{c.name + '1': c.latest for c in dataset1.columns}, {c.name + '2': c.latest for c in dataset2.columns}]) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + '1' for col in self.columns] q2_columns = [col.name + '2' for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal(sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values)) assert_equal(self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1)) class NextEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-11'), raw_name + '1' ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp('2015-01-11'):pd.Timestamp('2015-01-20'), raw_name + '1' ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ['estimate', 'event_date']: expected.loc[ pd.Timestamp('2015-01-06'):pd.Timestamp('2015-01-10'), col_name + '2' ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-09'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 2 expected.loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20'), FISCAL_QUARTER_FIELD_NAME + '2' ] = 3 expected.loc[ pd.Timestamp('2015-01-01'):pd.Timestamp('2015-01-20'), FISCAL_YEAR_FIELD_NAME + '2' ] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextEstimateMultipleQuarters(NextEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class PreviousEstimateMultipleQuarters( WithEstimateMultipleQuarters, ZiplineTestCase ): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-19') ] = cls.events[raw_name].iloc[0] expected[raw_name + '1'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ['estimate', 'event_date']: expected[col_name + '2'].loc[ pd.Timestamp('2015-01-20'): ] = cls.events[col_name].iloc[0] expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 4 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-12'):pd.Timestamp('2015-01-20')] = 2014 expected[ FISCAL_QUARTER_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 1 expected[ FISCAL_YEAR_FIELD_NAME + '2' ].loc[pd.Timestamp('2015-01-20'):] = 2015 return expected @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateMultipleQuarters(PreviousEstimateMultipleQuarters): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame({ SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13')] * 2, EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-13'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-20')], 'estimate': [11., 12., 21.] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6 }) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError('assert_compute') def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=pd.Timestamp('2015-01-13', tz='utc'), # last event date we have end_date=pd.Timestamp('2015-01-14', tz='utc'), ) class PreviousVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousVaryingNumEstimates(PreviousVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader( bz.data(events), columns, ) class NextVaryingNumEstimates( WithVaryingNumEstimates, ZiplineTestCase ): def assert_compute(self, estimate, today): if today == pd.Timestamp('2015-01-13', tz='utc'): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazeNextVaryingNumEstimates(NextVaryingNumEstimates): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazeNextEstimatesLoader( bz.data(events), columns, ) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp('2015-02-10') window_test_start_date = pd.Timestamp('2015-01-05') critical_dates = [pd.Timestamp('2015-01-09', tz='utc'), pd.Timestamp('2015-01-15', tz='utc'), pd.Timestamp('2015-01-20', tz='utc'), pd.Timestamp('2015-01-26', tz='utc'), pd.Timestamp('2015-02-05', tz='utc'), pd.Timestamp('2015-02-10', tz='utc')] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-02-10'), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp('2015-01-18')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-04-01')], 'estimate': [100., 101.] + [200., 201.] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, }) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame({ TS_FIELD_NAME: [pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-12'), pd.Timestamp('2015-01-09'), pd.Timestamp('2015-01-15')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-22'), pd.Timestamp('2015-01-22'), pd.Timestamp('2015-02-05'), pd.Timestamp('2015-02-05')], 'estimate': [110., 111.] + [310., 311.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10 }) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame({ TS_FIELD_NAME: [cls.window_test_start_date, pd.Timestamp('2015-01-07'), cls.window_test_start_date, pd.Timestamp('2015-01-17')], EVENT_DATE_FIELD_NAME: [pd.Timestamp('2015-01-20'), pd.Timestamp('2015-01-20'), pd.Timestamp('2015-02-10'), pd.Timestamp('2015-02-10')], 'estimate': [120., 121.] + [220., 221.], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20 }) concatted = pd.concat([sid_0_timeline, sid_10_timeline, sid_20_timeline]).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i+1])] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids() ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries(self, start_date, num_announcements_out): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = timelines[ num_announcements_out ].loc[today].reindex( trading_days[:today_idx + 1] ).values timeline_start_idx = (len(today_timeline) - window_len) assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({'est': SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp('2015-02-10', tz='utc'), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat([ pd.concat([ cls.create_expected_df_for_factor_compute([ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date) ], end_date) for end_date in pd.date_range('2015-01-09', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-20') ), cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-20'))], pd.Timestamp('2015-01-21') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 111, pd.Timestamp('2015-01-22')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-01-22', '2015-02-04') ]), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-01-20')), (10, 311, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-01-20'))], end_date ) for end_date in pd.date_range('2015-02-05', '2015-02-09') ]), cls.create_expected_df_for_factor_compute( [(0, 201, pd.Timestamp('2015-02-10')), (10, 311, pd.Timestamp('2015-02-05')), (20, 221, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') ), ]) twoq_previous = pd.concat( [cls.create_expected_df_for_factor_compute( [(0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date)], end_date ) for end_date in pd.date_range('2015-01-09', '2015-02-09')] + # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. [cls.create_expected_df_for_factor_compute( [(0, 101, pd.Timestamp('2015-02-10')), (10, np.NaN, pd.Timestamp('2015-02-05')), (20, 121, pd.Timestamp('2015-02-10'))], pd.Timestamp('2015-02-10') )] ) return { 1: oneq_previous, 2: twoq_previous } @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") class BlazePreviousEstimateWindows(PreviousEstimateWindows): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): import blaze as bz return BlazePreviousEstimatesLoader(bz.data(events), columns) class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod @unittest.skipIf(platform.system() == 'Windows', "Don't run test on windows") def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-09') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], end_date ) for end_date in pd.date_range('2015-01-12', '2015-01-19') ]), cls.create_expected_df_for_factor_compute( [(0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp('2015-01-20')), (10, 110, pd.Timestamp('2015-01-09')), (10, 111, pd.Timestamp('2015-01-12')), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp('2015-01-07'))], pd.Timestamp('2015-01-20') ), pd.concat([ cls.create_expected_df_for_factor_compute( [(0, 200,
pd.Timestamp('2015-01-12')
pandas.Timestamp
import argparse from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from grid_resolution import grid_resolution from postpro_tools import postpro_tools import matplotlib matplotlib.rcParams["mathtext.fontset"] = "stix" matplotlib.rcParams["font.family"] = "STIXGeneral" matplotlib.rcParams.update({"font.size": 14}) sns.set_style("darkgrid") model_vars = ["PSG0", "PSG1", "TG0", "TG1", "TRG0", "TRG1", "UG0", "UG1", "VG0", "VG1"] var_codes = { "TG0": "T_0", "UG0": "u_0", "VG0": "v_0", "TRG0": "Hq_0", "TG1": "T_1", "UG1": "u_1", "VG1": "v_1", "TRG1": "Hq_1", "PSG0": "PS_0", "PSG1": "PS_1", } pslvl = [30, 100, 200, 300, 500, 700, 850, 925] def single_error_plotter(analysis, background, var, lvl, ppt, plots_path): lvl_str = str(lvl) zero = pd.Series(background[lvl_str].values[0]) data_analysis_by_level = np.log(zero.append(analysis[lvl_str])) data_backgroudn_by_level = np.log(zero.append(background[lvl_str])) fr = np.log(ppt.noda[var][lvl, :]) plt.figure(figsize=(9, 4)) plt.title(f"$\mathrm{{{var_codes[var]}}} \ at \ {{{pslvl[lvl]}}}mb}}$") plt.plot(data_analysis_by_level, color="r", label="Analysis") plt.plot(data_backgroudn_by_level, color="b", label="Background") plt.plot(fr, color="k", label="NODA") plt.legend() plt.ylabel(r"$log(\mathcal{l}_2)$") plt.xlabel(r"$\mathrm{Assimilation\;Step}$") plt.legend(loc="best", prop={"size": 14}) plt.tight_layout() plt.autoscale() plt.savefig(plots_path / f"single_error_{var}_{lvl}.png", bbox_inches="tight") plt.close() def main_general_plotter(df_params): # input_file = sys.argv[1] root_path = Path.cwd() exp_pth = root_path.parents[0] / "runs" for _, row in df_params.iterrows(): method_path = exp_pth / row["exp_path"] variables = row["variable"] levels = row["level"] grid_res = row["resolution"] if np.isnan(variables): variables = model_vars else: variables = variables.strip().split(",") if np.isnan(levels): levels = range(8) else: levels = levels.strip().split(",") levels = [int(v) for v in levels] plots_path = method_path / "plots" / "errors" gs = grid_resolution(grid_res) ppt = postpro_tools(grid_res, gs, method_path, 30) ppt.compute_NODA() Path(plots_path).mkdir(parents=True, exist_ok=True) for var in variables: analysis = pd.read_csv(method_path / "results" / f"{var}_ana.csv") bckg = pd.read_csv(method_path / "results" / f"{var}_bck.csv") for lvl in levels: if ("PSG" in var) and lvl > 0: break if ("TRG" in var) and lvl < 2: continue single_error_plotter(analysis, bckg, var, lvl, ppt, plots_path) print(f"* ENDJ - Plot {var} {lvl} Finished") if __name__ == "__main__": parser = argparse.ArgumentParser( description="Creates a heatmap for a defined set of parameters " + "using the specified configurations.\n" + "Remember the config file must be a CSV containing the headers:\n" + "setting,method,infla,mask,variable,level\n" + "If no level or variable is set, default values will be used", formatter_class=argparse.RawTextHelpFormatter, ) parser.add_argument( "file", help="The name of the CSV file containing the configuration" ) args = parser.parse_args() input_file = args.file print("* STARTJ - Reading input file {0}".format(input_file)) df_params =
pd.read_csv(input_file)
pandas.read_csv
import numpy as np import datetime import glob2 import xarray as xr import pandas as pd import re #plt.close("all") pd.options.display.max_columns = None pd.options.display.max_rows = None import plotly.io as pio import plotly.express as px pio.renderers.default='browser' dircInput1 = 'C:/Users/Chenxi/OneDrive/phd/age_and_fire/data/01_raw/03_HALO-DB_mission_116/' dircInput2 = 'C:/Users/Chenxi/OneDrive/phd/age_and_fire/data/03_cleaned/03_HALO-DB_mission_116_cleaned/' #file names fn_amica_database = glob2.glob(dircInput1 + 'AMICA/' + '*.ames') fn_amica_wiki = glob2.glob(dircInput1 + 'AMICA/' + '*.dat') fn_bahamas = glob2.glob(dircInput1 + 'BAHAMAS/' + '*.nc') fn_fairo = glob2.glob(dircInput1 + 'FAIRO/' + '*FAIRO_O3*.ames') fn_fairoCI = glob2.glob(dircInput1 + 'FAIRO/' + '*FAIROCI_O3*.ames') fn_fish = glob2.glob(dircInput1 + 'FISH/' + '*FISH_H2O.ames') fn_umaq = glob2.glob(dircInput1 + 'UMAQ/' + '*.ames') fn_aeneas = glob2.glob(dircInput1 + 'AENEAS/' + '*.ames') fn_hagar_li = glob2.glob(dircInput1+'*HAGARV_LI_prelim.ames') fn_hagar_ecd = glob2.glob(dircInput1+'*HAGARV_ECD_preliminary.ames') fn_ghost = glob2.glob(dircInput1+'*GhOST_MS_preliminary.ames') fn_Met_V2 = glob2.glob(dircInput1 + 'CLAMS_Met/' + '*CLAMS_Met_V2.nc') fn_agespec_HN2 = glob2.glob(dircInput1+'*CLAMS_agespec_HN2.nc') # fn_backtraj_nr_ST1_cfc_clim = glob2.glob(dircInput1+'clams_at_halo/'+'*backtraj_nr_ST1_cfc_clim.nc') # fn_backtraj_nr_ST1_clim = glob2.glob(dircInput1+'clams_at_halo/'+'*backtraj_nr_ST1_clim.nc') fn_sfctracer_F02 = glob2.glob(dircInput1+'*CLAMS_sfctracer_F02.nc') fn_chem_V1 = glob2.glob(dircInput1+'*CLAMS_chem_V1.nc') #fn_gloria_kit = glob2.glob(dircInput1+'*GLORIA_chemistry_mode_KIT.nc') #fn_gloria_fzj = glob2.glob(dircInput1+'*GLORIAFZJ_L1V0002preL2V00pre.nc') ############################in-situ measurements############################### def clean_bahamas(res, fn = fn_bahamas): frame = [] for filename in fn: df = xr.open_dataset(filename).to_dataframe() df.rename(columns = {'TIME': "time", 'IRS_ALT': 'ALT', 'IRS_LAT': 'LAT', 'IRS_LON': 'LON', }, inplace = True) df.set_index('time', inplace = True) df = df.resample(f'{res}S').mean() df['flight'] = df.index[0].strftime('%Y-%m-%d') frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) return output[['ALT','LAT','LON','THETA','flight']] def clean_amica(res, fn = fn_amica_wiki): frame = [] for filename in fn: df = pd.read_csv( filename, delimiter = ',', skiprows = [1], header = [0], parse_dates = [0], infer_datetime_format = True, #names=['time','AMICA:OCS','AMICA:CO','AMICA:H2O'] ) df.set_index('time', inplace = True) df.sort_index(inplace = True) new_names = { 'CO': 'AMICA_CO', 'H2O': 'AMICA_H2O', } df.rename(columns = new_names, inplace = True) frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) output.rename(columns = {'O3': 'AMICA_O3',}, inplace = True) return output#[list(new_names.values())+ ['OCS', 'AMICA_O3']] def clean_fairo(res, fn = fn_fairo): frame = [] for filename in fn: date = pd.to_datetime(re.findall("(\d+)", filename)[-3]) df = pd.read_csv( filename, delimiter='\t', skiprows=27, header=0 ) df['time'] = df['UTC_seconds'].apply(lambda x: datetime.timedelta(seconds = x) + date) df.drop(columns = ['UTC_seconds'], inplace = True) df.set_index('time', inplace = True) df.replace(-9999, np.nan, inplace=True) df = df.resample(f'{res}S').mean() df.rename(columns = {'Ozone[ppb]': 'FAIRO_O3'}, inplace = True) frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) return output def clean_fish(res, fn = fn_fish): frame=[] for filename in fn: date=pd.to_datetime(re.findall("(\d+)", filename)[-2]) df = pd.read_csv( filename, skiprows=19, delimiter=' ', names=['UTC_seconds','H2O_tot','H2O_tot_err'] ) df['time']=df['UTC_seconds'].apply(lambda x: datetime.timedelta(seconds=x)+date ) #,parse_dates=[0]) df.set_index('time', inplace = True) df = df.resample(f'{res}S').mean() df.rename(columns = {'H2O_tot': 'FISH_H2O'}, inplace = True) frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) return output[['FISH_H2O']] def clean_umaq(res, fn = fn_umaq): frame=[] for filename in fn: date=pd.to_datetime(re.findall("(\d+)", filename)[-5]) df = pd.read_csv( filename, skiprows=36, delimiter=' ', header=0, ) df['time']=df['UTC_seconds'].apply(lambda x: datetime.timedelta(seconds=x)+date ) #,parse_dates=[0]) df.drop(columns = ['UTC_seconds'], inplace = True) df.set_index('time', inplace = True) df.replace(99999.00, np.nan, inplace = True) df = df.resample(f'{res}S').mean() df.rename(columns = {'UMAQS_CH4_ppbv': 'UMAQS_CH4', 'UMAQS_N2O_ppbv': 'UMAQS_N2O', 'UMAQS_CO2_ppmv': 'UMAQS_CO2', 'UMAQS_CO_ppbv': 'UMAQS_CO', }, inplace = True) frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) return output def clean_aeneas(res, fn = fn_aeneas): frame=[] for filename in fn: date=pd.to_datetime(''.join(re.findall("(\d+)", filename)[-3:-1])) df = pd.read_csv( filename, skiprows=20, delimiter=' ', names=['UTC_seconds', 'AENEAS_NO', 'AENEAS_NOy'], ) df['time']=df['UTC_seconds'].apply(lambda x: datetime.timedelta(seconds=x)+date ) #,parse_dates=[0]) df.drop(columns = ['UTC_seconds'], inplace = True) df.set_index('time', inplace = True) df.replace(-9999, np.nan, inplace = True) df = df.resample(f'{res}S').mean() frame.append(df) output = pd.concat(frame) output.sort_index(inplace = True) return output #####################################CLaMS##################################### def clean_Met_V2(res, fn = fn_Met_V2): frame=[] for filename in fn: df = xr.open_dataset(filename).to_dataframe() df = df.resample(f'{res}S').mean() # df=df.rename(columns={"TIME": "time"}) # df=df.set_index('time') frame.append(df) output =
pd.concat(frame)
pandas.concat
from sklearn.preprocessing import LabelEncoder, OneHotEncoder import pandas as pd import numpy as np from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer np.warnings.filterwarnings('ignore') titanic = pd.read_csv('data/titanic/train.csv') titanic['Embarked'] = titanic['Embarked'].fillna(value='S') # Overall exploration before cleanup print('\n\n********************************** Dataset BEFORE Cleanup ***************************************') print(titanic.head(4).to_string()) # Encoding categorical variables using dummy variables print('\n\n********************************** Dummy Encoded ***************************************') encoded_sex = pd.get_dummies(titanic['Sex'], drop_first=True) encoded_embarked =
pd.get_dummies(titanic['Embarked'], drop_first=True)
pandas.get_dummies
import os import csv import pandas as pd dataset = "./data-csv/" keys = ['Дата измерения', 'Температура', 'Влажность', 'СО2', 'ЛОС', 'Пыль pm 1.0', 'Пыль pm 2.5', 'Пыль pm 10', 'Давление', 'AQI', 'Формальдегид'] if not os.path.exists(dataset): os.system("./download_data.sh") files = os.listdir(dataset) files.sort() dataframes = [] for file in files: full_path = os.path.join(dataset, file) name, tail = file.split("_") sensor_n, tail = tail.split(".") name = name.strip() sensor_n = int(sensor_n) print(name, "|", sensor_n) df = pd.read_csv(full_path) dataframes.append({"name": name, "number": sensor_n, "df": df}) # with open(full_path) as csvfile: # reader = csv.DictReader(csvfile) # for row in reader: # date = row['Дата измерения'] # temp = row['Температура'] # humid = row['Влажность'] # co2 = row['СО2'] # los = row['ЛОС'] # pm1_0 = row['Пыль pm 1.0'] # pm2_5 = row['Пыль pm 2.5'] # pm10 = row['Пыль pm 10'] # pressure = row['Давление'] # AQI = row['AQI'] # formald = row['Формальдегид'] # # print(row) # print(dataframes) all_df =
pd.DataFrame(dataframes)
pandas.DataFrame
#--------------------------------------------------------------- #__main__.py #this script collates measurements from individual csv outputs of #the morphometriX GUI #the csvs can be saved either all in one folder or within each individual #animals folder. #this version includes a safety net that recalculates the measurement using #accurate altitude and focal lengths that the user must provie in csvs. # this version uses PyQt5 instead of easygui (used in v2.0) #created by: <NAME> (<EMAIL>), March 2020 #updated by: <NAME>, June 2021 #---------------------------------------------------------------- #import modules import pandas as pd import numpy as np import os, sys import math from PyQt5 import QtCore from PyQt5.QtWidgets import QApplication, QWidget, QInputDialog, QLineEdit, QFileDialog, QMessageBox, QLabel, QVBoxLayout from PyQt5.QtGui import QIcon import collatrix.collatrix_functions from collatrix.collatrix_functions import anydup, readfile, fheader, lmeas, wmeas, setup, pull_data, safe_data, end_concat, df_formatting from collatrix.collatrix_functions import collate_v4and5, collate_v6 class App(QWidget): def __init__(self): super().__init__() self.title = 'close box to end script' self.left = 10 self.top = 10 self.width = 640 self.height = 480 self.initUI() def initUI(self): self.setWindowTitle(self.title) self.setGeometry(self.left, self.top, self.width, self.height) self.show() #add message box with link to github documentation msgBox = QMessageBox() msgBox.setWindowTitle("For detailed input info click link below") msgBox.setTextFormat(QtCore.Qt.RichText) msgBox.setText('<a href = "https://github.com/cbirdferrer/collatrix#inputs">CLICK HERE</a> for detailed input instructions, \n then click on OK button to continue') x = msgBox.exec_() #do you want the Animal ID to be assigned based on the name of the folder items = ('yes', 'no') anFold, okPressed = QInputDialog.getItem(self,"Input #1", "Do you want the Animal ID to be assigned based on the name of the folder? \n yes or no",items,0,False) if okPressed and anFold: print("{0} Animal ID in folder name".format(anFold)) #ask if they want safey net items = ('yes', 'no') safety, okPressed = QInputDialog.getItem(self,"Input #2", "Do you want to use the safety? \n Yes or No?",items,0,False) if okPressed and safety: print("{0} safety".format(safety)) #if safety yes, ask for file if safety == 'yes': options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog safe_csv, _ = QFileDialog.getOpenFileName(self,"2.1 Safety File: Image list with altitudes and other information.", "","All Files (*);;csv files (*.csv)", options=options) print("safety csv = {0}".format(safe_csv)) elif safety == 'no': pass #animal id list? items = ('no','yes') idchoice, okPressed = QInputDialog.getItem(self, "Input #3", "Do you want output to only contain certain individuals? \n Yes or No?",items,0,False) if idchoice and okPressed: print("{0} subset list".format(idchoice)) if idchoice == 'yes': options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog idsCSV, _ = QFileDialog.getOpenFileName(self,"3.1 File containing ID list", "","All Files (*);;csv files (*.csv)", options=options) if idsCSV: print("ID list file = {0}".format(idsCSV)) elif idchoice == 'no': pass #ask for name of output outname, okPressed = QInputDialog.getText(self, "Input #4", "Prefix for output file",QLineEdit.Normal,"") #import safety csv if safety selected if safety == 'yes': dfList = pd.read_csv(safe_csv, sep = ",") dfList = dfList.dropna(how="all",axis='rows').reset_index() df_L = dfList.groupby('Image').first().reset_index() df_L['Image'] = [x.strip() for x in df_L['Image']] elif safety == 'no': df_L = "no safety" #get folders options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog GUIfold = QFileDialog.getExistingDirectory(None, "Input 5. Folder containing MorphoMetriX outputs",options=options) saveFold = QFileDialog.getExistingDirectory(None,"Input 6. Folder where output should be saved",options = options) options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog #make lists #for csvs csvs_all = [] csvs = [] not_mmx = [] #for measurements measurements = [] nonPercMeas = [] #walk through all folders in GUI folder and collect all csvs for root,dirs,files in os.walk(GUIfold): csvs_all += [os.path.join(root,f) for f in files if f.endswith('.csv')] #make sure the csvs are morphometrix outputs by checking first row csvs += [c for c in csvs_all if 'Image ID' in
pd.read_csv(c,sep='^',header=None,prefix='X',engine = 'python',quoting=3, na_values = ['""','"'],encoding_errors = "ignore")
pandas.read_csv
"CMIP6 data read comparison code" import sys import json from pprint import pprint import logging import time import os import pandas as pd import argparse from random import randint parser = argparse.ArgumentParser(description='Gather variables from command line', formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( 'config', help = "Config file location", ) parser.add_argument( '-l', '--log-level', action = 'store', dest = 'log_level', help = 'Set the log level of console output (CRITICAL, ERROR, WARNING, INFO, DEBUG). Default: INFO', required = False, default = 'INFO', ) class ConfigError(Exception): "Raised on config error" pass class ReadError(Exception): "Raised on problem with the test's read" class RunError(Exception): "Raised on problem with running test" class CMIPRead: def __init__(self, config): self.config = config self.results = {'test': '{}-{}-{}'.format(config['method'], config['source'], config['read_pattern']), 'config_name': config['config_name'], 'run_at': time.ctime(), 'config_file': config['config_file'], 'config_modified_at': time.ctime(os.stat(config['config_file']).st_mtime) if config['config_file'] else None, 'repeats': config['repeats'], 'read_pattern': config['read_pattern'] } def get_zarr_store(self): caringo_s3 = s3fs.S3FileSystem(anon=True, client_kwargs={'endpoint_url': self.config['endpoint']}) zarr_path = os.path.join(self.config['path'], self.config['file']) store = s3fs.S3Map(root=zarr_path, s3=caringo_s3) return store def save_results(self): # check if there's a pickled dataframe already on disk logging.info('Saving data...') try: df =
pd.read_json('results_df.json')
pandas.read_json
''' The master decomposition file used to decompose raw accelerometer data. The following steps are executed in this order: Magnitudes from three axes of accelerometers are calculated Magnitudes are highpass filtered at 1 hertz RMS values are calculated and a motion threshold slightly\ above the noise floor is created Data is transformed in an fft 200 points (10 seconds) at a time All the remaining tsfresh decomposition source code is ran https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html Decomposed datasets are saved for each baby ''' import pandas as pd import numpy as np from scipy import signal import matplotlib.pyplot as plt import os plt.style.use('ggplot') class noise: def __init__(self, n): self.df_comp = pd.read_csv(str(n) + '.csv') self.cols = ['LL','LA','C','RA','RL'] self.df =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime import unittest import numpy as np import pandas.core.datetools as datetools from pandas.core.daterange import DateRange, XDateRange #### ## XDateRange Tests #### def eqXDateRange(kwargs, expected): assert(np.array_equal(list(XDateRange(**kwargs)), expected)) def testXDateRange1(): eqXDateRange(dict(start = datetime(2009, 3, 25), nPeriods = 2), [datetime(2009, 3, 25), datetime(2009, 3, 26)]) def testXDateRange2(): eqXDateRange(dict(start = datetime(2008, 1, 1), end = datetime(2008, 1, 3)), [datetime(2008, 1, 1), datetime(2008, 1, 2), datetime(2008, 1, 3)]) def testXDateRange3(): eqXDateRange(dict(start = datetime(2008, 1, 5), end = datetime(2008, 1, 6)), []) START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestXDateRange(unittest.TestCase): def test_constructor(self): rng = XDateRange(START, END, offset=datetools.bday) self.assertEquals(rng.timeRule, 'WEEKDAY') rng = XDateRange(START, END, timeRule='WEEKDAY') self.assertEquals(rng.offset, datetools.bday) class TestDateRange(unittest.TestCase): def setUp(self): self.rng = DateRange(START, END, offset=datetools.bday) def test_constructor(self): rng = DateRange(START, END, offset=datetools.bday) rng = DateRange(START, periods=20, offset=datetools.bday) rng = DateRange(end=START, periods=20, offset=datetools.bday) def test_getCachedRange(self): rng =
DateRange.getCachedRange(START, END, offset=datetools.bday)
pandas.core.daterange.DateRange.getCachedRange
"""Utilities for visualization tools.""" import itertools import pandas __all__ = ["assign_tree_color", "check_angle", "check_location", "check_orientation"] def check_orientation(orientation): """Check ``orientation`` parameter and return as `bool`. Parameters ---------- orientaion : {'vertical', 'horizontal'} Returns ------- is_vertical : bool Raises ------ ValueError """ if orientation == "vertical": is_vertical = True elif orientation == "horizontal": is_vertical = False else: raise ValueError("'orientation' must be 'vertical' or 'horizontal'") return is_vertical def check_angle(angle): """Check ``angle`` parameter and return as `int`. Parameters ---------- angle : {0, 90, -90} Returns ------- int Raises ------ ValueError """ if angle not in [0, 90, -90]: raise ValueError("'angle' must be 0, 90, or -90") return int(angle) def check_location(location): """Check ``location`` parameter and return itself. Parameters ---------- location : {'first', 'last', 'inner', 'outer'} Returns ------- str Raises ------ ValueError """ if location not in ["first", "last", "inner", "outer"]: raise ValueError("'location' must be 'first', 'last', 'inner', or " "'outer'") return location def assign_tree_color(tree_data, palette, default_color): """Assign colors to tree lines. Parameters ---------- tree_data : pandas.DataFrame palette : list[str] default_color : str Notes ----- ``tree_data`` is modified in-place. """ groups = tree_data["group"].copy() if not groups.isna().all(): groups.sort_values(inplace=True) groups = groups.unique() it = itertools.cycle(palette) colors = {group: next(it) for group in groups if not
pandas.isna(group)
pandas.isna
import os from concurrent.futures import ProcessPoolExecutor import itertools import yaml import numpy as np import pandas as pd from lib.constants import * from lib.utils import * TOP_N = 15 config = yaml.load(open('config.yaml'), Loader=yaml.FullLoader) parameters = {k: [v['default']] for k, v in config['parameters'].items()} to_update = { "cross_policy": ['BLXa','BLXab'], "elitism": [False,True], "num_pop": [25,50,100], "num_generations": [25,50,100], "cross_rate": [0.6,0.8,1.0], "mutation_rate": [0.01,0.05,0.1], "eid": list(range(1,NUM_EXECUTIONS+1)), } parameters.update(to_update) parameters_names = list(parameters.keys()) combinations = itertools.product(*list(parameters.values())) # args = [('python genetic_algorithm.py '+' '.join([f'--{k}={v}' for k,v in zip(parameters_names,combination)]),) # for combination in combinations] result_df = pd.DataFrame(columns=parameters_names) for i,combination in enumerate(combinations): p = {k:v for k,v in zip(parameters_names,combination)} name = get_parameters_name(p) # print(DIRS['DATA']+name+'.json') df =
pd.read_json(DIRS['DATA']+name+'.json')
pandas.read_json
import pandas as pd rawData = {'t': 1525019820000, 'T': 1525019879999, 'o': '0.07282300', 'c': '0.07290700', 'h': '0.07293300', 'l': '0.07279800', 'v': '48.57300000'} df =
pd.DataFrame([rawData])
pandas.DataFrame
# coding: utf-8 # # Process data # In[1]: get_ipython().run_line_magic('load_ext', 'autoreload') get_ipython().run_line_magic('autoreload', '2') import os import pandas as pd import numpy as np import random import glob import umap import seaborn as sns import matplotlib.pyplot as plt from ggplot import * from numpy.random import seed randomState = 123 seed(randomState) # ## Data # # Data downloaded from ADAGE repository [ADAGE](https://github.com/greenelab/adage). # # ``` # data # ``` # 1. Raw data was downloaded from ArrayExpress using Affymetrix GeneChip # 2. Use [RMA](https://www.rdocumentation.org/packages/affy/versions/1.50.0/topics/rma) bioconductor library to convert raw array data to log 2 gene expression data. # 3. Only keep PA genes, remove control genes # # ``` # normalized_data # ``` # 1. Use data from above # 2. Normalize each gene to be between 0 and 1 # ## About Affymetrix GeneChip processing # # **Measurements** # mRNA samples samples are labeled with flouresence and hybridized to GeneChip probe array. The probe array is then scanned and the flouresence intensity of each probe (or feature) is measured. A trasncript is represented by a probe set (~11-20 pairs of probes - see explanation of pairs below). The probe set intensity forms the expression measure for a given transcript. # # **Array Design** # Two probes: 1) probe is completely complementary to target sequence, perfect match probe (PM) and 2) probe contains a single mismatch to the target sequence in the middle of the probe, mismatch probe(MM). A probe pair is (PM, MM) # # from [The Affymetrix GeneChip Platform: An Overview](https://www.sciencedirect.com/science/article/pii/S0076687906100014?via%3Dihub#fig0001) # # **Robust multiarray average (rma)** # # 1. Assuming PM = background + signal we want to correct for background signal, returns E[signal|background+signal] assuming signal~exponential and background~normal. # 2. Use quantile normalization is to make the distribution of probe intensities the same across arrays. The steps are 1) for each array, rank the probe intensity from lowest to highest, 2) For each array rearrange probe intensity values from lowest to highest, 3) Take the average across arrays for each probe and asssign rank, 4) replace ranks from (1) with mean values. Example from [Quantile Normalization wiki](https://en.wikipedia.org/wiki/Quantile_normalization) # 3. Calculating the probe set intensity by averaging PM-MM across probes in probe set and log2 transform, Y. Fit regression model to Y (probe set intensity) = probe affinity effect + *log scale expression level* + error # # from [Exploration, normalization, and summaries of high density oligonucleotide array probe level data](https://academic.oup.com/biostatistics/article/4/2/249/245074) # # **Alternative normalization methods** # In[2]: # Load arguments data_file = f"{os.path.dirname(os.getcwd())}/data/pseudomonas/Pa_compendium_02.22.2014.pcl" normalized_data_file = f"{os.path.dirname(os.getcwd())}/data/pseudomonas/train_set_normalized.pcl" metadata_file = f"{os.path.dirname(os.getcwd())}/metadata/sample_annotations.tsv" # In[3]: # Read in data data = pd.read_table(data_file, header=0, sep='\t', index_col=0).T data.head(5) # In[4]: # Read in data normalized_data = pd.read_table(normalized_data_file, header=0, sep='\t', index_col=0).T normalized_data.head(5) # In[5]: # Read in metadata metadata =
pd.read_table(metadata_file, header=0, sep='\t', index_col='ml_data_source')
pandas.read_table
import slack from flask import Response import pandas as pd import numpy as np from numpy import nan import re import os import networkx as nx from pyvis.network import Network from dotenv import load_dotenv, dotenv_values from statsmodels.tsa.arima.model import ARIMA # load environment variables # config = dotenv_values(".env") load_dotenv() SLACK_TOKEN = os.getenv('SLACK_TOKEN') # define slack client client = slack.WebClient(token=SLACK_TOKEN) # function to retrieve the display name of the user based on user id def get_name(user_id): try: out = client.users_info(user=user_id)["user"]["profile"]["real_name"] except: out = None return out # function to get the channels that a user is active in def get_user_channels(user_id): return client.users_conversations(user=user_id)["channels"] # send response message to user def send_response_message(user_id): # define message to be posted message = { 'type': 'section', 'text': { 'type': 'mrkdwn', 'text': ( ":sparkles: Hey, check out our latest analysis of your team here: <https://network-analysis.azurewebsites.net|LINK> :sparkles:" ) } } client.chat_postMessage(channel=user_id, blocks=[message]) # function used to retrieve network analysis data for a specific channel def get_slack_data(user_id, text): # define channel id try: channel_id = [channel["id"] for channel in get_user_channels(user_id) if channel["name"] == text][0] except: channel_id = "C01T6GGTBQD" # get channel history result = client.conversations_history(channel=channel_id, limit=1000) # retrieve messages conversation_history = result["messages"] # create DataFrame messages = pd.DataFrame(conversation_history) # add channel id to df messages["user_id"] = str(user_id) # convert timestamp to datetime object messages['date'] = pd.to_datetime(messages['ts'], unit="s").dt.date messages['ts'] = pd.to_datetime(messages['ts'], unit="s") # clean text column from quotation marks messages["text"] = messages["text"].apply(lambda x: re.sub(r"\"", "", x)) # replace user ids with names of users # messages["reply_users"] = messages["reply_users"].apply(get_name) # messages["user"] = messages["user"].apply(get_name) # select columns to save messages = messages[["client_msg_id", "user_id", "reply_users", "user", "text", "date"]] # def find_reaction_users(col): # try: # return col[0]["users"] # except: # return np.nan # find user ids in the reactions column #messages["reactions"] = messages["reactions"].apply(find_reaction_users) # explode the reply_users column to get senders of replies # messages = messages.explode("reply_users") # explode the reactions column to get senders of reactions #messages = messages.explode("reactions") messages.dropna(inplace=True) # convert reply users to string for database messages["reply_users"] = messages["reply_users"].astype(str) return messages def time_series_analysis(df): # df = df[df["reply_users"] != "nan"] df['reply_users'] = pd.eval(df['reply_users']) df = df.explode("reply_users") df['week'] = pd.to_datetime(df['ts']).dt.to_period('W') df = df.groupby(["week"]).size().reset_index().rename(columns={0: 'count'}) df.set_index("week", inplace=True) df.index = df.index.to_timestamp() df.sort_index(inplace=True) df = df.resample('W').first() df.fillna(0, inplace=True) # # messages per day # df = df.groupby(["ts"]).size().reset_index().rename(columns={0: 'count'}) # # convert column to datetime # df['ts'] = pd.to_datetime(df['ts']) # # make ts column into index # df.index = pd.DatetimeIndex(df['ts'], freq='infer') # # make sure we count per day and fill empty days # df = df.asfreq('D') # # remove ts column # df.drop(["ts"], axis=1, inplace=True) # # fill NaN values with 0 # df.fillna(0, inplace=True) # fit model model = ARIMA(df["count"], order=(5,1,0)) model_fit = model.fit() #make prediction predictions = model_fit.predict(start=len(df)-1, end=len(df)+3) return {"data": df, "predictions": predictions} def network_analysis(messages): #messages = messages[messages["reply_users"] != "nan"] messages['reply_users'] = pd.eval(messages['reply_users']) messages = messages.explode("reply_users") # get number of messages per user df = messages.groupby(["reply_users", "user"]).size().reset_index().rename(columns={0: 'count'}) # rename columns df.rename({"reply_users": "source", "user": "target"}, inplace=True, axis=1) # create graph Q = nx.from_pandas_edgelist(df, source="source", target="target", edge_attr="count") # create vis network net = Network(height='750px', width='100%', bgcolor='white', font_color='black') net.barnes_hut() sources = df['source'] targets = df['target'] weights = df['count'] edge_data = zip(sources, targets, weights) for e in edge_data: src = e[0] dst = e[1] w = e[2] net.add_node(src, src, title=src) net.add_node(dst, dst, title=dst) net.add_edge(src, dst, value=w) net.show('application/templates/graph_data.html') # get the degree of centrality for the graph object degree_centrality = nx.degree_centrality(Q) # get the closeness of centrality for the graph object closeness_centrality = nx.closeness_centrality(Q) # get the betweenness of centrality for the graph object betweenness_centrality = nx.betweenness_centrality(Q) # the density of the network # density = nx.density(Q) # make network analysis result to dataframe # network_res = pd.DataFrame({"degree_centrality": degree_centrality, "closeness_centrality": closeness_centrality, "betweenness_centrality": betweenness_centrality}).reset_index() # number of messages sent messages_sent = messages.groupby(["reply_users"]).size().reset_index().rename(columns={0: 'count_sent'}) # number of messages received messages_received = messages.groupby(["user"]).size().reset_index().rename(columns={0: 'count_received'}) print(messages_sent.dtypes) print(messages_received.dtypes) # rename index messages_received.rename({"user": "reply_users"}, inplace=True, axis=1) # network_res.rename({"index": "reply_users"}, inplace=True, axis=1) # res = messages_sent[["reply_users", "count_sent"]].merge(network_res, left_on="reply_users", right_on="reply_users") res = messages_sent[["reply_users", "count_sent"]].merge(messages_received, left_on="reply_users", right_on="reply_users") return res.values.tolist() def graph_data(): # load csv df =
pd.read_csv("message_data.csv")
pandas.read_csv
# dedicated to the penguin import pandas as pd import numpy as np import dask.array.gufunc import dask.array as da from dask.diagnostics import ProgressBar from dask.distributed import Client from . import io, nexus, tools from .stream_parser import StreamParser # from .map_image import MapImage import h5py from typing import Union, Dict, Optional, List, Tuple, Callable import copy from collections import defaultdict from warnings import warn, catch_warnings, simplefilter from tables import NaturalNameWarning from concurrent.futures import ProcessPoolExecutor, wait, FIRST_EXCEPTION from contextlib import contextmanager import os # top-level helper functions for chunking operations # ...to be refactored into tools or compute later... def _check_commensurate(init: Union[list, tuple, np.ndarray], final: Union[list, tuple, np.ndarray], equal_size: bool = False): '''check if blocks with sizes in init are commensurate with (i.e. have boundaries aligned with) blocks in final, and (optionally) if final blocks in final are equally-sized within each block in initial. Useful to check if a dask rechunk operation will act across boundaries of existing chunks, which is often something you'll want to try to avoid (and might be a sign that something is going wrong). Blocks in final must hence be smaller than those in init, i.e. len(final) >= len(init), and of course: sum(final) == sum(init). Returns whether the blocks are commensurate, and (if so), the number of final blocks in each of the initial block.''' #TODO consider using numba jit final_inv = list(final)[::-1] # invert for faster popping init = list(init) if sum(init) != sum(final): raise ValueError('Sum of init and final must be identical.') blocksize = [] if equal_size: for s0 in init: # iterate over initial blocks n_final_in_initial = s0 // final_inv[-1] for _ in range(n_final_in_initial): # iterate over final blocks within initial if (s0 % final_inv.pop()) != 0: return False, None blocksize.append(n_final_in_initial) else: for s0 in init: # iterate over initial blocks # n_rem = copy.copy(s0) n_rem = s0 b_num = 0 while n_rem != 0: n_rem -= final_inv.pop() b_num += 1 if n_rem < 0: # incommensurate block found! return False, None blocksize.append(b_num) assert len(final_inv) == 0 return True, blocksize def _agg_groups(stack: np.ndarray, labels: Union[np.ndarray, list, tuple], agg_function: callable, *args, **kwargs): '''Apply aggregating function to a numpy stack group-by-group, with groups defined by unique labels, and return the concatenated results; i.e., the length of the result along the aggregation axis equals the number of unique labels. ''' res_list = [] labels = labels.squeeze() for lbl in np.unique(labels): res_list.append(agg_function(stack[labels == lbl,...], *args, **kwargs)) return np.concatenate(res_list) def _map_sub_blocks(stack: da.Array, labels: Union[np.ndarray, list, tuple], func: callable, aggregating: bool = True, *args, **kwargs): '''Wrapper for da.map_blocks, which instead of applying the function chunk-by-chunk can apply it also to sub-groups within each chunk, as identified by unique labels (e.g. integers). Useful if you want to use large chunks to have fast computation, but want to apply the function to smaller blocks. Obvious example: you want to sum frames from a diffraction movie, but have many diffraction movies stored in each single chunk, as otherwise the chunk number would be too large. The input stack must be chunked along its 0th axis only, and len(labels) must equal the height of the stack. If aggregating=True, func is assumed to reduce the sub-block height to 1 (like summing all stack frames), whereas aggregating=False assumes func to leave the sub-block sizes as is (e.g. for cumulative summing).''' chunked_labels = da.from_array(labels.reshape((-1,1,1)), chunks=(stack.chunks[0],-1,-1), name='sub_block_label') cc_out = _check_commensurate(stack.chunks[0], np.unique(labels, return_counts=True)[1], equal_size=False) if not cc_out[0]: raise ValueError('Mismatched chunk structure: mapping groups are not within single chunk each') if 'chunks' in kwargs: final_chunks = kwargs['chunks'] else: final_chunks = (tuple(cc_out[1]), ) + stack.chunks[1:] if aggregating else stack.chunks return da.map_blocks(_agg_groups, stack, chunked_labels, agg_function=func, chunks=final_chunks, *args, **kwargs) class Dataset: def __init__(self): self._shots_changed = False self._peaks_changed = False self._predict_changed = False self._features_changed = False # HDF5 file addresses self.data_pattern: str = '/%/data' '''Path to data stacks in HDF5 files. % can be used as placeholder (as in CrystFEL). Default /%/data''' self.shots_pattern: str = '/%/shots' '''Path to shot table data in HDF5 files. % can be used as placeholder (as in CrystFEL). Default /%/shots''' self._fallback_shots_pattern: str = '/%/data/shots' self.result_pattern: str = '/%/results' '''Path to result data (peaks, predictions) in HDF5 files. % can be used as placeholder (as in CrystFEL). Default /%/results. **Note that storing results in this way is discouraged and deprecated.**''' self.map_pattern: str = '/%/map' '''Path to map and feature data in HDF5 files. % can be used as placeholder (as in CrystFEL). Default /%/map''' self.instrument_pattern: str = '/%/instrument' '''Path to instrument metadat in HDF5 files. % can be used as placeholder (as in CrystFEL). Default /%/instrument''' self.parallel_io: bool = True '''Toggles if parallel I/O is attempted for datasets spanning many files. Note that this is independent from `dask.distributed`-based parallelization as in `store_stack_fast`. Default True, which is overriden if the Dataset comprises a single file only.''' # internal stuff self._file_handles = {} self._stacks = {} self._shot_id_cols = ['file', 'Event'] self._feature_id_cols = ['crystal_id', 'region', 'sample'] self._diff_stack_label = '' # tables: accessed via properties! self._shots =
pd.DataFrame(columns=self._shot_id_cols + self._feature_id_cols + ['selected'])
pandas.DataFrame
# General Packages from math import atan2, degrees from datetime import datetime from pathlib import Path import time import pprint import numpy as np import pandas as pd import pickle # Plotting import matplotlib.pyplot as plt import matplotlib.ticker as mtick from matplotlib.dates import date2num import seaborn as sns # Scaling from sklearn.preprocessing import StandardScaler settings = { # # audit settings 'data_name': 'credit', 'method_name': 'logreg', 'normalize_data': True, 'force_rational_actions': False, # # script flags 'audit_recourse': True, 'plot_audits': True, 'print_flag': True, 'save_flag': True, 'randomseed': 2338, # # placeholders 'method_suffixes': [''], 'audit_suffixes': [''], } # Paths repo_dir = Path(__file__).absolute().parent.parent paper_dir = repo_dir / 'paper/' # directory containing paper related info data_dir = paper_dir / 'data/' # directory containing data files results_dir = paper_dir / 'results/' # directory containing results # create directories that don't exist for d in [data_dir, results_dir]: d.mkdir(exist_ok = True) # Formatting Options np.set_printoptions(precision = 4, suppress = False) pd.set_option('display.max_columns', 30) pd.options.mode.chained_assignment = None pp = pprint.PrettyPrinter(indent = 4) # Plotting Settings sns.set(style="white", palette="muted", color_codes = True) plt.rcParams['font.size'] = 20 plt.rcParams['axes.labelsize'] = 24 plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.spines.right'] = False plt.rcParams['xtick.labelsize'] = 20 plt.rcParams['ytick.labelsize'] = 20 plt.rc('legend', fontsize = 20) # file names output_dir = results_dir / settings['data_name'] output_dir.mkdir(exist_ok = True) if settings['normalize_data']: settings['method_suffixes'].append('normalized') if settings['force_rational_actions']: settings['audit_suffixes'].append('rational') # set file header settings['dataset_file'] = '%s/%s_processed.csv' % (data_dir, settings['data_name']) settings['file_header'] = '%s/%s_%s%s' % (output_dir, settings['data_name'], settings['method_name'], '_'.join(settings['method_suffixes'])) settings['audit_file_header'] = '%s%s' % (settings['file_header'], '_'.join(settings['audit_suffixes'])) settings['model_file'] = '%s_models.pkl' % settings['file_header'] settings['audit_file'] = '%s_audit_results.pkl' % settings['audit_file_header'] # Recourse Objects from recourse.action_set import ActionSet from recourse.builder import RecourseBuilder from recourse.auditor import RecourseAuditor from recourse.flipset import Flipset ### Helper Functions for Experimental Script def load_data(): """Helper function to load in data, and output that and optionally a scaler object: Output: data: dict with the following fields outcome_name: Name of the outcome variable (inferred as the first column.) variable_names: A list of names indicating input columns. X: The input features for our model. y: The column of the dataframe indicating our outcome variable. scaler: The sklearn StandardScaler used to normalize the dataset, if we wish to scale. X_scaled: Scaled version of X, if we wish to scale X_train: The training set: set to the whole dataset if not scaled. Set to X_scaled if we do scale. scaler: Object used to scale data. If "scale" is set to None, then this is returned as None. """ # data set data_df = pd.read_csv(settings['dataset_file']) data = { 'outcome_name': data_df.columns[0], 'variable_names': data_df.columns[1:].tolist(), 'X': data_df.iloc[:, 1:], 'y': data_df.iloc[:, 0] } scaler = None data['X_train'] = data['X'] data['scaler'] = None if settings['normalize_data']: from sklearn.preprocessing import StandardScaler scaler = StandardScaler(copy=True, with_mean=True, with_std=True) data['X_scaled'] = pd.DataFrame(scaler.fit_transform(data['X'].to_numpy(dtype=float), data['y'].values), columns=data['X'].columns) data['X_train'] = data['X_scaled'] data['scaler'] = scaler return data, scaler def undo_coefficient_scaling(clf = None, coefficients = None, intercept = 0.0, scaler = None): """ given coefficients and data for scaled data, returns coefficients and intercept for unnormalized data w = w_scaled / sigma b = b_scaled - (w_scaled / sigma).dot(mu) = b_scaled - w.dot(mu) :param sklearn linear classifier :param coefficients: vector of coefficients :param intercept: scalar for the intercept function :param scaler: sklearn.Scaler or :return: coefficients and intercept for unnormalized data """ if coefficients is None: assert clf is not None assert intercept == 0.0 assert hasattr(clf, 'coef_') coefficients = clf.coef_ intercept = clf.intercept_ if hasattr(clf, 'intercept_') else 0.0 if scaler is None: w = np.array(coefficients) b = float(intercept) else: isinstance(scaler, StandardScaler) x_shift = np.array(scaler.mean_) x_scale = np.sqrt(scaler.var_) w = coefficients / x_scale b = intercept - np.dot(w, x_shift) w = np.array(w).flatten() b = float(b) return w, b def get_coefficient_df(model_dict, variable_names = None, scaler = None): """ extract coefficients of all models and store them into a data.frame :param model_dict: dictionary of models :param variable_names: :return: """ # get the coefficient values assert isinstance(model_dict, dict) coef_df = [] for k in sorted(model_dict.keys()): coef_vals = model_dict[k].coef_.flatten() intercept_val = model_dict[k].intercept_[0] coef_vals, intercept_val = undo_coefficient_scaling(coefficients = coef_vals, intercept = intercept_val, scaler = scaler) if variable_names is None: coef_vals = (pd.Series(coef_vals, index = ['x%d' % j for j in range(coef_vals)]).to_frame(k)) else: coef_vals = (pd.Series(coef_vals, index = variable_names).to_frame(k)) coef_df.append(coef_vals) return pd.concat(coef_df, axis = 1) def format_gridsearch_df(grid_search_df, settings, n_coefficients, invert_C = True): """ Take a fitted GridSearchCV and return: model_stats_df: data frame containing 1 row for fold x free parameter instance. columns include: - 'data_name', - 'method_name', - 'free_parameter_name', - 'free_parameter_value' (for each item in free parameter), - training error, - testing error, - n_coefficients :param grid_search_df: :param n_coefficients: size of input dataset :param invert_C: if C is a parameter, invert it (C = 1/lambda in l1 regression) :return: """ train_score_df = (grid_search_df .loc[:, filter(lambda x: 'train_score' in x and 'split' in x, grid_search_df.columns)] .unstack() .reset_index() .rename(columns={'level_0': 'split_num', 0: 'train_score'}) .set_index('level_1') .assign(split_num=lambda df: df.apply(lambda x: x['split_num'].replace('_train_score', ''), axis=1)) ) test_score_df = (grid_search_df .loc[:, filter(lambda x: 'test_score' in x and 'split' in x, grid_search_df.columns)] .unstack() .reset_index() .rename(columns={'level_0': 'split_num', 0: 'test_score'}) .set_index('level_1') .assign(split_num=lambda df: df.apply(lambda x: x['split_num'].replace('_test_score', ''), axis=1))) model_stats_df= pd.concat([train_score_df, test_score_df.drop('split_num', axis=1)], axis=1) model_stats_df['dataname'] = settings['data_name'] param_df = (grid_search_df['params'] .apply(pd.Series)) if invert_C: param_df['C'] = 1 / param_df['C'] param_df = (param_df.rename( columns={col: 'param %d: %s' % (idx, col) for idx, col in enumerate(param_df.columns)}) ).assign(key=grid_search_df['key']) model_stats_df = (model_stats_df .merge(param_df, left_index=True, right_index=True) ) return model_stats_df.assign(n_coefficients=n_coefficients) def get_flipset_solutions(model, data, action_set, mip_cost_type = 'max', scaler = None, print_flag = True): """ Run a basic audit of a model on the training dataset. :param model: :param data: :param action_set: :param mip_cost_type: :param scaler: :return: """ if scaler is not None: yhat = model.predict(data['X_scaled']) coefficients, intercept = undo_coefficient_scaling(coefficients=np.array(model.coef_).flatten(), intercept = model.intercept_[0], scaler = scaler) else: yhat = model.predict(data['X']) coefficients, intercept = np.array(model.coef_).flatten(), model.intercept_[0] action_set.align(coefficients) # get defaults audit_results = [] predicted_neg = np.flatnonzero(yhat < 1) if any(predicted_neg): U = data['X'].iloc[predicted_neg].values fb = RecourseBuilder(coefficients = coefficients, intercept = intercept, action_set = action_set, x = U[0], mip_cost_type = mip_cost_type) # basic audit start_time = time.time() if print_flag: for i, u in enumerate(U): fb.x = u info = fb.fit() audit_results.append(info) print_log('cost[%06d] = %1.2f' % (i, info['total_cost'])) else: for i, u in enumerate(U): fb.x = u audit_results.append(fb.fit()) print_log('runtime: solved %i IPs in %1.1f seconds' % (i, time.time() - start_time)) return audit_results def print_score_function(names, coefficients, intercept): s = ['score function ='] s += ['%1.6f' % intercept] for n, w in zip(names, coefficients): if w >= 0.0: s += ['+\t%1.6f * %s' % (np.abs(w), n)] else: s += ['-\t%1.6f * %s' % (np.abs(w), n)] return '\n'.join(s) #### PLOTS def create_data_summary_plot(data_df, subplot_side_length = 3.0, subplot_font_scale = 0.5, max_title_length = 30): df =
pd.DataFrame(data_df)
pandas.DataFrame
# -*- coding: utf-8 -*- import scrapy # needed to scrape import xlrd # used to easily import xlsx file import json import re import pandas as pd import numpy as np from openpyxl import load_workbook import datetime from datetime import timedelta class StoreDataCurrent(scrapy.Spider): name = 'Ercotbot' ### Get Dates: Today, Yesterday, Last Day in "MASTER-Ercot" dateToday = str(datetime.datetime.today().strftime('%Y%m%d')) # Today, as an Integer dateYesterday = str(datetime.date.fromordinal(datetime.date.today().toordinal()-1)).replace('-', '') ### Create dates for URL df = pd.read_excel('MASTER-Ercot.xlsx', sheet_name = 'Master Data') df = pd.DataFrame(df) lastDate = str(df.iat[df.shape[0] - 1, 0]) # get the last scraped date in "MASTER-Ercot" splitDate = lastDate.split('/') # split up the date and get rid of "/" SD0 = splitDate[0]; SD1 = splitDate[1]; SD2 = splitDate[2] splitDate[0] = SD2; splitDate[1] = SD0; splitDate[2] = SD1 lastDate = str(''.join(splitDate)) # lastDate = str(20180810) print('dateToday: ', dateToday) print('dateYesterday: ', dateYesterday) print('lastDate: ', lastDate) print('Appened? ', int(lastDate) != int(dateYesterday)) allowed_domains = ['ercot.com'] start_urls = ['http://ercot.com/content/cdr/html/{}_real_time_spp'.format(dateYesterday)] print("``````````````````````````````````````````````````````````````````````````````") ################################################################################################ ################################################################################################ ### # Scrape Daily Ercot data and Append to "MASTER-Ercot" file ### def parse(self, response): self.logger.info('A response has arrived from %s just arroved form ', response.url) print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") print("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~") ### Scrape table Headers and Values (energy prices) #headers = response.css(".headerValueClass::text").extract() values = response.css(".labelClassCenter::text").extract() ### convert to a data frame and append Header values = np.array(values) # turn ercot data into an numpy array values = np.reshape(values, (int(len(values)/16), 16)) #reshape the array to be in the same format as it is online #frameHeaders = pd.DataFrame(data = values[0:][0:], columns = headers) # --> makes it easier to write to xlsx file frame = pd.DataFrame(data = values[1:][0:], columns = values[0][0:]) # --> makes it easier to write to xlsx file ### Get Dates: Today, Yesterday, Last Day in "MASTER-Ercot" dateToday = str(datetime.datetime.today().strftime('%Y%m%d')) # Today, as an Integer dateYesterday = str(datetime.date.fromordinal(datetime.date.today().toordinal()-1)).replace('-', '') df = pd.read_excel('MASTER-Ercot.xlsx', sheet_name = 'Master Data') df = pd.DataFrame(df) lastDate = str(df.iat[df.shape[0] - 1, 0]) # get the last scraped date in "MASTER-Ercot" splitDate = lastDate.split('/') # split up the date and get rid of "/" SD0 = splitDate[0]; SD1 = splitDate[1]; SD2 = splitDate[2] splitDate[0] = SD2; splitDate[1] = SD0; splitDate[2] = SD1 lastDate = str(''.join(splitDate)) # lastDate = str(20180810) print('dateToday: ', dateToday) print('dateYesterday: ', dateYesterday) print('lastDate: ', lastDate) print('Appened? ', int(lastDate) != int(dateYesterday)) ### Append new data to the "MASTER-Ercot" spreadsheet # If we already appended yesterdays data --> do not append again if ( int(lastDate) != int(dateYesterday) ): # this prevents us from writing the same data to the spreadsheet multiple times # Write to Current Working Directory writer = pd.ExcelWriter('MASTER-Ercot.xlsx', engine='openpyxl') book = load_workbook('MASTER-Ercot.xlsx') writer.book = book writer.sheets = dict((ws.title, ws) for ws in book.worksheets) frame.to_excel(writer, startrow=len(df)+1 , index=False, sheet_name = 'Master Data') writer.save() writer.close() # Write to Dropbox out_path = r"/Users/YoungFreeesh/Dropbox/Ercot Data/MASTER-Ercot.xlsx" # the `r` prefix means raw string writer =
pd.ExcelWriter(out_path, engine='openpyxl')
pandas.ExcelWriter
from __future__ import division import empyrical as ep import numpy as np import pandas as pd from . import pos def daily_txns_with_bar_data(transactions, market_data): """ Sums the absolute value of shares traded in each name on each day. Adds columns containing the closing price and total daily volume for each day-ticker combination. Parameters ---------- transactions : pd.DataFrame Prices and amounts of executed trades. One row per trade. - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Contains "volume" and "price" DataFrames for the tickers in the passed positions DataFrames Returns ------- txn_daily : pd.DataFrame Daily totals for transacted shares in each traded name. price and volume columns for close price and daily volume for the corresponding ticker, respectively. """ transactions.index.name = 'date' txn_daily = pd.DataFrame(transactions.assign( amount=abs(transactions.amount)).groupby( ['symbol', pd.Grouper(freq='D')]).sum()['amount']) txn_daily['price'] = market_data.xs('price', level='market_data').unstack() txn_daily['volume'] = market_data.xs('volume', level='market_data').unstack() txn_daily = txn_daily.reset_index().set_index('date') return txn_daily def days_to_liquidate_positions(positions, market_data, max_bar_consumption=0.2, capital_base=1e6, mean_volume_window=5): """ Compute the number of days that would have been required to fully liquidate each position on each day based on the trailing n day mean daily bar volume and a limit on the proportion of a daily bar that we are allowed to consume. This analysis uses portfolio allocations and a provided capital base rather than the dollar values in the positions DataFrame to remove the effect of compounding on days to liquidate. In other words, this function assumes that the net liquidation portfolio value will always remain constant at capital_base. Parameters ---------- positions: pd.DataFrame Contains daily position values including cash - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Panel with items axis of 'price' and 'volume' DataFrames. The major and minor axes should match those of the the passed positions DataFrame (same dates and symbols). max_bar_consumption : float Max proportion of a daily bar that can be consumed in the process of liquidating a position. capital_base : integer Capital base multiplied by portfolio allocation to compute position value that needs liquidating. mean_volume_window : float Trailing window to use in mean volume calculation. Returns ------- days_to_liquidate : pd.DataFrame Number of days required to fully liquidate daily positions. Datetime index, symbols as columns. """ dv = market_data.xs('volume', level='market_data') * \ market_data.xs('price', level='market_data') roll_mean_dv = dv.rolling(window=mean_volume_window, center=False).mean().shift() roll_mean_dv = roll_mean_dv.replace(0, np.nan) positions_alloc = pos.get_percent_alloc(positions) positions_alloc = positions_alloc.drop('cash', axis=1) days_to_liquidate = (positions_alloc * capital_base) / \ (max_bar_consumption * roll_mean_dv) return days_to_liquidate.iloc[mean_volume_window:] def get_max_days_to_liquidate_by_ticker(positions, market_data, max_bar_consumption=0.2, capital_base=1e6, mean_volume_window=5, last_n_days=None): """ Finds the longest estimated liquidation time for each traded name over the course of backtest (or last n days of the backtest). Parameters ---------- positions: pd.DataFrame Contains daily position values including cash - See full explanation in tears.create_full_tear_sheet market_data : pd.Panel Panel with items axis of 'price' and 'volume' DataFrames. The major and minor axes should match those of the the passed positions DataFrame (same dates and symbols). max_bar_consumption : float Max proportion of a daily bar that can be consumed in the process of liquidating a position. capital_base : integer Capital base multiplied by portfolio allocation to compute position value that needs liquidating. mean_volume_window : float Trailing window to use in mean volume calculation. last_n_days : integer Compute for only the last n days of the passed backtest data. Returns ------- days_to_liquidate : pd.DataFrame Max Number of days required to fully liquidate each traded name. Index of symbols. Columns for days_to_liquidate and the corresponding date and position_alloc on that day. """ dtlp = days_to_liquidate_positions(positions, market_data, max_bar_consumption=max_bar_consumption, capital_base=capital_base, mean_volume_window=mean_volume_window) if last_n_days is not None: dtlp = dtlp.loc[dtlp.index.max() -
pd.Timedelta(days=last_n_days)
pandas.Timedelta
# -*- coding: utf-8 -*- """ Created on Mon Apr 3 11:22:49 2017 @author: tkc """ import pandas as pd import os import datetime import sys import numpy as np import pkg.SC_messaging_functions as SCmess import pkg.SC_schedule_functions as SCsch import pkg.SC_config as cnf # specifies input/output file directories #%% from importlib import reload reload(SCsch) reload(SCmess) #%% Download from google sheets Cabrini basketball schedule sheetID = '1-uX2XfX5Jw-WPw3YBm-Ao8d2DOzou18Upw-Jb6UiPWg' rangeName = 'Cabrini!A:G' cabsched = SCapi.downloadSheet(sheetID, rangeName) #%% Load of other commonly needed info sheets teams=pd.read_csv(cnf._INPUT_DIR +'\\Teams_2019.csv', encoding='cp437') coaches=pd.read_csv(cnf._INPUT_DIR +'\\coaches.csv', encoding='cp437') fields=pd.read_csv(cnf._INPUT_DIR+'\\fields.csv', encoding='cp437') Mastersignups =
pd.read_csv(cnf._INPUT_DIR +'\\\master_signups.csv', encoding='cp437')
pandas.read_csv
# benchmark_tools.creteil # Copyright 2019 Fondation Medecins Sans Frontières https://fondation.msf.fr/ # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is part of the ASTapp image processing library # Author: <NAME> from ...interfaces import * from collections import Mapping from os import path import pandas as pd class AST_annotation_Creteil(AST_annotation): """Class to access one line (an AST) of the annotation files of Creteil. This class behaves like a dictionary which keys are extended antibiotic names. """ def __init__(self, guiID, diams, sirs): meta = sirs[0:3] tests = diams[4:9] species = sirs[3] diameters = diams[9:] sir_values = sirs[9:] atb_names = diams.index[9:] self.ast_id = guiID self.species = species self.expert_system_status = [] for k in tests.index: value = tests[k] if not pd.isna(value): self.expert_system_status.append( {'name': k, 'value': value, 'input': False}) self.sample_date = meta[2] self.atb_names = atb_names.tolist() self.sir_values = sir_values.tolist() self.raw_sir_values = None self.diameters = diameters.tolist() self.sample_type = None class Annotations_set_Creteil(Annotations_set): """Help accessing and combining SIR annotation results. It beheaves like a dictionary which keys are the guiID (id of the pictures)""" def __init__(self, annotation_folder): self.files = { "diam": path.join(annotation_folder, "annotations_diam.csv"), "sir": path.join(annotation_folder, "annotations_SIR.csv") } self.diam_df = Annotations_set_Creteil.read_annotation_file( self.files["diam"]) self.sir_df = Annotations_set_Creteil.read_annotation_file( self.files["sir"]) assert len(self.diam_df) == len(self.sir_df) self.atb_names = self.diam_df.keys()[9:] self.ast_ids = list(self.diam_df.index) @staticmethod def read_annotation_file(path): df =
pd.read_csv(path, sep=';', index_col="guiID")
pandas.read_csv
import ee from geemap import ee_to_geopandas import pandas as pd import boto3 from sklearn.utils import shuffle def points_to_df(pts_geo): """Converts a feature collection into a pandas dataframe Args: pts_geo: collection of pixels on an image Returns: df_geo: dataframe containing bands and coordinates of pixels """ df_geo = ee_to_geopandas(pts_geo) df_geo = df_geo.drop_duplicates() df_geo["x"] = df_geo["geometry"].x df_geo["y"] = df_geo["geometry"].y df_geo = df_geo.drop("geometry", axis=1) return df_geo def satellite_data(collection, region_pt, date_range): """Returns image data from a landsat collection. Args: collection: dataset name region_pt: coordinates of location the image must contain date_range: first and last dates to use Returns: object: a single satellite image """ return ( ee.ImageCollection(collection) .filterBounds(ee.Geometry.Point(region_pt)) .filterDate(date_range[0], date_range[1]) .sort("CLOUD_COVER") .first() ) def sample_points(image, region, scale, num_pix, geom=True, seed=1234): """Sample points from dataset Args: image: image to sample from region: region to sample from scale: pixel size in meters num_pix: number of pixels to be sampled geom: whether to add the center of the sampled pixel as property seed: random seed used for sampling Returns: object: ee.FeatureCollection """ return image.sample( **{ "region": region, "scale": scale, "numPixels": num_pix, "seed": seed, "geometries": geom, } ) def get_masks(base_image): """Returns image masks corresponding to mangrove and non-mangrove pixels Args: base_image: earth engine image to create masks from Returns: objects: ee.Image, ee.Image """ img_mangrove = get_mangrove_data() mangrove_mask = base_image.updateMask(img_mangrove.eq(1)) non_mangrove_mask = base_image.updateMask(mangrove_mask.unmask().Not()) return mangrove_mask, non_mangrove_mask def get_data_by_zone_year( area_of_int, date_range, base_dataset, bands, scale=30, num_pix={"minor": 10000, "major": 1000}, ): """Returns sampled data points from an area of interest Args: area_of_int: tuple containing (longitude, latitude) of the point of interest date_range: list of two strings of format yyyy-mm-dd base_dataset: name of satellite data to sample points from bands: satellite image bands to keep in dataset scale: pixel size in meters for sampling points num_pix: dictionary containing number of pixels to sample for two classes Returns: object: dict """ base_image = satellite_data(base_dataset, area_of_int, date_range) base_image = base_image.select(bands) mangrove_mask, non_mangrove_mask = get_masks(base_image) # sample points from mangrove area pts_mangrove = sample_points( mangrove_mask, mangrove_mask.geometry(), scale, num_pix["minor"] ) mangrove_gdf = points_to_df(pts_mangrove) mangrove_gdf["label"] = 1 # sample points from non-mangrove area pts_non_mangrove = sample_points( non_mangrove_mask, non_mangrove_mask.geometry(), scale, num_pix["major"] ) non_mangrove_gdf = points_to_df(pts_non_mangrove) non_mangrove_gdf["label"] = 0 return { "base_image": base_image, "mangrove_points": pts_mangrove, "other_points": pts_non_mangrove, "df_mangrove": mangrove_gdf, "df_other": non_mangrove_gdf, } def save_regional_data(data_dict, meta_dict, bucket): """Uploads the labeled data for a region to s3 Args: data_dict: dictionary containing base image, mangrove and non-mangrove data frames meta_dict: dictionary containing metadata bucket: s3 bucket name """ df_training = pd.concat([data_dict["df_mangrove"], data_dict["df_other"]], axis=0) df_training = shuffle(df_training) # fname = f"{meta_dict['src_dataset']}_year{meta_dict['year']}_{meta_dict['poi']}.csv" fname = f"{meta_dict['src_dataset']}/Year{meta_dict['year']}/{meta_dict['poi']}.csv" df_training.to_csv(f"s3://{bucket}/{fname}", index=False) num_rows = df_training.label.value_counts() print( f"rows: {len(df_training)}, rows_mangrove = {num_rows[1]}, rows_other = {num_rows[0]}" ) def split_dataset(test_set_names, bucket, folder): """Splits S3 dataset into training and test by region Args: test_set_names: list of region names for test dataset folder: folder name within S3 bucket bucket: S3 bucket name """ s3_client = boto3.client("s3") items = s3_client.list_objects_v2(Bucket=bucket, Prefix=folder) list_train = [] list_test = [] for item in items["Contents"]: file = item["Key"].split("/")[-1] if file.endswith(".csv"): list_train.append(file) for file_name in list_train: for pattern in test_set_names: if pattern in file_name: list_test.append(file_name) list_train.remove(file_name) continue df_train = pd.concat( [
pd.read_csv(f"s3://{bucket}/{folder}/{item}")
pandas.read_csv
import glob import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from matplotlib.lines import Line2D def plot_metrics(names='default', logs='training', save_name='default', timesteps=1000000, ci='sd', rolling=10): name = save_name names_print = names if logs == 'training': rolling = rolling if logs == 'evaluation': rolling = None logging_dir = [] for i in names: logging_dir.append('./logs/benchmark/' + i) all_in_one = [] ci = ci y = 0 timestep_lim = timesteps for z in logging_dir: if logs is 'training': path = glob.glob(os.path.join(z, "*", "monitor*")) if logs is 'evaluation': path = glob.glob(os.path.join(z, "*", "*", "monitor*")) path.sort() all_in_one.append(pd.DataFrame({"reward": [], "timestep": [], "crash": [], "supervised": [], "intervention": [], "safelyDone": [], "timeout": [], "time": []})) for i in range(0, len(path)): run_reward = pd.read_csv(path[i], skiprows=2, names=["reward", "timestep", "crash", "supervised", "intervention", "safelyDone", "timeout", "time", "TF", "distance"]) run_reward.loc[:, "repl"] = i run_reward.loc[:, "intervention"] = run_reward.loc[:, "intervention"] / run_reward.loc[:, "timestep"] run_reward.loc[:, "timestep2"] = run_reward.loc[:, "timestep"] run_reward.loc[:, "crash2"] = run_reward.loc[:, "crash"] run_reward.loc[:, "Episode ended by"] = run_reward.loc[:, "crash"] run_reward.loc[:, "timestepSafe"] = run_reward.loc[:, "timestep"] * run_reward.loc[:, "safelyDone"] for jj in range(0, len(run_reward)): if run_reward.loc[jj, "timestepSafe"] == 0: run_reward.loc[jj, "timestepSafe"] = np.nan for jj in range(0, len(run_reward)): if run_reward.loc[jj, "Episode ended by"] == 0: if run_reward.loc[jj, "safelyDone"]: run_reward.loc[jj, "Episode ended by"] = "Reach target" if run_reward.loc[jj, "Episode ended by"] == 1: run_reward.loc[jj, "Episode ended by"] = "Crash" if run_reward.loc[jj, "Episode ended by"] == 0: run_reward.loc[jj, "Episode ended by"] = "Time out" run_reward = run_reward.reset_index() del run_reward['index'] for jj in range(0, len(run_reward)-1): run_reward.loc[jj+1, "timestep"] += run_reward.loc[jj, "timestep"] for jj in range(0, len(run_reward)-1): run_reward.loc[jj+1, "crash2"] += run_reward.loc[jj, "crash2"] all_in_one[y] = all_in_one[y].append(run_reward) all_in_one[y] = all_in_one[y].sort_values(by=["timestep"]) if rolling is not None: all_in_one[y]["reward"] = all_in_one[y]["reward"].rolling(rolling).mean() all_in_one[y]["crash"] = all_in_one[y]["crash"].rolling(rolling).mean() all_in_one[y]["crash2"] = all_in_one[y]["crash2"].rolling(rolling).mean() all_in_one[y]["supervised"] = all_in_one[y]["supervised"].rolling(rolling).mean() all_in_one[y]["timestep2"] = all_in_one[y]["timestep2"].rolling(rolling).mean() all_in_one[y]["timestepSafe"] = all_in_one[y]["timestepSafe"].rolling(rolling).mean() all_in_one[y]["intervention"] = all_in_one[y]["intervention"].rolling(rolling).mean() all_in_one[y]["safelyDone"] = all_in_one[y]["safelyDone"].rolling(rolling).mean() all_in_one[y]["timeout"] = all_in_one[y]["timeout"].rolling(rolling).mean() all_in_one[y]["timestep"] = (all_in_one[y]["timestep"] / 20000) all_in_one[y]["timestep"] = all_in_one[y]["timestep"].astype(int) * 20000 y += 1 if logs is 'training': #y = 0 #for data in all_in_one: # plt.figure() # sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) # sns.kdeplot(data=data, x="timestep", hue="Episode ended by", multiple="fill") # plt.xlabel('Time step') # plt.ylabel('Density') # plt.xlim(0, timestep_lim) # plt.legend(loc=4, borderaxespad=0, labels=['Reach Target', 'Time out', 'Crash'], title='Episode ended by') # plt.savefig("art/plots/3in1/" + names[y] + ".png", dpi=100, transparent=True) # plt.show() # y += 1 plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="crash2", err_style='band', ci=ci, estimator='mean') plt.xlabel('Time step') plt.ylabel('Total number of crashes') plt.legend(labels=names_print) plt.xlim(0, timestep_lim) plt.ylim(0, 6000) plt.savefig("art/plots/total_crashes" + name + ".png", dpi=100, transparent=True) plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="intervention", err_style='band', ci=ci, estimator='mean') plt.xlabel('Time step') plt.ylabel('Probability of an supervisors intervention per time step ') plt.legend(labels=names) plt.ylim(bottom=-0.05, top=1.05) plt.xlim(0, timestep_lim) plt.savefig("art/plots/intervention" + name + ".png", dpi=100, transparent=True) plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="timestep2", err_style='band', ci=ci, estimator='mean') plt.xlabel('time step') plt.ylabel('Number of time steps until episode ends') plt.legend(labels=names) plt.xlim(0, timestep_lim) plt.savefig("art/plots/timestepepisode" + name + ".png", dpi=100, transparent=True) plt.show() #plt.figure() #sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) #for data in all_in_one: # sns.lineplot(data=data, x="timestep", y="timestepSafe", err_style='band', ci=ci, estimator='mean') #plt.xlabel('time step') #plt.ylabel('Number of time steps until episode ends safely') #plt.legend(labels=names) #plt.xlim(0, timestep_lim) #plt.savefig("art/plots/timestepSafeEpisode.png", dpi=100, transparent=True) #plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="supervised", err_style='band', ci=ci, estimator='mean') plt.xlabel('time step') plt.ylabel('Probability of an supervisors intervention') plt.legend(labels=names) plt.ylim(bottom=-0.05, top=1.05) plt.xlim(0, timestep_lim) plt.savefig("art/plots/supervisor" + name + ".png", dpi=100, transparent=True) plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="crash", err_style='band', ci=ci) plt.xlabel('time step') plt.ylabel('probability of crashing') plt.legend(labels=names_print) plt.ylim(bottom=-0.05, top=1.05) plt.xlim(0, timestep_lim) plt.savefig("art/plots/crash" + name + ".png", dpi=100, transparent=True) plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="safelyDone", err_style='band', ci=ci) plt.xlabel('time step') plt.ylabel('probability of reaching the target safely') plt.legend(labels=names_print) plt.ylim(bottom=-0.05, top=1.05) plt.xlim(0, timestep_lim) plt.savefig("art/plots/reachtarget" + name + ".png", dpi=100, transparent=True) plt.show() plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) for data in all_in_one: sns.lineplot(data=data, x="timestep", y="timeout", err_style='band', ci=ci) plt.xlabel('time step') plt.ylabel('probability of reaching the max # of time steps') plt.legend(labels=names_print) plt.ylim(bottom=-0.05, top=1.05) plt.xlim(0, timestep_lim) plt.savefig("art/plots/timeout" + name + ".png", dpi=100, transparent=True) plt.show() if logs is 'evaluation': for i in range(0, len(logging_dir)): ended_by_all = [] ended_by = np.array([all_in_one[i]["Episode ended by"], all_in_one[i]["repl"], [names[i]]*len(all_in_one[i]["Episode ended by"])]) ended_by = np.transpose(ended_by) ended_by_all.append(ended_by) ended_by_all = np.concatenate(ended_by_all) ended_by_all = pd.DataFrame(ended_by_all) ended_by_all = ended_by_all.groupby(0)[1].value_counts().unstack() ended_by_all = np.transpose(ended_by_all) number_episodes = ended_by_all.sum(axis=1) ended_by_all['Crash'] = ended_by_all['Crash'] / number_episodes ended_by_all['Reach target'] = ended_by_all['Reach target'] / number_episodes ended_by_all['Time out'] = ended_by_all['Time out'] / number_episodes plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) sns.boxplot(data=ended_by_all) plt.xlabel(names[i]) plt.ylim(bottom=0, top=1) plt.ylabel('Density') plt.savefig("art/plots/3in1/eval_" + names[i] + '_' + name + ".png", dpi=100, transparent=True) plt.show() def plot_mbo(name=None): front = pd.read_csv('./logs/mbo/' + name + '/iterations/front.csv', header=None) front = front[(len(front) - 100):len(front)] plt.figure() sns.set_style("whitegrid", {'axes.grid': True, 'axes.edgecolor': 'black'}) front[1] = front[1] * (-1) sns.lineplot(data=front, x=0, y=1) front1 = pd.read_csv('./logs/mbo/' + name + '/initial_design/initial_design.csv', header=None) front2 = pd.read_csv('./logs/mbo/' + name + '/iterations/mbo_result.csv', header=None) frames = [front1, front2] front =
pd.concat(frames)
pandas.concat
import MSfingerprinter.decoder as decoder import MSfingerprinter.preprocessing as preprocessing import MSfingerprinter.pysax as SAX import MSfingerprinter.periodicityfinder as periodicityfinder import MSfingerprinter.maxsubpatterntree as maxsubpatterntree import MSfingerprinter.datacube as datacube import MSfingerprinter.miningperiodicpatterns as miningperiodicpatterns import MSfingerprinter.maxsubpatternhitset as maxsubpatternhitset import MSfingerprinter.reactiontreecompletespace as reactiontreecompletespace import MSfingerprinter.postprocessing as postprocessing import MSfingerprinter.comparetrees as comparetrees import matplotlib.pyplot as plt import multiprocessing import os import math import traceback import sys import ntpath import csv import itertools import re import sys import pandas as pd import treelib import numpy as np from collections import defaultdict import gc import timeit # np.set_printoptions(threshold=np.inf) class MSfingerprinter(object): # MSfingerprinter object instance, constructor method def __init__(self): super(MSfingerprinter, self).__init__() ############################################################ # # Postprocessing # ############################################################### def doPostProcessingSingleAlldiffs(self, resultfile1, repeatunitarray): cwd = os.getcwd() directory = cwd + '/MSfingerprinter/resultsPeriodicity/' # outputfiles postprocessing outfilemasspatterns = os.path.join(directory, 'postprocessedpatternsMASS' + resultfile1.rstrip('.txt') + 'MASSPATTERNS.csv') # outfile massdifferences between and within patterns Mass and Freq outfilepatternswithinmass = os.path.join('postprocessed' + resultfile1.rstrip('.txt') + 'DIFFWITHINPATTERNSMASS.txt') # save similarity/dissimilarity of freq vs. mass space to file periodicmasses, periodicfreqs = postprocessing.openresultssingle(resultfile1) # gets from results periodicmasses and periodicfreqs postperiodicmasses = postprocessing.retrieveperiodicmasses(periodicmasses) return postperiodicmasses def searchinTreesgroundtruthstart(self, meaningfuldiffpatterns, path, extensions): # for later analysis saves patterns and rootnodes of trees found in initiatortrees patternsplusrootnodes = [] nodesdetected = 0 treefilearray = list(comparetrees.find_files(path, extensions)) # for each tree for tree in treefilearray: nametree = ntpath.basename(tree).rstrip('.json') data = comparetrees.getdata(tree) nodesfound = [] counter = 0 parent = None child = None reactiontreeinstance = treelib.Tree() reactiontreeinstance = comparetrees.retrievenodes(data, counter, parent, child, reactiontreeinstance) for i in range(len(meaningfuldiffpatterns)): # get for each meaningfulpattern the root and target rootsubtree = round(meaningfuldiffpatterns[i][3], 6) targetsubtree = round(meaningfuldiffpatterns[i][1],6) pattern = meaningfuldiffpatterns[i][4] try: rootnode, stoichiometformula = comparetrees.searchMasspatterngroundtruth(reactiontreeinstance, rootsubtree, targetsubtree, pattern, nametree) if rootnode != None and stoichiometformula != None: print('original root value without rounding') print(meaningfuldiffpatterns[i][3]) print('original target value without rounding') print(meaningfuldiffpatterns[i][1]) patternsplusrootnodes.append([rootnode, rootsubtree, targetsubtree, stoichiometformula]) nodesfound.append(pattern) except: continue print('all trees in directory : ' + path.rstrip('completeInitiatortrees/') + 'resultsubtrees/') return patternsplusrootnodes def searchinTreesgroundtruth(self, meaningfuldiffpatterns, path, extensions): # for later analysis saves patterns and rootnodes of trees found in initiatortrees patternsplusrootnodes = [] nodesdetected = 0 treefilearray = list(comparetrees.find_files(path, extensions)) # for each tree for tree in treefilearray: nametree = ntpath.basename(tree).rstrip('.json') data = comparetrees.getdata(tree) nodesfound = [] counter = 0 parent = None child = None reactiontreeinstance = treelib.Tree() reactiontreeinstance = comparetrees.retrievenodes(data, counter, parent, child, reactiontreeinstance) for i in range(len(meaningfuldiffpatterns)): # get for each meaningfulpattern the root and target rootsubtree = round(meaningfuldiffpatterns[i][1], 6) targetsubtree = round(meaningfuldiffpatterns[i][3],6) pattern = meaningfuldiffpatterns[i][4] try: rootnode, stoichiometformula = comparetrees.searchMasspatterngroundtruth(reactiontreeinstance, rootsubtree, targetsubtree, pattern, nametree) if rootnode != None and stoichiometformula != None: print('original root value without rounding') print(meaningfuldiffpatterns[i][1]) print('original target value without rounding') print(meaningfuldiffpatterns[i][3]) patternsplusrootnodes.append([rootnode, rootsubtree, targetsubtree, stoichiometformula]) nodesfound.append(pattern) except: continue print('all trees in directory : ' + path.rstrip('completeInitiatortrees/') + 'resultsubtrees/') return patternsplusrootnodes def constructInitiatorTreescompletespace(self, Initiator, nodelist, massrange): counter = 0 previousname = None currenttrees = [] boolean = True initiatorname = Initiator[0] maxlevel, maxleveltwo = reactiontreecompletespace.getmaxtreelevel(nodelist, massrange) treelen = len(Initiator) for i in Initiator: trees = reactiontreecompletespace.createRootsInitiators(Initiator) counter += 1 while boolean == True: for i in trees: if len(currenttrees) == treelen: trees = currenttrees currenttrees = [] continue else: reactiontreeinstance, counter, previousname = reactiontreecompletespace.createnextlevelinitiator(nodelist, i, counter, maxlevel, maxleveltwo, previousname, initiatorname) if reactiontreeinstance != None and treelen > 0: currenttrees.append(reactiontreeinstance) else: treelen = treelen - 1 return return ############################################################################### # # Preprocessing # #################################################################################3 # preprocessing data for Periodicityfindingalgorithms, returns function (i.e. intensity values) # masspoints corresponding m/z values, Mass space def preprocessMSSpectraMass(self, filename): print('preprocessing raw data of ...'+ filename) originaldata, sampleID = decoder.readdataframe(filename) masspoints, function = preprocessing.FunctionMSMass(originaldata) return function, masspoints # preprocessing data for Periodicityfindingalgorithms, returns function (i.e. intensity values) # Frequencyspace def preprocessMSSpectraFreq(self, filename): print('preprocessing raw data of ...'+ filename) originaldata, sampleID = decoder.readdataframe(filename) freqpoints, function = preprocessing.FunctionMSFreq(originaldata) return function, freqpoints def preprocess_directoryCSVfreqsampling(self, path, extensions, sampling, nprocesses=None): filenames_to_preprocess = [] colnames = [] counter = 0 # Try to use the maximum amount of processes if not given. try: nprocesses = nprocesses or multiprocessing.cpu_count() except NotImplementedError: nprocesses = 1 else: nprocesses = 1 if nprocesses <= 0 else nprocesses for filename, _ in decoder.find_files(path, extensions): filenames_to_preprocess.append(filename) try: filename = filename except ValueError: pass # print('preprocessing raw data of ...'+ filename) originaldata, sampleID = decoder.readdataframecsvfreqsampling(filename, sampling) colnames.append(sampleID) # three digits to make join possible # originaldata['freq'] = originaldata['freq'].round(0) if counter == 0: originaldataframe = originaldata counter+= 1 else: originaldata = originaldata merged = pd.concat([originaldataframe, originaldata], axis=1) # merged = pd.merge(originaldataframe, originaldata, on='freq', how='outer') originaldataframe = merged originaldataframe.fillna(value=np.nan, inplace=True) originaldataframe.columns = colnames # originaldataframe.sort(columns='freq', inplace=True) originaldataframe = originaldataframe.apply(np.log) return originaldataframe def preprocess_directoryCSVmasssampling(self, path, extensions, sampling, nprocesses=None): filenames_to_preprocess = [] colnames = [] counter = 0 # Try to use the maximum amount of processes if not given. try: nprocesses = nprocesses or multiprocessing.cpu_count() except NotImplementedError: nprocesses = 1 else: nprocesses = 1 if nprocesses <= 0 else nprocesses for filename, _ in decoder.find_files(path, extensions): filenames_to_preprocess.append(filename) try: filename = filename except ValueError: pass # print('preprocessing raw data of ...'+ filename) originaldata, sampleID = decoder.readdataframecsvmasssampling(filename, sampling) colnames.append(sampleID) # three digits to make join possible # originaldata['mass'] = originaldata['mass'].round(3) if counter == 0: originaldataframe = originaldata counter+= 1 else: originaldata = originaldata merged = pd.concat([originaldataframe, originaldata], axis=1) # merged = pd.merge(originaldataframe, originaldata, on='freq', how='outer') originaldataframe = merged originaldataframe.fillna(value=999, inplace=True) originaldataframe.columns = colnames # originaldataframe.sort(columns='freq', inplace=True) originaldataframe = originaldataframe.apply(np.log) return originaldataframe def getmaxminmass(self, path, extensions, nprocesses=None): filenames_to_preprocess = [] minimum = 10000000000000000000000 maximum = 0 counter = 0 # Try to use the maximum amount of processes if not given. try: nprocesses = nprocesses or multiprocessing.cpu_count() except NotImplementedError: nprocesses = 1 else: nprocesses = 1 if nprocesses <= 0 else nprocesses for filename, _ in decoder.find_files(path, extensions): filenames_to_preprocess.append(filename) try: filename = filename except ValueError: pass print('preprocessing raw data of ...'+ filename) originaldata, sampleID = decoder.readdataframe(filename) # three digits to make join possible originaldata['mass'] = originaldata['mass'].round(3) maxmass = max(originaldata['mass']) minmass = min(originaldata['mass']) if maxmass > maximum: maximum = maxmass if minmass < minimum: minimum = minmass return maximum, minimum #######################################################3 # # Entropy based feature ranking # ############################################### # each feature is removed and total entropy is calculated def RankFeatures(self, clusteringinputdata, rangenum): featurenames = np.arange(len(clusteringinputdata)) bestfeatures = [] # produces a matrix with each column being one feature X = np.array(clusteringinputdata) totallengthfeatures = range(len(featurenames)/rangenum) rangestart = 0 for i in totallengthfeatures: rangeend = rangestart+rangenum Xslice = X[rangestart:rangeend,0:10] featurenamesslice = featurenames[rangestart:rangeend] rankedfeatures = clustering.doRankfeatures(Xslice, featurenamesslice, rangestart, rangeend) rangestart = rangeend bestfeatureofsubset = rankedfeatures[-1] bestfeatures.append(bestfeatureofsubset) return bestfeatures def doStats(self, entropyvectormass, entropyvectorfreq): freqstats = clustering.statsentropy(entropyvectorfreq, 'freq') massstats = clustering.statsentropy(entropyvectormass, 'mass') correlatefreqmassentropy(rankedentropyvectormass, rankedentropyvectorfreq) return freqstats, massstats ###################################################### # # Time series standardization with SAX # ######################################################## def standardizeTimeSeries(self, MSarray, timepoints): # this uses the Symbolic aggregate approximation for time series discretization # https://github.com/dolaameng/pysax/blob/master/Tutorial-SAX%20(Symbolic%20Aggregate%20Approximation).ipynb # MS = decoder.readMStimedomaintransient(filename) # MSarray = np.asarray(MS.columns.tolist(), dtype=float) print('length original data') print(len(MSarray)) # this does symbolization for each window, no overlap of windows sax = SAX.SAXModel() # standardizes the time series whiten accross windows normalizedMSarray = sax.whiten(MSarray) print('mean and standarddeviation of standardized MS: ') print(normalizedMSarray.mean(), normalizedMSarray.std()) # saves MSarray (TS) to csv for later cube generation dforiginalTS = pd.DataFrame(normalizedMSarray) # time points are m/z values of the function timepoints = range(len(normalizedMSarray)) dftime =
pd.DataFrame(timepoints)
pandas.DataFrame
import pandas as pd import tensorflow from tensorflow import keras from keras import optimizers from keras import regularizers from keras.models import Sequential from keras.models import Model from keras.layers import Dense from keras.layers import Dropout from keras.callbacks import ModelCheckpoint data_test = 'test.csv' data_train = 'train.csv' df_train = pd.read_csv(data_train) df_test = pd.read_csv(data_test) season_train = pd.get_dummies(df_train.season, prefix ='season') mnth_train = pd.get_dummies(df_train.mnth, prefix ='mnth') weekday_train = pd.get_dummies(df_train.weekday, prefix ='weekday') hr_train = pd.get_dummies(df_train.hr, prefix ='hr') yr_train = pd.get_dummies(df_train.yr, prefix ='yr') weathersit_train = pd.get_dummies(df_train.weathersit, prefix ='weathersit') workingday_train = pd.get_dummies(df_train.workingday, prefix ='workingday') holiday_train = pd.get_dummies(df_train.holiday, prefix ='holiday') season_test = pd.get_dummies(df_test.season, prefix ='season') mnth_test = pd.get_dummies(df_test.mnth, prefix ='mnth') weekday_test = pd.get_dummies(df_test.weekday, prefix ='weekday') hr_test = pd.get_dummies(df_test.hr, prefix ='hr') yr_test = pd.get_dummies(df_test.yr, prefix ='yr') weathersit_test = pd.get_dummies(df_test.weathersit, prefix ='weathersit') workingday_test = pd.get_dummies(df_test.workingday, prefix ='workingday') holiday_test = pd.get_dummies(df_test.holiday, prefix ='holiday') atmosphere_train = df_train[['temp','atemp','hum','windspeed']] atmosphere_test = df_test[['temp','atemp','hum','windspeed']] df_test['weathersit_4']=0 missing_weathersit = df_test[['weathersit_4']] ohe_test = pd.concat([hr_test,weekday_test,mnth_test,yr_test,season_test,holiday_test,workingday_test,weathersit_test,missing_weathersit,atmosphere_test], axis=1) ohe_train =
pd.concat([hr_train,weekday_train,mnth_train,yr_train,season_train,holiday_train,workingday_train,weathersit_train,atmosphere_train], axis=1)
pandas.concat
## 1. Introduction ## import pandas as pd happiness2015 = pd.read_csv("World_Happiness_2015.csv") happiness2016 = pd.read_csv("World_Happiness_2016.csv") happiness2017= pd.read_csv("World_Happiness_2017.csv") happiness2015['Year'] = 2015 happiness2016['Year'] = 2016 happiness2017['Year'] = 2017 ## 2. Combining Dataframes with the Concat Function ## head_2015 = happiness2015[['Country','Happiness Score', 'Year']].head(3) head_2016 = happiness2016[['Country','Happiness Score', 'Year']].head(3) concat_axis0 = pd.concat([head_2015, head_2016], axis=0) concat_axis1 = pd.concat([head_2015, head_2016], axis=1) print(concat_axis0) print(concat_axis1) question1 = concat_axis0.shape[0] print(question1) question2 = concat_axis1.shape[0] print(question2) ## 3. Combining Dataframes with the Concat Function Continued ## head_2015 = happiness2015[['Year','Country','Happiness Score', 'Standard Error']].head(4) head_2016 = happiness2016[['Country','Happiness Score', 'Year']].head(3) concat_axis0 = pd.concat([head_2015, head_2016]) print(concat_axis0) rows = concat_axis0.shape[0] columns = concat_axis0.shape[1] print(rows) print(columns) ## 4. Combining Dataframes with Different Shapes Using the Concat Function ## head_2015 = happiness2015[['Year','Country','Happiness Score', 'Standard Error']].head(4) head_2016 = happiness2016[['Country','Happiness Score', 'Year']].head(3) concat_update_index = pd.concat([head_2015, head_2016], ignore_index=True) print(concat_update_index) ## 5. Joining Dataframes with the Merge Function ## three_2015 = happiness2015[['Country','Happiness Rank','Year']].iloc[2:5] three_2016 = happiness2016[['Country','Happiness Rank','Year']].iloc[2:5] merged = pd.merge(left=three_2015, right= three_2016, on='Country') print(merged) ## 6. Joining on Columns with the Merge Function ## three_2015 = happiness2015[['Country','Happiness Rank','Year']].iloc[2:5] three_2016 = happiness2016[['Country','Happiness Rank','Year']].iloc[2:5] merged = pd.merge(left=three_2015, right=three_2016, on='Country') merged_left = pd.merge(left=three_2015, right=three_2016, on='Country', how='left') merged_left_updated = pd.merge(left=three_2016, right= three_2015, on='Country', how='left') print(merged_left) print(merged_left_updated) ## 7. Left Joins with the Merge Function ## three_2015 = happiness2015[['Country','Happiness Rank','Year']].iloc[2:5] three_2016 = happiness2016[['Country','Happiness Rank','Year']].iloc[2:5] merged =
pd.merge(left=three_2015, right=three_2016, how='left', on='Country')
pandas.merge
import pandas as pd import numpy as np import matplotlib.pyplot as plt from experiment_handler.object_recognition.object_detection_reader import read_filtered_object_detection_results, read_object_detections from experiment_handler.label_data_reader import read_experiment_phases, read_location_labels, read_activity_labels_from_eyetracker_labelling def object_rec_by_label_per_location(exp_root, model): phases = read_experiment_phases(exp_root) start = phases['assembly'][0] end = phases['disassembly'][1] object_recognitions = read_filtered_object_detection_results(exp_root, model, start, end, "video") loc_labels = read_location_labels(exp_root) print(loc_labels) infos = [] for p in loc_labels.keys(): detections_for_person = object_recognitions.loc[object_recognitions["person_id"] == p] for label in loc_labels[p]: during_label = detections_for_person.loc[detections_for_person["timestamp"].between(label["start"], label["end"])] current = { "person_id": p, "location": label["location"], "duration": label["end"] - label["start"], "screwdriver": during_label[during_label["label"] == "screwdriver"].size, "power_drill": during_label[during_label["label"] == "power_drill"].size } infos.append(current) infos =
pd.DataFrame(infos)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import itertools from datetime import datetime import numpy as np import pandas as pd import peewee as pw from api_helpers.api_processing_helpers import process_text # Training NMF residual stastics # - from 8_*.ipynb (after last histogram of section 8) training_residuals_stats = { "mean": 0.8877953271898069, "25%": 0.8537005649638325, "50%": 0.9072421433186082, "max": 0.9948739031036548, } # Acceptable percent diff between training and inference residual statistics training_residual_stat_margin = 5 def add_datepart(df): df[["year", "month", "day"]] = df["url"].str.extract( r"/(\d{4})/([a-z]{3})/(\d{2})/" ) d = {"jan": 1, "feb": 2, "nov": 11, "dec": 12, "sep": 9, "oct": 10} df["month"] = df["month"].map(d).astype(int) df["date"] = pd.to_datetime(df[["year", "month", "day"]]) df["month"] = df["month"].map({v: k.title() for k, v in d.items()}) df["weekday"] = df["date"].dt.day_name() df["week_of_month"] = df["date"].apply(lambda d: (d.day - 1) // 7 + 1) return df def get_residual(pipe, new_texts): A = pipe.named_steps["vectorizer"].transform(new_texts) W = pipe.named_steps["nmf"].components_ H = pipe.named_steps["nmf"].transform(A) f"A={A.toarray().shape}, W={W.shape}, H={H.shape}" r = np.zeros(A.shape[0]) for row in range(A.shape[0]): r[row] = np.linalg.norm(A[row, :] - H[row, :].dot(W), "fro") return r def get_documentwise_residuals( pipe, df, training_res_stats, training_residual_stat_margin ): # Get residuals unseen_residuals_series = pd.Series( get_residual(pipe, df["processed_text"].tolist()), index=df.index ) # if len(df) == 1: # unseen_residuals_valid_series = pd.Series( # [False] * len(df), index=df.index # ) # print( # f"Single unseen observation detected. " # "Set placeholder value for residual." # ) # return [unseen_residuals_valid_series, unseen_residuals_series] # Get statistics on residuals training_res_stats = pd.DataFrame.from_dict( training_residuals_stats, orient="index" ).rename(columns={0: "training"}) unseen_res_stats = ( unseen_residuals_series.describe() .loc[["mean", "25%", "50%", "max"]] .rename("unseen") .to_frame() ) df_residual_stats = training_res_stats.merge( unseen_res_stats, left_index=True, right_index=True ) df_residual_stats["diff_pct"] = percentage_change( df_residual_stats["training"], df_residual_stats["unseen"] ) # Sanity check try: assert ( df_residual_stats["diff_pct"] <= training_residual_stat_margin ).all() unseen_residuals_valid_series = pd.Series( [True] * len(df), index=df.index ) print( "Unseen data residual distribution within bounds compared to " "training." ) except AssertionError as e: unseen_residuals_valid_series = pd.Series( [False] * len(df), index=df.index ) print( f"{str(e)} - Unseen data residuals OOB compared to training. " "Set placeholder value." ) return [unseen_residuals_valid_series, unseen_residuals_series] def percentage_change(col1, col2): return ((col2 - col1) / col1) * 100 def get_top_words_per_topic(row, n_top_words=5): return row.nlargest(n_top_words).index.tolist() def make_predictions(df, pipe, n_top_words, n_topics_wanted, df_named_topics): df["processed_text"] = df["text"].apply(process_text) # Transform unseen texts with the trained ML pipeline doc_topic = pipe.transform(df["processed_text"]) topic_words = pd.DataFrame( pipe.named_steps["nmf"].components_, index=[str(k) for k in range(n_topics_wanted)], columns=pipe.named_steps["vectorizer"].get_feature_names(), ) topic_df = ( pd.DataFrame( topic_words.apply( lambda x: get_top_words_per_topic(x, n_top_words), axis=1 ).tolist(), index=topic_words.index, ) .reset_index() .rename(columns={"index": "topic"}) .assign(topic_num=range(n_topics_wanted)) ) # for k, v in topic_df.iterrows(): # print(k, ",".join(v[1:-1])) df_temp = (
pd.DataFrame(doc_topic)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed May 03 15:01:31 2017 @author: jdkern """ from __future__ import division from sklearn import linear_model import pandas as pd import numpy as np #============================================================================== df_mwh1 = pd.read_csv('mwh_1.csv',header=0) df_mwh2 = pd.read_csv('mwh_2.csv',header=0) df_mwh3 = pd.read_csv('mwh_3.csv',header=0) df_gen = pd.read_csv('generators.csv',header=0) last_hour = df_mwh1['Time'].iloc[-1] zonal_prices = np.zeros((last_hour,4)) zones = ['PGE_valley','PGE_bay','SCE','SDGE'] for z in zones: z_index = zones.index(z) z1 = df_mwh1.loc[df_mwh1['Zones']==z] z2 = df_mwh2.loc[df_mwh1['Zones']==z] z3 = df_mwh3.loc[df_mwh1['Zones']==z] for i in range(0,last_hour): h1 = z1.loc[z1['Time']==i+1] h2 = z2.loc[z1['Time']==i+1] h3 = z3.loc[z1['Time']==i+1] o1 = h1.loc[h1['Value']>0] o2 = h2.loc[h2['Value']>0] o3 = h3.loc[h3['Value']>0] m1 = np.max(o1.loc[:,'$/MWh']) m2 = np.max(o2.loc[:,'$/MWh']) m3 = np.max(o3.loc[:,'$/MWh']) if np.isnan(m1) > 0: m1 = 0 if np.isnan(m2) > 0: m2 = 0 if np.isnan(m3) > 0: m3 = 0 zonal_prices[i,z_index] = np.max((m1,m2,m3)) no_hours = last_hour no_days = int(no_hours/24) daily_prices = np.zeros((no_days,4)) for i in range(0,no_days): for z in zones: z_index = zones.index(z) daily_prices[i,z_index] = np.mean(zonal_prices[i*24:i*24+24,z_index]) hourly =
pd.DataFrame(zonal_prices)
pandas.DataFrame
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import copy import warnings from collections import defaultdict from datetime import datetime from typing import ( TYPE_CHECKING, Any, Dict, Generator, List, Optional, Sequence, TextIO, Tuple, Union, ) import numpy as np import pandas as pd # type: ignore from elasticsearch.exceptions import NotFoundError from eland.actions import PostProcessingAction from eland.common import ( DEFAULT_PAGINATION_SIZE, DEFAULT_PIT_KEEP_ALIVE, DEFAULT_PROGRESS_REPORTING_NUM_ROWS, DEFAULT_SEARCH_SIZE, SortOrder, build_pd_series, elasticsearch_date_to_pandas_date, es_api_compat, es_version, ) from eland.index import Index from eland.query import Query from eland.tasks import ( RESOLVED_TASK_TYPE, ArithmeticOpFieldsTask, BooleanFilterTask, HeadTask, QueryIdsTask, QueryTermsTask, SampleTask, SizeTask, TailTask, ) if TYPE_CHECKING: from numpy.typing import DTypeLike from eland.arithmetics import ArithmeticSeries from eland.field_mappings import Field from eland.filter import BooleanFilter from eland.query_compiler import QueryCompiler from eland.tasks import Task class QueryParams: def __init__(self) -> None: self.query: Query = Query() self.sort_field: Optional[str] = None self.sort_order: Optional[SortOrder] = None self.size: Optional[int] = None self.fields: Optional[List[str]] = None self.script_fields: Optional[Dict[str, Dict[str, Any]]] = None class Operations: """ A collector of the queries and selectors we apply to queries to return the appropriate results. For example, - a list of the field_names in the DataFrame (a subset of field_names in the index) - a size limit on the results (e.g. for head(n=5)) - a query to filter the results (e.g. df.A > 10) This is maintained as a 'task graph' (inspired by dask) (see https://docs.dask.org/en/latest/spec.html) """ def __init__( self, tasks: Optional[List["Task"]] = None, arithmetic_op_fields_task: Optional["ArithmeticOpFieldsTask"] = None, ) -> None: self._tasks: List["Task"] if tasks is None: self._tasks = [] else: self._tasks = tasks self._arithmetic_op_fields_task = arithmetic_op_fields_task def __constructor__( self, *args: Any, **kwargs: Any, ) -> "Operations": return type(self)(*args, **kwargs) def copy(self) -> "Operations": return self.__constructor__( tasks=copy.deepcopy(self._tasks), arithmetic_op_fields_task=copy.deepcopy(self._arithmetic_op_fields_task), ) def head(self, index: "Index", n: int) -> None: # Add a task that is an ascending sort with size=n task = HeadTask(index, n) self._tasks.append(task) def tail(self, index: "Index", n: int) -> None: # Add a task that is descending sort with size=n task = TailTask(index, n) self._tasks.append(task) def sample(self, index: "Index", n: int, random_state: int) -> None: task = SampleTask(index, n, random_state) self._tasks.append(task) def arithmetic_op_fields( self, display_name: str, arithmetic_series: "ArithmeticSeries" ) -> None: if self._arithmetic_op_fields_task is None: self._arithmetic_op_fields_task = ArithmeticOpFieldsTask( display_name, arithmetic_series ) else: self._arithmetic_op_fields_task.update(display_name, arithmetic_series) def get_arithmetic_op_fields(self) -> Optional[ArithmeticOpFieldsTask]: # get an ArithmeticOpFieldsTask if it exists return self._arithmetic_op_fields_task def __repr__(self) -> str: return repr(self._tasks) def count(self, query_compiler: "QueryCompiler") -> pd.Series: query_params, post_processing = self._resolve_tasks(query_compiler) # Elasticsearch _count is very efficient and so used to return results here. This means that # data frames that have restricted size or sort params will not return valid results # (_count doesn't support size). # Longer term we may fall back to pandas, but this may result in loading all index into memory. if self._size(query_params, post_processing) is not None: raise NotImplementedError( f"Requesting count with additional query and processing parameters " f"not supported {query_params} {post_processing}" ) # Only return requested field_names fields = query_compiler.get_field_names(include_scripted_fields=False) counts = {} for field in fields: body = Query(query_params.query) body.exists(field, must=True) field_exists_count = query_compiler._client.count( index=query_compiler._index_pattern, body=body.to_count_body() )["count"] counts[field] = field_exists_count return build_pd_series(data=counts, index=fields) def _metric_agg_series( self, query_compiler: "QueryCompiler", agg: List["str"], numeric_only: Optional[bool] = None, ) -> pd.Series: results = self._metric_aggs(query_compiler, agg, numeric_only=numeric_only) if numeric_only: return build_pd_series(results, index=results.keys(), dtype=np.float64) else: # If all results are float convert into float64 if all(isinstance(i, float) for i in results.values()): dtype: "DTypeLike" = np.float64 # If all results are int convert into int64 elif all(isinstance(i, int) for i in results.values()): dtype = np.int64 # If single result is present consider that datatype instead of object elif len(results) <= 1: dtype = None else: dtype = "object" return build_pd_series(results, index=results.keys(), dtype=dtype) def value_counts(self, query_compiler: "QueryCompiler", es_size: int) -> pd.Series: return self._terms_aggs(query_compiler, "terms", es_size) def hist( self, query_compiler: "QueryCompiler", bins: int ) -> Tuple[pd.DataFrame, pd.DataFrame]: return self._hist_aggs(query_compiler, bins) def idx( self, query_compiler: "QueryCompiler", axis: int, sort_order: str ) -> pd.Series: if axis == 1: # Fetch idx on Columns raise NotImplementedError( "This feature is not implemented yet for 'axis = 1'" ) # Fetch idx on Index query_params, post_processing = self._resolve_tasks(query_compiler) fields = query_compiler._mappings.all_source_fields() # Consider only Numeric fields fields = [field for field in fields if (field.is_numeric)] body = Query(query_params.query) for field in fields: body.top_hits_agg( name=f"top_hits_{field.es_field_name}", source_columns=[field.es_field_name], sort_order=sort_order, size=1, ) # Fetch Response response = query_compiler._client.search( index=query_compiler._index_pattern, size=0, body=body.to_search_body() ) response = response["aggregations"] results = {} for field in fields: res = response[f"top_hits_{field.es_field_name}"]["hits"] if not res["total"]["value"] > 0: raise ValueError("Empty Index with no rows") if not res["hits"][0]["_source"]: # This means there are NaN Values, we skip them # Implement this when skipna is implemented continue else: results[field.es_field_name] = res["hits"][0]["_id"] return pd.Series(results) def aggs( self, query_compiler: "QueryCompiler", pd_aggs: List[str], numeric_only: Optional[bool] = None, ) -> pd.DataFrame: results = self._metric_aggs( query_compiler, pd_aggs, numeric_only=numeric_only, is_dataframe_agg=True ) return pd.DataFrame( results, index=pd_aggs, dtype=(np.float64 if numeric_only else None) ) def mode( self, query_compiler: "QueryCompiler", pd_aggs: List[str], is_dataframe: bool, es_size: int, numeric_only: bool = False, dropna: bool = True, ) -> Union[pd.DataFrame, pd.Series]: results = self._metric_aggs( query_compiler, pd_aggs=pd_aggs, numeric_only=numeric_only, dropna=dropna, es_mode_size=es_size, ) pd_dict: Dict[str, Any] = {} row_diff: Optional[int] = None if is_dataframe: # If multiple values of mode is returned for a particular column # find the maximum length and use that to fill dataframe with NaN/NaT rows_len = max(len(value) for value in results.values()) for key, values in results.items(): row_diff = rows_len - len(values) # Convert np.ndarray to list values = list(values) if row_diff: if isinstance(values[0], pd.Timestamp): values.extend([pd.NaT] * row_diff) else: values.extend([np.NaN] * row_diff) pd_dict[key] = values return
pd.DataFrame(pd_dict)
pandas.DataFrame
import logging import os import time import warnings from datetime import date, datetime, timedelta from io import StringIO from typing import Dict, Iterable, List, Optional, Union from urllib.parse import urljoin import numpy as np import pandas as pd import requests import tables from pvoutput.consts import ( BASE_URL, CONFIG_FILENAME, ONE_DAY, PV_OUTPUT_DATE_FORMAT, RATE_LIMIT_PARAMS_TO_API_HEADERS, ) from pvoutput.daterange import DateRange, merge_date_ranges_to_years from pvoutput.exceptions import NoStatusFound, RateLimitExceeded from pvoutput.utils import ( _get_param_from_config_file, _get_response, _print_and_log, get_date_ranges_to_download, sort_and_de_dupe_pv_system, system_id_to_hdf_key, ) _LOG = logging.getLogger("pvoutput") class PVOutput: """ Attributes: api_key system_id rate_limit_remaining rate_limit_total rate_limit_reset_time data_service_url """ def __init__( self, api_key: str = None, system_id: str = None, config_filename: Optional[str] = CONFIG_FILENAME, data_service_url: Optional[str] = None, ): """ Args: api_key: Your API key from PVOutput.org. system_id: Your system ID from PVOutput.org. If you don't have a PV system then you can register with PVOutput.org and select the 'energy consumption only' box. config_filename: Optional, the filename of the .yml config file. data_service_url: Optional. If you have subscribed to PVOutput.org's data service then add the data service URL here. This string must end in '.org'. """ self.api_key = api_key self.system_id = system_id self.rate_limit_remaining = None self.rate_limit_total = None self.rate_limit_reset_time = None self.data_service_url = data_service_url # Set from config file if None for param_name in ["api_key", "system_id"]: if getattr(self, param_name) is None: try: param_value_from_config = _get_param_from_config_file( param_name, config_filename ) except Exception as e: msg = ( "Error loading configuration parameter {param_name}" " from config file {filename}. Either pass" " {param_name} into PVOutput constructor, or create" " config file {filename}. {exception}".format( param_name=param_name, filename=CONFIG_FILENAME, exception=e ) ) print(msg) _LOG.exception(msg) raise setattr(self, param_name, param_value_from_config) # Convert to strings setattr(self, param_name, str(getattr(self, param_name))) # Check for data_service_url if self.data_service_url is None: try: self.data_service_url = _get_param_from_config_file( "data_service_url", config_filename ) except KeyError: pass except FileNotFoundError: pass if self.data_service_url is not None: if not self.data_service_url.strip("/").endswith(".org"): raise ValueError("data_service_url must end in '.org'") def search( self, query: str, lat: Optional[float] = None, lon: Optional[float] = None, include_country: bool = True, **kwargs ) -> pd.DataFrame: """Search for PV systems. Some quirks of the PVOutput.org API: - The maximum number of results returned by PVOutput.org is 30. If the number of returned results is 30, then there is no indication of whether there are exactly 30 search results, or if there are more than 30. Also, there is no way to request additional 'pages' of search results. - The maximum search radius is 25km Args: query: string, see https://pvoutput.org/help.html#search e.g. '5km'. lat: float, e.g. 52.0668589 lon: float, e.g. -1.3484038 include_country: bool, whether or not to include the country name with the returned postcode. Returns: pd.DataFrame, one row per search results. Index is PV system ID. Columns: name, system_DC_capacity_W, address, # If `include_country` is True then address is # 'country> <postcode>', # else address is '<postcode>'. orientation, num_outputs, last_output, panel, inverter, distance_km, latitude, longitude """ api_params = {"q": query, "country": int(include_country)} if lat is not None and lon is not None: api_params["ll"] = "{:f},{:f}".format(lat, lon) pv_systems_text = self._api_query(service="search", api_params=api_params, **kwargs) pv_systems = pd.read_csv( StringIO(pv_systems_text), names=[ "name", "system_DC_capacity_W", "address", "orientation", "num_outputs", "last_output", "system_id", "panel", "inverter", "distance_km", "latitude", "longitude", ], index_col="system_id", ) return pv_systems def get_status( self, pv_system_id: int, date: Union[str, datetime], historic: bool = True, **kwargs ) -> pd.DataFrame: """Get PV system status (e.g. power generation) for one day. The returned DataFrame will be empty if the PVOutput API returns 'status 400: No status found'. Args: pv_system_id: int date: str in format YYYYMMDD; or datetime (localtime of the PV system) Returns: pd.DataFrame: index: datetime (DatetimeIndex, localtime of the PV system) columns: (all np.float64): cumulative_energy_gen_Wh, energy_efficiency_kWh_per_kW, instantaneous_power_gen_W, average_power_gen_W, power_gen_normalised, energy_consumption_Wh, power_demand_W, temperature_C, voltage """ _LOG.info("system_id %d: Requesting system status for %s", pv_system_id, date) date = date_to_pvoutput_str(date) _check_date(date) api_params = { "d": date, # date, YYYYMMDD, localtime of the PV system "h": int(historic == True), # We want historical data. "limit": 288, # API limit is 288 (num of 5-min periods per day). "ext": 0, # Extended data; we don't want extended data. "sid1": pv_system_id, # SystemID. } try: pv_system_status_text = self._api_query( service="getstatus", api_params=api_params, **kwargs ) except NoStatusFound: _LOG.info("system_id %d: No status found for date %s", pv_system_id, date) pv_system_status_text = "" # See https://pvoutput.org/help.html#api-getstatus but make sure # you read the 'History Query' subsection, as a historical query # has slightly different return columns compared to a non-historical # query! columns = ( [ "cumulative_energy_gen_Wh", "energy_efficiency_kWh_per_kW", "instantaneous_power_gen_W", "average_power_gen_W", "power_gen_normalised", "energy_consumption_Wh", "power_demand_W", "temperature_C", "voltage", ] if historic else [ "cumulative_energy_gen_Wh", "instantaneous_power_gen_W", "energy_consumption_Wh", "power_demand_W", "power_gen_normalised", "temperature_C", "voltage", ] ) pv_system_status = pd.read_csv( StringIO(pv_system_status_text), lineterminator=";", names=["date", "time"] + columns, parse_dates={"datetime": ["date", "time"]}, index_col=["datetime"], dtype={col: np.float64 for col in columns}, ).sort_index() return pv_system_status def get_batch_status( self, pv_system_id: int, date_to: Optional[Union[str, datetime]] = None, max_retries: Optional[int] = 1000, **kwargs ) -> Union[None, pd.DataFrame]: """Get batch PV system status (e.g. power generation). The returned DataFrame will be empty if the PVOutput API returns 'status 400: No status found'. Data returned is limited to the last 366 days per request. To retrieve older data, use the date_to parameter. The PVOutput getbatchstatus API is asynchronous. When it's first called, it replies to say 'accepted'. This function will then wait a minute and call the API again to see if the data is ready. Set `max_retries` to 1 if you want to return immediately, even if data isn't ready yet (and hence this function will return None) https://pvoutput.org/help.html#dataservice-getbatchstatus Args: pv_system_id: int date_to: str in format YYYYMMDD; or datetime (localtime of the PV system). The returned timeseries will include 366 days of data: from YYYY-1MMDD to YYYYMMDD inclusive max_retries: int, number of times to retry after receiving a '202 Accepted' request. Set `max_retries` to 1 if you want to return immediately, even if data isn't ready yet (and hence this function will return None). Returns: None (if data isn't ready after retrying max_retries times) or pd.DataFrame: index: datetime (DatetimeIndex, localtime of the PV system) columns: (all np.float64): cumulative_energy_gen_Wh, instantaneous_power_gen_W, temperature_C, voltage """ api_params = {"sid1": pv_system_id} _set_date_param(date_to, api_params, "dt") for retry in range(max_retries): try: pv_system_status_text = self._api_query( service="getbatchstatus", api_params=api_params, use_data_service=True, **kwargs ) except NoStatusFound: _LOG.info("system_id %d: No status found for date_to %s", pv_system_id, date_to) pv_system_status_text = "" break if "Accepted 202" in pv_system_status_text: if retry == 0: _print_and_log("Request accepted.") if retry < max_retries - 1: _print_and_log("Sleeping for 1 minute.") time.sleep(60) else: _print_and_log( "Call get_batch_status again in a minute to see if" " results are ready." ) else: break else: return return _process_batch_status(pv_system_status_text) def get_metadata(self, pv_system_id: int, **kwargs) -> pd.Series: """Get metadata for a single PV system. Args: pv_system_id: int Returns: pd.Series. Index is: name, system_DC_capacity_W, address, num_panels, panel_capacity_W_each, panel_brand, num_inverters, inverter_capacity_W, inverter_brand, orientation, array_tilt_degrees, shade, install_date, latitude, longitude, status_interval_minutes, secondary_num_panels, secondary_panel_capacity_W_each, secondary_orientation, secondary_array_tilt_degrees """ pv_metadata_text = self._api_query( service="getsystem", api_params={ "array2": 1, # Provide data about secondary array, if present. "tariffs": 0, "teams": 0, "est": 0, "donations": 0, "sid1": pv_system_id, # SystemID "ext": 0, # Include extended data? }, **kwargs ) pv_metadata = pd.read_csv( StringIO(pv_metadata_text), lineterminator=";", names=[ "name", "system_DC_capacity_W", "address", "num_panels", "panel_capacity_W_each", "panel_brand", "num_inverters", "inverter_capacity_W", "inverter_brand", "orientation", "array_tilt_degrees", "shade", "install_date", "latitude", "longitude", "status_interval_minutes", "secondary_num_panels", "secondary_panel_capacity_W_each", "secondary_orientation", "secondary_array_tilt_degrees", ], parse_dates=["install_date"], nrows=1, ).squeeze() pv_metadata["system_id"] = pv_system_id pv_metadata.name = pv_system_id return pv_metadata def get_statistic( self, pv_system_id: int, date_from: Optional[Union[str, date]] = None, date_to: Optional[Union[str, date]] = None, **kwargs ) -> pd.DataFrame: """Get summary stats for a single PV system. Args: pv_system_id: int date_from date_to Returns: pd.DataFrame: total_energy_gen_Wh, energy_exported_Wh, average_daily_energy_gen_Wh, minimum_daily_energy_gen_Wh, maximum_daily_energy_gen_Wh, average_efficiency_kWh_per_kW, num_outputs, # The number of days for which there's >= 1 val. actual_date_from, actual_date_to, record_efficiency_kWh_per_kW, record_efficiency_date, query_date_from, query_date_to """ if date_from and not date_to: date_to = pd.Timestamp.now().date() if date_to and not date_from: date_from = pd.Timestamp("1900-01-01").date() api_params = { "c": 0, # consumption and import "crdr": 0, # credits / debits "sid1": pv_system_id, # SystemID } _set_date_param(date_from, api_params, "df") _set_date_param(date_to, api_params, "dt") try: pv_metadata_text = self._api_query( service="getstatistic", api_params=api_params, **kwargs ) except NoStatusFound: pv_metadata_text = "" columns = [ "total_energy_gen_Wh", "energy_exported_Wh", "average_daily_energy_gen_Wh", "minimum_daily_energy_gen_Wh", "maximum_daily_energy_gen_Wh", "average_efficiency_kWh_per_kW", "num_outputs", "actual_date_from", "actual_date_to", "record_efficiency_kWh_per_kW", "record_efficiency_date", ] date_cols = ["actual_date_from", "actual_date_to", "record_efficiency_date"] numeric_cols = set(columns) - set(date_cols) pv_metadata = pd.read_csv( StringIO(pv_metadata_text), names=columns, dtype={col: np.float32 for col in numeric_cols}, parse_dates=date_cols, ) if pv_metadata.empty: data = {col: np.float32(np.NaN) for col in numeric_cols} data.update({col: pd.NaT for col in date_cols}) pv_metadata = pd.DataFrame(data, index=[pv_system_id]) else: pv_metadata.index = [pv_system_id] pv_metadata["query_date_from"] = pd.Timestamp(date_from) if date_from else pd.NaT pv_metadata["query_date_to"] = pd.Timestamp(date_to) if date_to else pd.Timestamp.now() return pv_metadata def _get_statistic_with_cache( self, store_filename: str, pv_system_id: int, date_from: Optional[Union[str, date]] = None, date_to: Optional[Union[str, date]] = None, **kwargs ) -> pd.Series: """Will try to get stats from store_filename['statistics']. If this fails, or if date_to > query_date_to, or if date_from < query_date_from, then will call the API. Note that the aim of this function is just to find the relevant actual_date_from and actual_date_to, so this function does not respect the other params. """ if date_from: date_from = pd.Timestamp(date_from).date() if date_to: date_to = pd.Timestamp(date_to).date() def _get_fresh_statistic(): _LOG.info("pv_system %d: Getting fresh statistic.", pv_system_id) stats = self.get_statistic(pv_system_id, **kwargs) with pd.HDFStore(store_filename, mode="a") as store: try: store.remove(key="statistics", where="index=pv_system_id") except KeyError: pass store.append(key="statistics", value=stats) return stats try: stats = pd.read_hdf(store_filename, key="statistics", where="index=pv_system_id") except (FileNotFoundError, KeyError): return _get_fresh_statistic() if stats.empty: return _get_fresh_statistic() query_date_from = stats.iloc[0]["query_date_from"] query_date_to = stats.iloc[0]["query_date_to"] if ( not pd.isnull(date_from) and not pd.isnull(query_date_from) and date_from < query_date_from.date() ): return _get_fresh_statistic() if not pd.isnull(date_to) and date_to > query_date_to.date(): return _get_fresh_statistic() return stats def download_multiple_systems_to_disk( self, system_ids: Iterable[int], start_date: datetime, end_date: datetime, output_filename: str, timezone: Optional[str] = None, min_data_availability: Optional[float] = 0.5, use_get_batch_status_if_available: Optional[bool] = True, ): """Download multiple PV system IDs to disk. Data is saved to `output_filename` in HDF5 format. The exact data format is documented in https://github.com/openclimatefix/pvoutput/blob/master/docs/dataset.md This function is designed to be run for days (!) downloading gigabytes of PV data :) As such, this function can be safely interrupted and re-started. All the state required to re-start is stored in the HDF5 file. Add appropriate handlers the Python logger `pvoutput` to see progress. Args: system_ids: List of PV system IDs to download. start_date: Start of date range to download. end_date: End of date range to download. output_filename: HDF5 filename to write data to. timezone: String representation of timezone of timeseries data. e.g. 'Europe/London'. min_data_availability: A float in the range [0, 1]. 1 means only accept PV systems which have no days of missing data. 0 means accept all PV systems, no matter if they have missing data. Note that the data availability is measured against the date range for which the PV system has data available, not from the date range passed into this function. use_get_batch_status_if_available: Bool. If true then will use PVOutput's getbatchstatus API (which must be paid for, and `data_service_url` must be set in `~/.pvoutput.yml` or when initialising the PVOutput object). """ n = len(system_ids) for i, pv_system_id in enumerate(system_ids): _LOG.info("**********************") msg = "system_id {:d}: {:d} of {:d} ({:%})".format(pv_system_id, i + 1, n, (i + 1) / n) _LOG.info(msg) print("\r", msg, end="", flush=True) # Sorted list of DateRange objects. For each DateRange, # we need to download from start_date to end_date inclusive. date_ranges_to_download = get_date_ranges_to_download( output_filename, pv_system_id, start_date, end_date ) # How much data is actually available? date_ranges_to_download = self._filter_date_range( output_filename, pv_system_id, date_ranges_to_download, min_data_availability ) if not date_ranges_to_download: _LOG.info("system_id %d: No data left to download :)", pv_system_id) continue _LOG.info( "system_id %d: Will download these date ranges: %s", pv_system_id, date_ranges_to_download, ) if use_get_batch_status_if_available: if self.data_service_url: self._download_multiple_using_get_batch_status( output_filename, pv_system_id, date_ranges_to_download, timezone ) else: raise ValueError("data_service_url is not set!") else: self._download_multiple_using_get_status( output_filename, pv_system_id, date_ranges_to_download, timezone ) def get_insolation_forecast( self, date: Union[str, datetime], pv_system_id: Optional[int] = None, timezone: Optional[str] = None, lat: Optional[float] = None, lon: Optional[float] = None, **kwargs ): """Get Insolation data for a given site, or a given location defined by longitude and latitude. This is the estimated output for the site based on ideal weather conditions. Also factors in site age, reducing ouput by 1% each year, shade and orientation. Need donation mode enabled. See https://pvoutput.org/help.html#api-getinsolation Args: date: str in format YYYYMMDD; or datetime (localtime of the PV system) pv_system_id: int timezone: str lat: float e.g. -27.4676 lon: float e.g. 153.0279 **kwargs: Returns: """ date = date_to_pvoutput_str(date) _check_date(date, prediction=True) api_params = { "d": date, # date, YYYYMMDD, localtime of the PV system "sid1": pv_system_id, # SystemID. "tz": timezone, # defaults to configured timezone of system otherwise GMT } if lat is not None and lon is not None: api_params["ll"] = "{:f},{:f}".format(lat, lon) try: pv_insolation_text = self._api_query( service="getinsolation", api_params=api_params, **kwargs ) except NoStatusFound: _LOG.info("system_id %d: No status found for date %s", pv_system_id, date) pv_insolation_text = "" columns = ["predicted_power_gen_W", "predicted_cumulative_energy_gen_Wh"] pv_insolation = pd.read_csv( StringIO(pv_insolation_text), lineterminator=";", names=["time"] + columns, dtype={col: np.float64 for col in columns}, ).sort_index() pv_insolation.index = pd.to_datetime( date + " " + pv_insolation.time, format="%Y-%m-%d %H:%M" ) pv_insolation.drop("time", axis=1, inplace=True) return pv_insolation def _filter_date_range( self, store_filename: str, system_id: int, date_ranges: Iterable[DateRange], min_data_availability: Optional[float] = 0.5, ) -> List[DateRange]: """Check getstatistic to see if system_id has data for all date ranges. Args: system_id: PV system ID. store_filename: HDF5 filename to cache statistics to / from. date_ranges: List of DateRange objects. min_data_availability: A float in the range [0, 1]. 1 means only accept PV systems which have no days of missing data. 0 means accept all PV systems, no matter if they have missing data. """ if not date_ranges: return date_ranges stats = self._get_statistic_with_cache( store_filename, system_id, date_to=date_ranges[-1].end_date, wait_if_rate_limit_exceeded=True, ).squeeze() if pd.isnull(stats["actual_date_from"]) or pd.isnull(stats["actual_date_to"]): _LOG.info("system_id %d: Stats say there is no data!", system_id) return [] timeseries_date_range = DateRange(stats["actual_date_from"], stats["actual_date_to"]) data_availability = stats["num_outputs"] / (timeseries_date_range.total_days() + 1) if data_availability < min_data_availability: _LOG.info( "system_id %d: Data availability too low! Only %.0f %%.", system_id, data_availability * 100, ) return [] new_date_ranges = [] for date_range in date_ranges: new_date_range = date_range.intersection(timeseries_date_range) if new_date_range: new_date_ranges.append(new_date_range) return new_date_ranges def _download_multiple_using_get_batch_status( self, output_filename, pv_system_id, date_ranges_to_download, timezone: Optional[str] = None ): years = merge_date_ranges_to_years(date_ranges_to_download) dates_to = [year.end_date for year in years] total_rows = self._download_multiple_worker( output_filename, pv_system_id, dates_to, timezone, use_get_status=False ) # Re-load data, sort, remove duplicate indicies, append back if total_rows: with pd.HDFStore(output_filename, mode="a", complevel=9) as store: sort_and_de_dupe_pv_system(store, pv_system_id) def _download_multiple_using_get_status( self, output_filename, pv_system_id, date_ranges_to_download, timezone: Optional[str] = None ): for date_range in date_ranges_to_download: dates = date_range.date_range() self._download_multiple_worker( output_filename, pv_system_id, dates, timezone, use_get_status=True ) def _download_multiple_worker( self, output_filename, pv_system_id, dates, timezone, use_get_status ) -> int: """ Returns: total number of rows downloaded """ total_rows = 0 for date_to_load in dates: _LOG.info("system_id %d: Requesting date: %s", pv_system_id, date_to_load) datetime_of_api_request = pd.Timestamp.utcnow() if use_get_status: timeseries = self.get_status( pv_system_id, date_to_load, wait_if_rate_limit_exceeded=True ) else: timeseries = self.get_batch_status(pv_system_id, date_to=date_to_load) if timeseries.empty: _LOG.info( "system_id %d: Got empty timeseries back for %s", pv_system_id, date_to_load ) if use_get_status: _append_missing_date_range( output_filename, pv_system_id, date_to_load, date_to_load, datetime_of_api_request, ) else: _append_missing_date_range( output_filename, pv_system_id, date_to_load - timedelta(days=365), date_to_load, datetime_of_api_request, ) else: total_rows += len(timeseries) timeseries = timeseries.tz_localize(timezone) _LOG.info( "system_id: %d: %d rows retrieved: %s to %s", pv_system_id, len(timeseries), timeseries.index[0], timeseries.index[-1], ) if use_get_status: check_pv_system_status(timeseries, date_to_load) else: _record_gaps( output_filename, pv_system_id, date_to_load, timeseries, datetime_of_api_request, ) timeseries["datetime_of_API_request"] = datetime_of_api_request timeseries["query_date"] = pd.Timestamp(date_to_load) key = system_id_to_hdf_key(pv_system_id) with pd.HDFStore(output_filename, mode="a", complevel=9) as store: with warnings.catch_warnings(): warnings.simplefilter("ignore", tables.NaturalNameWarning) store.append(key=key, value=timeseries, data_columns=True) _LOG.info("system_id %d: %d total rows downloaded", pv_system_id, total_rows) return total_rows def _api_query( self, service: str, api_params: Dict, wait_if_rate_limit_exceeded: bool = False, use_data_service: bool = False, ) -> str: """Send API request to PVOutput.org and return content text. Args: service: string, e.g. 'search' or 'getstatus' api_params: dict wait_if_rate_limit_exceeded: bool use_data_service: bool Raises: NoStatusFound RateLimitExceeded """ get_response_func = ( self._get_data_service_response if use_data_service else self._get_api_response ) try: response = get_response_func(service, api_params) except Exception as e: _LOG.exception(e) raise try: return self._process_api_response(response) except RateLimitExceeded: msg = "PVOutput.org API rate limit exceeded!" " Rate limit will be reset at {}".format( self.rate_limit_reset_time ) _print_and_log(msg) if wait_if_rate_limit_exceeded: self.wait_for_rate_limit_reset() return self._api_query(service, api_params, wait_if_rate_limit_exceeded=False) raise RateLimitExceeded(response, msg) def _get_api_response(self, service: str, api_params: Dict) -> requests.Response: """ Args: service: string, e.g. 'search', 'getstatus' api_params: dict """ self._check_api_params() # Create request headers headers = { "X-Rate-Limit": "1", "X-Pvoutput-Apikey": self.api_key, "X-Pvoutput-SystemId": self.system_id, } api_url = urljoin(BASE_URL, "service/r2/{}.jsp".format(service)) return _get_response(api_url, api_params, headers) def _get_data_service_response(self, service: str, api_params: Dict) -> requests.Response: """ Args: service: string, e.g. 'getbatchstatus' api_params: dict """ self._check_api_params() if self.data_service_url is None: raise ValueError("data_service_url must be set to use the data service!") headers = {"X-Rate-Limit": "1"} api_params = api_params.copy() api_params["key"] = self.api_key api_params["sid"] = self.system_id api_url = urljoin(self.data_service_url, "service/r2/{}.jsp".format(service)) return _get_response(api_url, api_params, headers) def _check_api_params(self): # Check we have relevant login details: for param_name in ["api_key", "system_id"]: if getattr(self, param_name) is None: raise ValueError("Please set the {} parameter.".format(param_name)) def _set_rate_limit_params(self, headers): for param_name, header_key in RATE_LIMIT_PARAMS_TO_API_HEADERS.items(): header_value = int(headers[header_key]) setattr(self, param_name, header_value) self.rate_limit_reset_time = pd.Timestamp.utcfromtimestamp(self.rate_limit_reset_time) self.rate_limit_reset_time = self.rate_limit_reset_time.tz_localize("utc") _LOG.debug("%s", self.rate_limit_info()) def rate_limit_info(self) -> Dict: info = {} for param_name in RATE_LIMIT_PARAMS_TO_API_HEADERS: info[param_name] = getattr(self, param_name) return info def _process_api_response(self, response: requests.Response) -> str: """Turns an API response into text. Args: response: from _get_api_response() Returns: content of the response. Raises: UnicodeDecodeError NoStatusFound RateLimitExceeded """ if response.status_code == 400: raise NoStatusFound(response=response) if response.status_code != 403: try: response.raise_for_status() except Exception as e: msg = "Bad status code! Response content = {}. Exception = {}".format( response.content, e ) _LOG.exception(msg) raise e.__class__(msg) self._set_rate_limit_params(response.headers) # Did we overshoot our quota? if response.status_code == 403 and self.rate_limit_remaining <= 0: raise RateLimitExceeded(response=response) try: content = response.content.decode("latin1").strip() except Exception as e: msg = "Error decoding this string: {}\n{}".format(response.content, e) _LOG.exception(msg) raise # If we get to here then the content is valid :) return content def wait_for_rate_limit_reset(self): utc_now = pd.Timestamp.utcnow() timedelta_to_wait = self.rate_limit_reset_time - utc_now timedelta_to_wait += timedelta(minutes=3) # Just for safety secs_to_wait = timedelta_to_wait.total_seconds() retry_time_utc = utc_now + timedelta_to_wait _print_and_log( "Waiting {:.0f} seconds. Will retry at {}".format(secs_to_wait, retry_time_utc) ) time.sleep(secs_to_wait) def date_to_pvoutput_str(date: Union[str, datetime]) -> str: """Convert datetime to date string for PVOutput.org in YYYYMMDD format.""" if isinstance(date, str): try: datetime.strptime(date, PV_OUTPUT_DATE_FORMAT) except ValueError: return pd.Timestamp(date).strftime(PV_OUTPUT_DATE_FORMAT) else: return date return date.strftime(PV_OUTPUT_DATE_FORMAT) def _check_date(date: str, prediction=False): """Check that date string conforms to YYYYMMDD format, and that the date isn't in the future. Raises: ValueError if the date is 'bad'. """ dt = datetime.strptime(date, PV_OUTPUT_DATE_FORMAT) if dt > datetime.now() and not prediction: raise ValueError( "" "date should not be in the future. Got {}. Current date is {}.".format( date, datetime.now() ) ) def _set_date_param(dt, api_params, key): if dt is not None: dt = date_to_pvoutput_str(dt) _check_date(dt) api_params[key] = dt def check_pv_system_status(pv_system_status: pd.DataFrame, requested_date: date): """Checks the DataFrame returned by get_pv_system_status. Args: pv_system_status: DataFrame returned by get_pv_system_status requested_date: date. Raises: ValueError if the DataFrame is incorrect. """ if not isinstance(pv_system_status, pd.DataFrame): raise ValueError("pv_system_status must be a dataframe") if not pv_system_status.empty: index = pv_system_status.index for d in [index[0], index[-1]]: if not requested_date <= d.date() <= requested_date + ONE_DAY: raise ValueError( "A date in the index is outside the expected range." " Date from index={}, requested_date={}".format(d, requested_date) ) def _process_batch_status(pv_system_status_text): # See https://pvoutput.org/help.html#dataservice-getbatchstatus # PVOutput uses a non-standard format for the data. The text # needs some processing before it can be read as a CSV. processed_lines = [] for line in pv_system_status_text.split("\n"): line_sections = line.split(";") date = line_sections[0] time_and_data = line_sections[1:] processed_line = [ "{date},{payload}".format(date=date, payload=payload) for payload in time_and_data ] processed_lines.extend(processed_line) if processed_lines: first_line = processed_lines[0] num_cols = len(first_line.split(",")) if num_cols >= 8: raise NotImplementedError("Handling of consumption data is not implemented!") processed_text = "\n".join(processed_lines) del processed_lines columns = ["cumulative_energy_gen_Wh", "instantaneous_power_gen_W", "temperature_C", "voltage"] pv_system_status = pd.read_csv( StringIO(processed_text), names=["date", "time"] + columns, parse_dates={"datetime": ["date", "time"]}, index_col=["datetime"], dtype={col: np.float64 for col in columns}, ).sort_index() return pv_system_status def _append_missing_date_range( output_filename, pv_system_id, missing_start_date, missing_end_date, datetime_of_api_request ): data = { "missing_start_date_PV_localtime":
pd.Timestamp(missing_start_date)
pandas.Timestamp
import pandas as pd import re from thsData.fetchDataFromTHS import CFetchDataFromTHS import datetime import logging DAILY_COLUMNS_MAP= { '股票代码' : '^股票代码', '股票简称' :'^股票简称', '涨跌幅':"^涨跌幅:前复权", '开盘价' : '^开盘价:前复权', '收盘价' : '^收盘价:前复权', '最高价' : '^最高价:前复权', '最低价' : '^最低价:前复权', '成交量': '^成交量', '成交额': '^成交额', '上市日期': '^上市日期', '所属概念': '^所属概念$', "所属概念数量":"^所属概念数量", '行业':'^所属同花顺行业', '流通市值':"^a股流通市值", '上市天数':"^上市天数", } logger = logging.getLogger() class CFetchDailyDataFromTHS(object): def __init__(self,cookie,v): self.dataFrame = None self.date = None self.keyWords = '前复权开盘价,前复权收盘价,前复权最高价,前复权最低价,前复权涨跌幅, 成交量,成交额,上市天数,所属概念' self.url = 'http://x.iwencai.com/stockpick/search?ts=1&f=1&qs=stockhome_topbar_click&w=%E5%89%8D%E5%A4%8D%E6%9D%83%E5%BC%80%E7%9B%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%94%B6%E7%9B%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%9C%80%E9%AB%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%9C%80%E4%BD%8E%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%B6%A8%E8%B7%8C%E5%B9%85,%20%E6%88%90%E4%BA%A4%E9%87%8F%EF%BC%8C%E6%88%90%E4%BA%A4%E9%A2%9D%EF%BC%8C%E4%B8%8A%E5%B8%82%E5%A4%A9%E6%95%B0,%E6%89%80%E5%B1%9E%E6%A6%82%E5%BF%B5' self.referer = 'http://x.iwencai.com/stockpick/search?typed=1&preParams=&ts=1&f=1&qs=result_rewrite&selfsectsn=&querytype=stock&searchfilter=&tid=stockpick&w=%E5%89%8D%E5%A4%8D%E6%9D%83%E5%BC%80%E7%9B%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%94%B6%E7%9B%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%9C%80%E9%AB%98%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%9C%80%E4%BD%8E%E4%BB%B7%EF%BC%8C%E5%89%8D%E5%A4%8D%E6%9D%83%E6%B6%A8%E8%B7%8C%E5%B9%85%2C%20%E6%88%90%E4%BA%A4%E9%87%8F%EF%BC%8C%E6%88%90%E4%BA%A4%E9%A2%9D%EF%BC%8C%E4%B8%8A%E5%B8%82%E6%97%A5%E6%9C%9F%2C%E6%89%80%E5%B1%9E%E6%A6%82%E5%BF%B5&queryarea=' self.cookie = cookie self.v = v def GetDailyData(self): fetcher = CFetchDataFromTHS(self.cookie,self.url, self.referer, self.v) result = fetcher.FetchAllInOne() map = self.keywordTranslator(result) self.dataFrame =
pd.DataFrame()
pandas.DataFrame
from __future__ import print_function from builtins import str from builtins import range import sys sys.path.insert(0, '/home/mike/git/streampulse/server_copy/sp') import rrcf import pandas as pd from helpers import email_msg import numpy as np # import logging # logging.getLogger('fbprophet').setLevel(logging.ERROR) # import warnings # warnings.filterwarnings("ignore") import matplotlib.pyplot as plt # matplotlib.use('TkAgg') # matplotlib.use('GTKAgg') import math import copy import re script_name, notificationEmail, tmpcode, region, site = sys.argv # userID=35; tmpfile='e076b8930278' # region='NC'; site='FF'; notificationEmail='<EMAIL>' # dumpfile = '../spdumps/confirmcolumns' + tmpfile + '.json' # # dumpfile = '/home/mike/git/streampulse/server_copy/spdumps/confirmcolumns35_AQ_WB_e076b8930278.json' # with open(dumpfile) as d: # up_data = json.load(d) # %% trained outl detector q = np.load('/home/mike/Downloads/telemanom_hmm/data/test/F-2.npy') qq = pd.DataFrame(q) qq.to_csv('/home/mike/temp/arse.csv') trainR = pd.read_csv('~/Downloads/telemanom/training_dev/train.csv', index_col='solar.time') testR = pd.read_csv('~/Downloads/telemanom/training_dev/test.csv', index_col='solar.time') testR = pd.read_csv('~/Downloads/telemanom/training_dev/testAT.csv', index_col='solar.time') dd =
pd.concat([trainR, testR])
pandas.concat
import PySimpleGUI as sg from PIL import Image import os import io from typing import Literal, Tuple import pandas as pd import json import numpy as np CACHE = "cachefile.json" ANNOTATION = "annotation/" INDENT = 4 SPACE = " " NEWLINE = "\n" # This program includes software developed by jterrace and <NAME> # in https://stackoverflow.com/questions/10097477/python-json-array-newlines # Huge thanks to them! # Changed basestring to str, and dict uses items() instead of iteritems(). def to_json(o, level=0): ret = "" if isinstance(o, dict): ret += "{" + NEWLINE comma = "" for k, v in o.items(): ret += comma comma = ",\n" ret += SPACE * INDENT * (level + 1) ret += '"' + str(k) + '":' + SPACE ret += to_json(v, level + 1) ret += NEWLINE + SPACE * INDENT * level + "}" elif isinstance(o, str): ret += '"' + o + '"' elif isinstance(o, list): ret += "[" + ",".join([to_json(e, level + 1) for e in o]) + "]" # Tuples are interpreted as lists elif isinstance(o, tuple): ret += "[" + ",".join(to_json(e, level + 1) for e in o) + "]" elif isinstance(o, bool): ret += "true" if o else "false" elif isinstance(o, int): ret += str(o) elif isinstance(o, float): ret += '%.7g' % o elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.integer): ret += "[" + ','.join(map(str, o.flatten().tolist())) + "]" elif isinstance(o, np.ndarray) and np.issubdtype(o.dtype, np.inexact): ret += "[" + ','.join(map(lambda x: '%.7g' % x, o.flatten().tolist())) + "]" elif o is None: ret += 'null' else: raise TypeError("Unknown type '%s' for json serialization" % str(type(o))) return ret def inspect_annotation_json( Dir, num_lm, WINDOW_LOC=(None, None)) -> Tuple[str, bool]: annotation_csv = os.path.join(ANNOTATION, os.path.basename(Dir) + ".csv") annotation_json = os.path.join(ANNOTATION, os.path.basename(Dir) + ".json") if not os.path.isfile(annotation_json) or not os.path.isfile( annotation_csv): # Create empty json file pretty_dump({}, annotation_json) # If csv exist, load json from csv. # Since we don't know window size yet, only load "xy". # Will load "mouse_xy" once StateMachine is initiated. if os.path.isfile(annotation_csv): dic = {} df = pd.read_csv(annotation_csv, header=0) n = len(df) for i in range(n): row = df.iloc[i] xy_data = [] j = 1 row_keys = list(row.keys()) while True: if f"x{j}" not in row_keys or
pd.isnull(row[f"x{j}"])
pandas.isnull
import datetime as dt import numpy as np import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.datamodel import Observation from solarforecastarbiter.validation import tasks, validator from solarforecastarbiter.validation.quality_mapping import ( LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING, DAILY_VALIDATION_FLAG) @pytest.fixture() def make_observation(single_site): def f(variable): return Observation( name='test', variable=variable, interval_value_type='mean', interval_length=pd.Timedelta('1hr'), interval_label='beginning', site=single_site, uncertainty=0.1, observation_id='OBSID', provider='Organization 1', extra_parameters='') return f @pytest.fixture() def default_index(single_site): return [pd.Timestamp('2019-01-01T08:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T09:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T10:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T11:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T13:00:00', tz=single_site.timezone)] @pytest.fixture() def daily_index(single_site): out = pd.date_range(start='2019-01-01T08:00:00', end='2019-01-01T19:00:00', freq='1h', tz=single_site.timezone) return out.append( pd.Index([pd.Timestamp('2019-01-02T09:00:00', tz=single_site.timezone)])) def test_validate_ghi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi') data = pd.Series([10, 1000, -100, 500, 300], index=default_index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_validate_mostly_clear(mocker, make_observation): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi').replace(interval_length=pd.Timedelta('5min')) index = pd.date_range(start='2019-04-01T11:00', freq='5min', tz=obs.site.timezone, periods=11) data = pd.Series([742, 749, 756, 763, 769, 774, 779, 784, 789, 793, 700], index=index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'],
pd.Series(0, index=data.index)
pandas.Series