prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import time import argparse import csv from vivino import utils from vivino.geocoder import helpers if __name__ == '__main__': parser = argparse.ArgumentParser(description='Bulk geocode a Vivino export file in tsv format.') parser.add_argument('--inputpath', required=True, dest="inputpath", help='The path to the input tsv file', type=lambda x: utils.is_valid_file(x)) parser.add_argument('--outputpath', required=True, dest="outputpath", help='The path to the output tsv file') parser.add_argument('--referer', required=True, dest="referer", help='The refere string used to identify the application in the Nominatim API request') args = parser.parse_args() data =
pd.read_csv(args.inputpath, sep=',', quotechar='"', header=0, encoding='utf8', quoting=csv.QUOTE_ALL, engine='python')
pandas.read_csv
import re import pandas as pd import os.path from os import path from IPython.display import clear_output def check_simplified_name(varlist, multiindex_df, exclude_vars=[]): stig_var_list = [] excluded_var_list = [] for i in range(1, len(multiindex_df["simplified_name"])): for var in varlist: if re.search(var, multiindex_df['simplified_name'][i], re.IGNORECASE): for ex in exclude_vars: if multiindex_df['simplified_name'][i].lower() == ex: if multiindex_df['simplified_name'][i] not in excluded_var_list: excluded_var_list.append(multiindex_df['name'][i]) if multiindex_df['name'][i] not in excluded_var_list: if multiindex_df['name'][i] not in stig_var_list: stig_var_list.append(multiindex_df['name'][i]) return stig_var_list, excluded_var_list def regex_filter(stig_vars, terms_to_filter, terms_to_filter_out): filter_out = [] keep_in = [] for i in stig_vars: simple_var = i.strip('\\').split('\\')[-1] for term in terms_to_filter: if re.search(term, simple_var, re.IGNORECASE): keep_in.append(i) for term in terms_to_filter_out: if re.search(term, simple_var, re.IGNORECASE): filter_out.append(i) keep_list = [item for item in stig_vars if item in keep_in] print("Found", len(keep_list), "that are stigmatizing") full_list = filter_out+keep_list list_difference = [item for item in stig_vars if item not in full_list] print(len(list_difference), "still need review") return keep_list, list_difference def manual_check(final_vars, out_file, keep_vars, prev_file=None, ex_vars=None): while path.exists(out_file): print("Output file already exists. Would you like rename the output file or exit?") res = input("Type 'r' to rename or 'e' for exit:\n") if res == 'r': out_file = input("Type new output file:\n") elif res == 'e': return None print("Continue to review of", len(final_vars), 'variables?') status = input("y/n: ") if len(keep_vars) > 0: total = len(keep_vars) df = pd.DataFrame(keep_vars, columns=['full name']) df['simple name'] = '' df['stigmatizing'] = '' for i in range(df.shape[0]): df['simple name'][i] = df['full name'][i].strip('\\').split('\\')[-1] df['stigmatizing'][i] = 'y' print("Stigmatizing:", df['full name'][i].strip('\\').split('\\')[-1], "<, recording result", i+1, "of", total, "already identified as stigmatizing") if status == "y": stig_vars_df = go_through_df(final_vars, prev_file) stig_vars_df = stig_vars_df.append(df, ignore_index=True) stig_vars_df.to_csv(out_file, sep='\t') print("\n \nSTIGMATIZING VARIABLE RESULTS SAVED TO:\t", out_file) else: stig_vars_df = None if ex_vars is not None: print("Would you like to review the excluded variables?") ex_var_review = input('Type "yes" or "no": \n') if ex_var_review == 'yes': ex_vars_df = go_through_df(ex_vars) ex_out_file = out_file.replace('.tsv', '_excluded.tsv') ex_vars_df.to_csv(ex_out_file, sep='\t') print("\n \nEXCLUDED VARIABLE RESULTS SAVED TO:\t", ex_out_file) else: ex_vars_df = None print("Clear cell output and display pandas dataframe?") clear = input('Type "y" or "n": \n') if clear == 'y': clear_output() display(stig_vars_df) return stig_vars_df, ex_vars_df def go_through_df(var_list, prev_file): df =
pd.DataFrame(var_list, columns=['full name'])
pandas.DataFrame
""" __author__ = <NAME> Many analysis functions for dF/F. Main class is CalciumReview. """ import pathlib import re import itertools import warnings from typing import Optional, Dict import attr from attr.validators import instance_of import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from typing import List, Tuple, Dict from enum import Enum from scipy import stats from calcium_bflow_analysis.dff_analysis_and_plotting import dff_analysis from calcium_bflow_analysis.single_fov_analysis import filter_da class Condition(Enum): HYPER = "HYPER" HYPO = "HYPO" class AvailableFuncs(Enum): """ Allowed analysis functions that can be used with CalciumReview. The values of the enum variants are names of functions in dff_analysis.py """ AUC = "calc_total_auc_around_spikes" MEAN = "calc_mean_auc_around_spikes" MEDIAN = "calc_median_auc_around_spikes" SPIKERATE = "calc_mean_spike_num" @attr.s class CalciumReview: """ Evaluate and analyze calcium data from TAC-like experiments. The attributes ending with `_data` are pd.DataFrames that contain the result of different function from dff_analysis.py. If you wish to add a new function, first make sure that its output is compatible with that of existing functions, then add a new attribute to the class and a new variant to the enum, and finally patch the __attrs_post_init__ method to include this new attribute. Make sure to not change the order of the enum - add the function at the bottom of that list. """ folder = attr.ib(validator=instance_of(pathlib.Path)) glob = attr.ib(default=r"*data_of_day_*.nc") files = attr.ib(init=False) days = attr.ib(init=False) conditions = attr.ib(init=False) df_columns = attr.ib(init=False) funcs_dict = attr.ib(init=False) raw_data = attr.ib(init=False) auc_data = attr.ib(init=False) mean_data = attr.ib(init=False) spike_data = attr.ib(init=False) def __attrs_post_init__(self): """ Find all files and parsed days for the experiment, and (partially) load them into memory. """ self.files = [] self.raw_data = {} all_files = self.folder.rglob(self.glob) day_reg = re.compile(r".+?of_day_(\d+).nc") parsed_days = [] print("Found the following files:") day = 0 for file in all_files: print(file) self.files.append(file) try: day = int(day_reg.findall(file.name)[0]) except IndexError: continue parsed_days.append(day) self.raw_data[day] = xr.open_dataset(file) self.days = np.unique(np.array(parsed_days)) stats = ["_mean", "_std"] self.conditions = list(set(self.raw_data[day].condition.values.tolist())) self.df_columns = [ "".join(x) for x in itertools.product(self.conditions, stats) ] + ["t", "p"] self.auc_data =
pd.DataFrame(columns=self.df_columns)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd import pandas.util.testing as pdt import qiime2 from q2_taxa import collapse, filter_table, filter_seqs class CollapseTests(unittest.TestCase): def assert_index_equal(self, a, b): # this method is derived from scikit-bio 0.5.1 pdt.assert_index_equal(a, b, exact=True, check_names=True, check_exact=True) def assert_data_frame_almost_equal(self, left, right): # this method is derived from scikit-bio 0.5.1 pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) self.assert_index_equal(left.index, right.index) def test_collapse(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;c', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_missing_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;__', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_bad_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) with self.assertRaisesRegex(ValueError, 'of 42 is larger'): collapse(table, taxonomy, 42) with self.assertRaisesRegex(ValueError, 'of 0 is too low'): collapse(table, taxonomy, 0) def test_collapse_missing_table_ids_in_taxonomy(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat3']) with self.assertRaisesRegex(ValueError, 'missing.*feat2'): collapse(table, taxonomy, 1) class FilterTable(unittest.TestCase): def test_filter_no_filters(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_table(table, taxonomy) def test_alt_delimiter(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_table(table, taxonomy, include='<EMAIL>', query_delimiter='@peanut@') pdt.assert_frame_equal(obs, table, check_like=True) # exclude with delimiter obs = filter_table(table, taxonomy, exclude='<EMAIL>', query_delimiter='@peanut@') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_filter_table_unknown_mode(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_table(table, taxonomy, include='bb', mode='not-a-mode') def test_filter_table_include(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, include='cc,ee') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='dd') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut!') def test_filter_table_include_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='bb', mode='exact') def test_filter_table_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='ab') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, exclude='xx') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='dd') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb') def test_filter_table_exclude_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='peanut!', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_table_include_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa', exclude='peanut!') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only - feat2 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - feat2 dropped at inclusion step obs = filter_table(table, taxonomy, include='cc', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at inclusion step obs = filter_table(table, taxonomy, include='ee', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features - all dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='aa', exclude='bb', mode='exact') # keep no features - one dropped at inclusion, one dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='cc', exclude='cc', mode='exact') # keep no features - all dropped at inclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut', exclude='bb', mode='exact') def test_filter_table_underscores_escaped(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep feat1 only - underscore not treated as a wild card obs = filter_table(table, taxonomy, include='cc,d_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - underscore in query matches underscore in # taxonomy annotation taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; c_', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) obs = filter_table(table, taxonomy, include='c_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_all_features_with_frequency_greater_than_zero_get_filtered(self): table = pd.DataFrame([[2.0, 0.0], [1.0, 0.0], [9.0, 0.0], [1.0, 0.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # empty - feat2, which is matched by the include term, has a frequency # of zero in all samples, so all samples end up dropped from the table with self.assertRaisesRegex(ValueError, expected_regex='greater than zero'): filter_table(table, taxonomy, include='dd') def test_extra_taxon_ignored(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee', 'aa; bb; cc'], index=pd.Index(['feat1', 'feat2', 'feat3'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) def test_missing_taxon_errors(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc'], index=pd.Index(['feat1'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, expected_regex='All.*feat2'): filter_table(table, taxonomy, include='bb') class FilterSeqs(unittest.TestCase): def test_filter_no_filters(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_seqs(seqs, taxonomy) def test_alt_delimiter(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_seqs(seqs, taxonomy, include='cc<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # exclude with delimiter obs = filter_seqs(seqs, taxonomy, exclude='ww<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) def test_filter_seqs_unknown_mode(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_seqs(seqs, taxonomy, include='bb', mode='not-a-mode') def test_filter_seqs_include(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='bb') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='cc,ee') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, include='cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, include='dd') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='peanut!') def test_filter_seqs_include_exact_match(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='bb', mode='exact') def test_filter_seqs_exclude(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, exclude='ab') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='xx') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, exclude='dd') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='dd ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, exclude='cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa; bb') def test_filter_seqs_exclude_exact_match(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, exclude='peanut!', mode='exact') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_seqs_include_exclude(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='aa', exclude='peanut!') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only - feat2 dropped at exclusion step obs = filter_seqs(seqs, taxonomy, include='aa', exclude='ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only - feat2 dropped at inclusion step obs = filter_seqs(seqs, taxonomy, include='cc', exclude='ee') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True)
pdt.assert_series_equal(obs, exp)
pandas.util.testing.assert_series_equal
# TwitterHashtagScraper # Copyright 2020 <NAME> # See LICENSE for details. import csv import json import math import sys import time from datetime import datetime from itertools import cycle from re import findall import requests import pandas as pd from utils_json import json_tweet_parser class TwitterHashtagScraper(): """Twitter Hashtag Scraper """ def __init__(self, hashtag, x_guest_token, use_proxy, output_path=None, max_tweets=None): """Twitter Hashtag Scraper constructor Args: hashtag (str): hashtag to scrap x_guest_token (str): a valid guest token use_proxy (boolean): boolean to activate proxies or not output_path (str, optional): output path. Defaults to None. max_tweets (int, optional): max number of tweets to download else try to get tweets until scroll is over. Defaults to None. """ self.hashtag = hashtag self.use_proxy = use_proxy self.output_path = output_path self.max_tweets = max_tweets self.x_guest_token = x_guest_token def _init_proxies(self): """Function to obtain available proxies from sslproxies Returns: [list] -- list of proxies """ r = requests.get('https://www.sslproxies.org/') matches = findall(r"<td>\d+.\d+.\d+.\d+</td><td>\d+</td>", r.text) revised = [m.replace('<td>', '') for m in matches] proxies = [s[:-5].replace('</td>', ':') for s in revised] return proxies def _make_request(self, proxy_active, proxy_active_value, url, headers, params): """Function to make a request through a proxy Arguments: proxy_active {int} -- boolean about the active proxy proxy_active_value {str} -- active proxy url {str} -- url to make the request headers {dict} -- headers to send with the request params {dict} -- params to send with the request Returns: [int, str, dict] -- proxy information and result of the request """ if self.use_proxy: proxies = self._init_proxies() proxy_pool = cycle(proxies) # Iterate trying free proxies to make the request for i in range(100): if proxy_active != 1: proxy_active_value = next(proxy_pool) try: response = requests.get('https://httpbin.org/ip', timeout=2.0, proxies={ "http": 'http://' + proxy_active_value, "https": 'https://' + proxy_active_value}) page = requests.get(url, headers=headers, params=params, proxies={ "http": 'http://' + proxy_active_value, "https": 'https://' + proxy_active_value}) proxy_active = 1 if page.status_code == 200: return proxy_active, proxy_active_value, page except Exception as e: proxy_active = 0 continue return proxy_active, proxy_active_value, "Error" else: page = requests.get(url, headers=headers, params=params) proxy_active = 0 if page.status_code == 200: return proxy_active, None, page def _get_hashtag_timeline(self): """Function to obain the hashtag timeline from Twitter Returns: dict -- dict with tweets stored dict -- dict with users stored """ tweets_dict = self._create_dict_from_structure('tweets_hashtag') users_dict = self._create_dict_from_structure('users_hashtag') print(f"Collecting data from Twitter about: {self.hashtag}") has_more_items = True last_tweet_id = 0 count_tweets = 0 proxy_active = 0 proxy_active_value = "" min_position = math.inf try: # Iterate simulating scroll while (has_more_items): print(f"{count_tweets}/{self.max_tweets if self.max_tweets else 'Max Scroll'} tweets obtained...") headers = { 'authority': 'api.twitter.com', 'authorization': 'Bearer AAAAAAAAAAAAAAAAAAAAANRILgAAAAAAnNwIzUejRCOuH5E6I8xnZz4puTs%3D1Zv7ttfk8LF81IUq16cHjhLTvJu4FA33AGWWjCpTnA', 'x-twitter-client-language': 'es', 'x-guest-token': str(self.x_guest_token), 'x-twitter-active-user': 'yes', 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.67 Safari/537.36', 'accept': '*/*', 'origin': 'https://twitter.com', 'sec-fetch-site': 'same-site', 'sec-fetch-mode': 'cors', 'sec-fetch-dest': 'empty', 'referer': 'https://twitter.com/', 'accept-language': 'es-ES,es;q=0.9', } params = ( ('include_profile_interstitial_type', '1'), ('include_blocking', '1'), ('include_blocked_by', '1'), ('include_followed_by', '1'), ('include_want_retweets', '1'), ('include_mute_edge', '1'), ('include_can_dm', '1'), ('include_can_media_tag', '1'), ('skip_status', '1'), ('cards_platform', 'Web-12'), ('include_cards', '1'), ('include_ext_alt_text', 'true'), ('include_quote_count', 'true'), ('include_reply_count', '1'), ('tweet_mode', 'extended'), ('include_entities', 'true'), ('include_user_entities', 'true'), ('include_ext_media_color', 'true'), ('include_ext_media_availability', 'true'), ('send_error_codes', 'true'), ('simple_quoted_tweet', 'true'), ('q', '#'+str(self.hashtag)+''), ('count', '20'), ('query_source', 'hashtag_click'), ('cursor', str(min_position)), ('pc', '1'), ('spelling_corrections', '1'), ('ext', 'mediaStats,highlightedLabel'), ) url = 'https://api.twitter.com/2/search/adaptive.json' proxy_active, proxy_active_value, page = self._make_request( proxy_active, proxy_active_value, url, headers, params) data = json.loads(page.content) cursor_item_init = [d for d in data["timeline"]["instructions"][0]["addEntries"]["entries"] if d['entryId'] == 'sq-cursor-bottom'] if cursor_item_init: cursor_item = cursor_item_init[0] else: cursor_item = data["timeline"]["instructions"][-1]["replaceEntry"]["entry"] min_position = cursor_item["content"]["operation"]["cursor"]["value"] for tweet in data["globalObjects"]["tweets"].keys(): (tweets_dict, users_dict) = json_tweet_parser(data["globalObjects"]["tweets"][tweet],data["globalObjects"]["users"], tweets_dict, users_dict) count_tweets = count_tweets+20 if len(tweets_dict["id_tweet"]) > 0: if last_tweet_id == tweets_dict["id_tweet"][-1]: has_more_items = False last_tweet_id = tweets_dict["id_tweet"][-1] else: has_more_items = False if self.max_tweets: if count_tweets > self.max_tweets: has_more_items = False time.sleep(0.1) except Exception as e: print(e) return tweets_dict, users_dict def _create_dict_from_structure(self, key): """Function to create a dict structure from the template defined in the json Arguments: key {str} -- key in the json artifact Returns: dict -- template dict to fill """ json_file_item = {"tweets_hashtag": [ "id_tweet", "id_user", "user", "link_tweet", "timestamp", "text", "replies_count", "retweets_count", "likes_count" ], "users_hashtag": [ "username", "id_user", "img_user", "link_user" ] } dict_struct = {} for column in json_file_item[key]: dict_struct[column] = [] return dict_struct def collect(self): """Function to execute a search on twitter from the initial term """ tweets_dict, users_dict = self._get_hashtag_timeline() tweets_df = pd.DataFrame(tweets_dict) users_df =
pd.DataFrame(users_dict)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 27 11:00:37 2018 Script to fit SHG interference data. The procedure fits the data twice, first with the period free, and then with the period fixed at the average of the first runs. @author: <NAME> """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import curve_fit import math #name for file fileout = '101618fitsHemi2.txt' #names of each fit names = ['hemi2pure1a','hemi2pure1b','hemi2salt1a','hemi2salt1b',\ 'hemi2pure2a','hemi2pure2b','hemi2salt2a','hemi2salt2b',\ 'hemi2pure3a','hemi2pure3b'] #indices to import if you have multiple files named phaseMeasureX where x is #some number, enter the first and last indices that you want to import. startNum = 16 endNum = 25 #open file for writing to f = open(fileout,'w+') #initialize data frames to hold data countsA = pd.DataFrame() countsB = pd.DataFrame() pos = pd.DataFrame() #go through each file for i in range(endNum-startNum+1): #names of each file filename = 'phaseMeasure' + str(i+startNum) + '.txt' #import countsA (signal),countsB (dark counts), and pos (stage position) countsA[names[i]] = pd.read_csv(filename,sep='\t')['countsA'] countsB[names[i]] = pd.read_csv(filename,sep='\t')['countsB'] pos[names[i]] =
pd.read_csv(filename,sep='\t')
pandas.read_csv
# usage: # dataframe_filename import sys import os import seaborn as sns import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from keyname import keyname as kn from fileshash import fileshash as fsh matplotlib.rcParams['pdf.fonttype'] = 42 sns.set(style='whitegrid') non_url_safe = ['"', '#', '$', '%', '&', '+', ',', '/', ':', ';', '=', '?', '@', '[', '\\', ']', '^', '`', '{', '|', '}', '~', "'"] def slugify(text): """ Turn the text content of a header into a slug for use in an ID """ non_safe = [c for c in text if c in non_url_safe] if non_safe: for c in non_safe: text = text.replace(c, '') # Strip leading, trailing and multiple whitespace, convert remaining whitespace to _ text = u'_'.join(text.split()) return text dataframe_filename = sys.argv[1] df = pd.read_csv(dataframe_filename) print("Data loaded!") df['Treatment'] = df['Treatment'].apply(lambda raw : { 'resource-even__channelsense-no__nlev-two__mute' : 'Blind', 'resource-even__channelsense-no__nlev-two__mute__mixed' : 'Mixed', 'resource-even__channelsense-yes__nlev-onebig' : 'Flat-Even', 'resource-even__channelsense-yes__nlev-two' : 'Nested-Even', 'resource-wave__channelsense-yes__nlev-onebig' : 'Flat-Wave', 'resource-wave__channelsense-yes__nlev-two' : 'Nested-Wave', }[raw] ) df['Relationship Category'] = df.apply( lambda x: ( 'Neighbor' if 'Neighbor' in x['Relationship'] else 'Channel' if 'mate' in x['Relationship'] else 'Cell' if 'Cell' in x['Relationship'] else 'Propagule' if 'Propagule' in x['Relationship'] else 'Unknown' ), axis=1 ) print("Data crunched!") for measure in df['Measure'].unique(): manip = df.pivot_table( index=[ 'First Update', 'Last Update', 'Relationship', 'Relationship Category', 'Seed', 'Treatment' ], columns='Measure', values='Value', aggfunc='first' ).reset_index() manip = manip[manip["Relationship"] != "Neighbor"] l0 = manip[ manip["Relationship"].map(lambda x: " 1" not in x) ].copy() l0["Level"] = 0 l1 = manip[ manip["Relationship"].map(lambda x: " 0" not in x) ].copy() l1["Level"] = 1 res =
pd.concat([l0, l1])
pandas.concat
import pandas as pd import src.config as proj_config import matplotlib.pyplot as plt from pandas.plotting import autocorrelation_plot from src.demand_prediction.events_models import calc_events_ts from src.demand_prediction.general_functions import load_table_cache, save_table_cache cache_path = proj_config.CACHE_DIR data_path = proj_config.DATA_DIR events_data_path = proj_config.EVENTS_DATASET_DIR categories_path = cache_path + '/categories_events/' def add_event_to_df(df, events, start_pred_time, leaf_name, window_size=3, use_cache=False, set_name='train', w=False): path_res = '/saved_df/' + leaf_name + '_' + set_name + '_' + start_pred_time + '.pkl' res = load_table_cache(path_res) if res is None or not use_cache: res = calc_events_ts(df, events, n=window_size, w=w) save_table_cache(res, path_res) return res def split_data(data, start_pred_time, verbose=True): X_train = data[data['date'] < start_pred_time] X_test = data[data['date'] >= start_pred_time] if verbose: print("Train size:", len(X_train), " - Test size:", len(X_test)) return X_train, X_test def create_events_df(data, events, emb_only=False, emb_size=100): data.index = data.index.astype(str) data = data.reset_index() events['date'] = events['date'].astype(str) data = data.merge(events, on='date', how='left').dropna() data = data[['date', 'Category', 'embedding', 'wiki_name', 'High-Category', 'country', 'ref_num']] for ii in range(emb_size): col = 'emb_' + str(ii) data[col] = data['embedding'].apply(lambda x: x[ii]) if not emb_only: one_hot = pd.get_dummies(data['Category']) data = data.join(one_hot) one_hot = pd.get_dummies(data['High-Category']) data = data.join(one_hot) one_hot =
pd.get_dummies(data['country'])
pandas.get_dummies
""" This module implements methods to collect financial data from Wharton Research Services via the wrds package """ import datetime import json import re import sys import time import warnings from typing import Tuple import numpy as np import pandas as pd import wrds from colorama import Fore, Back, Style from sklearn.preprocessing import StandardScaler from config import * # Configurations for displaying DataFrames from core.utils import get_index_name, check_directory_for_file, Timer, lookup_multiple pd.set_option('mode.chained_assignment', None) warnings.simplefilter(action='ignore', category=pd.errors.PerformanceWarning) warnings.simplefilter(action='ignore', category=FutureWarning) def retrieve_index_history(index_id: str = None, from_file=False, last_n: int = None, folder_path: str = '', generate_dict=False) -> pd.DataFrame: """ Download complete daily index history and return as Data Frame (no date index) :return: DataFrame containing full index constituent data over full index history :rtype: pd.DataFrame """ if not from_file: # Load GVKEYX lookup dict with open(os.path.join(ROOT_DIR, 'data', 'gvkeyx_name_dict.json'), 'r') as fp: gvkeyx_lookup = json.load(fp) # Establish database connection print('Opening DB connection ...') db = wrds.Connection(wrds_username='afecker') print('Done') # Retrieve list of all stocks (gvkeys) for specified index including full date range of historic index data gvkey_list, relevant_date_range = get_all_constituents( constituency_matrix=pd.read_csv(os.path.join(ROOT_DIR, folder_path, 'constituency_matrix.csv'), index_col=0, header=[0, 1], parse_dates=True)) # Set start and end date if last_n: start_date = str(relevant_date_range[-last_n].date()) else: start_date = str(relevant_date_range[0].date()) end_date = str(relevant_date_range[-1].date()) # Specify list of companies and start and end date of query parameters = {'company_codes': tuple(gvkey_list), 'start_date': start_date, 'end_date': end_date} print('Querying full index history for index %s \n' 'between %s and %s ...' % (gvkeyx_lookup.get(index_id), start_date, end_date)) start_time = time.time() data = get_data_table(db, sql_query=True, query_string="select datadate, gvkey, iid, trfd, ajexdi, cshtrd, prccd, divd, conm, curcdd, sedol, exchg, gsubind " "from comp.g_secd " "where gvkey in %(company_codes)s and datadate between %(start_date)s and %(end_date)s " "order by datadate asc", index_col=['datadate', 'gvkey', 'iid'], table_info=1, params=parameters) end_time = time.time() print('Query duration: %g seconds' % (round(end_time - start_time, 2))) print('Number of observations: %s' % data.shape[0]) print('Number of individual dates: %d' % data.index.get_level_values('datadate').drop_duplicates().size) # JOB: Add return_index and daily_return columns data = calculate_daily_return(data, save_to_file=False) # Reset index data.reset_index(inplace=True) # Save to file data.to_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv')) else: data = pd.read_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv'), dtype={'gvkey': str, 'gsubind': str, 'datadate': str, 'gics_sector': str, 'gsector': str}, parse_dates=False, index_col=False) data.loc[:, 'datadate'] = pd.to_datetime(data.loc[:, 'datadate'], infer_datetime_format=True).dt.date if not check_directory_for_file(index_id=index_id, folder_path=os.path.join(folder_path, 'gvkey_name_dict.json'), create_dir=False, print_status=False): generate_company_lookup_dict(folder_path=folder_path, data=data) return data def load_full_data(index_id: str = '150095', force_download: bool = False, last_n: int = None, columns: list = None, merge_gics=False) -> Tuple[ pd.DataFrame, pd.DataFrame, str, str]: """ Load all available records from the data for a specified index :param columns: :param merge_gics: :param index_id: Index ID to load data for :param force_download: Flag indicating whether to overwrite existing data :param last_n: Number of last available dates to consider :return: Tuple of (constituency_matrix, full_data, index_name, folder_path) """ # Load index name dict and get index name index_name, lookup_table = get_index_name(index_id=index_id) configs = json.load(open(os.path.join(ROOT_DIR, 'config.json'), 'r')) folder_path = os.path.join(ROOT_DIR, 'data', index_name.lower().replace(' ', '_')) # Path to index data folder # JOB: Check whether index data already exist; create folder and set 'load_from_file' flag to false if non-existent load_from_file = check_directory_for_file(index_name=index_name, folder_path=folder_path, force_download=force_download) # JOB: Check if saved model folder exists and create one if not if not os.path.exists(os.path.join(ROOT_DIR, configs['model']['save_dir'])): os.makedirs(configs['model']['save_dir']) if not load_from_file: # JOB: Create or load constituency matrix print('Creating constituency matrix ...') timer = Timer() timer.start() create_constituency_matrix(load_from_file=load_from_file, index_id=index_id, lookup_table=lookup_table, folder_path=folder_path) print('Successfully created constituency matrix.') timer.stop() # JOB: Load constituency matrix print('Loading constituency matrix ...') constituency_matrix = pd.read_csv(os.path.join(ROOT_DIR, folder_path, 'constituency_matrix.csv'), index_col=0, header=[0, 1], parse_dates=True) print('Successfully loaded constituency matrix.\n') # JOB: Load full data print('Retrieving full index history ...') timer = Timer().start() full_data = retrieve_index_history(index_id=index_id, from_file=load_from_file, last_n=last_n, folder_path=folder_path, generate_dict=False) full_data.set_index('datadate', inplace=True, drop=True) # JOB: Sort by date and reset index full_data.sort_index(inplace=True) full_data.reset_index(inplace=True) if merge_gics and all(col_name not in full_data.columns for col_name in ['gsubind', 'gsector', 'gics_sector']): print('Neither \'gsubind\' nor \'gsector\' are in the columns.') # JOB: Create GICS (Global Industry Classification Standard) matrix gics_matrix = create_gics_matrix(index_id=index_id, index_name=index_name, lookup_table=lookup_table, load_from_file=load_from_file) # JOB: Merge gics matrix with full data set print('Merging GICS matrix with full data set.') full_data.set_index(['datadate', 'gvkey'], inplace=True) full_data = full_data.join(gics_matrix, how='left').reset_index() # Save to file full_data.to_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv')) if all(col_name not in full_data.columns for col_name in ['gics_sector', 'gsector']): print('Neither \'gics_sector\' nor \'gsector\' are in the columns.') # JOB: Extract 2-digit GICS code assert 'gsubind' in full_data.columns generate_gics_sector(full_data) # Save to file print('Saving modified data to file ...') full_data.to_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv')) if ('gsector' in full_data.columns) and ('gics_sector' not in full_data.columns): print('Renaming \'gsector\' to \'gics_sector\'.') # full_data.drop(columns=['gsector'], inplace=True) full_data.rename(columns={'gsector': 'gics_sector'}, inplace=True) # Save to file print('Saving modified data to file ...') full_data.to_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv')) if any(col_name in columns for col_name in ['ind_mom_ratio', 'ind_mom']): # JOB: Add 6-month (=120 days) momentum column print('Adding 6-month momentum ...') timer = Timer().start() full_data.set_index(keys=['datadate', 'gvkey', 'iid'], inplace=True) full_data.loc[:, '6m_mom'] = full_data.groupby(level=['gvkey', 'iid'])['return_index'].apply( lambda x: x.pct_change(periods=120)) timer.stop() full_data.reset_index(inplace=True) gics_map = pd.read_json(os.path.join(ROOT_DIR, 'data', 'gics_code_dict.json'), orient='records', typ='series').rename('gics_sec') gics_map = {str(key): val for key, val in gics_map.to_dict().items()} if 'gics_sector_name' not in full_data.columns: print('Extracting GICS sector names ...') full_data.loc[:, 'gics_sector_name'] = full_data['gics_sector'].replace(gics_map, inplace=False) print('Saving modified data to file ...') full_data.to_csv(os.path.join(ROOT_DIR, folder_path, 'index_data_constituents.csv')) # if 'prchd' in full_data.columns: # full_data.loc[:, 'daily_spread'] = (full_data['prchd'] - full_data['prcld']).divide(full_data['prccd']) if 'daily_return' not in full_data.columns: print('Calculating daily returns ...') timer = Timer.start() full_data = calculate_daily_return(full_data, folder_path=folder_path, save_to_file=True) timer.stop() print('Successfully loaded index history.') timer.stop() print() # Drop records with missing daily_return variable full_data.dropna(subset=['daily_return'], inplace=True) return constituency_matrix, full_data, index_name, folder_path def generate_study_period(constituency_matrix: pd.DataFrame, full_data: pd.DataFrame, period_range: tuple, index_name: str, configs: dict, folder_path: str, columns=None) -> ( pd.DataFrame, int): """ Generate a time-period sample for a study period :param columns: Feature columns :param configs: Dictionary containing model and training configurations :param folder_path: Path to data folder :param period_range: Date index range of study period in form (start_index, end_index) :type period_range: tuple :param full_data: Full stock data :type full_data: pd.DataFrame :param constituency_matrix: Constituency matrix :type constituency_matrix: pd.DataFrame :param index_name: Name of index :type index_name: str :return: Tuple Study period sample and split index :rtype: tuple[pd.DataFrame, int] """ # Convert date columns to DatetimeIndex full_data.loc[:, 'datadate'] = pd.to_datetime(full_data['datadate']) # Set index to date column full_data.set_index('datadate', inplace=True, drop=True) # Get unique dates unique_dates = full_data.index.drop_duplicates() split_ratio = configs['data']['train_test_split'] i_split = len(unique_dates[:period_range[0]]) + int( len(unique_dates[period_range[0]:period_range[1]]) * split_ratio) split_date = unique_dates[i_split] # Detect potential out-of-bounds indices if abs(period_range[0]) > len(unique_dates) or abs(period_range[1] > len(unique_dates)): print(f'Index length is {len(unique_dates)}. Study period range ist {period_range}.') raise IndexError('Period index out of bounds.') print(f'Retrieving index constituency for {index_name} as of {split_date.date()}.') try: constituent_indices = get_index_constituents(constituency_matrix, date=split_date, folder_path=folder_path, print_constituents=False) if len(constituent_indices) < 2: raise RuntimeWarning('Period contains too few constituents. Continuing with next study period.') except IndexError as ie: print( f'{Fore.RED}{Back.YELLOW}{Style.BRIGHT}Period index out of bounds. Choose different study period bounds.' f'{Style.RESET_ALL}') print(', '.join(ie.args)) print('Terminating program.') sys.exit(1) # df_to_html(constituency_matrix.iloc[-20:, :20], 'const_matrix') # exit() full_data.reset_index(inplace=True) # JOB: Select relevant data # Select relevant stocks full_data = full_data.set_index(['gvkey', 'iid'], drop=True) # print(f'Length of intersection: {len(constituent_indices.intersection(full_data.index))}') # print(f'Length of difference: {len(constituent_indices.difference(full_data.index))}') assert len(constituent_indices.intersection(full_data.index)) == len(constituent_indices) print('\nFiltering by study period constituents ...') timer = Timer().start() full_data = full_data.loc[constituent_indices, :] # print(f'Number of constituents (deduplicated): {full_data.index.get_level_values(level="gvkey").unique().shape[0]}') full_data.reset_index(inplace=True) full_data.set_index('datadate', inplace=True) full_data.sort_index(inplace=True) timer.stop() # JOB: Select data from study period print(f'Retrieving data from {unique_dates[period_range[0]].date()} to {unique_dates[period_range[1]].date()} \n') study_data = full_data.loc[unique_dates[period_range[0]]:unique_dates[period_range[1]]] if 'ind_mom_ratio' in columns: # JOB: Drop records without 6 month-returns print('Removing records without 6-month momentum ...') print('Missing records before removal:') print(study_data[study_data['6m_mom'].isna()].set_index(['gvkey', 'iid'], append=True).index.get_level_values( level='gvkey').unique().shape[0]) study_data.dropna(how='any', subset=['6m_mom'], inplace=True) print('Missing records after removal:') print(study_data[study_data['6m_mom'].isna()].set_index(['gvkey', 'iid'], append=True).index.get_level_values( level='gvkey').unique().shape[0]) del full_data print(f'Study period length: {len(study_data.index.unique())}') study_data_split_index = study_data.index.unique().get_loc(split_date, method='ffill') study_data_split_date = study_data.index.unique()[study_data_split_index] print(f'Study data split index: {study_data_split_index}') print(f'Study data split date: {study_data_split_date.date()}') # JOB: Calculate mean and standard deviation of daily returns for training period mean_daily_return = study_data.loc[unique_dates[period_range[0]]:split_date, 'daily_return'].mean() std_daily_return = study_data.loc[unique_dates[period_range[0]]:split_date, 'daily_return'].std() print('Mean daily return: %g' % mean_daily_return) print('Std. daily return: %g \n' % std_daily_return) # JOB: Calculate standardized daily returns study_data.loc[:, 'stand_d_return'] = (study_data['daily_return'] - mean_daily_return) / std_daily_return # JOB: Drop observations with critical n/a values # Review: Check whether operation is redundant # critical_cols = ['daily_return'] # study_data.dropna(how='any', subset=critical_cols, inplace=True) # JOB: Create target study_data.loc[:, 'above_cs_med'] = study_data['daily_return'].gt( study_data.groupby('datadate')['daily_return'].transform('median')).astype(np.int8) study_data.loc[:, 'cs_med'] = study_data.groupby('datadate')['daily_return'].transform('median') # JOB: Create cross-sectional ranking # study_data.loc[:, 'cs_rank'] = study_data.groupby('datadate')['daily_return'].rank(method='first', ascending=False).astype('int16') # study_data.loc[:, 'cs_percentile'] = study_data.groupby('datadate')['daily_return'].rank(pct=True) # JOB: Add columns with number of securities in cross-section study_data.loc[:, 'cs_length'] = study_data.groupby('datadate')['daily_return'].count() study_data.reset_index(inplace=True) study_data.set_index('datadate', inplace=True, drop=True) if any(col_name in columns for col_name in ['ind_mom_ratio', 'ind_mom']): # JOB: Add industry momentum column study_data.loc[:, 'ind_mom'] = study_data.groupby(['gics_sector', 'datadate'])['6m_mom'].transform('mean') # Drop observations with missing industry momentum study_data.dropna(how='any', subset=['ind_mom'], inplace=True) # JOB: Add 'ind_mom_ratio' column study_data.loc[:, 'ind_mom_ratio'] = study_data.loc[:, '6m_mom'].divide(study_data.loc[:, 'ind_mom']) # JOB: Remove data with missing or unbounded industry momentum ratio study_data = study_data[study_data['ind_mom_ratio'].ne(np.inf)] study_data.dropna(subset=['ind_mom_ratio'], inplace=True) # Standardize ind_mom_ratio study_data.loc[:, 'ind_mom_ratio'] = StandardScaler().fit_transform( study_data.loc[:, 'ind_mom_ratio'].values.reshape(-1, 1)) return study_data, study_data_split_index def create_constituency_matrix(load_from_file=False, index_id='150095', lookup_table='global', folder_path: str = None) -> None: """ Generate constituency matrix for stock market index components :param lookup_table: Table to use for constituency lookup :param folder_path: Path to data folder :param index_id: Index to create constituency matrix for :param load_from_file: Flag indicating whether to load constituency information from file :return: Tuple containing [0] list of historical constituent gvkeys and [1] relevant date range """ # File name with constituents and corresponding time frames file_name = 'data_constituents.csv' if folder_path: folder = folder_path else: folder = '' db = None const_data = None parameters = {'index_id': (index_id,)} # JOB: In case constituents have to be downloaded from database if not load_from_file: # Establish database connection print('Opening DB connection ...') db = wrds.Connection(wrds_username='afecker') print('Done') print(f'Retrieving index history from {lookup_table} ...') if lookup_table == 'global': const_data = get_data_table(db, sql_query=True, query_string="select * " "from comp.g_idxcst_his " "where gvkeyx in %(index_id)s ", index_col=['gvkey', 'iid'], table_info=1, params=parameters) elif lookup_table == 'north_america': const_data = get_data_table(db, sql_query=True, query_string="select * " "from comp.idxcst_his " "where gvkeyx in %(index_id)s ", index_col=['gvkey', 'iid'], table_info=1, params=parameters) # Save to file const_data.to_csv(os.path.join(ROOT_DIR, folder, 'data_constituents.csv')) # JOB: Load table from local file else: # Load constituency table from file and transform key to string const_data = pd.read_csv(os.path.join(ROOT_DIR, folder, file_name), dtype={'gvkey': str}) # const_data['gvkey'] = const_data['gvkey'].astype('str') # Set gvkey and iid as MultiIndex const_data.set_index(['gvkey', 'iid'], inplace=True) # Convert date columns to datetime format for col in ['from', 'thru']: const_data.loc[:, col] = pd.to_datetime(const_data[col], format='%Y-%m-%d') const_data.loc[:, col] = const_data[col].dt.date # Determine period starting date and relevant date range index_starting_date = const_data['from'].min() relevant_date_range = pd.date_range(index_starting_date, datetime.date.today(), freq='D') # Create empty constituency matrix constituency_matrix = pd.DataFrame(0, index=relevant_date_range, columns=const_data.index.drop_duplicates()) # JOB: Iterate through all company stocks ever listed in index and set adjacency to 0 or 1 for stock_index in const_data.index: if isinstance(const_data.loc[stock_index], pd.Series): if pd.isnull(const_data.loc[stock_index, 'thru']): constituency_matrix.loc[pd.date_range(start=const_data.loc[stock_index, 'from'], end=datetime.date.today()), stock_index] = 1 else: constituency_matrix.loc[pd.date_range(start=const_data.loc[stock_index, 'from'], end=const_data.loc[ stock_index, 'thru']), stock_index] = 1 else: for row in const_data.loc[stock_index].iterrows(): if pd.isnull(row[1]['thru']): constituency_matrix.loc[ pd.date_range(start=row[1]['from'], end=datetime.date.today()), stock_index] = 1 else: constituency_matrix.loc[pd.date_range(start=row[1]['from'], end=row[1]['thru']), stock_index] = 1 # Save constituency table to file constituency_matrix.to_csv(os.path.join(ROOT_DIR, folder, 'constituency_matrix.csv')) if not load_from_file: db.close() print('DB connection closed.') return None def create_gics_matrix(index_id='150095', index_name=None, lookup_table=None, folder_path: str = None, load_from_file=False) -> pd.DataFrame: """ Generate constituency matrix with Global Industry Classification Standard (GICS) classification code (full length) :param index_id: Index to create constituency matrix for :param index_name: (Optional) - Index name :param lookup_table: (Optional) - Lookup table name :param folder_path: (Optional) - Folder path :param load_from_file: (Optional) - Tag indicating whether to load matrix from file :return: """ lookup_dict = {'Global Dictionary': {'file_path': 'gvkeyx_name_dict.json', 'lookup_table': 'global'}, 'North American Dictionary': {'file_path': 'gvkeyx_name_dict_na.json', 'lookup_table': 'north_america'} } if load_from_file: # JOB: In case existing gics_matrix can be loaded from file print(f'Loading GICS matrix for {index_id}: {index_name}') timer = Timer() timer.start() if folder_path is None: if index_name is None: index_name, lookup_table = lookup_multiple(dict_of_dicts=lookup_dict, index_id=index_id) folder_path = os.path.join(ROOT_DIR, 'data', index_name.lower().replace(' ', '_')) # Path to index data folder # Load from fle gic_constituency_matrix = pd.read_csv(os.path.join(ROOT_DIR, folder_path, 'gics_matrix.csv'), index_col=0, header=0, parse_dates=True, dtype=str) gic_constituency_matrix.index = pd.to_datetime(gic_constituency_matrix.index) timer.stop() else: # JOB: In case gics_matrix has to be created if folder_path is None: if (index_name is None) or (lookup_table is None): index_name, lookup_table = lookup_multiple(dict_of_dicts=lookup_dict, index_id=index_id) folder_path = os.path.join(ROOT_DIR, 'data', index_name.lower().replace(' ', '_')) # Path to index data folder else: index_name = str.split(folder_path, '\\')[-1].replace('_', ' ') index_id, lookup_table = lookup_multiple(dict_of_dicts=lookup_dict, index_id=index_name, reverse_lookup=True, key_to_lower=True) folder_exists = check_directory_for_file(index_name=index_name, folder_path=folder_path, create_dir=False) if folder_exists: print(f'Creating GICS matrix for {index_id}: {index_name.capitalize()}') timer = Timer().start() else: print( f'Directory for index {index_id} ({index_name.capitalize()}) does not exist. \nPlease either download the ' f'necessary data or choose different index ID.') raise LookupError('Value not found.') # JOB: Get all historic index constituents gvkey_list, _ = get_all_constituents( constituency_matrix=pd.read_csv(os.path.join(ROOT_DIR, folder_path, 'constituency_matrix.csv'), index_col=0, header=[0, 1], parse_dates=True)) parameters = {'index_ids': tuple(gvkey_list)} # JOB: Download GICS table # Establish database connection print('Opening DB connection ...') db = wrds.Connection(wrds_username='afecker') print('Done') print(f'Retrieving GICS history from {lookup_table} ...') if lookup_table == 'global': const_data = get_data_table(db, sql_query=True, query_string="select * " "from comp.g_co_hgic " "where gvkey in %(index_ids)s ", index_col=['gvkey'], table_info=1, params=parameters) elif lookup_table == 'north_america': const_data = get_data_table(db, sql_query=True, query_string="select * " "from comp.co_hgic " "where gvkey in %(index_ids)s ", index_col=['gvkey'], table_info=1, params=parameters) else: raise LookupError('Value not found.') # Convert date columns to datetime format for col in ['indfrom', 'indthru']: const_data.loc[:, col] = pd.to_datetime(const_data[col], format='%Y-%m-%d') const_data.loc[:, col] = const_data[col].dt.date # Determine period starting date and relevant date range index_starting_date = const_data['indfrom'].min() relevant_date_range = pd.date_range(index_starting_date, datetime.date.today(), freq='D') # Create empty constituency matrix gic_constituency_matrix = pd.DataFrame(None, index=relevant_date_range, columns=const_data.index.drop_duplicates()) # JOB: Iterate through all company stocks ever listed in index and set adjacency to 0 or 1 for stock_index in const_data.index: if isinstance(const_data.loc[stock_index], pd.Series): if pd.isnull(const_data.loc[stock_index, 'indthru']): gic_constituency_matrix.loc[ pd.date_range(start=const_data.loc[stock_index, 'indfrom'], end=datetime.date.today()), stock_index] = const_data.loc[stock_index, 'gsubind'] else: gic_constituency_matrix.loc[ pd.date_range(start=const_data.loc[stock_index, 'indfrom'], end=const_data.loc[ stock_index, 'indthru']), stock_index] = const_data.loc[stock_index, 'gsubind'] else: for row in const_data.loc[stock_index].iterrows(): if pd.isnull(row[1]['indthru']): gic_constituency_matrix.loc[ pd.date_range(start=row[1]['indfrom'], end=datetime.date.today()), stock_index] = row[1][ 'gsubind'] else: gic_constituency_matrix.loc[
pd.date_range(start=row[1]['indfrom'], end=row[1]['indthru'])
pandas.date_range
import json import os import glob import random from typing import Union try: import xarray as xr except ModuleNotFoundError: xr = None import numpy as np import pandas as pd from .datasets import Datasets from .utils import check_attributes, download, sanity_check from ai4water.utils.utils import dateandtime_now try: # shapely may not be installed, as it may be difficult to isntall and is only needed for plotting data. from ai4water.pre_processing.spatial_utils import plot_shapefile except ModuleNotFoundError: plot_shapefile = None # directory separator SEP = os.sep def gb_message(): link = "https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9" raise ValueError(f"Dwonlaoad the data from {link} and provide the directory " f"path as dataset=Camels(data=data)") class Camels(Datasets): """ Get CAMELS dataset. This class first downloads the CAMELS dataset if it is not already downloaded. Then the selected attribute for a selected id are fetched and provided to the user using the method `fetch`. Attributes ----------- - ds_dir str/path: diretory of the dataset - dynamic_features list: tells which dynamic attributes are available in this dataset - static_features list: a list of static attributes. - static_attribute_categories list: tells which kinds of static attributes are present in this category. Methods --------- - stations : returns name/id of stations for which the data (dynamic attributes) exists as list of strings. - fetch : fetches all attributes (both static and dynamic type) of all station/gauge_ids or a speficified station. It can also be used to fetch all attributes of a number of stations ids either by providing their guage_id or by just saying that we need data of 20 stations which will then be chosen randomly. - fetch_dynamic_features : fetches speficied dynamic attributes of one specified station. If the dynamic attribute is not specified, all dynamic attributes will be fetched for the specified station. If station is not specified, the specified dynamic attributes will be fetched for all stations. - fetch_static_features : works same as `fetch_dynamic_features` but for `static` attributes. Here if the `category` is not specified then static attributes of the specified station for all categories are returned. stations : returns list of stations """ DATASETS = { 'CAMELS-BR': {'url': "https://zenodo.org/record/3964745#.YA6rUxZS-Uk", }, 'CAMELS-GB': {'url': gb_message}, } def stations(self): raise NotImplementedError def _read_dynamic_from_csv(self, stations, dynamic_features, st=None, en=None): raise NotImplementedError def fetch_static_features(self, station, features): raise NotImplementedError @property def start(self): # start of data raise NotImplementedError @property def end(self): # end of data raise NotImplementedError @property def dynamic_features(self)->list: raise NotImplementedError def _check_length(self, st, en): if st is None: st = self.start if en is None: en = self.end return st, en def to_ts(self, static, st, en, as_ts=False, freq='D'): st, en = self._check_length(st, en) if as_ts: idx = pd.date_range(st, en, freq=freq) static = pd.DataFrame(np.repeat(static.values, len(idx), axis=0), index=idx, columns=static.columns) return static else: return static @property def camels_dir(self): """Directory where all camels datasets will be saved. This will under datasets directory""" return os.path.join(self.base_ds_dir, "CAMELS") @property def ds_dir(self): """Directory where a particular dataset will be saved. """ return self._ds_dir @ds_dir.setter def ds_dir(self, x): if x is None: x = os.path.join(self.camels_dir, self.__class__.__name__) if not os.path.exists(x): os.makedirs(x) # sanity_check(self.name, x) self._ds_dir = x def fetch(self, stations: Union[str, list, int, float, None] = None, dynamic_features: Union[list, str, None] = 'all', static_features: Union[str, list, None] = None, st: Union[None, str] = None, en: Union[None, str] = None, as_dataframe:bool = False, **kwargs ) -> Union[dict, pd.DataFrame]: """ Fetches the attributes of one or more stations. Arguments: stations : if string, it is supposed to be a station name/gauge_id. If list, it will be a list of station/gauge_ids. If int, it will be supposed that the user want data for this number of stations/gauge_ids. If None (default), then attributes of all available stations. If float, it will be supposed that the user wants data of this fraction of stations. dynamic_features : If not None, then it is the attributes to be fetched. If None, then all available attributes are fetched static_features : list of static attributes to be fetches. None means no static attribute will be fetched. st : starting date of data to be returned. If None, the data will be returned from where it is available. en : end date of data to be returned. If None, then the data will be returned till the date data is available. as_dataframe : whether to return dynamic attributes as pandas dataframe or as xarray dataset. kwargs : keyword arguments to read the files returns: If both static and dynamic features are obtained then it returns a dictionary whose keys are station/gauge_ids and values are the attributes and dataframes. Otherwise either dynamic or static features are returned. """ if isinstance(stations, int): # the user has asked to randomly provide data for some specified number of stations stations = random.sample(self.stations(), stations) elif isinstance(stations, list): pass elif isinstance(stations, str): stations = [stations] elif isinstance(stations, float): num_stations = int(len(self.stations()) * stations) stations = random.sample(self.stations(), num_stations) elif stations is None: # fetch for all stations stations = self.stations() else: raise TypeError(f"Unknown value provided for stations {stations}") if xr is None: raise ModuleNotFoundError("modeule xarray must be installed to use `datasets` module") return self.fetch_stations_attributes(stations, dynamic_features, static_features, st=st, en=en, as_dataframe=as_dataframe, **kwargs) def _maybe_to_netcdf(self, fname:str): self.dyn_fname = os.path.join(self.ds_dir, f'{fname}.nc') if not os.path.exists(self.dyn_fname): # saving all the data in netCDF file using xarray print(f'converting data to netcdf format for faster io operations') data = self.fetch(static_features=None) data_vars = {} coords = {} for k, v in data.items(): data_vars[k] = (['time', 'dynamic_features'], v) index = v.index index.name = 'time' coords = { 'dynamic_features': list(v.columns), 'time': index } xds = xr.Dataset( data_vars=data_vars, coords=coords, attrs={'date': f"create on {dateandtime_now()}"} ) xds.to_netcdf(self.dyn_fname) def fetch_stations_attributes(self, stations: list, dynamic_features='all', static_features=None, st=None, en=None, as_dataframe:bool = False, **kwargs): """Reads attributes of more than one stations. Arguments: stations : list of stations for which data is to be fetched. dynamic_features : list of dynamic attributes to be fetched. if 'all', then all dynamic attributes will be fetched. static_features : list of static attributes to be fetched. If `all`, then all static attributes will be fetched. If None, then no static attribute will be fetched. st : start of data to be fetched. en : end of data to be fetched. as_dataframe : whether to return the data as pandas dataframe. default is xr.dataset object kwargs dict: additional keyword arguments Returns: Dynamic and static features of multiple stations. Dynamic features are by default returned as xr.Dataset unless `as_dataframe` is True, in such a case, it is a pandas dataframe with multiindex. If xr.Dataset, it consists of `data_vars` equal to number of stations and for each station, the `DataArray` is of dimensions (time, dynamic_features). where `time` is defined by `st` and `en` i.e length of `DataArray`. In case, when the returned object is pandas DataFrame, the first index is `time` and second index is `dyanamic_features`. Static attributes are always returned as pandas DataFrame and have following shape `(stations, static_features). If `dynamic_features` is None, then they are not returned and the returned value only consists of static features. Same holds true for `static_features`. If both are not None, then the returned type is a dictionary with `static` and `dynamic` keys. Raises: ValueError, if both dynamic_features and static_features are None """ st, en = self._check_length(st, en) if dynamic_features is not None: dynamic_features = check_attributes(dynamic_features, self.dynamic_features) if not os.path.exists(self.dyn_fname): # read from csv files # following code will run only once when fetch is called inside init method dyn = self._read_dynamic_from_csv(stations, dynamic_features, st=st, en=en) else: dyn = xr.load_dataset(self.dyn_fname) # daataset dyn = dyn[stations].sel(dynamic_features=dynamic_features, time=slice(st, en)) if as_dataframe: dyn = dyn.to_dataframe(['time', 'dynamic_features']) if static_features is not None: static = self.fetch_static_features(stations, static_features) stns = {'dynamic': dyn, 'static': static} else: stns = dyn elif static_features is not None: return self.fetch_static_features(stations, static_features) else: raise ValueError return stns def fetch_dynamic_features(self, stn_id, attributes='all', st=None, en=None, as_dataframe=False): """Fetches all or selected dynamic attributes of one station.""" assert isinstance(stn_id, str) station = [stn_id] return self.fetch_stations_attributes(station, attributes, None, st=st, en=en, as_dataframe=as_dataframe) def fetch_station_attributes(self, station: str, dynamic_features: Union[str, list, None] = 'all', static_features: Union[str, list, None] = None, as_ts: bool = False, st: Union[str, None] = None, en: Union[str, None] = None, **kwargs) -> pd.DataFrame: """ Fetches attributes for one station. Arguments: station : station id/gauge id for which the data is to be fetched. dynamic_features static_features as_ts : whether static attributes are to be converted into a time series or not. If yes then the returned time series will be of same length as that of dynamic attribtues. st : starting point from which the data to be fetched. By default the data will be fetched from where it is available. en : end point of data to be fetched. By default the dat will be fetched Return: dataframe if as_ts is True else it returns a dictionary of static and dynamic attributes for a station/gauge_id """ st, en = self._check_length(st, en) station_df = pd.DataFrame() if dynamic_features: dynamic = self.fetch_dynamic_features(station, dynamic_features, st=st, en=en, **kwargs) station_df = pd.concat([station_df, dynamic]) if static_features is not None: static = self.fetch_static_features(station, static_features) if as_ts: station_df = pd.concat([station_df, static], axis=1) else: station_df ={'dynamic': station_df, 'static': static} elif static_features is not None: station_df = self.fetch_static_features(station, static_features) return station_df class LamaH(Camels): """ Large-Sample Data for Hydrology and Environmental Sciences for Central Europe from url = "https://zenodo.org/record/4609826#.YFNp59zt02w" paper: https://essd.copernicus.org/preprints/essd-2021-72/ """ url = "https://zenodo.org/record/4609826#.YFNp59zt02w" _data_types = ['total_upstrm', 'diff_upstrm_all', 'diff_upstrm_lowimp' ] time_steps = ['daily', 'hourly' ] static_attribute_categories = [''] def __init__(self, *, time_step: str, data_type: str, **kwargs ): """ Arguments: time_step : possible values are `daily` or `hourly` data_type : possible values are `total_upstrm`, `diff_upstrm_all` or 'diff_upstrm_lowimp' """ assert time_step in self.time_steps, f"invalid time_step {time_step} given" assert data_type in self._data_types, f"invalid data_type {data_type} given." self.time_step = time_step self.data_type = data_type super().__init__(**kwargs) self._download() fpath = os.path.join(self.ds_dir, 'lamah_diff_upstrm_lowimp_hourly_dyn.nc') _data_types = self._data_types if self.time_step == 'daily' else ['total_upstrm'] if not os.path.exists(fpath): for dt in _data_types: for ts in self.time_steps: self.time_step = ts self.data_type = dt fname = f"lamah_{dt}_{ts}_dyn" self._maybe_to_netcdf(fname) self.time_step = time_step self.data_type = data_type self.dyn_fname = os.path.join(self.ds_dir, f'lamah_{data_type}_{time_step}_dyn.nc') @property def dynamic_features(self): station = self.stations()[0] df = self.read_ts_of_station(station) return df.columns.to_list() @property def static_features(self) -> list: fname = os.path.join(self.data_type_dir, f'1_attributes{SEP}Catchment_attributes.csv') df = pd.read_csv(fname, sep=';', index_col='ID') return df.columns.to_list() @property def ds_dir(self): """Directory where a particular dataset will be saved. """ return os.path.join(self.camels_dir, self.name) @property def data_type_dir(self): directory = 'CAMELS_AT' if self.time_step == 'hourly': directory = 'CAMELS_AT1' # todo, use it only for hourly, daily is causing errors # self.ds_dir/CAMELS_AT/data_type_dir f = [f for f in os.listdir(os.path.join(self.ds_dir, directory)) if self.data_type in f][0] return os.path.join(self.ds_dir, f'{directory}{SEP}{f}') def stations(self)->list: # assuming file_names of the format ID_{stn_id}.csv _dirs = os.listdir(os.path.join(self.data_type_dir, f'2_timeseries{SEP}{self.time_step}')) s = [f.split('_')[1].split('.csv')[0] for f in _dirs] return s def _read_dynamic_from_csv(self, stations, dynamic_features:Union[str, list]='all', st=None, en=None, ): """Reads attributes of one station""" stations_attributes = {} for station in stations: station_df = pd.DataFrame() if dynamic_features is not None: dynamic_df = self.read_ts_of_station(station) station_df = pd.concat([station_df, dynamic_df]) stations_attributes[station] = station_df return stations_attributes def fetch_static_features(self, station:Union[str, list], features=None )->pd.DataFrame: fname = os.path.join(self.data_type_dir, f'1_attributes{SEP}Catchment_attributes.csv') df = pd.read_csv(fname, sep=';', index_col='ID') #if features is not None: static_features = check_attributes(features, self.static_features) df = df[static_features] if isinstance(station, list): stations = [str(i) for i in station] elif isinstance(station, int): stations = str(station) else: stations = station df.index = df.index.astype(str) df = df.loc[stations] if isinstance(df, pd.Series): df = pd.DataFrame(df).transpose() return df def read_ts_of_station(self, station) -> pd.DataFrame: # read a file containing timeseries data for one station fname = os.path.join(self.data_type_dir, f'2_timeseries{SEP}{self.time_step}{SEP}ID_{station}.csv') df = pd.read_csv(fname, sep=';') if self.time_step == 'daily': periods = pd.PeriodIndex(year=df["YYYY"], month=df["MM"], day=df["DD"], freq="D") df.index = periods.to_timestamp() else: periods = pd.PeriodIndex(year=df["YYYY"], month=df["MM"], day=df["DD"], hour=df["hh"], minute=df["mm"], freq="H") df.index = periods.to_timestamp() # remove the cols specifying index [df.pop(item) for item in ['YYYY', 'MM', 'DD', 'hh', 'mm'] if item in df] return df @property def start(self): return "19810101" @property def end(self): return "20191231" class HYSETS(Camels): """ database for hydrometeorological modeling of 14,425 North American watersheds from 1950-2018 following the work of [Arsenault et al., 2020](https://doi.org/10.1038/s41597-020-00583-2) The user must manually download the files, unpack them and provide the `path` where these files are saved. This data comes with multiple sources. Each source having one or more dynamic_features Following data_source are available. |sources | dynamic_features | |---------------|------------------| |SNODAS_SWE | dscharge, swe| |SCDNA | discharge, pr, tasmin, tasmax| |nonQC_stations | discharge, pr, tasmin, tasmax| |Livneh | discharge, pr, tasmin, tasmax| |ERA5 | discharge, pr, tasmax, tasmin| |ERAS5Land_SWE | discharge, swe| |ERA5Land | discharge, pr, tasmax, tasmin| all sources contain one or more following dynamic_features with following shapes |dynamic_features | shape | |----------------------------|------------| |time | (25202,) | |watershedID | (14425,) | |drainage_area | (14425,) | |drainage_area_GSIM | (14425,) | |flag_GSIM_boundaries | (14425,) | |flag_artificial_boundaries | (14425,) | |centroid_lat | (14425,) | |centroid_lon | (14425,) | |elevation | (14425,) | |slope | (14425,) | |discharge | (14425, 25202) | |pr | (14425, 25202) | |tasmax | (14425, 25202) | |tasmin | (14425, 25202) | """ doi = "https://doi.org/10.1038/s41597-020-00583-2" url = "https://osf.io/rpc3w/" Q_SRC = ['ERA5', 'ERA5Land', 'ERA5Land_SWE', 'Livneh', 'nonQC_stations', 'SCDNA', 'SNODAS_SWE'] SWE_SRC = ['ERA5Land_SWE', 'SNODAS_SWE'] OTHER_SRC = [src for src in Q_SRC if src not in ['ERA5Land_SWE', 'SNODAS_SWE']] dynamic_features = ['discharge', 'swe', 'tasmin', 'tasmax', 'pr'] def __init__(self, path:str, swe_source:str = "SNODAS_SWE", discharge_source: str = "ERA5", tasmin_source: str = "ERA5", tasmax_source: str = "ERA5", pr_source: str = "ERA5", **kwargs ): """ Arguments: path : path where all the data files are saved. swe_source : source of swe data. discharge_source : source of discharge data tasmin_source : source of tasmin data tasmax_source : source of tasmax data pr_source : source of pr data kwargs : arguments for `Camels` base class """ assert swe_source in self.SWE_SRC, f'source must be one of {self.SWE_SRC}' assert discharge_source in self.Q_SRC, f'source must be one of {self.Q_SRC}' assert tasmin_source in self.OTHER_SRC, f'source must be one of {self.OTHER_SRC}' assert tasmax_source in self.OTHER_SRC, f'source must be one of {self.OTHER_SRC}' assert pr_source in self.OTHER_SRC, f'source must be one of {self.OTHER_SRC}' self.sources = { 'swe': swe_source, 'discharge': discharge_source, 'tasmin': tasmin_source, 'tasmax': tasmax_source, 'pr': pr_source } super().__init__(**kwargs) self.ds_dir = path fpath = os.path.join(self.ds_dir, 'hysets_dyn.nc') if not os.path.exists(fpath): self._maybe_to_netcdf('hysets_dyn') def _maybe_to_netcdf(self, fname:str): # todo saving as one file takes very long time oneD_vars = [] twoD_vars = [] for src in self.Q_SRC: xds = xr.open_dataset(os.path.join(self.ds_dir, f'HYSETS_2020_{src}.nc')) for var in xds.variables: print(f'getting {var} from source {src} ') if len(xds[var].data.shape) > 1: xar = xds[var] xar.name = f"{xar.name}_{src}" twoD_vars.append(xar) else: xar = xds[var] xar.name = f"{xar.name}_{src}" oneD_vars.append(xar) oneD_xds = xr.merge(oneD_vars) twoD_xds = xr.merge(twoD_vars) oneD_xds.to_netcdf(os.path.join(self.ds_dir, "hysets_static.nc")) twoD_xds.to_netcdf(os.path.join(self.ds_dir, "hysets_dyn.nc")) return @property def ds_dir(self): return self._ds_dir @ds_dir.setter def ds_dir(self, x): sanity_check('HYSETS', x) self._ds_dir = x @property def static_features(self): df = self.read_static_data() return df.columns.to_list() def stations(self) -> list: return self.read_static_data().index.to_list() @property def start(self): return "19500101" @property def end(self): return "20181231" def fetch_stations_attributes(self, stations: list, dynamic_features: Union[str, list, None] = 'all', static_features: Union[str, list, None] = None, st = None, en = None, as_dataframe: bool = False, **kwargs): stations = check_attributes(stations, self.stations()) stations = [int(stn) for stn in stations] if dynamic_features is not None: dyn = self._fetch_dynamic_features(stations=stations, dynamic_features=dynamic_features, as_dataframe=as_dataframe, **kwargs ) if static_features is not None: # we want both static and dynamic to_return = {} static = self._fetch_static_features(station=stations, static_features=static_features, **kwargs ) to_return['static'] = static to_return['dynamic'] = dyn else: to_return = dyn elif static_features is not None: # we want only static to_return = self._fetch_static_features( station=stations, static_features=static_features, **kwargs ) else: raise ValueError return to_return def fetch_dynamic_features(self, station, dynamic_features='all', st=None, en=None, as_dataframe=False): """Fetches dynamic attributes of one station.""" station = [int(station)] return self._fetch_dynamic_features(stations=station, dynamic_features=dynamic_features, st=st, en=en, as_dataframe=as_dataframe) def _fetch_dynamic_features(self, stations:list, dynamic_features='all', st=None, en=None, as_dataframe=False, as_ts=False ): """Fetches dynamic attributes of station.""" st, en = self._check_length(st, en) attrs = check_attributes(dynamic_features, self.dynamic_features) stations = np.subtract(stations, 1).tolist() # maybe we don't need to read all variables sources = {k:v for k,v in self.sources.items() if k in attrs} # original .nc file contains datasets with dynamic and static features as data_vars # however, for uniformity of this API and easy usage, we want a Dataset to have # station names/gauge_ids as data_vars and each data_var has # dimension (time, dynamic_variables) # Therefore, first read all data for each station from .nc file # then rearrange it. # todo, this operation is slower because of `to_dataframe` # also doing this removes all the metadata x = {} f = os.path.join(self.ds_dir, "hysets_dyn.nc") xds = xr.open_dataset(f) for stn in stations: xds1 = xds[[f'{k}_{v}' for k, v in sources.items()]].sel(watershed=stn, time=slice(st, en)) xds1 = xds1.rename_vars({f'{k}_{v}': k for k, v in sources.items()}) x[stn] = xds1.to_dataframe(['time']) xds = xr.Dataset(x) xds = xds.rename_dims({'dim_1': 'dynamic_features'}) xds = xds.rename_vars({'dim_1': 'dynamic_features'}) if as_dataframe: return xds.to_dataframe(['time', 'dynamic_features']) return xds def _fetch_static_features(self, station, static_features:Union[str, list]='all', st=None, en=None, as_ts=False): df = self.read_static_data() static_features = check_attributes(static_features, self.static_features) if isinstance(station, str): station = [station] elif isinstance(station, int): station = [str(station)] elif isinstance(station, list): station = [str(stn) for stn in station] else: raise ValueError return self.to_ts(df.loc[station][static_features], st=st, en=en, as_ts=as_ts) def fetch_static_features(self, station, features='all', st=None, en=None, as_ts=False )->pd.DataFrame: return self._fetch_static_features(station, features, st, en, as_ts) def read_static_data(self): fname = os.path.join(self.ds_dir, 'HYSETS_watershed_properties.txt') static_df = pd.read_csv(fname, index_col='Watershed_ID', sep=';') static_df.index = static_df.index.astype(str) return static_df class CAMELS_US(Camels): """ Downloads and processes CAMELS dataset of 671 catchments named as CAMELS from https://ral.ucar.edu/solutions/products/camels https://doi.org/10.5194/hess-19-209-2015 """ DATASETS = ['CAMELS_US'] url = "https://ral.ucar.edu/sites/default/files/public/product-tool/camels-catchment-attributes-and-meteorology-for-large-sample-studies-dataset-downloads/basin_timeseries_v1p2_metForcing_obsFlow.zip" catchment_attr_url = "https://ral.ucar.edu/sites/default/files/public/product-tool/camels-catchment-attributes-and-meteorology-for-large-sample-studies-dataset-downloads/camels_attributes_v2.0.zip" folders = {'basin_mean_daymet': f'basin_mean_forcing{SEP}daymet', 'basin_mean_maurer': f'basin_mean_forcing{SEP}maurer', 'basin_mean_nldas': f'basin_mean_forcing{SEP}nldas', 'basin_mean_v1p15_daymet': f'basin_mean_forcing{SEP}v1p15{SEP}daymet', 'basin_mean_v1p15_nldas': f'basin_mean_forcing{SEP}v1p15{SEP}nldas', 'elev_bands': f'elev{SEP}daymet', 'hru': f'hru_forcing{SEP}daymet'} dynamic_features = ['dayl(s)', 'prcp(mm/day)', 'srad(W/m2)', 'swe(mm)', 'tmax(C)', 'tmin(C)', 'vp(Pa)', 'Flow'] def __init__(self, data_source='basin_mean_daymet'): assert data_source in self.folders, f'allwed data sources are {self.folders.keys()}' self.data_source = data_source super().__init__("CAMELS_US") if os.path.exists(self.ds_dir): print(f"dataset is already downloaded at {self.ds_dir}") else: download(self.url, os.path.join(self.camels_dir, f'CAMELS_US{SEP}CAMELS_US.zip')) download(self.catchment_attr_url, os.path.join(self.camels_dir, f"CAMELS_US{SEP}catchment_attrs.zip")) self._unzip() self.attr_dir = os.path.join(self.ds_dir, f'catchment_attrs{SEP}camels_attributes_v2.0') self.dataset_dir = os.path.join(self.ds_dir, f'CAMELS_US{SEP}basin_dataset_public_v1p2') self._maybe_to_netcdf('camels_us_dyn') @property def ds_dir(self): """Directory where a particular dataset will be saved. """ return os.path.join(self.camels_dir, self.name) @property def start(self): return "19800101" @property def end(self): return "20141231" @property def static_features(self): static_fpath = os.path.join(self.ds_dir, 'static_features.csv') if not os.path.exists(static_fpath): files = glob.glob(f"{os.path.join(self.ds_dir, 'catchment_attrs', 'camels_attributes_v2.0')}/*.txt") cols = [] for f in files: _df =
pd.read_csv(f, sep=';', index_col='gauge_id', nrows=1)
pandas.read_csv
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index =
Index(dates)
pandas.Index
import abc import pandas as pd import numpy as np from numbers import Number from itertools import combinations from statsmodels.formula.api import ols from functools import partial from .utils import NumericFunction from .assignment import get_assignments_as_positions def identity(x): return x def max_absolute_value(x): return np.max(np.abs(x)) min_across_covariates = partial(np.min, axis=1) max_across_covariates = partial(np.max, axis=1) mean_across_covariates = partial(np.mean, axis=1) class BalanceObjective: def __init__(self, cols=None): self._cols = cols def col_selection(self, df): return self._cols or df.columns @property def balance_func(self): return NumericFunction.numerize(self._balance_func) @abc.abstractmethod def _balance_func(self, df, assignments): """""" @classmethod def assignment_indices(cls, df, assignments): idxs = cls._idxs_from_assignment(df, assignments) return cls._append_complementary_assignment(idxs) @classmethod def _idxs_from_assignment(cls, df, assignments): if len(assignments[0]) == len(df.index): return assignments else: return [df.index.isin(a) for a in assignments] @classmethod def _append_complementary_assignment(cls, idxs): total_assignments = np.add(*idxs) if len(idxs) > 1 else idxs[0] if not min(total_assignments): idxs.append(np.logical_not(total_assignments)) return idxs class MahalanobisBalance(BalanceObjective): def __init__(self, treatment_aggregator=identity, cols=None): self.treatment_aggregator = treatment_aggregator super().__init__(cols) def _balance_func(self, df, assignments): df_sel = df[self.col_selection(df)] inverse_cov = np.linalg.inv(df_sel.cov()) means = [df_sel.loc[idx].mean() for idx in self.assignment_indices(df_sel, assignments)] combs = list(combinations(range(len(means)), 2)) mean_diffs = [means[a] - means[b] for a, b in combs] res = pd.DataFrame(data=[mean_diff @ inverse_cov @ mean_diff for mean_diff in mean_diffs], index=['{}-{}'.format(a, b) for a, b in combs]) return -self.treatment_aggregator(res) def mahalanobis_balance(cols=None): return MahalanobisBalance(np.max, cols=cols).balance_func class PValueBalance(BalanceObjective): def __init__(self, treatment_aggreagtor=identity, covariate_aggregator=identity, cols=None): self.treatment_aggregator = treatment_aggreagtor self.covariate_aggregator = covariate_aggregator super().__init__(cols) def _balance_func(self, df, assignments): pvalues = dict((col, self.pvalues_by_col( col, df, assignments)) for col in self.col_selection(df)) return self.covariate_aggregator(pd.DataFrame(pvalues)) def pvalues_by_col(self, col, df, assignments): pv = self.treatment_aggregator(self.ols_col_on_treatment( col, df, assignments).pvalues.iloc[1:].values) if isinstance(pv, Number): pv = [pv] return pv def ols_col_on_treatment(self, col, df, assignments): t_dummies = pd.DataFrame( dict(('t{}'.format(i), df.index.isin(assignment)) for i, assignment in enumerate(assignments))) data =
pd.concat((df, t_dummies), axis=1)
pandas.concat
def search(name=None, source=None, id_No=None, markdown=False): """ Search function that interacts directly with the Global Lake Level Database API. Arguments: name (str): Name of Lake or Reservoir. Be sure to use proper spelling. Wildcards (%) are allowed,as is any MySQL 5.7 syntax source (str): Lake water level source flag, accepted values are "usgs", "grealm", or "hydroweb" id_No (str,int): Global Lake Level Database identification number markdown (bool, optional): Returns markdown dataframe when True Returns: Lake object: `Lake()` object """ import pandas as pd import requests import warnings from IPython.display import display if id_No: id_No = str(id_No) url = 'https://4o8d0ft32f.execute-api.us-east-2.amazonaws.com/prod/glld/search/?idNo={}'.format( id_No) r = requests.get(url) json_decode = r.json() df = pd.DataFrame().from_records(json_decode, columns = ['id_No', 'lake_name', 'source', 'metadata']) elif not source: url = 'https://4o8d0ft32f.execute-api.us-east-2.amazonaws.com/prod/glld/search/?name={}'.format( name) r = requests.get(url) json_decode = r.json() df = pd.DataFrame().from_records(json_decode, columns = ['id_No', 'lake_name', 'source', 'metadata']) elif source: url = 'https://4o8d0ft32f.execute-api.us-east-2.amazonaws.com/prod/glld/' \ 'search?name={}&source={}'.format(name, source) r = requests.get(url) json_decode = r.json() df = pd.DataFrame().from_records(json_decode, columns = ['id_No', 'lake_name', 'source', 'metadata']) else: raise ValueError("I don't know how you did this, but if you did, make a github issue!") if len(df) < 1: raise RuntimeError('No results returned. Please adjust search parameters or see documentation') if len(df) > 1: warnings.warn('Search Result: \'{}\' has more than 1 Result. Showing the {} most relevant results.\n' 'Specify \'id_No\' or narrow search name.'.format(name, len(df)), category = RuntimeWarning) if markdown is True: print(df.filter(['id_No', 'source', 'lake_name']).to_markdown()) else: print(df.filter(['id_No', 'source', 'lake_name'])) elif len(df) == 1: meta_series = df['metadata'].map(eval).apply(pd.Series) df_unpacked = pd.merge(left = df, right = meta_series.drop(['source', 'lake_name'], axis = 1), left_index = True, right_index = True, how = 'outer').drop('metadata', axis = 1) if markdown is True: print(df_unpacked.to_markdown()) else: with pd.option_context('display.max_rows', 5, 'display.max_columns', None): display(df_unpacked) lake_object = _lake_meta_constructor(df_unpacked) return lake_object def _lake_meta_constructor(df): """ Arguments: df (): Pandas DataFrame of lake metadata from :function:`search` Returns: {:class:`Lake`} """ import pandas as pd import requests # todo location!!!!!!!! if len(df) > 1: raise RuntimeError('{} lakes have been passed to the constructor which only accepts one as input.\n' 'Utilize search parameters by passing "source" or "id_No" to refine results') elif len(df) == 1: source = df.source[0] if source == 'grealm': name = df.lake_name[0] country = df.Country[0] continent = df.Continent[0] original_id = df.grealm_database_ID[0] id_No = df.id_No[0] observation_period = df['Satellite Observation Period'][0] misc_data = {'Type': df.Type[0], 'Resolution': df.Resolution[0]} metadata = df lake = Lake(name = name, country = country, continent = continent, source = source, original_id = original_id, id_No = id_No, observation_period = observation_period, latitude = None, longitude = None, misc_data = misc_data, metadata = metadata, data = None, timeseries = None, datum = ('meters above TOPEX/Poseidon ellipsoid'), mean = None, median = None, mode = None) lake.data = _get_levels(lake) lake.timeseries = lake.data.filter(['date', 'water_level']).set_index('date') lake.timeseries.index =
pd.to_datetime(lake.timeseries.index)
pandas.to_datetime
# -*- coding: utf-8 -*- """\ Copyright (c) 2015-2018, MGH Computational Pathology """ import json from calicoml.core.metrics import ROC from calicoml.core.problem import Problem from calicoml.core.serialization.serializer import Serializer, get_class_name from calicoml.core.metrics import compute_averaged_metrics import numpy as np import pandas as pd from calicoml.core.utils import pretty_print_dataframe def roc_auc_function(y_one_vs_all, scores_y): """ Function to access AUC computations of ROC instance """ return ROC.from_scores(y_one_vs_all, scores_y).auc class ClassificationModel(object): """\ A fully packaged up, fitted classification model: can be written and read from disk and provides functions for classifying new samples. Also does correctness checks on loading. """ def __init__(self, approach, training_problem, expected_scores=None, model_id=None): """\ :param approach: a fitted LearningApproach :param training_problem: the problem on which the LearningApproach was trained :param expected_scores: expected predictions for all samples in the training problem (optional) :param id: model id """ self.id = model_id self.approach = approach self.training_problem = training_problem self.expected_scores = expected_scores if self.expected_scores is not None and len(self.expected_scores) != len(self.training_problem): raise ValueError('Length of expected scores ({}) does not match the length of the training ' 'problem ({})'.format(len(self.expected_scores), len(self.training_problem))) elif expected_scores is None: self.expected_scores = self.approach.apply(self.training_problem) @property def features(self): """Returns list of features used for prediction""" return self.training_problem.features @property def outcome(self): """Returns the name of the outcome""" return self.training_problem.outcome_column @property def positive_outcome(self): """Returns outcome value considered positive (i.e. mapped to 1)""" return self.training_problem.positive_outcome @property def training_auc(self): """Computes AUC on the training set""" if not self.training_problem.should_be_binary: return self.averaged_training_auc() return ROC.from_scores(self.training_problem.y, self.expected_scores).auc def averaged_training_auc(self): """ Compute averaged auc for multiclass classification """ scores = self.approach.prediction_probabilities(self.training_problem) return compute_averaged_metrics(self.training_problem.y, scores, roc_auc_function) def serialize(self, serializer=None): """\ Serializes this ClassificationModel into Python primitives :param serializer: serializer to use (optional) :return: a dictionary of Python primitives """ serializer = serializer or Serializer() return {'__class__': get_class_name(ClassificationModel), 'approach': serializer.serialize(self.approach), 'problem': serializer.serialize(self.training_problem), 'expected_scores': serializer.serialize(self.expected_scores), "id": self.id} def validate(self, fail_if_different=True): """\ Validates that actual predictions from this ClassificationModel match the expected scores :param fail_if_different: whether to fail with a ValueError if any of the scores don't match. Default: True :return: a DataFrame with validation results """ expected_score = self.expected_scores actual_score = self.approach.apply(self.training_problem) if len(expected_score.shape) == 2: data_to_check = {'sample': self.training_problem.sample_ids, 'truth': self.training_problem.y} columns_validation = ['sample', 'truth'] separate_scores = True else: data_to_check = {'sample': self.training_problem.sample_ids, 'truth': self.training_problem.y, 'expected_score': expected_score, 'actual_score': actual_score} columns_validation = ['sample', 'truth', 'expected_score', 'actual_score'] separate_scores = False validation_df = pd.DataFrame(data=data_to_check, columns=columns_validation) if not separate_scores: validation_df['is_correct'] = np.isclose(validation_df['expected_score'].values, validation_df['actual_score'].values) else: validation_df['is_correct'] = [np.allclose(expected_score[index], actual_score[index]) for index in range(expected_score.shape[0])] incorrect_sdf = validation_df[~validation_df['is_correct']] if len(incorrect_sdf) > 0 and fail_if_different: pretty_print_dataframe(incorrect_sdf) raise ValueError('Model validation failed: scores differ for {}/{} samples'.format( len(incorrect_sdf), len(validation_df))) return validation_df if not separate_scores else validation_df, expected_score, actual_score def _check_prediction_input(self, df): """Validates that a DataFrame has all the required columns for prediction, and returns a Problem instance that the underlying learning approach can be invoked on""" missing_features = sorted(set(self.training_problem.features) - set(df.columns)) if len(missing_features) > 0: raise ValueError("Input is missing features (count={}): {}".format(len(missing_features), ', '.join(missing_features))) # TODO FIXME: LearningApproaches require a Problem instance when calling apply(). This is not ideal # because Problems assume an outcome column, which might not be known when applying to new data. # Here we just mock a null outcome column, but we should consider changing the interface so that # apply() accepts a data frame directly. classification_columns = self.training_problem.features + [self.training_problem.outcome_column] classification_df = pd.DataFrame(df, columns=classification_columns) return Problem(classification_df, self.training_problem.features, self.training_problem.outcome_column, self.training_problem.positive_outcome, self.training_problem.label_list) def predict(self, df, join=False): """\ Applies this model to data in a pandas DataFrame, returning a new dataframe with predictions. :param df: input DataFrame. Has to contain all features required for classification. :param join: if True, will append predictions to the input DataFrame. Otherwise, will return a new DataFrame with only the sample IDs and predictions. Default: False :return: DataFrame with predicted scores """ problem = self._check_prediction_input(df) results_df = pd.DataFrame(index=
pd.Index(problem.sample_ids)
pandas.Index
import pickle5 as pickle import matplotlib.pyplot as plt import matplotlib as mpl #mpl.use('pdf') import itertools import numpy as np from datetime import datetime import torch from torch import nn from torch import optim import os import sys import pandas as pd from matplotlib import interactive from matplotlib.patches import Rectangle from utils import make_histos from utils.utilities import meter sys.path.insert(0,'/mnt/c/Users/rober/Dropbox/Bobby/Linux/classes/GAML/GAMLX/nflows/nflows') from nflows.transforms.autoregressive import MaskedUMNNAutoregressiveTransform from nflows.flows.base import Flow from nflows.distributions.normal import StandardNormal from nflows.distributions.normal import DiagonalNormal from nflows.transforms.base import CompositeTransform from nflows.transforms.autoregressive import MaskedAffineAutoregressiveTransform from nflows.transforms.permutations import ReversePermutation #data_path = "gendata/4features/" #Just electorn features data_path = "gendata/16features/" #All 16 features physics_cuts = False gen_all_emd = False gen_1d_histos = True dfs = [] filenames = os.listdir(data_path) for f in filenames: df0 = pd.read_pickle(data_path+f) dfs.append(df0) df_nflow_data = pd.concat(dfs) nflow_data_len = len(df_nflow_data.index) print("The Generated dataset has {} events".format(nflow_data_len)) df_test_data_all =
pd.read_pickle("data/pi0_cartesian_test.pkl")
pandas.read_pickle
import datetime import itertools from typing import Sequence, Any, Union, Optional, Tuple from warnings import warn import numpy as np import torch from torch import Tensor from torch.utils.data import TensorDataset, DataLoader, ConcatDataset from torch_kalman.internals.repr import NiceRepr from torch_kalman.internals.utils import ragged_cat, true1d_idx from torch_kalman.utils.datetime import DateTimeHelper class TimeSeriesDataset(NiceRepr, TensorDataset): """ TimeSeriesDataset includes additional information about each of the Tensors' dimensions: the name for each group in the first dimension, the start (date)time (and optionally datetime-unit) for the second dimension, and the name of the measures for the third dimension. Note that unlike TensorDataset, indexing a TimeSeriesDataset returns another TimeSeriesDataset, not a tuple of tensors. So when using TimeSeriesDataset, use `TimeSeriesDataLoader` (or just use `DataLoader(collate_fn=TimeSeriesDataset.collate)`). """ supported_dt_units = {'Y', 'D', 'h', 'm', 's'} _repr_attrs = ('sizes', 'measures') def __init__(self, *tensors: Tensor, group_names: Sequence[Any], start_times: Union[np.ndarray, Sequence], measures: Sequence[Sequence[str]], dt_unit: Optional[str]): if not isinstance(group_names, np.ndarray): group_names = np.array(group_names) assert len(group_names) == len(set(group_names)) assert len(group_names) == len(start_times) assert len(tensors) == len(measures) for i, (tensor, tensor_measures) in enumerate(zip(tensors, measures)): if len(tensor.shape) < 3: raise ValueError(f"Tensor {i} has < 3 dimensions") if tensor.shape[0] != len(group_names): raise ValueError(f"Tensor {i}'s first dimension has length != {len(group_names)}.") if tensor.shape[2] != len(tensor_measures): raise ValueError(f"Tensor {i}'s 3rd dimension has length != len({tensor_measures}).") self.measures = tuple(tuple(m) for m in measures) self.all_measures = tuple(itertools.chain.from_iterable(self.measures)) self.group_names = group_names self._dt_helper = DateTimeHelper(dt_unit=dt_unit) self.start_times = self._dt_helper.validate_datetimes(start_times) super().__init__(*tensors) @property def dt_unit(self) -> str: return self._dt_helper.dt_unit @property def sizes(self) -> Sequence: return [t.size() for t in self.tensors] # Subsetting ------------------------: def train_val_split(self, train_frac: float = None, dt: Union[np.datetime64, dict] = None) -> Tuple['TimeSeriesDataset', 'TimeSeriesDataset']: """ :param train_frac: The proportion of the data to keep for training. This is calculated on a per-group basis, by taking the last observation for each group (i.e., the last observation that a non-nan value on any measure). If neither `train_frac` nor `dt` are passed, `train_frac=.75` is used. :param dt: A datetime to use in dividing train/validation (first datetime for validation), or a dictionary of group-names : date-times. :return: Two TimeSeriesDatasets, one with data before the split, the other with >= the split. """ # get split times: if dt is None: if train_frac is None: train_frac = .75 assert 0 < train_frac < 1 # for each group, find the last non-nan, take `frac` of that to find the train/val split point: split_idx = np.array([int(idx * train_frac) for idx in self._last_measured_idx()], dtype='int') _times = self.times(0) split_times = np.array([_times[i, t] for i, t in enumerate(split_idx)]) else: if train_frac is not None: raise TypeError("Can pass only one of `train_frac`, `dt`.") if isinstance(dt, dict): split_times = np.array([dt[group_name] for group_name in self.group_names]) else: if not isinstance(dt, np.datetime64): dt = np.datetime64(dt, self.dt_unit) split_times = np.full(shape=len(self.group_names), fill_value=dt) # val: val_dataset = self.with_new_start_times(split_times) # train: train_tensors = [] for i, tens in enumerate(self.tensors): train = tens.data.clone() train[np.where(self.times(i) >= split_times[:, None])] = float('nan') if i == 0: not_all_nan = (~torch.isnan(train)).sum((0, 2)) last_good_idx = true1d_idx(not_all_nan).max() train = train[:, :(last_good_idx + 1), :] train_tensors.append(train) # TODO: replace padding nans for all but first tensor? # TODO: reduce width of 0> tensors based on width of 0 tensor? train_dataset = self.with_new_tensors(*train_tensors) return train_dataset, val_dataset def with_new_start_times(self, start_times: Union[np.ndarray, Sequence]) -> 'TimeSeriesDataset': """ Subset a TimeSeriesDataset so that some/all of the groups have later start times. :param start_times: An array/list of new datetimes. :return: A new TimeSeriesDataset. """ new_tensors = [] for i, tens in enumerate(self.tensors): times = self.times(i) new_tens = [] for g, (new_time, old_times) in enumerate(zip(start_times, times)): if (old_times <= new_time).all(): warn(f"{new_time} is later than all the times for group {self.group_names[g]}") new_tens.append(tens[[g], 0:0]) continue elif (old_times > new_time).all(): warn(f"{new_time} is earlier than all the times for group {self.group_names[g]}") new_tens.append(tens[[g], 0:0]) continue # drop if before new_time: g_tens = tens[g, true1d_idx(old_times >= new_time)] # drop if after last nan: all_nan, _ = torch.min(torch.isnan(g_tens), 1) if all_nan.all(): warn(f"Group '{self.group_names[g]}' (tensor {i}) has only `nans` after {new_time}") end_idx = 0 else: end_idx = true1d_idx(~all_nan).max() + 1 new_tens.append(g_tens[:end_idx].unsqueeze(0)) new_tens = ragged_cat(new_tens, ragged_dim=1, cat_dim=0) new_tensors.append(new_tens) return type(self)( *new_tensors, group_names=self.group_names, start_times=start_times, measures=self.measures, dt_unit=self.dt_unit ) def get_groups(self, groups: Sequence[Any]) -> 'TimeSeriesDataset': """ Get the subset of the batch corresponding to groups. Note that the ordering in the output will match the original ordering (not that of `group`), and that duplicates will be dropped. """ group_idx = true1d_idx(np.isin(self.group_names, groups)) return self[group_idx] def split_measures(self, *measure_groups, which: Optional[int] = None) -> 'TimeSeriesDataset': """ Take a dataset with one tensor, split it into a dataset with multiple tensors. :param measure_groups: Each argument should be be a list of measure-names, or an indexer (i.e. list of ints or a slice). :param which: If there are already multiple measure groups, the split will occur within one of them; must specify which. :return: A TimeSeriesDataset, now with multiple tensors for the measure-groups """ if which is None: if len(self.measures) > 1: raise RuntimeError(f"Must pass `which` if there's more than one groups:\n{self.measures}") which = 0 self_tensor = self.tensors[which] self_measures = self.measures[which] idxs = [] for measure_group in measure_groups: if isinstance(measure_group, slice) or isinstance(measure_group[0], int): idxs.append(measure_group) else: idxs.append([self_measures.index(m) for m in measure_group]) self_measures = np.array(self_measures) return type(self)( *(self_tensor[:, :, idx].clone() for idx in idxs), start_times=self.start_times, group_names=self.group_names, measures=[tuple(self_measures[idx]) for idx in idxs], dt_unit=self.dt_unit ) def __getitem__(self, item: Union[int, Sequence, slice]) -> 'TimeSeriesDataset': if isinstance(item, int): item = [item] return type(self)( *super(TimeSeriesDataset, self).__getitem__(item), group_names=self.group_names[item], start_times=self.start_times[item], measures=self.measures, dt_unit=self.dt_unit ) # Creation/Transformation ------------------------: @classmethod def collate(cls, batch: Sequence['TimeSeriesDataset']) -> 'TimeSeriesDataset': to_concat = { 'tensors': [batch[0].tensors], 'group_names': [batch[0].group_names], 'start_times': [batch[0].start_times] } fixed = {'dt_unit': batch[0].dt_unit, 'measures': batch[0].measures} for i, ts_dataset in enumerate(batch[1:], 1): for attr, appendlist in to_concat.items(): to_concat[attr].append(getattr(ts_dataset, attr)) for attr, required_val in fixed.items(): new_val = getattr(ts_dataset, attr) if new_val != required_val: raise ValueError(f"Element {i} has `{attr}` = {new_val}, but for element 0 it's {required_val}.") tensors = tuple(ragged_cat(t, ragged_dim=1) for t in zip(*to_concat['tensors'])) return cls( *tensors, group_names=np.concatenate(to_concat['group_names']), start_times=np.concatenate(to_concat['start_times']), measures=fixed['measures'], dt_unit=fixed['dt_unit'] ) def to_dataframe(self, group_colname: str = 'group', time_colname: str = 'time' ) -> 'DataFrame': return self.tensor_to_dataframe( tensor=ragged_cat(self.tensors, ragged_dim=1, cat_dim=2), times=self.times(), group_names=self.group_names, group_colname=group_colname, time_colname=time_colname, measures=self.all_measures ) @staticmethod def tensor_to_dataframe(tensor: Tensor, times: np.ndarray, group_names: Sequence, group_colname: str, time_colname: str, measures: Sequence[str]) -> 'DataFrame': from pandas import DataFrame, concat tensor = tensor.data.numpy() assert tensor.shape[0] == len(group_names) assert tensor.shape[0] == len(times) assert tensor.shape[1] <= times.shape[1] assert tensor.shape[2] == len(measures) dfs = [] for g, group_name in enumerate(group_names): # get values, don't store trailing nans: values = tensor[g] all_nan_per_row = np.min(np.isnan(values), axis=1) if all_nan_per_row.all(): warn(f"Group {group_name} has only missing values.") continue end_idx = true1d_idx(~all_nan_per_row).max() + 1 # convert to dataframe: df =
DataFrame(data=values[:end_idx, :], columns=measures)
pandas.DataFrame
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pandas from modin.engines.base.frame.partition import BaseFramePartition from modin.data_management.utils import length_fn_pandas, width_fn_pandas from modin.engines.ray.utils import handle_ray_task_error import ray from ray.worker import RayTaskError class PandasOnRayFramePartition(BaseFramePartition): def __init__(self, object_id, length=None, width=None, call_queue=None): assert type(object_id) is ray.ObjectID self.oid = object_id if call_queue is None: call_queue = [] self.call_queue = call_queue self._length_cache = length self._width_cache = width def get(self): """Gets the object out of the plasma store. Returns: The object from the plasma store. """ if len(self.call_queue): self.drain_call_queue() try: return ray.get(self.oid) except RayTaskError as e: handle_ray_task_error(e) def apply(self, func, **kwargs): """Apply a function to the object stored in this partition. Note: It does not matter if func is callable or an ObjectID. Ray will handle it correctly either way. The keyword arguments are sent as a dictionary. Args: func: The function to apply. Returns: A RayRemotePartition object. """ oid = self.oid call_queue = self.call_queue + [(func, kwargs)] result, length, width = deploy_ray_func.remote(call_queue, oid) return PandasOnRayFramePartition(result, length, width) def add_to_apply_calls(self, func, **kwargs): return PandasOnRayFramePartition( self.oid, call_queue=self.call_queue + [(func, kwargs)] ) def drain_call_queue(self): if len(self.call_queue) == 0: return oid = self.oid call_queue = self.call_queue self.oid, self._length_cache, self._width_cache = deploy_ray_func.remote( call_queue, oid ) self.call_queue = [] def __copy__(self): return PandasOnRayFramePartition( self.oid, self._length_cache, self._width_cache, self.call_queue ) def to_pandas(self): """Convert the object stored in this partition to a Pandas DataFrame. Returns: A Pandas DataFrame. """ dataframe = self.get() assert type(dataframe) is pandas.DataFrame or type(dataframe) is pandas.Series return dataframe def to_numpy(self, **kwargs): """ Convert the object stored in this parition to a NumPy array. Returns ------- A NumPy array. """ return self.apply(lambda df, **kwargs: df.to_numpy(**kwargs)).get() def mask(self, row_indices, col_indices): if ( (isinstance(row_indices, slice) and row_indices == slice(None)) or ( not isinstance(row_indices, slice) and self._length_cache is not None and len(row_indices) == self._length_cache ) ) and ( (isinstance(col_indices, slice) and col_indices == slice(None)) or ( not isinstance(col_indices, slice) and self._width_cache is not None and len(col_indices) == self._width_cache ) ): return self.__copy__() new_obj = self.add_to_apply_calls( lambda df:
pandas.DataFrame(df.iloc[row_indices, col_indices])
pandas.DataFrame
from scipy.special import gammaln, psi import numpy as np import math import pandas as pd class LDABase: """ Base Class to fit LDA using Collapsed Gibbs Sampling derived from <NAME> Steyvers (2004): Finding scientific topics """ def __init__(self, corpus, K, alpha="asymmetric", beta=0.01): """ Create LDABase instance. """ self.corpus = corpus self.K = K # number of topics self.W = corpus.get_vocab_len() # number of words in vocabulary self.D = len(corpus) # number of documents # initialize count parameters self.topic_word_count = np.zeros((self.K, self.W)) self.doc_topic_count = np.zeros((self.D, self.K)) self.doc_word_topic_assignment = [[0] * len(doc) for doc in corpus] self.topic_count = np.zeros(K) self.doc_len = corpus.get_doc_len() self.num_tokens = np.sum(corpus.get_doc_len()) # num tokens in corpus # initialize parameters for estimation phi and theta self.theta = np.zeros((self.D, self.K)) self.phi = np.zeros((self.K, self.W)) # initialize priors if isinstance(alpha, (np.ndarray, list)): # set alpha from parameters self.alpha = np.array(alpha) elif alpha == "asymmetric": # asymmetric prior alpha self.alpha = np.array([1.0 / (k + np.sqrt(K)) for k in range(K)]) else: # symmetric prior alpha self.alpha = np.array([1.0 / K] * K) # symmetric prior beta self.beta = beta self.log_likelihood_trace = [] self.perplexity_trace = [] self.theta_trace = [] self.phi_trace = [] self.marginal_topic_dist_trace = [] self.training = True def _get_topic_word_idx(self, topn=10): """ Returns matrix with word index and shape (K,topn). """ topic_word_idx_sorted = np.argpartition(self.phi, kth=range(-topn, 0), axis=-1)[:,-topn:] topic_word_idx_sorted = np.flip(topic_word_idx_sorted, axis=-1) return topic_word_idx_sorted def get_topics(self, topn=10): """ Returns topn words from all topics as list of words and list of word probabilities. """ topics_words = [] topics_probs = [] for topic_idx, topic in enumerate(self._get_topic_word_idx(topn)): words = [] probs = [] for word_idx in topic: word = self.corpus.idx2word(word_idx) prob = self.phi[topic_idx, word_idx] words.append(word) probs.append(prob) topics_probs.append(probs) topics_words.append(words) return topics_words, topics_probs def print_topics(self, topn=10): """ Prints topn words from all topics. """ words, probs = self.get_topics(topn) print("p(w|t)\tword\n") for topic_idx, (words, probs) in enumerate(zip(words, probs)): print("Topic #{}".format(topic_idx + 1)) for word, prob in zip(words, probs): output = "{:.3f}\t{}".format(prob, word) print(output) print() def set_inference_mode(self): """ Disable training mode. """ self.training = False def set_training_mode(self): """ Enable training mode. """ self.training = True def update(self, doc_idx, word_idx, pos, topic_idx, count): """ Increases or decreases all count parameters by given count value (+1 or -1). """ if self.training is True: # should not change during inference self.topic_word_count[topic_idx,word_idx] += count self.topic_count[topic_idx] += count self.doc_topic_count[doc_idx,topic_idx] += count self.doc_word_topic_assignment[doc_idx][pos] = topic_idx def get_topic_assignment(self, doc_idx, pos): """ Returns current topic assignment of word in document doc_idx at given position. """ return self.doc_word_topic_assignment[doc_idx][pos] def get_phi(self): """ Returns per-topic word distribution phi. <NAME> Steyvers (2004): Finding scientific topics """ phi = np.zeros((self.K, self.W)) beta_sum = self.beta * self.W for z in range(self.K): for w in range(self.W): phi[z,w] = (self.topic_word_count[z,w] + self.beta) / (self.topic_count[z] + beta_sum) return phi def get_theta(self): """ Returns per-document topic distribution theta. <NAME> (2004): Finding scientific topics """ theta = np.zeros((self.D, self.K)) alpha_sum = np.sum(self.alpha) for d in range(self.D): for z in range(self.K): theta[d,z] = (self.doc_topic_count[d,z] + self.alpha[z]) / (self.doc_len[d] + alpha_sum) return theta def full_conditional_distribution(self, doc_idx, word_idx, topic_idx): """ Returns full conditional distribution for given document index, word index and topic index. <NAME> Steyvers (2004): Finding scientific topics """ n_w_t = self.topic_word_count[:,word_idx] # get word topic count for word index n_t = self.topic_count # get topic count n_d_t = self.doc_topic_count[doc_idx] # get doc topic count for doc index n_d = self.doc_len[doc_idx] # get document word count word_topic_ratio = (n_w_t + self.beta) / (n_t + self.W * self.beta) topic_doc_ratio = (n_d_t + self.alpha) / (n_d + np.sum(self.alpha)) p_z_cond = word_topic_ratio * topic_doc_ratio return p_z_cond / p_z_cond.sum() def get_log_likelihood(self): """ Returns joint log likelihood p(w, z) = p(w|z)p(z). <NAME> Steyvers (2004): Finding scientific topics """ log_likelihood = 0.0 for z in range(self.K): # log p(w|z) log_likelihood += gammaln(self.W * self.beta) log_likelihood -= self.W * gammaln(self.beta) log_likelihood += np.sum(gammaln(self.topic_word_count[z] + self.beta)) log_likelihood -= gammaln(np.sum(self.topic_word_count[z] + self.beta)) for doc_idx, _ in enumerate(self.corpus): # log p(z) log_likelihood += gammaln(np.sum(self.alpha)) log_likelihood -= np.sum(gammaln(self.alpha)) log_likelihood += np.sum(gammaln(self.doc_topic_count[doc_idx] + self.alpha)) log_likelihood -= gammaln(np.sum(self.doc_topic_count[doc_idx] + self.alpha)) return log_likelihood def trace_metrics(self): """ Traces metrics to ensure convergency. """ log_likelihood = self.get_log_likelihood() perplexity = np.exp(-log_likelihood / self.num_tokens) marginal_topic_dist = self.topic_word_count.sum(axis=-1) / self.topic_word_count.sum() self.log_likelihood_trace.append(log_likelihood) self.perplexity_trace.append(perplexity) self.marginal_topic_dist_trace.append(marginal_topic_dist) def trace_params(self): """ Traces estimates of phi and theta. """ self.phi_trace.append(self.get_phi()) self.theta_trace.append(self.get_theta()) def plot_topic_prior_alpha(self): """ Plots topic prior alpha. """
pd.DataFrame(self.alpha)
pandas.DataFrame
from matplotlib import cm from tqdm import tqdm from skimage.filters import threshold_otsu from keras.models import load_model import numpy as np import pandas as pd import matplotlib.pyplot as plt import os.path as osp import openslide from pathlib import Path from skimage.filters import threshold_otsu import glob import math # before importing HDFStore, make sure 'tables' is installed by pip3 install tables from pandas import HDFStore from openslide.deepzoom import DeepZoomGenerator from sklearn.model_selection import StratifiedShuffleSplit import cv2 from keras.utils.np_utils import to_categorical output_dir = Path('/home/wli/Downloads/camelyontestonly') import os.path as osp import openslide from pathlib import Path from keras.models import Sequential from keras.layers import Lambda, Dropout from keras.layers.convolutional import Convolution2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D from keras.models import model_from_json import numpy as np import os import skimage.io as io import skimage.transform as trans import numpy as np from keras.models import * from keras.layers import * from keras.optimizers import * from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras import backend as keras #BASE_TRUTH_DIR = Path('/home/wli/Downloads/camelyontest/mask') #slide_path = '/home/wli/Downloads/CAMELYON16/training/tumor/' slide_path = '/Volumes/WZL-NIAID-5/New folder (4)/CAMELYON16/training/normal/' #slide_path = '/home/wli/Downloads/CAMELYON16/training/normal/' #slide_path_validation = '/home/wli/Downloads/CAMELYON16/training/tumor/validation/' #slide_path_validation = '/home/wli/Downloads/CAMELYON16/training/normal/validation/' #truth_path = str(BASE_TRUTH_DIR / 'tumor_026_Mask.tif') #slide_paths = list(slide_path) slide_paths = glob.glob(osp.join(slide_path, '*.tif')) #slide_paths_validation = glob.glob(osp.join(slide_path_validation, '*.tif')) #slide_paths = slide_paths + slide_paths_validation #slide_paths = slide_path # slide_paths.sort() #slide = openslide.open_slide(slide_path) def find_patches_from_slide(slide_path, filter_non_tissue=True): """Returns a dataframe of all patches in slide input: slide_path: path to WSI file output: samples: dataframe with the following columns: slide_path: path of slide is_tissue: sample contains tissue is_tumor: truth status of sample tile_loc: coordinates of samples in slide option: base_truth_dir: directory of truth slides option: filter_non_tissue: Remove samples no tissue detected """ #sampletotal = pd.DataFrame([]) #base_truth_dir = Path(BASE_TRUTH_DIR) #anno_path = Path(anno_path) #slide_contains_tumor = osp.basename(slide_paths[i]).startswith('tumor_') print(slide_path) dimensions = [] with openslide.open_slide(slide_path) as slide: dtotal = (slide.dimensions[0] / 224, slide.dimensions[1] / 224) thumbnail = slide.get_thumbnail((dtotal[0], dtotal[1])) thum = np.array(thumbnail) ddtotal = thum.shape dimensions.extend(ddtotal) hsv_image = cv2.cvtColor(thum, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(hsv_image) hthresh = threshold_otsu(h) sthresh = threshold_otsu(s) vthresh = threshold_otsu(v) # be min value for v can be changed later minhsv = np.array([hthresh, sthresh, 70], np.uint8) maxhsv = np.array([180, 255, vthresh], np.uint8) thresh = [minhsv, maxhsv] print(thresh) # extraction the countor for tissue rgbbinary = cv2.inRange(hsv_image, thresh[0], thresh[1]) _, contours, _ = cv2.findContours( rgbbinary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) bboxtcols = ['xmin', 'xmax', 'ymin', 'ymax'] bboxt = pd.DataFrame(columns=bboxtcols) for c in contours: (x, y, w, h) = cv2.boundingRect(c) bboxt = bboxt.append(
pd.Series([x, x+w, y, y+h], index=bboxtcols)
pandas.Series
import sys import os import torch import numpy as np import torch_geometric.datasets import pyximport from torch_geometric.data import InMemoryDataset, download_url import pandas as pd from sklearn import preprocessing pyximport.install(setup_args={'include_dirs': np.get_include()}) import os.path as osp from torch_geometric.data import Data import time from torch_geometric.utils import add_self_loops, negative_sampling from torch_geometric.data import Dataset from functools import lru_cache import copy from fairseq.data import ( NestedDictionaryDataset, NumSamplesDataset, ) import json import pathlib from pathlib import Path BASE = Path(os.path.realpath(__file__)).parent GLOBAL_ROOT = str(BASE / 'graphormer_repo' / 'graphormer') sys.path.insert(1, (GLOBAL_ROOT)) from data.wrapper import preprocess_item import datetime def find_part(hour): if hour < 11: part = 1 elif (hour > 11) & (hour < 20): part = 2 else: part = 3 return part def prepare_raw_dataset_edge(dataset_name): if dataset_name == 'abakan': raw_data = pd.read_csv('datasets/abakan/raw/abakan_full_routes_final_weather_L_NaN_filtered_FIXED.csv') all_roads_graph = list(pd.read_pickle('datasets/abakan/raw/all_roads_graph.pickle').to_networkx().edges()) all_nodes = pd.read_pickle('datasets/abakan/raw/clear_nodes.pkl') init = pd.read_csv('datasets/abakan/raw/graph_abakan_init.csv') elif dataset_name == 'omsk': raw_data = pd.read_csv('datasets/omsk/raw/omsk_full_routes_final_weather_L_NaN_filtered_FIXED.csv') all_roads_graph = list(pd.read_pickle('datasets/omsk/raw/all_roads_graph.pickle').to_networkx().edges()) # all_nodes = pd.read_pickle('datasets/omsk/raw/clear_nodes.pkl') init = pd.read_csv('datasets/omsk/raw/graph_omsk_init.csv') all_roads_dataset = pd.DataFrame() all_edge_list = [list((all_roads_graph)[i]) for i in range(0,len( (all_roads_graph)))] all_roads_dataset['edge_id']= range(0,len(init['edge_id'].unique())) all_roads_dataset['speed'] = ' 1' all_roads_dataset['length'] = ' 1' all_roads_dataset[' start_point_part'] = init['quartal_id'] / len(init['quartal_id'].unique()) all_roads_dataset['finish_point_part'] = init['quartal_id'] / len(init['quartal_id'].unique()) all_roads_dataset_edges = pd.DataFrame() all_roads_dataset_edges['source'] = [x[0] for x in all_edge_list] all_roads_dataset_edges['target'] = [x[1] for x in all_edge_list] # all_roads_dataset_edges = all_roads_dataset_edges.drop_duplicates().reset_index(drop = True) trip_part = all_roads_dataset[['edge_id', 'speed', 'length', ' start_point_part', 'finish_point_part']].copy() source_merge = pd.merge(all_roads_dataset_edges, trip_part.rename(columns = {'edge_id':'source'}), on = ['source'], how = 'left') target_merge = pd.merge(all_roads_dataset_edges, trip_part.rename(columns = {'edge_id':'target'}), on = ['target'], how = 'left') total_table = pd.DataFrame() total_table['speed'] = (source_merge['speed'].apply(lambda x: [x]) + target_merge['speed'].apply(lambda x: [x])) total_table['length'] = (source_merge['length'].apply(lambda x: [x]) + target_merge['length'].apply(lambda x: [x])) total_table['edges'] = (source_merge['source'].apply(lambda x: [x]) + target_merge['target'].apply(lambda x: [x])) total_table[' start_point_part'] = source_merge[' start_point_part'] total_table['finish_point_part'] = target_merge['finish_point_part'] total_table['week_period'] = datetime.datetime.now().hour total_table['hour'] = datetime.datetime.now().weekday() total_table['day_period'] = total_table['hour'].apply(lambda x: find_part(x)) total_table['RTA'] = 1 total_table['clouds'] = 1 total_table['snow'] = 0 total_table['temperature'] = 10 total_table['wind_dir'] = 180 total_table['wind_speed'] = 3 total_table['pressure'] = 747 total_table['source'] = source_merge['source'] total_table['target'] = source_merge['target'] # total_table = total_table.drop_duplicates().reset_index(drop = True) return total_table def prepare_raw_dataset_node(dataset_name): if dataset_name == 'abakan': raw_data = pd.read_csv('datasets/abakan/raw/abakan_full_routes_final_weather_L_NaN_filtered_FIXED.csv') all_roads_graph = list(pd.read_pickle('datasets/abakan/raw/all_roads_graph.pickle').to_networkx().edges()) all_nodes = pd.read_pickle('datasets/abakan/raw/clear_nodes.pkl') init =
pd.read_csv('datasets/abakan/raw/graph_abakan_init.csv')
pandas.read_csv
import ast import time import numpy as np import pandas as pd from copy import deepcopy from typing import Any from matplotlib import dates as mdates from scipy import stats from aistac.components.aistac_commons import DataAnalytics from ds_discovery.components.transitioning import Transition from ds_discovery.components.commons import Commons from aistac.properties.abstract_properties import AbstractPropertyManager from ds_discovery.components.discovery import DataDiscovery from ds_discovery.intent.abstract_common_intent import AbstractCommonsIntentModel __author__ = '<NAME>' class AbstractBuilderIntentModel(AbstractCommonsIntentModel): _INTENT_PARAMS = ['self', 'save_intent', 'column_name', 'intent_order', 'replace_intent', 'remove_duplicates', 'seed'] def __init__(self, property_manager: AbstractPropertyManager, default_save_intent: bool=None, default_intent_level: [str, int, float]=None, default_intent_order: int=None, default_replace_intent: bool=None): """initialisation of the Intent class. :param property_manager: the property manager class that references the intent contract. :param default_save_intent: (optional) The default action for saving intent in the property manager :param default_intent_level: (optional) the default level intent should be saved at :param default_intent_order: (optional) if the default behaviour for the order should be next available order :param default_replace_intent: (optional) the default replace existing intent behaviour """ default_save_intent = default_save_intent if isinstance(default_save_intent, bool) else True default_replace_intent = default_replace_intent if isinstance(default_replace_intent, bool) else True default_intent_level = default_intent_level if isinstance(default_intent_level, (str, int, float)) else 'A' default_intent_order = default_intent_order if isinstance(default_intent_order, int) else 0 intent_param_exclude = ['size'] intent_type_additions = [np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, pd.Timestamp] super().__init__(property_manager=property_manager, default_save_intent=default_save_intent, intent_param_exclude=intent_param_exclude, default_intent_level=default_intent_level, default_intent_order=default_intent_order, default_replace_intent=default_replace_intent, intent_type_additions=intent_type_additions) def run_intent_pipeline(self, canonical: Any=None, intent_levels: [str, int, list]=None, run_book: str=None, seed: int=None, simulate: bool=None, **kwargs) -> pd.DataFrame: """Collectively runs all parameterised intent taken from the property manager against the code base as defined by the intent_contract. The whole run can be seeded though any parameterised seeding in the intent contracts will take precedence :param canonical: a direct or generated pd.DataFrame. see context notes below :param intent_levels: (optional) a single or list of intent_level to run in order given :param run_book: (optional) a preset runbook of intent_level to run in order :param seed: (optional) a seed value that will be applied across the run: default to None :param simulate: (optional) returns a report of the order of run and return the indexed column order of run :return: a pandas dataframe """ simulate = simulate if isinstance(simulate, bool) else False col_sim = {"column": [], "order": [], "method": []} # legacy if 'size' in kwargs.keys(): canonical = kwargs.pop('size') canonical = self._get_canonical(canonical) size = canonical.shape[0] if canonical.shape[0] > 0 else 1000 # test if there is any intent to run if self._pm.has_intent(): # get the list of levels to run if isinstance(intent_levels, (str, list)): column_names = Commons.list_formatter(intent_levels) elif isinstance(run_book, str) and self._pm.has_run_book(book_name=run_book): column_names = self._pm.get_run_book(book_name=run_book) else: # put all the intent in order of model, get, correlate, associate _model = [] _get = [] _correlate = [] _frame_start = [] _frame_end = [] for column in self._pm.get_intent().keys(): for order in self._pm.get(self._pm.join(self._pm.KEY.intent_key, column), {}): for method in self._pm.get(self._pm.join(self._pm.KEY.intent_key, column, order), {}).keys(): if str(method).startswith('get_'): if column in _correlate + _frame_start + _frame_end: continue _get.append(column) elif str(method).startswith('model_'): _model.append(column) elif str(method).startswith('correlate_'): if column in _get: _get.remove(column) _correlate.append(column) elif str(method).startswith('frame_'): if column in _get: _get.remove(column) if str(method).startswith('frame_starter'): _frame_start.append(column) else: _frame_end.append(column) column_names = Commons.list_unique(_frame_start + _get + _model + _correlate + _frame_end) for column in column_names: level_key = self._pm.join(self._pm.KEY.intent_key, column) for order in sorted(self._pm.get(level_key, {})): for method, params in self._pm.get(self._pm.join(level_key, order), {}).items(): try: if method in self.__dir__(): if simulate: col_sim['column'].append(column) col_sim['order'].append(order) col_sim['method'].append(method) continue result = [] params.update(params.pop('kwargs', {})) if isinstance(seed, int): params.update({'seed': seed}) _ = params.pop('intent_creator', 'Unknown') if str(method).startswith('get_'): result = eval(f"self.{method}(size=size, save_intent=False, **params)", globals(), locals()) elif str(method).startswith('correlate_'): result = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) elif str(method).startswith('model_'): canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue elif str(method).startswith('frame_starter'): canonical = self._get_canonical(params.pop('canonical', canonical), deep_copy=False) size = canonical.shape[0] canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue elif str(method).startswith('frame_'): canonical = eval(f"self.{method}(canonical=canonical, save_intent=False, **params)", globals(), locals()) continue if 0 < size != len(result): raise IndexError(f"The index size of '{column}' is '{len(result)}', " f"should be {size}") canonical[column] = result except ValueError as ve: raise ValueError(f"intent '{column}', order '{order}', method '{method}' failed with: {ve}") except TypeError as te: raise TypeError(f"intent '{column}', order '{order}', method '{method}' failed with: {te}") if simulate: return pd.DataFrame.from_dict(col_sim) return canonical def _get_number(self, from_value: [int, float]=None, to_value: [int, float]=None, relative_freq: list=None, precision: int=None, ordered: str=None, at_most: int=None, size: int=None, seed: int=None) -> list: """ returns a number in the range from_value to to_value. if only to_value given from_value is zero :param from_value: (signed) integer to start from :param to_value: optional, (signed) integer the number sequence goes to but not include :param relative_freq: a weighting pattern or probability that does not have to add to 1 :param precision: the precision of the returned number. if None then assumes int value else float :param ordered: order the data ascending 'asc' or descending 'dec', values accepted 'asc' or 'des' :param at_most: the most times a selection should be chosen :param size: the size of the sample :param seed: a seed value for the random function: default to None """ if not isinstance(from_value, (int, float)) and not isinstance(to_value, (int, float)): raise ValueError(f"either a 'range_value' or a 'range_value' and 'to_value' must be provided") if not isinstance(from_value, (float, int)): from_value = 0 if not isinstance(to_value, (float, int)): (from_value, to_value) = (0, from_value) if to_value <= from_value: raise ValueError("The number range must be a positive different, found to_value <= from_value") at_most = 0 if not isinstance(at_most, int) else at_most size = 1 if size is None else size _seed = self._seed() if seed is None else seed precision = 3 if not isinstance(precision, int) else precision if precision == 0: from_value = int(round(from_value, 0)) to_value = int(round(to_value, 0)) is_int = True if (isinstance(to_value, int) and isinstance(from_value, int)) else False if is_int: precision = 0 # build the distribution sizes if isinstance(relative_freq, list) and len(relative_freq) > 1: freq_dist_size = self._freq_dist_size(relative_freq=relative_freq, size=size, seed=_seed) else: freq_dist_size = [size] # generate the numbers rtn_list = [] generator = np.random.default_rng(seed=_seed) dtype = int if is_int else float bins = np.linspace(from_value, to_value, len(freq_dist_size) + 1, dtype=dtype) for idx in np.arange(1, len(bins)): low = bins[idx - 1] high = bins[idx] if low >= high: continue elif at_most > 0: sample = [] for _ in np.arange(at_most, dtype=dtype): count_size = freq_dist_size[idx - 1] * generator.integers(2, 4, size=1)[0] sample += list(set(np.linspace(bins[idx - 1], bins[idx], num=count_size, dtype=dtype, endpoint=False))) if len(sample) < freq_dist_size[idx - 1]: raise ValueError(f"The value range has insufficient samples to choose from when using at_most." f"Try increasing the range of values to sample.") rtn_list += list(generator.choice(sample, size=freq_dist_size[idx - 1], replace=False)) else: if dtype == int: rtn_list += generator.integers(low=low, high=high, size=freq_dist_size[idx - 1]).tolist() else: choice = generator.random(size=freq_dist_size[idx - 1], dtype=float) choice = np.round(choice * (high-low)+low, precision).tolist() # make sure the precision choice = [high - 10**(-precision) if x >= high else x for x in choice] rtn_list += choice # order or shuffle the return list if isinstance(ordered, str) and ordered.lower() in ['asc', 'des']: rtn_list.sort(reverse=True if ordered.lower() == 'asc' else False) else: generator.shuffle(rtn_list) return rtn_list def _get_category(self, selection: list, relative_freq: list=None, size: int=None, at_most: int=None, seed: int=None) -> list: """ returns a category from a list. Of particular not is the at_least parameter that allows you to control the number of times a selection can be chosen. :param selection: a list of items to select from :param relative_freq: a weighting pattern that does not have to add to 1 :param size: an optional size of the return. default to 1 :param at_most: the most times a selection should be chosen :param seed: a seed value for the random function: default to None :return: an item or list of items chosen from the list """ if not isinstance(selection, list) or len(selection) == 0: return [None]*size _seed = self._seed() if seed is None else seed select_index = self._get_number(len(selection), relative_freq=relative_freq, at_most=at_most, size=size, seed=_seed) rtn_list = [selection[i] for i in select_index] return list(rtn_list) def _get_datetime(self, start: Any, until: Any, relative_freq: list=None, at_most: int=None, ordered: str=None, date_format: str=None, as_num: bool=None, ignore_time: bool=None, size: int=None, seed: int=None, day_first: bool=None, year_first: bool=None) -> list: """ returns a random date between two date and/or times. weighted patterns can be applied to the overall date range. if a signed 'int' type is passed to the start and/or until dates, the inferred date will be the current date time with the integer being the offset from the current date time in 'days'. if a dictionary of time delta name values is passed this is treated as a time delta from the start time. for example if start = 0, until = {days=1, hours=3} the date range will be between now and 1 days and 3 hours Note: If no patterns are set this will return a linearly random number between the range boundaries. :param start: the start boundary of the date range can be str, datetime, pd.datetime, pd.Timestamp or int :param until: up until boundary of the date range can be str, datetime, pd.datetime, pd.Timestamp, pd.delta, int :param relative_freq: (optional) A pattern across the whole date range. :param at_most: the most times a selection should be chosen :param ordered: order the data ascending 'asc' or descending 'dec', values accepted 'asc' or 'des' :param ignore_time: ignore time elements and only select from Year, Month, Day elements. Default is False :param date_format: the string format of the date to be returned. if not set then pd.Timestamp returned :param as_num: returns a list of Matplotlib date values as a float. Default is False :param size: the size of the sample to return. Default to 1 :param seed: a seed value for the random function: default to None :param year_first: specifies if to parse with the year first If True parses dates with the year first, eg 10/11/12 is parsed as 2010-11-12. If both dayfirst and yearfirst are True, yearfirst is preceded (same as dateutil). :param day_first: specifies if to parse with the day first If True, parses dates with the day first, eg %d-%m-%Y. If False default to the a preferred preference, normally %m-%d-%Y (but not strict) :return: a date or size of dates in the format given. """ # pre check if start is None or until is None: raise ValueError("The start or until parameters cannot be of NoneType") # Code block for intent as_num = False if not isinstance(as_num, bool) else as_num ignore_time = False if not isinstance(ignore_time, bool) else ignore_time size = 1 if size is None else size _seed = self._seed() if seed is None else seed if isinstance(start, int): start = (pd.Timestamp.now() + pd.Timedelta(days=start)) if isinstance(until, int): until = (pd.Timestamp.now() + pd.Timedelta(days=until)) if isinstance(until, dict): until = (start + pd.Timedelta(**until)) if start == until: rtn_list = [self._convert_date2value(start, day_first=day_first, year_first=year_first)[0]] * size else: _dt_start = self._convert_date2value(start, day_first=day_first, year_first=year_first)[0] _dt_until = self._convert_date2value(until, day_first=day_first, year_first=year_first)[0] precision = 15 if ignore_time: _dt_start = int(_dt_start) _dt_until = int(_dt_until) precision = 0 rtn_list = self._get_number(from_value=_dt_start, to_value=_dt_until, relative_freq=relative_freq, at_most=at_most, ordered=ordered, precision=precision, size=size, seed=seed) if not as_num: rtn_list = mdates.num2date(rtn_list) if isinstance(date_format, str): rtn_list = pd.Series(rtn_list).dt.strftime(date_format).to_list() else: rtn_list = pd.Series(rtn_list).dt.tz_convert(None).to_list() return rtn_list def _get_intervals(self, intervals: list, relative_freq: list=None, precision: int=None, size: int=None, seed: int=None) -> list: """ returns a number based on a list selection of tuple(lower, upper) interval :param intervals: a list of unique tuple pairs representing the interval lower and upper boundaries :param relative_freq: a weighting pattern or probability that does not have to add to 1 :param precision: the precision of the returned number. if None then assumes int value else float :param size: the size of the sample :param seed: a seed value for the random function: default to None :return: a random number """ # Code block for intent size = 1 if size is None else size if not isinstance(precision, int): precision = 0 if all(isinstance(v[0], int) and isinstance(v[1], int) for v in intervals) else 3 _seed = self._seed() if seed is None else seed if not all(isinstance(value, tuple) for value in intervals): raise ValueError("The intervals list must be a list of tuples") interval_list = self._get_category(selection=intervals, relative_freq=relative_freq, size=size, seed=_seed) interval_counts =
pd.Series(interval_list, dtype='object')
pandas.Series
# !/usr/bin/python3.6 # -*- coding: utf-8 -*- # @author breeze import threading import argparse import multiprocessing import time from multiprocessing import Queue, Pool import face_recognition import pandas as pd import win32com.client import cv2 import encoding_images from app_utils import * # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the # other example, but it includes some basic performance tweaks to make things run a lot faster: # 1. Process each video frame at 1/4 resolution (though still display it at full resolution) # 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam. # OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this # specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Load a sample picture and learn how to recognize it. # face_recognition.api.batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128)[source] # face_recognition.api.compare_faces(known_face_encodings, face_encoding_to_check, tolerance=0.6) # face_recognition.api.face_distance(face_encodings, face_to_compare)[source] # face_recognition.api.face_encodings(face_image, known_face_locations=None, num_jitters=1)[source] # face_recognition.api.face_landmarks(face_image, face_locations=None)[source] # face_recognition.api.face_locations(img, number_of_times_to_upsample=1, model='hog')[source] # face_recognition.api.load_image_file(file, mode='RGB')[source] # 语音模块 voice model speaker = win32com.client.Dispatch("SAPI.SpVoice") name = "Unknown" current_names = [name] last_time = time.time() known_face_names = [] known_face_encodings = [] known_face_encodings, known_face_names = encoding_images.load_encodings() # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True # TIME_DIFF = 20 # 持久化的时间间隔,当设置为 0 时候,每次识别的结果直接进行保存. name_record = "./dataset/face_record.txt" # 持久化识别出的人脸结果 NAME_DF = pd.DataFrame(known_face_names, columns=["name"]) last_ts = time.time() lock = threading.Lock() def myprint(log, ts): global lock, last_ts if lock.acquire(): diff = ts - last_ts print(log, '--------', diff) last_ts = ts lock.release() def process_face_records(name): """ 处理每一条识别的记录 ,并在一定时间之后将数据持久化到文件中 此处会碰到全局并发,导致锁的问题 :param name: :return: """ return print('process_face_records start', time.time()) global current_names, last_time # myprint("global current_names {}, last_time {}".format(current_names, last_time)) # 判断是不是在识别的列表中,不在的话就进行问候 if name not in current_names: print("ts ====", last_time, time.time()) current_names.append(name) myprint("Hello {}, nice to meet you! ".format(name)) # speaker.Speak("Hello {}, nice to meet you! ".format(name)) # 在一定时间内,清空已经识别的人, 并进行 if last_time < time.time() - TIME_DIFF: # 每隔一段时间清空一下检测到的人 last_time = time.time() time_format = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) myprint(time_format + " update last_time and clear current_names.") with open(name_record, 'a') as f: if len(current_names) > 0: f.writelines("{}:{} \n".format(time_format, str(current_names))) print("======", current_names) current_names = [] # clear() current_names = [name] myprint('process_face_records end', time.time()) def vote_class(face_encoding, tolerance=0.3, topN=5): myprint('vote start ', time.time()) """ 当比较的结果小于tolerance的时候,有多个值,采用取topN 进行投票 ,决定最终的分类,此处没有对 distance 距离进行加权 :param face_encoding: face encoding :param tolerance: 距离的阈值,越小越相似 :param topN: 参与投票的最大数量 :return: detect name """ # 计算出距离 distance_ = face_recognition.face_distance(known_face_encodings, face_encoding) df = pd.DataFrame(distance_, columns=["dis"]) # 转换成 DataFrame topDF = df[df['dis'] <= tolerance].nsmallest(topN, columns=['dis']) # 过滤结果集 namedf = NAME_DF.loc[topDF.index] # 从姓名列表中获取face距离对应的人脸名称 con =
pd.concat([topDF, namedf], axis=1)
pandas.concat
""" This is a Python implementation of the Denoising Autoencoder approach that we proposed for the first Multi-target speaker detection and identification Challenge Evaluation (MCE 2018, http://www.mce2018.org) The basic idea is to train a Denoising Autoencoder to map each individual input ivector to the mean of all ivectors from that speaker. The aim of this DAE is to compensate for inter-session variability and increase the discriminative power of the ivectors. You can find our system description for the MCE 2018 challenge here: http://mce.csail.mit.edu/pdfs/BiometricVox_description.pdf Part of the code has been adapted from the baseline system at: https://github.com/swshon/multi-speakerID. Copyright 2018 <NAME> Biometric Vox S.L. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from __future__ import print_function import numpy as np from mce_utils import load_ivector, length_norm, make_spkvec, calculate_EER, get_trials_label_with_confusion, calculate_EER_with_confusion import pandas as pd from keras.models import Model from keras.layers import Input, Dense, Activation from keras import metrics from keras import optimizers # Neural network definition: a single hidden layer with 'tanh' activation and a linear output layer def get_DAE(nu=2000): iv_dim = 600 inputs = Input(shape=(iv_dim,)) x = Dense(nu)(inputs) x = Activation('tanh')(x) x = Dense(iv_dim)(x) out = Activation('linear')(x) model = Model(inputs=inputs, outputs=out) return model # Making dictionary to find blacklist pair between train and test dataset bl_match = np.loadtxt('data/bl_matching.csv',dtype='str') dev2train={} dev2id={} train2dev={} train2id={} test2train={} train2test={} for iter, line in enumerate(bl_match): line_s = line.split(',') dev2train[line_s[1].split('_')[-1]]= line_s[3].split('_')[-1] dev2id[line_s[1].split('_')[-1]]= line_s[0].split('_')[-1] train2dev[line_s[3].split('_')[-1]]= line_s[1].split('_')[-1] train2id[line_s[3].split('_')[-1]]= line_s[0].split('_')[-1] test2train[line_s[2].split('_')[-1]]= line_s[3].split('_')[-1] train2test[line_s[3].split('_')[-1]]= line_s[2].split('_')[-1] # load test set information filename = 'data/tst_evaluation_keys.csv' tst_info = np.loadtxt(filename,dtype='str',delimiter=',',skiprows=1,usecols=range(0,3)) tst_trials = [] tst_trials_label = [] tst_ground_truth =[] for iter in range(len(tst_info)): tst_trials_label.extend([tst_info[iter,0]]) if tst_info[iter,1]=='background': tst_trials = np.append(tst_trials,0) else: tst_trials = np.append(tst_trials,1) # Set random seed to make results reproducible seed = 134 np.random.seed(seed) # Loading i-vector trn_bl_id, trn_bl_utt, trn_bl_ivector = load_ivector('data/trn_blacklist.csv') trn_bg_id, trn_bg_utt, trn_bg_ivector = load_ivector('data/trn_background.csv') dev_bl_id, dev_bl_utt, dev_bl_ivector = load_ivector('data/dev_blacklist.csv') dev_bg_id, dev_bg_utt, dev_bg_ivector = load_ivector('data/dev_background.csv') tst_id, test_utt, tst_ivector = load_ivector('data/tst_evaluation.csv') # length normalization trn_bl_ivector = length_norm(trn_bl_ivector) trn_bg_ivector = length_norm(trn_bg_ivector) dev_bl_ivector = length_norm(dev_bl_ivector) dev_bg_ivector = length_norm(dev_bg_ivector) tst_ivector = length_norm(tst_ivector) # Inputs to DAE are ivectors and targets are the speaker-level mean ivectors train_spk_ids =
pd.DataFrame({'spk_ids': trn_bg_id})
pandas.DataFrame
from __future__ import division, print_function from action_detector_diagnosis import ActionDetectorDiagnosis from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import numpy as np import pandas as pd import os from collections import OrderedDict from utils import interpolated_prec_rec from matplotlib import gridspec, rc import matplotlib as mpl mpl.use('Agg') params = {'font.family': 'serif','font.serif': 'Times', 'text.usetex': True, 'xtick.major.size': 8, 'ytick.major.size': 8, 'xtick.major.width': 3, 'ytick.major.width': 3, 'mathtext.fontset': 'custom', } mpl.rcParams.update(params) import matplotlib.pyplot as plt def compute_mAP_N(result,this_cls_pred,this_cls_gt): ap = np.zeros(len(result.tiou_thresholds)) tp = np.zeros((len(result.tiou_thresholds), len(this_cls_pred))) fp = np.zeros((len(result.tiou_thresholds), len(this_cls_pred))) for tidx, tiou in enumerate(result.tiou_thresholds): fp[tidx,pd.isnull(this_cls_pred[result.matched_gt_id_cols[tidx]]).values] = 1 tp[tidx,~(
pd.isnull(this_cls_pred[result.matched_gt_id_cols[tidx]])
pandas.isnull
import argparse import json import numpy as np import pandas as pd GUEST = "guest" HOST = "host" def create_conf(name, pairs): for r, c in pairs: sub = f"{name}_{r}_{c}" conf = { "initiator": {"role": "guest", "party_id": 10000}, "job_parameters": {"work_mode": 0}, "role": {"guest": [10000], "host": [10000]}, "role_parameters": { role: { "args": {"data": {"data": [{"name": f"{sub}_{role}", "namespace": "experiment"}]}}, "dataio_0": {"with_label": [False], "output_format": ["dense"]}, "pearson_0": {"column_indexes": [-1]} } for role in [GUEST, HOST] } } with open(f"{sub}_conf.json", "w") as f: json.dump(conf, f, indent=2) def create_test_suite(name, pairs): def data_pair(sub_name): return [{ "file": f"examples/federatedml-1.x-examples/hetero_pearson/{sub_name}_{role}.csv", "head": 1, "partition": 16, "work_mode": 0, "table_name": f"{sub_name}_{role}", "namespace": "experiment", "role": f"{role}_0" } for role in [GUEST, HOST]] data = [] task = {} for r, c in pairs: sub = f"{name}_{r}_{c}" data.extend(data_pair(sub)) task[f"pearson_{sub}"] = {"conf": f"./{sub}_conf.json", "dsl": "./test_dsl.json"} with open(f"{name}_testsuite.json", "w") as f: json.dump({"data": data, "tasks": task}, f, indent=2) def create_data(role, name, pairs): for r, c in pairs: sub = f"{name}_{r}_{c}" arr = np.random.rand(r, c) df =
pd.DataFrame(arr)
pandas.DataFrame
""" Interact with the FRITZ ZTF-II marshal """ import os import warnings import pandas import json import requests import numpy as np from astropy import time from astropy.io import fits from .io import LOCALSOURCE, _load_id_ FRITZSOURCE = os.path.join(LOCALSOURCE,"fritz") if not os.path.isdir(FRITZSOURCE): os.mkdir(FRITZSOURCE) FID_TO_NAME = {1:"ztfg", 2:"ztfr", 3:"ztfi"} ZTFCOLOR = {"ztfr":"tab:red", "ztfg":"tab:green", "ztfi":"tab:orange"} _BASE_FRITZ_URL = "https://fritz.science/" FRITZSOURCE = os.path.join(LOCALSOURCE,"fritz") #################### # # # GENERIC TOOLS # # # #################### # ---------- # # Downloads # # ---------- # def api(method, endpoint, data=None, load=True, token=None, **kwargs): """ """ if token is None: token = _load_id_('fritz') headers = {'Authorization': f"token {token}"} response = requests.request(method, endpoint, json=data, headers=headers, **kwargs) if not load: return response try: downloaded = json.loads(response.content) except: warnings.warn("cannot load the response.content") downloaded = None if downloaded["status"] not in ["success"]: raise IOError(f"downloading status of '{method} {endpoint}' is not success: {downloaded['status']}") return downloaded["data"] def bulk_download(fobject, names, nprocess=4, show_progress=True, asdict=False, force_dl=False, client=None, store=True): """ Multiprocessed download of Fritz{fobject}. This makes use of the Fritz{fobject}.from_name() classmethods Parameters ---------- fobject: [string] What you want to download. - "lightcurve" (or "photometry"), "spectra" (or "spectrum"), "alerts", or "source" names: [list of string] list of names for which you want to download data. nprocess: [int] -optional- list of parallel download processes. force_dl: [bool] -optional- Should this redownload existing data ? store: [bool] -optional- Should the downloaded data be stored ? asdict: [bool] -optional- Should this return a dictionary or a list - asdict=True: {name: fritz{fobject}} - asdict=False: [fritz{fobject}] Returns ------- Dictionary {name: fritz{fobject}} """ KNOW_OBJECT = ["lightcurve","photometry", "spectra", "spectrum", "alerts","source"] if fobject not in KNOW_OBJECT: raise ValueError(f"Unknown fritz object {fobject}") if fobject == "spectrum": fobject = "spectra" if fobject == "photometry": fobject = "lightcurve" if client is not None: from dask import delayed dl_func = eval(f"_single_download_{fobject}_") d_download = [delayed(dl_func)([name, force_dl, store]) for name in names] return client.compute(d_download) from .utils.tools import is_running_from_notebook import multiprocessing nnames = len(names) # # - Progress bar or not if show_progress: from astropy.utils.console import ProgressBar bar = ProgressBar( nnames, ipython_widget=is_running_from_notebook()) else: bar = None # # - Input objects = {} force_dl = [force_dl]*nnames store = [store]*nnames # # - Multiprocessing with multiprocessing.Pool(nprocess) as p: # Da Loop for j, flc in enumerate( p.imap(eval(f"_single_download_{fobject}_"), zip(names, force_dl, store) ) ): if bar is not None: bar.update(j) objects[names[j]] = flc if bar is not None: bar.update(nnames) return objects if asdict else list(objects.values()) def _single_download_lightcurve_(args): """ """ name, force_dl, store = args return FritzPhotometry.from_name(name, force_dl=force_dl, store=store) def _single_download_spectra_(args): """ """ name, force_dl, store = args return FritzSpectrum.from_name(name, force_dl=force_dl, store=store) def _single_download_alerts_(args): """ """ name, force_dl, store = args return FritzAlerts.from_name(name, force_dl=force_dl, store=store) def _single_download_source_(args): """ """ name, force_dl, store = args return FritzSource.from_name(name, force_dl=force_dl, store=store) # =============== # # # # LightCurve # # # # =============== # def download_lightcurve(name, get_object=False, token=None, clean_groupcolumn=True, format=None, magsys=None, store=False, verbose=False, **kwargs): """ Parameters ---------- format: [string] -optional- = skyportal api option = flux or mag (None means default) magsys: [string] -optional- = skyportal api option = ab or vega (None means default) **kwargs are ignored (here for backward compatibilities) """ # # - start: addon addon = [] if format is not None: addon.append(f"format={format}") if magsys is not None: addon.append(f"magsys={magsys}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f'api/sources/{name}/photometry{addon}' if verbose: print(f"queried URL: {q_url}") lcdata = api('get', q_url, load=True, token=token) lcdata = pandas.DataFrame(lcdata) if clean_groupcolumn: lcdata["groups"] = [[i_["id"] for i_ in lcdata["groups"].iloc[i]] for i in range(len(lcdata))] # - output if not store and not get_object: return lcdata flcdata = FritzPhotometry( lcdata ) if store: flcdata.store() return flcdata if get_object else lcdata # =============== # # # # Spectra # # # # =============== # def download_spectra(name, get_object=False, token=None, store=False, verbose=False): """ """ q_url = _BASE_FRITZ_URL+f'api/sources/{name}/spectra' if verbose: print(f"queried URL: {q_url}") list_of_dict = api('get', q_url, load=True, token=token) # # - Any problem ? if list_of_dict is None or len(list_of_dict)==0: warnings.warn(f"no spectra downloaded. {q_url} download is empty") return None spectra = list_of_dict["spectra"] if spectra is None or len(spectra)==0: warnings.warn(f"no spectra downloaded. {q_url} download is empty") return None # - No ? Good # if not store and not get_object: return spectra if spectra is None or len(spectra)==0: return None if len(spectra)==1: fspectra = FritzSpectrum(spectra[0]) if store: fspectra.store() else: fspectra = [FritzSpectrum(spec_) for spec_ in spectra] if store: [fspec_.store() for fspec_ in fspectra] return fspectra if get_object else spectra # =============== # # # # Alers # # # # =============== # def download_alerts(name, candid=None, allfields=None, get_object=False, token=None, store=False, verbose=False): """ looking for api/alerts/{name}{addon} Parameters ---------- candid: [int/str] alert candid like: 1081317100915015025 """ # # - start: addon addon = [] if candid is not None: addon.append(f"candid={candid}") if allfields is not None: addon.append(f"includeAllFields={allfields}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f'api/alerts/{name}{addon}' if verbose: print(f"queried URL: {q_url}") alerts = api('get',q_url, load=True, token=token) # - output if not store and not get_object: return alerts falerts = FritzAlerts.from_alerts(alerts) if store: falerts.store() return falerts if get_object else alerts # =============== # # # # Source # # # # =============== # def download_source(name, get_object=False, token=None, store=False, verbose=False): """ """ addon='' q_url = _BASE_FRITZ_URL+f'api/sources/{name}{addon}' if verbose: print(f"queried URL: {q_url}") source = api('get', q_url, load=True, token=token) if not store and not get_object: return source fsource = FritzSource(source) if store: fsource.store() return fsource if get_object else source # =============== # # --------------- # # - Sample - # # --------------- # # =============== # def download_sample( groupid, get_object=False, savesummary=False, savedafter=None, savedbefore=None, name=None, includephotometry=None, includerequested=None, addon=None, token=None, store=False, verbose=False): """ includephotometry: [bool] -optional- Includes the photometric table inside sources["photometry"] """ # # - start: addon if addon is None: addon = [] elif type(addon) is str: addon = [addon] if savesummary: addon.append(f"saveSummary=true") if store: warnings.warn("store option not available if savesummary=True.") store=False if groupid is not None and groupid not in ["*", "all"]: addon.append(f"group_ids={groupid}") if savedafter is not None: addon.append(f"savedAfter={time.Time(savedafter).isot}") if savedbefore is not None: addon.append(f"savedBefore={time.Time(savedbefore).isot}") if name is not None: addon.append(f"sourceID={name}") if includephotometry is not None: addon.append(f"includePhotometry={includephotometry}") if includerequested is not None: addon.append(f"includeRequested={includerequested}") addon = "" if len(addon)==0 else "?"+"&".join(addon) # - end: addon # q_url = _BASE_FRITZ_URL+f"api/sources{addon}" if verbose: print(f"queried URL: {q_url}") sources = api('get', q_url, load=True, token=token) if not store and not get_object: return sources sample = FritzSample(sources, groupid) if store: sample.store() return sample if get_object else sources # # Group # def download_groups(get_object=False, token=None, store=True, verbose=False): """ """ q_url = _BASE_FRITZ_URL+f'api/groups' if verbose: print(f"queried URL: {q_url}") groups = api('get',q_url, load=True, token=token) if not store and not get_object: return groups fgroups = FritzGroups(groups) if store: fgroups.store() return fgroups if get_object else groups # -------------- # # Data I/O # # -------------- # # # Spectra # def parse_spectrum_filename(filename): """ """ directory = os.path.dirname(filename) basename = os.path.basename(filename).split(".")[0] extension = filename.split(".")[-1] if not basename.startswith("fritz"): raise ValueError("Cannot parse the given name. Not a fritz_bla file.") _, instspectrum, name, *orig = basename.split("_") originalname = "_".join(orig) return {"instrument":instspectrum.replace("spectrum",""), "name":name, "original_file_filename":originalname, "extension":extension, "directory":directory} #################### # # # Classes # # # #################### # -------------- # # Photometry/ # # LightCurve # # -------------- # class FritzPhotometry( object ): """ """ def __init__(self, dataframe=None): """ """ if dataframe is not None: self.set_data(dataframe) @classmethod def from_fritz(cls, name): """ """ print("FritzPhotometry.from_fritz(name) is DEPRECATED, use FritzPhotometry.from_name(name)") return cls.from_name(name) @classmethod def from_name(cls, name, force_dl=False, store=False, **kwargs): """ """ if not force_dl: filename = cls._build_filename_(name, **kwargs) if os.path.isfile(filename): extension = filename.split(".")[-1] return getattr(cls,f"read_{extension}")(filename) return cls( download_lightcurve(name, get_object=False, store=store) ) # ============= # # Method # # ============= # # --------- # # I/O # # --------- # def store(self, fileout=None, dirout="default", extension="csv", **kwargs): """ calls the self.to_{extension} with the default naming convention. """ # can differ to extension if fileout given if fileout is None: fileout = self._build_filename_(self.name, dirout=dirout, extension=extension) if extension in ["csv","json","parquet",]: return getattr(self,f"to_{extension}")(fileout, **kwargs) if extension in ["hdf","hd5","hdf5","h5"]: return self.to_hdf(fileout, **kwargs) raise ValueError(f"only 'csv','json', 'hdf5' extension implemented ; {extension} given") # - read file @classmethod def read_parquet(cls, filename, **kwargs): """ """ return cls(pandas.read_parquet(filename, **kwargs)) @classmethod def read_csv(cls, filename, **kwargs): """ """ return cls(
pandas.read_csv(filename, **kwargs)
pandas.read_csv
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2020/3/17 13:06 Desc: 期货-中国-交易所-会员持仓数据接口 大连商品交易所、上海期货交易所、郑州商品交易所、中国金融期货交易所 采集前 20 会员持仓数据; 建议下午 16:30 以后采集当天数据, 避免交易所数据更新不稳定; 郑州商品交易所格式分为三类 大连商品交易所有具体合约的持仓排名, 通过 futures_dce_position_rank 获取 20171228 http://www.czce.com.cn/cn/DFSStaticFiles/Future/2020/20200727/FutureDataHolding.txt 20100825 http://www.czce.com.cn/cn/exchange/2014/datatradeholding/20140515.txt """ import datetime import json import re import warnings import zipfile from io import BytesIO from io import StringIO import pandas as pd import requests from bs4 import BeautifulSoup from akshare.futures import cons from akshare.futures.requests_fun import ( requests_link ) from akshare.futures.symbol_var import chinese_to_english, find_chinese from akshare.futures.symbol_var import ( symbol_varieties ) calendar = cons.get_calendar() rank_columns = ['vol_party_name', 'vol', 'vol_chg', 'long_party_name', 'long_open_interest', 'long_open_interest_chg', 'short_party_name', 'short_open_interest', 'short_open_interest_chg'] intColumns = ['vol', 'vol_chg', 'long_open_interest', 'long_open_interest_chg', 'short_open_interest', 'short_open_interest_chg'] def get_rank_sum_daily(start_day="20200721", end_day="20200723", vars_list=cons.contract_symbols): """ 采集四个期货交易所前5、前10、前15、前20会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名,没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得,并不是真实的品种排名列表 注2:大商所只公布了品种排名,未公布标的排名 :param start_day: 开始日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param end_day: 结束数据 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame 展期收益率数据(DataFrame): symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD """ start_day = cons.convert_date(start_day) if start_day is not None else datetime.date.today() end_day = cons.convert_date(end_day) if end_day is not None else cons.convert_date( cons.get_latest_data_date(datetime.datetime.now())) records = pd.DataFrame() while start_day <= end_day: print(start_day) if start_day.strftime('%Y%m%d') in calendar: data = get_rank_sum(start_day, vars_list) if data is False: print(f"{start_day.strftime('%Y-%m-%d')}日交易所数据连接失败,已超过20次,您的地址被网站墙了,请保存好返回数据,稍后从该日期起重试") return records.reset_index(drop=True) records = records.append(data) else: warnings.warn(f"{start_day.strftime('%Y%m%d')}非交易日") start_day += datetime.timedelta(days=1) return records.reset_index(drop=True) def get_rank_sum(date="20200727", vars_list=cons.contract_symbols): """ 抓取四个期货交易所前5、前10、前15、前20会员持仓排名数据 注1:由于上期所和中金所只公布每个品种内部的标的排名, 没有公布品种的总排名; 所以函数输出的品种排名是由品种中的每个标的加总获得, 并不是真实的品种排名列表 注2:大商所只公布了品种排名, 未公布标的排名 :param date: 日期 format: YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如 RB, AL等列表 为空时为所有商品 :return: pd.DataFrame: 展期收益率数据 symbol 标的合约 string var 商品品种 string vol_top5 成交量前5会员成交量总和 int vol_chg_top5 成交量前5会员成交量变化总和 int long_open_interest_top5 持多单前5会员持多单总和 int long_open_interest_chg_top5 持多单前5会员持多单变化总和 int short_open_interest_top5 持空单前5会员持空单总和 int short_open_interest_chg_top5 持空单前5会员持空单变化总和 int vol_top10 成交量前10会员成交量总和 int ... date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return None dce_var = [i for i in vars_list if i in cons.market_exchange_symbols['dce']] shfe_var = [i for i in vars_list if i in cons.market_exchange_symbols['shfe']] czce_var = [i for i in vars_list if i in cons.market_exchange_symbols['czce']] cffex_var = [i for i in vars_list if i in cons.market_exchange_symbols['cffex']] big_dict = {} if len(dce_var) > 0: data = get_dce_rank_table(date, dce_var) if data is False: return False big_dict.update(data) if len(shfe_var) > 0: data = get_shfe_rank_table(date, shfe_var) if data is False: return False big_dict.update(data) if len(czce_var) > 0: data = get_czce_rank_table(date, czce_var) if data is False: return False big_dict.update(data) if len(cffex_var) > 0: data = get_cffex_rank_table(date, cffex_var) if data is False: return False big_dict.update(data) records = pd.DataFrame() for symbol, table in big_dict.items(): table = table.applymap(lambda x: 0 if x == '' else x) for symbol_inner in set(table['symbol']): var = symbol_varieties(symbol_inner) if var in vars_list: table_cut = table[table['symbol'] == symbol_inner] table_cut['rank'] = table_cut['rank'].astype('float') table_cut_top5 = table_cut[table_cut['rank'] <= 5] table_cut_top10 = table_cut[table_cut['rank'] <= 10] table_cut_top15 = table_cut[table_cut['rank'] <= 15] table_cut_top20 = table_cut[table_cut['rank'] <= 20] big_dict = {'symbol': symbol_inner, 'variety': var, 'vol_top5': table_cut_top5['vol'].sum(), 'vol_chg_top5': table_cut_top5['vol_chg'].sum(), 'long_open_interest_top5': table_cut_top5['long_open_interest'].sum(), 'long_open_interest_chg_top5': table_cut_top5['long_open_interest_chg'].sum(), 'short_open_interest_top5': table_cut_top5['short_open_interest'].sum(), 'short_open_interest_chg_top5': table_cut_top5['short_open_interest_chg'].sum(), 'vol_top10': table_cut_top10['vol'].sum(), 'vol_chg_top10': table_cut_top10['vol_chg'].sum(), 'long_open_interest_top10': table_cut_top10['long_open_interest'].sum(), 'long_open_interest_chg_top10': table_cut_top10['long_open_interest_chg'].sum(), 'short_open_interest_top10': table_cut_top10['short_open_interest'].sum(), 'short_open_interest_chg_top10': table_cut_top10['short_open_interest_chg'].sum(), 'vol_top15': table_cut_top15['vol'].sum(), 'vol_chg_top15': table_cut_top15['vol_chg'].sum(), 'long_open_interest_top15': table_cut_top15['long_open_interest'].sum(), 'long_open_interest_chg_top15': table_cut_top15['long_open_interest_chg'].sum(), 'short_open_interest_top15': table_cut_top15['short_open_interest'].sum(), 'short_open_interest_chg_top15': table_cut_top15['short_open_interest_chg'].sum(), 'vol_top20': table_cut_top20['vol'].sum(), 'vol_chg_top20': table_cut_top20['vol_chg'].sum(), 'long_open_interest_top20': table_cut_top20['long_open_interest'].sum(), 'long_open_interest_chg_top20': table_cut_top20['long_open_interest_chg'].sum(), 'short_open_interest_top20': table_cut_top20['short_open_interest'].sum(), 'short_open_interest_chg_top20': table_cut_top20['short_open_interest_chg'].sum(), 'date': date.strftime('%Y%m%d') } records = records.append(pd.DataFrame(big_dict, index=[0])) if len(big_dict.items()) > 0: add_vars = [i for i in cons.market_exchange_symbols['shfe'] + cons.market_exchange_symbols['cffex'] if i in records['variety'].tolist()] for var in add_vars: records_cut = records[records['variety'] == var] var_record = pd.DataFrame(records_cut.sum()).T var_record['date'] = date.strftime('%Y%m%d') var_record.loc[:, ['variety', 'symbol']] = var records = records.append(var_record) return records.reset_index(drop=True) def get_shfe_rank_table(date=None, vars_list=cons.contract_symbols): """ 上海期货交易所前 20 会员持仓排名数据明细 注:该交易所只公布每个品种内部的标的排名,没有公布品种的总排名 数据从20020107开始,每交易日16:30左右更新数据 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2002, 1, 7): print("shfe数据源开始日期为20020107,跳过") return {} if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return {} url = cons.SHFE_VOL_RANK_URL % (date.strftime('%Y%m%d')) r = requests_link(url, 'utf-8') try: context = json.loads(r.text) except: return {} df = pd.DataFrame(context['o_cursor']) df = df.rename( columns={'CJ1': 'vol', 'CJ1_CHG': 'vol_chg', 'CJ2': 'long_open_interest', 'CJ2_CHG': 'long_open_interest_chg', 'CJ3': 'short_open_interest', 'CJ3_CHG': 'short_open_interest_chg', 'PARTICIPANTABBR1': 'vol_party_name', 'PARTICIPANTABBR2': 'long_party_name', 'PARTICIPANTABBR3': 'short_party_name', 'PRODUCTNAME': 'product1', 'RANK': 'rank', 'INSTRUMENTID': 'symbol', 'PRODUCTSORTNO': 'product2'}) if len(df.columns) < 3: return {} df = df.applymap(lambda x: x.strip() if isinstance(x, str) else x) df = df.applymap(lambda x: None if x == '' else x) df['variety'] = df['symbol'].apply(lambda x: symbol_varieties(x)) df = df[df['rank'] > 0] for col in ['PARTICIPANTID1', 'PARTICIPANTID2', 'PARTICIPANTID3', 'product1', 'product2']: try: del df[col] except: pass get_vars = [var for var in vars_list if var in df['variety'].tolist()] big_dict = {} for var in get_vars: df_var = df[df['variety'] == var] for symbol in set(df_var['symbol']): df_symbol = df_var[df_var['symbol'] == symbol] big_dict[symbol] = df_symbol.reset_index(drop=True) return big_dict def _czce_df_read(url, skip_rows, encoding='utf-8', header=0): """ 郑州商品交易所的网页数据 :param header: :type header: :param url: 网站 string :param skip_rows: 去掉前几行 int :param encoding: utf-8 or gbk or gb2312 :return: pd.DataFrame """ headers = { "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9", "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.89 Safari/537.36", "Host": "www.czce.com.cn", "Cookie": "XquW6dFMPxV380S=CAaD3sMkdXv3fUoaJlICIEv0MVegGq5EoMyBcxkOjCgSjmpuovYFuTLtYFcxTZGw; XquW6dFMPxV380T=5QTTjUlA6f6WiDO7fMGmqNxHBWz.hKIc8lb_tc1o4nHrJM4nsXCAI9VHaKyV_jkHh4cIVvD25kGQAh.MvLL1SHRA20HCG9mVVHPhAzktNdPK3evjm0NYbTg2Gu_XGGtPhecxLvdFQ0.JlAxy_z0C15_KdO8kOI18i4K0rFERNPxjXq5qG1Gs.QiOm976wODY.pe8XCQtAsuLYJ.N4DpTgNfHJp04jhMl0SntHhr.jhh3dFjMXBx.JEHngXBzY6gQAhER7uSKAeSktruxFeuKlebse.vrPghHqWvJm4WPTEvDQ8q", } r = requests_link(url, encoding, headers=headers) data = pd.read_html(r.text, match='.+', flavor=None, header=header, index_col=0, skiprows=skip_rows, attrs=None, parse_dates=False, thousands=', ', encoding="gbk", decimal='.', converters=None, na_values=None, keep_default_na=True) return data def get_czce_rank_table(date="20200727", vars_list=cons.contract_symbols): """ 郑州商品交易所前 20 会员持仓排名数据明细 注:该交易所既公布了品种排名, 也公布了标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20050509开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2015, 10, 8): print("CZCE可获取的数据源开始日期为 20151008, 请输入合适的日期参数") return {} if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return {} if date >= datetime.date(2015, 10, 8): url = f"http://www.czce.com.cn/cn/DFSStaticFiles/Future/{date.year}/{date.isoformat().replace('-', '')}/FutureDataHolding.xls" r = requests.get(url) temp_df = pd.read_excel(BytesIO(r.content)) temp_pinzhong_index = [item + 1 for item in temp_df[temp_df.iloc[:, 0].str.contains("合计")].index.to_list()] temp_pinzhong_index.insert(0, 0) temp_pinzhong_index.pop() temp_symbol_index = temp_df.iloc[temp_pinzhong_index, 0].str.split(" ", expand=True).iloc[:, 0] symbol_list = [re.compile(r"[0-9a-zA-Z_]+").findall(item)[0] for item in temp_symbol_index.values] temp_symbol_index_list = temp_symbol_index.index.to_list() big_dict = {} for i in range(len(temp_symbol_index_list)-1): inner_temp_df = temp_df[temp_symbol_index_list[i]+2: temp_symbol_index_list[i+1]-1] inner_temp_df.columns = ["rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[i]] = inner_temp_df inner_temp_df = temp_df[temp_symbol_index_list[i+1]+2:-1] inner_temp_df.columns = ["rank", "vol_party_name", "vol", "vol_chg", "long_party_name", "long_open_interest", "long_open_interest_chg", "short_party_name", "short_open_interest", "short_open_interest_chg", ] inner_temp_df.reset_index(inplace=True, drop=True) big_dict[symbol_list[-1]] = inner_temp_df new_big_dict = {} for key, value in big_dict.items(): value["symbol"] = key value["variety"] = re.compile(r"[a-zA-Z_]+").findall(key)[0] new_big_dict[key] = value return new_big_dict def get_dce_rank_table(date="20200727", vars_list=cons.contract_symbols): """ 大连商品交易所前 20 会员持仓排名数据明细 注: 该交易所既公布品种排名, 也公布标的合约排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date 对象, 为空时为当天 :param vars_list: 合约品种如 RB、AL等列表为空时为所有商品, 数据从 20060104 开始,每交易日 16:30 左右更新数据 :return: pandas.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2006, 1, 4): print(Exception("大连商品交易所数据源开始日期为20060104,跳过")) return {} if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return {} vars_list = [i for i in vars_list if i in cons.market_exchange_symbols['dce']] big_dict = {} for var in vars_list: url = cons.DCE_VOL_RANK_URL % (var.lower(), var.lower(), date.year, date.month - 1, date.day) list_60_name = [] list_60 = [] list_60_chg = [] rank = [] texts = requests_link(url).content.splitlines() if not texts: return False if len(texts) > 30: for text in texts: line = text.decode("utf-8") string_list = line.split() try: if int(string_list[0]) <= 20: list_60_name.append(string_list[1]) list_60.append(string_list[2]) list_60_chg.append(string_list[3]) rank.append(string_list[0]) except: pass table_cut = pd.DataFrame({'rank': rank[0:20], 'vol_party_name': list_60_name[0:20], 'vol': list_60[0:20], 'vol_chg': list_60_chg[0:20], 'long_party_name': list_60_name[20:40], 'long_open_interest': list_60[20:40], 'long_open_interest_chg': list_60_chg[20:40], 'short_party_name': list_60_name[40:60], 'short_open_interest': list_60[40:60], 'short_open_interest_chg': list_60_chg[40:60] }) table_cut = table_cut.applymap(lambda x: x.replace(',', '')) table_cut = _table_cut_cal(table_cut, var) big_dict[var] = table_cut.reset_index(drop=True) return big_dict def get_cffex_rank_table(date="20200427", vars_list=cons.contract_symbols): """ 中国金融期货交易所前 20 会员持仓排名数据明细 注:该交易所既公布品种排名,也公布标的排名 :param date: 日期 format:YYYY-MM-DD 或 YYYYMMDD 或 datetime.date对象 为空时为当天 :param vars_list: 合约品种如RB、AL等列表 为空时为所有商品, 数据从20100416开始,每交易日16:30左右更新数据 :return: pd.DataFrame rank 排名 int vol_party_name 成交量排序的当前名次会员 string(中文) vol 该会员成交量 int vol_chg 该会员成交量变化量 int long_party_name 持多单排序的当前名次会员 string(中文) long_open_interest 该会员持多单 int long_open_interest_chg 该会员持多单变化量 int short_party_name 持空单排序的当前名次会员 string(中文) short_open_interest 该会员持空单 int short_open_interest_chg 该会员持空单变化量 int symbol 标的合约 string var 品种 string date 日期 string YYYYMMDD """ vars_list = [i for i in vars_list if i in cons.market_exchange_symbols['cffex']] date = cons.convert_date(date) if date is not None else datetime.date.today() if date < datetime.date(2010, 4, 16): print(Exception("cffex数据源开始日期为20100416,跳过")) return {} if date.strftime('%Y%m%d') not in calendar: warnings.warn('%s非交易日' % date.strftime('%Y%m%d')) return {} big_dict = {} for var in vars_list: # print(var) # var = "IF" url = cons.CFFEX_VOL_RANK_URL % (date.strftime('%Y%m'), date.strftime('%d'), var) r = requests_link(url, encoding='gbk') if not r: return False if '网页错误' not in r.text: try: temp_chche = StringIO(r.text.split('\n交易日,')[1]) except: temp_chche = StringIO(r.text.split('\n交易日,')[0][4:]) # 20200316开始数据结构变化,统一格式 table = pd.read_csv(temp_chche) table = table.dropna(how='any') table = table.applymap(lambda x: x.strip() if isinstance(x, str) else x) for symbol in set(table['合约']): table_cut = table[table['合约'] == symbol] table_cut.columns = ['symbol', 'rank'] + rank_columns table_cut = _table_cut_cal(
pd.DataFrame(table_cut)
pandas.DataFrame
#//////////////////////////////////////////////////////////////////// #//////////////////////////////////////////////////////////////////// # script: getMutationCounts_overall_and_GOI.py # author: Lincoln # date: 10.11.18 # # This script performs some basic analysis on vcf files, as output by # my SNP_detection_pipeline. It has 4 separate run modes: # 1. get raw mutation counts, for every cell # 2. get mutation counts, after filtering through COSMIC database # 3. get mutation counts, ' ', # with the specific LAUD annotation # 4. for a given GOI, which cells have mutations, and what are those # mutations, on the amino acid level? This creates the necessary # input for all of the lolliplot stuff. As well as for # makeSummaryTable.ipynb # #//////////////////////////////////////////////////////////////////// #//////////////////////////////////////////////////////////////////// import numpy as np import VCF # comes from <NAME> import os import csv import pandas as pd import sys import itertools import warnings warnings.simplefilter(action='ignore', category=FutureWarning) #//////////////////////////////////////////////////////////////////// # getFileNames() # Get file names based on the specified path # #//////////////////////////////////////////////////////////////////// def getFileNames(): files = [] for file in os.listdir("vcf_germline_filter/"): if file.endswith(".vcf"): fullPath = (os.path.join("vcf_germline_filter/", file)) files.append(fullPath) return files #//////////////////////////////////////////////////////////////////// # getRawCounts() # Creates dictionary obj with raw counts for GATK hits w/in a given set of vcf files # #//////////////////////////////////////////////////////////////////// def getRawCounts(fileNames): print('getting raw counts...') cells_dict = {} for f in fileNames: cell = f.replace("vcf_germline_filter/", "") cell = cell.replace(".vcf", "") df = VCF.dataframe(f) unique = len(np.unique(df.POS)) cells_dict.update({cell : unique}) print('finished!') return cells_dict #//////////////////////////////////////////////////////////////////// # getGenomePos() # Returns a genome position sting that will match against the ones w/in COSMIC db # #//////////////////////////////////////////////////////////////////// def getGenomePos(sample): try: chr = sample[0] chr = chr.replace("chr", "") pos = int(sample[1]) ref = str(sample[3]) alt = str(sample[4]) if (len(ref) == 1) & (len(alt) == 1): # most basic case secondPos = pos genomePos = chr + ':' + str(pos) + '-' + str(secondPos) elif (len(ref) > 1) & (len(alt) == 1): secondPos = pos + len(ref) genomePos = chr + ':' + str(pos) + '-' + str(secondPos) elif (len(alt) > 1) & (len(ref) == 1): secondPos = pos + len(alt) genomePos = chr + ':' + str(pos) + '-' + str(secondPos) else: # BOTH > 1 .... not sure what to do here. does this actually happen? secondPos = 'dummy' genomePos = chr + ':' + str(pos) + '-' + str(secondPos) except: genomePos = 'chr0:0-0' return(genomePos) #//////////////////////////////////////////////////////////////////// # getFilterCountsBasic() # Creates dictionry obj with COSMIC filtered GATK hits w/in a given set of vcfs # #//////////////////////////////////////////////////////////////////// def getFilterCountsBasic(fileNames): print('getting filter counts basic...') cells_dict_filter = {} genomePos_db = pd.Series(database['Mutation genome position']) for f in fileNames: cell = f.replace("vcf_germline_filter/", "") cell = cell.replace(".vcf", "") print(cell) df = VCF.dataframe(f) genomePos_query = df.apply(getGenomePos, axis=1) shared = list(set(genomePos_query) & set(genomePos_db)) cells_dict_filter.update({cell : len(shared)}) print('finished!') return cells_dict_filter #//////////////////////////////////////////////////////////////////// # getLAUD_db() # Return the cosmic database after lung adeno filter # #//////////////////////////////////////////////////////////////////// def getLAUD_db(): print('setting up LAUD filtered database...') pHistList = database.index[database['Primary histology'] == 'carcinoma'].tolist() pSiteList = database.index[database['Primary site'] == 'lung'].tolist() shared = list(set(pHistList) & set(pSiteList)) database_filter = database.iloc[shared] return database_filter #//////////////////////////////////////////////////////////////////// # getFilterCountsLAUD() # Creates dictionry obj with COSMIC filtered GATK hits w/in a given set of vcfs # #//////////////////////////////////////////////////////////////////// def getFilterCountsLAUD(fileNames): print('getting filter counts LAUD...') cells_dict_laud = {} genomePos_laud_db = pd.Series(database_laud['Mutation genome position']) for f in fileNames: cell = f.replace("vcf_germline_filter/", "") cell = cell.replace(".vcf", "") df = VCF.dataframe(f) genomePos_query = df.apply(getGenomePos, axis=1) # apply function for every row in df shared = list(set(genomePos_query) & set(genomePos_laud_db)) cells_dict_laud.update({cell : len(shared)}) print('finished!') return cells_dict_laud #//////////////////////////////////////////////////////////////////// # hitSearchFunc() # Performs the actual search # REMEMBER: `match` is just a boolean #//////////////////////////////////////////////////////////////////// def hitSearchFunc(sample): match = 0 currChrom = sample.split(':')[0] if currChrom == queryChrom: sub0 = sample.split('-')[0] # split on `-` sub1 = sample.split('-')[1] # this guy is good sub00 = sub0.split(':')[1] # split on :, need to get rid of chrom try: lPosCurr = sub00 rPosCurr = sub1 # rPosQuery and lPosQuery are GLOBALs if (lPosCurr >= lPosQuery) & (lPosCurr <= rPosQuery): # left position good if (rPosCurr >= lPosQuery) & (rPosCurr <= rPosQuery): # right position good match = 1 except IndexError: print('index error') return match #//////////////////////////////////////////////////////////////////// # hitSearchFunc_coords() # given a list of shared entries between an individual cell's VCF # and the COSMIC LAUD db, searches for hits to the GOI, as specified # with cmd line option '4' # # REMEMBER: `match` is NOT a bool here # # passing in *args so that i can tell what cell im finding indels in!!! #//////////////////////////////////////////////////////////////////// def hitSearchFunc_coords(sample, *args): cell_ = args[0] match = "" print(sample) currChrom = sample.split(':')[0] if currChrom == queryChrom: print('here i am!') sub0 = sample.split('-')[0] # split on `-` sub1 = sample.split('-')[1] # this guy is good sub00 = sub0.split(':')[1] # split on :, need to get rid of chrom try: lPosCurr = sub00 rPosCurr = sub1 # keep in mind rPosQuery and lPosQuery are GLOBALs if (lPosCurr >= lPosQuery) & (lPosCurr <= rPosQuery): # left pos GOI match if (rPosCurr >= lPosQuery) & (rPosCurr <= rPosQuery): # right pos GOI match if lPosCurr == rPosCurr: # SNP match = lPosCurr else: # found an indel!! match = lPosCurr + '-' + rPosCurr #print(cell_) except IndexError: print('index error') return match #//////////////////////////////////////////////////////////////////// # getGOIHits() # Creates dictionry obj with hits to a specific Gene of Interest # #//////////////////////////////////////////////////////////////////// def getGOIHits(fileNames, chrom, pos1, pos2): print('getting hits to GOI') global queryChrom, lPosQuery, rPosQuery # dont like this genomePos_laud_db = pd.Series(database_laud['Mutation genome position']) cells_dict_GOI = {} queryChrom = chrom lPosQuery = pos1 rPosQuery = pos2 for f in fileNames: numMatches = 0 cell = f.replace("vcf_germline_filter/", "") cell = cell.replace(".vcf", "") df = VCF.dataframe(f) genomePos_query = df.apply(getGenomePos, axis=1) # apply function for every row in df shared = list(set(genomePos_query) & set(genomePos_laud_db)) # get the LAUD filter set shared1 = pd.Series(shared) # what if i convert this guy to a pandas object? numMatches = shared1.apply(hitSearchFunc) # another apply call cells_dict_GOI.update({cell : sum(numMatches)}) return cells_dict_GOI #//////////////////////////////////////////////////////////////////// # getGOIHit_coords() # Creates dictionry obj with genome coords for hits to specific GOI # #//////////////////////////////////////////////////////////////////// def getGOIHit_coords(fileNames, chrom, pos1, pos2): print('getting coords to GOI hits') global queryChrom, lPosQuery, rPosQuery # dont like this genomePos_laud_db = pd.Series(database_laud['Mutation genome position']) cells_dict_GOI_coords = {} queryChrom = chrom lPosQuery = pos1 rPosQuery = pos2 for f in fileNames: numMatches = 0 cell = f.replace("vcf_germline_filter/", "") cell = cell.replace(".vcf", "") df = VCF.dataframe(f) genomePos_query = df.apply(getGenomePos, axis=1) # apply function for every row in df # get the entries shared between curr cells VCF and the LAUD filter set # remember, these are general, and NOT gene specific genomePos_query_expand = expandSet(set(genomePos_query)) shared = list(set(genomePos_query_expand) & set(genomePos_laud_db)) shared1 =
pd.Series(shared)
pandas.Series
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from typing import List, Optional # Skipping analyzing 'numpy': found module but no type hints or library stubs import numpy as np # type: ignore import numpy.ma as ma # type: ignore # Skipping analyzing 'pandas': found module but no type hints or library stubs import pandas as pd # type: ignore import pyarrow as pa # type: ignore import torcharrow.dtypes as dt import torcharrow.pytorch as tap from torcharrow._interop import ( from_arrow_table, from_arrow_array, from_pandas_dataframe, from_pandas_series, ) from torcharrow.scope import Scope # replicated here since we don't expose it from interop.py # TO DELETE: New logic, mask illegal data... # def _column_without_nan(series, dtype): # if dtype is None or is_floating(dtype): # for i in series: # if isinstance(i, float) and np.isnan(i): # yield None # else: # yield i # else: # for i in series: # yield i class TestLegacyInterop(unittest.TestCase): def setUp(self): self.ts = Scope({"device": "demo"}) def test_numpy_numerics_no_mask(self): # numerics... for np_type, ta_type in zip( [np.int8, np.int16, np.int32, np.int64, np.float32, np.float64], [dt.int8, dt.int16, dt.int32, dt.int64, dt.Float32(True), dt.Float64(True)], ): self.assertEqual(dt.typeof_np_dtype(np_type), ta_type) arr = np.ones((20,), dtype=np_type) # type preserving self.assertEqual(dt.typeof_np_dtype(arr.dtype), ta_type) col = self.ts._FullColumn(arr, dtype=ta_type) self.assertTrue(col.valid(1)) arr[1] = 99 self.assertEqual(arr[1], 99) self.assertEqual(col[1], 99) def test_numpy_numerics_with_mask(self): for np_type, ta_type in zip( [np.int8, np.int16, np.int32, np.int64, np.float32, np.float64], [dt.int8, dt.int16, dt.int32, dt.int64, dt.Float32(True), dt.Float64(True)], ): data = np.ones((20,), dtype=np_type) mask = np.full((len(data),), False, dtype=np.bool8) mask[1] = True arr = ma.array(data, mask=mask) col = self.ts._FullColumn(data, dtype=ta_type, mask=mask) # all defined, except... self.assertFalse(col.valid(1)) self.assertTrue(col.valid(2)) data[1] = 99 self.assertTrue(ma.is_masked(arr[1])) self.assertEqual(col[1], None) def test_strings_no_mask(self): # dt.strings (with np.str_ representation) arr = np.array(["a", "b", "cde"], dtype=np.str_) self.assertEqual(dt.typeof_np_dtype(arr.dtype), dt.string) col = self.ts._FullColumn(arr, dtype=dt.string) arr[1] = "kkkk" self.assertEqual(arr[1], "kkk") self.assertEqual(col[1], "kkk") # dt.strings (with object representation) arr = np.array(["a", "b", "cde"], dtype=object) self.assertEqual(dt.typeof_np_dtype(arr.dtype), dt.String(True)) col = self.ts._FullColumn(arr, dtype=dt.String(True)) self.assertTrue(col.valid(1)) arr[1] = "kkkk" self.assertEqual(arr[1], "kkkk") self.assertEqual(col[1], "kkkk") def test_strings_with_mask(self): def is_not_str(s): return not isinstance(s, str) # dt.strings (with object representation) arr = np.array(["a", None, "cde"], dtype=object) self.assertEqual(dt.typeof_np_dtype(arr.dtype), dt.String(True)) mask = np.vectorize(is_not_str)(arr) col = self.ts._FullColumn(arr, dtype=dt.String(True), mask=mask) self.assertTrue(col.valid(0)) self.assertFalse(col.valid(1)) arr[1] = "kkkk" self.assertEqual(arr[1], "kkkk") self.assertEqual(col._data[1], "kkkk") self.assertEqual(col[1], None) def test_panda_series(self): s = pd.Series([1, 2, 3]) self.assertEqual(list(s), list(from_pandas_series(s))) s = pd.Series([1.0, np.nan, 3]) self.assertEqual([1.0, None, 3], list(from_pandas_series(s))) s = pd.Series([1, 2, 3]) self.assertEqual(list(s), list(from_pandas_series(s, dt.Int16(False)))) s = pd.Series([1, 2, 3]) t = from_pandas_series(s) self.assertEqual(t.dtype, dt.Int64(False)) self.assertEqual(list(s), list(from_pandas_series(s))) s = pd.Series([True, False, True]) t = from_pandas_series(s) self.assertEqual(t.dtype, dt.Boolean(False)) self.assertEqual(list(s), list(from_pandas_series(s))) s = pd.Series(["a", "b", "c", "d", "e", "f", "g"]) t = from_pandas_series(s) # TODO Check following assert # self.assertEqual(t.dtype, dt.String(False)) self.assertEqual(list(s), list(t)) def test_panda_dataframes(self): s = pd.DataFrame({"a": [1, 2, 3]}) self.assertEqual( [(i,) for i in s["a"]], list(from_pandas_dataframe(s, scope=self.ts)) ) s = pd.DataFrame({"a": [1.0, np.nan, 3]}) t = from_pandas_dataframe(s, scope=self.ts) self.assertEqual(list(t), [(i,) for i in [1.0, None, 3]]) # [(i,) for i in list(_column_without_nan(s["a"], dt.Float64(True)))], list(t) s = pd.DataFrame({"a": [1, 2, 3]}) t = from_pandas_dataframe( s, dt.Struct([dt.Field("a", dt.Int16(False))]), scope=self.ts ) self.assertEqual([(i,) for i in s["a"]], list(t)) s = pd.DataFrame({"a": [1, 2, 3]}) t = from_pandas_dataframe(s, scope=self.ts) self.assertEqual(t.dtype, dt.Struct([dt.Field("a", dt.Int64(False))])) self.assertEqual([(i,) for i in s["a"]], list(t)) s = pd.DataFrame({"a": [True, False, True]}) t = from_pandas_dataframe(s, scope=self.ts) self.assertEqual(t.dtype, dt.Struct([dt.Field("a", dt.Boolean(False))])) self.assertEqual([(i,) for i in s["a"]], list(t)) s = pd.DataFrame({"a": ["a", "b", "c", "d", "e", "f", "g"]}) t = from_pandas_dataframe(s, scope=self.ts) self.assertEqual(t.dtype, dt.Struct([dt.Field("a", dt.String(True))])) self.assertEqual([(i,) for i in s["a"]], list(t)) # TODO Check why error is not raised... # with self.assertRaises(KeyError): # # KeyError: 'no matching test found for Void(nullable=True)', i.e. # # NULL Columns are not supported # s = pd.DataFrame({"a": ["a"], "b": [1], "c": [None], "d": [1.0]}) # t = from_pandas_dataframe(s) s =
pd.DataFrame({"a": ["a"], "b": [1], "c": [True], "d": [1.0]})
pandas.DataFrame
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import json import import_db_assessment def createTransformersVariable(transformerRule): # Convert the JSON fields into variables like dictionaries, lists, string and numbers and return it if str(transformerRule['action_details']['datatype']).upper() == 'DICTIONARY': # For dictionaries return json.loads(str(transformerRule['action_details']['value']).strip()) elif str(transformerRule['action_details']['datatype']).upper() == 'LIST': # For Lists it is expected to be separated by comma return str(transformerRule['action_details']['value']).split(',') elif str(transformerRule['action_details']['datatype']).upper() == 'STRING': # For strings we just need to carry out the content return str(transformerRule['action_details']['value']) elif str(transformerRule['action_details']['datatype']).upper() == 'NUMBER': # For number we are casting it to float return float(transformerRule['action_details']['value']) else: # If the JSON file has any value not expected return None def runRules(transformerRules, dataFrames, singleRule, args, collectionKey, transformersTablesSchema, fileList, rulesAlreadyExecuted, transformersParameters): # Variable to keep track of rules executed and its results and status transformerResults = {} # Variable to keep track and make available all the variables from the JSON file transformersRulesVariables = {} # Standardize Statuses # Executed EXECUTEDSTATUS = 'EXECUTED' FAILEDSTATUS = 'FAILED' if singleRule: # If parameter is set then we will run only 1 rule sorted_keys = [] sorted_keys.append(singleRule) else: # Getting ordered list of keys by priority to iterate over the dictionary sorted_keys = sorted(transformerRules, key=lambda x: (transformerRules[x]['priority'])) # Looping on ALL rules from transformers.json for ruleItem in sorted_keys: stringExpression = getParsedRuleExpr(transformerRules[ruleItem]['expr1']) iferrorExpression = getParsedRuleExpr(transformerRules[ruleItem]['iferror']) if str(transformerRules[ruleItem]['status']).upper() == "ENABLED": if ruleItem not in rulesAlreadyExecuted: print('Processing rule item: "{}"\nPriority: "{}"'.format(ruleItem,transformerRules[ruleItem]['priority'])) if str(transformerRules[ruleItem]['type']).upper() == "VARIABLE" and str(transformerRules[ruleItem]['action']).upper() == "CREATE": # transformers.json asking to create a variable which is a dictionary try: transformerResults[ruleItem] = {'Status': EXECUTEDSTATUS, 'Result Value': createTransformersVariable(transformerRules[ruleItem])} transformersRulesVariables[transformerRules[ruleItem]['action_details']['varname']] = transformerResults[ruleItem]['Result Value'] except: # In case of any issue the rule will be marked as FAILEDSTATUS transformerResults[ruleItem] = {'Status': FAILEDSTATUS, 'Result Value': None} transformersRulesVariables[transformerRules[ruleItem]['action_details']['varname']] = None elif str(transformerRules[ruleItem]['type']).upper() in ("NUMBER","FREESTYLE") and str(transformerRules[ruleItem]['action']).upper() == "ADD_OR_UPDATE_COLUMN": # transformers.json asking to add a column that is type number meaning it can be a calculation and the column to be added is NUMBER too # Where the result of expr1 will be saved initially dfTargetName = transformerRules[ruleItem]['action_details']['dataframe_name'] columnTargetName = transformerRules[ruleItem]['action_details']['column_name'] ruleCondition = True try: ruleConditionString = str(transformerRules[ruleItem]['ifcondition1']) except KeyError: ruleConditionString = None # In case ifcondition1 (transformers.json) is set for the rule if ruleConditionString is not None and ruleConditionString != "": try: ruleCondition = eval (ruleConditionString) print ('ruleCondition = {}'.format(ruleCondition)) except: print ('\n Error processing ifcondition1 "{}" for rule "{}". So, this rule will be skipped.\n'.format(ruleConditionString,ruleItem)) continue if not ruleCondition: print ('WARNING: This rule "{}" will be skipped because of "ifcondition1" from transformers.json is FALSE.'.format(ruleItem)) continue try: dataFrames[str(dfTargetName).upper()][str(columnTargetName).upper()] = execStringExpression(stringExpression,iferrorExpression, dataFrames) df = dataFrames[str(dfTargetName).upper()] except KeyError: print ('\n WARNING: The rule "{}" could not be executed because the variable "{}" used in the transformers.json could not be found.\n'.format(ruleItem, str(dfTargetName).upper())) continue newTableName = str(transformerRules[ruleItem]['action_details']['target_dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(newTableName).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) elif str(transformerRules[ruleItem]['type']).upper() == "FREESTYLE" and str(transformerRules[ruleItem]['action']).upper() == "CREATE_OR_REPLACE_DATAFRAME": # df = execStringExpression(stringExpression,iferrorExpression,dataFrames) if df is None: print('\n WARNING: The rule "{}" could not be executed because the expression "{}" used in the transformers.json could not be executed.\n'.format(ruleItem,stringExpression)) continue newTableName = str(transformerRules[ruleItem]['action_details']['dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(transformerRules[ruleItem]['action_details']['dataframe_name']).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) elif str(transformerRules[ruleItem]['type']).upper() == "FREESTYLE" and str(transformerRules[ruleItem]['action']).upper() == "FREESTYLE": try: eval (stringExpression) except KeyError: print ('\n WARNING: The rule "{}" could not be executed because the expr1 "{}" used in the transformers.json could not be executed.\n'.format(ruleItem, stringExpression)) continue newTableName = str(transformerRules[ruleItem]['action_details']['target_dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(newTableName).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) return transformerResults, transformersRulesVariables, fileList, dataFrames def execStringExpression(stringExpression,iferrorExpression, dataFrames): try: res = eval (stringExpression) except: try: res = eval (iferrorExpression) except: res = None return res def getParsedRuleExpr(ruleExpr): # Function to get a clean string to be executed in eval function. The input is a string with many components separated by ; coming from transformers.json ruleComponents = [] ruleComponents = str(ruleExpr).split(';') finalExpression = '' for ruleItem in ruleComponents: ruleItem = ruleItem.strip() finalExpression = str(finalExpression) + str(ruleItem) + ' ' return finalExpression def getRulesFromJSON(jsonFileName): # Read JSON file from the OS and turn it into a hash table with open(jsonFileName) as f: transformerRules = json.load(f) return transformerRules def getDataFrameFromCSV(csvFileName,tableName,skipRows,separatorString,transformersTablesSchema): # Read CSV files from OS and turn it into a dataframe paramCleanDFHeaders = False paramGetHeadersFromConfig = True try: if paramGetHeadersFromConfig: if transformersTablesSchema.get(tableName): try: tableHeaders = getDFHeadersFromTransformers(tableName,transformersTablesSchema) tableHeaders = [header.upper() for header in tableHeaders] df =
pd.read_csv(csvFileName, skiprows=skipRows+1, header=None, names=tableHeaders)
pandas.read_csv
from datetime import datetime import pandas as pd import os import re from .transformers_map import transformers_map def build_data_frame(backtest: dict, csv_path: str): """Creates a Pandas DataFame with the provided backtest. Used when providing a CSV as the datafile Parameters ---------- backtest: dict, provides instructions on how to build the dataframe csv_path: string, absolute path of where to find the data file Returns ------- object, A Pandas DataFrame indexed buy date """ df = load_basic_df_from_csv(csv_path) if df.empty: raise Exception("Dataframe is empty. Check the start and end dates") df = prepare_df(df, backtest) return df def load_basic_df_from_csv(csv_path: str): """Loads a dataframe from a csv Parameters ---------- csv_path: string, path to the csv so it can be read Returns df, A basic dataframe with the data from the csv """ if not os.path.isfile(csv_path): raise Exception(f"File not found: {csv_path}") df = pd.read_csv(csv_path, header=0) df = standardize_df(df) return df def prepare_df(df: pd.DataFrame, backtest: dict): """Prepares the provided dataframe for a backtest by applying the datapoints and splicing based on the given backtest. Useful when loading an existing dataframe (ex. from a cache). Parameters ---------- df: DataFrame, should have all the open, high, low, close, volume data set as headers and indexed by date backtest: dict, provides instructions on how to build the dataframe Returns ------ df: DataFrame, with all the datapoints as column headers and trimmed to the provided time frames """ datapoints = backtest.get("datapoints", []) df = apply_transformers_to_dataframe(df, datapoints) trailing_stop_loss = backtest.get("trailing_stop_loss", 0) if trailing_stop_loss: df["trailing_stop_loss"] = df["close"].cummax() * ( 1 - float(trailing_stop_loss) ) chart_period = backtest.get("chart_period", "1Min") start_time = backtest.get("start") stop_time = backtest.get("stop") df = apply_charting_to_df(df, chart_period, start_time, stop_time) return df def apply_charting_to_df( df: pd.DataFrame, chart_period: str, start_time: str, stop_time: str ): """Modifies the dataframe based on the chart_period, start dates and end dates Parameters ---------- df: dataframe with data loaded chart_period: string, describes how often to sample data, default is '1Min' (1 minute) see https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#dateoffset-objects start_time: datestring in YYYY-MM-DD HH:MM (ex. 2020-08-31 04:00) of when to begin the backtest stop_time: datestring of YYYY-MM-DD HH:MM when to stop the backtest Returns DataFrame, a sorted dataframe ready for consumption by run_backtest """ if df.index.dtype != "datetime64[ns]": headers = df.columns.values.tolist() headers.extend([df.index.name]) if "date" not in headers: raise Exception( "Data does not have a date column. Headers must include date, open, high, low, close, volume." ) time_unit = detect_time_unit(df.date[1]) df.date = pd.to_datetime(df.date, unit=time_unit) df.set_index("date", inplace=True) if start_time: if isinstance(start_time, datetime) or type(start_time) is int: time_unit = detect_time_unit(start_time) start_time = pd.to_datetime(start_time, unit=time_unit) start_time = start_time.strftime("%Y-%m-%d %H:%M:%S") if stop_time: if isinstance(stop_time, datetime) or type(stop_time) is int: time_unit = detect_time_unit(stop_time) stop_time = pd.to_datetime(stop_time, unit=time_unit) stop_time = stop_time.strftime("%Y-%m-%d %H:%M:%S") df = df.resample(chart_period).first() if start_time and stop_time: df = df[start_time:stop_time] # noqa elif start_time and not stop_time: df = df[start_time:] # noqa elif not start_time and stop_time: df = df[:stop_time] return df def apply_transformers_to_dataframe(df: pd.DataFrame, datapoints: list): """Applies indications from the backtest to the dataframe Parameters ---------- df: dataframe loaded with data datapoints: list of indictors as dictionary objects transformer detail: { "transformer": "", string, actual function to be called MUST be in the datapoints "name": "", string, name of the transformer, becomes a column on the dataframe "args": [], list arguments to pass the the function } Returns ------- df, a modified dataframe with all the datapoints calculated as columns """ for ind in datapoints: transformer = ind.get("transformer") field_name = ind.get("name") if len(ind.get("args", [])): args = ind.get("args") # df[field_name] = datapoints[transformer](df, *args) trans_res = transformers_map[transformer](df, *args) else: trans_res = transformers_map[transformer](df) if isinstance(trans_res, pd.DataFrame): df = process_res_df(df, ind, trans_res) if isinstance(trans_res, pd.Series): df[field_name] = trans_res return df def process_res_df(df, ind, trans_res): """handle if a transformer returns multiple columns To manage this, we just add the name of column in a clean way, removing periods and lowercasing it. Parameters ---------- df, dataframe, current dataframe ind, indicator object trans_res, result from the transformer function Returns ------- df, dataframe, updated dataframe with the new columns """ for key in trans_res.keys().values: i_name = ind.get("name") clean_key = key.lower() clean_key = clean_key.replace(".", "") clean_key = clean_key.replace(" ", "_") df_key = f"{i_name}_{clean_key}" df[df_key] = trans_res[key] return df def detect_time_unit(str_or_int: str or int): """Determines a if a timestamp is really a timestamp and if it matches is in seconds or milliseconds Parameters ---------- str_or_int: string or int of the timestamp to detect against Returns ------- string of "s" or "ms", or None if nothing detected """ str_or_int = str(str_or_int) regex1 = r"^(\d{10})$" regex2 = r"^(\d{13})$" if re.match(regex1, str_or_int): return "s" if re.match(regex2, str_or_int): return "ms" def standardize_df(df: pd.DataFrame): """Standardizes a dataframe with the basic features used throughout the project. Parameters ---------- df: A pandas dataframe (probably one just created) with at least the required columns of: date, open, close, high, low, volume. Returns ------- A new pandas dataframe of with all the data in the expected types. """ new_df = df.copy() if "date" in new_df.columns: new_df = new_df.set_index("date") ts = str(new_df.index[0]) time_unit = detect_time_unit(ts) new_df.index = pd.to_datetime(new_df.index, unit=time_unit) new_df = new_df[~new_df.index.duplicated(keep="first")] new_df = new_df.sort_index() columns_to_drop = ["ignore", "date"] new_df.drop(columns=columns_to_drop, errors="ignore") new_df.open = pd.to_numeric(new_df.open) new_df.close = pd.to_numeric(new_df.close) new_df.high =
pd.to_numeric(new_df.high)
pandas.to_numeric
# coding: utf-8 ################################################################### # Step 1-3: find synonyms for mesh keywords ################################################################### # library import pandas as pd import numpy as np # function # importing the mesh public health terms and normalizing the dataset def mesh_term_data(file1): inpfile = file1 mesh_term_df = pd.read_excel (inpfile ) return(mesh_term_df['Mesh Terms ']) # identifying the synonyms of the imported Mesh terms def mesh_synonyms(file1, cui_mesh): mesh_term = mesh_term_data(file1) out_df = pd.read_csv(cui_mesh, sep='\t',encoding='utf-8' ) cui_mesh = out_df[out_df['name'].isin(mesh_term)] cui_mesh = cui_mesh ['cui'].drop_duplicates() # identying the synonyms of the imported Mesh tersm in the selected cui_synonym cui_synonym = out_df[out_df['cui'].isin (cui_mesh)].drop_duplicates() i=0; for term in mesh_term: temp_term=out_df.loc[out_df['name']==term] if len(temp_term)==0: print(term) else : i=i+1 print(i) return cui_synonym # exporting the synonym for each mesh term to a dataframe def df_synonyms(file1, cui_mesh): df_export =
pd.DataFrame()
pandas.DataFrame
from datetime import datetime from typing import Any, Dict, List, Optional import numpy as np import pandas as pd import pytest from pandas.testing import assert_frame_equal from pytz import utc from feast import utils from feast.errors import ( FeatureNameCollisionError, RequestDataNotFoundInEntityDfException, ) from feast.feature_service import FeatureService from feast.feature_view import FeatureView from feast.infra.offline_stores.offline_utils import ( DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL, ) from tests.integration.feature_repos.repo_configuration import ( construct_universal_feature_views, table_name_from_data_source, ) from tests.integration.feature_repos.universal.entities import ( customer, driver, location, ) np.random.seed(0) def convert_timestamp_records_to_utc( records: List[Dict[str, Any]], column: str ) -> List[Dict[str, Any]]: for record in records: record[column] = utils.make_tzaware(record[column]).astimezone(utc) return records # Find the latest record in the given time range and filter def find_asof_record( records: List[Dict[str, Any]], ts_key: str, ts_start: datetime, ts_end: datetime, filter_keys: Optional[List[str]] = None, filter_values: Optional[List[Any]] = None, ) -> Dict[str, Any]: filter_keys = filter_keys or [] filter_values = filter_values or [] assert len(filter_keys) == len(filter_values) found_record = {} for record in records: if ( all( [ record[filter_key] == filter_value for filter_key, filter_value in zip(filter_keys, filter_values) ] ) and ts_start <= record[ts_key] <= ts_end ): if not found_record or found_record[ts_key] < record[ts_key]: found_record = record return found_record def get_expected_training_df( customer_df: pd.DataFrame, customer_fv: FeatureView, driver_df: pd.DataFrame, driver_fv: FeatureView, orders_df: pd.DataFrame, order_fv: FeatureView, location_df: pd.DataFrame, location_fv: FeatureView, global_df: pd.DataFrame, global_fv: FeatureView, entity_df: pd.DataFrame, event_timestamp: str, full_feature_names: bool = False, ): # Convert all pandas dataframes into records with UTC timestamps customer_records = convert_timestamp_records_to_utc( customer_df.to_dict("records"), customer_fv.batch_source.event_timestamp_column ) driver_records = convert_timestamp_records_to_utc( driver_df.to_dict("records"), driver_fv.batch_source.event_timestamp_column ) order_records = convert_timestamp_records_to_utc( orders_df.to_dict("records"), event_timestamp ) location_records = convert_timestamp_records_to_utc( location_df.to_dict("records"), location_fv.batch_source.event_timestamp_column ) global_records = convert_timestamp_records_to_utc( global_df.to_dict("records"), global_fv.batch_source.event_timestamp_column ) entity_rows = convert_timestamp_records_to_utc( entity_df.to_dict("records"), event_timestamp ) # Manually do point-in-time join of driver, customer, and order records against # the entity df for entity_row in entity_rows: customer_record = find_asof_record( customer_records, ts_key=customer_fv.batch_source.event_timestamp_column, ts_start=entity_row[event_timestamp] - customer_fv.ttl, ts_end=entity_row[event_timestamp], filter_keys=["customer_id"], filter_values=[entity_row["customer_id"]], ) driver_record = find_asof_record( driver_records, ts_key=driver_fv.batch_source.event_timestamp_column, ts_start=entity_row[event_timestamp] - driver_fv.ttl, ts_end=entity_row[event_timestamp], filter_keys=["driver_id"], filter_values=[entity_row["driver_id"]], ) order_record = find_asof_record( order_records, ts_key=customer_fv.batch_source.event_timestamp_column, ts_start=entity_row[event_timestamp] - order_fv.ttl, ts_end=entity_row[event_timestamp], filter_keys=["customer_id", "driver_id"], filter_values=[entity_row["customer_id"], entity_row["driver_id"]], ) origin_record = find_asof_record( location_records, ts_key=location_fv.batch_source.event_timestamp_column, ts_start=order_record[event_timestamp] - location_fv.ttl, ts_end=order_record[event_timestamp], filter_keys=["location_id"], filter_values=[order_record["origin_id"]], ) destination_record = find_asof_record( location_records, ts_key=location_fv.batch_source.event_timestamp_column, ts_start=order_record[event_timestamp] - location_fv.ttl, ts_end=order_record[event_timestamp], filter_keys=["location_id"], filter_values=[order_record["destination_id"]], ) global_record = find_asof_record( global_records, ts_key=global_fv.batch_source.event_timestamp_column, ts_start=order_record[event_timestamp] - global_fv.ttl, ts_end=order_record[event_timestamp], ) entity_row.update( { ( f"customer_profile__{k}" if full_feature_names else k ): customer_record.get(k, None) for k in ( "current_balance", "avg_passenger_count", "lifetime_trip_count", ) } ) entity_row.update( { (f"driver_stats__{k}" if full_feature_names else k): driver_record.get( k, None ) for k in ("conv_rate", "avg_daily_trips") } ) entity_row.update( { (f"order__{k}" if full_feature_names else k): order_record.get(k, None) for k in ("order_is_success",) } ) entity_row.update( { "origin__temperature": origin_record.get("temperature", None), "destination__temperature": destination_record.get("temperature", None), } ) entity_row.update( { (f"global_stats__{k}" if full_feature_names else k): global_record.get( k, None ) for k in ("num_rides", "avg_ride_length",) } ) # Convert records back to pandas dataframe expected_df = pd.DataFrame(entity_rows) # Move "event_timestamp" column to front current_cols = expected_df.columns.tolist() current_cols.remove(event_timestamp) expected_df = expected_df[[event_timestamp] + current_cols] # Cast some columns to expected types, since we lose information when converting pandas DFs into Python objects. if full_feature_names: expected_column_types = { "order__order_is_success": "int32", "driver_stats__conv_rate": "float32", "customer_profile__current_balance": "float32", "customer_profile__avg_passenger_count": "float32", "global_stats__avg_ride_length": "float32", } else: expected_column_types = { "order_is_success": "int32", "conv_rate": "float32", "current_balance": "float32", "avg_passenger_count": "float32", "avg_ride_length": "float32", } for col, typ in expected_column_types.items(): expected_df[col] = expected_df[col].astype(typ) conv_feature_name = "driver_stats__conv_rate" if full_feature_names else "conv_rate" expected_df["conv_rate_plus_100"] = expected_df[conv_feature_name] + 100 expected_df["conv_rate_plus_val_to_add"] = ( expected_df[conv_feature_name] + expected_df["val_to_add"] ) return expected_df @pytest.mark.integration @pytest.mark.parametrize("full_feature_names", [True, False], ids=lambda v: str(v)) def test_historical_features(environment, universal_data_sources, full_feature_names): store = environment.feature_store (entities, datasets, data_sources) = universal_data_sources feature_views = construct_universal_feature_views(data_sources) customer_df, driver_df, location_df, orders_df, global_df, entity_df = ( datasets["customer"], datasets["driver"], datasets["location"], datasets["orders"], datasets["global"], datasets["entity"], ) entity_df_with_request_data = entity_df.copy(deep=True) entity_df_with_request_data["val_to_add"] = [ i for i in range(len(entity_df_with_request_data)) ] customer_fv, driver_fv, driver_odfv, location_fv, order_fv, global_fv = ( feature_views["customer"], feature_views["driver"], feature_views["driver_odfv"], feature_views["location"], feature_views["order"], feature_views["global"], ) feature_service = FeatureService( name="convrate_plus100", features=[feature_views["driver"][["conv_rate"]], feature_views["driver_odfv"]], ) feature_service_entity_mapping = FeatureService( name="entity_mapping", features=[ location_fv.with_name("origin").with_join_key_map( {"location_id": "origin_id"} ), location_fv.with_name("destination").with_join_key_map( {"location_id": "destination_id"} ), ], ) feast_objects = [] feast_objects.extend( [ customer_fv, driver_fv, driver_odfv, location_fv, order_fv, global_fv, driver(), customer(), location(), feature_service, feature_service_entity_mapping, ] ) store.apply(feast_objects) entity_df_query = None orders_table = table_name_from_data_source(data_sources["orders"]) if orders_table: entity_df_query = f"SELECT customer_id, driver_id, order_id, origin_id, destination_id, event_timestamp FROM {orders_table}" event_timestamp = ( DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL if DEFAULT_ENTITY_DF_EVENT_TIMESTAMP_COL in orders_df.columns else "e_ts" ) full_expected_df = get_expected_training_df( customer_df, customer_fv, driver_df, driver_fv, orders_df, order_fv, location_df, location_fv, global_df, global_fv, entity_df_with_request_data, event_timestamp, full_feature_names, ) # Only need the shadow entities features in the FeatureService test expected_df = full_expected_df.drop( columns=["origin__temperature", "destination__temperature"], ) if entity_df_query: job_from_sql = store.get_historical_features( entity_df=entity_df_query, features=[ "driver_stats:conv_rate", "driver_stats:avg_daily_trips", "customer_profile:current_balance", "customer_profile:avg_passenger_count", "customer_profile:lifetime_trip_count", "order:order_is_success", "global_stats:num_rides", "global_stats:avg_ride_length", ], full_feature_names=full_feature_names, ) start_time = datetime.utcnow() actual_df_from_sql_entities = job_from_sql.to_df() end_time = datetime.utcnow() print( str(f"\nTime to execute job_from_sql.to_df() = '{(end_time - start_time)}'") ) # Not requesting the on demand transform with an entity_df query (can't add request data in them) expected_df_query = expected_df.drop( columns=["conv_rate_plus_100", "val_to_add", "conv_rate_plus_val_to_add"] ) assert sorted(expected_df_query.columns) == sorted( actual_df_from_sql_entities.columns ) actual_df_from_sql_entities = ( actual_df_from_sql_entities[expected_df_query.columns] .sort_values(by=[event_timestamp, "order_id", "driver_id", "customer_id"]) .drop_duplicates() .reset_index(drop=True) ) expected_df_query = ( expected_df_query.sort_values( by=[event_timestamp, "order_id", "driver_id", "customer_id"] ) .drop_duplicates() .reset_index(drop=True) ) assert_frame_equal( actual_df_from_sql_entities, expected_df_query, check_dtype=False, ) table_from_sql_entities = job_from_sql.to_arrow() df_from_sql_entities = ( table_from_sql_entities.to_pandas()[expected_df_query.columns] .sort_values(by=[event_timestamp, "order_id", "driver_id", "customer_id"]) .drop_duplicates() .reset_index(drop=True) ) for col in df_from_sql_entities.columns: expected_df_query[col] = expected_df_query[col].astype( df_from_sql_entities[col].dtype )
assert_frame_equal(expected_df_query, df_from_sql_entities)
pandas.testing.assert_frame_equal
import os import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from src.preprocess import create_ship_dataframe tc_mapper = pd.read_csv( os.path.join("emission_model", "ship_weightclass_mapper.csv"), index_col=0 ) ships = create_ship_dataframe() # remove ships built after 2015 ships = ships[(ships["BUILT"] <= 2015) & (ships["BUILT"] > 1900)] mapping = { "Diverse": "Diverse", "Cargo": "MPV", "RoRo Passenger": "Ro-Pax", "Cruise Liner": "Cruise", "Tanker": "Tanker", "Bulker": "Bulker", "RoRo Ship": "Ro-Ro", "Container": "Container", "RoRo Car": "Car Carrier", } ships["NEWCLASS"] = ships["Class"].map(mapping) # tc_mapper.loc[[i for i in tc_mapper.index if "Tier II" in i]] # Analysis -------------------------------------------------------------------- gt_classes = { "Ro-Ro": [(0, 25e3), (25e3, float("+inf"))], "Ro-Pax": [(0, 25e3), (25e3, float("+inf"))], "Cruise": [(0, 25e3), (25e3, float("+inf"))], "Diverse": [(0, 2e3), (2e3, float("+inf"))], "Container": [ (0, 17.5e3), (17.5e3, 55e3), (55e3, 145e3), (145e3, float("+inf")), ], "Car Carrier": [(0, 40e3), (40e3, float("+inf"))], } dwt_classes = { "Tanker": [(0, 35e3), (35e3, 45e3), (45e3, 120e3), (120e3, float("+inf"))], "Bulker": [(0, 35e3), (35e3, 45e3), (45e3, 120e3), (120e3, float("+inf"))], "MPV": [(0, 120e3), (120e3, float("+inf"))], } # shiptype and weigth plot -------------------------------------------------- ships[["NEWCLASS", "GT", "BUILT"]] cutter = [ (0, 2000), (5000, 10e3), (10e3, 30e3), (30e3, 60e3), (60e3, 145e3), (145e3, 10000e3), ] ships["GT Class"] = pd.cut( ships["GT"], pd.IntervalIndex.from_tuples(cutter), precision=0, ) df = ships.groupby(["NEWCLASS", "GT Class"])["IMO"].count().reset_index() df = df.rename( columns={ "IMO": "Count", "NEWCLASS": "Shipclass", "GT Class": "Gross tonnage", } ) plt.figure(figsize=(10, 6)) ax = sns.barplot(x="Gross tonnage", y="Count", hue="Shipclass", data=df) ax.set_ylabel("Number of Ships") # ax.set_xlabel("Gross tonnage", size=14) ax.set_xticklabels( ["<" + str((int(i[1]))) for i in cutter[0:-1]] + [">145000"] ) ax.legend(title="Type") plt.savefig("figures/shiptype_by_gt.pdf") df.to_latex( "tables/shiptype_by_gt.tex", caption="All ships by class and gross tonnage weigth as of 2015", label="fig:shiptype_by_gt", ) # Weight distribution--------------------------------------------------------- # for class sns.histplot( data=ships[ships["NEWCLASS"].isin(["Tanker"])], x="DWT", hue="NEWCLASS", multiple="stack", bins=100, ) ["GT"].hist(bins=100) # Age structure -------------------------------------------------------------- # cutter = [(0, 5), (5, 10), (10, 15), (15, 20), (20, 25), (25, 100)] # cutter_years = [(2015-i[1], 2015-i[0]) for i in cutter] ships = ships[(ships["BUILT"] <= 2015) & (ships["BUILT"] > 1950)] plt.figure(figsize=(10, 6)) ax = sns.histplot( data=ships[["NEWCLASS", "BUILT"]], x="BUILT", hue="NEWCLASS", multiple="stack", ) leg = ax.get_legend() leg.set_title("Type") ax.set_ylabel("Number of Ships", size=14) ax.set_xlabel("Built year", size=14) plt.savefig("figures/age_structure_by_shiptype.pdf") # GWT mean gt_d = {} for k, cutter in gt_classes.items(): ships_by_class = ships[ships["NEWCLASS"] == k] vals = pd.cut( ships_by_class["GT"], pd.IntervalIndex.from_tuples(cutter), precision=0, ) gt_d[k] = ships_by_class.groupby(vals).count()["IMO"] df_gt = pd.DataFrame(gt_d) df_gt["Weighttype"] = "GT" df_gt.set_index("Weighttype", append=True, drop=True, inplace=True) dwt_d = {} for k, cutter in dwt_classes.items(): ships_by_class = ships[ships["NEWCLASS"] == k] vals = pd.cut( ships_by_class["DWT"], pd.IntervalIndex.from_tuples(cutter), precision=0, ) dwt_d[k] = ships_by_class.groupby(vals).count()["IMO"] df_dwt = pd.DataFrame(dwt_d) df_dwt["Weighttype"] = "DWT" df_dwt.set_index("Weighttype", append=True, drop=True, inplace=True) combined =
pd.concat([df_dwt, df_gt])
pandas.concat
import numpy as np import pandas as pd import torch from physics.protein_os import Protein import options import os from tqdm import tqdm import mdtraj as md from utils import test_setup, load_protein_bead ################################################# parser = options.get_decoy_parser() args = options.parse_args_and_arch(parser) device, model, energy_fn, ProteinBase = test_setup(args) torch.set_grad_enabled(False) ################################################# amino_acids = pd.read_csv('data/amino_acids.csv') vocab = {x.upper(): y - 1 for x, y in zip(amino_acids.AA3C, amino_acids.idx)} def get_cb_index(topology): ca_gly = topology.select('(name == CA) and (resname == GLY)') cb = topology.select('name == CB') beads_idx = np.append(ca_gly, cb) beads_idx = np.sort(beads_idx) print(beads_idx) return beads_idx # md_data_list = ['BPTI', 'Fip35', 'val_deep'] md_data_list = ['val_deep'] if 'Fip35' in md_data_list: root_dir = '/home/hyang/bio/erf/data/decoys/msm' trj_dir1 = f'{root_dir}/deshaw/DESRES-Trajectory-ww_1-protein/ww_1-protein/' trj_dir2 = f'{root_dir}/deshaw/DESRES-Trajectory-ww_2-protein/ww_2-protein/' seq_native, coords_native, profile_native = load_protein_bead(f'{root_dir}/fip35_bead.csv', 'CB', device) protein_native = Protein(seq_native, coords_native, profile_native) energy_native = protein_native.get_energy(energy_fn).item() print('native', energy_native) for trj_dir in [trj_dir1, trj_dir2]: structure = md.load(f'{trj_dir}/ww-protein.pdb') top = structure.topology df = pd.read_csv(f'{trj_dir}/ww-protein-beads.csv') cb_idx = df['beads_cb_index'].values seq = df['group_name'].values seq_id = df['group_name'].apply(lambda x: vocab[x]).values profile = torch.tensor(seq_id, dtype=torch.long, device=device) score_list = [] flist = pd.read_csv(f'{trj_dir}/flist.txt')['fname'] for k, fname in enumerate(flist): trj = md.load(f'{trj_dir}/{fname}', top=top) coords_all = trj.xyz * 10 coords_cb_all = coords_all[:, cb_idx, :] for i in tqdm(range(coords_cb_all.shape[0])): coords = torch.tensor(coords_cb_all[i], dtype=torch.float, device=device) protein = Protein(seq, coords, profile) energy = protein.get_energy(energy_fn).item() score_list.append(energy) df_i =
pd.DataFrame({'energy': score_list})
pandas.DataFrame
import numpy as np import pandas as pd import math test_prices = map(math.log, [100, 150, 125, 200, 175, 225, 300, 350]) x = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] d = { 'prices' :
pd.Series(test_prices, index=x)
pandas.Series
# -*- coding: utf-8 -*- # """@author: Elie""" # run locally on python 3.8.5('dec1st_py38_xgboostetal':conda) # ============================================================================= # %% Libraries # ============================================================================= import pandas as pd import numpy as np import datetime from functools import partial, reduce from joblib import load, dump import os import sys #plotting from matplotlib import pyplot as plt import matplotlib.lines as mlines from matplotlib import cm plt.rcParams["font.size"] = "4" import seaborn as sns import matplotlib as mpl #ML/Stats from sklearn.model_selection import train_test_split, GridSearchCV, KFold, cross_val_score, StratifiedKFold from sklearn.metrics import roc_curve, auc,precision_recall_curve, f1_score from sklearn.metrics import roc_curve, precision_recall_curve, auc, make_scorer, recall_score, accuracy_score, precision_score, confusion_matrix import shap import xgboost from xgboost import XGBClassifier pd.options.mode.chained_assignment = None # import matplotlib as mpl # mpl.matplotlib_fname() # plt.matplotlib_fname() mpl.rcParams['savefig.transparent'] = "False" mpl.rcParams['axes.facecolor'] = "white" mpl.rcParams['figure.facecolor'] = "white" mpl.rcParams['font.size'] = "5" plt.rcParams['savefig.transparent'] = "False" plt.rcParams['axes.facecolor'] = "white" plt.rcParams['figure.facecolor'] = "white" # ============================================================================= # %% define these feature/headers here in case the headers # are out of order in input files (often the case) # ============================================================================= snv_categories = ["sample", "A[C>A]A", "A[C>A]C", "A[C>A]G", "A[C>A]T", "C[C>A]A", "C[C>A]C", "C[C>A]G", "C[C>A]T", "G[C>A]A", "G[C>A]C", "G[C>A]G", "G[C>A]T", "T[C>A]A", "T[C>A]C", "T[C>A]G", "T[C>A]T", "A[C>G]A", "A[C>G]C", "A[C>G]G", "A[C>G]T", "C[C>G]A", "C[C>G]C", "C[C>G]G", "C[C>G]T", "G[C>G]A", "G[C>G]C", "G[C>G]G", "G[C>G]T", "T[C>G]A", "T[C>G]C", "T[C>G]G", "T[C>G]T", "A[C>T]A", "A[C>T]C", "A[C>T]G", "A[C>T]T", "C[C>T]A", "C[C>T]C", "C[C>T]G", "C[C>T]T", "G[C>T]A", "G[C>T]C", "G[C>T]G", "G[C>T]T", "T[C>T]A", "T[C>T]C", "T[C>T]G", "T[C>T]T", "A[T>A]A", "A[T>A]C", "A[T>A]G", "A[T>A]T", "C[T>A]A", "C[T>A]C", "C[T>A]G", "C[T>A]T", "G[T>A]A", "G[T>A]C", "G[T>A]G", "G[T>A]T", "T[T>A]A", "T[T>A]C", "T[T>A]G", "T[T>A]T", "A[T>C]A", "A[T>C]C", "A[T>C]G", "A[T>C]T", "C[T>C]A", "C[T>C]C", "C[T>C]G", "C[T>C]T", "G[T>C]A", "G[T>C]C", "G[T>C]G", "G[T>C]T", "T[T>C]A", "T[T>C]C", "T[T>C]G", "T[T>C]T", "A[T>G]A", "A[T>G]C", "A[T>G]G", "A[T>G]T", "C[T>G]A", "C[T>G]C", "C[T>G]G", "C[T>G]T", "G[T>G]A", "G[T>G]C", "G[T>G]G", "G[T>G]T", "T[T>G]A", "T[T>G]C", "T[T>G]G", "T[T>G]T"] indel_categories = ["sample", "1:Del:C:0", "1:Del:C:1", "1:Del:C:2", "1:Del:C:3", "1:Del:C:4", "1:Del:C:5", "1:Del:T:0", "1:Del:T:1", "1:Del:T:2", "1:Del:T:3", "1:Del:T:4", "1:Del:T:5", "1:Ins:C:0", "1:Ins:C:1", "1:Ins:C:2", "1:Ins:C:3", "1:Ins:C:4", "1:Ins:C:5", "1:Ins:T:0", "1:Ins:T:1", "1:Ins:T:2", "1:Ins:T:3", "1:Ins:T:4", "1:Ins:T:5", "2:Del:R:0", "2:Del:R:1", "2:Del:R:2", "2:Del:R:3", "2:Del:R:4", "2:Del:R:5", "3:Del:R:0", "3:Del:R:1", "3:Del:R:2", "3:Del:R:3", "3:Del:R:4", "3:Del:R:5", "4:Del:R:0", "4:Del:R:1", "4:Del:R:2", "4:Del:R:3", "4:Del:R:4", "4:Del:R:5", "5:Del:R:0", "5:Del:R:1", "5:Del:R:2", "5:Del:R:3", "5:Del:R:4", "5:Del:R:5", "2:Ins:R:0", "2:Ins:R:1", "2:Ins:R:2", "2:Ins:R:3", "2:Ins:R:4", "2:Ins:R:5", "3:Ins:R:0", "3:Ins:R:1", "3:Ins:R:2", "3:Ins:R:3", "3:Ins:R:4", "3:Ins:R:5", "4:Ins:R:0", "4:Ins:R:1", "4:Ins:R:2", "4:Ins:R:3", "4:Ins:R:4", "4:Ins:R:5", "5:Ins:R:0", "5:Ins:R:1", "5:Ins:R:2", "5:Ins:R:3", "5:Ins:R:4", "5:Ins:R:5", "2:Del:M:1", "3:Del:M:1", "3:Del:M:2", "4:Del:M:1", "4:Del:M:2", "4:Del:M:3", "5:Del:M:1", "5:Del:M:2", "5:Del:M:3", "5:Del:M:4", "5:Del:M:5"] cnv_categories = ["sample", "BCper10mb_0", "BCper10mb_1", "BCper10mb_2", "BCper10mb_3", "CN_0", "CN_1", "CN_2", "CN_3", "CN_4", "CN_5", "CN_6", "CN_7", "CN_8", "CNCP_0", "CNCP_1", "CNCP_2", "CNCP_3", "CNCP_4", "CNCP_5", "CNCP_6", "CNCP_7", "BCperCA_0", "BCperCA_1", "BCperCA_2", "BCperCA_3", "BCperCA_4", "BCperCA_5", "SegSize_0", "SegSize_1", "SegSize_2", "SegSize_3", "SegSize_4", "SegSize_5", "SegSize_6", "SegSize_7", "SegSize_8", "SegSize_9", "SegSize_10", "CopyFraction_0", "CopyFraction_1", "CopyFraction_2", "CopyFraction_3", "CopyFraction_4", "CopyFraction_5", "CopyFraction_6"] ### ========================================================== # make concat sig dataframe # ============================================================ """load the 3 data frames and merge to one df""" def load_data(snv_counts_path, indel_counts_path, cnv_counts_path): df_snv = pd.read_csv(snv_counts_path, sep='\t', low_memory=False) df_snv = df_snv[snv_categories] df_snv["sample"] = df_snv["sample"].astype(str) df_indel = pd.read_csv(indel_counts_path, sep='\t', low_memory=False) df_indel = df_indel[indel_categories] df_indel["sample"] = df_indel["sample"].astype(str) df_cnv = pd.read_csv(cnv_counts_path, sep='\t', low_memory=False) df_cnv = df_cnv[cnv_categories] df_cnv["sample"] = df_cnv["sample"].astype(str) df_sigs = pd.merge(df_snv, df_indel, on="sample", how='left').fillna(0) df_sigs = pd.merge(df_sigs, df_cnv, on="sample", how='left').reset_index(drop=True) return df_sigs def get_data_and_labels_from_df(df, gene_name): #first encode gene lable as binary combined_matrix_for_gene = df.copy(deep=True) gene_name = str(gene_name) combined_matrix_for_gene.loc[(combined_matrix_for_gene["primary_label"] == gene_name), 'primary_label'] = 1 combined_matrix_for_gene.loc[(combined_matrix_for_gene["primary_label"] != 1), 'primary_label'] = 0 #amazingly stupid, if dont specify astype int, the 1/0 remain an object and dont work with gridsearchcv combined_matrix_for_gene["primary_label"] = combined_matrix_for_gene["primary_label"].astype('int') #now extract 2d matrix of feature values and 1d matrix of labels features_list = snv_categories[1:] + indel_categories[1:] + cnv_categories[1:] X_data = combined_matrix_for_gene[features_list] X_data.columns = X_data.columns.str.replace("[", "mm").str.replace("]", "nn").str.replace(">", "rr") Y_labels = combined_matrix_for_gene["primary_label"] return X_data, Y_labels """Can use this function on the server with many cores, takes long time without many cores""" def do_grid_search_for_best_params(xtrain, ytrain, xtest, ytest, paramgrid): estimator = XGBClassifier(objective='binary:logistic', nthread=1, seed=42) grid_search = GridSearchCV(estimator=estimator, param_grid=paramgrid, scoring = 'roc_auc', n_jobs = 60, cv = 10, verbose=True) fit_params={"eval_metric" : ['auc', 'error', 'logloss'], "eval_set" : [[xtest, ytest]]} fitted_model = grid_search.fit(xtrain, ytrain, **fit_params) cv_results = pd.DataFrame(fitted_model.cv_results_) return fitted_model.best_score_, fitted_model.best_params_, fitted_model.best_estimator_, cv_results def model_with_params(trainX, trainY, testX, testY, params, max_rounds): estimator = XGBClassifier(n_estimators=max_rounds, nthread=10, **params) fitted_model = estimator.fit(trainX, trainY, verbose=True) prediction_binary_test = fitted_model.predict(testX, ntree_limit=max_rounds) prediction_probability_test = fitted_model.predict_proba(testX, ntree_limit=max_rounds) prediction_prob_of_true_test = prediction_probability_test[:,1] prediction_binary_train = fitted_model.predict(trainX, ntree_limit=max_rounds) prediction_probability_train = fitted_model.predict_proba(trainX, ntree_limit=max_rounds) prediction_prob_of_true_train = prediction_probability_train[:,1] return fitted_model, prediction_binary_test, prediction_prob_of_true_test, prediction_binary_train, prediction_prob_of_true_train def kfold_cv(Knumber, Xdata, Ylabels, model): kfold = KFold(n_splits=Knumber) results = cross_val_score(model, Xdata, Ylabels, cv=kfold) return results def shapely_values(model, Xdata, Nvalues): import inspect print(os.path.abspath(inspect.getfile(shap.summary_plot))) X = Xdata.copy(deep=True) shap_values = shap.TreeExplainer(model, feature_perturbation='tree_path_dependent').shap_values(X, check_additivity=False) X.columns = X.columns.str.replace("mm", "[").str.replace("nn", "]").str.replace("rr", ">") fig, ax = plt.subplots(figsize=(7,4)) shap.summary_plot(shap_values, X, plot_type="dot", max_display=Nvalues, show=False, plot_size=(6,3), alpha=0.7) plt.subplots_adjust(left=0.3, right=0.94, top=0.9, bottom=0.1) ax = plt.gca() fig = plt.gcf() mpl.rcParams['savefig.transparent'] = "False" mpl.rcParams['axes.facecolor'] = "white" mpl.rcParams['figure.facecolor'] = "white" mpl.rcParams['font.size'] = "5" plt.rcParams['savefig.transparent'] = "False" plt.rcParams['axes.facecolor'] = "white" plt.rcParams['figure.facecolor'] = "white" return fig, ax def my_roc(data, prob_of_true): fpr, tpr, thresholds = roc_curve(data, prob_of_true) roc_auc = auc(fpr, tpr) fig, ax = plt.subplots(figsize=(1.3,1.4)) lw = 1 ax.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.2f)' % roc_auc) ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') ax.set_xlim([-0.02, 1.0]) ax.set_ylim([0.0, 1.02]) ax.set_xlabel('False Positive Rate', fontsize=4, labelpad=0.75) ax.set_ylabel('True Positive Rate', fontsize=4, labelpad=0.75) #ax.set_title('ROC curve', fontsize=6, pad=1) ax.legend(loc="lower right", fontsize=4) tick_numbers = [round(x,1) for x in np.arange(0, 1.1, 0.2)] ax.set_xticks(tick_numbers) ax.tick_params(axis='both', which="major", length=2, labelsize=4, pad=0.5, reset=False) fig.subplots_adjust(left=0.15, right=0.965, top=0.98, bottom=0.12) sns.despine(ax=ax, top=True, right=True, left=False, bottom=False) return fig, ax def precision_recall(data, prob_of_true): precision, recall, thresholds = precision_recall_curve(data, prob_of_true) fig, ax = plt.subplots(figsize=(1.3,1.4)) lw = 1 # ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') ax.plot(recall, precision, color='darkorange', lw=lw, label='PR curve') ax.set_xlim([-0.02, 1.0]) ax.set_ylim([0.5, 1.05]) # axis labels ax.set_xlabel('Recall', fontsize=4, labelpad=0.75) ax.set_ylabel('Precision', fontsize=4, labelpad=0.75) ax.legend(loc="lower left", fontsize=4) tick_numbers = [round(x,1) for x in np.arange(0, 1.1, 0.2)] ax.set_xticks(tick_numbers) ax.tick_params(axis='both', which="major", length=2, labelsize=4, pad=0.5, reset=False) fig.subplots_adjust(left=0.15, right=0.965, top=0.98, bottom=0.12) sns.despine(ax=ax, top=True, right=True, left=False, bottom=False) return fig, ax def plot_precision_recall_vs_threshold(data, prob_of_true): """Modified from: Hands-On Machine learning with Scikit-Learn and TensorFlow; p.89 """ #first generate and find fscores for all possible thresholds: def to_labels(pos_probs, threshold): return (pos_probs >= threshold).astype('int') #evaluate each threshold thresholds = np.arange(0, 1, 0.001) scores = [f1_score(data, to_labels(prob_of_true, t)) for t in thresholds] ix = np.argmax(scores) print('Threshold=%.3f, F-Score=%.5f' % (thresholds[ix], scores[ix])) best_threshold = thresholds[ix] Fscore = scores[ix] #now plot precision recall as a function of threshold precisions, recalls, thresholds = precision_recall_curve(data, prob_of_true) fig, ax = plt.subplots(figsize=(1.3,1.4)) lw = 1 #plt.title("Precision and Recall Scores as a function of the decision threshold") ax.plot(thresholds, precisions[:-1], color="#CD5C5C", label="Precision", lw=lw) ax.plot(thresholds, recalls[:-1], "#197419", label="Recall", lw=lw) ax.axvline(x=best_threshold, color="b",linestyle="--", label=f'Threshold={best_threshold:.2f},\nF-Score={Fscore:.2f}') ax.set_ylabel("Score", fontsize=4, labelpad=0.75) ax.set_xlabel("Decision Threshold", fontsize=4, labelpad=0.75) ax.legend(loc="lower center", fontsize=4) tick_numbers = [round(x,1) for x in np.arange(0, 1.1, 0.2)] ax.set_xticks(tick_numbers) ax.tick_params(axis='both', which="major", length=2, labelsize=4, pad=0.5, reset=False) fig.subplots_adjust(left=0.15, right=0.965, top=0.98, bottom=0.12) sns.despine(ax=ax, top=True, right=True, left=False, bottom=False) return fig, ax, best_threshold, Fscore def makepredictions(loadedmodel, dfgood, xdata, ylabels): prediction_probability = loadedmodel.predict_proba(xdata) pred_prob = prediction_probability[:,1] allpredprob_df = pd.DataFrame(data={"labels":ylabels.values, "prob_of_true": pred_prob}) all_data_with_preds = pd.merge(dfgood, allpredprob_df, left_index=True, right_index=True) pred_data = all_data_with_preds[["sample", "primary_label", "prob_of_true"]] pred_data["primary_label"] = pred_data["primary_label"].fillna("DRp") all_data_with_preds = all_data_with_preds.drop(columns=snv_categories[1:]).drop(columns=indel_categories[1:]).drop(columns=cnv_categories[1:]) return pred_prob, pred_data def least_sub_rank1_model_params(cv_results_path): rank1_cv_results = pd.read_csv(cv_results_path, sep="\t").query('(rank_test_score < 2)').query('(param_colsample_bylevel > 0.3) and (param_colsample_bynode > 0.3) and (param_colsample_bytree > 0.3) and (param_subsample > 0.3)') rank1_cv_results["total_subsample"] = rank1_cv_results['param_colsample_bylevel'] * rank1_cv_results['param_colsample_bynode'] * rank1_cv_results['param_colsample_bytree'] * rank1_cv_results['param_subsample'] rank1_cv_results = rank1_cv_results.sort_values(by="total_subsample", ascending=False).head(n=1) params = rank1_cv_results["params"].iloc[0] params_dict = eval(params) return params_dict def probability_bar_graph(gene_oi, pos_color, neg_color, legend_d, legend_p, all_data_with_preds): all_prob_table = all_data_with_preds.copy(deep=True) pos = all_prob_table.query('(primary_label == @gene_oi)').sort_values(f"{gene_oi}_prob_of_true", ascending=False) pos["color"] = pos_color neg = all_prob_table.query('(primary_label != @gene_oi)').sort_values(f"{gene_oi}_prob_of_true", ascending=False) neg["color"] = neg_color bargraph = pd.concat([pos, neg]).reset_index(drop=True) def fig_aesthetic(ax, df): ax.set_ylim(0,1) ax.set_xlim(df.index[0]-0.5,df.index[-1]+0.5) ax.grid(b=False, which='both', axis='y', color='0.4', linewidth=0.9, linestyle='dotted', zorder=0) ax.tick_params(axis='both', which="major", length=3, labelsize=5, pad=1, reset=False) ax.set_xticks([]) # ax[0].set_ylabel("Signature Weights", fontsize=8, horizontalalignment="center", labelpad=0.5) ax.set_yticks([0.25, 0.50, 0.75]) ax.set_xlabel("") ax.set_ylabel("Probability", fontsize=5, horizontalalignment="center", labelpad=0.6) ax.yaxis.set_label_coords(-0.08, 0.5) sns.despine(ax=ax, top=True, right=True, left=False, bottom=False) return ax fig, ax = plt.subplots(figsize=(3.2,1.5)) ax.bar(x=bargraph.index, height=bargraph[f"{gene_oi}_prob_of_true"], width=0.8, edgecolor=None, linewidth=0, color=bargraph["color"], zorder=10) ax = fig_aesthetic(ax, bargraph) handles = [] handles.append(mlines.Line2D([], [], color=pos_color, markeredgecolor=pos_color, marker='s', lw=0, markersize=8, label=legend_d)) handles.append(mlines.Line2D([], [], color=neg_color, markeredgecolor=neg_color, marker='s', lw=0, markersize=8, label=legend_p)) ax.legend(handles=handles,loc='upper left', edgecolor='0.5', frameon=False, ncol=2, fontsize=5, handletextpad=0.001, bbox_to_anchor=(0.45, 0.72), borderpad=0, columnspacing=0.9) fig.subplots_adjust(left=0.1, right=0.995, top=0.99, bottom=0.03) return fig, ax def conf_matrix(df, label, threshold): table = df.copy(deep=True) #df is all data_with_preds label = str(label) #label is primary label column threshold = float(threshold) prob_column = f"{label}_prob_of_true" table["TP"] = 0 table.loc[(table['primary_label'] == label) & (table[prob_column] >= threshold), 'TP'] = 1 table["FP"] = 0 table.loc[(table['primary_label'] != label) & (table[prob_column] >= threshold), 'FP'] = 1 table["FN"] = 0 table.loc[(table['primary_label'] == label) & (table[prob_column] <= threshold), 'FN'] = 1 table["TN"] = 0 table.loc[(table['primary_label'] != label) & (table[prob_column] <= threshold), 'TN'] = 1 TP = table["TP"].sum() FP = table["FP"].sum() FN = table["FN"].sum() TN = table["TN"].sum() return np.array([[TP, FP], [FN, TN]]) def accuracy(TP, TN, FP, FN): return ((TP+TN)/(TP + TN + FP + FN)) def precision(TP, TN, FP, FN): return ((TP)/(TP + FP)) def recall(TP, TN, FP, FN): return ((TP)/(TP + FN)) def plot_matrix(cm_array): fig, ax = plt.subplots(figsize=(3, 3)) group_names = ['True Pos', 'False Pos', 'False Neg', 'True Neg'] group_counts = cm_array.flatten() labels = [f"{name}\n{count}" for name, count in zip(group_names,group_counts)] labels = np.asarray(labels).reshape(2,2) sns.heatmap(cm_array, annot=labels, annot_kws={"size":8}, fmt='', cmap='Blues', ax=ax) ax.set_xlabel("Published labels", fontsize=8) ax.xaxis.set_label_position('top') ax.xaxis.tick_top() ax.set_ylabel("Predicted labels", fontsize=8) ax.set_xticklabels(["yes", "no"]) ax.set_yticklabels(["yes", "no"]) ax.tick_params(axis = 'both', which="major", length=0, pad=0, labelsize=8, reset=False) cbar = ax.collections[0].colorbar # here set the labelsize by 20 cbar.ax.tick_params(labelsize=8) return fig, ax ### ========================================================== # get paths, load data and make df with each file merged # ============================================================ #files from paths relative to this script rootdir = os.path.dirname(os.path.dirname(os.path.dirname(__file__))) datadir = os.path.join(rootdir, "data") cohort_data = os.path.join(datadir, "cohort.tsv") snv_features = os.path.join(datadir, "tns_features.tsv") ndl_features = os.path.join(datadir, "ndl_features.tsv") cnv_features = os.path.join(datadir, "cnv_features.tsv") outputdir = os.path.dirname(__file__) cv_results_dir = os.path.dirname(__file__) print('Loading data at '+str(datetime.datetime.now())) sigs = load_data(snv_features, ndl_features, cnv_features) sample_labels = pd.read_csv(cohort_data, sep='\t', low_memory=False) df = pd.merge(sample_labels, sigs, how='left', on='sample').query('(cancer == "PC")').reset_index(drop=True) print('Finished loading data at '+str(datetime.datetime.now())) all_probabilites_list = [] # color list for bargraphs color_list = list(sns.color_palette().as_hex()) blue = color_list[0] #drp orange = color_list[1] #atm green = color_list[2] #cdk12 red = color_list[3] #brca2 purple = color_list[4] #mmr # %% # model BRCA2 # ============================================================================= goi = "BRCA2d" goi = str(goi) print('Loading data at '+str(datetime.datetime.now())) sigs = load_data(snv_features, ndl_features, cnv_features) sample_labels = pd.read_csv(cohort_data, sep='\t', low_memory=False) df = pd.merge(sample_labels, sigs, how='left', on='sample').query('(cancer == "PC")').reset_index(drop=True) print('Finished loading data at '+str(datetime.datetime.now())) print(f"start splitting data for {goi} at {str(datetime.datetime.now())}") X_data, Y_labels = get_data_and_labels_from_df(df_good, goi) X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_labels, test_size=0.4, random_state=42, stratify=Y_labels) # model_path = "c:/Users/ElieRitch/Desktop/signatures_aug2021/gridsearch_models6/BRCA2_gridparams_refitmodel.joblib.model.dat" # modelpath = os.path.expanduser(model_path) # model = load(modelpath) # PredProbs, PredData = makepredictions(model, df_good, X_data, Y_labels) print(f"start making model for {goi} at {str(datetime.datetime.now())}") max_rounds = 1000000 # cv_grid_path = f"{cv_results_dir}/{goi}_cv_results.tsv" # best_params_ = least_sub_rank1_model_params(cv_grid_path) best_params_ = {'colsample_bylevel': 0.3, 'colsample_bynode': 0.3, 'colsample_bytree': 0.3, 'eta': 0.001, 'max_depth': 3, 'seed': 32, 'subsample': 0.4} fitted_model, prediction_binary_test, prediction_prob_of_true_test, prediction_binary_train, prediction_prob_of_true_train = model_with_params(X_train, Y_train, X_test, Y_test, best_params_, max_rounds) test_df = pd.DataFrame(data={"labels":Y_test.values, "prob_of_true": prediction_prob_of_true_test, "pred_binary":prediction_binary_test}) test_df.index = Y_test.index train_df = pd.DataFrame(data={"labels":Y_train.values, "prob_of_true": prediction_prob_of_true_train, "pred_binary":prediction_binary_train}) train_df.index = Y_train.index all_preds_df = pd.concat([test_df, train_df]) all_data_with_preds = pd.merge(df_good, all_preds_df, left_index=True, right_index=True) all_data_with_preds = all_data_with_preds.drop(columns=snv_categories[1:]).drop(columns=indel_categories[1:]).drop(columns=cnv_categories[1:]) all_data_with_preds = all_data_with_preds.drop(columns="labels").rename(columns={"prob_of_true": goi+"_prob_of_true", "pred_binary": goi+"_pred_binary"}) all_probabilites_list.append(all_data_with_preds) all_data_with_preds.to_csv(outputdir+"/"+goi+"_predictions.tsv",sep='\t', index=False) fitted_model.save_model(fr"{model_output_dir}\{goi}.xgb_py37_xgboost_ml.model.txt") all_data = pd.concat([Y_test, Y_train]) all_prob_of_true = np.concatenate([prediction_prob_of_true_test, prediction_prob_of_true_train]) print(f"finished making model for {goi} at {str(datetime.datetime.now())}") #####ROC for all data and for test ############## print(f"start graphing model for {goi} at {str(datetime.datetime.now())}") fig, ax = my_roc(all_data, all_prob_of_true) plt.savefig(outputdir+"/"+goi+"_ROC.png", dpi=500) plt.close() fig, ax = my_roc(Y_test, prediction_prob_of_true_test) plt.savefig(outputdir+"/"+goi+"_test_ROC.png", dpi=500) plt.close() fig, ax = precision_recall(all_data, all_prob_of_true) plt.savefig(outputdir+"/"+goi+"_PreRec.png", dpi=500) fig, ax = precision_recall(all_data, all_prob_of_true) plt.savefig(outputdir+"/"+goi+"_PreRec.png", dpi=500) plt.close() # plt.savefig(outputdir+"/"+goi+"_PreRec.pdf", dpi=500) plt.close() fig, ax, best_threshold, Fscore = plot_precision_recall_vs_threshold(all_data, all_prob_of_true) plt.savefig(outputdir+"/"+goi+"_PreRec_vs_Thresh.png", dpi=500) # plt.savefig(outputdir+"/"+goi+"_PreRec_vs_Thresh.pdf", dpi=500) plt.close() print(f"start graphing shap for {goi} at {str(datetime.datetime.now())}") fig, ax = shapely_values(fitted_model, X_data, 15) ax.set_xticks([-0.5, 0,0.5,1]) plt.savefig(outputdir+"/"+goi+"_shap15.png", dpi=500) # plt.savefig(outputdir+"/"+goi+"_shap15.pdf", dpi=500) plt.close() print(f"start graphing bars for {goi} at {str(datetime.datetime.now())}") fig, ax = probability_bar_graph(goi, red, blue, f"{goi}d", f"{goi}p", all_data_with_preds) plt.savefig(f"{outputdir}/{goi}_prob_of_class.png", dpi=500, transparent=False, facecolor="w") plt.close() print(f"finished graphing model for {goi} at {str(datetime.datetime.now())}") print(f"Confusion metric and graph for {goi} at {str(datetime.datetime.now())}") confusion_matrix = conf_matrix(all_data_with_preds, goi, best_threshold) TruePos = confusion_matrix.flatten()[0] FalsePos = confusion_matrix.flatten()[1] FalseNeg = confusion_matrix.flatten()[2] TrueNeg = confusion_matrix.flatten()[3] accuracy_of_model = accuracy(TruePos, TrueNeg, FalsePos, FalseNeg) precision_of_model = precision(TruePos, TrueNeg, FalsePos, FalseNeg) recall_of_model = recall(TruePos, TrueNeg, FalsePos, FalseNeg) print(confusion_matrix) print(f"{goi} model accuracy = {accuracy_of_model}") print(f"{goi} model precision = {precision_of_model}") print(f"{goi} model recall = {recall_of_model}") fig, ax = plot_matrix(confusion_matrix) plt.savefig(f"{outputdir}/{goi}_confusion_matrix.png", dpi=500, transparent=False, facecolor="w") plt.close() # %% # model CDK12 # ============================================================================= goi = "CDK12" goi = str(goi) print('Loading data at '+str(datetime.datetime.now())) sigs = load_data(snv_features, ndl_features, cnv_features) sample_labels = pd.read_csv(cohort_data, sep='\t', low_memory=False) df = pd.merge(sample_labels, sigs, how='left', on='sample').query('(cancer == "PC")').reset_index(drop=True) print('Finished loading data at '+str(datetime.datetime.now())) print('Start '+ goi + ' at '+str(datetime.datetime.now())) X_data, Y_labels = get_data_and_labels_from_df(df_good, goi) X_train, X_test, Y_train, Y_test = train_test_split(X_data, Y_labels, test_size=0.4, random_state=42, stratify=Y_labels) print(f"start making model for {goi} at {str(datetime.datetime.now())}") max_rounds = 1000000 # cv_grid_path = f"{cv_results_dir}/{goi}_cv_results.tsv" # best_params_ = least_sub_rank1_model_params(cv_grid_path) best_params_ = {'colsample_bylevel': 0.6, 'colsample_bynode': 0.9, 'colsample_bytree': 0.7, 'eta': 0.001, 'max_depth': 3, 'seed': 47, 'subsample': 0.7} fitted_model, prediction_binary_test, prediction_prob_of_true_test, prediction_binary_train, prediction_prob_of_true_train = model_with_params(X_train, Y_train, X_test, Y_test, best_params_, max_rounds) test_df = pd.DataFrame(data={"labels":Y_test.values, "prob_of_true": prediction_prob_of_true_test, "pred_binary":prediction_binary_test}) test_df.index = Y_test.index train_df =
pd.DataFrame(data={"labels":Y_train.values, "prob_of_true": prediction_prob_of_true_train, "pred_binary":prediction_binary_train})
pandas.DataFrame
#Imports import pandas as pd import numpy as np #import h5py import itertools from numpy import isnan from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import torch import torch.nn as nn import math from numpy import linalg as LA from matplotlib import pyplot as plt from sklearn.metrics import mean_squared_error from math import sqrt from sklearn.metrics import mean_absolute_error from sklearn.metrics import average_precision_score from sklearn.metrics import accuracy_score import joblib import matplotlib.backends.backend_pdf from math import sqrt #The Functions #activation function def Activation_function(Din): m,n =Din.shape eta=0.99 u,s,v=np.linalg.svd(Din) B = np.zeros(Din.shape) for i in range(m) : for j in range(n) : if i == j : B[i,j] = s[j] for i in range(m): for j in range(n): if i==j:B[i,j]=min(B[i,j],eta) Dout=np.dot(u,np.dot(B,v)) return Dout #Metric functions def getRMSEForThreads(PredictedMatrix,ActualMatrix,TC): List=[] for i in range(0,TC): List.append(sqrt(mean_squared_error(list(ActualMatrix[i]),list(PredictedMatrix[i])))) return List def getMaeForThreads(PredictedMatrix,ActualMatrix,TC): List=[] for i in range(0,TC): List.append(mean_absolute_error(list(ActualMatrix[i]),list(PredictedMatrix[i]))) return List #Update the predict Matrix as prediction moves def updatePredictedMatrix(predicted,pred_day_start,pred_day_end,PredictedMatrix,window_size): PredictedMatrix[:,(pred_day_start-window_size):(pred_day_end-window_size)]=predicted return PredictedMatrix #Prepare data for input to model def AppendFuturePrediction(Thread,Window_Size): WholeDataMatrix=Thread X_row,X_col=WholeDataMatrix.shape #append shifted matrix along rows WholeDataMatrix_shifted=WholeDataMatrix[:,1:X_col] observation_data=np.concatenate((WholeDataMatrix[:,0:(X_col-1)],WholeDataMatrix_shifted[0].reshape((1,(X_col-1)))), axis=0) X_row,X_col=observation_data.shape return X_row,X_col,WholeDataMatrix,observation_data #The model def FindHyperparameters(sigma,sigma1,sigma2,f1,f2,f3,thread_count,seed,Nz,Nx,intialisationFactor,FuturePredDays,no_iter,day,pred_day_start,pred_day_end,window_size,WholeDataMatrix,observation_data,X_col): WrongSeedFlag=1 rows,cols=WholeDataMatrix.shape PredictedMatrix=np.zeros((1,(FuturePredDays+3))) ActualMatrix=WholeDataMatrix[0,window_size+1:(window_size+FuturePredDays+4)].reshape((1,(FuturePredDays+3))) TC=1 #onlineRDL #Initialising D1, D2 np.random.seed(seed) D_1_init = f1*np.eye(Nz) D_2_init = f2*np.random.rand(Nx,Nz) w_T=f3*np.random.rand(1,Nz) D_2_init=np.concatenate((D_2_init,w_T)) est_D1 = 1 est_D2 = 1 D_1_est_a_ = D_1_init D_2_est_a_ = D_2_init count1=0 num=pred_day_end+3 while(pred_day_end<=num): window_data=observation_data[:,day:pred_day_start] #onlineRDL #Initialising D1, D2 rows,cols= window_data.shape kalman_mean_a =np.zeros((Nz,cols)) kalman_covariance_a =np.zeros((cols,Nz,Nz)) kalman_covariance_a[0] = (sigma*sigma) * np.eye(Nz) Q = (sigma1*sigma1) * np.eye(Nz) R = (sigma2*sigma2) * np.eye(Nx+TC) #print('initialised') for i in range(0,Nz): kalman_mean_a[i][0]=window_data[i][0] smooth_mean_a =np.zeros((Nz,cols)) smooth_covariance_a =np.zeros((cols,Nz,Nz)) G =np.zeros((cols,Nz,Nz)) ErrD1 = np.zeros((no_iter,1)) ErrD2 = np.zeros((no_iter,1)) for n in range(0,no_iter): for k in range(1,cols): prior_m=np.dot(D_1_est_a_, kalman_mean_a[:,k-1]) prior_p=np.dot((np.dot(D_1_est_a_,kalman_covariance_a[k-1])),D_1_est_a_.T)+Q y=window_data[:,k]-np.dot(D_2_est_a_,prior_m) s=np.dot(np.dot(D_2_est_a_,prior_p),D_2_est_a_.T)+R K=np.dot(np.dot(prior_p,D_2_est_a_.T),np.linalg.pinv(s)) kalman_mean_a[:,k]= prior_m + np.dot(K,y) kalman_covariance_a[k]=prior_p-np.dot(np.dot(K,s),K.T) smooth_mean_a[:,cols-1]= kalman_mean_a[:,cols-1] smooth_covariance_a[cols-1]=kalman_covariance_a[cols-1] for k in range(cols-2,-1,-1): post_m=np.dot(D_1_est_a_, kalman_mean_a[:,k]) post_p=np.dot(np.dot(D_1_est_a_,kalman_covariance_a[k]),D_1_est_a_.T) +Q G[k]=np.dot(np.dot(kalman_covariance_a[k],D_1_est_a_.T),np.linalg.pinv(post_p)) smooth_mean_a[:,k]=kalman_mean_a[:,k]+np.dot(G[k],(smooth_mean_a[:,k+1]-post_m)) smooth_covariance_a[k]=kalman_covariance_a[k]+np.dot(np.dot(G[k],(smooth_covariance_a[k+1]-post_p)),G[k].T) Sigma = np.zeros((Nz,Nz)) Phi = np.zeros((Nz,Nz)) B = np.zeros((Nx+TC,Nz)) C = np.zeros((Nz,Nz)) for k in range(1,cols): X_k = window_data[:,k] X_k = X_k[:, np.newaxis] ms_k = smooth_mean_a[:,k] ms_k = ms_k[:, np.newaxis] ms_k_old = smooth_mean_a[:,k-1] ms_k_old = ms_k_old[:, np.newaxis] Sigma = Sigma + 1/cols * (smooth_covariance_a[k] + np.dot(ms_k,ms_k.T)) Phi = Phi + 1/cols * (smooth_covariance_a[k-1] + np.dot(ms_k_old,ms_k_old.T)) B = B + 1/cols * (np.dot(X_k,ms_k.T)) C = C + 1/cols * (np.dot(smooth_covariance_a[k],G[k-1].T) + np.dot(ms_k,ms_k_old.T)) if est_D1>0: D_1_est_a_new = np.dot(C,np.linalg.inv(Phi)) ErrD1[n] = np.linalg.norm(D_1_est_a_new-D_1_est_a_)/np.linalg.norm(D_1_est_a_) D_1_est_a_ = Activation_function(D_1_est_a_new) if est_D2>0: D_2_est_a_new = np.dot(B,np.linalg.pinv(Sigma)) ErrD2[n] = np.linalg.norm(D_2_est_a_new-D_2_est_a_)/np.linalg.norm(D_2_est_a_) D_2_est_a_ = D_2_est_a_new #predicting for tomorrow D_1=D_1_est_a_ D_2=D_2_est_a_[0:Nx,:] W_T=D_2_est_a_[Nx:,:] col= FuturePredDays kalman_mean_test =np.zeros((Nz,col+1)) kalman_mean_test[:,0:1]=kalman_mean_a[:,cols-1].reshape(Nz,1) kalman_covariance_test =np.zeros((col,Nz,Nz)) kalman_covariance_test[0] = (sigma*sigma) * np.eye(Nz) Q = (sigma1*sigma1) * np.eye(Nz) R = (sigma2*sigma2) * np.eye(Nx) for k in range(1,col+1): kalman_mean_test[:,k]=np.dot(D_1, kalman_mean_test[:,k-1]) predicted=np.dot(W_T,kalman_mean_test[:,1:]) PredictedMatrix=updatePredictedMatrix(predicted,pred_day_start,pred_day_end,PredictedMatrix,window_size) day+=1 pred_day_start=window_size+day pred_day_end=pred_day_start + FuturePredDays count1+=1 if not WrongSeedFlag: return 10,10 PredictedMatrix[np.isnan(PredictedMatrix)]=0 MAE_List=getMaeForThreads(PredictedMatrix,ActualMatrix,TC) RMSE_List=getRMSEForThreads(PredictedMatrix,ActualMatrix,TC) return MAE_List[0],RMSE_List[0] def ForecastForThread(sigma,sigma1,sigma2,f1,f2,f3,thread_count,seed,Nz,Nx,intialisationFactor,FuturePredDays,no_iter,day,pred_day_start,pred_day_end,window_size,WholeDataMatrix,observation_data,X_col): rows,cols=WholeDataMatrix.shape PredictedMatrix=np.zeros((1,(cols-(window_size+1)))) ActualMatrix=WholeDataMatrix[0,window_size+1:].reshape((1,(cols-(window_size+1)))) TC=1 #onlineRDL #Initialising D1, D2 np.random.seed(seed) D_1_init = f1*np.eye(Nz) D_2_init = f2*np.random.rand(Nx,Nz) w_T=f3*np.random.rand(1,Nz) D_2_init=np.concatenate((D_2_init,w_T)) est_D1 = 1 est_D2 = 1 D_1_est_a_ = D_1_init D_2_est_a_ = D_2_init count1=0 pe=pred_day_end ps=pred_day_start while(pe<=X_col): day+=1 count1+=1 ps=window_size+day pe=ps +FuturePredDays day=0 Predicted_values=np.zeros((count1,FuturePredDays)) Kalman_mean_test_save=np.zeros((count1,(FuturePredDays*5))) count1=0 while(pred_day_end+1<=(X_col+1)): window_data=observation_data[:,day:pred_day_start] #onlineRDL #Initialising D1, D2 rows,cols= window_data.shape kalman_mean_a =np.zeros((Nz,cols)) kalman_covariance_a =np.zeros((cols,Nz,Nz)) kalman_covariance_a[0] = (sigma*sigma) * np.eye(Nz) Q = (sigma1*sigma1) * np.eye(Nz) R = (sigma2*sigma2) * np.eye(Nx+TC) #print('initialised') for i in range(0,Nz): kalman_mean_a[i][0]=window_data[i][0] smooth_mean_a =np.zeros((Nz,cols)) smooth_covariance_a =np.zeros((cols,Nz,Nz)) G =np.zeros((cols,Nz,Nz)) ErrD1 = np.zeros((no_iter,1)) ErrD2 = np.zeros((no_iter,1)) for n in range(0,no_iter): for k in range(1,cols): prior_m=np.dot(D_1_est_a_, kalman_mean_a[:,k-1]) prior_p=np.dot((np.dot(D_1_est_a_,kalman_covariance_a[k-1])),D_1_est_a_.T)+Q y=window_data[:,k]-np.dot(D_2_est_a_,prior_m) s=np.dot(np.dot(D_2_est_a_,prior_p),D_2_est_a_.T)+R K=np.dot(np.dot(prior_p,D_2_est_a_.T),np.linalg.pinv(s)) kalman_mean_a[:,k]= prior_m + np.dot(K,y) kalman_covariance_a[k]=prior_p-np.dot(np.dot(K,s),K.T) smooth_mean_a[:,cols-1]= kalman_mean_a[:,cols-1] smooth_covariance_a[cols-1]=kalman_covariance_a[cols-1] for k in range(cols-2,-1,-1): post_m=np.dot(D_1_est_a_, kalman_mean_a[:,k]) post_p=np.dot(np.dot(D_1_est_a_,kalman_covariance_a[k]),D_1_est_a_.T) +Q G[k]=np.dot(np.dot(kalman_covariance_a[k],D_1_est_a_.T),np.linalg.pinv(post_p)) smooth_mean_a[:,k]=kalman_mean_a[:,k]+np.dot(G[k],(smooth_mean_a[:,k+1]-post_m)) smooth_covariance_a[k]=kalman_covariance_a[k]+np.dot(np.dot(G[k],(smooth_covariance_a[k+1]-post_p)),G[k].T) # Dictionary update : M-step Sigma = np.zeros((Nz,Nz)) Phi = np.zeros((Nz,Nz)) B = np.zeros((Nx+TC,Nz)) C = np.zeros((Nz,Nz)) for k in range(1,cols): X_k = window_data[:,k] X_k = X_k[:, np.newaxis] ms_k = smooth_mean_a[:,k] ms_k = ms_k[:, np.newaxis] ms_k_old = smooth_mean_a[:,k-1] ms_k_old = ms_k_old[:, np.newaxis] Sigma = Sigma + 1/cols * (smooth_covariance_a[k] + np.dot(ms_k,ms_k.T)) Phi = Phi + 1/cols * (smooth_covariance_a[k-1] + np.dot(ms_k_old,ms_k_old.T)) B = B + 1/cols * (np.dot(X_k,ms_k.T)) C = C + 1/cols * (np.dot(smooth_covariance_a[k],G[k-1].T) + np.dot(ms_k,ms_k_old.T)) if est_D1>0: D_1_est_a_new = np.dot(C,np.linalg.inv(Phi)) ErrD1[n] = np.linalg.norm(D_1_est_a_new-D_1_est_a_)/np.linalg.norm(D_1_est_a_) D_1_est_a_ = Activation_function(D_1_est_a_new) if est_D2>0: D_2_est_a_new = np.dot(B,np.linalg.pinv(Sigma)) ErrD2[n] = np.linalg.norm(D_2_est_a_new-D_2_est_a_)/np.linalg.norm(D_2_est_a_) D_2_est_a_ = D_2_est_a_new #predicting for tomorrow D_1=D_1_est_a_ D_2=D_2_est_a_[0:Nx,:] W_T=D_2_est_a_[Nx:,:] col= FuturePredDays # predicting for next 3 days kalman_mean_test =np.zeros((Nz,col+1)) kalman_mean_test[:,0:1]=kalman_mean_a[:,cols-1].reshape(Nz,1) kalman_covariance_test =np.zeros((col,Nz,Nz)) kalman_covariance_test[0] = (sigma*sigma) * np.eye(Nz) Q = (sigma1*sigma1) * np.eye(Nz) R = (sigma2*sigma2) * np.eye(Nx) for k in range(1,col+1): kalman_mean_test[:,k]=np.dot(D_1, kalman_mean_test[:,k-1]) predicted=np.dot(W_T,kalman_mean_test[:,1:]) #added Predicted_values[count1,:]=predicted.reshape(FuturePredDays,) Kalman_mean_test_save[count1,:] = kalman_mean_test[:,1:].reshape(col*5,) PredictedMatrix=updatePredictedMatrix(predicted,pred_day_start,pred_day_end,PredictedMatrix,window_size) day+=1 pred_day_start=window_size+day pred_day_end=pred_day_start + FuturePredDays count1+=1 x=list(range(window_size+1,(X_col+1))) for i in range(0,TC): fig=plt.figure() plt.plot(x,list(PredictedMatrix[i]), 'r') plt.plot(x,ActualMatrix[i], 'b') plt.title('thread'+str(thread_count)) plt.xlabel('Window Frame') plt.ylabel('HateScore') plt.legend(["predicted", "Actual"], loc ="lower right") plt.show() pdfForFeature.savefig(fig) PredictedMatrix[np.isnan(PredictedMatrix)]=0 MAE_List=getMaeForThreads(PredictedMatrix,ActualMatrix,TC) RMSE_List=getRMSEForThreads(PredictedMatrix,ActualMatrix,TC) return MAE_List[0],RMSE_List[0],PredictedMatrix,ActualMatrix # load Dataset import pickle with open('./time_series.pkl', 'rb') as f: data = pickle.load(f) def CreateTestSet(DataList): TheTestList=[] TestThreadName=[] for data in DataList: TotalLength=len(data[0]) Data=np.concatenate((data[0].reshape((1,TotalLength)), data[1].reshape((1,TotalLength)),data[2].reshape((1,TotalLength)),data[3].reshape((1,TotalLength)),data[4].reshape((1,TotalLength))), axis=0) rows,cols=Data.shape trainlen=int(0.7*cols) trainlen=trainlen-20 if trainlen >0 : TestThreadName.append(data[5][:-4]) TheTestList.append(Data[:,trainlen:]) rows,cols=Data[:,trainlen:].shape return TheTestList,TestThreadName DataList,TestThreadName=CreateTestSet(data) HyperParameters={ 'seed1':[6,7,8,9], 'Nz':[5], 'intialisationFactor':[0.5], 'FuturePredDays':[3], 'no_iter':[20], 'f1':[0.7], 'f2':[0.7], 'f3':[0.7], 'sigma':[0.00001], 'sigma1':[0.1], 'sigma2':[0.1], 'window_size':[20] } pdfForFeature = matplotlib.backends.backend_pdf.PdfPages("./temp2.pdf") counter=1 FinalMetricDict={} for Thread in DataList: MetricDict={} HPcount=0 HyperParameterEachThread=[] keys = list(HyperParameters) for values in itertools.product(*map(HyperParameters.get, keys)): HP=dict(zip(keys, values)) HyperParameterEachThread.append(HP) day=0 window_size=HP['window_size'] pred_day_start= window_size+day pred_day_end=pred_day_start +HP['FuturePredDays'] X_row,X_col,WholeDataMatrix,observation_data = AppendFuturePrediction(Thread,window_size) #get best fit hyperparameters Thread_MAE,Thread_RMSE= FindHyperparameters(HP['sigma'],HP['sigma1'],HP['sigma2'],HP['f1'],HP['f2'],HP['f3'],counter,HP['seed1'],HP['Nz'],5,HP['intialisationFactor'],HP['FuturePredDays'],HP['no_iter'],day,pred_day_start,pred_day_end,window_size,WholeDataMatrix,observation_data,X_col) MetricDict[HPcount]={'MAE':Thread_MAE,'RMSE':Thread_RMSE} HPcount=HPcount+1 df=pd.DataFrame.from_dict(MetricDict, orient='index') df=df.sort_values(by='RMSE') ArgIndex=int(df.index[0]) HP=HyperParameterEachThread[ArgIndex] day=0 window_size=HP['window_size'] pred_day_start= window_size+day pred_day_end=pred_day_start +HP['FuturePredDays'] X_row,X_col,WholeDataMatrix,observation_data = AppendFuturePrediction(Thread,window_size) Thread_MAE,Thread_RMSE,PredictedMatrix,ActualMatrix= ForecastForThread(HP['sigma'],HP['sigma1'],HP['sigma2'],HP['f1'],HP['f2'],HP['f3'],counter,HP['seed1'],HP['Nz'],5,HP['intialisationFactor'],HP['FuturePredDays'],HP['no_iter'],day,pred_day_start,pred_day_end,window_size,WholeDataMatrix,observation_data,X_col) FinalMetricDict[counter]={'MAE':Thread_MAE,'RMSE':Thread_RMSE} df=pd.DataFrame(ActualMatrix[0].tolist(),columns=['original']) df['predicted']=PredictedMatrix[0].tolist() df.to_csv('./'+TestThreadName[ counter-1]+"_DSS.csv") counter=counter+1 pdfForFeature.close() FinalThreadWiseScore=
pd.DataFrame.from_dict(FinalMetricDict, orient='index')
pandas.DataFrame.from_dict
""" Author: <NAME> Organization: Phillips Lab, Institute of Ecology and Evolution, University of Oregon """ import csv import random import datetime import numpy as np import pandas as pd # import plotly.io as pio import plotly.graph_objects as go # pio.kaleido.scope.mathjax = None from exp_mixture_model import EMM def access_csv(file_str, data, usage_str): with open(file_str, usage_str, newline="") as file: writer = csv.writer(file, delimiter=",") for el in data: writer.writerow(el) def load_ec_log(file_path, wrong_temp_sets, min_eggs_num=10): # Load all worksheets (all temperatures) with sheet_name=None data_dict = pd.read_excel( file_path, header=0, sheet_name=None, engine="openpyxl" ) # Concat the returned dictionary of DataFrames data = pd.concat(data_dict) # Reset the index to collapse the multi-index to a single data = data.reset_index(drop=True) # Slice out the extra header rows and drop big text cols data = data[data["Rig"] != "Rig"] data = data.drop(["TempDataQuality", "Notes"], axis=1) # Get only entries that had eggs and non-zero params # (which also removes most nans) data = data[data["p"] > 0] # Filter out worms with too few eggs data = data[data["EggCount"] >= min_eggs_num] data = data.reset_index(drop=True) # Explicitly set params as floats data["p"] = data["p"].astype("float") data["lambda1"] = data["lambda1"].astype("float") data["lambda2"] = data["lambda2"].astype("float") for el in wrong_temp_sets: rig = el[0] date = el[1] temp = el[2] data.loc[(data.Rig == rig) & (data.Date == date), "SetTemp"] = temp # Get rid of C character in set temps # data['SetTemp'] = [x.strip('C') for x in data['SetTemp']] # data['SetTemp'].astype(int) return data def conv_str_series_data(str_series): str_list = str_series.strip("[]").split(",") float_list = [float(x) for x in str_list] return float_list def estimate_parameters(raw_intervals, iterations=100): model = EMM(k=2, n_iter=iterations) pi, mu = model.fit(raw_intervals) try: pi_2 = model.pi[1] mu_1 = model.mu[0] mu_2 = model.mu[1] p = round(1 - (pi_2 * mu_1 * ((1 / mu_1) - (1 / mu_2))), 5) l_1 = round(1 / mu_1, 5) if l_1 > 0.9999: l_1 = 0.9999 l_2 = round(1 / (p * mu_2), 5) except Exception: pi_2 = 0 mu_1 = 0 mu_2 = 0 p = 0 l_1 = 0 l_2 = 0 return [p, l_1, l_2] def get_windowed_egg_counts(row): # Get date (for helping keep track of the relative times) date = row.Date # Get SFES series for that row/worm sfes = conv_str_series_data(row.SFES) # Set a fake egg lay event at the end of the experiment time period # to help Pandas resample the time correctly. That way, I don't have # to do custom time filling stuff. # 172,000 seconds = 48 hours, which is the length of the experiment. # When looking at binned times, if you bin by hour, this results in # the last 46 minutes and 40 seconds being potentially missed in the # bins. So instead of adding a final SFES value of 172,000, I add # 172,800 (46 min, 40 sec = 800 seconds) to even the 1 hour bins sfes.append(172_800) # Set up first time as a datetime object at 0 first_time = "00:00:00" first_dt = date + " " + first_time first_dt = datetime.datetime.strptime(first_dt, "%Y-%m-%d %H:%M:%S") # Basically, convert SFES series into a series of datetime objects # that preserves the relative timing of egg lay events. # The absolute times do not correspond to when the egg lay # occurred. dts = [first_dt] for t in sfes: next_dt = first_dt + datetime.timedelta(seconds=t) dts.append(next_dt) # Set up a DataFrame from the SFES datetime objects df = pd.DataFrame(dts, columns=["time"]) # Set the DataFrame index to the time column df = df.set_index("time", drop=True) # At each time point, there was 1 egg laid. So set the "value" # column to all ones df["value"] = np.ones(len(df), dtype=int) # Remove the one at timepoint 0, because no eggs had been laid yet df.iloc[0]["value"] = 0 # Set the fake egg lay at the end to 0, to remove the fake df.iloc[-1]["value"] = 0 # Resample dfrs = df.resample("1h").sum().ffill() # Add bins dfrs["TimeBin"] = pd.cut(dfrs.index, bins=dfrs.index, right=False) # Group bins to make final dataframe with correct time bins and values dfg = dfrs.groupby(["TimeBin"]).sum() return dfg def get_param_error_arrays(file_str, param, estimates_df, set_temps): upper_qt = 0.975 lower_qt = 0.025 bootstrap_df = pd.read_csv(file_str, header=0) array_plus = [] array_minus = [] # Build error bar arrays for t in set_temps: t_df = bootstrap_df[bootstrap_df["t"] == t] qt_series = t_df[param].quantile([lower_qt, upper_qt]) lower_cutoff = round(qt_series.iloc[0], 4) upper_cutoff = round(qt_series.iloc[1], 4) param_est = estimates_df[estimates_df["Temperature"] == t][param] upper_offset = round(float(upper_cutoff - param_est), 4) lower_offset = round(float(param_est - lower_cutoff), 4) array_plus.append(upper_offset) array_minus.append(lower_offset) return array_plus, array_minus def randomized_parameter_test( egg_data, param, t1, t2, plot_settings, permutation_total=1000, plot_stuff=False, verbose=False, ): temps = [t1, t2] dfs = [egg_data[egg_data["SetTemp"] == t] for t in temps] means = [round(df[param].mean(), 4) for df in dfs] # Calculate "ground truth" -- actual, observed difference between means # of the two temperature param estimate values gT = round(means[0] - means[1], 4) # Get param estimate vals into single array for easier shuffling and # slicing x =
pd.concat(dfs)
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :App: exiflib :Purpose: This installed library is designed to be a light-weight and easy to use wrapper for extracting meta data from an image. The GPS information is converted into latitude /longitude coordinates and the full extracted dataset is returned as a pandas Series. :Version: 3.0.1 :Platform: Linux/Windows | Python 3.8 :Developer: <NAME> :Email: <EMAIL> :Attrib: The latitude / longitude extraction and conversion code is a modified version of: * Programmer: <NAME> * Source: https://gist.github.com/erans/983821 :Example: Example code use:: from exiflib.exif import Exif data = Exif(image_path='/path/to/image.jpg').extract() """ import os import pandas as pd import utils3.utils as u from PIL import Image from PIL.ExifTags import TAGS, GPSTAGS class Exif(): """Wrapper for extracting exif data from images. Args: image_path (str): Full file path to the image to be read. """ def __init__(self, image_path): """Class initialiser.""" self._img = image_path self._s_data =
pd.Series()
pandas.Series
import os import pandas import subprocess import fire import math import time import sys import re def consolidate_when_done(path_to_jar, num_terms): done = False time.sleep(5) while not done: if len(os.listdir(path_to_jar)) >= num_terms: final_df = pandas.DataFrame() for file in os.listdir(path_to_jar): final_df = final_df.append(pandas.read_pickle(os.path.join(path_to_jar, file))) final_df.to_excel(os.path.join(path_to_jar, 'sorted.xlsx')) done = True else: consolidate_when_done(path_to_jar, num_terms) def term_call(call_file="bullhorn_call.py", excel_file='/home/jjorissen/Documents/BullhornActDocs/EM.xlsx', path_to_jar='../ACT_EM_pickle_jar', num_terms=5): file = os.path.abspath(excel_file) path_to_jar = os.path.abspath(path_to_jar) for file in os.listdir(path_to_jar): os.remove(os.path.join(path_to_jar, file)) try: df = pandas.read_excel(file) except: df =
pandas.read_csv(file)
pandas.read_csv
import pandas as pd # Tools for machine learning import pickle import time import xgboost as xgb from sklearn.model_selection import train_test_split matches = pd.read_csv('data/seasons_merged.csv') letter_to_result = {'H': 1, 'D': 0, 'A': -1} def get_n_last_matches(matches, date, team, n=10): ''' Get the last n matches of a given team. ''' # All matches with a given team team_matches = matches[(matches['HomeTeam'] == team) | (matches['AwayTeam'] == team)] # Filter n last matches from team matches n_last_matches = (team_matches[team_matches.Date < date] .sort_values(by='Date', ascending=False) .iloc[0:n, :]) return n_last_matches def get_n_last_matches_against_each_other(matches, date, home_team, away_team, n=5): ''' Get the last n matches of two given teams. If possible, else get all matches available ''' home_matches = matches[(matches['HomeTeam'] == home_team) & (matches['AwayTeam'] == away_team)] away_matches = matches[(matches['HomeTeam'] == away_team) & (matches['AwayTeam'] == home_team)] total_matches = pd.concat([home_matches, away_matches]) # Get last n matches, if possible: try: last_matches = (total_matches[total_matches.Date < date] .sort_values(by='Date', ascending=False) .iloc[0:n, :]) except: # If there are less than n matches last_matches = (total_matches[total_matches.Date < date] .sort_values(by='Date', ascending=False) .iloc[0:total_matches.shape[0], :]) return last_matches def get_goals(matches, team): ''' Get total number of goals,a specfic team has scored from a dataframe of specific matches ''' home_goals = matches.FTHG[matches.HomeTeam == team].sum() away_goals = matches.FTAG[matches.AwayTeam == team].sum() return home_goals + away_goals def get_concealed_goals(matches, team): ''' Get all the goals, concealed of a specfic team from a dataframe of specific matches ''' home_goals = matches.FTAG[matches.HomeTeam == team].sum() away_goals = matches.FTHG[matches.AwayTeam == team].sum() return home_goals + away_goals def get_wins(matches, team): ''' Get the number of wins of a specfic team from a dataframe of specific matches. ''' home_wins = matches[(matches.FTR == 1) & (matches.HomeTeam == team)].shape[0] away_wins = matches[(matches.FTR == -1) & (matches.AwayTeam == team)].shape[0] return home_wins + away_wins def coefficients_to_probability(matches): ''' Converts betting platform coefficient(1 < x) with % of income into a probability coefficient(0 < x < 1) ''' # How many profit betting companies make on bets matches['profit_B365'] = sum((1 / matches['B365H'], 1 / matches['B365D'], 1 / matches['B365A'])) matches['profit_BbAv'] = sum((1 / matches['BbAvA'], 1 / matches['BbAvD'], 1 / matches['BbAvH'])) # Converting all betting coefficients into probabilities of homw/draw/away: for betting_column in ['B365H', 'B365D', 'B365A', 'BbAvH', 'BbAvD', 'BbAvA']: matches[betting_column] = 1 / (matches[betting_column] * matches['profit_' + betting_column[:-1]]) return matches # Create features, based on which, the model would train and predict results def get_features_for_match(match, matches, n1=10, n2=3): ''' Creates a special set of features for each match, if possible(10 last matches and 3 last matches against each other) ''' match_date = match.Date home_team = match.HomeTeam away_team = match.AwayTeam # Get n1 last matches of 2 teams home_last = get_n_last_matches(matches, match_date, home_team, n=n1) away_last = get_n_last_matches(matches, match_date, away_team, n=n1) # Get last n2 matches against each other home_last_against = get_n_last_matches_against_each_other(matches, match_date, home_team, away_team, n=n2) away_last_against = get_n_last_matches_against_each_other(matches, match_date, away_team, home_team, n=n2) # Goals stuff home_goals = get_goals(home_last, home_team) away_goals = get_goals(away_last, away_team) home_goals_conceided = get_concealed_goals(home_last, home_team) away_goals_conceided = get_concealed_goals(away_last, away_team) res = pd.DataFrame() res.loc[0, 'H_goal_diff'] = home_goals - home_goals_conceided res.loc[0, 'A_goal_diff'] = away_goals - away_goals_conceided res.loc[0, 'H_win'] = get_wins(home_last, home_team) res.loc[0, 'A_win'] = get_wins(away_last, away_team) res.loc[0, 'H_win_against'] = get_wins(home_last_against, home_team) res.loc[0, 'A_win_against'] = get_wins(away_last_against, away_team) # TODO ПОПРООБУВАТИ ЩЕ ЯКІСЬ КРИТЕРІЇ ПОТЕСТУВАТИ # print(result.loc[0]) return res.loc[0] teams = ['Arsenal', '<NAME>', 'Bournemouth', 'Brighton', 'Burnley', 'Chelsea', 'Crystal Palace', 'Everton', 'Leicester', 'Liverpool', 'Man City', 'Man United', 'Newcastle', 'Southampton', 'Tottenham', 'Watford', 'West Ham', 'Wolves'] def save_to_cache(): """ Saves the current standings into cache, so that you don't have to compute them every time """ arr = [] for hometeam in teams: for awayteam in teams: if hometeam == awayteam: continue # Creating a new match match = pd.DataFrame(data={'Date': ['2020-07-22'], 'HomeTeam': [hometeam], 'AwayTeam': [awayteam], }, columns=['Date', 'HomeTeam', 'AwayTeam']) # Creating features for a given match match_features = get_features_for_match(match.iloc[0], matches, 20, 3) df = pd.DataFrame(data={'Unnamed: 0': [3333]}, columns=['Unnamed: 0']) # Filling a dataframe with features, needed for an analysis for i in match_features.to_frame().reset_index()['index']: df[i] = match_features[i] # Using a model to predict an outcome, returns an array df = df.drop(['Unnamed: 0'], axis=1) home_win, draw, away_win = clf_boosted.predict_proba(df)[0] arr.append(','.join((hometeam, awayteam, str(home_win), str(draw), str(away_win)))) with open('data/coefficients.txt', 'w') as f: f.write('\n'.join(arr)) def get_cached(hometeam, awayteam): """ Uploads the result from the cache, if possible """ with open('data/coefficients.txt', 'r') as f: for line in f: line = line.strip() home_team, away_team, away_win, draw, home_win = line.split(',') if hometeam != home_team or awayteam != away_team: continue home_win = float(home_win) away_win = float(away_win) draw = float(draw) return home_win, draw, away_win features =
pd.read_csv('data/features.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ @author: Fuck """ import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates #import datetime # INPUT state_name = 'São Paulo' metodo = "subreport" # "fator_verity" # # IMPORT DATA df = pd.read_excel (r'C:\Users\Fuck\Downloads\HIST_PAINEL_COVIDBR_21mai2020.xlsx') # data semanaEpi populacaoTCU2019 casosAcumulado obitosAcumulado Recuperadosnovos emAcompanhamentoNovos states = { 'coduf': [76, 11, 12, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 41, 42, 43, 50, 51, 52, 53], 'state_name': ['Brasil','Rondônia','Acre','Amazonas','Roraima','Pará','Amapá','Tocantins','Maranhão','Piauí','Ceará','Rio Grande do Norte','Paraíba','Pernambuco','Alagoas','Sergipe','Bahia','Minas Gerais','Espiríto Santo','Rio de Janeiro','São Paulo','Paraná','Santa Catarina','Rio Grande do Sul','Mato Grosso do Sul','Mato Grosso','Goiás','Distrito Federal'], 'populationTCU2019': [210_147_125, 1_777_225, 881_935, 4_144_597, 605_761, 8_602_865, 845_731, 1_572_866, 7_075_181, 3_273_227, 9_132_078, 3_506_853, 4_018_127, 45_919_049, 3_337_357, 2_298_696, 14_873_064, 21_168_791, 4_018_650, 17_264_943, 7_164_788, 9_557_071, 11_433_957, 11_377_239, 2_778_986, 3_484_466, 7_018_354, 3_015_268]} states = pd.DataFrame(states, columns = ['coduf', 'state_name', 'populationTCU2019']) # INITIAL DATE if state_name == 'Pernambuco': startdate = '2020-05-02' r0 = (1.1, 1.3) coduf = 26 # population = 9_557_071 elif state_name == 'Santa Catarina': startdate = '2020-05-10' r0 = (1.1, 1.2) coduf = 42 # population = 7_164_788 elif state_name == 'São Paulo': startdate = '2020-04-29' r0 = (1.15, 1.32) coduf = 35 # population = 45_919_049 elif state_name == 'Brasil': startdate = '2020-05-19' coduf = 76 # population = 210_147_125 states_set = states[states['coduf'] == coduf ] population = states_set['populationTCU2019'].values[0] dfMS = df[df['coduf'] == coduf ] dfMS = dfMS[dfMS['codmun'].isnull()] # only rows without city dfMS['data'] =
pd.to_datetime(dfMS['data'])
pandas.to_datetime
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Jan 10 11:04:13 2018 @author: dalonlobo """ from __future__ import absolute_import, division, \ print_function, unicode_literals import os import sys import argparse import logging import glob import pandas as pd from utils import convert_mp4_to_audio, run_command from pydub import AudioSegment from pydub.effects import normalize from pydub.silence import split_on_silence logger = logging.getLogger("__main__") def split_on_silence_threshold(wav_file): """ Splits the wav file in to chunks of wav files, based on the silence level Documentaion: http://pydub.com/ Git: https://github.com/jiaaro/pydub/ """ abs_path = os.path.dirname(wav_file) dest_dir = os.path.join(abs_path, "custom_split") if not os.path.exists(dest_dir): os.makedirs(dest_dir) logger.info("Splitting started: " + wav_file) # Read the file audioSegment = AudioSegment.from_wav(wav_file) # Calculating the silence threshold # Normalizing the audio file belfore finding the threshold full_audio_wav = normalize(audioSegment) loudness_ms_list = [] # Save the audio levels of all the chunks for ms_chunk in full_audio_wav: loudness_ms_list.append(round(ms_chunk.dBFS)) print("Audio levels are recorded", file=sys.stderr) # Using pandas df for easier manipulation df =
pd.DataFrame(loudness_ms_list)
pandas.DataFrame
import json import os import sys import glob import yaml from typing import Set, List from joblib import Parallel, delayed from collections import Counter from tqdm import tqdm from tqdm import tqdm_notebook from termcolor import cprint from matplotlib.pyplot import cm import matplotlib.pyplot as plt import matplotlib.transforms as transforms import seaborn as sn import numpy as np import pandas as pd from sklearn.feature_extraction import DictVectorizer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import classification_report, precision_recall_fscore_support from sklearn.metrics import confusion_matrix from sklearn.model_selection import KFold, StratifiedKFold from sklearn.model_selection import train_test_split from sklearn import svm from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC, LinearSVC from sklearn.neighbors import KNeighborsClassifier from sklearn.cluster import KMeans from sklearn.utils import shuffle from msbase.utils import load_json, sha256sum import pickle precision_recall_fscore_cols = ['precision', 'recall', 'fscore', 'support'] class Configuration(object): def __init__(self): self.labels = None self.vectors_dir = None self.model = "rf" # default: random forest self.gamma_svc = "auto" self.random_state = 37 self.linearsvc_C = 1 self.output_suffix = None self.secondary_conf = None def get_labels_index(self): return list(range(len(self.labels))) def get_output_suffix(self): return self.output_suffix def load_vectors(self): self.DX = [] # features self.DY = [] # label self.DEXTRA = [] # extra info with open(self.vectors_dir + '/DX.pickle', "rb") as f: DX = pickle.load(f) with open(self.vectors_dir + '/DY.pickle', "rb") as f: DY = pickle.load(f) with open(self.vectors_dir + '/DEXTRA.pickle', "rb") as f: DEXTRA = pickle.load(f) label_index = { label: i for i, label in enumerate(self.labels) } for i, X in enumerate(DX): label = DY[i] extra = DEXTRA[i] self.DX.append(X) self.DY.append(label_index[label]) self.DEXTRA.append(extra) self.DY = np.array(self.DY) self.DEXTRA = np.array(self.DEXTRA) if isinstance(self.DX[0], dict): print("Use DictVectorizer") v = DictVectorizer(sparse=False) self.DX = v.fit_transform(self.DX) self.feature_names = v.get_feature_names() elif isinstance(self.DX[0], str): print("Use TfidfVectorizer") v = TfidfVectorizer(tokenizer=lambda x: x.split('\n'), token_pattern=None, binary=True) self.DX = v.fit_transform(self.DX).todense() self.feature_names = v.get_feature_names() elif isinstance(self.DX[0], np.ndarray): print("Use arrays directly") self.DX = np.array(self.DX) with open(self.vectors_dir + '/features.pickle', "rb") as f: self.feature_names = pickle.load(f) self.DY_EXTRAs =
pd.DataFrame([[self.labels[y] for y in self.DY], self.DEXTRA], index=["true-label", "EXTRA"])
pandas.DataFrame
import pandas as pd import numpy as np import os from datetime import datetime import plotly.graph_objects as go import time def timer(): return '['+datetime.now().strftime("%d/%m/%Y %H:%M:%S")+']' #Cases where the client does not have access to the links Cargo try: from confidential.secrets import url_cargo, url_vessels except: url_cargo=0 url_vessels=0 print('\033[1;31;48m'+timer()+'[WARNING] Cargos update links are not accessible. Did you set up the secrets.py file correctly? More information in the READ.ME \033[0m') path="data/external/cargos/" config = {'displayModeBar': False} # Functions def conversion(old): direction = {'N':1, 'S':-1, 'E': 1, 'W':-1} new = old.replace(u'°',' ').replace('\'',' ').replace('"',' ') new = new.split() new_dir = new.pop() new.extend([0,0,0]) return (int(new[0])+int(new[1])/60.0+int(new[2])/3600.0) * direction[new_dir] ####### First part : Update data print(timer()+'[INFO] Check cargo files to update...') ls=[path+"UpdateCargo",path+"UpdateVessels",path+"archives",path+"archives/HistoriqueMarchandises",path+"archives/HistoriqueNavires"] for elem in ls: if(os.path.isdir(elem)==0): try: os.mkdir(elem) except OSError: print('\033[1;31;48m'+timer()+'[ERROR] Creation of the directory failed \033[0m') #Create files to avoid bugs in HistoriqueNavires if len(os.listdir(path+"archives/HistoriqueNavires"))==0: pd.DataFrame(data=[["03/01/2010 09:00","04/01/2010 04:00","HANJINAG - HANJIN","HANJINAG - HANJIN","ATP00014315","HNHL0049W","HNHL0049E","<NAME>","FOS","Validée","Validée"]], columns=["ARRIVEE","DEPART","Rep. Transp EM","Rep. Transp SM","id.AP+","Référence Arrivée","Référence Départ","<NAME>","<NAME>","Statut Arrivée","Statut Départ"]).to_csv(path+'archives/HistoriqueNavires/AMU_VESSEL_2010.txt', sep=' ', encoding = "ISO-8859-1") ## Update Cargo trafic #Read files with "cargo" in title folder="UpdateCargo/" files=os.listdir(path+folder[:-1]) ls=[os.path.getmtime(path+folder+elem) for elem in files] last_file=pd.to_datetime(files[ls.index(max(ls))][-10:-4], format='%d%m%y') last_file_cargo=pd.to_datetime(files[ls.index(max(ls))][-10:-4], format='%d%m%y').strftime('%d/%m/%y') today=pd.Timestamp.today() #check if client can access to the links if url_cargo != 0: #check time of precedent file if((last_file.year < today.year) | (last_file.week < (today.week-1))): try: cargo_update=pd.read_csv(url_cargo, encoding = "ISO-8859-1", sep=";") new_file=pd.to_datetime(cargo_update["Date fin"][1], format="%d/%m/%Y").strftime(folder[:-1]+'S%W%d%m%y.csv') except Exception as e: print('\033[1;31;48m'+timer()+'[WARNING] Cargos except error:',e,'. Maybe the file given have not the good columns structure? \033[0m') else: #Save if not exist if new_file not in os.listdir(path+folder): cargo_update.to_csv(path+folder+new_file, sep=";", encoding = "ISO-8859-1") ## Update vessels trafic folder="UpdateVessels/" files=os.listdir(path+folder[:-1]) ls=[os.path.getmtime(path+folder+elem) for elem in files] last_file=pd.to_datetime(files[ls.index(max(ls))][-10:-4], format='%d%m%y') last_file_vessels=pd.to_datetime(files[ls.index(max(ls))][-10:-4], format='%d%m%y').strftime('%d/%m/%y') today=pd.Timestamp.today() if url_vessels != 0: if((last_file.year < today.year) | (last_file.week < today.week)): try: cargo_update=pd.read_csv(url_vessels, encoding = "ISO-8859-1", sep=";") new_file=pd.Timestamp.today().strftime(folder[:-1]+'S%W%d%m%y.csv') except Exception as e: print('\033[1;31;48m'+timer()+'[WARNING] Vessels except error:',e,'. Maybe the file given have not the good columns structure? \033[0m') else: #Save if not exist if new_file not in os.listdir(path+folder): #Remove previous file os.remove(path+folder+files[ls.index(max(ls))]) #Save new file cargo_update.to_csv(path+folder+new_file, sep=";", encoding = "ISO-8859-1") #Correction if file doesn't exist to force the condition IF == TRUE if os.path.isfile(path+'../../processed/CARGO_2010-2020.xlsx'): datetime_cargos=datetime.fromtimestamp(os.path.getmtime(path+'../../processed/CARGO_2010-2020.xlsx')) else: datetime_cargos=datetime.fromtimestamp(1326244364) ## Update main file: Cargo folder="UpdateCargo/" ## IF (Last Update file time > Main excel file time) => We update the main file if datetime.fromtimestamp(max([os.path.getmtime(path+folder+elem) for elem in os.listdir(path+folder[:-1])])) > datetime_cargos: #Read previous file if os.path.isfile(path+'../../processed/CARGO_2010-2020.xlsx'): cargo=pd.read_excel(path+'../../processed/CARGO_2010-2020.xlsx', encoding = "ISO-8859-1", index_col=0).reset_index(drop=True) else: cargo=pd.DataFrame() #Read update files files=os.listdir(path+folder) ls=[i for i in os.listdir(path+folder)] #concat update files cargo_update=pd.DataFrame() for elem in ls: cargo_update_add=pd.read_csv(path+folder+elem, encoding = "ISO-8859-1", sep=";", index_col=0) cargo_update_add["date"]=pd.to_datetime(elem[-10:-4], format='%d%m%y') cargo_update=pd.concat([cargo_update_add,cargo_update]) #Clean update files cargo_update.loc[cargo_update.Type=="IMPORT","Type"]=0 cargo_update.loc[cargo_update.Type=="EXPORT","Type"]=1 cargo_update=cargo_update.rename(columns={"Type":"export"}) cargo_update=cargo_update[["Nom du port","export","Nb 20'","Nb 40'","Nb other","Nb roros","Roulant divers","Nb conv","date"]] cargo_update["somme"]=cargo_update[["Nb 20'", "Nb 40'", 'Nb other', 'Nb roros', 'Roulant divers', 'Nb conv']].sum(axis=1) cargo_update=cargo_update.reset_index(drop=True) cargo_update=pd.pivot_table(cargo_update, values='somme', index=['date','export'], columns=['Nom du port']).reset_index() cargo_update=cargo_update.rename(columns={"FRFOS":"FOS","FRMRS":"MRS"}) #Concat both files cargo=pd.concat([cargo,cargo_update]).drop_duplicates(["date","export"]) #If MRS & FOS are NA or ==0 -> Remove rows cargo=cargo[((~cargo["FOS"].isna()) & (~cargo["MRS"].isna())) | (~cargo["FOS"]==0) & (~cargo["MRS"]==0)] cargo=cargo.reset_index(drop=True) #Save cargo.to_excel(path+'../../processed/CARGO_2010-2020.xlsx', encoding = "ISO-8859-1") print(timer()+'[INFO] Cargo files updated.') #Correction if file doesn't exist to force the condition IF == TRUE if os.path.isfile(path+'../../processed/VESSEL_2010-2020.xlsx'): datetime_vessels=datetime.fromtimestamp(os.path.getmtime(path+'../../processed/VESSEL_2010-2020.xlsx')) else: datetime_vessels=datetime.fromtimestamp(1326244364) ## Update main file: Vessels folder="UpdateVessels/" #If Update time > Main file time if datetime.fromtimestamp(max([os.path.getmtime(path+folder+elem) for elem in os.listdir(path+folder[:-1])])) > datetime_vessels: #Read archives not CI5 files=os.listdir(path+"archives/HistoriqueNavires") ls=[i for i in files if os.path.isfile(os.path.join(path+"archives/HistoriqueNavires",i)) and 'AMU' in i] #Read historical datas df=
pd.DataFrame()
pandas.DataFrame
""" Copyright 2022 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. =============================================================================== Criado em 10 de janeiro de 2022 Autor: <NAME> ( <EMAIL> ) ====== FORMATAÇÃO DE DADOS FLUVIOMÉTRICOS DA PLATAFORMA HIDROWEB ====== O presente código, escrito em linguagem python, tem por objetivo a formatação de dados pluviométricos obtidos na plataforma HIDROWEB ( https://www.snirh.gov.br/hidroweb/apresentacao ). As 13 primeiras linhas (isto é, todas as linhas acima do cabeçalho) do arquivo baixado na plataforma devem ser excuídas antes do seu carregamento. O resultado é uma tabela com três colunas: - date: indica a data da medição; - discharge: indica a vazão medida (diária), em m³/s; - status: indica o status da medida (branco, real, estimado ou régua seca). Responda, no console, y (yes) para que os dados formatados sejam salvos em csv. Informações de missing values e as estatísticas do status das medições também são apresentadas no console. """ # Bibliotecas requeridas import pandas as pd import os # Definição do diretório de trabalho os.chdir('C:\\Users\\brech\\Documents\\Estudos\\2021-2\\' + 'Obras_Hidraulicas\\TrabalhoPratico_PythonCodes\\' + 'DadosHidroweb') #%% LEITURA E FORMATAÇÃO DOS DADOS DE ENTRADA # Nome do arquivo de entrada file = 'vazoes_C_83300200.csv' # Carregamento dos dados data = pd.read_csv(file, decimal=',', sep=';') # Data no formato datetime data['Data'] =
pd.to_datetime(data.Data, format='%d/%m/%Y')
pandas.to_datetime
""" Copyright 2022 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd from impetuous.convert import create_synonyms , flatten_dict from scipy.stats import rankdata from scipy.stats import ttest_rel , ttest_ind , mannwhitneyu from scipy.stats.mstats import kruskalwallis as kruskwall from sklearn.decomposition import PCA import itertools import typing def subArraysOf ( Array:list,Array_:list=None ) -> list : if Array_ == None : Array_ = Array[:-1] if Array == [] : if Array_ == [] : return ( [] ) return( subArraysOf(Array_,Array_[:-1]) ) return([Array]+subArraysOf(Array[1:],Array_)) def permuter( inputs:list , n:int ) -> list : # permuter( inputs = ['T2D','NGT','Female','Male'] , n = 2 ) return( [p[0] for p in zip(itertools.permutations(inputs,n))] ) def grouper ( inputs, n ) : iters = [iter(inputs)] * n return zip ( *iters ) def whiten_data ( Xdf ) : # REMEMBER BOYS AND GIRLS THIS IS SOMETHING YOU MIGHT NOT WANT TO DO :) mean_center = lambda x: x-np.mean(x,0) X = Xdf.values u , s , v = np.linalg.svd( mean_center(X),full_matrices=False ) X_white = np.dot(X,np.dot( np.diag(s**-1),np.abs(v) )) # we don't know the sign return ( pd.DataFrame( X_white,index=Xdf.index.values,columns=Xdf.columns ) ) def threshold ( E , A ) : if not 'pandas' in str(type(A)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) thresholds_df = pd .DataFrame ( np.dot( E,A.T ) , columns = A .index , index = E .index ) .apply ( lambda x:x/np.sum(E,1) ) return ( thresholds_df ) def solve ( C = pd.DataFrame([ [10,1],[3,5] ]) , E = pd.DataFrame([ [25],[31] ]) ): if not 'pandas' in str(type(C)) or not 'pandas' in str(type(E)): print ( "ERROR MUST SUPPLY TWO PANDAS DATAFRAMES" ) return ( -1 ) recover = lambda U,S,Vt : np.dot(U*S,Vt) cU, cS, cVt = np.linalg.svd(C, full_matrices=False ) cST = 1/cS psuedo_inverse = pd.DataFrame( recover(cVt.T,cST,cU.T) , index=C.columns ,columns=C.index ) identity = np.dot(C,psuedo_inverse) TOLERANCE = np.max( np.sqrt( ( identity * ( ( 1-np.eye(len(np.diag(identity)))) ) )**2 )) return ( np.dot( psuedo_inverse,E),TOLERANCE ) import re def find_category_variables( istr ) : return ( re.findall( r'C\((.*?)\)', istr ) ) def encode_categorical( G = ['Male','Male','Female'] ): # # CREATES AN BINARY ENCODING MATRIX FROM THE SUPPLIED LIST # USES A PANDAS DATAFRAME AS INTERMEDIATE FOR ERROR CHECKING # THIS PUTS THE O IN OPLS (ORTHOGONAL) # ugl = list(set(G)) ; n = len(ugl) ; m = len(G) lgu = { u:j for u,j in zip(ugl,range(n)) } enc_d = pd.DataFrame( np.zeros(m*n).reshape(-1,n),columns=ugl ) for i in range ( m ) : j = lgu[G[i]] enc_d.iloc[i,j] = 1 return ( enc_d ) def create_encoding_journal( use_categories, journal_df ) : encoding_df = None for category in use_categories : catvals = journal_df.loc[category].to_list() cat_encoding = encode_categorical( catvals ) cat_encoding.index = journal_df.columns.values if encoding_df is None : encoding_df = cat_encoding.T else : encoding_df = pd.concat([encoding_df,cat_encoding.T]) return ( encoding_df ) def quantify_density_probability ( rpoints , cutoff = None ) : # # DETERMINE P VALUES loc_pdf = lambda X,mean,variance : [ 1./np.sqrt(2.*np.pi*variance)*np.exp(-((x-mean)/(2.*variance))**2) for x in X ] from scipy.special import erf as erf_ loc_cdf = lambda X,mean,variance : [ 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] loc_Q = lambda X,mean,variance : [ 1. - 0.5*( 1. + erf_( (x-mean)/np.sqrt( 2.*variance ) ) ) for x in X ] M_,Var_ = np.mean(rpoints),np.std(rpoints)**2 # # INSTEAD OF THE PROBABILTY DENSITY WE RETURN THE FRACTIONAL RANKS # SINCE THIS ALLOWS US TO CALCULATE RANK STATISTICS FOR THE PROJECTION corresponding_density = rankdata (rpoints,'average') / len(rpoints) # loc_pdf( rpoints,M_,Var_ ) corresponding_pvalue = loc_Q ( rpoints,M_,Var_ ) # # HERE WE MIGHT BE DONE if not cutoff is None : resolution = 10. ; nbins = 100. # # ONLY FOR ASSESING h1,h2 = np.histogram(rpoints,bins=int(np.ceil(len(rpoints)/resolution))) bin_radius = 0.5 * ( h2[1:] + h2[:-1] ) radial_density = np.cumsum( h1 )/np.sum( h1 ) # lt # # NOW RETRIEVE ALL DENSITIES OF THE RADII tol = 1./nbins corresponding_radius = np.min( bin_radius[radial_density > cutoff/nbins] ) return ( corresponding_pvalue , corresponding_density, corresponding_radius ) return ( corresponding_pvalue , corresponding_density ) def find_category_interactions ( istr ) : all_cats = re.findall( r'C\((.*?)\)', istr ) interacting = [ ':' in c for c in istr.split(')') ][ 0:len(all_cats) ] interacting_categories = [ [all_cats[i-1],all_cats[i]] for i in range(1,len(interacting)) if interacting[i] ] return ( interacting_categories ) def create_encoding_data_frame ( journal_df , formula , bVerbose = False ) : # # THE JOURNAL_DF IS THE COARSE GRAINED DATA (THE MODEL) # THE FORMULA IS THE SEMANTIC DESCRIPTION OF THE PROBLEM # interaction_pairs = find_category_interactions ( formula.split('~')[1] ) add_pairs = [] sjdf = set(journal_df.index) if len( interaction_pairs ) > 0 : for pair in interaction_pairs : cpair = [ 'C('+p+')' for p in pair ] upair = [ pp*(pp in sjdf)+cp*(cp in sjdf and not pp in sjdf) for (pp,cp) in zip( pair,cpair) ] journal_df.loc[ ':'.join(upair) ] = [ p[0]+'-'+p[1] for p in journal_df.loc[ upair,: ].T.values ] add_pairs.append(':'.join(upair)) use_categories = list(set(find_category_variables(formula.split('~')[1]))) cusecats = [ 'C('+p+')' for p in use_categories ] use_categories = [ u*( u in sjdf) + cu *( cu in sjdf ) for (u,cu) in zip(use_categories,cusecats) ] use_categories = [ *use_categories,*add_pairs ] # if len( use_categories )>0 : encoding_df = create_encoding_journal ( use_categories , journal_df ).T else : encoding_df = None # if bVerbose : print ( [ v for v in encoding_df.columns.values ] ) print ( 'ADD IN ANY LINEAR TERMS AS THEIR OWN AXIS' ) # # THIS TURNS THE MODEL INTO A MIXED LINEAR MODEL add_df = journal_df.loc[ [c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C('in c],: ] if len(add_df)>0 : if encoding_df is None : encoding_df = add_df.T else : encoding_df = pd.concat([ encoding_df.T , journal_df.loc[ [ c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C(' in c] , : ] ]).T return ( encoding_df.apply(pd.to_numeric) ) def interpret_problem ( analyte_df , journal_df , formula , bVerbose=False ) : # # THE JOURNAL_DF IS THE COARSE GRAINED DATA (THE MODEL) # THE ANALYTE_DF IS THE FINE GRAINED DATA (THE DATA) # THE FORMULA IS THE SEMANTIC DESCRIPTION OF THE PROBLEM # interaction_pairs = find_category_interactions ( formula.split('~')[1] ) add_pairs = [] if len( interaction_pairs )>0 : for pair in interaction_pairs : journal_df.loc[ ':'.join(pair) ] = [ p[0]+'-'+p[1] for p in journal_df.loc[ pair,: ].T.values ] add_pairs.append(':'.join(pair)) use_categories = list(set(find_category_variables(formula.split('~')[1]))) use_categories = [u for u in use_categories if 'C('+u+')' in set(formula.replace(' ','').split('~')[1].split('+'))] use_categories = [ *use_categories,*add_pairs ] # if len( use_categories )>0 : encoding_df = create_encoding_journal ( use_categories , journal_df ).T else : encoding_df = None # if bVerbose : print ( [ v for v in encoding_df.columns.values ] ) print ( 'ADD IN ANY LINEAR TERMS AS THEIR OWN AXIS' ) # # THIS TURNS THE MODEL INTO A MIXED LINEAR MODEL add_df = journal_df.loc[ [c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C('in c],: ] if len(add_df)>0 : if encoding_df is None : encoding_df = add_df.T else : encoding_df = pd.concat([ encoding_df.T , journal_df.loc[ [ c.replace(' ','') for c in formula.split('~')[1].split('+') if not 'C(' in c] , : ] ]).T return ( encoding_df ) def calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, analyte_df = None , journal_df = None , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , study_axii = None , owner_by = 'tesselation' ): if bVerbose : print ( np.shape(encoding_df) ) print ( np.shape(analyte_df) ) print ( 'qx:',np.shape(quantx) ) print ( 'qy:',np.shape(quanty) ) print ( 'sx:',np.shape(scorex) ) print ( 'WILL ASSIGN OWNER BY PROXIMITY TO CATEGORICALS' ) if analyte_df is None or journal_df is None: print ( 'USER MUST SUPPLY ANALYTE AND JOURNAL DATA FRAMES' ) exit(1) # # THESE ARE THE CATEGORICAL DESCRIPTORS use_centroid_indices = [ i for i in range(len(encoding_df.columns.values)) if ( encoding_df.columns.values[i] not in set( exclude_labels_from_centroids ) ) ] # use_centroids = list( quanty[use_centroid_indices] ) use_labels = list( encoding_df.columns.values[use_centroid_indices] ) # if owner_by == 'tesselation' : transcript_owner = [ use_labels[ np.argmin([ np.sum((xw-cent)**2) for cent in use_centroids ])] for xw in quantx ] sample_owner = [ use_labels[ np.argmin([ np.sum((yw-cent)**2) for cent in use_centroids ])] for yw in scorex ] # if owner_by == 'angle' : angular_proximity = lambda B,A : 1 - np.dot(A,B) / ( np.sqrt(np.dot(A,A))*np.sqrt(np.dot(B,B)) ) transcript_owner = [ use_labels[ np.argmin([ angular_proximity(xw,cent) for cent in use_centroids ])] for xw in quantx ] sample_owner = [ use_labels[ np.argmin([ angular_proximity(yw,cent) for cent in use_centroids ])] for yw in scorex ] # # print ( 'PLS WEIGHT RADIUS' ) radius = lambda vector:np.sqrt(np.sum((vector)**2)) # radii # # print ( 'ESTABLISH LENGTH SCALES' ) xi_l = np.max(np.abs(quantx),0) # rpoints = np.array( [ radius( v/xi_l ) for v in quantx ] ) # HERE WE MERGE THE AXES xpoints = np.array( [ radius((v/xi_l)[0]) for v in quantx ] ) # HERE WE USE THE X AXES ypoints = np.array( [ radius((v/xi_l)[1]) for v in quantx ] ) # HERE WE USE THE Y AXES # # print ( 'ESTABLISH PROJECTION OF THE WEIGHTS ONTO THEIR AXES' ) proj = lambda B,A : np.dot(A,B) / np.sqrt( np.dot(A,A) ) # # ADDING IN ADDITIONAL DIRECTIONS # THAT WE MIGHT BE INTERESTED IN if 'list' in str( type( study_axii ) ): for ax in study_axii : if len( set( ax ) - set( use_labels ) ) == 0 and len(ax)==2 : axsel = np.array([ use_centroids[i] for i in range(len(use_labels)) if use_labels[i] in set(ax) ]) axis_direction = axsel[0]-axsel[1] use_labels .append( '-'.join(ax) ) use_centroids .append( np.array(axis_direction) ) proj_df = pd.DataFrame( [ [ np.abs(proj(P/xi_l,R/xi_l)) for P in quantx ] for R in use_centroids ] , index = use_labels , columns=analyte_df.index.values ) # # print ( 'P VALUES ALIGNED TO PLS AXES' ) for idx in proj_df.index : proj_p,proj_rho = quantify_density_probability ( proj_df.loc[idx,:].values ) proj_df = proj_df.rename( index = {idx:idx+',r'} ) proj_df.loc[idx+',p'] = proj_p proj_df.loc[idx+',rho'] = proj_rho # # print ( 'THE EQUIDISTANT 1D STATS' ) corresponding_pvalue , corresponding_density , corresponding_radius = quantify_density_probability ( rpoints , cutoff = blur_cutoff ) # # print ( 'THE TWO XY 1D STATS' ) corr_pvalue_0 , corr_density_0 = quantify_density_probability ( xpoints ) corr_pvalue_1 , corr_density_1 = quantify_density_probability ( ypoints ) # bOrderedAlphas = False if True : # DO ALPHA LEVELS BASED ON DENSITY bOrderedAlphas = True use_points = rpoints > corresponding_radius ordered_alphas = [ float(int(u))*0.5 + 0.01 for u in use_points ] result_dfs = [] # # print ( 'COMPILE RESULTS FRAME' ) for ( lookat,I_ ) in [ ( quantx , 0 ) , ( scorex , 1 ) ] : lookat = [ [ l[0],l[1] ] for l in lookat ] if I_ == 1 : aidx = journal_df.columns.values else : aidx = analyte_df.index.values qdf = pd.DataFrame( [v[0] for v in lookat] , index=aidx , columns = ['x'] ) qdf['y'] = [ v[1] for v in lookat ] names = aidx if I_ == 0 : qdf[ 'owner' ] = transcript_owner qdf['Corr,p' ] = corresponding_pvalue qdf['Corr,r' ] = corresponding_density qdf['Corr0,p'] = corr_pvalue_0 qdf['Corr0,r'] = corr_density_0 qdf['Corr1,p'] = corr_pvalue_1 qdf['Corr1,r'] = corr_density_1 qdf = pd.concat([qdf.T,proj_df]).T if bOrderedAlphas : qdf[ 'alpha' ] = ordered_alphas else : qdf['alpha'] = [ '0.3' for a in transcript_owner ] else : qdf['owner'] = sample_owner # The default should be the aligned projection weight qdf['alpha'] = [ '0.2' for n in names ] if synonyms is None : qdf['name'] = names else : qdf['name'] = [ synonyms[v] if v in synonyms else v for v in names ] result_dfs.append(qdf.copy()) return ( result_dfs ) def run_rpls_regression ( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , pls_components = 2, bDeveloperTesting = False , study_axii = None , owner_by = 'tesselation' ) : encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) from sklearn.cross_decomposition import PLSRegression as PLS if not bDeveloperTesting : pls_components = 2 rpls = PLS( pls_components ) rpls_res = rpls.fit( X = analyte_df.T.values , Y = encoding_df .values ) quantx,quanty = rpls_res.x_weights_ , rpls_res.y_weights_ scorex = rpls_res.x_scores_ res_df = calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, journal_df = journal_df, analyte_df = analyte_df , blur_cutoff = blur_cutoff , bVerbose = bVerbose, exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by ) return ( res_df ) import impetuous.fit as ifit import impetuous.clustering as icluster def run_shape_alignment_clustering ( analyte_df , journal_df , formula, bVerbose = False ) : NOTE_ = "This is just a kmeans in arbitrary dimensions that start out with centroids that have been shape aligned" encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) Q = encoding_df.T.apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).values P = analyte_df .apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).values centroids = ifit.ShapeAlignment( P, Q , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = encoding_df.columns , columns = encoding_df.index ) lookup_ = {i:n for n,i in zip( centroids_df.index,range(len(centroids_df.index)) ) } labels , centroids = icluster.seeded_kmeans( P , centroids ) res_df = pd.DataFrame( [labels] , columns=analyte_df.index , index=['cluster index'] ) nam_df = pd.DataFrame( [ lookup_[l] for l in labels ] , columns = ['cluster name'] , index = analyte_df.index ).T res_df = pd.concat( [ res_df , nam_df ] ) clusters_df = pd.concat( [ centroids_df, pd.DataFrame( res_df.T.groupby('cluster name').apply(len),columns=['size']) ] ,axis=1 ) return ( res_df , clusters_df ) def knn_clustering_alignment ( P, Q , bHighDim = False ) : print ( "DOING KMEANS ALIGNMENT INSTEAD" ) return ( kmeans_clustering_alignment( P , Q , bHighDim = bHighDim ) ) def kmeans_clustering_alignment( P , Q , bHighDim=False ) : NOTE_ = "This is just a standard kmeans in arbitrary dimensions that start out with centroids that have been shape aligned" ispanda = lambda P: 'pandas' in str(type(P)).lower() BustedPanda = lambda R : R.values if ispanda(R) else R P_ = BustedPanda ( P ) Q_ = BustedPanda ( Q ) if bHighDim : centroids = ifit .HighDimensionalAlignment ( P_ , Q_ ) else : centroids = ifit .ShapeAlignment ( P_ , Q_ , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) if ispanda ( Q ) : # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = Q.index , columns = Q.columns ) lookup_ = {i:n for n,i in zip( centroids_df.index,range(len(centroids_df.index)) ) } labels , centroids = icluster.seeded_kmeans( P_ , centroids ) if ispanda ( Q ) and ispanda ( P ) : # # MORE DIAGNOSTICS res_df = pd.DataFrame( [labels] , columns=P.index , index=['cluster index'] ) res_df .loc[ 'cluster name' ] = [ lookup_[l] for l in res_df.loc['cluster index'].values ] print ( res_df ) return ( np.array(labels), np.array(centroids) ) def tol_check( val, TOL=1E-10 ): if val > TOL : print ( "WARNING: DATA ENTROPY HIGH (SNR LOW)", val ) ispanda = lambda P : 'pandas' in str(type(P)).lower() def multifactor_solution ( analyte_df , journal_df , formula , bLegacy = False ) : A , J , f = analyte_df , journal_df , formula if bLegacy : encoding_df = interpret_problem ( analyte_df = A , journal_df = J , formula = f ).T else : encoding_df = create_encoding_data_frame ( journal_df = J , formula = f ).T solution_ = solve ( A.T, encoding_df.T ) tol_check ( solution_[1] ) beta_df = pd.DataFrame ( solution_[0] , index=A.index , columns=encoding_df.index ) U, S, VT = np.linalg.svd ( beta_df.values,full_matrices=False ) P = pd.DataFrame( U.T , index = [ 'Comp'+str(r) for r in range(len(U.T))] , columns = A.index ) W = pd.DataFrame( VT , index = [ 'Comp'+str(r) for r in range(len(U.T))] , columns = encoding_df.index ) Z = threshold ( encoding_df.T , S*W ) .T return ( P.T , W.T , Z.T , encoding_df.T , beta_df ) def multifactor_evaluation ( analyte_df , journal_df , formula ) : # # ALTOUGH A GOOD METHOD IT IS STILL NOT SUFFICIENT # P, W, Z, encoding_df , beta_df = multifactor_solution ( analyte_df , journal_df , formula ) eval_df = beta_df.apply(lambda x:x**2) all = [beta_df] for c in eval_df.columns : all.append ( pd.DataFrame ( quantify_density_probability ( eval_df.loc[:,c].values ), index = [c+',p',c+',r'], columns=eval_df.index ).T) res_df = pd.concat( all,axis=1 ) for c in res_df.columns: if ',p' in c: q = [ qv[0] for qv in qvalues(res_df.loc[:,c].values) ] res_df.loc[:,c.split(',p')[0]+',q'] = q return ( res_df ) def regression_assessment ( model , X , y , bLog = False ) : desc_ = """ ALTERNATIVE NAIVE MODEL ASSESSMENT FOR A REGRESSION MODEL !PRVT2D1701CM5487! """ y_ = y coefs = model.coef_ mstat = dict() if bLog : X = np.array( [ [ np.log(x) for x in xx ] for xx in X ]) yp = np.exp(np.dot( coefs, X ) + model.intercept_ ) else : yp = (np.dot( coefs, X ) + model.intercept_ ) # n = len ( y_ ) ; p = len(coefs) ym = np.mean( y_ ) # CRITICAL DIMENSION ... # # BZ FORMS TSS = np.array([ np.sum(( y_ - ym ) ** 2, axis=0) ])[0]; dof_tss = n-1 ; mstat['TSS'] = TSS RSS = np.array([ np.sum(( y_ - yp ) ** 2, axis=0) ])[0]; dof_rss = n-p ; mstat['RSS'] = RSS ESS = np.array([ np.sum(( yp - ym ) ** 2, axis=0) ])[0]; dof_ess = p-1 ; mstat['ESS'] = ESS mstat['dof_tss'] = dof_tss ; mstat['dof_rss'] = dof_rss ; mstat['dof_ess'] = dof_ess # TMS = TSS / dof_tss ; mstat['TMS'] = TMS RMS = RSS / dof_rss ; mstat['RMS'] = RMS EMS = ESS / dof_ess ; mstat['EMS'] = EMS # # F-TEST dof_numerator = dof_rss dof_denominator = dof_ess from scipy.stats import f fdist = f( dof_numerator , dof_denominator ) f0 = EMS / RMS # mstat['dof_numerator'] = dof_numerator mstat['dof_denominator'] = dof_denominator mstat['p-value'] = 1 - fdist.cdf(f0) mstat['f0'] = f0 mstat['yp'] = yp mstat['model'] = model # return ( mstat ) def proj_c ( P ) : # P CONTAINS MUTUTALLY ORTHOGONAL COMPONENTS ALONG THE COLUMNS # THE CS CALCULATION MIGHT SEEM STRANGE BUT FULLFILS THE PURPOSE if not ispanda(P) : # ispandor är coola print ( "FUNCTION REQUIRES A SAIGA OR PANDA DATA FRAME" ) CS = P.T.apply( lambda x: pd.Series( [x[0],x[1]]/np.sqrt(np.sum(x**2)),index=['cos','sin']) ).T RHO = P.T.apply( lambda x: np.sqrt(np.sum(x**2)) ) CYL = pd.concat( [RHO*CS['cos'],RHO*CS['sin']],axis=1 ) CYL.columns = ['X','Y'] return ( CYL ) def multivariate_factorisation ( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , bDeveloperTesting = False , bReturnAll = False , study_axii = None , owner_by = 'angle' , bDoRecast = False , bUseThresholds = False ) : P, W, Z, encoding_df , beta_df = multifactor_solution ( analyte_df , journal_df , formula ) # # USE THE INFLATION PROJECTION AS DEFAULT if not bUseThresholds : aA = np.linalg.svd ( analyte_df - np.mean(np.mean(analyte_df)) , full_matrices=False ) aE = np.linalg.svd ( encoding_df.T , full_matrices=False ) Z = pd.DataFrame ( np.dot( np.dot( W.T , aE[-1] ), aA[-1]) , columns = encoding_df.T.columns , index= [ 'mComp' + str(r) for r in range(len(aE[-1]))] ).T if bDoRecast : print ( "WARNING: THROWING AWAY INFORMATION IN ORDER TO DELIVER A" ) print ( " VISUALLY MORE PLEASING POINT CLOUD ... ") P = proj_c( P ) W = proj_c( W ) Z = proj_c( Z ) res_df = calculate_alignment_properties ( encoding_df , quantx = P.values , quanty = W.values , scorex = Z.values , journal_df = journal_df , analyte_df = analyte_df , blur_cutoff = blur_cutoff , bVerbose = bVerbose , exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by ) if bReturnAll : return ( { 'Mutlivariate Solutions' : res_df , 'Feature Scores' : P , 'Encoding Weights' : W , 'Sample Scores' : Z , 'Encoding DataFrame' : encoding_df }) else : return ( res_df ) def associations ( M , W = None , bRanked = True ) : ispanda = lambda P : 'pandas' in str(type(P)).lower() if not ispanda( M ) : print ( "FUNCTION ",'recast_alignments'," REQUIRES ", 'M'," TO BE A PANDAS DATAFRAME" ) bValid = False if not W is None : if not len(W.columns.values) == len(M.columns.values): W = M else: bValid = True else : W = M if bRanked : from scipy.stats import rankdata M = ( M.T.apply(lambda x:rankdata(x,'average')).T-0.5 )/len(M.columns) W = ( W.T.apply(lambda x:rankdata(x,'average')).T-0.5 )/len(W.columns) rho1 = M.T.apply( lambda x:np.sqrt( np.dot( x,x ) ) ) rho2 = rho1 if bValid : rho2 = W.T.apply( lambda x:np.sqrt( np.dot( x,x ) ) ) R2 = pd.DataFrame( np.array([np.array([r]) for r in rho1.values])*[rho2.values] , index = rho1.index, columns = rho2.index ) PQ = pd.DataFrame( np.dot( M,W.T ), index = rho1.index, columns = rho2.index ) res = PQ/R2 return ( res ) crop = lambda x,W:x[:,:W] def run_shape_alignment_regression( analyte_df , journal_df , formula , bVerbose = False , synonyms = None , blur_cutoff = 99.8 , exclude_labels_from_centroids = [''] , study_axii = None , owner_by = 'tesselation' , transform = crop ) : print ( 'WARNING: STILL UNDER DEVELOPMENT' ) print ( 'WARNING: DEFAULT IS TO CROP ALIGNED FACTORS!!') encoding_df = interpret_problem ( analyte_df , journal_df , formula , bVerbose = bVerbose ) Q = encoding_df.T.apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).copy().values P = analyte_df .apply( lambda x:(rankdata(x,'average')-0.5)/len(x) ).copy().values centroids = ifit.ShapeAlignment( P, Q , bReturnTransform = False , bShiftModel = True , bUnrestricted = True ) # # FOR DIAGNOSTIC PURPOSES centroids_df = pd.DataFrame ( centroids , index = encoding_df.columns , columns = encoding_df.index ) xws = ifit.WeightsAndScoresOf( P ) yws = ifit.WeightsAndScoresOf( centroids ) W = np.min( [*np.shape(xws[0]),*np.shape(yws[0])] ) quantx = transform( xws[0],W ) quanty = transform( yws[0],W ) scorex = transform( xws[1],W ) res_df = calculate_alignment_properties ( encoding_df , quantx, quanty, scorex, analyte_df = analyte_df.copy() , journal_df = journal_df.copy() , blur_cutoff = blur_cutoff , bVerbose = bVerbose, exclude_labels_from_centroids = exclude_labels_from_centroids , study_axii = study_axii , owner_by = owner_by, synonyms=synonyms ) return ( res_df ) def add_foldchanges ( df, information_df , group='', fc_type=0 , foldchange_indentifier = 'FC,') : all_vals = list(set(information_df.loc[group].values)) pair_values = [all_vals[i] for i in range(len(all_vals)) if i<2 ] group1 = df.iloc[:,[n in pair_values[0] for n in information_df.loc[group].values] ].T group2 = df.iloc[:,[n in pair_values[1] for n in information_df.loc[group].values] ].T if fc_type == 0: FC = np.mean(group1.values,0) - np.mean(group2.values,0) if fc_type == 1: FC = np.log2( np.mean(group1.values,0) - np.mean(group2.values,0) ) FCdf = pd.DataFrame(FC,index=df.index,columns=[foldchange_indentifier+'-'.join(pair_values) ] ) df =
pd.concat([df.T,FCdf.T])
pandas.concat
# -*- coding: utf-8 -*- try: import json except ImportError: import simplejson as json import math import pytz import locale import pytest import time import datetime import calendar import re import decimal import dateutil from functools import partial from pandas.compat import range, StringIO, u from pandas._libs.tslib import Timestamp import pandas._libs.json as ujson import pandas.compat as compat import numpy as np from pandas import DataFrame, Series, Index, NaT, DatetimeIndex, date_range import pandas.util.testing as tm json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) def _clean_dict(d): """ Sanitize dictionary for JSON by converting all keys to strings. Parameters ---------- d : dict The dictionary to convert. Returns ------- cleaned_dict : dict """ return {str(k): v for k, v in compat.iteritems(d)} @pytest.fixture(params=[ None, # Column indexed by default. "split", "records", "values", "index"]) def orient(request): return request.param @pytest.fixture(params=[None, True]) def numpy(request): return request.param class TestUltraJSONTests(object): @pytest.mark.skipif(compat.is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_encode_decimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert decoded == 1337.1337 sut = decimal.Decimal("0.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.94") encoded = ujson.encode(sut, double_precision=1) assert encoded == "0.9" decoded = ujson.decode(encoded) assert decoded == 0.9 sut = decimal.Decimal("1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "2.0" decoded = ujson.decode(encoded) assert decoded == 2.0 sut = decimal.Decimal("-1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "-2.0" decoded = ujson.decode(encoded) assert decoded == -2.0 sut = decimal.Decimal("0.995") encoded = ujson.encode(sut, double_precision=2) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.9995") encoded = ujson.encode(sut, double_precision=3) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.99999999999999944") encoded = ujson.encode(sut, double_precision=15) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 @pytest.mark.parametrize("ensure_ascii", [True, False]) def test_encode_string_conversion(self, ensure_ascii): string_input = "A string \\ / \b \f \n \r \t </script> &" not_html_encoded = ('"A string \\\\ \\/ \\b \\f \\n ' '\\r \\t <\\/script> &"') html_encoded = ('"A string \\\\ \\/ \\b \\f \\n \\r \\t ' '\\u003c\\/script\\u003e \\u0026"') def helper(expected_output, **encode_kwargs): output = ujson.encode(string_input, ensure_ascii=ensure_ascii, **encode_kwargs) assert output == expected_output assert string_input == json.loads(output) assert string_input == ujson.decode(output) # Default behavior assumes encode_html_chars=False. helper(not_html_encoded) # Make sure explicit encode_html_chars=False works. helper(not_html_encoded, encode_html_chars=False) # Make sure explicit encode_html_chars=True does the encoding. helper(html_encoded, encode_html_chars=True) @pytest.mark.parametrize("long_number", [ -4342969734183514, -12345678901234.56789012, -528656961.4399388 ]) def test_double_long_numbers(self, long_number): sut = {u("a"): long_number} encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert sut == decoded def test_encode_non_c_locale(self): lc_category = locale.LC_NUMERIC # We just need one of these locales to work. for new_locale in ("it_IT.UTF-8", "Italian_Italy"): if tm.can_set_locale(new_locale, lc_category): with tm.set_locale(new_locale, lc_category): assert ujson.loads(ujson.dumps(4.78e60)) == 4.78e60 assert ujson.loads("4.78", precise_float=True) == 4.78 break def test_decimal_decode_test_precise(self): sut = {u("a"): 4.56} encoded = ujson.encode(sut) decoded = ujson.decode(encoded, precise_float=True) assert sut == decoded @pytest.mark.skipif(compat.is_platform_windows() and not compat.PY3, reason="buggy on win-64 for py2") def test_encode_double_tiny_exponential(self): num = 1e-40 assert num == ujson.decode(ujson.encode(num)) num = 1e-100 assert num == ujson.decode(ujson.encode(num)) num = -1e-45 assert num == ujson.decode(ujson.encode(num)) num = -1e-145 assert np.allclose(num, ujson.decode(ujson.encode(num))) @pytest.mark.parametrize("unicode_key", [ u("key1"), u("بن") ]) def test_encode_dict_with_unicode_keys(self, unicode_key): unicode_dict = {unicode_key:
u("value1")
pandas.compat.u
from elasticsearch import Elasticsearch from elasticsearch.helpers import scan from datetime import datetime, timedelta import pandas as pd import numpy as np import time import socket import re from ipwhois import IPWhois import difflib import model.queries as qrs from utils.helpers import timer class NodesMetaData: def __init__(self, index, dateFrom, dateTo): self.idx = index self.dateFrom = dateFrom self.dateTo = dateTo self.df = self.BuildDataFrame() def resolveHost(self, host): h = '' try: if host == '127.0.0.1': print("Incorrect value for host") h = socket.gethostbyaddr(host)[0] except Exception as inst: print(str("socket exception: "+inst.args[1])) h = host return h def isHost(self, val): return re.match("^(([a-zA-Z]|[a-zA-Z][a-zA-Z0-9\-]*[a-zA-Z0-9])\.)*([A-Za-z]|[A-Za-z][A-Za-z0-9\-]*[A-Za-z0-9])$", val) def findHost(self, row, df): host_from_index = row['host_index'] host_from_meta = row['host_meta'] if self.isHost(host_from_index): return host_from_index else: # if it's an IP, try to get the hostname from a ps_meta records if (host_from_meta is not np.nan): if self.isHost(host_from_meta): return host_from_meta # it is possible that for that IP has another record with the valid hostname elif len(df[df['ip'] == host_from_index]['host_index'].values) > 0: return df[df['ip'] == host_from_index]['host_index'].values[0] # otherwise we try to resolve the IP from socket.gethostbyaddr(host) else: return self.resolveHost(host_from_index) return '' def findSite(self, row, df, hosts): # we tend to fill in only sites for hosts part of the configuration if ((row['site_x'] is None) and (row['host_in_ps_meta'] == True)): ratio = {} hs = row['host'] meta_sites = df[(df['host'] == hs)]['site_y'].values first_non_null = next(filter(bool, (x for x in meta_sites)), None) # if site name is available in ps_meta data, take it # first_non_null == first_non_null - that expression checks if the value is NaN if ((first_non_null) and (first_non_null == first_non_null)): return first_non_null else: # otherwise find a similar host name and take its site name for h in hosts: if h != hs: similarity = difflib.SequenceMatcher(None, hs, h).ratio() ratio[h] = similarity # get the value with the highest similarity score sib = max(ratio, key=ratio.get) sib_site_index = df[df['host'] == sib]['site_x'].values fnn_index = next(filter(bool, (x for x in sib_site_index)), None) sib_site_meta = df[df['host'] == sib]['site_y'].values fnn_meta = next(filter(bool, (x for x in sib_site_meta)), None) # Check for the site name of the sibling if (fnn_index): return fnn_index elif (fnn_meta): return fnn_meta # otherwise get get IPWhoIs network name else: return self.getIPWhoIs(sib) else: return row['site_x'] def getIPWhoIs(self, item): val = '' try: obj = IPWhois(item) res = obj.lookup_whois() val = res['nets'][0]['name'] except Exception as inst: if self.isHost(item): val = '' else: val = inst.args return val @timer def BuildDataFrame(self): print('Query ', self.idx, ' for the period', self.dateFrom, '-', self.dateTo) # get metadata meta_df = pd.DataFrame.from_dict(qrs.get_metadata(self.dateFrom, self.dateTo), orient='index', columns=['site', 'admin_name', 'admin_email', 'ipv6', 'ipv4']).reset_index().rename(columns={'index': 'host'}) # in ES there is a limit of up to 10K buckets for aggregation, # thus we need to split the queries and then merge the results ip_site_df = pd.DataFrame.from_dict(qrs.get_ip_site(self.idx, self.dateFrom, self.dateTo), orient='index', columns=['site', 'is_ipv6']).reset_index().rename(columns={'index': 'ip'}) ip_host_df = pd.DataFrame.from_dict(qrs.get_ip_host(self.idx, self.dateFrom, self.dateTo), orient='index', columns=['host']).reset_index().rename(columns={'index': 'ip'}) host_site_df = pd.DataFrame.from_dict(qrs.get_host_site(self.idx, self.dateFrom, self.dateTo), orient='index', columns=['site']).reset_index().rename(columns={'index': 'host'}) df =
pd.merge(ip_site_df, ip_host_df, how='outer', left_on=['ip'], right_on=['ip'])
pandas.merge
import typing import uuid from collections import Counter from typing import Union import numpy as np import pandas as pd from ai_inspector import ModelInspector from scipy.stats import chi2, ks_2samp from scipy.stats.stats import Ks_2sampResult, wasserstein_distance from generated.ml_worker_pb2 import SingleTestResult, TestMessage, TestMessageType from ml_worker.core.ml import run_predict from ml_worker.testing.abstract_test_collection import AbstractTestCollection class DriftTests(AbstractTestCollection): @staticmethod def _calculate_psi(category, actual_distribution, expected_distribution): # To use log and avoid zero distribution probability, # we bound distribution probability by min_distribution_probability min_distribution_probability = 0.0001 expected_distribution_bounded = max(expected_distribution[category], min_distribution_probability) actual_distribution_bounded = max(actual_distribution[category], min_distribution_probability) modality_psi = (expected_distribution_bounded - actual_distribution_bounded) * \ np.log(expected_distribution_bounded / actual_distribution_bounded) return modality_psi @staticmethod def _calculate_frequencies(actual_series, expected_series, max_categories): all_modalities = list(set(expected_series).union(set(actual_series))) if max_categories is not None and len(all_modalities) > max_categories: var_count_expected = dict(Counter(expected_series).most_common(max_categories)) other_modalities_key = 'other_modalities_' + uuid.uuid1().hex var_count_expected[other_modalities_key] = len(expected_series) - sum(var_count_expected.values()) categories_list = list(var_count_expected.keys()) var_count_actual = Counter(actual_series) # For test data, we take the same category names as expected_data var_count_actual = {i: var_count_actual[i] for i in categories_list} var_count_actual[other_modalities_key] = len(actual_series) - sum(var_count_actual.values()) all_modalities = categories_list else: var_count_expected = Counter(expected_series) var_count_actual = Counter(actual_series) expected_frequencies = np.array([var_count_expected[i] for i in all_modalities]) actual_frequencies = np.array([var_count_actual[i] for i in all_modalities]) return all_modalities, actual_frequencies, expected_frequencies @staticmethod def _calculate_drift_psi(actual_series, expected_series, max_categories): all_modalities, actual_frequencies, expected_frequencies = DriftTests._calculate_frequencies( actual_series, expected_series, max_categories) expected_distribution = expected_frequencies / len(expected_series) actual_distribution = actual_frequencies / len(actual_series) total_psi = 0 output_data = pd.DataFrame(columns=["Modality", "Train_distribution", "Test_distribution", "Psi"]) for category in range(len(all_modalities)): modality_psi = DriftTests._calculate_psi(category, actual_distribution, expected_distribution) total_psi += modality_psi row = { "Modality": all_modalities[category], "Train_distribution": expected_distribution[category], "Test_distribution": expected_distribution[category], "Psi": modality_psi } output_data = output_data.append(
pd.Series(row)
pandas.Series
""" prepares the data for the CNN and trains the CNN """ import numpy as np import pandas as pd import random import keras import tensorflow as tf from keras.models import Sequential, Model, Input from keras.layers import Dense, Dropout, Flatten, Concatenate, BatchNormalization from keras.layers import Conv2D, MaxPooling2D from sklearn.preprocessing import StandardScaler from keras.layers.advanced_activations import LeakyReLU from tensorflow.keras.optimizers import Adam, Nadam from tensorflow.keras.losses import BinaryCrossentropy from tensorflow.keras.callbacks import EarlyStopping import connectome.preprocessing.data_loader as dtl from connectome.preprocessing.reorder_matrices_regions import reorder_matrices_regions from connectome.preprocessing.data_loader import flat_to_mat_aggregation from connectome.models.E2E_conv import E2E_conv def model_brainnet_cnn(X, y, aggregation=False, reorder=False, augmentation=False, scale=.04, augm_fact=5, batch_size=32, epochs=400, patience=5, validation_size=.2, E2E_filter: int = 32, E2N_filter: int = 48, N2G_tiler: int = 64, dense_filter: int = 64, dropout_rate=0.5, kernel_regularizer=keras.regularizers.l2(0.01), kernel_initializer='he_uniform', optimizer=Adam(), activation='relu', loss="binary_crossentropy" ): """ Trains a Convolutional Neural Network model based on the design by Kawahara et al. (2016) http://doi.org/10.1016/j.neuroimage.2016.09.046. Args: X: The training dataset y: The true labels aggregation: Boolean, whether the matrices were aggregated based on yeo7 reorder: Boolean, whether to reorder the matrices based on the yeo7 network. (True is recommended when training with Brainnetome data. Only applicable to data based on the brainnetome atlas. augmentation: Boolean, whether to apply data augmentation to increase the training data size scale: Standard deviation of the random noise to be applied for data augmentation augm_fact: Augmentation factor, Size of train dataset = original train dataset + augm_fact * noise dataset batch_size: number of samples that will be propagated through the network epochs: Number of training iterations patience: Number of iterations to early stop if no improvement occurs validation_size: Size of the validation set to evaluate during training E2E_filter: Number of E2E filters, for a detailed description check out: https://kawahara.ca/convolutional-neural-networks-for-adjacency-matrices/ E2N_filter: Number of E2N filters, for a detailed description check out: https://kawahara.ca/convolutional-neural-networks-for-adjacency-matrices/ N2G_tiler: Number of N2G filters , for a detailed description check out: https://kawahara.ca/convolutional-neural-networks-for-adjacency-matrices/ dense_filter: Dense layer size, default 64 dropout_rate: Size of nodes to randomly drop during training, default .5 kernel_regularizer: Layer weight regularizers to be applied, default l2 regularization kernel_initializer: Kernel initilization strategy, default he_uniform optimizer: Method to train the model, default Adam activation: Hidden layer activation, default relu loss: loss function, default binary_crossentropy Returns: A fitted neural network model """ assert isinstance(aggregation, bool), "invalid datatype for argument aggregation" assert isinstance(reorder, bool), "invalid datatype for argument reorder" assert isinstance(augmentation, bool), "invalid datatype for argument augmentation" assert isinstance(scale, float) & (scale >= 0.0), "invalid path datatype for argument scale or smaller than 0" assert isinstance(augm_fact, int) & ( augm_fact >= 1), "invalid datatype for argument augm_fact or not greater than 1" assert isinstance(epochs, int) & ( epochs >= 1), "invalid datatype for epochs or not greater than 1" assert isinstance(patience, int) & ( patience >= 1), "invalid datatype for argument patience or not greater than 1" assert isinstance(validation_size, float) & (validation_size >= 0.0) & \ (validation_size <= 1.0), "invalid value validation_size" assert isinstance(E2E_filter, int) & ( E2E_filter >= 1), "invalid datatype for argument E2E_filter or not greater than 1" assert isinstance(E2N_filter, int) & ( E2N_filter >= 1), "invalid datatype for argument E2N_filter or not greater than 1" assert isinstance(N2G_tiler, int) & ( N2G_tiler >= 1), "invalid datatype for argument N2G_tiler or not greater than 1" assert isinstance(dense_filter, int) & ( dense_filter >= 1), "invalid datatype for argument dense_filter or not greater than 1" assert isinstance(dropout_rate, float) & (dropout_rate >= 0.0) & \ (dropout_rate <= 1.0), "invalid value dropout_rate" # add all possible parameters of brainnet X_train, X_train_struc, y_train = preprocess_for_cnn(X, y, aggregation=aggregation, reorder=reorder, augmentation=augmentation, scale=scale, augmentation_factor=augm_fact) # create validation set # Train val split shuffled_indices = list(range(len(X_train))) random.shuffle(shuffled_indices) val_ind = int(np.round(len(X_train) * validation_size)) val_idxs = shuffled_indices[:val_ind] train_idxs = shuffled_indices[val_ind:] # validation set val_x = X_train[val_idxs] val_x_struc = X_train_struc[val_idxs] val_y = y_train[val_idxs] # train set train_x = X_train[train_idxs] train_x_struc = X_train_struc[train_idxs] train_y = y_train[train_idxs] # mode input dimension input_img_dim = (X_train.shape[1], X_train.shape[2], 1) input_struc_dim = (X_train_struc.shape[1]) print('Starting to train Model') # Initialize neural network model brainnetcnn = brain_net_cnn(input_dim_img=input_img_dim, input_dim_struc=input_struc_dim, output_dim=1, E2E_filter=E2E_filter, E2N_filter=E2N_filter, N2G_tiler=N2G_tiler, dense_filter=dense_filter, dropout_rate=dropout_rate, kernel_regularizer=kernel_regularizer, kernel_initializer=kernel_initializer, opt=optimizer, activation=activation, loss=loss) callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=patience) if input_struc_dim != 0: brainnetcnn.fit([train_x, train_x_struc], train_y, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=([val_x, val_x_struc], val_y), callbacks=[callback]) else: brainnetcnn.fit(train_x, train_y, epochs=epochs, batch_size=batch_size, verbose=1, validation_data=(val_x, val_y), callbacks=[callback]) return brainnetcnn def preprocess_for_cnn(X, y, aggregation=False, reorder=False, augmentation=False, scale=.07, augmentation_factor=5): """ Prepares and reformats the data for the cnn tensorflow mpde; Args: X: The training dataset y: The true labels aggregation: Boolean,whether the matrices were aggregated based on yeo7 reorder: Boolean, whether to reorder the matrices based on the yeo7 network. Only applicable to data based on the brainnetome atlas. augmentation: Boolean, whether to apply data augmentation to increase the training data size scale: Standard deviation of the random noise to be applied for data augmentation augmentation_factor: Augmentation factor, Size of train dataset = original dataset + augm_fact * noise dataset Returns: X_img: symmetric np.array with the connectivity matrices X_struc: np.array with structural information such as e.g. age etc. y: dataset labels """ assert isinstance(aggregation, bool), "invalid datatype for argument aggregation" assert isinstance(reorder, bool), "invalid datatype for argument reorder" assert isinstance(augmentation, bool), "invalid datatype for argument augmentation" assert isinstance(scale, float) & (scale >= 0.0), "invalid path datatype for argument scale or smaller than 0" assert isinstance(augmentation_factor, int) & ( augmentation_factor >= 1), "invalid datatype for argument augm_fact or not greater than 1" # append the connectivity matrix cols to X_img_cols and the rest to X_struc_cols X_img_cols = [] X_struc_cols = [] for x in X.columns: if len(x.split("_")) > 1 and x.split("_")[0].isdigit() and x.split("_")[1].isdigit(): X_img_cols.append(x) else: X_struc_cols.append(x) # apply data augmentation if augmentation: print("Starting Data Augmentation") X_img_aug, X_struc_aug, y_aug = augmented_data(X, y, X_img_cols, X_struc_cols, sd=scale, augm_fact=augmentation_factor) # merging augmented data with input data X_img =
pd.concat([X[X_img_cols], X_img_aug])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Mon Oct 1 09:55:07 2018 @author: michaelek """ import numpy as np import pandas as pd ################################### ### Parameters freq_codes = ['D', 'W', 'M', 'A-JUN'] ################################### ### Functions def allo_ts_apply(row, from_date, to_date, freq, limit_col, remove_months=False): """ Pandas apply function that converts the allocation data to a monthly time series. """ crc_from_date =
pd.Timestamp(row['from_date'])
pandas.Timestamp
import json import os import random from random import sample import numpy as np import numpy.random import re from collections import Counter import inspect import pandas as pd import matplotlib.pyplot as plt import requests from IPython.display import HTML import seaborn as sns import networkx as nx from pylab import rcParams try: from wordcloud import WordCloud except ImportError: print("wordcloud er ikke installert, kan ikke lage ordskyer") #************** For defining wordbag search def dict2pd(dictionary): res = pd.DataFrame.from_dict(dictionary).fillna(0) s = (res.mean(axis=0)) s = s.rename('snitt') res = res.append(s) return res.sort_values(by='snitt', axis=1, ascending=False).transpose() def def2dict(ddef): res = dict() defs = ddef.split(';') for d in defs: lex = d.split(':') if len(lex) == 2: #print('#'.join(lex)) hyper = lex[0].strip() occurrences = [x.strip() for x in lex[1].split(',')] res[hyper] = occurrences for x in res: for y in res[x]: if y.capitalize() not in res[x]: res[x].append(y.capitalize()) return res def wordbag_eval(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags", json = param) return dict2pd(r.json()) def wordbag_eval_para(wordbag, urns): if type(urns) is list: if isinstance(urns[0], list): urns = [u[0] for u in urns] else: urns = urns else: urns = [urns] param = dict() param['wordbags'] = wordbag param['urns'] = urns r = requests.post("https://api.nb.no/ngram/wordbags_para", json = param) return r.json() def get_paragraphs(urn, paras): """Return paragraphs for urn""" param = dict() param['paragraphs'] = paras param['urn'] = urn r = requests.get("https://api.nb.no/ngram/paragraphs", json=param) return dict2pd(r.json()) ### ******************* wordbag search end def ner(text = None, dist=False): """Analyze text for named entities - set dist = True will return the four values that go into decision""" r = [] if text != None: r = requests.post("https://api.nb.no/ngram/ner", json={'text':text,'dist':dist}) return r.json() #**** names **** def check_navn(navn, limit=2, remove='Ja Nei Nå Dem De Deres Unnskyld Ikke Ah Hmm <NAME> Jaja Jaha'.split()): """Removes all items in navn with frequency below limit and words in all case as well as all words in list 'remove'""" r = {x:navn[x] for x in navn if navn[x] > limit and x.upper() != x and not x in remove} return r def sentences(urns, num=300): if isinstance(urns[0], list): urns = [str(x[0]) for x in urns] params = {'urns':urns, 'num':num} res = requests.get("https://api.nb.no/ngram/sentences", params=params) return res.json() def names(urn, ratio = 0.3, cutoff = 2): """ Return namens in book with urn. Returns uni- , bi-, tri- and quadgrams """ if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/names', json={'urn':urn, 'ratio':ratio, 'cutoff':cutoff}) x = r.json() result = ( Counter(x[0][0]), Counter({tuple(x[1][i][0]):x[1][i][1] for i in range(len(x[1]))}), Counter({tuple(x[2][i][0]):x[2][i][1] for i in range(len(x[2]))}), Counter({tuple(x[3][i][0]):x[3][i][1] for i in range(len(x[3]))}) ) return result def name_graph(name_struct): m = [] for n in name_struct[0]: m.append(frozenset([n])) for n in name_struct[1:]: m += [frozenset(x) for x in n] G = [] for x in m: for y in m: if x < y: G.append((' '.join(x), ' '.join(y))) N = [] for x in m: N.append(' '.join(x)) Gg = nx.Graph() Gg.add_nodes_from(N) Gg.add_edges_from(G) return Gg def aggregate_urns(urnlist): """Sum up word frequencies across urns""" if isinstance(urnlist[0], list): urnlist = [u[0] for u in urnlist] r = requests.post("https://api.nb.no/ngram/book_aggregates", json={'urns':urnlist}) return r.json() # Norweigan word bank def word_variant(word, form): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/variant_form", params={'word':word, 'form':form}) return r.json() def word_paradigm(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/paradigm", params = {'word': word}) return r.json() def word_form(word): """ Find alternative form for a given word form, e.g. word_variant('spiste', 'pres-part') """ r = requests.get("https://api.nb.no/ngram/word_form", params = {'word': word}) return r.json() def word_lemma(word): """ Find lemma form for a given word form """ r = requests.get("https://api.nb.no/ngram/word_lemma", params = {'word': word}) return r.json() def word_freq(urn, words): """ Find frequency of words within urn """ params = {'urn':urn, 'words':words} r = requests.post("https://api.nb.no/ngram/freq", json=params) return dict(r.json()) def tot_freq(words): """ Find total frequency of words """ params = {'words':words} r = requests.post("https://api.nb.no/ngram/word_frequencies", json=params) return dict(r.json()) def book_count(urns): params = {'urns':urns} r = requests.post("https://api.nb.no/ngram/book_count", json=params) return dict(r.json()) def sttr(urn, chunk=5000): r = requests.get("https://api.nb.no/ngram/sttr", json = {'urn':urn, 'chunk':chunk}) return r.json() def totals(top=200): r = requests.get("https://api.nb.no/ngram/totals", json={'top':top}) return dict(r.json()) def navn(urn): if type(urn) is list: urn = urn[0] r = requests.get('https://api.nb.no/ngram/tingnavn', json={'urn':urn}) return dict(r.json()) def digibokurn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("(?<=digibok_)[0-9]{13}", T) def urn_from_text(T): """Return URNs as 13 digits (any sequence of 13 digits is counted as an URN)""" return re.findall("[0-9]{13}", T) def metadata(urn=None): urns = pure_urn(urn) #print(urns) r = requests.post("https://api.nb.no/ngram/meta", json={'urn':urns}) return r.json() def pure_urn(data): """Convert URN-lists with extra data into list of serial numbers. Args: data: May be a list of URNs, a list of lists with URNs as their initial element, or a string of raw texts containing URNs Any pandas dataframe or series. Urns must be in the first column of dataframe. Returns: List[str]: A list of URNs. Empty list if input is on the wrong format or contains no URNs """ korpus_def = [] if isinstance(data, list): if not data: # Empty list korpus_def = [] if isinstance(data[0], list): # List of lists try: korpus_def = [str(x[0]) for x in data] except IndexError: korpus_def = [] else: # Assume data is already a list of URNs korpus_def = [str(int(x)) for x in data] elif isinstance(data, str): korpus_def = [str(x) for x in urn_from_text(data)] elif isinstance(data, (int, np.integer)): korpus_def = [str(data)] elif isinstance(data, pd.DataFrame): col = data.columns[0] urns = pd.to_numeric(data[col]) korpus_def = [str(int(x)) for x in urns.dropna()] elif isinstance(data, pd.Series): korpus_def = [str(int(x)) for x in data.dropna()] return korpus_def #### N-Grams from fulltext updated def unigram(word, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/unigrams", params={ 'word':word, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def bigram(first,second, period=(1950, 2020), media = 'bok', ddk=None, topic=None, gender=None, publisher=None, lang=None, trans=None): r = requests.get("https://api.nb.no/ngram/bigrams", params={ 'first':first, 'second':second, 'ddk':ddk, 'topic':topic, 'gender':gender, 'publisher':publisher, 'lang':lang, 'trans':trans, 'period0':period[0], 'period1':period[1], 'media':media }) return frame(dict(r.json())) def book_counts(period=(1800, 2050)): r = requests.get("https://api.nb.no/ngram/book_counts", params={ 'period0':period[0], 'period1':period[1], }) return frame(dict(r.json())) #### def difference(first, second, rf, rs, years=(1980, 2000),smooth=1, corpus='bok'): """Compute difference of difference (first/second)/(rf/rs)""" try: a_first = nb_ngram(first, years=years, smooth=smooth, corpus=corpus) a_second = nb_ngram(second, years=years, smooth=smooth, corpus=corpus) a = a_first.join(a_second) b_first = nb_ngram(rf, years=years, smooth=smooth, corpus=corpus) b_second = nb_ngram(rs, years=years, smooth=smooth, corpus=corpus) if rf == rs: b_second.columns = [rs + '2'] b = b_first.join(b_second) s_a = a.mean() s_b = b.mean() f1 = s_a[a.columns[0]]/s_a[a.columns[1]] f2 = s_b[b.columns[0]]/s_b[b.columns[1]] res = f1/f2 except: res = 'Mangler noen data - har bare for: ' + ', '.join([x for x in a.columns.append(b.columns)]) return res def df_combine(array_df): """Combine one columns dataframes""" import pandas as pd cols = [] for i in range(len(a)): #print(i) if array_df[i].columns[0] in cols: array_df[i].columns = [array_df[i].columns[0] + '_' + str(i)] cols.append(array_df[i].columns[0]) return pd.concat(a, axis=1, sort=True) def col_agg(df, col='sum'): c = df.sum(axis=0) c = pd.DataFrame(c) c.columns = [col] return c def row_agg(df, col='sum'): c = df.sum(axis=1) c = pd.DataFrame(c) c.columns = [col] return c def get_freq(urn, top=50, cutoff=3): """Get frequency list for urn""" if isinstance(urn, list): urn = urn[0] r = requests.get("https://api.nb.no/ngram/urnfreq", json={'urn':urn, 'top':top, 'cutoff':cutoff}) return Counter(dict(r.json())) ####=============== GET URNS ==================########## def book_corpus(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): return frame(book_urn(words, author, title, subtitle, ddk, subject, period, gender, lang, trans, limit), "urn author title year".split()) def book_urn(words = None, author = None, title = None, subtitle = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_urn(query) def unique_urns(korpus, newest=True): author_title = {(c[1],c[2]) for c in korpus} corpus = {(c[0], c[1]):[d for d in korpus if c[0] == d[1] and c[1]==d[2]] for c in author_title } for c in corpus: corpus[c].sort(key=lambda c: c[3]) if newest == True: res = [corpus[c][-1] for c in corpus] else: res = [corpus[c][0] for c in corpus] return res def refine_book_urn(urns = None, words = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Refine URNs for books with metadata""" # if empty urns nothing to refine if urns is None or urns == []: return [] # check if urns is a metadata list, and pick out first elements if that is the case if isinstance(urns[0], list): urns = [x[0] for x in urns] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'urns'} query['year'] = period[0] query['next'] = period[1] - period[0] #print(query) return refine_urn(urns, query) def best_book_urn(word = None, author = None, title = None, ddk = None, subject = None, period=(1100, 2020), gender=None, lang = None, trans= None, limit=20 ): """Get URNs for books with metadata""" if word is None: return [] frame = inspect.currentframe() args, _, _, values = inspect.getargvalues(frame) query = {i:values[i] for i in args if values[i] != None and i != 'period' and i != 'word'} query['year'] = period[0] query['next'] = period[1] - period[0] return get_best_urn(word, query) def get_urn(metadata=None): """Get urns from metadata""" if metadata is None: metadata = {} if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 100 if not 'year' in metadata: metadata['year'] = 1900 r = requests.get('https://api.nb.no/ngram/urn', json=metadata) return r.json() def refine_urn(urns, metadata=None): """Refine a list urns using extra information""" if metadata is None: metadata = {} metadata['urns'] = urns if not ('words' in metadata): metadata['words'] = [] if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 520 if not 'year' in metadata: metadata['year'] = 1500 r = requests.post('https://api.nb.no/ngram/refineurn', json=metadata) return r.json() def get_best_urn(word, metadata=None): """Get the best urns from metadata containing a specific word""" metadata['word'] = word if not ('next' in metadata or 'neste' in metadata): metadata['next'] = 600 if not 'year' in metadata: metadata['year'] = 1500 r = requests.get('https://api.nb.no/ngram/best_urn', json=metadata) return r.json() def get_papers(top=5, cutoff=5, navn='%', yearfrom=1800, yearto=2020, samplesize=100): """Get newspapers""" div = lambda x, y: (int(x/y), x % y) chunks = 20 # split samplesize into chunks, go through the chunks and then the remainder (first, second) = div(samplesize, chunks) r = [] # collect chunkwise for i in range(first): r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':chunks} ).json() # collect the remainder r += requests.get("https://api.nb.no/ngram/avisfreq", json={'navn':navn, 'top':top, 'cutoff':cutoff, 'yearfrom':yearfrom, 'yearto':yearto,'samplesize':second} ).json() return [dict(x) for x in r] def urn_coll(word, urns=[], after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] r = requests.post("https://api.nb.no/ngram/urncoll", json={'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit}) res = pd.DataFrame.from_dict(r.json(), orient='index') if not res.empty: res = res.sort_values(by=res.columns[0], ascending = False) return res def urn_coll_words(words, urns=None, after=5, before=5, limit=1000): """Find collocations for a group of words within a set of books given by a list of URNs. Only books at the moment""" coll = pd.DataFrame() if urns != None: if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] colls = Counter() if isinstance(words, str): words = words.split() res = Counter() for word in words: try: res += Counter( requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word':word, 'urns':urns, 'after':after, 'before':before, 'limit':limit} ).json() ) except: True coll = pd.DataFrame.from_dict(res, orient='index') if not coll.empty: coll = coll.sort_values(by=coll.columns[0], ascending = False) return coll def get_aggregated_corpus(urns, top=0, cutoff=0): res = Counter() if isinstance(urns[0], list): # urns assumed to be list of list with urn-serial as first element urns = [u[0] for u in urns] for u in urns: #print(u) res += get_freq(u, top = top, cutoff = cutoff) return pd.DataFrame.from_dict(res, orient='index').sort_values(by=0, ascending = False) def compare_word_bags(bag_of_words, another_bag_of_words, first_freq = 0, another_freq = 1, top=100, first_col = 0, another_col= 0): """Compare two columns taken from two or one frame. Parameters x_freq are frequency limits used to cut down candidate words from the bag of words. Compare along the columns where first_col and another_col are column numbers. Typical situation is that bag_of_words is a one column frame and another_bag_of_words is another one column frame. When the columns are all from one frame, just change column numbers to match the columns""" diff = bag_of_words[bag_of_words > first_freq][bag_of_words.columns[first_col]]/another_bag_of_words[another_bag_of_words > another_freq][another_bag_of_words.columns[another_col]] return frame(diff, 'diff').sort_values(by='diff', ascending=False)[:top] def collocation( word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis', lang='nob', title='%', ddk='%', subtitle='%'): """Defined collects frequencies for a given word""" data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto, 'title':title, 'ddk':ddk, 'subtitle':subtitle}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def collocation_data(words, yearfrom = 2000, yearto = 2005, limit = 1000, before = 5, after = 5, title = '%', corpus='bok'): """Collocation for a set of words sum up all the collocations words is a list of words or a blank separated string of words""" import sys a = dict() if isinstance(words, str): words = words.split() for word in words: print(word) try: a[word] = collocation( word, yearfrom = yearfrom, yearto = yearto, limit = limit, corpus = corpus, before = before, after = after, title = title ) a[word].columns = [word] except: print(word, ' feilsituasjon', sys.exc_info()) result = pd.DataFrame() for w in a: result = result.join(a[w], how='outer') return pd.DataFrame(result.sum(axis=1)).sort_values(by=0, ascending=False) class CollocationCorpus: from random import sample def __init__(self, corpus = None, name='', maximum_texts = 500): urns = pure_urn(corpus) if len(urns) > maximum_texts: selection = random(urns, maximum_texts) else: selection = urns self.corpus_def = selection self.corpus = get_aggregated_corpus(self.corpus_def, top=0, cutoff=0) def summary(self, head=10): info = { 'corpus_definition':self.corpus[:head], 'number_of_words':len(self.corpus) } return info def collocation_old(word, yearfrom=2010, yearto=2018, before=3, after=3, limit=1000, corpus='avis'): data = requests.get( "https://api.nb.no/ngram/collocation", params={ 'word':word, 'corpus':corpus, 'yearfrom':yearfrom, 'before':before, 'after':after, 'limit':limit, 'yearto':yearto}).json() return pd.DataFrame.from_dict(data['freq'], orient='index') def heatmap(df, color='green'): return df.fillna(0).style.background_gradient(cmap=sns.light_palette(color, as_cmap=True)) def get_corpus_text(urns, top = 0, cutoff=0): k = dict() if isinstance(urns, list): # a list of urns, or a korpus with urns as first element if isinstance(urns[0], list): urns = [u[0] for u in urns] else: # assume it is a single urn, text or number urns = [urns] for u in urns: #print(u) k[u] = get_freq(u, top = top, cutoff = cutoff) df = pd.DataFrame(k) res = df.sort_values(by=df.columns[0], ascending=False) return res def normalize_corpus_dataframe(df): colsums = df.sum() for x in colsums.index: #print(x) df[x] = df[x].fillna(0)/colsums[x] return True def show_korpus(korpus, start=0, size=4, vstart=0, vsize=20, sortby = ''): """Show corpus as a panda dataframe start = 0 indicates which dokument to show first, dataframe is sorted according to this size = 4 how many documents (or columns) are shown top = 20 how many words (or rows) are shown""" if sortby != '': val = sortby else: val = korpus.columns[start] return korpus[korpus.columns[start:start+size]].sort_values(by=val, ascending=False)[vstart:vstart + vsize] def aggregate(korpus): """Make an aggregated sum of all documents across the corpus, here we use average""" return pd.DataFrame(korpus.fillna(0).mean(axis=1)) def convert_list_of_freqs_to_dataframe(referanse): """The function get_papers() returns a list of frequencies - convert it""" res = [] for x in referanse: res.append( dict(x)) result = pd.DataFrame(res).transpose() normalize_corpus_dataframe(result) return result def get_corpus(top=0, cutoff=0, navn='%', corpus='avis', yearfrom=1800, yearto=2020, samplesize=10): if corpus == 'avis': result = get_papers(top=top, cutoff=cutoff, navn=navn, yearfrom=yearfrom, yearto=yearto, samplesize=samplesize) res = convert_list_of_freqs_to_dataframe(result) else: urns = get_urn({'author':navn, 'year':yearfrom, 'neste':yearto-yearfrom, 'limit':samplesize}) res = get_corpus_text([x[0] for x in urns], top=top, cutoff=cutoff) return res class Cluster: def __init__(self, word = '', filename = '', period = (1950,1960) , before = 5, after = 5, corpus='avis', reference = 200, word_samples=1000): if word != '': self.collocates = collocation(word, yearfrom=period[0], yearto = period[1], before=before, after=after, corpus=corpus, limit=word_samples) self.collocates.columns = [word] if type(reference) is pd.core.frame.DataFrame: reference = reference elif type(reference) is int: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=reference) else: reference = get_corpus(yearfrom=period[0], yearto=period[1], corpus=corpus, samplesize=int(reference)) self.reference = aggregate(reference) self.reference.columns = ['reference_corpus'] self.word = word self.period = period self.corpus = corpus else: if filename != '': self.load(filename) def cluster_set(self, exponent=1.1, top = 200, aslist=True): combo_corp = self.reference.join(self.collocates, how='outer') normalize_corpus_dataframe(combo_corp) korpus = compute_assoc(combo_corp, self.word, exponent) korpus.columns = [self.word] if top <= 0: res = korpus.sort_values(by=self.word, ascending=False) else: res = korpus.sort_values(by=self.word, ascending=False).iloc[:top] if aslist == True: res = HTML(', '.join(list(res.index))) return res def add_reference(self, number=20): ref = get_corpus(yearfrom=self.period[0], yearto=self.period[1], samplesize=number) ref = aggregate(ref) ref.columns = ['add_ref'] normalize_corpus_dataframe(ref) self.reference = aggregate(self.reference.join(ref, how='outer')) return True def save(self, filename=''): if filename == '': filename = "{w}_{p}-{q}.json".format(w=self.word,p=self.period[0], q = self.period[1]) model = { 'word':self.word, 'period':self.period, 'reference':self.reference.to_dict(), 'collocates':self.collocates.to_dict(), 'corpus':self.corpus } with open(filename, 'w', encoding = 'utf-8') as outfile: print('lagrer til:', filename) outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.word = model['word'] self.period = model['period'] self.corpus = model['corpus'] self.reference = pd.DataFrame(model['reference']) self.collocates = pd.DataFrame(model['collocates']) except: print('noe gikk galt') return True def search_words(self, words, exponent=1.1): if type(words) is str: words = [w.strip() for w in words.split()] df = self.cluster_set(exponent=exponent, top=0, aslist=False) sub= [w for w in words if w in df.index] res = df.transpose()[sub].transpose().sort_values(by=df.columns[0], ascending=False) return res def wildcardsearch(params=None): if params is None: params = {'word': '', 'freq_lim': 50, 'limit': 50, 'factor': 2} res = requests.get('https://api.nb.no/ngram/wildcards', params=params) if res.status_code == 200: result = res.json() else: result = {'status':'feil'} resultat = pd.DataFrame.from_dict(result, orient='index') if not(resultat.empty): resultat.columns = [params['word']] return resultat def sorted_wildcardsearch(params): res = wildcardsearch(params) if not res.empty: res = res.sort_values(by=params['word'], ascending=False) return res def make_newspaper_network(key, wordbag, titel='%', yearfrom='1980', yearto='1990', limit=500): if type(wordbag) is str: wordbag = wordbag.split() r = requests.post("https://api.nb.no/ngram/avisgraph", json={ 'key':key, 'words':wordbag, 'yearto':yearto, 'yearfrom':yearfrom, 'limit':limit}) G = nx.Graph() if r.status_code == 200: G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > 0 and x != y]) else: print(r.text) return G def make_network(urn, wordbag, cutoff=0): if type(urn) is list: urn = urn[0] if type(wordbag) is str: wordbag = wordbag.split() G = make_network_graph(urn, wordbag, cutoff) return G def make_network_graph(urn, wordbag, cutoff=0): r = requests.post("https://api.nb.no/ngram/graph", json={'urn':urn, 'words':wordbag}) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def make_network_name_graph(urn, tokens, tokenmap=None, cutoff=2): if isinstance(urn, list): urn = urn[0] # tokens should be a list of list of tokens. If it is list of dicts pull out the keys (= tokens) if isinstance(tokens[0], dict): tokens = [list(x.keys()) for x in tokens] r = requests.post("https://api.nb.no/ngram/word_graph", json={'urn':urn, 'tokens':tokens, 'tokenmap':tokenmap}) #print(r.text) G = nx.Graph() G.add_weighted_edges_from([(x,y,z) for (x,y,z) in r.json() if z > cutoff and x != y]) return G def token_convert_back(tokens, sep='_'): """ convert a list of tokens to string representation""" res = [tokens[0]] for y in tokens: res.append([tuple(x.split(sep)) for x in y]) l = len(res) for x in range(1, 4-l): res.append([]) return res def token_convert(tokens, sep='_'): """ convert back to tuples """ tokens = [list(x.keys()) for x in tokens] tokens = [[(x,) for x in tokens[0]], tokens[1], tokens[2], tokens[3]] conversion = [] for x in tokens: conversion.append([sep.join(t) for t in x]) return conversion def token_map_to_tuples(tokens_as_strings, sep='_', arrow='==>'): tuples = [] for x in tokens_as_strings: token = x.split(arrow)[0].strip() mapsto = x.split(arrow)[1].strip() tuples.append((tuple(token.split(sep)), tuple(mapsto.split(sep)))) #tuples = [(tuple(x.split(arrow).strip()[0].split(sep)), tuple(x.split(arrow)[1].strip().split(sep))) for x in tokens_as_strings] return tuples def token_map(tokens, strings=False, sep='_', arrow= '==>'): """ tokens as from nb.names()""" if isinstance(tokens[0], dict): # get the keys(), otherwise it is already just a list of tokens up to length 4 tokens = [list(x.keys()) for x in tokens] # convert tokens to tuples and put them all in one list tokens = [(x,) for x in tokens[0]] + tokens[1] + tokens[2] + tokens[3] tm = [] #print(tokens) for token in tokens: if isinstance(token, str): trep = (token,) elif isinstance(token, list): trep = tuple(token) token = tuple(token) else: trep = token n = len(trep) #print(trep) if trep[-1].endswith('s'): cp = list(trep[:n-1]) cp.append(trep[-1][:-1]) cp = tuple(cp) #print('copy', cp, trep) if cp in tokens: #print(trep, cp) trep = cp larger = [ts for ts in tokens if set(ts) >= set(trep)] #print(trep, ' => ', larger) larger.sort(key=lambda x: len(x), reverse=True) tm.append((token,larger[0])) res = tm if strings == True: res = [sep.join(x[0]) + ' ' + arrow + ' ' + sep.join(x[1]) for x in tm] return res def draw_graph_centrality(G, h=15, v=10, fontsize=20, k=0.2, arrows=False, font_color='black', threshold=0.01): node_dict = nx.degree_centrality(G) subnodes = dict({x:node_dict[x] for x in node_dict if node_dict[x] >= threshold}) x, y = rcParams['figure.figsize'] rcParams['figure.figsize'] = h, v pos =nx.spring_layout(G, k=k) ax = plt.subplot() ax.set_xticks([]) ax.set_yticks([]) G = G.subgraph(subnodes) nx.draw_networkx_labels(G, pos, font_size=fontsize, font_color=font_color) nx.draw_networkx_nodes(G, pos, alpha=0.5, nodelist=subnodes.keys(), node_size=[v * 1000 for v in subnodes.values()]) nx.draw_networkx_edges(G, pos, alpha=0.7, arrows=arrows, edge_color='lightblue', width=1) rcParams['figure.figsize'] = x, y return True def combine(clusters): """Make new collocation analyses from data in clusters""" colls = [] collocates = clusters[0].collocates for c in clusters[1:]: collocates = collocates.join(c.collocates, rsuffix='-' + str(c.period[0])) return collocates def cluster_join(cluster): clusters = [cluster[i] for i in cluster] clst = clusters[0].cluster_set(aslist=False) for c in clusters[1:]: clst = clst.join(c.cluster_set(aslist=False), rsuffix = '_'+str(c.period[0])) return clst def serie_cluster(word, startår, sluttår, inkrement, before=5, after=5, reference=150, word_samples=500): tidscluster = dict() for i in range(startår, sluttår, inkrement): tidscluster[i] = Cluster( word, corpus='avis', period=(i, i + inkrement - 1), before=after, after=after, reference=reference, word_samples=word_samples) print(i, i+inkrement - 1) return tidscluster def save_serie_cluster(tidscluster): for i in tidscluster: tidscluster[i].save() return 'OK' def les_serie_cluster(word, startår, sluttår, inkrement): tcluster = dict() for i in range(startår, sluttår, inkrement): print(i, i+inkrement - 1) tcluster[i] = Cluster(filename='{w}_{f}-{t}.json'.format(w=word, f=i,t=i+inkrement - 1)) return tcluster def make_cloud(json_text, top=100, background='white', stretch=lambda x: 2**(10*x), width=500, height=500, font_path=None): pairs0 = Counter(json_text).most_common(top) pairs = {x[0]:stretch(x[1]) for x in pairs0} wc = WordCloud( font_path=font_path, background_color=background, width=width, #color_func=my_colorfunc, ranks_only=True, height=height).generate_from_frequencies(pairs) return wc def draw_cloud(sky, width=20, height=20, fil=''): plt.figure(figsize=(width,height)) plt.imshow(sky, interpolation='bilinear') figplot = plt.gcf() if fil != '': figplot.savefig(fil, format='png') return def cloud(pd, column='', top=200, width=1000, height=1000, background='black', file='', stretch=10, font_path=None): if column == '': column = pd.columns[0] data = json.loads(pd[column].to_json()) a_cloud = make_cloud(data, top=top, background=background, font_path=font_path, stretch=lambda x: 2**(stretch*x), width=width, height=height) draw_cloud(a_cloud, fil=file) return def make_a_collocation(word, period=(1990, 2000), before=5, after=5, corpus='avis', samplesize=100, limit=2000): collocates = collocation(word, yearfrom=period[0], yearto=period[1], before=before, after=after, corpus=corpus, limit=limit) collocates.columns = [word] reference = get_corpus(yearfrom=period[0], yearto=period[1], samplesize=samplesize) ref_agg = aggregate(reference) ref_agg.columns = ['reference_corpus'] return ref_agg def compute_assoc(coll_frame, column, exponent=1.1, refcolumn = 'reference_corpus'): return pd.DataFrame(coll_frame[column]**exponent/coll_frame.mean(axis=1)) class Corpus: def __init__(self, filename = '', target_urns = None, reference_urns = None, period = (1950,1960), author='%', title='%', ddk='%', gender='%', subject='%', reference = 100, max_books=100): params = { 'year':period[0], 'next': period[1]-period[0], 'subject':subject, 'ddk':ddk, 'author':author, #'gender':gender, ser ikke ut til å virke for get_urn - sjekk opp APIet 'title':title, 'limit':max_books, 'reference':reference } self.params = params self.coll = dict() self.coll_graph = dict() if filename == '': if target_urns != None: målkorpus_def = target_urns else: målkorpus_def = get_urn(params) #print("Antall bøker i målkorpus ", len(målkorpus_def)) if isinstance(målkorpus_def[0], list): målkorpus_urn = [str(x[0]) for x in målkorpus_def] #print(målkorpus_urn) else: målkorpus_urn = målkorpus_def if len(målkorpus_urn) > max_books and max_books > 0: target_urn = list(numpy.random.choice(målkorpus_urn, max_books)) else: target_urn = målkorpus_urn if reference_urns != None: referansekorpus_def = reference_urns else: # select from period, usually used only of target is by metadata referansekorpus_def = get_urn({'year':period[0], 'next':period[1]-period[0], 'limit':reference}) #print("<NAME> i referanse: ", len(referansekorpus_def)) # referansen skal være distinkt fra målkorpuset referanse_urn = [str(x[0]) for x in referansekorpus_def] self.reference_urn = referanse_urn self.target_urn = target_urn # make sure there is no overlap between target and reference # referanse_urn = list(set(referanse_urn) - set(target_urn)) målkorpus_txt = get_corpus_text(target_urn) normalize_corpus_dataframe(målkorpus_txt) if referanse_urn != []: referanse_txt = get_corpus_text(referanse_urn) normalize_corpus_dataframe(referanse_txt) combo = målkorpus_txt.join(referanse_txt) else: referanse_txt = målkorpus_txt combo = målkorpus_txt self.combo = combo self.reference = referanse_txt self.target = målkorpus_txt self.reference = aggregate(self.reference) self.reference.columns = ['reference_corpus'] ## dokumentfrekvenser mål_docf = pd.DataFrame(pd.DataFrame(målkorpus_txt/målkorpus_txt).sum(axis=1)) combo_docf = pd.DataFrame(pd.DataFrame(combo/combo).sum(axis=1)) ref_docf = pd.DataFrame(pd.DataFrame(referanse_txt/referanse_txt).sum(axis=1)) ### Normaliser dokumentfrekvensene normalize_corpus_dataframe(mål_docf) normalize_corpus_dataframe(combo_docf) normalize_corpus_dataframe(ref_docf) self.målkorpus_tot = aggregate(målkorpus_txt) self.combo_tot = aggregate(combo) self.mål_docf = mål_docf self.combo_docf = combo_docf self.lowest = self.combo_tot.sort_values(by=0)[0][0] else: self.load(filename) return def difference(self, freq_exp=1.1, doc_exp=1.1, top = 200, aslist=True): res = pd.DataFrame( (self.målkorpus_tot**freq_exp/self.combo_tot)*(self.mål_docf**doc_exp/self.combo_docf) ) res.columns = ['diff'] if top > 0: res = res.sort_values(by=res.columns[0], ascending=False).iloc[:top] else: res = res.sort_values(by=res.columns[0], ascending=False) if aslist == True: res = HTML(', '.join(list(res.index))) return res def save(self, filename): model = { 'params':self.params, 'target': self.målkorpus_tot.to_json(), 'combo': self.combo_tot.to_json(), 'target_df': self.mål_docf.to_json(), 'combo_df': self.combo_docf.to_json() } with open(filename, 'w', encoding = 'utf-8') as outfile: outfile.write(json.dumps(model)) return True def load(self, filename): with open(filename, 'r') as infile: try: model = json.loads(infile.read()) #print(model['word']) self.params = model['params'] #print(self.params) self.målkorpus_tot = pd.read_json(model['target']) #print(self.målkorpus_tot[:10]) self.combo_tot = pd.read_json(model['combo']) self.mål_docf = pd.read_json(model['target_df']) self.combo_docf = pd.read_json(model['combo_df']) except: print('noe gikk galt') return True def collocations(self, word, after=5, before=5, limit=1000): """Find collocations for word in a set of book URNs. Only books at the moment""" r = requests.post( "https://api.nb.no/ngram/urncoll", json={ 'word': word, 'urns': self.target_urn, 'after': after, 'before': before, 'limit': limit } ) temp = pd.DataFrame.from_dict(r.json(), orient='index') normalize_corpus_dataframe(temp) self.coll[word] = temp.sort_values(by = temp.columns[0], ascending = False) return True def conc(self, word, before=8, after=8, size=10, combo=0): if combo == 0: urns = self.target_urn + self.reference_urn elif combo == 1: urns = self.target_urn else: urns = self.reference_urn if len(urns) > 300: urns = list(numpy.random.choice(urns, 300, replace=False)) return get_urnkonk(word, {'urns':urns, 'before':before, 'after':after, 'limit':size}) def sort_collocations(self, word, comparison = None, exp = 1.0, above = None): if comparison == None: comparison = self.combo_tot[0] try: res = pd.DataFrame(self.coll[word][0]**exp/comparison) except KeyError: print('Constructing a collocation for {w} with default parameters.'.format(w=word)) self.collocations(word) res =
pd.DataFrame(self.coll[word][0]**exp/comparison)
pandas.DataFrame
import numpy as np from torch.utils.data import Dataset from src.models.lang_model.w2v_averager_model import W2vAveragerModel from sklearn.preprocessing import StandardScaler import datetime import pandas as pd from copy import deepcopy # import matplotlib.pyplot as plt """ Data import functions """ def make_dfs(paths): df = [] for path in paths: df.append(
pd.read_json(path)
pandas.read_json
""" A library of analytical methods. """ import numpy as np import pandas as pd import arrow from .settings import Config from .base import RecipeBase from .scrapers import stockmarket __all__ = ['any_data', 'MovingAvg', 'sample_dates', 'simulate', 'multisim'] def any_data(data): """If there is data, raise alert. ::parents:: data ::alerts:: data exists, data does not exist """ alerts = [] if isinstance(data, pd.DataFrame) and not data.empty: alerts.append('data exists') else: alerts.append('data does not exist') return (None, alerts) class MovingAvg(RecipeBase): valid_type = 'market' def __init__(self, symbol='SPY'): self.studyname = f"{symbol} Moving Avg" self.parents = {'prices': stockmarket.StockDaily(symbol)} @staticmethod def process(prices, **kwargs): alerts = [] centering = False outdf = prices[['adjClose']] outdf = outdf.rename(columns={'adjClose': 'close_price'}) outdf['5-day avg'] = outdf.rolling(5, center=centering).mean() outdf['30-day avg'] = outdf['close_price'].rolling(30, center=centering).mean() outdf['100-day avg'] = outdf['close_price'].rolling(100, center=centering).mean() today = outdf.tail(1) diff_5_30 = today['5-day avg'] - today['30-day avg'] if diff_5_30[0] > 0: alerts.append('5d over 30d') else: alerts.append('5d under 30d') return (outdf, alerts) def sample_dates(data, N=100, window=365, backdate=0): """Sample the available dates in the data. ::parents:: data ::params:: N, window, backdate ::alerts:: complete """ try: backdt = data.index[-1] - dt.timedelta(days=int(backdate)) except ValueError: backdt = dateutil.parser.parse(backdate) interval = data[backdt - dt.timedelta(days=int(window)):backdt] sample_idx = np.random.choice(interval.index, int(N), replace=False) sample_idx.sort() alerts = ['complete'] return (sample_idx, alerts) def multisim(backtest, cash=10000, weightstep=0.1, confidence=2, days=50, N=10): """Run the simulation across various sampled date intervals. ::parents:: backtest ::params:: cash, weightstep, confidence, days, N ::alerts:: complete """ days = int(days) window = backtest.index[-1] - backtest.index[0] - dt.timedelta(days=days) start_dates, _ = sample_dates(backtest, N=N, window=window.days, backdate=days) cols = ['start date', 'end date', 'market return', '% return', 'alpha'] results = [] for start in start_dates: start = pd.Timestamp(start) end = start + dt.timedelta(days=days) trial, _ = simulate(backtest, cash, weightstep, confidence, start, days) endvals = trial.tail(1)[['market return', '% return', 'alpha']].values[0] results.append([start, end, *endvals]) data = pd.DataFrame(results, columns=cols) alerts = ['complete'] return data, alerts def simulate(prices, backtest, cash=10000, weightstep=1.0, confidence=2, start_date=None, days=0): """Calculate the portfolio value gains/losses over the backtest period. ::parents:: prices, backtest ::params:: cash, weightstep, confidence, start_date, days ::alerts:: complete """ cash = int(cash) weightstep = float(weightstep) confidence = int(confidence) days = int(days) # Set up sub-intervals if start_date and days: if isinstance(start_date, str): start_date = arrow.get(start_date).replace(tzinfo=Config.TZ) end_date = start_date.shift(days=days) prices = prices[start_date:end_date] backtest = backtest[start_date:end_date] # Get random market prices data = pd.merge( how='inner', left=prices, right=backtest, left_index=True, right_index=True, ) data['market'] = data['low'] + np.random.rand(len(data)) * (data['high'] - data['low']) # Run the portfolio history = [] portfolio = Portfolio(cash, 0, 0) for _, row in data.iterrows(): portfolio.price = row['market'] portfolio.split(row['splitFactor']) net_action = _calc_net_action(row['signals'], confidence) portfolio.weight_trade(net_action * weightstep) portfolio.dividend(row['divCash']) history.append(portfolio.as_dict.copy()) history_df =
pd.DataFrame(history, data.index)
pandas.DataFrame
# -------------- import pandas as pd import scipy.stats as stats import math import numpy as np import warnings warnings.filterwarnings('ignore') #Sample_Size sample_size=2000 #Z_Critical Score z_critical = stats.norm.ppf(q = 0.95) #Code starts here data = pd.read_csv(path) data_sample = data.sample(n=sample_size, random_state=0) sample_mean = data_sample['installment'].mean() sample_std = data_sample['installment'].std() margin_of_error = z_critical*(sample_std/sample_size**0.5) confidence_interval = (sample_mean-margin_of_error),(sample_mean+margin_of_error) true_mean = data['installment'].mean() print('True mean :',true_mean) if (sample_mean-margin_of_error)<true_mean<(sample_mean+margin_of_error) : print('True mean falls in range of Confidence Interval') # -------------- import matplotlib.pyplot as plt import numpy as np #Different sample sizes to take sample_size=np.array([20,50,100]) #Code starts here fig, axes = plt.subplots(nrows = 3 , ncols = 1) for i in range(len(sample_size)) : m = [] for j in range(1000) : sample_data = data.sample(n=sample_size[i]) sample_data_mean = sample_data['installment'].mean() m.append(sample_data_mean) mean_series =
pd.Series(m)
pandas.Series
# -*- coding: utf-8 -*- """ This code is developed by <NAME>. Command Line Usage : python HSPP_Anatomy.py Dataset[a|i] Attributes[7|14] Partitions{p} L-Diversity[L] Example usage: python Hspp_Anatomy.py a 7 50 10" Dataset = INFORMS | Adults No of Attributes = 7 | 14 """ import random import pandas as pd import numpy as np import time from utils.read_informs_data_2 import read_data as read_informs from utils.read_data_2 import read_data from utils.read_data import read_data as read_data_7 from utils.read_informs_data import read_data as read_informs_7 import sys # Reading the dataset def preproccess_Informs(): label=['PID','DOBMM','DOBYY','SEX','RACEX','RACEAX','RACEBX', 'RACEWX', 'RACETHNX', 'HISPANX', 'HISPCAT','EDUCYEAR','marry','SAFP'] cvslabel=['PID','DOBMM','DOBYY','SEX','RACEX','RACEAX','RACEBX', 'RACEWX', 'RACETHNX', 'HISPANX', 'HISPCAT','EDUCYEAR','marry'] DATA=() DATA = read_informs() #""" STEP 1 : MERGING DATASET """ dataset=pd.DataFrame((DATA[0:58568]),columns=['PID','DOBMM','DOBYY','SEX','RACEX','RACEAX','RACEBX', 'RACEWX','RACETHNX', 'HISPANX', 'HISPCAT','EDUCYEAR','marry','SAFP','Conditional']) newdata =dataset.drop(dataset.columns[-1] ,axis=1,inplace=False) cvs_data=newdata.copy(); cvs_data.reset_index(inplace=True) cvs_data.drop(cvslabel,axis=1,inplace=True) newdata.drop(['SAFP'],axis=1,inplace=True) newdata.reset_index(inplace=True); newdata.rename({'index': 'UID'}, axis=1, inplace=True); return newdata , cvs_data def preprocess_adults(): I_Label=['age', 'workcalss', 'final_weight', 'education', 'education_num', 'matrital_status','relationship', 'race','sex','capital_gain', 'capital_loss','hours_per_week','native_country','SA'] label=['age', 'workcalss', 'final_weight', 'education', 'education_num', 'matrital_status', 'relationship', 'race','sex','capital_gain', 'capital_loss','hours_per_week','native_country','SAFP'] cvslabel=['age', 'workcalss', 'final_weight', 'education', 'education_num', 'matrital_status', 'relationship', 'race','sex','capital_gain', 'capital_loss','hours_per_week','native_country'] DATA=() DATA = read_data() dataset=pd.DataFrame((DATA[0:40000]),columns=I_Label) dataset['SAFP'] = dataset.groupby(['age', 'workcalss', 'final_weight', 'education', 'education_num', 'matrital_status','relationship', 'race','sex','capital_gain', 'capital_loss','hours_per_week','native_country'])['SA'].transform('sum') cvs_data=dataset.copy(); cvs_data.drop_duplicates(subset=cvslabel,inplace=True) cvs_data.reset_index(inplace=True) cvs_data.drop(cvslabel,axis=1,inplace=True) newdata= dataset.drop_duplicates(subset=['age', 'workcalss', 'final_weight', 'education', 'education_num', 'matrital_status','relationship', 'race','sex','capital_gain', 'capital_loss','hours_per_week','native_country']) newdata.drop(['SA'],axis=1,inplace=True) newdata.drop(['SAFP'],axis=1,inplace=True) newdata.reset_index(inplace=True); newdata.rename({'index': 'UID'}, axis=1, inplace=True); return newdata,cvs_data def preprocess_adults_7(): I_Label=['age','workclass','education','matrital_status','race','sex','native_country','SA'] label=['age','workclass','education','matrital_status','race','sex','native_country','SAFP'] cvslabel=['age','workclass','education','matrital_status','race','sex','native_country'] DATA=() DATA = read_data_7() dataset=pd.DataFrame((DATA[0:40000]),columns=I_Label) dataset['SAFP'] = dataset.groupby(['age','workclass','education','matrital_status','race','sex','native_country'])['SA'].transform('sum') cvs_data=dataset.copy(); cvs_data.drop_duplicates(subset=cvslabel,inplace=True) cvs_data.reset_index(inplace=True) cvs_data.drop(cvslabel,axis=1,inplace=True) newdata= dataset.drop_duplicates(subset=['age','workclass','education','matrital_status','race','sex','native_country']) newdata.drop(['SA'],axis=1,inplace=True) newdata.drop(['SAFP'],axis=1,inplace=True) newdata.reset_index(inplace=True); newdata.rename({'index': 'UID'}, axis=1, inplace=True); return newdata,cvs_data def preprocess_Informs_7(): DATA=() DATA = read_informs_7() #""" STEP 1 : MERGING DATASET """ label=['DOBMM','DOBYY','RACEX','EDUCYEAR','marry','SAFP'] cvslabel=['DOBMM','DOBYY','RACEX','EDUCYEAR','marry'] dataset=pd.DataFrame((DATA[0:58568]),columns=['DOBMM','DOBYY','RACEX','EDUCYEAR','marry','SAFP','Conditional']) newdata =dataset.drop(dataset.columns[-1] ,axis=1,inplace=False) cvs_data=newdata.copy(); cvs_data.reset_index(inplace=True) cvs_data.drop(cvslabel,axis=1,inplace=True) newdata.drop(['SAFP'],axis=1,inplace=True) newdata.reset_index(inplace=True); newdata.rename({'index': 'UID'}, axis=1, inplace=True); return newdata,cvs_data def sp_anatomy(data,p,L): newdata=data z=1; size = int((len(newdata))/p) list_of_dfs = [newdata.loc[i:i+size-1,:] for i in range(0, len(newdata),size)] #PARTITIONS list containing all the dataframes/partitions print(newdata.shape[1]) print(size) length=len(list_of_dfs) alldata=pd.DataFrame(); Qpt=pd.DataFrame() a=list_of_dfs guid=0; start_row1=0; start_row2=0; start_row3=0; start_row4=0; lit= []; writer = pd.ExcelWriter('MST_TAble.xlsx', engine='xlsxwriter') for i in range(length): df=pd.DataFrame.from_records(list_of_dfs[i]) rand=random.randint(0,(df.shape[1]-1)) # randomly selecting Quassi Identifier in the dataset df.iloc[:,rand]= np.random.permutation(df.iloc[:,rand]) #iloc to index dataframe with integer , randomly permuting the selected quassi identifier df.reset_index(inplace=True); df.rename({'index': 'Guid'}, axis=1, inplace=True); df['Guid']=guid; guid=guid+1; FL=random.randint(0,(len(df)-1)) SL=random.randint(0,(len(df)-1)) if FL==SL : SL=random.randint(0,(len(df))) print("SL",(SL)) print("FL",(FL)) # Splitting into two separate Tables lit=df.iloc[FL,0:2] lit=lit.reset_index() lit.columns = ['','First Leader'] lit1=df.iloc[SL,0:2] lit1=lit1.reset_index() lit1.columns = ['','Second Leader'] df.to_excel(writer,sheet_name=('Validation Table'), index=False , startrow=start_row1) start_row1 = start_row1 + len(df) + 20; alldata=alldata.append(df,True); df.drop(df.columns[0],axis=1,inplace=True) df.to_excel(writer,sheet_name=('MST'), index=False , startrow=start_row2) #, startcol=df.shape[1]+3) start_row2 = start_row2 + len(df) + 20; columns=['firstleader',2]; lit.to_excel(writer,sheet_name=('LIT'), index=False ,header=True, startrow=start_row3) start_row3 = start_row3 + 4; columns=['secondleader',2]; lit1.to_excel(writer,sheet_name=('LIT'), index=False ,header=True, startrow=start_row4, startcol=lit.shape[1]+10) start_row4 = start_row4 + 4; writer.save() writer = pd.ExcelWriter('Alldata.xlsx', engine='xlsxwriter') alldata.to_excel(writer,sheet_name=('Alldata'), index=False , startrow=0) writer.save() return alldata,length,size def cvs(cvs_data,alldata,length,size,csii): fl=
pd.DataFrame()
pandas.DataFrame
r"""Submodule frequentist_statistics.py includes the following functions: <br> - **normal_check():** compare the distribution of numeric variables to a normal distribution using the Kolmogrov-Smirnov test <br> - **correlation_analysis():** Run correlations for numerical features and return output in different formats <br> - **correlations_as_sample_increases():** Run correlations for subparts of the data to check robustness <br> - **multiple_univariate_OLSs():** Tmp <br> - **potential_for_change_index():** Calculate the potential for change index based on either variants of the r-squared (from linear regression) or the r-value (pearson correlation) <br> - **correct_pvalues():** function to correct for multiple testing <br> - **partial_correlation():** function to calculate the partial correlations whilst correcting for other variables <br> """ from itertools import combinations from itertools import product from typing import Tuple from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import statsmodels.api as sm from matplotlib.lines import Line2D from scipy import stats from sklearn.linear_model import LinearRegression from statsmodels.stats.multitest import multipletests from .utils import apply_scaling def normal_check(data: pd.DataFrame) -> pd.DataFrame: r"""Compare the distribution of numeric variables to a normal distribution using the Kolmogrov-Smirnov test Wrapper for `scipy.stats.kstest`: the empircal data is compared to a normally distributed variable with the same mean and standard deviation. A significant result (p < 0.05) in the goodness of fit test means that the data is not normally distributed. Parameters ---------- data: pandas.DataFrame Dataframe including the columns of interest Returns ---------- df_normality_check: pd.DataFrame Dataframe with column names, p-values and an indication of normality Examples ---------- >>> tips = sns.load_dataset("tips") >>> df_normality_check = normal_check(tips) """ # Select numeric columns only num_features = data.select_dtypes(include="number").columns.tolist() # Compare distribution of each feature to a normal distribution with given mean and std df_normality_check = data[num_features].apply( lambda x: stats.kstest( x.dropna(), stats.norm.cdf, args=(np.nanmean(x), np.nanstd(x)), N=len(x) )[1], axis=0, ) # create a label that indicates whether a feature has a normal distribution or not df_normality_check = pd.DataFrame(df_normality_check).reset_index() df_normality_check.columns = ["feature", "p-value"] df_normality_check["normality"] = df_normality_check["p-value"] >= 0.05 return df_normality_check def permute_test(a, test_type, test, **kwargs): r"""Helper function to run tests for permutations Parameters ---------- a : np.array test_type: str {'correlation', 'independent_t_test'} Type of the test to be used test: e.g. `scipy.stats.pearsonr` or `statsmodels.stats.weightstats.ttest_ind` **kwargs: Additional keywords to be added to `test` - `a2` for the second feature if test_type = 'correlation' Returns ---------- float: p value for permutation """ if test_type == "correlation": a2 = kwargs["a2"] _, p = test(a, a2) else: raise ValueError("Unknown test_type provided") def correlation_analysis( data: pd.DataFrame, col_list=None, row_list=None, check_norm=False, method: str = "pearson", dropna: str = "pairwise", permutation_test: bool = False, n_permutations: int = 1000, random_state=None, ): r"""Run correlations for numerical features and return output in different formats Different methods to compute correlations and to handle missing values are implemented. Inspired by `researchpy.corr_case` and `researchpy.corr_pair`. Parameters ---------- data : pandas.DataFrame Dataframe with variables in columns, cases in rows row_list: list or None (default: None) List with names of columns in `data` that should be in the rows of the correlogram. If None, all columns are used but only every unique combination. col_list: list or None (default: None) List with names of columns in `data` that should be in the columns of the correlogram. If None, all columns are used and only every unique combination. check_norm: bool (default: False) If True, normality will be checked for columns in `data` using `normal_check`. This influences the used method for correlations, i.e. Pearson or Spearman. Note: normality check ignores missing values. method: {'pearson', 'kendall', 'spearman'}, default 'pearson' Type of correlation, either Pearson's r, Spearman's rho, or Kendall's tau, implemented via respectively `scipy.stats.pearsonr`, `scipy.stats.spearmanr`, and `scipy.stats.kendalltau` Will be ignored if check_norm=True. Instead, Person's r is used for every combination of normally distributed columns and Spearman's rho is used for all other combinations. dropna : {'listwise', 'pairwise'}, default 'pairwise' Should rows with missing values be dropped over the complete `data` ('listwise') or for every correlation separately ('pairwise') permutation_test: bool (default: False) If true, a permutation test will added n_permutations: int (default: 1000) Number of permutations in the permutation test random_state: None or int (default: None) Random state for permutation_test. If not None, random_state will be updated for every permutation plot_permutation: bool (default: False) Whether to plot the results of the permutation test figsize: tuple (default: (11.7, 8.27)) Width and height of the figure in inches Returns ---------- result_dict: dict Dictionary containing with the following keys: info : pandas.DataFrame Description of correlation method, missing values handling and number of observations r-values : pandas.DataFrame Dataframe with correlation coefficients. Indices and columns are column names from `data`. Only lower triangle is filled. p-values : pandas.DataFrame Dataframe with p-values. Indices and columns are column names from `data`. Only lower triangle is filled. N : pandas.DataFrame Dataframe with numbers of observations. Indices and columns are column names from `data`. Only lower triangle is filled. If dropna ='listwise', every correlation will have the same number of observations. summary : pandas.DataFrame Dataframe with columns ['analysis', 'feature1', 'feature2', 'r-value', 'p-value', 'N', 'stat-sign'] which indicate the type of test used for the correlation, the pair of columns, the correlation coefficient, the p-value, the number of observations for each combination of columns in `data` and whether the r-value is statistically significant. plotted_permuations: Figure Examples ---------- >>> from jmspack.frequentist_statistics import correlation_analysis >>> import seaborn as sns >>> iris = sns.load_dataset('iris') >>> dict_results = correlation_analysis(iris, method='pearson', dropna='listwise', permutation_test=True, >>> n_permutations=100, check_norm=True) >>> dict_results['summary'] References ---------- <NAME> (2018). researchpy's documentation [Revision 9ae5ed63]. Retrieved from https://researchpy.readthedocs.io/en/latest/ """ # Settings test if method == "pearson": test, test_name = stats.pearsonr, "Pearson" elif method == "spearman": test, test_name = stats.spearmanr, "Spearman Rank" elif method == "kendall": test, test_name = stats.kendalltau, "Kendall's Tau-b" else: raise ValueError("method not in {'pearson', 'kendall', 'spearman'}") # Copy numerical data from the original data data = data.copy().select_dtypes("number") # Get correct lists if col_list and not row_list: row_list = data.select_dtypes("number").drop(col_list, axis=1).columns.tolist() elif row_list and not col_list: col_list = data.select_dtypes("number").drop(row_list, axis=1).columns.tolist() # Initializing dataframes to store results info = pd.DataFrame() summary = pd.DataFrame() if not col_list and not row_list: r_vals = pd.DataFrame(columns=data.columns, index=data.columns) p_vals = pd.DataFrame(columns=data.columns, index=data.columns) n_vals = pd.DataFrame(columns=data.columns, index=data.columns) iterator = combinations(data.columns, 2) else: r_vals = pd.DataFrame(columns=col_list, index=row_list) p_vals = pd.DataFrame(columns=col_list, index=row_list) n_vals = pd.DataFrame(columns=col_list, index=row_list) iterator = product(col_list, row_list) if dropna == "listwise": # Remove rows with missing values data = data.dropna(how="any", axis="index") info = info.append( { f"{test_name} correlation test using {dropna} deletion": f"Total observations used = {len(data)}" }, ignore_index=True, ) elif dropna == "pairwise": info = info.append( { f"{test_name} correlation test using {dropna} deletion": f"Observations in the data = {len(data)}" }, ignore_index=True, ) else: raise ValueError("dropna not in {'listwise', 'pairwise'}") if check_norm: # Check normality of all columns in the data df_normality = normal_check(data) norm_names = df_normality.loc[df_normality["normality"], "feature"].tolist() # Iterating through the Pandas series and performing the correlation for col1, col2 in iterator: if dropna == "pairwise": # Remove rows with missing values in the pair of columns test_data = data[[col1, col2]].dropna() else: test_data = data if check_norm: # Select Pearson's r only if both columns are normally distributed if (col1 in norm_names) and (col2 in norm_names): test, test_name = stats.pearsonr, "Pearson" else: test, test_name = stats.spearmanr, "Spearman Rank" # Run correlations r_value, p_value = test(test_data.loc[:, col1], test_data.loc[:, col2]) n_value = len(test_data) # Store output in matrix format try: r_vals.loc[col2, col1] = r_value p_vals.loc[col2, col1] = p_value n_vals.loc[col2, col1] = n_value except KeyError: r_vals.loc[col1, col2] = r_value p_vals.loc[col1, col2] = p_value n_vals.loc[col1, col2] = n_value # Store output in dataframe format dict_summary = { "analysis": test_name, "feature1": col1, "feature2": col2, "r-value": r_value, "p-value": p_value, "stat-sign": (p_value < 0.05), "N": n_value, } if permutation_test: raise ValueError("permutation_test has yet to be implemented") # # Copy the complete data # col2_shuffle = np.array(test_data.loc[:, col2]) # col2_shuffle = np.repeat( # col2_shuffle[:, np.newaxis], n_permutations, axis=1 # ) # # Shuffle within the columns # np.random.seed(random_state) # ix_i = np.random.sample(col2_shuffle.shape).argsort(axis=0) # ix_j = np.tile(np.arange(col2_shuffle.shape[1]), (col2_shuffle.shape[0], 1)) # col2_shuffle = col2_shuffle[ix_i, ix_j] # permutations = np.apply_along_axis( # permute_test, # axis=0, # arr=col2_shuffle, # test_type="correlation", # test=test, # a2=np.array(test_data.loc[:, col1]), # ) # # extreme_permutation = np.where(permutations < p_value, 1, 0) # p_permutation = extreme_permutation.sum() / len(permutations) # dict_summary["permutation-p-value"] = p_permutation # # # Reset random seed numpy # np.random.seed(None) summary = pd.concat( [summary, pd.DataFrame(data=dict_summary, index=[0])], axis=0, ignore_index=True, sort=False, ) # Embed results within a dictionary result_dict = { "r-value": r_vals, "p-value": p_vals, "N": n_vals, "info": info, "summary": summary, } return result_dict def correlations_as_sample_increases( data: pd.DataFrame, feature1: str, feature2: str, starting_N: int = 10, step: int = 1, method="pearson", random_state=42, bootstrap: bool = False, bootstrap_per_N: int = 2, plot: bool = True, addition_to_title: str = "", figsize: Tuple[float, float] = (9.0, 4.0), alpha: float = 0.05, ): r"""Plot changes in r-value and p-value from correlation between two features when sample size increases. Different methods to compute correlations are implemented. Data is shuffled first, to prevent any order effects. Parameters ---------- data : pandas.DataFrame Dataframe with variables in columns, cases in rows feature1: str Name of column with first feature to be included in correlation feature2: str Name of column with second feature to be included in correlation starting_N: int (default: 10) Number of cases that should be used for first correlation step: int (default: 1) Step for increasing the number of cases for the correlations method: {'pearson', 'kendall', 'spearman'}, default 'pearson' Type of correlation, either Pearson's r, Spearman's rho, or Kendall's tau, implemented via respectively `scipy.stats.pearsonr`, `scipy.stats.spearmanr`, and `scipy.stats.kendalltau`. random_state: int (default: 42) Random state for reordering the data bootstrap: bool Whether to bootstrap the data at each N bootstrap_per_N: int If bootstrap is True then how many bootstraps per each sample size should be performed i.e if bootstrap_per_N is 2 then at sample size N=20, 2 bootstraps will be performed. This will continue until starting_N == N. plot: bool (default: True) Whether to plot the results addition_to_title: str (default: '') The title of the plot will be "The absolute r-value between {feature1} and {feature2} as N increases" and followed by the addition (e.g. to describe a dataset). alpha: float (default: 0.05) Threshold for p-value that should be shown in the plot Returns ---------- cor_results: pd.DataFrame Dataframe with the results for all ran analyses fig: Figure Figure will be returned if plot=True, otherwise None. This allows you to change properties of the figure afterwards, e.g. fig.axes[0].set_title('This is my new title') Examples ---------- >>> import seaborn as sns >>> from jmspack.frequentist_statistics import correlations_as_sample_increases >>> iris = sns.load_dataset('iris') >>> summary, fig = correlations_as_sample_increases(data=iris,feature1='petal_width',feature2='sepal_length', >>> starting_N=20) """ data = ( data[[feature1, feature2]].copy() # Remove rows with np.nans .dropna() # Randomize order of the data .sample(frac=1, random_state=random_state) ) if data.shape[0] < starting_N: raise ValueError("Number of valid cases is smaller than the starting_N") if data.shape[0] < starting_N + step: raise ValueError( "Number of valid cases is smaller than the starting_N + step (only one correlation possible)" ) # Initiate data frame for results corr_results =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Routine to read and clean water quality data of wide/stacked formats <NAME>, <NAME> KWR, April-July 2020 Last edit: July 27. Not upodating any more and use the new version. """ import pandas as pd import numpy as np import logging import os import math # from unit_converter.converter import convert, converts import re from molmass import Formula # %% HGC.IO.defaults # New definition of NaN. Based on default values of python with the following exception: # 'NA' is left out to prevent NA (Sodium) being read as NaN. NA_VALUES = ['#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan', '1.#IND', '1.#QNAN', 'N/A', 'NULL', 'NaN', 'n/a', 'nan', 'null'] # The following dictionary should be extracted from HGC.constants and augmented (or overruled) by the user DATAMODEL_HGC = { 'HGC_default_feature_units': { 'Fe': 'mg/L', 'SO4': 'mg/L', 'Al': 'µg/L', }, } UNIT_CONVERSION = { 'mm':0.001, 'cm':0.01, 'm':1.0, 'km':1000, # add length here 'ng':1e-9, 'μg':0.000001, 'mg':0.001, 'g':1.0, 'kg':1000, # add mass here 'mL':0.001, 'L':1.0, # add volumn here 'μS':1e-6, 'mS':0.001, 'S':1.0, # add conductivity here 'mV': 0.001, 'V':1.0, # add voltage here 'μmol':1e-6, 'mmol':0.001, 'mol':1.0, # add mol here } # The following keyworded arguments can be adjusted and merged with the configuration dictionary by the user KWARGS = { 'na_values': NA_VALUES, 'encoding': 'ISO-8859-1', 'delimiter': None, } DEFAULT_FORMAT = { 'Value': 'float64', 'Feature': 'string', 'Unit': 'string', 'Date': 'date', 'LocationID': 'string', 'SampleID': 'string', 'X': 'float64', 'Y': 'float64', } # %% define sub-function to be called by the main function def read_file(file_path='', sheet_name=0, na_values=NA_VALUES, encoding='ISO-8859-1', delimiter=None, **kwargs): """ Read pandas dataframe or file. Parameters ---------- file_path : dataframe or string string must refer to file. Currenlty, Excel and csv are supported sheet_name : integer or string optional, when using Excel file and not reading first sheet na_values : list list of strings that are recognized as NaN """ logger.info('Reading input file(s) now...') if isinstance(file_path, pd.DataFrame): # skipping reading if the input is already a df df = file_path # print('dataframe read: ' + [x for x in globals() if globals()[x] is file_path][0]) logger.info('A dataframe has been imported') elif isinstance(file_path, str): file_extension = file_path.split('.')[-1] # filename, file_extension = os.path.splitext(file_path) if (file_extension == 'xlsx') or (file_extension == 'xls'): try: df = pd.read_excel(file_path, sheet_name=sheet_name, header=None, index_col=None, na_values=na_values, keep_default_na=False, encoding=encoding) logger.info('A excel spreadsheet has been imported') except: df = [] logger.error('Encountered an error when importing excel spreadsheet') elif file_extension == 'csv': try: df = pd.read_csv(file_path, encoding=encoding, header=None, index_col=None, low_memory=False, na_values=na_values, keep_default_na=False, delimiter=delimiter) logger.info('A csv has been imported') except: df = [] logger.error('Encountered an error when importing csv') else: df= [] logger.error('Not a recognizable file. Need a csv or xls(x) file.') else: df= [] logger.error(['This file path is not recognized: '+file_path]) return df def _get_slice(df, arrays): """ Get values by slicing """ if isinstance(arrays[0], list): # check if the array is nested series = pd.Series([], dtype='object') for array in arrays: series = series.append(df.iloc[array[0], array[1]].rename(0)) elif len(arrays) == 1: # only row specified series = df.iloc[arrays[0]] else: # row and column specified series = df.iloc[arrays[0], arrays[1]] return series def get_headers_wide(df, slice_sample='', slice_feature='', slice_unit='', **kwargs): """ Get column headers for a wide-format dataframe. """ # create series with headers header_sample = _get_slice(df, slice_sample) header_feature = _get_slice(df, slice_feature) header_unit = _get_slice(df, slice_unit) # get headers at 2 levels ncols = len(df.columns) level0 = pd.Series(ncols * ['']) level0[header_sample.index] = header_sample level0[header_feature.index] = header_feature level1 = pd.Series(ncols * ['']) level1[header_unit.index] = header_unit # add series by multi-index headers df.columns = pd.MultiIndex.from_arrays([level0, level1]) logger.info('Got column headers for a wide-format dataframe.') return df, header_sample, header_feature, header_unit def get_headers_stacked(df, slice_sample='', **kwargs): """ Get column headers for a stacked-format dataframe. """ # create series with headers header_sample = _get_slice(df, slice_sample) # add column names ncols = len(df.columns) level0 = pd.Series(ncols * ['']) level0[header_sample.index] = header_sample df.columns = level0 return df, header_sample def slice_rows_with_data(df, slice_data=None, **kwargs): """ Getting needed data by pre-defined slicing blocks """ df2 = pd.DataFrame([]) # # if isinstance(slice_data, list): # # df2 = df.iloc[slice_data[0][0], :] # # else: # # logger.error('Slicing_data must be a list') # df2 = df.iloc[slice_data[0]] # logger.info('Got needed data by pre-defined slicing blocks') df2 = df.iloc[slice_data[0][0], :] return df2 def _map_header_2_multilevel(map_header): """ Convert dictionary with mapping of columns to multiindex. """ map_header2 = {} for key, value in map_header.items(): map_header2[(key, '')] = (value, '') return map_header2 def rename_headers_wide(df, map_header={}, **kwargs): """ Rename columns by pre-defined names for wide format. """ # remove duplicate columns, only keep the column that shows for the first time! df = df.groupby(level=[0, 1], axis=1).first() # remove columns without headers mask1 = df.columns.get_level_values(0).isin([''] + list(np.arange(0, len(df.columns)))) cols1 = np.array(list(df))[mask1] cols2 = list(set(zip(list(cols1[:, 0]), list(cols1[:, 1])))) df.drop(cols2, axis=1, inplace=True) # remove columns that are in values but absent from keys keys = map_header.keys() values = map_header.values() col_in_val_not_in_key = list(set(df.columns.levels[0]) & set(values) - set(keys)) df.drop(col_in_val_not_in_key, axis=1, inplace=True) logger.info('Headers from the wide-format dataframe have been retrieved') return df def rename_headers_stacked(df, map_header={}, **kwargs): """ Rename columns by pre-defined names for stacked format """ # remove duplicate columns, only keep the column that shows for the first time! df = df.groupby(level=[0], axis=1).first() # remove columns without headers mask1 = df.columns.get_level_values(0).isin([''] + list(np.arange(0, len(df.columns)))) cols1 = np.array(list(df))[mask1] cols2 = list(cols1) df.drop(cols2, axis=1, inplace=True) # remove columns that are in values but absent from keys # (to prevent identical column names when mapping column names) keys = map_header.keys() values = map_header.values() col_in_val_not_in_key = list(set(df.columns) & set(values) - set(keys)) df.drop(col_in_val_not_in_key, axis=1, inplace=True) logger.info('Headers from the stacked-format dataframe have been retrieved') return df def melt_wide_to_stacked(df, map_header={}, **kwargs): """ Turn wide format to stacked format """ # Convert mapping to multilevel index map_header2 = _map_header_2_multilevel(map_header) # Drop columns that are not present in dataframe map_header3 = list(set(map_header2) & set(df.columns)) # Convert to stacked shape df2 = pd.melt(df, id_vars=map_header3, var_name=['Feature', 'Unit'], value_name='Value') # Convert multiindex to single index (some headers still have a multi-index after melt) col2 = [] for col in df2.columns: if isinstance(col, tuple): col2.append(col[0]) else: col2.append(col) df2.columns = col2 logger.info('Turned wide format to stacked format') return df2 def mapping_headers(df, map_header={}, **kwargs): ''' Mapping headers according to pre-defined dictionary ''' # make a list of headers that are mapped and not mapped mapped_headers_before = list(set(map_header.keys()) & set(df.columns)) mapped_headers_after = list(map(map_header.get, mapped_headers_before)) unmapped_headers = list(set(df.columns) - set(mapped_headers_before)) # rename columns in df df.rename(columns=map_header, inplace=True) # write log logger.info('Mapping headers now...') logger.info('The following headers have been mapped from {0} to {1}'.\ format(mapped_headers_before, mapped_headers_after)) logger.info('The following headers have been kept as they are {0}'.format(unmapped_headers)) return df def mapping_featurenames(df, map_features={}, **kwargs): """ Mapping feature names according to pre-defined dictionary """ # make a list of features that are mapped features_before = list(set(map_features.keys()) & set(df['Feature'])) features_after = list(map(map_features.get, features_before)) unmapped_features = list(set(df['Feature']) - set(features_before)) # rename features in df df['Feature'].replace(map_features, inplace=True) try: df['SampleID'] except: raise Exception('SampleID is missing. Must define it.') # write log logger.info('Mapping features now...') logger.info('The following features have been mapped from {0} to {1}'.\ format(features_before, features_after)) logger.info('The following headers have been kept as they are {0}'.format(unmapped_features)) return df def mapping_units(df, map_units={}, **kwargs): """ Mapping unit names according to pre-defined dictionary """ # make a list of units that are mapped units_before = list(set(map_units.keys()) & set(df['Unit'])) units_after = list(map(map_units.get, units_before)) unmapped_units = list(set(df['Unit']) - set(units_before)) # rename units in df df['Unit'].replace(map_units, inplace=True) # write log logger.info('Mapping units now...') # logger.info('The following units have been mapped from {0} to {1}'.\ # format(units_before, units_after)) logger.info('The following headers have been kept as they are {0}'.format(unmapped_units)) return df def deal_with_mol_in_unit(df, DATAMODEL_HGC, unit_conversion={}, user_defined_feature_units={}, **kwargs): ''' To deal with units that contain mol or umol This step is done before converting units to standard HGC units ''' # record old unit for mols df['Unit_old_mol'] = df['Unit'] # spilt units and store in a df unit0 = df['Unit'].where(pd.notnull(df['Unit']), None) unit0 = unit0.replace([r''],[None]) unit0_split = _list_to_array([re.split('/| ', str(unit)) for unit in unit0]) unit0_split = pd.DataFrame(unit0_split, columns=['Col0', 'Col1','Col2']) # create a empty column for storing ration_mol ratio_mol=[None]*len(unit0) # get default dictionary unit_default = {**DATAMODEL_HGC['HGC_default_feature_units'], **user_defined_feature_units} # replace mmol by mg and get ratio for conversion for i in range(len(unit0)): if df['Feature'][i] in unit_default.keys() and 'mol' in unit0_split.iloc[i,0]: ratio_mol[i] = Formula(df['Feature'][i]).mass # has to use a loop as Formula does not support vector operation with nan unit0_split.iloc[i,2] = df['Feature'][i] unit0_split.iloc[i,0] = unit0_split.iloc[i,0].replace('mol', 'g') # put units back from split unit1_0 = unit0_split.Col0 unit1_1 = pd.Series(['/' + str(str_unit) for str_unit in unit0_split.Col1]).replace([r'/None'],'') unit1_2 = ' '+ unit0_split.Col2.fillna('') unit1 = unit1_0 + unit1_1 + unit1_2 unit1 = unit1.replace([r'None/ '],[None]) # get a ratio df['ratio_mol'] = ratio_mol # write new unit for mols df['Unit'] = unit1 # write log logger.info('"mol" has been mapped to "g"') return df def convert_units_get_ratio(df, DATAMODEL_HGC, unit_conversion={}, user_defined_feature_units={}, **kwargs): """ Covnert units to stardard ones defined by HGC and compute conversion ratio. If not recognisable, keep them as they are. Before conversion, the name of the feature, if any, has to be extracted from the unit. e.g. mg/L N --> mg/L (*molmass(NH4)/molmass(N)) μg/l --> 1e-3 mg/L, ... To implement unit conversion, two external modules are called: unit_converter, which is used for conversion molemass, which is used to compute mol weigh """ # save old units df['Unit_old_unit'] = df['Unit'] # combine two dictionaries from users and hgc default. Users' format has HIGHER priority. unit_default = {**DATAMODEL_HGC['HGC_default_feature_units'], **user_defined_feature_units} # get unit from data, nan labeled as none, to be identical to unit1 unit0 = df['Unit'].where(pd.notnull(df['Unit']), None) # get desired formats of units from user's definition or ghc's default unit1 = pd.Series(list(map(unit_default.get, df['Feature']))).replace('', np.nan) # Note: if a unit is not defined by user or hgc, use the unit from the data unit1 = unit1.fillna(unit0) unit1_output = unit1 #_list_to_array([re.split(' ', str(unit)) for unit in unit0])[:,0] # unit1 = unit1.where(pd.notnull(unit1), None) # split the column units into three parts based on / and space. Currently, the symbol_list must have two elements: / and space unit0_split = _list_to_array([re.split('/| ', str(unit)) for unit in unit0]) unit0_split = pd.DataFrame(unit0_split, columns=['Col0', 'Col1','Col2']) unit0_split.Col2.replace('', np.nan, inplace=True) # fill the nan by feature names unit0_split.Col2.fillna(df['Feature'], inplace=True) # fill the nan by feature names unit1_split = _list_to_array([re.split('/| ', str(unit)) for unit in unit1]) unit1_split = np.column_stack((unit1_split[:,0:2], df['Feature'].values)) unit1_split = pd.DataFrame(unit1_split, columns=['Col0', 'Col1','Col2']) unit1_split.Col2.fillna(df['Feature'], inplace=True) # fill the nan by feature names # get conversion ratio for units ratio_col0 = _compute_convert_ratio(list(unit0_split.iloc[:,0]), list(unit1_split.iloc[:,0]), unit_conversion) ratio_col1 = _compute_convert_ratio(list(unit1_split.iloc[:,1]), list(unit0_split.iloc[:,1]), unit_conversion) # compute molar mass for both units, have to write a loop to reach each MolarMass0 = list() MolarMass1 = list() for i in range(len(unit0_split)): try: MolarMass0.append(Formula(unit0_split.iloc[i,2]).mass) except: MolarMass0.append(1) # make it as 1 if the feature name is not recognisable for i in range(len(unit1_split)): try: MolarMass1.append(Formula(unit1_split.iloc[i,2]).mass) except: MolarMass1.append(1) # make it as 1 if the feature name is not recognisable ratio_col2 = pd.Series(MolarMass1)/pd.Series(MolarMass0) # multiple ratios ratio = ratio_col0*ratio_col1*ratio_col2*df['ratio_mol'].fillna(1) ratio = ratio.fillna(1) # save old and write new columns df['ratio_unit'] = ratio_col0*ratio_col1*ratio_col2 df['ratio'] = ratio df['Unit'] = unit1_output # write log logger.info('Units have been converted to stardard ones if the corresponding features are defined in default dict') return df # def _get_symbol_from_string(list0, symbol): # ''' # a function defined to count the frequence of symbols from a list # ''' # if isinstance(list0, int) or isinstance(list0, float): # list0 = [list0] # make it as a list # symb_count = np.empty([len(list0),len(symbol)]) # make a empty matrix # for j in range(len(symbol)): # for i in range(len(list0)): # symb_count[i, j] = str(list0[i]).count(symbol[j]) # count number of symbols # return symb_count # def _flatten(seq): # ''' # to get elements from a list of lists # ''' # l = [] # for elt in seq: # t = type(elt) # if t is tuple or t is list: # for elt2 in _flatten(elt): # l.append(elt2) # else: # l.append(elt) # return l def _get_number_from_string(string): ''' function to get numbers from string ''' number0 = float(''.join([x for x in string if x.isdigit() or x == '.'])) return number0 def split_strings_from_value(df): ''' to spilt strings if they contain "<", ">", "-": put string symbol in separate column <100 --> "<" in temporary column, "100" remain in value column ''' df['Value_old_split'] = df['Value'] df['Value_str'] = "" df['Value_sign'] = "" df['Value_num'] = "" # define a list of signs symb_list = ['<','>','-'] # find number out for i in range(len(df)): df.loc[i, 'Value_str'] = str(df['Value'][i]) try: # get number out of a string. if there is no numbers, skip df.loc[i, 'Value_num'] = re.findall(r'\d+(?:\.\d+)?', df.loc[i, 'Value_str'])[0] # get string for deleting df.loc[i, 'Value_sign'] = df.loc[i, 'Value_str'].replace(df['Value_num'][i], '').replace('.', '') # delete number from string df.loc[i, 'Value_num'] = _get_number_from_string(df.loc[i, 'Value_str']) # get real number -.3 --> - and 0.3 except: pass df['Value'] = df['Value_num'] df.drop(columns=['Value_num','Value_str'], inplace=True) # write log logger.info('Cleaned the columns that has invalid values') return df def _convert_format(series0, format0): if format0 == 'string': series1 = [str(i) for i in series0] elif format0 == 'float64': series1 = pd.to_numeric(series0) elif format0 == 'date': series1 =
pd.to_datetime(series0)
pandas.to_datetime
#!/usr/bin/python # -*- coding: utf-8 -*- # moldynplot.relaxation.py # # Copyright (C) 2012-2017 <NAME> # All rights reserved. # # This software may be modified and distributed under the terms of the # BSD license. See the LICENSE file for details. """ Processes NMR relaxation and related data """ ################################### MODULES ################################### from __future__ import (absolute_import, division, print_function, unicode_literals) ################################## FUNCTIONS ################################## def spawn(function): def run_function(queue_in, queue_out): while True: i, argument = queue_in.get() if i is None: break # 'None' signals that queue is empty queue_out.put((i, function(argument))) return run_function def multiprocess_map(function, arguments, n_processes=1): """ Runs a *function* with *arguments* using *n_processes* Meant as a replacement for multiproccessing.Pool.imap_unordered, which can only accept module-level functions. **Arguments:** :*function*: Function to run :*arguments*: Iterable of arguments to pass to function :*n_processes: Number of processes to use **Returns:** :*results*: List of results returned from *function* .. todo: - Does this work, or can it be made to smoothly work, with more complex arguments? - Accept multiple functions, in addition to arguments - Additional improvements likely possible """ from multiprocessing import Queue, Process # Initialize queues queue_in = Queue(1) queue_out = Queue() # Initialize processes and link to input and output queues processes = [Process(target=spawn(function), args=(queue_in, queue_out)) for i in range(n_processes)] for p in processes: p.daemon = True p.start() # Construct input queue, including 'None' signals to terminate input = [queue_in.put((i, argument)) for i, argument in enumerate(arguments)] for i in range(n_processes): queue_in.put((None, None)) # Retrieve output queue output = [queue_out.get() for i in range(len(input))] # Rejoin processes and return results for p in processes: p.join() return [x for i, x in sorted(output)] def process_ired(infiles, outfile, indexfile=None, **kwargs): """ """ from os import devnull import re from subprocess import Popen, PIPE import pandas as pd import numpy as np r1r2noe_datasets = [] s2_datasets = [] # Load data for i, infile in enumerate(infiles): with open(devnull, "w") as fnull: fields = Popen("head -n 1 {0}".format(infile), stdout=PIPE, stderr=fnull, shell=True).stdout.read().strip() re_t1t2noe = re.compile( "^#Vec\s+[\w_]+\[T1\]\s+[\w_]+\[T2\]\s+[\w_]+\[NOE\]$") re_s2 = re.compile("^#Vec\s+[\w_]+\[S2\]$") if re.match(re_t1t2noe, fields): raw_data = np.loadtxt(infile, dtype=np.float32) read_csv_kw = kwargs.get("read_csv_kw", dict(delim_whitespace=True, header=0, index_col=0, names=["r1", "r2", "noe"])) raw_data = pd.read_csv(infile, **read_csv_kw) raw_data["r1"] = 1 / raw_data["r1"] raw_data["r2"] = 1 / raw_data["r2"] r1r2noe_datasets.append(raw_data) elif re.match(re_s2, fields): raw_data = np.loadtxt(infile, dtype=np.float32) read_csv_kw = kwargs.get("read_csv_kw", dict(delim_whitespace=True, header=0, index_col=0, names=["s2"])) raw_data = pd.read_csv(infile, **read_csv_kw) s2_datasets.append(raw_data) else: raise Exception() if indexfile is not None: residue = np.loadtxt(indexfile, dtype=np.str).flatten() # Process data items = [] fmt = [] if indexfile is not None: items.append(("residue", residue)) fmt.append("%12s") else: fmt.append("%12d") if len(r1r2noe_datasets) >= 2: r1r2noe_mean = pd.concat(r1r2noe_datasets).groupby(level=0).mean() r1r2noe_std = pd.concat(r1r2noe_datasets).groupby(level=0).std() items.extend([("r1", r1r2noe_mean["r1"]), ("r1 se", r1r2noe_std["r1"]), ("r2", r1r2noe_mean["r2"]), ("r2 se", r1r2noe_std["r2"]), ("noe", r1r2noe_mean["noe"]), ("noe se", r1r2noe_std["noe"])]) fmt.extend( ["%11.5f", "%11.5f", "%11.5f", "%11.5f", "%11.5f", "%11.5f"]) elif len(r1r2noe_datasets) == 1: r1r2noe_mean = r1r2noe_datasets[0] items.extend([("r1", r1r2noe_mean["r1"]), ("r2", r1r2noe_mean["r2"]), ("noe", r1r2noe_mean["noe"])]) fmt.extend(["%11.5f", "%11.5f", "%11.5f"]) if len(s2_datasets) >= 2: s2_mean =
pd.concat(s2_datasets)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Sun Jun 5 15:54:03 2016 @author: waffleboy """ from flask import Flask, render_template import requests import ast from datetime import datetime from datetime import timedelta import pandas as pd import pickle,json from pandas_highcharts.core import serialize from collections import OrderedDict app = Flask(__name__) #initialize app # Main function - Displays the data from masterDic, which contains all the information # to make the dashboard. @app.route("/") def main(): masterDic,summaryStats = loadData(years=5) return render_template('main.html',masterDic=masterDic,summaryStats=summaryStats) # generates the master dictionary that contains all information for text and graph # Input: <int> years: number of years worth of data to show # Output: <dictionary> masterDic: dictionary of dictionaries. Example: # {'chart0': {'stockmetrics': {'sbux': {'Ask':3,'Bid':4,..}} ,'highChartsDic':{<highcharts constructor>}}} def loadData(years,csv=False,csvfile=False): if csv: df = csvfile else: df = pd.read_csv('input.csv') companySym = list(df['stockname']) query,additionalOptions = getQuery(companySym) #generate link to query from, column names to map queryDF = fix_overall_details_request(query) columnNames = getColumnNames(additionalOptions) queryDF.columns = columnNames #set columm names to actual names of options queryDF["Symbol"] = queryDF["Symbol"].map(lambda x:x.replace('"','')) queryDF = queryDF.round(3) col = queryDF.set_index('Symbol').T.to_dict() #make dictionary of key: symbol, value: everything in the row masterDic = populateMasterDic(df,col,years,OrderedDict()) #populate an orderedDict with data summary = getSummaryStatistics(masterDic) return masterDic,summary def getSummaryStatistics(masterDic): totalProfit = 0 totalValue = 0 totalCost = 0 totalStock = 0 for key in masterDic: totalProfit += masterDic[key]['performance']['currentProfit'] totalValue += masterDic[key]['performance']['currentValue'] totalCost += masterDic[key]['performance']['totalPurchaseCost'] totalStock += masterDic[key]['performance']['boughtamount'] return {'totalProfit':totalProfit,'totalValue':totalValue, 'totalCost':totalCost,'totalStock':totalStock} # Used by loadData(), fills the ordered dict with information # Input: # 1. <pandas dataframe> df: input.csv # 2. <dictionary> col: dictionary containing all text data for every stock # 3. <int> years: number of years worth of data to show # 4. <OrderedDict> masterDic: an orderedDict to populate data with # Output: # 1. <OrderedDict> masterDic: masterdic populated with information def populateMasterDic(df,col,years,masterDic): for index in df.index: name=df['stockname'][index] boughtprice = df['boughtprice'][index] boughtamount = df['boughtamount'][index] data = fix_ticker_details_request(name, datetime.now()-timedelta(days=365*years), datetime.now()) data = data[['Adj Close']] #make 21 day moving average data['21DayAvg'] = data['Adj Close'].rolling(21).mean().fillna(0) #make 100 day average data['100DayAvg'] = data['Adj Close'].rolling(100).mean().fillna(0) if not pd.isnull(boughtprice): bought = [boughtprice]*len(data.index) data = pd.DataFrame(data) data['bought'] = bought else: data = pd.DataFrame(data) content = serialize(data,render_to='chart'+str(index), title=name.upper()+' Stock',output_type='json') content = changeChartOptions(content) # get total purchase cost, etc stockPerformance = getStockPerformance(data,boughtamount,boughtprice) masterDic['chart'+str(index)] = {'stockmetrics':col[name],'highChartsDic':content, 'performance':stockPerformance} return masterDic def getStockPerformance(data,boughtamount,boughtprice): latestSellPrice = float(data['Adj Close'].tail(1)) latestSellPrice = round(latestSellPrice,4) if pd.isnull(boughtprice) or
pd.isnull(boughtamount)
pandas.isnull
#%% import numpy as np import pandas as pd from collections import defaultdict import datatable as dt import lightgbm as lgb from matplotlib import pyplot as plt import random from sklearn.metrics import roc_auc_score import gc import pickle import zipfile # HOME = "/home/scao/Documents/kaggle-riiid-test/" HOME = os.path.abspath(os.path.join(os.path.dirname(__file__),"..")) sys.path.append(HOME) from utils import * get_system() pd.set_option('display.max_rows', 150)
pd.set_option('display.max_columns', 50)
pandas.set_option
from sklearn.datasets import load_breast_cancer, fetch_california_housing import pandas as pd import numpy as np import pickle import os import collections from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit def handle_categorical_feat(X_df): ''' It moves the categorical features to the last ''' original_columns = [] one_hot_columns = [] for col_name, dtype in zip(X_df.dtypes.index, X_df.dtypes): if dtype == object: one_hot_columns.append(col_name) else: original_columns.append(col_name) X_df = X_df[original_columns + one_hot_columns] return X_df, one_hot_columns def load_breast_data(): breast = load_breast_cancer() feature_names = list(breast.feature_names) X, y = pd.DataFrame(breast.data, columns=feature_names), pd.Series(breast.target) dataset = { 'problem': 'classification', 'full': { 'X': X, 'y': y, }, 'd_name': 'breast', 'search_lam': np.logspace(-1, 2.5, 15), } return dataset def load_adult_data(): # https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data df = pd.read_csv("./datasets/adult.data", header=None) df.columns = [ "Age", "WorkClass", "fnlwgt", "Education", "EducationNum", "MaritalStatus", "Occupation", "Relationship", "Race", "Gender", "CapitalGain", "CapitalLoss", "HoursPerWeek", "NativeCountry", "Income" ] train_cols = df.columns[0:-1] label = df.columns[-1] X_df = df[train_cols].copy() # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) y_df = df[label].copy() # Make it as 0 or 1 y_df.loc[y_df == ' >50K'] = 1. y_df.loc[y_df == ' <=50K'] = 0. y_df = y_df.astype(int) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'adult', 'search_lam': np.logspace(-2, 2, 15), 'n_splines': 50, 'onehot_columns': onehot_columns, } return dataset def load_credit_data(): # https://www.kaggle.com/mlg-ulb/creditcardfraud df = pd.read_csv(r'./datasets/creditcard.csv') train_cols = df.columns[0:-1] label = df.columns[-1] X_df = df[train_cols] y_df = df[label] dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'credit', 'search_lam': np.logspace(-0.5, 2.5, 8), } return dataset def load_churn_data(): # https://www.kaggle.com/blastchar/telco-customer-churn/downloads/WA_Fn-UseC_-Telco-Customer-Churn.csv/1 df = pd.read_csv(r'./datasets/WA_Fn-UseC_-Telco-Customer-Churn.csv') train_cols = df.columns[1:-1] # First column is an ID label = df.columns[-1] X_df = df[train_cols].copy() # Handle special case of TotalCharges wronly assinged as object X_df['TotalCharges'][X_df['TotalCharges'] == ' '] = 0. X_df.loc[:, 'TotalCharges'] = pd.to_numeric(X_df['TotalCharges']) # X_df = pd.get_dummies(X_df) X_df, onehot_columns = handle_categorical_feat(X_df) y_df = df[label].copy() # 'Yes, No' # Make it as 0 or 1 y_df[y_df == 'Yes'] = 1. y_df[y_df == 'No'] = 0. y_df = y_df.astype(int) dataset = { 'problem': 'classification', 'full': { 'X': X_df, 'y': y_df, }, 'd_name': 'churn', 'search_lam': np.logspace(0, 3, 15), 'onehot_columns': onehot_columns, } return dataset def load_pneumonia_data(folder='/media/intdisk/medical/RaniHasPneumonia/'): featurename_file = os.path.join(folder, 'featureNames.txt') col_names = pd.read_csv(featurename_file, delimiter='\t', header=None, index_col=0).iloc[:, 0].values def read_data(file_path='pneumonia/RaniHasPneumonia/medis9847c.data'): df =
pd.read_csv(file_path, delimiter='\t', header=None)
pandas.read_csv
""" Rank summarization results. """ import os import sys import time import argparse from datetime import datetime from itertools import product import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy.stats import sem from tqdm import tqdm here = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(0, here + '/../') from experiments import util as exp_util from postprocess import util as pp_util from config import rank_args from rank.remove import get_mean_df def process(args, exp_hash, out_dir, logger): begin = time.time() color, line, label = pp_util.get_plot_dicts() df_loss_list = [] df_li_loss_list = [] df_acc_list = [] df_li_acc_list = [] df_auc_list = [] df_li_auc_list = [] for tree_type in args.tree_type: in_dir = os.path.join(args.in_dir, tree_type, f'exp_{exp_hash}', 'summary') for ckpt in args.ckpt: ckpt_dir = os.path.join(in_dir, f'ckpt_{ckpt}') # define paths fp_loss = os.path.join(ckpt_dir, 'loss_rank.csv') fp_li_loss = os.path.join(ckpt_dir, 'loss_rank_li.csv') fp_acc = os.path.join(ckpt_dir, 'acc_rank.csv') fp_li_acc = os.path.join(ckpt_dir, 'acc_rank_li.csv') fp_auc = os.path.join(ckpt_dir, 'auc_rank.csv') fp_li_auc = os.path.join(ckpt_dir, 'auc_rank_li.csv') # check paths assert os.path.exists(fp_loss), f'{fp_loss} does not exist!' assert os.path.exists(fp_li_loss), f'{fp_li_loss} does not exist!' assert os.path.exists(fp_acc), f'{fp_acc} does not exist!' assert os.path.exists(fp_li_acc), f'{fp_li_acc} does not exist!' assert os.path.exists(fp_auc), f'{fp_auc} does not exist!' assert os.path.exists(fp_auc), f'{fp_auc} doess not exist!' # read results df_loss_list.append(pd.read_csv(fp_loss)) df_li_loss_list.append(pd.read_csv(fp_li_loss)) df_acc_list.append(pd.read_csv(fp_acc)) df_li_acc_list.append(pd.read_csv(fp_li_acc)) df_auc_list.append(pd.read_csv(fp_auc)) df_li_auc_list.append(pd.read_csv(fp_li_auc)) # compile results df_loss_all = pd.concat(df_loss_list) df_li_loss_all =
pd.concat(df_li_loss_list)
pandas.concat
import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.ticker import PercentFormatter import matplotlib.dates as md import sklearn from sklearn import svm from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from textblob import TextBlob, Word, Blobber import nltk nltk.download('stopwords') from nltk.corpus import stopwords stop = stopwords.words('english') #nltk.download('names') #from nltk.corpus import names #male_names = names.words('male.txt') #female_names = names.words('female.txt') import textstat from lexicalrichness import LexicalRichness import pandas as pd pd.options.mode.chained_assignment = None import numpy as np import random import plotly plotly.tools.set_credentials_file(username='feupos', api_key='<KEY>') #Plotly Tools from plotly.offline import init_notebook_mode, iplot #init_notebook_mode(connected=False) import cufflinks as cf cf.go_offline() cf.set_config_file(offline=False, world_readable=True) from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import seaborn as sns sns.set() from itertools import groupby import time from datetime import datetime import sys import csv import ctypes csv.field_size_limit(int(ctypes.c_ulong(-1).value // 2)) from statistics import mean import itertools #from multiprocessing.pool import ThreadPool #pool = ThreadPool(20) # However many you wish to run in parallel from tqdm import tqdm import glob import os.path import sys from os import getcwd from sentistrength import PySentiStr senti = PySentiStr() #senti.setSentiStrengthPath('C:\\SentiStrength\\SentiStrength.jar') # e.g. 'C:\Documents\SentiStrength.jar' #senti.setSentiStrengthLanguageFolderPath('C:\\SentiStrength') # e.g. 'C:\Documents\SentiStrengthData\' senti.setSentiStrengthPath(os.path.join(getcwd(),"SentiStrengthData/SentiStrength.jar")) senti.setSentiStrengthLanguageFolderPath(os.path.join(getcwd(),"SentiStrengthData/")) def preprocess_data(data): data_out = pd.DataFrame() data_out = data[['type','content']] data_out.dropna(inplace=True) return data_out def count_words(text): try: return len(TextBlob(text).words) except: return 0 def calc_ttr(text): try: return LexicalRichness(text).ttr except: return 0 def count_nouns(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'NN' in x else 0, tags)) except: return 0 def count_proper_nouns(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'NNP' in x else 0, tags)) except: return 0 def count_quotes(text): try: return sum(map(lambda x : 1 if '"' in x else 0, text))/2 except: return 0 def count_per_stop(text): try: words = TextBlob(text).words return sum(map(lambda x : 1 if x in stop else 0, words))/len(words) except: return 0 def avg_wlen(text): try: words = TextBlob(text).words return sum(map(lambda x : len(x), words))/len(words) except: return 0 def fk_grade(text): try: return textstat.flesch_kincaid_grade(text) except: return 0 #blob = TextBlob(text) #return 0.39 * (len(blob.words)/len(blob.sentences)) + 11.8 ((len(blob.sy))/len(blob.words)) -15.59 def get_bow(text): tfidf_transformer = TfidfTransformer() count_vect = CountVectorizer() X_train_counts = count_vect.fit_transform([text]) return tfidf_transformer.fit_transform(X_train_counts) #bow = CountVectorizer(max_features=1000, lowercase=True, ngram_range=(1,1),analyzer = "word") #return bow.fit_transform([text]) def get_polarity(text): polarity = 0 try: polarity = TextBlob(text).sentiment.polarity except: #print("invalid content for polarity") pass return polarity def get_pos_str(text): try: return senti.getSentiment(text, score='binary')[0][1] except: return 0 def get_neg_str(text): try: return senti.getSentiment(text, score='binary')[0][0] except: return 0 def count_names(text): try: print(sum(map(lambda x : 1 if x in male_names else 0, TextBlob(text).words))) return 0 except: return 0 def count_JJS(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'JJS' in x else 0, tags)) except: return 0 def count_JJR(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'JJR' in x else 0, tags)) except: return 0 def count_RBR(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'JJS' in x else 0, tags)) except: return 0 def count_RBS(text): try: tags = TextBlob(text).tags tags = [i[1] for i in tags] return sum(map(lambda x : 1 if 'JJR' in x else 0, tags)) except: return 0 def parse_features(data, title_features, body_features): new_body_features = pd.DataFrame({'type':data['type'], #'BoW':data['content'].map(get_bow), 'per_stop':data['content'].map(count_per_stop), 'WC':data['content'].map(count_words), 'TTR':data['content'].map(calc_ttr), 'NN':data['content'].map(count_nouns), 'avg_wlen':data['content'].map(avg_wlen), 'quote':data['content'].map(count_quotes), 'FK':data['content'].map(fk_grade), #'polarity':data['content'].map(get_polarity), 'NNP':data['content'].map(count_proper_nouns), 'str_neg':data['content'].map(get_neg_str), 'str_pos':data['content'].map(get_pos_str), 'JJR':data['content'].map(count_JJR), 'JJS':data['content'].map(count_JJS), 'RBR':data['content'].map(count_RBR), 'RBS':data['content'].map(count_RBS) }) #print(new_body_features) body_features = body_features.append(new_body_features) #need this for some reason body_features['WC'] = body_features['WC'].astype(int) new_title_features = pd.DataFrame({'type':data['type'], #'BoW':data['title'].map(get_bow), 'per_stop':data['title'].map(count_per_stop), 'WC':data['title'].map(count_words), 'TTR':data['title'].map(calc_ttr), 'NN':data['title'].map(count_nouns), 'avg_wlen':data['title'].map(avg_wlen), 'quote':data['title'].map(count_quotes), 'FK':data['title'].map(fk_grade), 'polarity':data['title'].map(get_polarity), 'NNP':data['title'].map(count_proper_nouns), 'str_neg':data['title'].map(get_neg_str), 'str_pos':data['title'].map(get_pos_str), 'JJR':data['title'].map(count_JJR), 'JJS':data['title'].map(count_JJS), 'RBR':data['title'].map(count_RBR), 'RBS':data['title'].map(count_RBS) }) title_features = title_features.append(new_title_features) #need this for some reason title_features['WC'] = title_features['WC'].astype(int) return title_features, body_features def parse_full_dataset(): start = time.time() print("start") filename = 'FakeNewsAnalysis/Data/news_full.csv' #filename = 'FakeNewsAnalysis/Data/news_sample.csv' sample_size = 0.001 # up to 1 n_rows = 9408908#20000000#84999000000 chunk_size = int(n_rows/1000) df_chunk = pd.read_csv( filename, chunksize = chunk_size, header = 0, nrows = n_rows, engine='python', skip_blank_lines=True, error_bad_lines = False) #skiprows=lambda i: i>0 and random.random() > sample_size) title_features = pd.DataFrame() body_features =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import tweepy from tweepy import API from tweepy import Cursor from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream import twitter_credentials # # # # TWITTER CLIENT # # # # class TwitterClient(): def __init__(self, twitter_user=None): self.auth = TwitterAuthenticator().authenticate_twitter_app() self.twitter_client = API(self.auth) self.twitter_user = twitter_user def get_twitter_client_api(self): return self.twitter_client # # # # TWITTER AUTHENTICATER # # # # class TwitterAuthenticator(): def authenticate_twitter_app(self): auth = OAuthHandler(twitter_credentials.CONSUMER_KEY, twitter_credentials.CONSUMER_SECRET) auth.set_access_token(twitter_credentials.ACCESS_TOKEN, twitter_credentials.ACCESS_TOKEN_SECRET) return auth class TweetAnalyzer(): """ Functionality for analyzing and categorizing content from tweets. """ def tweets_to_data_frame(self, tweets): df =
pd.DataFrame(data=[tweet.text for tweet in tweets], columns=['Tweets'])
pandas.DataFrame
"""Atom Mapping. Module that automatically performs atom-atom mapping of reactions, when provided a metabolic model with suitable annotations. Relies heavily on: Reaction Decoder Tool (RDT) (https://github.com/asad/ReactionDecoder) to map the reactions; CADD Group Chemoinformatics Tools and User Services (https://cactus.nci.nih.gov/chemical/structure) to resolve InChI strings from given InChI keys; Java, to run RDT""" import requests import os import glob import platform import subprocess import pandas as pd from pymatgen.symmetry import analyzer from pymatgen.core import structure try: from rdkit import Chem, RDLogger except ModuleNotFoundError: print( 'RDKit is not installed. Please install ' 'RDKit to use the atom mapping module.' ) __version__ = "0.0.1" class MolfileDownloader: def __init__(self, metabolite_data, db_preference=(0, 1, 2, 3)): """ Class to find and download metabolite structures in Molfile format. Parameters ---------- metabolite_data : pandas.DataFrame Dataframe that contains information about metabolites the model. Obtain from INCA_input_parser module. db_preference : tuple of int, optional Four integers specify the order of preference of databases to obtain the metabolite structures from: 0: Using InChI key > InChI string conversion 1: KEGG Compound database 2: HMDB database 3: CHEBI database """ self.database_dict = {0: 'get_from_inchi_key', 1: 'get_from_kegg', 2: 'get_from_hmdb', 3: 'get_from_chebi'} self.metabolite_data = metabolite_data self.db_preference = db_preference def generate_molfile_database(self): """ Main method that calls other methods and performs most sanity checks on obtained files. Outputs ------- Molfiles : .mol files """ print('Fetching metabolite structures...') if not os.path.isdir('metabolites'): os.mkdir('metabolites') # Disable RDKit warnings RDLogger.DisableLog('rdApp.*') for i, met in self.metabolite_data.iterrows(): self.filename = met.met_id + '.mol' get_from_inchi_keyBool = False get_from_keggBool = False get_from_hmdbBool = False get_from_chebiBool = False # Check for annotations and set bool values for those # present. if 'inchi_key' in met.annotations: self.inchi_key = met.annotations['inchi_key'][0] get_from_inchi_keyBool = True # noqa: F841 if 'kegg.compound' in met.annotations: self.keggIDs = [ keggID for keggID in met.annotations['kegg.compound']] get_from_keggBool = True # noqa: F841 if 'hmdb' in met.annotations: self.hmdbIDnums = ['0' * (7 - len(hmdbID[4:])) + hmdbID[4:] for hmdbID in met.annotations['hmdb']] get_from_hmdbBool = True # noqa: F841 if 'chebi' in met.annotations: self.chebiIDs = [ chebiID for chebiID in met.annotations['chebi']] get_from_chebiBool = True # noqa: F841 # Call helper functions according to order of preference # and available references (specified by previous bool values). for opt in self.db_preference: if eval(self.database_dict.get(opt) + 'Bool'): getattr(self, self.database_dict.get(opt))() else: continue try: # Rewrites the .mol file. This removes hydrogens from # structure, lowkey standardizes molecules, and works # as a failswitch to see if file is of correct format. m = Chem.MolFromMolFile(f'metabolites/{self.filename}') with open(f'metabolites/{self.filename}', "w+") as f: print(Chem.MolToMolBlock(m), file=f) # Add metabolite ID to the first line of Molfile with open(f'metabolites/{self.filename}', 'r') as f: lines = f.readlines() lines.insert(0, self.filename[:-4]) with open(f'metabolites/{self.filename}', 'w') as wf: wf.writelines(lines) break except BaseException: os.remove(f'metabolites/{self.filename}') continue print( f"Successfully fetched {len(os.listdir('metabolites'))}/" f"{self.metabolite_data.shape[0]} metabolites" ) def get_from_inchi_key(self): """ Helper method to obtain InChI string from InChI key, and generate the Molfile from the string. """ url = ( f'https://cactus.nci.nih.gov/chemical/' f'structure/{self.inchi_key}/stdinchi' ) r = requests.get(url, allow_redirects=False) inchi_string = r.text try: molfile = Chem.inchi.MolFromInchi(inchi_string) with open(f'metabolites/{self.filename}', "w+") as f: print(Chem.MolToMolBlock(molfile), file=f) except BaseException: return def get_from_kegg(self): """ Helper method to obtain Molfile from KEGG Compound database """ for keggID in self.keggIDs: url = ( f'https://www.genome.jp/dbget-bin/' f'www_bget?-f+m+compound+{keggID}' ) r = requests.get(url, allow_redirects=False) open(f'metabolites/{self.filename}', 'wb').write(r.content) if os.path.getsize(f'metabolites/{self.filename}') != 0: break def get_from_hmdb(self): """ Helper method to obtain Molfile from HMDB database """ for hmdbID in self.hmdbIDnums: url = f'https://hmdb.ca/structures/metabolites/HMDB{hmdbID}.mol' r = requests.get(url, allow_redirects=False) open(f'metabolites/{self.filename}', 'wb').write(r.content) if os.path.getsize(f'metabolites/{self.filename}') != 0: break def get_from_chebi(self): """ Helper method to obtain Molfile from CHEBI database """ for chebiID in self.chebiIDs: url = ( f'https://www.ebi.ac.uk/chebi/saveStructure.do' f'?defaultImage=true&chebiId={chebiID}&imageId=0' ) r = requests.get(url, allow_redirects=False) open(f'metabolites/{self.filename}', 'wb').write(r.content) if os.path.getsize(f'metabolites/{self.filename}') != 0: break def write_rxn_files(rxn_data): """ Generates RXN files in RDT suitable format. Requires Molfiles of all metabolites to be present in the working directory/metabolites folder. Parameters ---------- rxn_data : pandas.DataFrame Dataframe that contains information about reactions in the model. Obtained from INCA_input_parser module. Outputs ------- RXN files : .rxn files """ met_filter = ['h_e', 'h_c', 'h_p', 'h2_e', 'h2_c', 'h2_p'] biomass_filter = ['Biomass', 'biomass', 'BIOMASS'] if not os.path.isdir('unmappedRxns'): os.mkdir('unmappedRxns') path = os.path.join(os.getcwd(), 'unmappedRxns') for i, rxn in rxn_data.iterrows(): # Filter out biomass reaction if any(biomass_id in rxn.rxn_id for biomass_id in biomass_filter): print(f'Excluded {rxn.rxn_id} reaction from mapping') continue rxn_filename = rxn.rxn_id + '.rxn' # Use copies to avoid messing up the original dataframe reactants = rxn.reactants_ids.copy() reactants_st = [int(abs(s)) for s in rxn.reactants_stoichiometry.copy()] products = rxn.products_ids.copy() products_st = [int(abs(s)) for s in rxn.products_stoichiometry.copy()] # Filter out unwanted molecules react_indexes = [] prod_indexes = [] for i, met in enumerate(reactants): if met in met_filter: react_indexes.append(i) if len(react_indexes) != 0: for i in sorted(react_indexes, reverse=True): del reactants[i] del reactants_st[i] for i, met in enumerate(products): if met in met_filter: prod_indexes.append(i) if len(prod_indexes) != 0: for i in sorted(prod_indexes, reverse=True): del products[i] del products_st[i] metabolites = reactants + products metabolites_st = reactants_st + products_st # Check if all metabolite structures are present if not all( [os.path.isfile( f'metabolites/{met}.mol' ) for met in metabolites]): print( f"Metabolite structures missing for reaction {rxn.rxn_id}") continue else: with open(os.path.join(path, rxn_filename), "w") as f: # Write first three lines, including reaction equation f.write(f"$RXN\n{rxn.rxn_id}\n\n{rxn.equation}\n") # Write export reactions (1 reactant) if not products_st and abs(int(sum(reactants_st))) == 1: f.write( f'{abs(int(sum(reactants_st)))} ' f'{int(sum(reactants_st))}\n') met = metabolites[0] with open(f'metabolites/{met}.mol', 'r') as wf: structure = wf.read() f.write(f'$MOL\n{structure}') f.write(f'$MOL\n{structure}') # Write all the other reactions with at least 1 metabolite on # each side else: f.write( f'{abs(int(sum(reactants_st)))} ' f'{int(sum(products_st))}\n') for s, met in zip(metabolites_st, metabolites): with open(f'metabolites/{met}.mol', 'r') as wf: structure = wf.read() # Repeat structure based on stoichiometry for i in range(s): f.write(f'$MOL\n{structure}') print(f"Generated {len(os.listdir('unmappedRxns'))}/{rxn_data.shape[0]}") def obtain_atom_mappings(max_time=120): """ Performs atom mapping by using RDT. Only maps reactions that are available in .rxn format, in the working_directory/unmappedRxns folder. Parameters ---------- max_time : int, optional Specifies time limit for single reaction mapping in seconds. Default: 120s. Outputs ------- mapped RXN files : .rxn files mapped TXT files : .txt files Mappings in SMILES format pictures of mappings : .png files """ # Check if Java is installed if os.system('java -version') != 0: raise RuntimeError('Java installation not found') print('Mapping reactions...') # Set the original working dir owd = os.getcwd() # Check if RDT is present in working dir, download if not if not os.path.isfile('RDT.jar'): url = ( 'https://github.com/asad/ReactionDecoder/' 'releases/download/v2.4.1/rdt-2.4.1-jar-with-dependencies.jar' ) r = requests.get(url) open(os.getcwd() + '/RDT.jar', 'wb').write(r.content) # Check if required directories are present if not os.path.isdir('mappedRxns'): os.makedirs('mappedRxns/rxnFiles') os.makedirs('mappedRxns/txtFiles') os.makedirs('mappedRxns/pngFiles') rxn_list = os.listdir('unmappedRxns') # Change working dir to keep the output organized os.chdir('mappedRxns') try: for rxnFile in rxn_list: # Check if reaction is mapped, and run RDT with specified time # limit if not try: if not os.path.isfile(f'rxnFiles/{rxnFile}'): subprocess.run(['java', '-jar', '../RDT.jar', '-Q', 'RXN', '-q', f'../unmappedRxns/{rxnFile}', '-g', '-j', 'AAM', '-f', 'TEXT'], timeout=max_time) except BaseException: continue # Obtain filenames of generated files and simplify them to respective # reaction IDs for name in glob.glob('ECBLAST*'): os.rename(name, name[8:-8] + name[-4:]) # Move all generated files to different directories, in respect to # their filetype if platform.system() == 'Windows': os.system('move *.png pngFiles') os.system('move *.rxn rxnFiles') os.system('move *.txt txtFiles') else: os.system('mv *.png ./pngFiles') os.system('mv *.rxn ./rxnFiles') os.system('mv *.txt ./txtFiles') except BaseException: # Make sure that wd is back to normal no matter what os.chdir(owd) print( f"Reactions mapped in total: " f"{len(os.listdir('rxnFiles'))}/{len(rxn_list)}") # Change working dir back to original os.chdir(owd) # Remove RDT.jar from working dir os.remove('RDT.jar') def parse_reaction_mappings(): """ Parses reaction mappings from mapped RXN files to a dataframe in suitable format for INCA. Requires all mapped RXN files to be present in the working_dir/ mappedRxns/rxnFiles folder. For unmapped reactions, data is picked from working_dir/unmappedRxns folder and all mapping data is represented as blanks. Returns ------- mapping_data : pandas.DataFrame Reaction mapping data. """ if not os.path.isdir('mappedRxns'): raise RuntimeError( "'mappedRxns' directory not present in current working directory") rxn_list = sorted(os.listdir('unmappedRxns')) # Compile list of reactions that do not have any mapping unmapped_list = list( set(os.listdir('unmappedRxns')) - set( os.listdir('mappedRxns/rxnFiles'))) keys = ['Unnamed: 0', 'Unnamed: 0.1', 'id', 'mapping_id', 'rxn_id', 'rxn_description', 'reactants_stoichiometry_tracked', 'products_stoichiometry_tracked', 'reactants_ids_tracked', 'products_ids_tracked', 'reactants_mapping', 'products_mapping', 'rxn_equation', 'used_', 'comment_', 'reactants_elements_tracked', 'products_elements_tracked', 'reactants_positions_tracked', 'products_positions_tracked' ] mapping_dict_tmp = {} for i, rxn in enumerate(rxn_list): mapping_dict = {k: [] for k in keys} met_mapping = [] react_cnt = 0 prod_cnt = 0 productBool = False if rxn not in unmapped_list: # Extract info from mapped .rxn files with open(f'mappedRxns/rxnFiles/{rxn}', 'r') as f: lines = f.readlines() for j, line in enumerate(lines): if line.rstrip() == '$RXN': # Extract number of reactants react_lim = int(lines[j + 4].split()[0]) # Extract number of products prod_lim = int(lines[j + 4].split()[1]) if line.rstrip() == '$MOL': met_id = lines[j + 1].rstrip() # Hard-coded, since 16 columns is standard for Molfile # atom rows, # and 15 can occur if we have >100 atoms on one side (cols # merge) if len(line.split()) in (15, 16): atom_row = line.split() if atom_row[3] == 'C': # Split columns if they get merged if atom_row[-3][0] == '0': atom_row[-3] = atom_row[-3][1:] met_mapping.append(atom_row[-3]) # Check if reached the last atom row if len(lines[j + 1].split()) not in (15, 16): # Check if current metabolite is reactant or # product if not productBool: # Check if any carbons are present if met_mapping: c_tracked = ['C' for atom in met_mapping] pos_tracked = list(range(len(met_mapping))) mapping_dict[ 'reactants_ids_tracked'].append( met_id) mapping_dict[ 'reactants_mapping'].append( met_mapping) mapping_dict[ 'reactants_elements_tracked'].append( c_tracked) mapping_dict[ 'reactants_positions_tracked'].append( pos_tracked) react_cnt += 1 if react_cnt == react_lim: productBool = True # Assign metabolite to products if reached reactant # limit else: if met_mapping: c_tracked = ['C' for atom in met_mapping] pos_tracked = list(range(len(met_mapping))) mapping_dict[ 'products_ids_tracked'].append( met_id) mapping_dict[ 'products_mapping'].append( met_mapping) mapping_dict[ 'products_elements_tracked'].append( c_tracked) mapping_dict[ 'products_positions_tracked'].append( pos_tracked) prod_cnt += 1 if prod_cnt == prod_lim: react_stoich = [ '-1' for met in range(len(mapping_dict[ 'reactants_mapping']))] prod_stoich = ['1' for met in range( len(mapping_dict['products_mapping']))] mapping_dict[ 'reactants_stoichiometry_tracked' ] = react_stoich mapping_dict[ 'products_stoichiometry_tracked' ] = prod_stoich met_mapping = [] mapping_dict['rxn_id'] = rxn[:-4] mapping_dict['used_'] = True # Fill all empty fields mapping_dict['Unnamed: 0'] = 'NULL' mapping_dict['Unnamed: 0.1'] = 'NULL' mapping_dict['id'] = 'NULL' mapping_dict['mapping_id'] = 'NULL' mapping_dict['rxn_description'] = 'NULL' mapping_dict['rxn_equation'] = 'NULL' mapping_dict['comment_'] = 'NULL' mapping_dict_tmp[i] = mapping_dict mapping_data = pd.DataFrame.from_dict(mapping_dict_tmp, 'index') # alphabet for number-letter matching. Max capacity is 63 characters, # which is a limit set in INCA for this format. alphabet = list(map(chr, range(97, 123))) + list(map( chr, range(65, 91))) + list(map(chr, range(48, 58))) + ['_'] # Loop through all reactions for i, rxn in mapping_data.iterrows(): try: # Convert number mappings to letters carbons_list = [atom for met in rxn['reactants_mapping'] for atom in met] carbon_map_dict = dict(zip(carbons_list, alphabet)) # Compile alphabetical mapping in curly bracket format carbon_str = '{' for j, met in enumerate(rxn['reactants_mapping']): if j != 0: carbon_str += ',' for atom in met: carbon_str += carbon_map_dict[atom] carbon_str += '}' mapping_data.at[i, 'reactants_mapping'] = carbon_str carbon_str = '{' for j, met in enumerate(rxn['products_mapping']): if j != 0: carbon_str += ',' for atom in met: carbon_str += carbon_map_dict[atom] carbon_str += '}' mapping_data.at[i, 'products_mapping'] = carbon_str except KeyError: if len(carbons_list) > 63: print( f'Reaction {rxn["rxn_id"]} contains ' f'more than 63 carbon atoms') else: # Mostly happens when one of the metabolites has (R) # group in the Molfile, and other has a C in that spot print(f'{rxn["rxn_id"]} has unmapped carbon(-s)') mapping_data.at[i, 'reactants_mapping'] = '{}' mapping_data.at[i, 'products_mapping'] = '{}' # Convert metabolite lists/stoichiometries to strings in curly brackets metabolite_str = '{%s}' % (','.join(rxn['reactants_ids_tracked'])) mapping_data.at[i, 'reactants_ids_tracked'] = metabolite_str metabolite_str = '{%s}' % (','.join(rxn['products_ids_tracked'])) mapping_data.at[i, 'products_ids_tracked'] = metabolite_str stoich_str = '{%s}' % (','.join( rxn['reactants_stoichiometry_tracked'])) mapping_data.at[i, 'reactants_stoichiometry_tracked'] = stoich_str stoich_str = '{%s}' % (','.join(rxn['products_stoichiometry_tracked'])) mapping_data.at[i, 'products_stoichiometry_tracked'] = stoich_str return mapping_data def parse_metabolite_mappings(): """ Parses metabolite mapping and symmetry data into INCA suitable format. Requires all Molfiles to be present in the working_dir/metabolites directory. Returns ------- metabolite_data : pandas.DataFrame Dataframe containing mapped metabolite data. """ metabolite_list = sorted(os.listdir('metabolites')) keys = ['mapping_id', 'met_id', 'met_elements', 'met_atompositions', 'met_symmetry_elements', 'met_symmetry_atompositions', 'used_', 'comment_', 'met_mapping', 'base_met_ids', 'base_met_elements', 'base_met_atompositions', 'base_met_symmetry_elements', 'base_met_symmetry_atompositions', 'base_met_indices' ] metabolite_dict_tmp = {} # Works in a similar fashion to parse_reaction_mappings() for i, met in enumerate(metabolite_list): met_dict = {k: 'NULL' for k in keys} with open(f'metabolites/{met}', 'r') as f: lines = f.readlines() carbon_count = 0 for j, line in enumerate(lines): if j == 0: met_dict['met_id'] = line.rstrip() if len(line.split()) == 16: atom_row = line.split() if atom_row[3] == 'C': carbon_count += 1 # Generate carbon atom lists/mappings carbon_count_list = ['C' for x in range(carbon_count)] carbon_count_string = '{%s}' % (','.join(carbon_count_list)) carbon_count_range = '{%s}' % ( ','.join([str(x) for x in range(carbon_count)])) met_dict['met_elements'] = carbon_count_string met_dict['met_atompositions'] = carbon_count_range # Check if the metabolite is symmetrical if check_symmetry(met): carbon_count_range_rev = '{%s}' % ( ','.join( [str(x) for x in range(carbon_count - 1, -1, -1)] )) met_dict["met_symmetry_elements"] = carbon_count_string met_dict['met_symmetry_atompositions'] = carbon_count_range_rev metabolite_dict_tmp[i] = met_dict metabolite_data =
pd.DataFrame.from_dict(metabolite_dict_tmp, 'index')
pandas.DataFrame.from_dict
#!/usr/bin/env python # coding: utf-8 # # Benchmark Results # This notebook visualizes the output from the different models on different classification problems # In[1]: import collections import glob import json import os import numpy as np import pandas as pd from plotnine import * from saged.utils import split_sample_names, create_dataset_stat_df, get_dataset_stats, parse_map_file # ## Set Up Functions and Get Metadata # In[3]: def return_unlabeled(): # For use in a defaultdict return 'unlabeled' # In[4]: data_dir = '../../data/' map_file = os.path.join(data_dir, 'sample_classifications.pkl') sample_to_label = parse_map_file(map_file) sample_to_label = collections.defaultdict(return_unlabeled, sample_to_label) # In[ ]: metadata_path = os.path.join(data_dir, 'aggregated_metadata.json') metadata = None with open(metadata_path) as json_file: metadata = json.load(json_file) sample_metadata = metadata['samples'] # In[ ]: experiments = metadata['experiments'] sample_to_study = {} for study in experiments: for accession in experiments[study]['sample_accession_codes']: sample_to_study[accession] = study # ## Sepsis classification # In[8]: in_files = glob.glob('../../results/single_label.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics # In[10]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # In[11]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=3) plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # ## All labels # In[12]: in_files = glob.glob('../../results/all_labels.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[13]: metrics = None for path in in_files: if metrics is None: metrics = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] metrics['unsupervised'] = unsupervised_model metrics['supervised'] = supervised_model else: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model metrics = pd.concat([metrics, new_df]) metrics # In[14]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # In[15]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=2) plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # # Subsets of healthy labels # In[16]: in_files = glob.glob('../../results/subset_label.sepsis*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[17]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[18]: print(sepsis_metrics[sepsis_metrics['healthy_used'] == 1]) # In[19]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[20]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[21]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Same analysis, but with tb instead of sepsis # In[22]: in_files = glob.glob('../../results/subset_label.tb*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[23]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[24]: print(tuberculosis_metrics[tuberculosis_metrics['healthy_used'] == 1]) # In[25]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[26]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[27]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Supervised Results Only # The results above show that unsupervised learning mostly hurts performance rather than helping. # The visualizations below compare each model based only on its supervised results. # In[28]: supervised_sepsis = sepsis_metrics[sepsis_metrics['unsupervised'] == 'untransformed'] # In[29]: plot = ggplot(supervised_sepsis, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[30]: supervised_tb = tuberculosis_metrics[tuberculosis_metrics['unsupervised'] == 'untransformed'] # In[31]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[32]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Batch Effect Correction # In[33]: in_files = glob.glob('../../results/subset_label.sepsis*be_corrected.tsv') print(in_files[:5]) # In[34]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] print(model_info) model_info = model_info.split('.') print(model_info) supervised_model = model_info[0] new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[35]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[36]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## TB Batch effect corrected # In[37]: in_files = glob.glob('../../results/subset_label.tb*be_corrected.tsv') print(in_files[:5]) # In[38]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[39]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[40]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Better Metrics, Same Label Distribution in Train and Val sets # In[11]: in_files = glob.glob('../../results/keep_ratios.sepsis*be_corrected.tsv') print(in_files[:5]) # In[12]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[13]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[14]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[15]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[16]: sepsis_stat_df = create_dataset_stat_df(sepsis_metrics, sample_to_study, sample_metadata, sample_to_label, 'sepsis') sepsis_stat_df.tail(5) # In[17]: ggplot(sepsis_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[18]: plot = ggplot(sepsis_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Effect of All Sepsis Data') plot # ## Same Distribution Tuberculosis # In[19]: in_files = glob.glob('../../results/keep_ratios.tb*be_corrected.tsv') print(in_files[:5]) # In[20]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics = tb_metrics.rename({'fraction of data used': 'healthy_used'}, axis='columns') tb_metrics['healthy_used'] = tb_metrics['healthy_used'].round(1) tb_metrics # In[21]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[22]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[23]: plot = ggplot(tb_metrics, aes(x='factor(healthy_used)', y='balanced_accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[24]: tb_stat_df = create_dataset_stat_df(tb_metrics, sample_to_study, sample_metadata, sample_to_label, 'tb') tb_stat_df.tail(5) # In[55]: ggplot(tb_stat_df, aes(x='train_val_diff', y='balanced_accuracy', color='val_disease_count')) + geom_point() + facet_grid('model ~ .') # In[25]: plot = ggplot(tb_metrics, aes(x='train sample count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot # ## Results from Small Datasets # In[57]: in_files = glob.glob('../../results/small_subsets.sepsis*be_corrected.tsv') print(in_files[:5]) # In[58]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[59]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('Sepsis Dataset Size Effects (equal label counts)') print(plot) # In[60]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Sepsis Datset Size by Model (equal label counts)') print(plot) # In[61]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## Small Training Set TB # In[62]: in_files = glob.glob('../../results/small_subsets.tb*be_corrected.tsv') print(in_files[:5]) # In[63]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics['train_count'] = tb_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it tb_metrics = tb_metrics[~(tb_metrics['supervised'] == 'deep_net')] tb_metrics['supervised'] = tb_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') tb_metrics # In[64]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('TB Dataset Size Effects (equal label counts)') print(plot) # In[65]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('TB Dataset Size vs Models (equal label counts)') print(plot) # In[66]: plot = ggplot(tb_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth(method='loess') plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('TB (lack of a) Crossover Point') plot # ## Small training sets without be correction # In[67]: in_files = glob.glob('../../results/small_subsets.sepsis*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[68]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it sepsis_metrics = sepsis_metrics[~(sepsis_metrics['supervised'] == 'deep_net')] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[69]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('Sepsis Dataset Size Effects (equal label counts)') print(plot) # In[70]: plot = ggplot(sepsis_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Sepsis Datset Size by Model (equal label counts)') print(plot) # In[71]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## TB Not Batch Effect Corrected # In[72]: in_files = glob.glob('../../results/small_subsets.tb*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[73]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics['train_count'] = tb_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it tb_metrics = tb_metrics[~(tb_metrics['supervised'] == 'deep_net')] tb_metrics['supervised'] = tb_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') tb_metrics # In[74]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy')) plot += geom_boxplot() plot += ggtitle('tb Dataset Size Effects (equal label counts)') print(plot) # In[75]: plot = ggplot(tb_metrics, aes(x='factor(train_count)', y='balanced_accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('tb Datset Size by Model (equal label counts)') print(plot) # In[76]: plot = ggplot(tb_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('tb Crossover Point') plot # ## Large training sets without be correction # In[6]: in_files = glob.glob('../../results/keep_ratios.sepsis*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics['train_count'] = sepsis_metrics['train sample count'] sepsis_metrics['supervised'] = sepsis_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') sepsis_metrics # In[10]: plot = ggplot(sepsis_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('Sepsis Crossover Point') plot # ## TB Not Batch Effect Corrected # In[80]: in_files = glob.glob('../../results/keep_ratios.tb*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[81]: tb_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] tb_metrics = pd.concat([tb_metrics, new_df]) tb_metrics['train_count'] = tb_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it tb_metrics = tb_metrics[~(tb_metrics['supervised'] == 'deep_net')] tb_metrics['supervised'] = tb_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') tb_metrics # In[82]: plot = ggplot(tb_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('tb Crossover Point') plot # ## Lupus Analyses # In[83]: in_files = glob.glob('../../results/keep_ratios.lupus*.tsv') in_files = [file for file in in_files if 'be_corrected' in file] print(in_files[:5]) # In[84]: lupus_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('lupus.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] lupus_metrics = pd.concat([lupus_metrics, new_df]) lupus_metrics['train_count'] = lupus_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it lupus_metrics = lupus_metrics[~(lupus_metrics['supervised'] == 'deep_net')] lupus_metrics['supervised'] = lupus_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') lupus_metrics # In[85]: plot = ggplot(lupus_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('lupus Crossover Point') plot # ## Lupus Not Batch Effect Corrected # In[86]: in_files = glob.glob('../../results/keep_ratios.lupus*.tsv') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[87]: lupus_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('lupus.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model new_df['seed'] = model_info[-2] lupus_metrics = pd.concat([lupus_metrics, new_df]) lupus_metrics['train_count'] = lupus_metrics['train sample count'] # Looking at the training curves, deep_net isn't actually training # I need to fix it going forward, but for now I can clean up the visualizations by removing it lupus_metrics = lupus_metrics[~(lupus_metrics['supervised'] == 'deep_net')] lupus_metrics['supervised'] = lupus_metrics['supervised'].str.replace('pytorch_supervised', 'three_layer_net') lupus_metrics # In[88]: plot = ggplot(lupus_metrics, aes(x='train_count', y='balanced_accuracy', color='supervised')) plot += geom_smooth() plot += geom_point(alpha=.2) plot += geom_hline(yintercept=.5, linetype='dashed') plot += ggtitle('lupus Crossover Point') plot # ## Tissue Prediction # In[2]: in_files = glob.glob('../../results/Blood.Breast.*.tsv') in_files = [f for f in in_files if 'be_corrected' not in f] print(in_files[:5]) # In[3]: tissue_metrics =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import (Timedelta, period_range, Period, PeriodIndex, _np_version_under1p10) import pandas.core.indexes.period as period class TestPeriodIndexArithmetic(object): def test_pi_add_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = pi + offs expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) with pytest.raises(period.IncompatibleFrequency): pi + unanchored with pytest.raises(TypeError): unanchored + pi @pytest.mark.xfail(reason='GH#18824 radd doesnt implement this case') def test_pi_radd_offset_array(self): # GH#18849 pi = pd.PeriodIndex([pd.Period('2015Q1'), pd.Period('2016Q2')]) offs = np.array([pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12)]) res = offs + pi expected = pd.PeriodIndex([pd.Period('2015Q2'), pd.Period('2015Q4')]) tm.assert_index_equal(res, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng + delta with tm.assert_raises_regex( period.IncompatibleFrequency, msg): rng += delta def test_pi_add_int(self, one): # Variants of `one` for #19012 rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + one expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize('five', [5, np.array(5, dtype=np.int64)]) def test_sub(self, five): rng = period_range('2007-01', periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng =
pd.period_range('2014', '2024', freq='A')
pandas.period_range
# ********************************************************************************************************************** # # brief: simple script to plot the optimizer runs # # author: <NAME> # date: 25.08.2020 # # ********************************************************************************************************************** import matplotlib.pyplot as plt import pandas as pd import numpy as np from tikzplotlib import save as tikz_save plt.style.use('ggplot') SMALL_SIZE = 14 MEDIUM_SIZE = 16 BIGGER_SIZE = 18 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title def get_trend(x, y): z = np.polyfit(x, y, 3) p = np.poly1d(z) return p sun = pd.read_csv("run-sun_rgb_train-tag-epoch_loss.csv") coco = pd.read_csv("run-coco_train-tag-epoch_loss.csv") none =
pd.read_csv("run-elevator_train-tag-epoch_loss.csv")
pandas.read_csv
import pandas as pd from bokeh.io import curdoc from bokeh.layouts import layout, widgetbox from bokeh.models import (ColumnDataSource, HoverTool, Text, Div, Circle, SingleIntervalTicker, Slider, Button, Label) from bokeh.palettes import Spectral6 from bokeh.plotting import figure from data import process_data fertility_df, life_expectancy_df, population_df_size, regions_df, years, regions = process_data() sources = {} region_color = regions_df['region_color'] region_color.name = 'region_color' for year in years: fertility = fertility_df[year] fertility.name = 'fertility' life = life_expectancy_df[year] life.name = 'life' population = population_df_size[year] population.name = 'population' df =
pd.concat([fertility, life, population, region_color], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Jun 9 09:23:19 2020 Arbol de Desiciones @author: andyvillamayor """ #El calulo del arbol esta hecho automaticamente por DecisionTreeClassifier #Parametros = entropia valor maximo de desglose = 6 #librerias import pandas as pd import numpy as np from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.tree import export_graphviz import pydot from sklearn import preprocessing #lectura de datos data= pd.read_csv('creditos.csv',sep =',') #verificacion de los datos print(data.head()) #validacion del dataframe print(pd.isnull(data).sum()) #tipo cartera tiene 3777 valores faltantes Nan #calular los la edad verificacion de datos data['fechaHora'] = pd.to_datetime(data['fechaHora']) data['nacimiento'] = pd.to_datetime(data['nacimiento']) data['edad'] = ((data['fechaHora']-data['nacimiento'])/np.timedelta64(1,'Y')).astype(int) #columna edad esta en el ultimo lugar del dataframe # seleccionar variables y target, descartar variables pos aprobación # utilizando Hold out df1 = data.iloc[:,2:3] df2 = data.iloc[:,83:84] df3 = data.iloc[:,4:68] df4 = data.iloc[:,82:83] # # Unificar en un dataframe filtrado df =
pd.concat([df1,df2,df3,df4], axis=1)
pandas.concat
import ipywidgets import numpy as np import pandas as pd import pathlib from scipy.stats import linregress from bokeh.io import push_notebook, show, output_notebook from bokeh.plotting import figure from bokeh.models import ColumnDataSource, RangeTool, Circle, Slope, Label, Legend, LegendItem, LinearColorMapper from bokeh.layouts import gridplot, column, row from bokeh.transform import transform class view_files: def __init__(self): self.ep_columns_filtered = ['date','time', 'H', 'qc_H', 'LE', 'qc_LE','sonic_temperature', 'air_temperature', 'air_pressure', 'air_density', 'ET', 'e', 'es', 'RH', 'VPD','Tdew', 'u_unrot', 'v_unrot', 'w_unrot', 'u_rot', 'v_rot', 'w_rot', 'wind_speed', 'max_wind_speed', 'wind_dir', 'u*', '(z-d)/L', 'un_H', 'H_scf', 'un_LE', 'LE_scf','u_var', 'v_var', 'w_var', 'ts_var','H_strg','LE_strg'] self.lf_columns_filtered = ['TIMESTAMP','Hs','u_star','Ts_stdev','Ux_stdev','Uy_stdev','Uz_stdev','Ux_Avg', 'Uy_Avg', 'Uz_Avg', 'Ts_Avg', 'LE_wpl', 'Hc','H2O_mean', 'amb_tmpr_Avg', 'amb_press_mean', 'Tc_mean', 'rho_a_mean','CO2_sig_strgth_mean', 'H2O_sig_strgth_mean','T_tmpr_rh_mean', 'e_tmpr_rh_mean', 'e_sat_tmpr_rh_mean', 'H2O_tmpr_rh_mean', 'RH_tmpr_rh_mean', 'Rn_Avg', 'albedo_Avg', 'Rs_incoming_Avg', 'Rs_outgoing_Avg', 'Rl_incoming_Avg', 'Rl_outgoing_Avg', 'Rl_incoming_meas_Avg', 'Rl_outgoing_meas_Avg', 'shf_Avg(1)', 'shf_Avg(2)', 'precip_Tot', 'panel_tmpr_Avg'] self.TOOLS="pan,wheel_zoom,box_zoom,box_select,lasso_select,reset" output_notebook() self.tabs = ipywidgets.Tab([self.tab00(), self.tab01(), self.tab02()]) self.tabs.set_title(0, 'EP - Master Folder') self.tabs.set_title(1, 'LowFreq - Master Folder') self.tabs.set_title(2, 'Plot') self.source_ep = ColumnDataSource(data=dict(x=[], y=[], y2=[], date=[],time=[],et=[])) self.fig_01 = figure(title='EP', plot_height=250, plot_width=700, x_axis_type='datetime', tools=self.TOOLS) circle_ep = self.fig_01.circle(x='x', y='y', source=self.source_ep) self.fig_02 = figure(title='LF', plot_height=250, plot_width=700, x_axis_type='datetime', x_range=self.fig_01.x_range) circle_lf = self.fig_02.circle(x='x', y='y2', source=self.source_ep, color='red') self.fig_03 = figure(title='EP x LF',plot_height=500, plot_width=500) circle_teste = self.fig_03.circle(x='y2', y='y', source=self.source_ep, color='green', selection_color="green",selection_fill_alpha=0.3, selection_line_alpha=0.3, nonselection_fill_alpha=0.1,nonselection_fill_color="grey",nonselection_line_color="grey",nonselection_line_alpha=0.1) # self.fig_04 = figure(title='ET', plot_width=1200, plot_height=600) # colors = ['#440154', '#404387', '#29788E', '#22A784', '#79D151', '#FDE724'] # self.colorMapper = LinearColorMapper(palette=colors) # self.fig_04.rect(source=self.source_ep, x='date',y='time', fill_color=transform('et', self.colorMapper), line_color=None, width=1,height=1) # self.hm = self.fig_04.rect(source=self.source_ep, x='date',y='time', line_color=None, width=1,height=1) self.label = Label(x=1.1, y=18, text='teste', text_color='black') self.label2 = Label(x=1.1, y=10, text='teste2', text_color='black') self.label3 = Label(x=1.2, y=11, text='teste3', text_color='black') self.label4 = Label(x=1,y=11, text='teste4', text_color='black') # self.label5 = Label(x=1, y=11, text='teste5', text_color='black') self.fig_03.add_layout(self.label) self.fig_03.add_layout(self.label2) self.fig_03.add_layout(self.label3) self.fig_03.add_layout(self.label4) # self.fig_03.add_layout(self.label5) # self.label_teste = Label(x=0,y=0, text='fasdfasdfasdfasdfas', text_color='black') # self.fig_03.add_layout(self.label_teste) # self.source_ep.selected.on_change('indices', self.selection_change) # slope11_l = self.fig_03.line(color='orange', line_dash='dashed') slope_11 = Slope(gradient=1, y_intercept=0, line_color='orange', line_dash='dashed', line_width=3) self.fig_03.add_layout(slope_11) # self.slope_lin_label = self.fig_03.line(color='red', line_width=3) self.slope_linregress = Slope(gradient=1.3, y_intercept=0,line_color='red', line_width=3) self.fig_03.add_layout(self.slope_linregress) c = column([self.fig_01, self.fig_02]) display(self.tabs) show(row(c, self.fig_03), notebook_handle=True) # def teste_apagar(self, attr, old,new): # print(new) def tab00(self): self.out_00 = ipywidgets.Output() with self.out_00: self.path_EP = ipywidgets.Text(placeholder='Path EP output', layout=ipywidgets.Layout(width='90%')) self.button_path_ep = ipywidgets.Button(description='Show EP') self.button_path_ep.on_click(self._button_Path) self.select_meta = ipywidgets.Select(description='Configs:', layout=ipywidgets.Layout(width='90%'), style={'description_width':'initial'}) self.select_meta.observe(self._select_config, 'value') return ipywidgets.VBox([ipywidgets.HBox([self.path_EP, self.button_path_ep]), self.select_meta, self.out_00]) def tab01(self): self.out_01 = ipywidgets.Output() with self.out_01: self.path_LF = ipywidgets.Text(placeholder='Path LF output', layout=ipywidgets.Layout(width='90%')) self.button_path_lf = ipywidgets.Button(description='Show LF') self.button_path_lf.on_click(self._button_Path) self.html_lf = ipywidgets.HTML() return ipywidgets.VBox([self.out_01, ipywidgets.HBox([self.path_LF, self.button_path_lf]), self.html_lf]) def tab02(self): self.out_02 = ipywidgets.Output() with self.out_02: self.dropdown_yAxis_ep = ipywidgets.Dropdown(description='EP Y-Axis', options=self.ep_columns_filtered) self.dropdown_yAxis_lf = ipywidgets.Dropdown(description='LF Y-Axis', options=self.lf_columns_filtered) self.checkBox_EnergyBalance = ipywidgets.Checkbox(value=False, description='Energy Balance') # self.intSlider_flagFilter = ipywidgets.IntSlider(value=2, min=0, max=2, step=1, description='Flag Filter') self.selectionSlider_flagFilter = ipywidgets.SelectionSlider(options=[0,1,2,'All'], value='All', description='Flag Filter') self.checkBox_rainfallFilter = ipywidgets.Checkbox(value=False, description='Rainfall Filter') self.floatSlider_signalStrFilter = ipywidgets.FloatSlider(value=0, min=0, max=1, step=0.01, description='Signal Str Filter') self.selectionRangeSlider_date = ipywidgets.SelectionRangeSlider(options=[0,1], description='Date Range', layout=ipywidgets.Layout(width='500px')) self.selectionRangeSlider_hour = ipywidgets.SelectionRangeSlider(options=[0,1], description='Hour Range', layout=ipywidgets.Layout(width='500px')) self.button_plot = ipywidgets.Button(description='Plot') # self.button_plot.on_click(self.update_ep) self.button_plot.on_click(self._button_plot) controls_ep = [self.dropdown_yAxis_ep, self.selectionSlider_flagFilter, self.checkBox_rainfallFilter, self.floatSlider_signalStrFilter, self.checkBox_EnergyBalance, self.selectionRangeSlider_date, self.selectionRangeSlider_hour] for control in controls_ep: control.observe(self.update_ep, 'value') controls_lf = [self.dropdown_yAxis_lf] for control in controls_lf: # control.observe(self.update_lf, 'value') control.observe(self.update_ep, 'value') return ipywidgets.VBox([ipywidgets.HBox([self.dropdown_yAxis_ep, self.dropdown_yAxis_lf, self.checkBox_EnergyBalance]), ipywidgets.HBox([self.selectionSlider_flagFilter, self.checkBox_rainfallFilter, self.floatSlider_signalStrFilter]), self.selectionRangeSlider_date, self.selectionRangeSlider_hour, self.button_plot]) def _button_Path(self, *args): if self.tabs.selected_index == 0: with self.out_00: try: self.folder_path_ep = pathlib.Path(self.path_EP.value) readme = self.folder_path_ep.rglob('Readme.txt') readme_df = pd.read_csv(list(readme)[0], delimiter=',') temp_list = [row.to_list() for i,row in readme_df[['rotation', 'lowfrequency','highfrequency','wpl','flagging','name']].iterrows()] a = [] self.config_name = [] for i in temp_list: self.config_name.append(i[5]) a.append('Rotation:{} |LF:{} |HF:{} |WPL:{} |Flag:{}'.format(i[0],i[1],i[2],i[3],i[4])) self.select_meta.options = a except: print('Erro') if self.tabs.selected_index == 1: with self.out_01: try: self.folder_path_lf = pathlib.Path(self.path_LF.value) lf_files = self.folder_path_lf.rglob('TOA5*.flux.dat') self.dfs_02_01 = [] for file in lf_files: # print(file) self.dfs_02_01.append(pd.read_csv(file, skiprows=[0,2,3], parse_dates=['TIMESTAMP'],na_values='NAN', usecols=self.lf_columns_filtered)) self.dfs_concat_02_01 = pd.concat(self.dfs_02_01) # self.dropdown_yAxis_lf.options = self.lf_columns_filtered self.html_lf.value = "<table> <tr><td><span style='font-weight:bold'>Number of Files:</spam></td> <td>{}</td></tr><tr><td><span style='font-weight:bold'>Begin:</span></td> <td>{}</td></tr> <tr> <td><span style='font-weight:bold'>End:</span></td><td>{}</td> </tr>".format(len(self.dfs_02_01), self.dfs_concat_02_01['TIMESTAMP'].min(),self.dfs_concat_02_01['TIMESTAMP'].max()) except: print('erro') def _select_config(self, *args): with self.out_00: # self.dfs_01_01 = [] # for i in self.select_meta.index: full_output_files = self.folder_path_ep.rglob('*{}*_full_output*.csv'.format(self.config_name[self.select_meta.index])) dfs_single_config = [] for file in full_output_files: dfs_single_config.append(pd.read_csv(file, skiprows=[0,2], na_values=-9999, parse_dates={'TIMESTAMP':['date', 'time']},keep_date_col=True, usecols=self.ep_columns_filtered)) # self.df_ep = pd.read_csv(file, skiprows=[0,2], na_values=-9999, parse_dates={'TIMESTAMP':['date', 'time']}, usecols=self.ep_columns_filtered) self.df_ep = pd.concat(dfs_single_config) # try: # self.dropdown_yAxis_ep.options = self.ep_columns_filtered # self.dropdown_yAxis_ep.value = 'H' # except: # pass def filter_flag_ep(self): try: flag = self.dfs_compare[ (self.dfs_compare['H2O_sig_strgth_mean'] >= self.floatSlider_signalStrFilter.value) & (self.dfs_compare['TIMESTAMP'].dt.date >= self.selectionRangeSlider_date.value[0]) & (self.dfs_compare['TIMESTAMP'].dt.date <= self.selectionRangeSlider_date.value[1]) & (self.dfs_compare['TIMESTAMP'].dt.time >= self.selectionRangeSlider_hour.value[0]) & (self.dfs_compare['TIMESTAMP'].dt.time <= self.selectionRangeSlider_hour.value[1]) ] except: flag = self.dfs_compare[ (self.dfs_compare['H2O_sig_strgth_mean'] >= self.floatSlider_signalStrFilter.value) ] if self.checkBox_rainfallFilter.value == True: flag = flag[flag['precip_Tot']==0] if self.checkBox_EnergyBalance.value == True: if self.selectionSlider_flagFilter.value in [0,1,2]: flag = flag[flag[['qc_H', 'qc_LE']].isin([self.selectionSlider_flagFilter.value]).sum(axis=1)==2] if self.selectionSlider_flagFilter.value == 'All': pass if self.checkBox_EnergyBalance.value == False: if self.selectionSlider_flagFilter.value in [0,1,2]: flag = flag[flag['qc_{}'.format(self.dropdown_yAxis_ep.value)]==self.selectionSlider_flagFilter.value] if self.selectionSlider_flagFilter.value == 'All': pass return flag def _button_plot(self, *args): with self.out_02: self.dfs_compare = pd.merge(left=self.dfs_concat_02_01, right=self.df_ep, how='outer', on='TIMESTAMP', suffixes=("_lf","_ep")) self.selectionRangeSlider_date.options = self.dfs_compare['TIMESTAMP'].dt.date.unique() self.selectionRangeSlider_hour.options = sorted(list(self.dfs_compare['TIMESTAMP'].dt.time.unique())) # print(self.dfs_compare) # self.update_lf() # self.slope_linregress.gradient = 5 self.update_ep() def update_ep(self, *args): self.df_filter_ep = self.filter_flag_ep() # self.source_ep.data = dict(x=self.df_filter_ep['TIMESTAMP'], y=self.df_filter_ep['{}'.format(self.dropdown_yAxis_ep.value)], y2=self.df_filter_ep['{}'.format(self.dropdown_yAxis_lf.value)]) # self.fig_01.xaxis.axis_label = 'TIMESTAMP' # self.fig_01.yaxis.axis_label = '{}'.format(self.dropdown_yAxis_ep.value) if self.checkBox_EnergyBalance.value == True: self.source_ep.data = dict(x=self.df_filter_ep['TIMESTAMP'], y=self.df_filter_ep[['H', 'LE','H_strg','LE_strg']].sum(axis=1, min_count=1), y2=self.df_filter_ep['Rn_Avg']-self.df_filter_ep[['shf_Avg(1)','shf_Avg(2)']].mean(axis=1)) # self.hm.fill_color=transform('et', self.colorMapper) #self.df_filter_ep[['Rn_Avg', 'shf_Avg(1)']].sum(axis=1, min_count=1) #self.df_filter_ep[['H', 'LE']].sum(axis=1, min_count=1) self.fig_01.xaxis.axis_label = 'TIMESTAMP' self.fig_01.yaxis.axis_label = 'H + LE' self.fig_02.xaxis.axis_label = 'TIMESTAMP' self.fig_02.yaxis.axis_label = 'Rn - G' self.fig_03.yaxis.axis_label = 'H + LE' self.fig_03.xaxis.axis_label = 'Rn - G' # self.fig_04.x_range.factors = self.df_filter_ep['date'].unique() # self.fig_04.y_range.factors = self.df_filter_ep['time'].unique() # self.label.text = 'fasfdasfasfasfaf' self.df_corr =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.linear_model import LinearRegression data = load_iris() df =
pd.DataFrame(data.data, columns=data.feature_names)
pandas.DataFrame
from itertools import chain from itertools import groupby from typing import Dict from typing import List from typing import Tuple from typing import Union import oedialect # noqa: F401 import open_FRED.cli as ofr import pandas as pd import sqlalchemy as sqla from geoalchemy2.elements import WKTElement as WKTE from geoalchemy2.shape import to_shape from pandas import DataFrame as DF from pandas import Series from pandas import Timedelta as TD from pandas import to_datetime as tdt from shapely.geometry import Point from sqlalchemy.orm import sessionmaker from .dedup import deduplicate #: The type of variable selectors. A selector should always contain the #: name of the variable to select and optionally the height to select, #: if only a specific one is desired. Selector = Union[Tuple[str], Tuple[str, int]] TRANSLATIONS: Dict[str, Dict[str, List[Selector]]] = { "windpowerlib": { "wind_speed": [("VABS_AV",)], "temperature": [("T",)], "roughness_length": [("Z0",)], "pressure": [("P",)], }, "pvlib": { "wind_speed": [("VABS_AV", 10)], "temp_air": [("T", 10)], "pressure": [("P", 10)], "dhi": [("ASWDIFD_S", 0)], "ghi": [("ASWDIFD_S", 0), ("ASWDIR_S", 0)], "dni": [("ASWDIRN_S", 0)], }, } def defaultdb(): engine = getattr(defaultdb, "engine", None) or sqla.create_engine( "postgresql+oedialect://openenergy-platform.org" ) defaultdb.engine = engine session = ( getattr(defaultdb, "session", None) or sessionmaker(bind=engine)() ) defaultdb.session = session metadata = sqla.MetaData(schema="climate", bind=engine, reflect=False) return {"session": session, "db": ofr.mapped_classes(metadata)} class Weather: """ Load weather measurements from an openFRED conforming database. Note that you need a database storing weather data using the openFRED schema in order to use this class. There is one publicly available at https://openenergy-platform.org Now you can simply instantiate a `Weather` object via e.g.: Examples -------- >>> from shapely.geometry import Point >>> point = Point(9.7311, 53.3899) >>> weather = Weather( ... start="2007-04-05 06:00", ... stop="2007-04-05 07:31", ... locations=[point], ... heights=[10], ... variables="pvlib", ... **defaultdb() ... ) Instead of the special values `"pvlib"` and `"windpowerlib"` you can also supply a list of variables, like e.g. `["P", "T", "Z0"]`, to retrieve from the database. After initialization, you can use e.g. `weather.df(point, "pvlib")` to retrieve a `DataFrame` with weather data from the measurement location closest to the given `point`. Parameters ---------- start : Anything `pandas.to_datetime` can convert to a timestamp Load weather data starting from this date. stop : Anything `pandas.to_datetime` can convert to a timestamp Don't load weather data before this date. locations : list of :shapely:`Point` Weather measurements are collected from measurement locations closest to the the given points. location_ids : list of int Weather measurements are collected from measurement locations having primary keys, i.e. IDs, in this list. Use this e.g. if you know you're using the same location(s) for multiple queries and you don't want the overhead of doing the same nearest point query multiple times. heights : list of numeric Limit selected timeseries to these heights. If `variables` contains a variable which isn't height dependent, i.e. it has only one height, namely `0`, the corresponding timeseries is always selected. Don't select the correspoding variable, in order to avoid this. Defaults to `None` which means no restriction on height levels. variables : list of str or one of "pvlib" or "windpowerlib" Load the weather variables specified in the given list, or the variables necessary to calculate a feedin using `"pvlib"` or `"windpowerlib"`. Defaults to `None` which means no restriction on loaded variables. regions : list of :shapely:`Polygon` Weather measurements are collected from measurement locations contained within the given polygons. session : `sqlalchemy.orm.Session` db : dict of mapped classes """ def __init__( self, start, stop, locations, location_ids=None, heights=None, variables=None, regions=None, session=None, db=None, ): self.session = session self.db = db if self.session is None and self.db is None: return variables = { "windpowerlib": ["P", "T", "VABS_AV", "Z0"], "pvlib": [ "ASWDIFD_S", "ASWDIRN_S", "ASWDIR_S", "P", "T", "VABS_AV", ], None: variables, }[variables if variables in ["pvlib", "windpowerlib"] else None] self.locations = ( {(p.x, p.y): self.location(p) for p in locations} if locations is not None else {} ) self.regions = ( {WKTE(r, srid=4326): self.within(r) for r in regions} if regions is not None else {} ) if location_ids is None: location_ids = [] self.location_ids = set( [ d.id for d in chain(self.locations.values(), *self.regions.values()) ] + location_ids ) self.locations = { k: to_shape(self.locations[k].point) for k in self.locations } self.locations.update( { (p.x, p.y): p for p in chain( self.locations.values(), ( to_shape(location.point) for region in self.regions.values() for location in region ), ) } ) self.regions = { k: [to_shape(location.point) for location in self.regions[k]] for k in self.regions } series = sorted( session.query( db["Series"], db["Variable"], db["Timespan"], db["Location"] ) .join(db["Series"].variable) .join(db["Series"].timespan) .join(db["Series"].location) .filter((db["Series"].location_id.in_(self.location_ids))) .filter( True if variables is None else db["Variable"].name.in_(variables) ) .filter( True if heights is None else (db["Series"].height.in_(chain([0], heights))) ) .filter( (db["Timespan"].stop >= tdt(start)) & (db["Timespan"].start <= tdt(stop)) ) .all(), key=lambda p: ( p[3].id, p[1].name, p[0].height, p[2].start, p[2].stop, ), ) self.series = { k: [ ( segment_start.tz_localize("UTC") if segment_start.tz is None else segment_start, segment_stop.tz_localize("UTC") if segment_stop.tz is None else segment_stop, value, ) for (series, variable, timespan, location) in g for (segment, value) in zip(timespan.segments, series.values) for segment_start in [tdt(segment[0])] for segment_stop in [tdt(segment[1])] if segment_start >= tdt(start) and segment_stop <= tdt(stop) ] for k, g in groupby( series, key=lambda p: ( (to_shape(p[3].point).x, to_shape(p[3].point).y), p[1].name, p[0].height, ), ) } self.series = {k: deduplicate(self.series[k]) for k in self.series} self.variables = { k: sorted(set(h for _, h in g)) for k, g in groupby( sorted((name, height) for _, name, height in self.series), key=lambda p: p[0], ) } self.variables = {k: {"heights": v} for k, v in self.variables.items()} @classmethod def from_df(klass, df): assert isinstance(df.columns, pd.MultiIndex), ( "DataFrame's columns aren't a `pandas.indexes.multi.MultiIndex`.\n" "Got `{}` instead." ).format(type(df.columns)) assert len(df.columns.levels) == 2, ( "DataFrame's columns have more than two levels.\nGot: {}.\n" "Should be exactly two, the first containing variable names and " "the\n" "second containing matching height levels." ) variables = { variable: {"heights": [vhp[1] for vhp in variable_height_pairs]} for variable, variable_height_pairs in groupby( df.columns.values, key=lambda variable_height_pair: variable_height_pair[0], ) } locations = {xy: Point(xy[0], xy[1]) for xy in df.index.values} series = { (xy, *variable_height_pair): df.loc[xy, variable_height_pair] for xy in df.index.values for variable_height_pair in df.columns.values } instance = klass(start=None, stop=None, locations=None) instance.locations = locations instance.series = series instance.variables = variables return instance def location(self, point: Point): """ Get the measurement location closest to the given `point`. """ point = WKTE(point.to_wkt(), srid=4326) return ( self.session.query(self.db["Location"]) .order_by(self.db["Location"].point.distance_centroid(point)) .first() ) def within(self, region=None): """ Get all measurement locations within the given `region`. """ region = WKTE(region.to_wkt(), srid=4326) return ( self.session.query(self.db["Location"]) .filter(self.db["Location"].point.ST_Within(region)) .all() ) def to_csv(self, path): df = self.df() df = df.applymap( # Unzip, i.e. convert a list of tuples to a tuple of lists, the # list of triples in each DataFrame cell and convert the result to # a JSON string. Unzipping is necessary because the pandas' # `to_json` wouldn't format the `Timestamps` correctly otherwise. lambda s: pd.Series(pd.Series(xs) for xs in zip(*s)).to_json( date_format="iso" ) ) return df.to_csv(path, quotechar="'") @classmethod def from_csv(cls, path_or_buffer): df = pd.read_csv( path_or_buffer, # This is necessary because the automatic conversion isn't precise # enough. converters={0: float, 1: float}, header=[0, 1], index_col=[0, 1], quotechar="'", ) df.columns.set_levels( [df.columns.levels[0], [float(c) for c in df.columns.levels[1]]], inplace=True, ) df = df.applymap(lambda s: pd.read_json(s, typ="series")) # Reading the JSON string back in yields a weird format. Instead of a # nested `Series` we get a `Series` containing three dictionaries. The # `dict`s "emulate" a `Series` since their keys are string # representations of integers and their values are the actual values # that would be stored at the corresponding position in a `Series`. So # we have to manually reformat the data we get back. Since there's no # point in doing two conversions, we don't convert it back to nested # `Series`, but immediately to `list`s of `(start, stop, value)` # triples. df = df.applymap( lambda s: list( zip( *[ [ # The `Timestamp`s in the inner `Series`/`dict`s # where also not converted, so we have to do this # manually, too. pd.to_datetime(v, utc=True) if n in [0, 1] else v for k, v in sorted( s[n].items(), key=lambda kv: int(kv[0]) ) ] for n in s.index ] ) ) ) return cls.from_df(df) def df(self, location=None, lib=None): if lib is None and location is None: columns = sorted(set((n, h) for (xy, n, h) in self.series)) index = sorted(xy for xy in set(xy for (xy, n, h) in self.series)) data = { (n, h): [self.series[xy, n, h] for xy in index] for (n, h) in columns } return DF(index=pd.MultiIndex.from_tuples(index), data=data) if lib is None: raise NotImplementedError( "Arbitrary dataframes not supported yet.\n" 'Please use one of `lib="pvlib"` or `lib="windpowerlib"`.' ) xy = (location.x, location.y) location = ( self.locations[xy] if xy in self.locations else to_shape(self.location(location).point) if self.session is not None else min( self.locations.values(), key=lambda point: location.distance(point), ) ) point = (location.x, location.y) index = ( [ dhi[0] + (dhi[1] - dhi[0]) / 2 for dhi in self.series[point, "ASWDIFD_S", 0] ] if lib == "pvlib" else [ wind_speed[0] for wind_speed in self.series[ point, "VABS_AV", self.variables["VABS_AV"]["heights"][0] ] ] if lib == "windpowerlib" else [] ) def to_series(v, h): s = self.series[point, v, h] return
Series([p[2] for p in s], index=[p[0] for p in s])
pandas.Series
import os import warnings import numpy as np import pandas as pd from typing import Iterable, Optional, List def sets_match(a: Iterable, b: Iterable): return a is None or set(a) == set(b) def sub_set(self: pd.DataFrame, new: pd.DataFrame): new_index = set(new.index).difference(self.index) new_columns = set(new.columns).difference(self.columns) for column in new_columns: self[column] = np.nan if len(self.columns) > 0: for key in new_index: self.loc[key] = np.nan if len(new.columns) == 0 or len(new.index) == 0: return self.loc[list(new.index), list(new.columns)] = new def sub_get(self: pd.DataFrame, cols: Optional[List[str]], index: Optional[List[str]]): if cols is None: cols = self.columns if index is None: index = self.index if len(cols) == 0 or len(index) == 0: return
pd.DataFrame()
pandas.DataFrame
import ast import multiprocessing import pickle import pandas as pd import numpy as np import joblib import re import os from collections import namedtuple from sklearn.model_selection import train_test_split import nltk from nltk.tokenize import word_tokenize from nltk.corpus import stopwords import konlpy from konlpy.tag import Kkma, Okt, Hannanum, Twitter from datetime import datetime #tokenize & word2vec packages from soynlp import DoublespaceLineCorpus from soynlp.word import WordExtractor from soynlp.tokenizer import LTokenizer from soynlp.noun import NewsNounExtractor from gensim.models import Word2Vec import gensim, logging from gensim.test.utils import common_texts, get_tmpfile from gensim.models.doc2vec import Doc2Vec, TaggedDocument from gensim.summarization import keywords from newspaper import Article from newspaper import fulltext from news.task_module.news_crawler import NaverNewsCrawler import platform import os # from news.task_module.professor import ProfessorNews class ProfessorNews: def __init__(self): path = os.getcwd() # self.new_small = pd.read_excel('./nlp_data/new_small_class.xlsx') if platform.system() == 'Linux': # path = '/home/ubuntu/sunbo_django/recommender/models/' # path2 = '/home/ubuntu/sunbo_django/news/task_module' self.ko_stopwords = pd.read_csv(path + '/news/task_module/nlp_data/korean_stopwords.txt') self.token_stops = pd.read_csv(path + '/news/task_module/nlp_data/token_stopwords.csv', engine='python', encoding='cp949')['stopwords'].tolist() self.doc_vectorizer = Doc2Vec.load(path + '/recommender/models/Doc2vec1.model') self.doc_set =
pd.read_excel(path + '/news/task_module/nlp_data/doc_set.xlsx')
pandas.read_excel
import requests as req from pathlib import Path import pandas as pd import pprint as pp import json from bs4 import BeautifulSoup import spotipy from spotipy.oauth2 import SpotifyClientCredentials # Import API importers import musicbrainzngs def hot100(iterator, path, proxies, timeout): ''' Add your custom Scrape function here. As an example you can find the scrape function to get Walmart Stores across the US. This example will scrape all Walmarts (does not include Sam's Club). You can fully customize this function. IMPORTANT: It's necessary that you name your function the same as your `target` keyword (e.g. in this case the target=walmart). For return statements make sure you return `False` for a failed or skipped scraping and `True` for a successful scraping. ''' hits = [] this = Path(path) if this.is_file(): # Iterator exists return False response = req.get( url='https://www.billboard.com/charts/hot-100/' + iterator ) def get_lyric_links(divs): links = [] for div in divs: href = '' try: href = div.find('div',{"class": "chart-list-item__lyrics"}).find('a').get('href') except: pass links.append(href) return links try: html = response.text soup = BeautifulSoup(html,'html.parser') date = soup.findAll("button", {"class": "chart-detail-header__date-selector-button"}) hot100s = [] date = date[0].get_text().strip() ranks = [rank.get_text().strip() for rank in soup.findAll("div", {"class": "chart-list-item__rank"})] titles = [title.get_text().strip() for title in soup.findAll("span", {"class": "chart-list-item__title-text"})] artists = [artist.get_text().strip() for artist in soup.findAll("div",{"class": "chart-list-item__artist"})] links = get_lyric_links(soup.findAll("div",{"class": "chart-list-item__text"})) equal_length = len(ranks) == len(titles) == len(artists) == len(ranks) array_len = len(ranks) dates = [date for i in range(100)] dates = [date for i in range(array_len)] if not equal_length: print('not equal length') df =
pd.DataFrame({'date': dates,'rank': ranks, 'title': titles, 'artist': artists, 'link': links})
pandas.DataFrame
import unittest import pandas as pd import numpy as np from pandas.testing import assert_frame_equal, assert_series_equal from src.preprocessing import add_derived_title, categorize_column, add_is_alone_column, impute_nans class TestProcessing(unittest.TestCase): def test_add_derived_title(self): df = pd.DataFrame({ 'Name': ['Smith, Mr. <NAME> ', 'Heikkinen, M<NAME> ', '<NAME>', 'Allen, Ms. Maisie', 'Allen, Mme. Maisie', # rare titles '<NAME> ', 'Heikkinen, Countess. X ', 'Allen, Capt. Maisie', '<NAME> ', '<NAME> ', 'Allen, Dr. Maisie', '<NAME> ', 'Heikkinen, Rev. Laina ', 'Allen, Sir. Maisie', '<NAME>. <NAME> ', '<NAME> ' ], }) expected = pd.DataFrame({ 'Name': ['<NAME> ', '<NAME> ', '<NAME>', 'Allen, Ms. Maisie', 'Allen, Mme. Maisie', '<NAME> ', 'Heikkinen, Countess. X ', 'Allen, Capt. Maisie', '<NAME>. <NAME> ', '<NAME> ', 'Allen, Dr. Maisie', '<NAME> ', 'Heikkinen, Rev. Laina ', 'Allen, Sir. Maisie', '<NAME>. <NAME> ', '<NAME> ' ], 'Title': ['Mr', 'Miss', 'Miss', 'Miss', 'Mrs', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare', 'Rare'] }) assert_frame_equal(expected, add_derived_title(df)) def test_categorize_column_into_2_categories(self): series =
pd.Series([5, 20, 10, 25])
pandas.Series
"""Misc utilities for MODFLOW.""" __all__ = [ "geotransform_from_flopy", "transform_data_to_series_or_frame", ] from collections.abc import Iterable import pandas as pd from swn.util import abbr_str def sfr_rec_to_df(sfr): """Convert flopy rec arrays for ds2 and ds6 to pandas dataframes.""" d = sfr.segment_data # multi index reform = {(i, j): d[i][j] for i in d.keys() for j in d[i].dtype.names} segdatadf =
pd.DataFrame.from_dict(reform)
pandas.DataFrame.from_dict
import pandas as pd import time import sys def df_parser(file) -> tuple: """ Returns df and name depending on file type """ extention = file.split('.')[1] name = file.split('.')[0] if extention == 'csv': return pd.read_csv(file), name elif extention == 'xlsx': return pd.read_excel(file), name elif extention == 'sql': return pd.read_sql(file), name else: return None def data_lst(df) -> dict: """ Stores input data into a dictionary """ data = {} value = '' for row in df.index: value = ','.join(str(x) for x in df.iloc[row].values) if data.get(value): data[value]['rows'].append(row) else: data[value] = {'rows': [row]} return data def val_list_count(lst1, lst2) -> list: """ Computes total match and unmatch lengths and returns counts and data list. """ match_count = 0 unmatch_count = 0 match_lst = [] unmatch_lst = [] for key in lst1: if lst2.get(key): match_count += len(lst1[key]['rows']) match_lst.append(key.split(',')) else: unmatch_count += len(lst1[key]['rows']) unmatch_lst.append(key.split(',')) return match_lst, unmatch_lst, match_count, unmatch_count def validator(workbook1, workbook2) -> None: """ Auto validator that will return percentage of corrlelation either positive or negative :param workbook1 string: path to workbook 1 :param workbook2 string: path to workbook 2 :param corr boolean: choose whether you would like to search for positive or negative correlation :return: percentages """ start_time = time.time() df1, name1 = df_parser(workbook1) df2, name2 = df_parser(workbook2) val_list_1 = data_lst(df1) val_list_2 = data_lst(df2) mlst1, ulst1, mcount1, ucount1 = val_list_count(val_list_1, val_list_2) mlst2, ulst2, mcount2, ucount2 = val_list_count(val_list_2, val_list_1) pd.DataFrame(mlst1).to_csv(f'reports/Matching_{name1}.csv')
pd.DataFrame(mlst2)
pandas.DataFrame
# coding: utf-8 # ## Integrating LSTM model with Azure Machine Learning Package for Forecasting # # In this notebook, learn how to integrate LSTM model in the framework provided by Azure Machine Learning Package for Forecasting (AMLPF) to quickly build a forecasting model. # We will use dow jones dataset to build a model that forecasts quarterly revenue for these 30 dow jones listed companies. # # #### Disclaimer: # This notebook is based on the ongoing development work as part of the future release of AMLPF. Therefore, please consider this as a preview of what might become available in future as part of AMLPF. # Further, please note that this work has currently been tested only on Windows platform. # # ### Prerequisites: # If you don't have an Azure subscription, create a free account before you begin. The following accounts and application must be set up and installed:<br/> # * Azure Machine Learning Experimentation account. # # If these three are not yet created or installed, follow the Azure Machine Learning Quickstart and Workbench installation article. # # In[18]: import warnings warnings.filterwarnings('ignore') # comment out this statement if you do not want to suppress the warnings. import sys, os, inspect import numpy as np import pandas as pd from datetime import datetime import json import requests from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error import ftk ftk_root_path = (ftk.__path__)[0] # This is the path where ftk package is installed. from ftk.pipeline import AzureMLForecastPipeline from ftk.operationalization.dnnscorecontext import DnnScoreContext from ftk.operationalization.dnn_score_script_helper import score_run from ftk.dnn_utils import create_lag_lead_features from ftk.dnn_utils import pickle_keras_models from keras.models import Model, Sequential from keras.layers import Input, LSTM, Dense from keras.models import load_model print('imports done') # In[2]: np.random.seed(1000) # Set random seed for reproducibility. # In[3]: data_file_path = ftk_root_path + "\\data\\dow_jones\\dow_jones_data.tsv" # Change it depending upon where this file is stored. num_lag_feats = 16 # Number of lag features to be used while training the model. num_leads = 0 # Lead zero indicates current-time's value. forecast only one step at a time. # Note: MAPE error computation is done considering num_leads = 0. It may need to be updated to take into account num_leads > 0. It has not been done yet. num_test_records = 4 # Keep last four records for each company in the test data. num_lstm_au = 50 # Number of units in single lstm layer. num_epochs = 150 # Number of epochs to fit the model. dj_series_freq = 'Q' # In[4]: # Read the dow_jones_data. dj_df = pd.read_table(data_file_path) print(dj_df.head()) print(dj_df.info()) # In[5]: # Revenue has null values for some company. 'V' has been such identified company. # In this experiment, we remove the company from the dataset instead of interpolating. dj_df = dj_df[dj_df['company_ticker'] != 'V'] # Convert quarter_start field to datetime. dj_df['quarter_start'] = pd.to_datetime(dj_df['quarter_start']) print(dj_df.info()) # In[6]: # Group data by company to normalize it accordingly. grouped_data = dj_df.groupby(by='company_ticker') cmp_to_scaler = {} norm_dj_df = pd.DataFrame(columns=dj_df.columns) # Dataframe with quarter_start, company_ticker, normalized-revenue information. # In[7]: # Normalize each company's data individually and save the scaler into a dictionary to be used later. for grp_name, grp_data in grouped_data: cur_grp_data = grp_data.sort_values(by=['quarter_start']) cur_grp_data = cur_grp_data.drop(['company_ticker', 'quarter_start'], axis=1) scaler = MinMaxScaler(feature_range=(0.000001, 1)) norm_grp_data = scaler.fit_transform(cur_grp_data) cmp_to_scaler[grp_name] = scaler norm_grp_df = pd.DataFrame(norm_grp_data, columns=['revenue']) aux_data_df = grp_data.loc[:,('quarter_start', 'company_ticker')] aux_data_df.reset_index(drop=True, inplace=True) cur_grp_norm_df = pd.concat((aux_data_df, norm_grp_df), axis=1) norm_dj_df = norm_dj_df.append(cur_grp_norm_df) # In[8]: # Create 16 lags as features for each quarterly data point (normalized revenue in previous step). dj_reg = pd.DataFrame() norm_grp_data = norm_dj_df.groupby(by='company_ticker') for grp_name, grp_data in norm_grp_data: cur_grp_data = grp_data.sort_values(by=['quarter_start']) dj_reg_grp = create_lag_lead_features(cur_grp_data, ts_col='revenue', aux_cols=['company_ticker', 'quarter_start'], num_lags=num_lag_feats) dj_reg = dj_reg.append(dj_reg_grp) # In[9]: # Create list of feature column-names. feat_cols = [] feat_tgt_cols = [] for i in range(num_lag_feats, 0, -1) : feat_cols.append('revenueLag' + str(i)) feat_tgt_cols.extend(feat_cols) # Create list of target column-names. target_cols = ['revenueLead0'] for i in range(1, num_leads+1) : target_cols.append('revenueLead' + str(i)) feat_tgt_cols.extend(target_cols) # In[10]: # Divide the data into taining and test dataset for each company. dj_reg_grp_data = dj_reg.groupby(by='company_ticker') train_data = pd.DataFrame(columns=dj_reg.columns) test_data = pd.DataFrame(columns=dj_reg.columns) for grp_name, grp_data in dj_reg_grp_data: cur_grp_data = grp_data.sort_values(by=['quarter_start']) num_records = cur_grp_data.shape[0] train_data = train_data.append(pd.DataFrame(cur_grp_data.iloc[:(num_records - num_test_records),:])) test_data = test_data.append(pd.DataFrame(cur_grp_data.iloc[(num_records - num_test_records):,:])) # In[11]: # Extract features and target values for training data. train_X = train_data[feat_cols] train_Y = train_data[target_cols] """ Formatting the input to be of the shape (number_of_samples, timesteps, number_of_features). For detail explanation refer to https://keras.io/layers/recurrent/. Note: I am considering here single timestep (set to 1) and number of features to be 16. It could be specified in a different way (I mean, 16 timesteps instead of 1) and I plan to experiment that in future. """ train_X = train_X.values.reshape((train_X.shape[0], 1, train_X.shape[1])) train_Y = train_Y.values.reshape((train_Y.shape[0], train_Y.shape[1])) print(train_X.shape) print(train_Y.shape) # In[12]: # Create a LSTM network. model = Sequential() model.add(LSTM(num_lstm_au, input_shape=(train_X.shape[1], train_X.shape[2]))) model.add(Dense(1)) #dimension of the output vector model.compile(loss='mean_squared_error', optimizer='adam') # In[13]: # Fit network. Currently set the batch_size=1; will add more relevant information on this later. history = model.fit(train_X, train_Y, epochs=num_epochs, batch_size=1, verbose=2, shuffle=False) # In[14]: # Print model.summary. print(model.summary()) # In[21]: pickle_keras_models() # In[36]: # Initialize dataframe with column-names to hold forecasts and other relevant information. final_test_forecasts = pd.DataFrame(columns=['company_ticker', 'quarter_start', 'actual', 'forecast']) # Initialize dataframe with column-names to hold MAPE (Mean Absolute Percentage Error) for each company. final_mapes = pd.DataFrame(columns=['company_ticker', 'mape']) """ Compute prediction of test data one company at a time. This is to simplify the process of scaling it back to original scale for that company. """ test_grp_data = test_data.groupby(by='company_ticker') for grp_name, grp_data in test_grp_data: cur_grp_data = grp_data.reset_index(drop=True) cur_grp_data['quarter_start'] =
pd.to_datetime(cur_grp_data['quarter_start'])
pandas.to_datetime
import warnings from collections import OrderedDict as odict from glob import glob from os.path import basename, dirname, join from deprecated.sphinx import versionadded from ._bed_read import read_bed from ._util import last_replace def read_plink(file_prefix, verbose=True): """ Read PLINK files into data frames. Note ---- We suggest using :func:`read_plink1_bin` instead as it provides a clearer interface. Examples -------- We have shipped this package with an example so can load and inspect by doing .. doctest:: >>> from os.path import join >>> from pandas_plink import read_plink >>> from pandas_plink import get_data_folder >>> (bim, fam, bed) = read_plink(join(get_data_folder(), "data"), verbose=False) >>> print(bim.head()) chrom snp cm pos a0 a1 i 0 1 rs10399749 0.00 45162 G C 0 1 1 rs2949420 0.00 45257 C T 1 2 1 rs2949421 0.00 45413 0 0 2 3 1 rs2691310 0.00 46844 A T 3 4 1 rs4030303 0.00 72434 0 G 4 >>> print(fam.head()) fid iid father mother gender trait i 0 Sample_1 Sample_1 0 0 1 -9.00 0 1 Sample_2 Sample_2 0 0 2 -9.00 1 2 Sample_3 Sample_3 Sample_1 Sample_2 2 -9.00 2 >>> print(bed.compute()) [[2.00 2.00 1.00] [2.00 1.00 2.00] [ nan nan nan] [ nan nan 1.00] [2.00 2.00 2.00] [2.00 2.00 2.00] [2.00 1.00 0.00] [2.00 2.00 2.00] [1.00 2.00 2.00] [2.00 1.00 2.00]] The values of the ``bed`` matrix denote how many alleles ``a1`` (see output of data frame ``bim``) are in the corresponding position and individual. Notice the column ``i`` in ``bim`` and ``fam`` data frames. It maps to the corresponding position of the bed matrix: .. doctest:: >>> chrom1 = bim.query("chrom=='1'") >>> X = bed[chrom1.i.values, :].compute() >>> print(X) [[2.00 2.00 1.00] [2.00 1.00 2.00] [ nan nan nan] [ nan nan 1.00] [2.00 2.00 2.00] [2.00 2.00 2.00] [2.00 1.00 0.00] [2.00 2.00 2.00] [1.00 2.00 2.00] [2.00 1.00 2.00]] It also allows the use of the wildcard character ``*`` for mapping multiple BED files at once: ``(bim, fam, bed) = read_plink("chrom*")``. In this case, only one of the FAM files will be used to define sample information. Data from BIM and BED files are concatenated to provide a single view of the files. Parameters ---------- file_prefix : str Path prefix to the set of PLINK files. It supports loading many BED files at once using globstrings wildcard. verbose : bool ``True`` for progress information; ``False`` otherwise. Returns ------- alleles : :class:`pandas.DataFrame` Alleles. samples : :class:`pandas.DataFrame` Samples. genotypes : :class:`numpy.ndarray` Genotype. """ from tqdm import tqdm import pandas as pd from dask.array import concatenate file_prefixes = sorted(glob(file_prefix)) if len(file_prefixes) == 0: file_prefixes = [file_prefix.replace("*", "")] file_prefixes = sorted(_clean_prefixes(file_prefixes)) fn = [] for fp in file_prefixes: fn.append({s: "%s.%s" % (fp, s) for s in ["bed", "bim", "fam"]}) pbar = tqdm(desc="Mapping files", total=3 * len(fn), disable=not verbose) bim = _read_file(fn, lambda fn: _read_bim(fn["bim"]), pbar) if len(file_prefixes) > 1: if verbose: msg = "Multiple files read in this order: {}" print(msg.format([basename(f) for f in file_prefixes])) nmarkers = dict() index_offset = 0 for i, bi in enumerate(bim): nmarkers[fn[i]["bed"]] = bi.shape[0] bi["i"] += index_offset index_offset += bi.shape[0] bim = pd.concat(bim, axis=0, ignore_index=True) fam = _read_file([fn[0]], lambda fn: _read_fam(fn["fam"]), pbar)[0] nsamples = fam.shape[0] bed = _read_file( fn, lambda f: _read_bed(f["bed"], nsamples, nmarkers[f["bed"]]), pbar ) bed = concatenate(bed, axis=0) pbar.close() return (bim, fam, bed) @versionadded(version="2.0.0") def read_plink1_bin(bed, bim=None, fam=None, verbose=True): """ Read PLINK 1 binary files [1]_ into a data array. A PLINK 1 binary file set consists of three files: - BED: containing the genotype. - BIM: containing variant information. - FAM: containing sample information. The user might provide a single file path to a BED file, from which this function will try to infer the file path of the other two files. This function also allows the user to provide file path to multiple BED and BIM files, as it is common to have a data set split into multiple files, one per chromosome. This function returns a samples-by-variants matrix. This is a special kind of matrix with rows and columns having multiple coordinates each. Those coordinates have the metainformation contained in the BIM and FAM files. Examples -------- The following example reads two BED files and two BIM files correspondig to chromosomes 11 and 12, and read a single FAM file whose filename is inferred from the BED filenames. .. doctest:: >>> from os.path import join >>> from pandas_plink import read_plink1_bin >>> from pandas_plink import get_data_folder >>> G = read_plink1_bin(join(get_data_folder(), "chr*.bed"), verbose=False) >>> print(G) <xarray.DataArray 'genotype' (sample: 14, variant: 1252)> dask.array<concatenate, shape=(14, 1252), dtype=float64, chunksize=(14, 779), chunktype=numpy.ndarray> Coordinates: * sample (sample) object 'B001' 'B002' 'B003' ... 'B012' 'B013' 'B014' * variant (variant) object '11_316849996' '11_316874359' ... '12_373081507' fid (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014' iid (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014' father (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' mother (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' gender (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' trait (sample) float64 -9.0 -9.0 -9.0 -9.0 -9.0 ... -9.0 -9.0 -9.0 -9.0 chrom (variant) <U2 '11' '11' '11' '11' '11' ... '12' '12' '12' '12' '12' snp (variant) <U9 '316849996' '316874359' ... '372918788' '373081507' cm (variant) float64 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 pos (variant) int64 157439 181802 248969 ... 27163741 27205125 27367844 a0 (variant) <U1 'C' 'G' 'G' 'C' 'C' 'T' ... 'A' 'A' 'G' 'A' 'T' 'G' a1 (variant) <U1 'T' 'C' 'C' 'T' 'T' 'A' ... 'T' 'G' 'A' 'T' 'C' 'A' >>> print(G.shape) (14, 1252) Suppose we want the genotypes of the chromosome 11 only: .. doctest:: >>> G = G.where(G.chrom == "11", drop=True) >>> print(G) <xarray.DataArray 'genotype' (sample: 14, variant: 779)> dask.array<where, shape=(14, 779), dtype=float64, chunksize=(14, 779), chunktype=numpy.ndarray> Coordinates: * sample (sample) object 'B001' 'B002' 'B003' ... 'B012' 'B013' 'B014' * variant (variant) object '11_316849996' '11_316874359' ... '11_345698259' fid (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014' iid (sample) <U4 'B001' 'B002' 'B003' 'B004' ... 'B012' 'B013' 'B014' father (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' mother (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' gender (sample) <U1 '0' '0' '0' '0' '0' '0' ... '0' '0' '0' '0' '0' '0' trait (sample) float64 -9.0 -9.0 -9.0 -9.0 -9.0 ... -9.0 -9.0 -9.0 -9.0 chrom (variant) <U2 '11' '11' '11' '11' '11' ... '11' '11' '11' '11' '11' snp (variant) <U9 '316849996' '316874359' ... '345653648' '345698259' cm (variant) float64 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 pos (variant) int64 157439 181802 248969 ... 28937375 28961091 29005702 a0 (variant) <U1 'C' 'G' 'G' 'C' 'C' 'T' ... 'T' 'A' 'C' 'A' 'A' 'T' a1 (variant) <U1 'T' 'C' 'C' 'T' 'T' 'A' ... 'C' 'G' 'T' 'G' 'C' 'C' >>> print(G.shape) (14, 779) Lets now print the genotype value of the sample `B003` for variant `11_316874359`: .. doctest:: >>> print(G.sel(sample="B003", variant="11_316874359").values) 0.0 The special matrix we return is of type :class:`xarray.DataArray`. More information about it can be found at the `xarray documentation <http://xarray.pydata.org>`_. Parameters ---------- bed : str Path to a BED file. It can contain shell-style wildcards to indicate multiple BED files. bim : str, optional Path to a BIM file. It can contain shell-style wildcards to indicate multiple BIM files. It defaults to ``None``, in which case it will try to be inferred. fam : str, optional Path to a FAM file. It defaults to ``None``, in which case it will try to be inferred. verbose : bool ``True`` for progress information; ``False`` otherwise. Returns ------- G : :class:`xarray.DataArray` Genotype with metadata. References ---------- .. [1] PLINK 1 binary. https://www.cog-genomics.org/plink/2.0/input#bed """ from numpy import int64, float64 from tqdm import tqdm from xarray import DataArray import pandas as pd import dask.array as da bed_files = sorted(glob(bed)) if len(bed_files) == 0: raise ValueError("No BED file has been found.") if bim is None: bim_files = [last_replace(f, ".bed", ".bim") for f in bed_files] else: bim_files = sorted(glob(bim)) if len(bim_files) == 0: raise ValueError("No BIM file has been found.") if fam is None: fam_files = [last_replace(f, ".bed", ".fam") for f in bed_files] else: fam_files = sorted(glob(fam)) if len(fam_files) == 0: raise ValueError("No FAM file has been found.") if len(bed_files) != len(bim_files): raise ValueError("The numbers of BED and BIM files must match.") if len(fam_files) > 1: msg = "More than one FAM file has been specified. Only the first one will be " msg += "considered." if verbose: warnings.warn(msg, UserWarning) fam_files = fam_files[:1] nfiles = len(bed_files) + len(bim_files) + 1 pbar = tqdm(desc="Mapping files", total=nfiles, disable=not verbose) bims = _read_file(bim_files, lambda f: _read_bim(f), pbar) nmarkers = {bed_files[i]: b.shape[0] for i, b in enumerate(bims)} bim =
pd.concat(bims, axis=0, ignore_index=True)
pandas.concat
#!/usr/bin/env python import os import dill as pickle import sys import emcee import matplotlib import matplotlib.pyplot as plt from astropy.table import Table from emcee.mpi_pool import MPIPool import src.globals as glo import pandas as pd import numpy as np import corner from src.objects import SpecCandidate, TargetDataFrame, load_training_data from src.utils import fits_pandas, parallelize, Str from pyspark.sql import SparkSession def process(func, items, hpc=False, sc=None, multi=True, n_proc=2): if multi: if hpc: sc.parallelize(items).foreach(lambda i: func(*i)) else: parallelize(lambda i: func(*i), items, n_proc=n_proc) else: for c in items: func(*c) def norm(z, n3, n2, n1, n0): return n3 * z**3 + n2 * z**2 + n1 * z + n0 # return n1 * z + n0 # return n1 * z + n0 def slope(z, s3, s2, s1, s0): return s3 * z**3 + s2 * z**2 + s1 * z + s0 def model(mag, z, params): slope_args, norm_args = params[:4], params[4:] col = (slope(z, *slope_args) * mag) + norm(z, *norm_args) return col def log_likelihood(theta, x, y, z, xerr, yerr, zerr): params, lnf = theta[:-1], theta[-1] mdl = model(x, z, params) inv_sigma2 = 1.0 / (xerr**2 + yerr**2 + zerr**2 + mdl**2 * np.exp(2 * lnf)) return -0.5 * (np.sum((y - mdl)**2 * inv_sigma2 - np.log(inv_sigma2))) def log_prior(theta): n = 100 if all([(-n < param < n) for param in theta]): return 0.0 return -np.inf def log_probability(theta, x, y, z, xerr, yerr, zerr): lg_prior = log_prior(theta) if not np.isfinite(lg_prior): return -np.inf return lg_prior + log_likelihood(theta, x, y, z, xerr, yerr, zerr) def main(df=None, pkl_chains=True, burnin=10000, nsteps=100000): with MPIPool() as pool: if not pool.is_master(): pool.wait() sys.exit(0) # pool = None # if True: # print('here') df = load_training_data(from_pkl=True) for col in glo.col_options: key_mag, key_col = 'MAG_AUTO_I', f'MAG_AUTO_{col:u}' key_mag_err = 'MAGERR_DETMODEL_I' key_mag_err_0 = f'MAGERR_DETMODEL_{col[0]:u}' key_mag_err_1 = f'MAGERR_DETMODEL_{col[1]:u}' magnitude = df[key_mag].values magnitude_err = df[key_mag_err].values colour = df[key_col].values colour_err = np.hypot(df[key_mag_err_0], df[key_mag_err_1]).values redshift = df['Z'].values redshift_err = df['Z_ERR'].values # pos=pos ndim, nwalkers = 9, 100 pos = [1e-4 * np.random.randn(ndim) for _ in range(nwalkers)] args = magnitude, colour, redshift, magnitude_err, colour_err, redshift_err settings = nwalkers, ndim, log_probability sampler = emcee.EnsembleSampler(*settings, args=args, pool=pool) sampler.run_mcmc(pos, nsteps) if pkl_chains is True: name = f'rs.model.{col:l}.chain.pkl' data = os.path.join(glo.DIR_INTERIM, name) with open(data, 'wb') as data_out: pickle.dump(sampler.chain, data_out) plt.clf() fig, axes = plt.subplots(ndim, 1, sharex=True, figsize=(8, 9)) labels = [f's{i}' for i in np.arange(0, 4, 1)] + [ # 'c' f'n{i}' for i in np.arange(0, 4, 1) ] + ['f'] for i, param in enumerate(labels): steps = sampler.chain[:, :, i].T if param == 'f': steps = np.exp(steps) axes[i].plot(steps, color='k', alpha=0.4) # axes[i].yaxis.set_major_locator(MaxNLocator(5)) axes[i].axhline(param, color='#888888', lw=3) axes[i].set_ylabel(f'{param}', fontsize=16) axes[i].tick_params( 'both', length=3, width=1.5, which='major', labelsize=16) fig.subplots_adjust(wspace=0, hspace=0) fig.tight_layout(h_pad=0.0) fig.savefig( 'rs.model.{0:l}.chain.png'.format(col), format='png', dpi=300) plt.close() samples = sampler.chain[:, burnin:, :].reshape((-1, ndim)) fig = corner.corner(samples, labels=labels) fig.savefig( 'rs.model.{0:l}.corner.png'.format(col), format='png', dpi=300) def plot_red_sequence(col, z, group, burnin=10000): title = 'COL: {0:u}, Z: {1:.4f}, LEN: {2}'.format(col, z, len(group)) print(title) plt.clf() ax = plt.subplot(111) try: key_mag, key_col = 'MAG_AUTO_I', f'MAG_AUTO_{col:u}' key_mag_err = 'MAGERR_DETMODEL_I' key_mag_err_0 = f'MAGERR_DETMODEL_{col[0]:u}' key_mag_err_1 = f'MAGERR_DETMODEL_{col[1]:u}' # These detmodel errors are required for calculating the weights. # Combine errors from multiple bands to calculate the error on the cols. mag_err = group[key_mag_err] col_err = np.hypot(group[key_mag_err_0], group[key_mag_err_1]) mag, colour = group[key_mag], group[key_col] ax.errorbar(mag, colour, xerr=mag_err, yerr=col_err, fmt='.k') except Exception as e: # No observed data for this print(e) ax.set_xlim([16, 22]) ax.set_ylim([-2, 3]) ax.set_xlabel('i') ax.set_ylabel(f'{col:l}') name = f'rs.model.{col:l}.chain.pkl' data = os.path.join(glo.DIR_INTERIM, name) with open(data, 'rb') as data_in: samples = pickle.load(data_in)[:, burnin:, :].reshape((-1, 9)) xl = np.array([16, 22]) for theta in samples[np.random.randint(len(samples), size=100)]: params = theta[:-1] plt.plot(xl, model(xl, z, params), color='k', alpha=0.1) plt.suptitle(title) name = f'rs.model.{col:l}.{z:.5f}.png' plt.savefig(os.path.join(glo.DIR_FIGS, 'models', name), dpi=300) def plot_everything(df=None, hpc=True): df = load_training_data(from_pkl=True) if hpc is True: # Set up spark context and parallelize over the objects sc = SparkSession.builder.appName('rs_plots').getOrCreate().sparkContext sc.addPyFile(f'file:///{glo.DIR_PROJECT}/src/misc/spark_logging.py') else: sc = None def gen_items(galaxies): for rs_colour in glo.col_options: # rs_colour = glo.col_options[-1] for z_bin, group in galaxies.groupby('Z_BIN'): # z = round(z_bin.mid, 8) z = z_bin.mid yield rs_colour, z, group z_bins = np.arange(0, 0.7, 0.0005) df['Z_BIN'] = pd.cut(df['Z'], z_bins) process(func=plot_red_sequence, items=list(gen_items(df)), hpc=hpc, sc=sc) # def plot_col_z(df, hpc=True): def rs_norm_slope(z, burnin=2000): # title = 'COL: {0:u}, Z: {1:.5f}'.format(col, z) # print(title) # plt.clf() # ax = plt.subplot(111) data_dict = {} for col in glo.col_options: name = f'rs.model.{col:l}.chain.pkl' data = os.path.join(glo.DIR_INTERIM, name) with open(data, 'rb') as data_in: samples = pickle.load(data_in)[:, burnin:, :].reshape((-1, 9)) # samples = np.exp(samples) results = zip(*np.percentile(samples, [16, 50, 84], axis=0)) params = [np.array([v[1], v[2] - v[1], v[1] - v[0]]) for v in results] params = np.array(params) data_dict['REDSHIFT'] = z data_dict[f'SLOPE_{col:u}'] = slope(z, *params[:4, 0]) data_dict[f'NORM_{col:u}'] = norm(z, *params[4:-1, 0]) return
pd.Series(data_dict)
pandas.Series
import mysql.connector import base64 from datetime import date, timedelta, timezone import pandas as pd import requests from datetime import datetime from data_management import settings as config from urllib.parse import urlencode import data_processing_app.models as models from django.db.models.functions import ExtractWeek, ExtractYear from django.db.models import Sum import data_processing_app.toggl_data_processing as data_processing from plotly.offline import plot from plotly.graph_objs import Scatter import plotly.graph_objs as go def connect_to_toggl(api_token): """Connect to toggl and get response containing information to the :param api_token: Token for you user profile, you can find the token at Toggl.com at the end of the profile settings page """ string = api_token + ':api_token' headers = { 'Authorization': 'Basic ' + base64.b64encode(string.encode('ascii')).decode("utf-8")} url = 'https://www.toggl.com/api/v8/me' response = requests.get(url, headers=headers) response = response.json() email = response['data']['email'] workspaces = [{'name': item['name'], 'id': item['id']} for item in response['data']['workspaces'] if item['admin'] == True] return email, workspaces, headers def get_all_clients_and_projects(my_workspace, headers): '''Gets all clients and projects for your workspace id''' url = 'https://www.toggl.com/api/v8/workspaces/' + str(my_workspace) + '/clients' clients = requests.get(url, headers=headers).json() url = 'https://www.toggl.com/api/v8/workspaces/' + str(my_workspace) + '/projects' projects = requests.get(url, headers=headers).json() return clients, projects def get_all_time_entries(headers, start_date, end_date): '''Finds all time entries in the time frame [start_date - end_date]''' start_date = datetime.combine(start_date, datetime.min.time()) end_date = datetime.combine(end_date, datetime.min.time()) start_date = start_date.replace(tzinfo=timezone.utc).isoformat() end_date = end_date.replace(tzinfo=timezone.utc).isoformat() url = 'https://api.track.toggl.com/api/v8/time_entries?' params = {'start_date': start_date, 'end_date': end_date} url = url + '{}'.format(urlencode(params)) time_entries = requests.get(url, headers=headers).json() return time_entries def data_processing(clients,projects,time_entries): '''Join clients, projects and time entries to a data frame with all time entries and the corresponding information to clients and projects''' projects_filtered = [{'pid': item['id'], 'cid': item['cid'], 'project_name': item['name']} for item in projects] clients_filtered = [{'cid': item['id'], 'client_name': item['name']} for item in clients] projects_df =
pd.DataFrame(data=projects_filtered)
pandas.DataFrame
""" Performance testing of the Shapley module based on processing times """ from modules import shapley from pprint import pprint from pandas import pandas from time import time DATASET_SIMPLE = pandas.read_csv('./test_datasets/simple.csv', sep=',') DATASET_MEDIUM = pandas.read_csv('./test_datasets/medium.csv', sep=',') DATASET_BIG =
pandas.read_csv('./test_datasets/big.csv', sep=',')
pandas.pandas.read_csv
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation, Flatten from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import f1_score from sklearn.metrics import accuracy_score, confusion_matrix from keras.callbacks import ModelCheckpoint import seaborn as sns from keras.optimizers import Adam import pickle import matplotlib.pyplot as plt import lime import lime.lime_tabular from lime.lime_tabular import LimeTabularExplainer # fix random seed for reproducibility np.random.seed(0) # Read dataset db =
pd.read_csv("covid_filtered_1-5_allMin3.csv")
pandas.read_csv
from datetime import datetime from io import StringIO import itertools import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Period, Series, Timedelta, date_range, ) import pandas._testing as tm class TestDataFrameReshape: def test_stack_unstack(self, float_frame): df = float_frame.copy() df[:] = np.arange(np.prod(df.shape)).reshape(df.shape) stacked = df.stack() stacked_df = DataFrame({"foo": stacked, "bar": stacked}) unstacked = stacked.unstack() unstacked_df = stacked_df.unstack() tm.assert_frame_equal(unstacked, df) tm.assert_frame_equal(unstacked_df["bar"], df) unstacked_cols = stacked.unstack(0) unstacked_cols_df = stacked_df.unstack(0) tm.assert_frame_equal(unstacked_cols.T, df) tm.assert_frame_equal(unstacked_cols_df["bar"].T, df) def test_stack_mixed_level(self): # GH 18310 levels = [range(3), [3, "a", "b"], [1, 2]] # flat columns: df = DataFrame(1, index=levels[0], columns=levels[1]) result = df.stack() expected = Series(1, index=MultiIndex.from_product(levels[:2])) tm.assert_series_equal(result, expected) # MultiIndex columns: df = DataFrame(1, index=levels[0], columns=MultiIndex.from_product(levels[1:])) result = df.stack(1) expected = DataFrame( 1, index=MultiIndex.from_product([levels[0], levels[2]]), columns=levels[1] ) tm.assert_frame_equal(result, expected) # as above, but used labels in level are actually of homogeneous type result = df[["a", "b"]].stack(1) expected = expected[["a", "b"]] tm.assert_frame_equal(result, expected) def test_unstack_not_consolidated(self, using_array_manager): # Gh#34708 df = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) df2 = df[["x"]] df2["y"] = df["y"] if not using_array_manager: assert len(df2._mgr.blocks) == 2 res = df2.unstack() expected = df.unstack() tm.assert_series_equal(res, expected) def test_unstack_fill(self): # GH #9746: fill_value keyword argument for Series # and DataFrame unstack # From a series data = Series([1, 2, 4, 5], dtype=np.int16) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack(fill_value=-1) expected = DataFrame( {"a": [1, -1, 5], "b": [2, 4, -1]}, index=["x", "y", "z"], dtype=np.int16 ) tm.assert_frame_equal(result, expected) # From a series with incorrect data type for fill_value result = data.unstack(fill_value=0.5) expected = DataFrame( {"a": [1, 0.5, 5], "b": [2, 4, 0.5]}, index=["x", "y", "z"], dtype=float ) tm.assert_frame_equal(result, expected) # GH #13971: fill_value when unstacking multiple levels: df = DataFrame( {"x": ["a", "a", "b"], "y": ["j", "k", "j"], "z": [0, 1, 2], "w": [0, 1, 2]} ).set_index(["x", "y", "z"]) unstacked = df.unstack(["x", "y"], fill_value=0) key = ("<KEY>") expected = unstacked[key] result = Series([0, 0, 2], index=unstacked.index, name=key) tm.assert_series_equal(result, expected) stacked = unstacked.stack(["x", "y"]) stacked.index = stacked.index.reorder_levels(df.index.names) # Workaround for GH #17886 (unnecessarily casts to float): stacked = stacked.astype(np.int64) result = stacked.loc[df.index] tm.assert_frame_equal(result, df) # From a series s = df["w"] result = s.unstack(["x", "y"], fill_value=0) expected = unstacked["w"] tm.assert_frame_equal(result, expected) def test_unstack_fill_frame(self): # From a dataframe rows = [[1, 2], [3, 4], [5, 6], [7, 8]] df = DataFrame(rows, columns=list("AB"), dtype=np.int32) df.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = df.unstack(fill_value=-1) rows = [[1, 3, 2, 4], [-1, 5, -1, 6], [7, -1, 8, -1]] expected = DataFrame(rows, index=list("xyz"), dtype=np.int32) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) # From a mixed type dataframe df["A"] = df["A"].astype(np.int16) df["B"] = df["B"].astype(np.float64) result = df.unstack(fill_value=-1) expected["A"] = expected["A"].astype(np.int16) expected["B"] = expected["B"].astype(np.float64) tm.assert_frame_equal(result, expected) # From a dataframe with incorrect data type for fill_value result = df.unstack(fill_value=0.5) rows = [[1, 3, 2, 4], [0.5, 5, 0.5, 6], [7, 0.5, 8, 0.5]] expected = DataFrame(rows, index=list("xyz"), dtype=float) expected.columns = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")] ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_datetime(self): # Test unstacking with date times dv = date_range("2012-01-01", periods=4).values data = Series(dv) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [dv[0], pd.NaT, dv[3]], "b": [dv[1], dv[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=dv[0]) expected = DataFrame( {"a": [dv[0], dv[0], dv[3]], "b": [dv[1], dv[2], dv[0]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_timedelta(self): # Test unstacking with time deltas td = [Timedelta(days=i) for i in range(4)] data = Series(td) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [td[0], pd.NaT, td[3]], "b": [td[1], td[2], pd.NaT]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=td[1]) expected = DataFrame( {"a": [td[0], td[1], td[3]], "b": [td[1], td[2], td[1]]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_period(self): # Test unstacking with period periods = [ Period("2012-01"), Period("2012-02"), Period("2012-03"), Period("2012-04"), ] data = Series(periods) data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) result = data.unstack() expected = DataFrame( {"a": [periods[0], None, periods[3]], "b": [periods[1], periods[2], None]}, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) result = data.unstack(fill_value=periods[1]) expected = DataFrame( { "a": [periods[0], periods[1], periods[3]], "b": [periods[1], periods[2], periods[1]], }, index=["x", "y", "z"], ) tm.assert_frame_equal(result, expected) def test_unstack_fill_frame_categorical(self): # Test unstacking with categorical data = Series(["a", "b", "c", "a"], dtype="category") data.index = MultiIndex.from_tuples( [("x", "a"), ("x", "b"), ("y", "b"), ("z", "a")] ) # By default missing values will be NaN result = data.unstack() expected = DataFrame( { "a": pd.Categorical(list("axa"), categories=list("abc")), "b": pd.Categorical(list("bcx"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) # Fill with non-category results in a ValueError msg = r"'fill_value=d' is not present in" with pytest.raises(TypeError, match=msg): data.unstack(fill_value="d") # Fill with category value replaces missing values as expected result = data.unstack(fill_value="c") expected = DataFrame( { "a": pd.Categorical(list("aca"), categories=list("abc")), "b": pd.Categorical(list("bcc"), categories=list("abc")), }, index=list("xyz"), ) tm.assert_frame_equal(result, expected) def test_unstack_tuplename_in_multiindex(self): # GH 19966 idx = MultiIndex.from_product( [["a", "b", "c"], [1, 2, 3]], names=[("A", "a"), ("B", "b")] ) df = DataFrame({"d": [1] * 9, "e": [2] * 9}, index=idx) result = df.unstack(("A", "a")) expected = DataFrame( [[1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2]], columns=MultiIndex.from_tuples( [ ("d", "a"), ("d", "b"), ("d", "c"), ("e", "a"), ("e", "b"), ("e", "c"), ], names=[None, ("A", "a")], ), index=Index([1, 2, 3], name=("B", "b")), ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "unstack_idx, expected_values, expected_index, expected_columns", [ ( ("A", "a"), [[1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2], [1, 1, 2, 2]], MultiIndex.from_tuples( [(1, 3), (1, 4), (2, 3), (2, 4)], names=["B", "C"] ), MultiIndex.from_tuples( [("d", "a"), ("d", "b"), ("e", "a"), ("e", "b")], names=[None, ("A", "a")], ), ), ( (("A", "a"), "B"), [[1, 1, 1, 1, 2, 2, 2, 2], [1, 1, 1, 1, 2, 2, 2, 2]], Index([3, 4], name="C"), MultiIndex.from_tuples( [ ("d", "a", 1), ("d", "a", 2), ("d", "b", 1), ("d", "b", 2), ("e", "a", 1), ("e", "a", 2), ("e", "b", 1), ("e", "b", 2), ], names=[None, ("A", "a"), "B"], ), ), ], ) def test_unstack_mixed_type_name_in_multiindex( self, unstack_idx, expected_values, expected_index, expected_columns ): # GH 19966 idx = MultiIndex.from_product( [["a", "b"], [1, 2], [3, 4]], names=[("A", "a"), "B", "C"] ) df = DataFrame({"d": [1] * 8, "e": [2] * 8}, index=idx) result = df.unstack(unstack_idx) expected = DataFrame( expected_values, columns=expected_columns, index=expected_index ) tm.assert_frame_equal(result, expected) def test_unstack_preserve_dtypes(self): # Checks fix for #11847 df = DataFrame( { "state": ["IL", "MI", "NC"], "index": ["a", "b", "c"], "some_categories": Series(["a", "b", "c"]).astype("category"), "A": np.random.rand(3), "B": 1, "C": "foo", "D": pd.Timestamp("20010102"), "E": Series([1.0, 50.0, 100.0]).astype("float32"), "F": Series([3.0, 4.0, 5.0]).astype("float64"), "G": False, "H": Series([1, 200, 923442], dtype="int8"), } ) def unstack_and_compare(df, column_name): unstacked1 = df.unstack([column_name]) unstacked2 = df.unstack(column_name) tm.assert_frame_equal(unstacked1, unstacked2) df1 = df.set_index(["state", "index"]) unstack_and_compare(df1, "index") df1 = df.set_index(["state", "some_categories"]) unstack_and_compare(df1, "some_categories") df1 = df.set_index(["F", "C"]) unstack_and_compare(df1, "F") df1 = df.set_index(["G", "B", "state"]) unstack_and_compare(df1, "B") df1 = df.set_index(["E", "A"]) unstack_and_compare(df1, "E") df1 = df.set_index(["state", "index"]) s = df1["A"] unstack_and_compare(s, "index") def test_stack_ints(self): columns = MultiIndex.from_tuples(list(itertools.product(range(3), repeat=3))) df = DataFrame(np.random.randn(30, 27), columns=columns) tm.assert_frame_equal(df.stack(level=[1, 2]), df.stack(level=1).stack(level=1)) tm.assert_frame_equal( df.stack(level=[-2, -1]), df.stack(level=1).stack(level=1) ) df_named = df.copy() return_value = df_named.columns.set_names(range(3), inplace=True) assert return_value is None tm.assert_frame_equal( df_named.stack(level=[1, 2]), df_named.stack(level=1).stack(level=1) ) def test_stack_mixed_levels(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) # GH #8584: Need to check that stacking works when a number # is passed that is both a level name and in the range of # the level numbers df2 = df.copy() df2.columns.names = ["exp", "animal", 1] tm.assert_frame_equal( df2.stack(level=["animal", 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=["exp", 1]), exp_hair_stacked, check_names=False ) # When mixed types are passed and the ints are not level # names, raise msg = ( "level should contain all level names or all level numbers, not " "a mixture of the two" ) with pytest.raises(ValueError, match=msg): df2.stack(level=["animal", 0]) # GH #8584: Having 0 in the level names could raise a # strange error about lexsort depth df3 = df.copy() df3.columns.names = ["exp", "animal", 0] tm.assert_frame_equal( df3.stack(level=["animal", 0]), animal_hair_stacked, check_names=False ) def test_stack_int_level_names(self): columns = MultiIndex.from_tuples( [ ("A", "cat", "long"), ("B", "cat", "long"), ("A", "dog", "short"), ("B", "dog", "short"), ], names=["exp", "animal", "hair_length"], ) df = DataFrame(np.random.randn(4, 4), columns=columns) exp_animal_stacked = df.stack(level=["exp", "animal"]) animal_hair_stacked = df.stack(level=["animal", "hair_length"]) exp_hair_stacked = df.stack(level=["exp", "hair_length"]) df2 = df.copy() df2.columns.names = [0, 1, 2] tm.assert_frame_equal( df2.stack(level=[1, 2]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 1]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df2.stack(level=[0, 2]), exp_hair_stacked, check_names=False ) # Out-of-order int column names df3 = df.copy() df3.columns.names = [2, 0, 1] tm.assert_frame_equal( df3.stack(level=[0, 1]), animal_hair_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 0]), exp_animal_stacked, check_names=False ) tm.assert_frame_equal( df3.stack(level=[2, 1]), exp_hair_stacked, check_names=False ) def test_unstack_bool(self): df = DataFrame( [False, False], index=MultiIndex.from_arrays([["a", "b"], ["c", "l"]]), columns=["col"], ) rs = df.unstack() xp = DataFrame( np.array([[False, np.nan], [np.nan, False]], dtype=object), index=["a", "b"], columns=MultiIndex.from_arrays([["col", "col"], ["c", "l"]]), ) tm.assert_frame_equal(rs, xp) def test_unstack_level_binding(self): # GH9856 mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"], ["a", "b"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 1, 0]], names=["first", "second", "third"], ) s = Series(0, index=mi) result = s.unstack([1, 2]).stack(0) expected_mi = MultiIndex( levels=[["foo", "bar"], ["one", "two"]], codes=[[0, 0, 1, 1], [0, 1, 0, 1]], names=["first", "second"], ) expected = DataFrame( np.array( [[np.nan, 0], [0, np.nan], [np.nan, 0], [0, np.nan]], dtype=np.float64 ), index=expected_mi, columns=Index(["a", "b"], name="third"), ) tm.assert_frame_equal(result, expected) def test_unstack_to_series(self, float_frame): # check reversibility data = float_frame.unstack() assert isinstance(data, Series) undo = data.unstack().T tm.assert_frame_equal(undo, float_frame) # check NA handling data = DataFrame({"x": [1, 2, np.NaN], "y": [3.0, 4, np.NaN]}) data.index = Index(["a", "b", "c"]) result = data.unstack() midx = MultiIndex( levels=[["x", "y"], ["a", "b", "c"]], codes=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]], ) expected = Series([1, 2, np.NaN, 3, 4, np.NaN], index=midx) tm.assert_series_equal(result, expected) # check composability of unstack old_data = data.copy() for _ in range(4): data = data.unstack() tm.assert_frame_equal(old_data, data) def test_unstack_dtypes(self): # GH 2929 rows = [[1, 1, 3, 4], [1, 2, 3, 4], [2, 1, 3, 4], [2, 2, 3, 4]] df = DataFrame(rows, columns=list("ABCD")) result = df.dtypes expected = Series([np.dtype("int64")] * 4, index=list("ABCD")) tm.assert_series_equal(result, expected) # single dtype df2 = df.set_index(["A", "B"]) df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("int64")] * 4, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # mixed df2 = df.set_index(["A", "B"]) df2["C"] = 3.0 df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("int64")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) df2["D"] = "foo" df3 = df2.unstack("B") result = df3.dtypes expected = Series( [np.dtype("float64")] * 2 + [np.dtype("object")] * 2, index=MultiIndex.from_arrays( [["C", "C", "D", "D"], [1, 2, 1, 2]], names=(None, "B") ), ) tm.assert_series_equal(result, expected) # GH7405 for c, d in ( (np.zeros(5), np.zeros(5)), (np.arange(5, dtype="f8"), np.arange(5, 10, dtype="f8")), ): df = DataFrame( { "A": ["a"] * 5, "C": c, "D": d, "B": date_range("2012-01-01", periods=5), } ) right = df.iloc[:3].copy(deep=True) df = df.set_index(["A", "B"]) df["D"] = df["D"].astype("int64") left = df.iloc[:3].unstack(0) right = right.set_index(["A", "B"]).unstack(0) right[("D", "a")] = right[("D", "a")].astype("int64") assert left.shape == (3, 2) tm.assert_frame_equal(left, right) def test_unstack_non_unique_index_names(self): idx = MultiIndex.from_tuples([("a", "b"), ("c", "d")], names=["c1", "c1"]) df = DataFrame([1, 2], index=idx) msg = "The name c1 occurs multiple times, use a level number" with pytest.raises(ValueError, match=msg): df.unstack("c1") with pytest.raises(ValueError, match=msg): df.T.stack("c1") def test_unstack_unused_levels(self): # GH 17845: unused codes in index make unstack() cast int to float idx = MultiIndex.from_product([["a"], ["A", "B", "C", "D"]])[:-1] df = DataFrame([[1, 0]] * 3, index=idx) result = df.unstack() exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]]) expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # Unused items on both levels levels = [[0, 1, 7], [0, 1, 2, 3]] codes = [[0, 0, 1, 1], [0, 2, 0, 2]] idx = MultiIndex(levels, codes) block = np.arange(4).reshape(2, 2) df = DataFrame(np.concatenate([block, block + 4]), index=idx) result = df.unstack() expected = DataFrame( np.concatenate([block * 2, block * 2 + 1], axis=1), columns=idx ) tm.assert_frame_equal(result, expected) assert (result.columns.levels[1] == idx.levels[1]).all() # With mixed dtype and NaN levels = [["a", 2, "c"], [1, 3, 5, 7]] codes = [[0, -1, 1, 1], [0, 2, -1, 2]] idx = MultiIndex(levels, codes) data = np.arange(8) df = DataFrame(data.reshape(4, 2), index=idx) cases = ( (0, [13, 16, 6, 9, 2, 5, 8, 11], [np.nan, "a", 2], [np.nan, 5, 1]), (1, [8, 11, 1, 4, 12, 15, 13, 16], [np.nan, 5, 1], [np.nan, "a", 2]), ) for level, idces, col_level, idx_level in cases: result = df.unstack(level=level) exp_data = np.zeros(18) * np.nan exp_data[idces] = data cols = MultiIndex.from_product([[0, 1], col_level]) expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("cols", [["A", "C"], slice(None)]) def test_unstack_unused_level(self, cols): # GH 18562 : unused codes on the unstacked level df = DataFrame([[2010, "a", "I"], [2011, "b", "II"]], columns=["A", "B", "C"]) ind = df.set_index(["A", "B", "C"], drop=False) selection = ind.loc[(slice(None), slice(None), "I"), cols] result = selection.unstack() expected = ind.iloc[[0]][cols] expected.columns = MultiIndex.from_product( [expected.columns, ["I"]], names=[None, "C"] ) expected.index = expected.index.droplevel("C") tm.assert_frame_equal(result, expected) def test_unstack_long_index(self): # PH 32624: Error when using a lot of indices to unstack. # The error occurred only, if a lot of indices are used. df = DataFrame( [[1]], columns=MultiIndex.from_tuples([[0]], names=["c1"]), index=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["i1", "i2", "i3", "i4", "i5", "i6", "i7"], ), ) result = df.unstack(["i2", "i3", "i4", "i5", "i6", "i7"]) expected = DataFrame( [[1]], columns=MultiIndex.from_tuples( [[0, 0, 1, 0, 0, 0, 1]], names=["c1", "i2", "i3", "i4", "i5", "i6", "i7"], ), index=Index([0], name="i1"), ) tm.assert_frame_equal(result, expected) def test_unstack_multi_level_cols(self): # PH 24729: Unstack a df with multi level columns df = DataFrame( [[0.0, 0.0], [0.0, 0.0]], columns=MultiIndex.from_tuples( [["B", "C"], ["B", "D"]], names=["c1", "c2"] ), index=MultiIndex.from_tuples( [[10, 20, 30], [10, 20, 40]], names=["i1", "i2", "i3"] ), ) assert df.unstack(["i2", "i1"]).columns.names[-2:] == ["i2", "i1"] def test_unstack_multi_level_rows_and_cols(self): # PH 28306: Unstack df with multi level cols and rows df = DataFrame( [[1, 2], [3, 4], [-1, -2], [-3, -4]], columns=MultiIndex.from_tuples([["a", "b", "c"], ["d", "e", "f"]]), index=MultiIndex.from_tuples( [ ["m1", "P3", 222], ["m1", "A5", 111], ["m2", "P3", 222], ["m2", "A5", 111], ], names=["i1", "i2", "i3"], ), ) result = df.unstack(["i3", "i2"]) expected = df.unstack(["i3"]).unstack(["i2"]) tm.assert_frame_equal(result, expected) def test_unstack_nan_index1(self): # GH7466 def cast(val): val_str = "" if val != val else val return f"{val_str:1}" def verify(df): mk_list = lambda a: list(a) if isinstance(a, tuple) else [a] rows, cols = df.notna().values.nonzero() for i, j in zip(rows, cols): left = sorted(df.iloc[i, j].split(".")) right = mk_list(df.index[i]) + mk_list(df.columns[j]) right = sorted(map(cast, right)) assert left == right df = DataFrame( { "jim": ["a", "b", np.nan, "d"], "joe": ["w", "x", "y", "z"], "jolie": ["a.w", "b.x", " .y", "d.z"], } ) left = df.set_index(["jim", "joe"]).unstack()["jolie"] right = df.set_index(["joe", "jim"]).unstack()["jolie"].T tm.assert_frame_equal(left, right) for idx in itertools.permutations(df.columns[:2]): mi = df.set_index(list(idx)) for lev in range(2): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == len(df) verify(udf["jolie"]) df = DataFrame( { "1st": ["d"] * 3 + [np.nan] * 5 + ["a"] * 2 + ["c"] * 3 + ["e"] * 2 + ["b"] * 5, "2nd": ["y"] * 2 + ["w"] * 3 + [np.nan] * 3 + ["z"] * 4 + [np.nan] * 3 + ["x"] * 3 + [np.nan] * 2, "3rd": [ 67, 39, 53, 72, 57, 80, 31, 18, 11, 30, 59, 50, 62, 59, 76, 52, 14, 53, 60, 51, ], } ) df["4th"], df["5th"] = ( df.apply(lambda r: ".".join(map(cast, r)), axis=1), df.apply(lambda r: ".".join(map(cast, r.iloc[::-1])), axis=1), ) for idx in itertools.permutations(["1st", "2nd", "3rd"]): mi = df.set_index(list(idx)) for lev in range(3): udf = mi.unstack(level=lev) assert udf.notna().values.sum() == 2 * len(df) for col in ["4th", "5th"]: verify(udf[col]) def test_unstack_nan_index2(self): # GH7403 df = DataFrame({"A": list("aaaabbbb"), "B": range(8), "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [ [3, 0, 1, 2, np.nan, np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, 4, 5, 6, 7], ] vals = list(map(list, zip(*vals))) idx = Index([np.nan, 0, 1, 2, 4, 5, 6, 7], name="B") cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[2, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[2, np.nan], [0, 4], [1, 5], [np.nan, 6], [3, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) df = DataFrame({"A": list("aaaabbbb"), "B": list(range(4)) * 2, "C": range(8)}) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack(0) vals = [[3, np.nan], [0, 4], [1, 5], [2, 6], [np.nan, 7]] cols = MultiIndex( levels=[["C"], ["a", "b"]], codes=[[0, 0], [0, 1]], names=[None, "A"] ) idx = Index([np.nan, 0, 1, 2, 3], name="B") right = DataFrame(vals, columns=cols, index=idx) tm.assert_frame_equal(left, right) def test_unstack_nan_index3(self, using_array_manager): # GH7401 df = DataFrame( { "A": list("aaaaabbbbb"), "B": (date_range("2012-01-01", periods=5).tolist() * 2), "C": np.arange(10), } ) df.iloc[3, 1] = np.NaN left = df.set_index(["A", "B"]).unstack() vals = np.array([[3, 0, 1, 2, np.nan, 4], [np.nan, 5, 6, 7, 8, 9]]) idx = Index(["a", "b"], name="A") cols = MultiIndex( levels=[["C"],
date_range("2012-01-01", periods=5)
pandas.date_range
import os import audiofile import audiofile as af import numpy as np import pandas as pd import pytest import audinterface import audformat def signal_duration(signal, sampling_rate): return signal.shape[1] / sampling_rate def signal_max(signal, sampling_rate): return np.max(signal) SEGMENT = audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( pd.to_timedelta(0), pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, ) ) def signal_modification(signal, sampling_rate, subtract=False): if subtract: signal -= 0.1 * signal else: signal += 0.1 * signal return signal @pytest.mark.parametrize( 'process_func, segment, signal, sampling_rate, start, end, keep_nat, ' 'channels, mixdown, expected_output', [ ( signal_max, None, np.ones((1, 3)), 8000, None, None, False, None, False, 1, ), ( signal_max, SEGMENT, np.ones((1, 8000)), 8000, None, None, False, None, False, 1, ), ( signal_max, None, np.ones(3), 8000, None, None, False, 0, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 1, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, None, True, 0.5, ), ( signal_max, None, np.array([[-1., -1., -1.], [0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, [1, 2], True, 0.5, ), # invalid channel selection pytest.param( signal_max, None, np.ones((1, 3)), 8000, None, None, False, 1, False, 1, marks=pytest.mark.xfail(raises=ValueError), ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, None, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, True, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), None, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.NaT, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1s', '2s', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1000ms', '2000ms', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1, 2, False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1.0, 2.0, False, None, False, 1.0, ), ], ) def test_process_file( tmpdir, process_func, segment, signal, sampling_rate, start, end, keep_nat, channels, mixdown, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, channels=channels, mixdown=mixdown, segment=segment, keep_nat=keep_nat, verbose=False, ) # create test file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # test absolute path y = process.process_file( path, start=start, end=end, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) # test relative path y = process.process_file( file, start=start, end=end, root=root, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'process_func, num_files, signal, sampling_rate, starts, ends, ' 'expected_output', [ ( signal_duration, 2, np.zeros((1, 24000)), 8000, None, None, [3.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, '1s', '2s', [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, 1, 2, [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, 1], [None, 2], [3.0, 1.0], ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s'], [3.0, 1.0], ), ( signal_duration, 3, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s', None], [3.0, 1.0], ), ( signal_duration, 1, np.zeros((1, 24000)), 8000, [None], [None, '2s'], [3.0], ), ], ) def test_process_files( tmpdir, process_func, num_files, signal, sampling_rate, starts, ends, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, verbose=False, ) # create files files = [] paths = [] root = tmpdir for idx in range(num_files): file = f'file{idx}.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) files.append(file) paths.append(path) # test absolute paths output = process.process_files( paths, starts=starts, ends=ends, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) # test relative paths output = process.process_files( files, starts=starts, ends=ends, root=root, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'num_files, segment, num_workers, multiprocessing', [ (3, None, 1, False, ), (3, None, 2, False, ), (3, None, None, False, ), (3, SEGMENT, 1, False, ), ] ) def test_process_folder( tmpdir, num_files, segment, num_workers, multiprocessing, ): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, segment=segment, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 path = str(tmpdir.mkdir('wav')) files = [ os.path.join(path, f'file{n}.wav') for n in range(num_files) ] for file in files: signal = np.random.uniform(-1.0, 1.0, (1, sampling_rate)) af.write(file, signal, sampling_rate) y = process.process_folder(path) pd.testing.assert_series_equal( y, process.process_files(files), ) def test_process_func_args(): def process_func(s, sr, arg1, arg2): assert arg1 == 'foo' assert arg2 == 'bar' audinterface.Process( process_func=process_func, process_func_args={ 'arg1': 'foo', 'arg2': 'bar', } ) with pytest.warns(UserWarning): audinterface.Process( feature_names=('o1', 'o2', 'o3'), process_func=process_func, arg1='foo', arg2='bar', ) @pytest.mark.parametrize( 'num_workers, multiprocessing', [ (1, False, ), (2, False, ), (None, False, ), ] ) def test_process_index(tmpdir, num_workers, multiprocessing): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 signal = np.random.uniform(-1.0, 1.0, (1, 3 * sampling_rate)) # create file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # empty index index = audformat.segmented_index() y = process.process_index(index) assert y.empty # segmented index with absolute paths index = audformat.segmented_index( [path] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # filewise index with absolute paths index = audformat.filewise_index(path) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # segmented index with relative paths index = audformat.segmented_index( [file] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) # filewise index with relative paths index = audformat.filewise_index(path) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) @pytest.mark.parametrize( 'process_func, process_func_args, segment, signal, ' 'sampling_rate, file, start, end, keep_nat, expected_signal', [ ( None, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, np.array([1., 2., 3.]), ), ( None, {}, None, np.array([1., 2., 3.]), 44100, 'file', None, None, False, np.array([1., 2., 3.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, None, None, None, False, np.array([1., 2.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, 'file', None, None, False, np.array([1., 2.]), ), ( signal_max, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 3, None, None, None, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, pd.to_timedelta('2s'), None, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.to_timedelta('1s'), False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.NaT, False, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, None, pd.NaT, True, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, 1, 2, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, 1.0, 2.0, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None, '1s', '2s', False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, 'file', pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, 1.0, ), ( signal_modification, {}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[1.1, 1.1, 1.1]]), ), ( signal_modification, {'subtract': False}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[1.1, 1.1, 1.1]]), ), ( signal_modification, {'subtract': True}, None, np.array([1., 1., 1.]), 44100, None, None, None, False, np.array([[0.9, 0.9, 0.9]]), ), ], ) def test_process_signal( process_func, process_func_args, segment, signal, sampling_rate, file, start, end, keep_nat, expected_signal, ): process = audinterface.Process( process_func=process_func, sampling_rate=None, resample=False, segment=segment, keep_nat=keep_nat, verbose=False, process_func_args=process_func_args, ) x = process.process_signal( signal, sampling_rate, file=file, start=start, end=end, ) signal = np.atleast_2d(signal) if start is None or pd.isna(start): start = pd.to_timedelta(0) elif isinstance(start, (int, float)): start = pd.to_timedelta(start, 's') elif isinstance(start, str): start = pd.to_timedelta(start) if end is None or (
pd.isna(end)
pandas.isna
import pandas as pd import numpy as np import requests import re import os from bs4 import BeautifulSoup import datetime # You should use this source! # https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Germany RKI_url = 'https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Fallzahlen.html' requestRKI = requests.get(RKI_url) soup = BeautifulSoup(requestRKI.content) table = soup.find("table") allP = list(soup.find_all("p")) dateP = [p for p in allP if str(p).__contains__("online aktualisiert um")] # old way to find date # date = soup.find_all("div", class_="dateOfIssue") date = re.findall('\\d+', str(dateP)) date = [int(part) for part in date] date = datetime.date(date[2], date[1], date[0]) date = date.strftime("%d-%m-%Y") output_rows = [] for table_row in table.findAll('tr'): columns = table_row.findAll('td') output_row = [] for column in columns: output_row.append(column.text) output_rows.append(output_row) output_rows = list(np.delete(output_rows, [0, 1, len(output_rows) - 1])) headers = ['Bundesland', 'Anzahl', 'Differenz zum Vortag', 'Fälle/100.000 Einw.', 'Todesfälle'] outputTable =
pd.DataFrame(output_rows, columns=headers)
pandas.DataFrame
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __author__ = "<NAME>" __maintainer__ = "<NAME>" import numpy as np import pandas as pd def combine_hist(hist_list, method='sum', nbins=64): """ Performs the combination of multiple Histograms. Parameters ---------- hist_list: list list of histograms with all histograms (saved as DataFrames in pyLife format) method: str method: 'sum', 'min', 'max', 'mean', 'std' default is 'sum' nbins: int number of bins of the combined histogram Returns ------- DataFrame: Combined histogram list: list with the reindexed input histograms """ hist_combined =
pd.concat(hist_list)
pandas.concat
import os import numpy as np import pandas as pd from numpy import abs from numpy import log from numpy import sign from scipy.stats import rankdata import scipy as sp import statsmodels.api as sm from data_source import local_source from tqdm import tqdm as pb # region Auxiliary functions def ts_sum(df, window=10): """ Wrapper function to estimate rolling sum. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series sum over the past 'window' days. """ return df.rolling(window).sum() def ts_prod(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).prod() def sma(df, window=10): #simple moving average """ Wrapper function to estimate SMA. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series SMA over the past 'window' days. """ return df.rolling(window).mean() def ema(df, n, m): #exponential moving average """ Wrapper function to estimate EMA. :param df: a pandas DataFrame. :return: ema_{t}=(m/n)*a_{t}+((n-m)/n)*ema_{t-1} """ result = df.copy() for i in range(1,len(df)): result.iloc[i]= (m*df.iloc[i-1] + (n-m)*result[i-1]) / n return result def wma(df, n): """ Wrapper function to estimate WMA. :param df: a pandas DataFrame. :return: wma_{t}=0.9*a_{t}+1.8*a_{t-1}+...+0.9*n*a_{t-n+1} """ weights = pd.Series(0.9*np.flipud(np.arange(1,n+1))) result = pd.Series(np.nan, index=df.index) for i in range(n-1,len(df)): result.iloc[i]= sum(df[i-n+1:i+1].reset_index(drop=True)*weights.reset_index(drop=True)) return result def stddev(df, window=10): """ Wrapper function to estimate rolling standard deviation. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).std() def correlation(x, y, window=10): """ Wrapper function to estimate rolling corelations. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).corr(y) def covariance(x, y, window=10): """ Wrapper function to estimate rolling covariance. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return x.rolling(window).cov(y) def rolling_rank(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The rank of the last value in the array. """ return rankdata(na)[-1] def ts_rank(df, window=10): """ Wrapper function to estimate rolling rank. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series rank over the past window days. """ return df.rolling(window).apply(rolling_rank) def rolling_prod(na): """ Auxiliary function to be used in pd.rolling_apply :param na: numpy array. :return: The product of the values in the array. """ return np.prod(na) def product(df, window=10): """ Wrapper function to estimate rolling product. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series product over the past 'window' days. """ return df.rolling(window).apply(rolling_prod) def ts_min(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series min over the past 'window' days. """ return df.rolling(window).min() def ts_max(df, window=10): """ Wrapper function to estimate rolling min. :param df: a pandas DataFrame. :param window: the rolling window. :return: a pandas DataFrame with the time-series max over the past 'window' days. """ return df.rolling(window).max() def delta(df, period=1): """ Wrapper function to estimate difference. :param df: a pandas DataFrame. :param period: the difference grade. :return: a pandas DataFrame with today’s value minus the value 'period' days ago. """ return df.diff(period) def delay(df, period=1): """ Wrapper function to estimate lag. :param df: a pandas DataFrame. :param period: the lag grade. :return: a pandas DataFrame with lagged time series """ return df.shift(period) def rank(df): """ Cross sectional rank :param df: a pandas DataFrame. :return: a pandas DataFrame with rank along columns. """ #return df.rank(axis=1, pct=True) return df.rank(pct=True) def scale(df, k=1): """ Scaling time serie. :param df: a pandas DataFrame. :param k: scaling factor. :return: a pandas DataFrame rescaled df such that sum(abs(df)) = k """ return df.mul(k).div(np.abs(df).sum()) def ts_argmax(df, window=10): """ Wrapper function to estimate which day ts_max(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmax) + 1 def ts_argmin(df, window=10): """ Wrapper function to estimate which day ts_min(df, window) occurred on :param df: a pandas DataFrame. :param window: the rolling window. :return: well.. that :) """ return df.rolling(window).apply(np.argmin) + 1 def decay_linear(df, period=10): """ Linear weighted moving average implementation. :param df: a pandas DataFrame. :param period: the LWMA period :return: a pandas DataFrame with the LWMA. """ try: df = df.to_frame() #Series is not supported for the calculations below. except: pass # Clean data if df.isnull().values.any(): df.fillna(method='ffill', inplace=True) df.fillna(method='bfill', inplace=True) df.fillna(value=0, inplace=True) na_lwma = np.zeros_like(df) na_lwma[:period, :] = df.iloc[:period, :] na_series = df.values divisor = period * (period + 1) / 2 y = (np.arange(period) + 1) * 1.0 / divisor # Estimate the actual lwma with the actual close. # The backtest engine should assure to be snooping bias free. for row in range(period - 1, df.shape[0]): x = na_series[row - period + 1: row + 1, :] na_lwma[row, :] = (np.dot(x.T, y)) return pd.DataFrame(na_lwma, index=df.index, columns=['CLOSE']) def highday(df, n): #计算df前n期时间序列中最大值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmax() return result def lowday(df, n): #计算df前n期时间序列中最小值距离当前时点的间隔 result = pd.Series(np.nan, index=df.index) for i in range(n,len(df)): result.iloc[i]= i - df[i-n:i].idxmin() return result def daily_panel_csv_initializer(csv_name): #not used now if os.path.exists(csv_name)==False: stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY') date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"') dataset=0 for date in date_list["TRADE_DATE"]: stock_list[date]=stock_list["INDUSTRY"] stock_list.drop("INDUSTRY",axis=1,inplace=True) stock_list.set_index("TS_CODE", inplace=True) dataset = pd.DataFrame(stock_list.stack()) dataset.reset_index(inplace=True) dataset.columns=["TS_CODE","TRADE_DATE","INDUSTRY"] dataset.to_csv(csv_name,encoding='utf-8-sig',index=False) else: dataset=pd.read_csv(csv_name) return dataset def IndustryAverage_vwap(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_vwap.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average vwap data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average vwap data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average vwap data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VWAP = (quotations_daily_chosen['AMOUNT']*1000)/(quotations_daily_chosen['VOL']*100+1) result_unaveraged_piece = VWAP result_unaveraged_piece.rename("VWAP_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VWAP_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_vwap.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_close(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_close.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average close data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average close data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average close data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass CLOSE = quotations_daily_chosen['CLOSE'] result_unaveraged_piece = CLOSE result_unaveraged_piece.rename("CLOSE_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["CLOSE_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_close.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_low(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_low.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average low data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average low data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average low data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass LOW = quotations_daily_chosen['LOW'] result_unaveraged_piece = LOW result_unaveraged_piece.rename("LOW_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["LOW_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_low.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_volume(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_volume.csv") result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average volume data needs not to be updated.") return result_industryaveraged_df else: print("The corresponding industry average volume data needs to be updated.") first_date_update = date_list_update[0] except: print("The corresponding industry average volume data is missing.") result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = VOLUME result_unaveraged_piece.rename("VOLUME_UNAVERAGED",inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["VOLUME_UNAVERAGED"].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_volume.csv",encoding='utf-8-sig') return result_industryaveraged_df def IndustryAverage_adv(num): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df = pd.read_csv("IndustryAverage_Data_adv{num}.csv".format(num=num)) result_industryaveraged_df["TRADE_DATE"] = result_industryaveraged_df["TRADE_DATE"].astype(int) result_industryaveraged_df.set_index("TRADE_DATE",inplace=True) date_list_existed = pd.Series(result_industryaveraged_df.index) date_list_update = date_list[~date_list.isin(date_list_existed)] if len(date_list_update)==0: print("The corresponding industry average adv{num} data needs not to be updated.".format(num=num)) return result_industryaveraged_df else: print("The corresponding industry average adv{num} data needs to be updated.".format(num=num)) first_date_update = date_list_update[0] except: print("The corresponding industry average adv{num} data is missing.".format(num=num)) result_industryaveraged_df=pd.DataFrame(index=date_list,columns=industry_list) date_list_update = date_list first_date_update=0 #building/updating dataset result_unaveraged_industry=0 for industry in pb(industry_list, desc='Please wait', colour='#ffffff'): stock_list_industry=stock_list[stock_list["INDUSTRY"]==industry] #calculating unindentralized data for ts_code in stock_list_industry.index: quotations_daily_chosen=local_source.get_quotations_daily(cols='TRADE_DATE,TS_CODE,OPEN,CLOSE,LOW,HIGH,VOL,CHANGE,AMOUNT',condition='TS_CODE = '+'"'+ts_code+'"').sort_values(by="TRADE_DATE", ascending=True) quotations_daily_chosen["TRADE_DATE"]=quotations_daily_chosen["TRADE_DATE"].astype(int) quotations_daily_chosen=quotations_daily_chosen.applymap(lambda x: np.nan if x=="NULL" else x) try: #valid only in updating index_first_date_needed = date_list_existed[date_list_existed.values == first_date_update].index[0] first_date_needed = date_list_existed.loc[index_first_date_needed] quotations_daily_chosen = quotations_daily_chosen[quotations_daily_chosen["TRADE_DATE"]>=first_date_needed] except: pass VOLUME = quotations_daily_chosen['VOL']*100 result_unaveraged_piece = sma(VOLUME, num) result_unaveraged_piece.rename("ADV{num}_UNAVERAGED".format(num=num),inplace=True) result_unaveraged_piece = pd.DataFrame(result_unaveraged_piece) result_unaveraged_piece.insert(loc=0,column='INDUSTRY',value=industry) result_unaveraged_piece.insert(loc=0,column='TRADE_DATE',value=quotations_daily_chosen["TRADE_DATE"]) result_unaveraged_piece.insert(loc=0,column='TS_CODE',value=ts_code) result_unaveraged_piece = result_unaveraged_piece[result_unaveraged_piece["TRADE_DATE"]>=first_date_update] #to lower the memory needed if type(result_unaveraged_industry)==int: result_unaveraged_industry=result_unaveraged_piece else: result_unaveraged_industry=pd.concat([result_unaveraged_industry,result_unaveraged_piece],axis=0) #indentralizing data for date in date_list_update: try: #to prevent the case that the stock is suspended, so that there's no data for the stock at some dates result_piece=result_unaveraged_industry[result_unaveraged_industry["TRADE_DATE"]==date] value=result_piece["ADV{num}_UNAVERAGED".format(num=num)].mean() result_industryaveraged_df.loc[date,industry]=value except: pass result_unaveraged_industry=0 result_industryaveraged_df.to_csv("IndustryAverage_Data_adv{num}.csv".format(num=num),encoding='utf-8-sig') return result_industryaveraged_df #(correlation(delta(close, 1), delta(delay(close, 1), 1), 250) *delta(close, 1)) / close def IndustryAverage_PreparationForAlpha048(): stock_list=local_source.get_stock_list(cols='TS_CODE,INDUSTRY').set_index("TS_CODE") industry_list=stock_list["INDUSTRY"].drop_duplicates() date_list=local_source.get_indices_daily(cols='TRADE_DATE',condition='INDEX_CODE = "000001.SH"')["TRADE_DATE"].astype(int) #check for building/updating/reading dataset try: result_industryaveraged_df =
pd.read_csv("IndustryAverage_Data_PreparationForAlpha048.csv")
pandas.read_csv
''' -------------------------------------------------------------------------------- Description: Roadmap: Written by <NAME> <<EMAIL>>, DAMP Lab 2020 -------------------------------------------------------------------------------- ''' import glob import os from pathlib import Path import xml.etree.ElementTree as ET from typing import ( List, ) import numpy as np import pandas as pd import tqdm from beholder.signal_processing.sigpro_utility import ( get_channel_data_from_xml_metadata, ingress_tiff_file, ) from beholder.utils import ( get_analysis_location, ) def enqueue_wide_analysis( input_datasets: List[str], runlist_fp: str, calibration_rpu_dataset_fp: str, calibration_autofluoresence_dataset_fp: str, signal_channel_label: str = 'm-Cherry' ): # Generate a directory in the analysis results to hold all of the # outputted observations. # The Name of each of the files will the passed in names of each of the # directories. # - Tab 1 # Create a baseline DF, iterating over all of the different panels. # Generate a Column for each of the different panels encapsulated within # that ND2. Iterate over each of the frames in that TIFF file, and # calculate the summation of each of the signals in these. rpu_df = pd.read_csv(calibration_rpu_dataset_fp) af_df = pd.read_csv(calibration_autofluoresence_dataset_fp) output_path = get_analysis_location(runlist_fp) final_dest = os.path.join( output_path, 'wide_analysis' ) if not os.path.exists(final_dest): os.makedirs(final_dest) for nd2_index, dataset_fp in tqdm.tqdm( enumerate(input_datasets), desc=f'Enumerating over datasets and parsing tiffs...', total=len(input_datasets), ): tiff_dir_root = os.path.join(dataset_fp, 'raw_tiffs') metadata_root = os.path.join(dataset_fp, 'metadata.xml') tree = ET.parse(metadata_root) channels = get_channel_data_from_xml_metadata(tree) raw_sum_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import urllib.request import numpy as np import shapefile from datetime import datetime from zipfile import ZipFile import pandasql as ps import requests import json import pkg_resources def softmax(x): if np.max(x) > 1: e_x = np.exp(x/np.max(x)) else: e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() ## getProvinceBoundaryBox function is to get the cordinate details from Mapbox API for ITALY ## Parameter Needed - Province Name def getProvinceBoundaryBox(provinceName): Place_Details = requests.get( 'http://api.mapbox.com/geocoding/v5/mapbox.places/' + provinceName + '%20province%20Italy.json?access_token=<KEY>').json()[ 'features'] for eachPlace in Place_Details: try: if eachPlace['context'][0]['text'] == 'Italy' or eachPlace['context'][1]['text'] == 'Italy': getBbox = eachPlace['bbox'] except: continue return getBbox # The below function used to get the USA Patient Data Automatically from HARVARD DATABASE COVID Patient Database and will create a timeseries patient file along with population of the Area at county along with a USA County file ## Parameter Needed - Target Directory to save the File def fetch_us_patientdata(tgtdir): url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/7NWUDK' urllib.request.urlretrieve(url,tgtdir+'/us_county_confirmed_cases.tab') latest_data = pd.read_csv(tgtdir+'/us_county_confirmed_cases.tab',sep='\t') allcols = list(latest_data.columns) datecols = allcols[allcols.index('HHD10')+1:] latest_data = latest_data[['COUNTY', 'NAME']+datecols] datecolsmod=[datetime.strptime(i,'%m/%d/%Y').strftime('%Y%m%d') for i in datecols] latest_data.columns = ['cfips', 'county']+datecolsmod latest_data = latest_data.melt(id_vars=['cfips', 'county'], var_name='data_date', value_name='no_pat') latest_data['county']=latest_data['county'].apply(lambda x : x.split(' County')[0]) url='https://dataverse.harvard.edu/api/access/datafile/:persistentId?persistentId=doi:10.7910/DVN/HIDLTK/OFVFPY' urllib.request.urlretrieve(url,tgtdir+'/COUNTY_MAP.zip') zip = ZipFile(tgtdir+'/COUNTY_MAP.zip') zip.extractall(tgtdir) sf = shapefile.Reader(tgtdir+"/CO_CARTO") shape_df = pd.DataFrame() shapes = sf.shapes() records = sf.records() for eachrec in range(len(records)): eachRec = {} shapebbbox = shapes[eachrec].bbox shapelat = (shapebbbox[1] + shapebbbox[3]) / 2 shapelong = (shapebbbox[0] + shapebbbox[2]) / 2 eachRec['lat'] = [shapelat] eachRec['long'] = [shapelong] eachRec['county_fips'] = [records[eachrec][0]] eachRec['county_name'] = [records[eachrec][1]] eachRec['POP'] = [records[eachrec][10]] eachRec['HHD'] = [records[eachrec][11]] shape_df = shape_df.append(pd.DataFrame.from_dict(eachRec)) us_counties = shape_df us_counties['county_name'] = us_counties['county_name'].apply(lambda x: x.split(' County')[0]) us_counties['county_fips'] = us_counties['county_fips'].apply(lambda x: int(x)) us_counties.columns = ['lat','long', 'cfips', 'county', 'pop', 'HHD'] full_data = pd.merge(latest_data, us_counties, on=['cfips', 'county']) if sum(full_data['no_pat']) != sum(latest_data['no_pat']): print("fetch failed") raise full_data['no_pat'] = full_data.groupby(['cfips'])['no_pat'].apply(lambda x: x.cummax()) full_data['new_pat'] = full_data.groupby(['lat','long'])['no_pat'].diff() full_data = full_data.dropna() us_counties.to_csv(tgtdir+'USA_counties.csv',index=False) full_data.to_csv(tgtdir+'USA_covid_data_final.csv',index=False) print(' USA Patient Data Created under Directory :'+tgtdir) ## Below function will create the China COVID19 time series Patient file by abosrving data from Harvard Database and it will create County file along with Population Data by county/province ## Parameter Needed - Target Directory to save the File def fetch_china_patientdata(tgtdir): url = 'https://dataverse.harvard.edu/api/access/datafile/3781338?format=original&gbrecs=true' urllib.request.urlretrieve(url, tgtdir+'/City_Confirmed_Map_China.csv') latest_data = pd.read_csv(tgtdir+'/City_Confirmed_Map_China.csv') latest_data = latest_data[ ['GbCity', 'GbProv', 'City_EN', 'Prov_EN', 'N_C_0115', 'N_C_0116', 'N_C_0117', 'N_C_0118', 'N_C_0119', 'N_C_0120', 'N_C_0121', 'N_C_0122', 'N_C_0123', 'N_C_0124', 'N_C_0125', 'N_C_0126', 'N_C_0127', 'N_C_0128', 'N_C_0129', 'N_C_0130', 'N_C_0131', 'N_C_0201', 'N_C_0202', 'N_C_0203', 'N_C_0204', 'N_C_0205', 'N_C_0206', 'N_C_0207', 'N_C_0208', 'N_C_0209', 'N_C_0210', 'N_C_0211', 'N_C_0212', 'N_C_0213', 'N_C_0214', 'N_C_0215', 'N_C_0216', 'N_C_0217', 'N_C_0218', 'N_C_0219', 'N_C_0220', 'N_C_0221', 'N_C_0222', 'N_C_0223', 'N_C_0224', 'N_C_0225', 'N_C_0226', 'N_C_0227', 'N_C_0228', 'N_C_0229', 'N_C_0301', 'N_C_0302', 'N_C_0303', 'N_C_0304', 'N_C_0305', 'N_C_0306', 'N_C_0307', 'N_C_0308', 'N_C_0309', 'N_C_0310', 'N_C_0311', 'N_C_0312', 'N_C_0313', 'N_C_0314', 'N_C_0315', 'N_C_0316', 'N_C_0317', 'N_C_0318', 'T_C_0115', 'T_C_0116', 'T_C_0117', 'T_C_0118', 'T_C_0119', 'T_C_0120', 'T_C_0121', 'T_C_0122', 'T_C_0123', 'T_C_0124', 'T_C_0125', 'T_C_0126', 'T_C_0127', 'T_C_0128', 'T_C_0129', 'T_C_0130', 'T_C_0131', 'T_C_0201', 'T_C_0202', 'T_C_0203', 'T_C_0204', 'T_C_0205', 'T_C_0206', 'T_C_0207', 'T_C_0208', 'T_C_0209', 'T_C_0210', 'T_C_0211', 'T_C_0212', 'T_C_0213', 'T_C_0214', 'T_C_0215', 'T_C_0216', 'T_C_0217', 'T_C_0218', 'T_C_0219', 'T_C_0220', 'T_C_0221', 'T_C_0222', 'T_C_0223', 'T_C_0224', 'T_C_0225', 'T_C_0226', 'T_C_0227', 'T_C_0228', 'T_C_0229', 'T_C_0301', 'T_C_0302', 'T_C_0303', 'T_C_0304', 'T_C_0305', 'T_C_0306', 'T_C_0307', 'T_C_0308', 'T_C_0309', 'T_C_0310', 'T_C_0311', 'T_C_0312', 'T_C_0313', 'T_C_0314', 'T_C_0315', 'T_C_0316', 'T_C_0317', 'T_C_0318']] latest_data['City_EN'] = latest_data['City_EN'].apply(lambda x: x.split('(')[0]) latest_data.columns = ['GbCity', 'GbProv', 'city', 'Province', 'N_C_0115', 'N_C_0116', 'N_C_0117', 'N_C_0118', 'N_C_0119', 'N_C_0120', 'N_C_0121', 'N_C_0122', 'N_C_0123', 'N_C_0124', 'N_C_0125', 'N_C_0126', 'N_C_0127', 'N_C_0128', 'N_C_0129', 'N_C_0130', 'N_C_0131', 'N_C_0201', 'N_C_0202', 'N_C_0203', 'N_C_0204', 'N_C_0205', 'N_C_0206', 'N_C_0207', 'N_C_0208', 'N_C_0209', 'N_C_0210', 'N_C_0211', 'N_C_0212', 'N_C_0213', 'N_C_0214', 'N_C_0215', 'N_C_0216', 'N_C_0217', 'N_C_0218', 'N_C_0219', 'N_C_0220', 'N_C_0221', 'N_C_0222', 'N_C_0223', 'N_C_0224', 'N_C_0225', 'N_C_0226', 'N_C_0227', 'N_C_0228', 'N_C_0229', 'N_C_0301', 'N_C_0302', 'N_C_0303', 'N_C_0304', 'N_C_0305', 'N_C_0306', 'N_C_0307', 'N_C_0308', 'N_C_0309', 'N_C_0310', 'N_C_0311', 'N_C_0312', 'N_C_0313', 'N_C_0314', 'N_C_0315', 'N_C_0316', 'N_C_0317', 'N_C_0318', 'T_C_0115', 'T_C_0116', 'T_C_0117', 'T_C_0118', 'T_C_0119', 'T_C_0120', 'T_C_0121', 'T_C_0122', 'T_C_0123', 'T_C_0124', 'T_C_0125', 'T_C_0126', 'T_C_0127', 'T_C_0128', 'T_C_0129', 'T_C_0130', 'T_C_0131', 'T_C_0201', 'T_C_0202', 'T_C_0203', 'T_C_0204', 'T_C_0205', 'T_C_0206', 'T_C_0207', 'T_C_0208', 'T_C_0209', 'T_C_0210', 'T_C_0211', 'T_C_0212', 'T_C_0213', 'T_C_0214', 'T_C_0215', 'T_C_0216', 'T_C_0217', 'T_C_0218', 'T_C_0219', 'T_C_0220', 'T_C_0221', 'T_C_0222', 'T_C_0223', 'T_C_0224', 'T_C_0225', 'T_C_0226', 'T_C_0227', 'T_C_0228', 'T_C_0229', 'T_C_0301', 'T_C_0302', 'T_C_0303', 'T_C_0304', 'T_C_0305', 'T_C_0306', 'T_C_0307', 'T_C_0308', 'T_C_0309', 'T_C_0310', 'T_C_0311', 'T_C_0312', 'T_C_0313', 'T_C_0314', 'T_C_0315', 'T_C_0316', 'T_C_0317', 'T_C_0318'] latest_data = latest_data.melt(id_vars=['GbCity', 'GbProv', 'city', 'Province'], var_name='Date', value_name='No of Patient') New_Patients = ps.sqldf( ''' select GbCity,GbProv,city,Province,Date,"No of Patient" from latest_data where Date like "N_C_%" ''', locals()) New_Patients['Date'] = New_Patients['Date'].apply(lambda x: '2020' + x.split('N_C_')[1]) New_Patients.columns = ['GbCity', 'GbProv', 'city', 'Province', 'Date', 'New Patient Count'] Total_Patients = ps.sqldf( ''' select GbCity,GbProv,city,Province,Date,"No of Patient" from latest_data where Date like "T_C_%" ''', locals()) Total_Patients['Date'] = Total_Patients['Date'].apply(lambda x: '2020' + x.split('T_C_')[1]) Total_Patients.columns = ['GbCity', 'GbProv', 'city', 'Province', 'Date', 'Total Patient Count'] latest_data_Normalized = pd.merge(New_Patients, Total_Patients, on=['GbCity', 'GbProv', 'city', 'Province', 'Date']) latest_data_Normalized['GbCity'] = latest_data_Normalized['GbCity'].apply(lambda x: str(x)) latest_data_Normalized['GbProv'] = latest_data_Normalized['GbProv'].apply(lambda x: str(x)) url='https://dvn-cloud.s3.amazonaws.com/10.7910/DVN/MR5IJN/1710944b44b-ce6a2df0b32e?response-content-disposition=attachment%3B%20filename%2A%3DUTF-8%27%27china_city_basemap.zip&response-content-type=application%2Fzipped-shapefile&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20200408T040239Z&X-Amz-SignedHeaders=host&X-Amz-Expires=3600&X-Amz-Credential=AKIAIEJ3NV7UYCSRJC7A%2F20200408%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=ed0cbb34d3e1a129167cbd353afc469d13ddaf4dc14520366df279219b422957' urllib.request.urlretrieve(url,tgtdir+'/china_city_basemap.zip') zip = ZipFile(tgtdir+'/china_city_basemap.zip') zip.extractall() sf = shapefile.Reader(tgtdir+"/china_city_basemap") shape_df = pd.DataFrame() shapes = sf.shapes() records = sf.records() for eachrec in range(len(records)): eachRec = {} shapebbbox = shapes[eachrec].bbox shapelat = (shapebbbox[1] + shapebbbox[3]) / 2 shapelong = (shapebbbox[0] + shapebbbox[2]) / 2 eachRec['lat'] = [shapelat] eachRec['long'] = [shapelong] eachRec['GbCity'] = [records[eachrec][0]] eachRec['city'] = [records[eachrec][2]] eachRec['GbProv'] = [records[eachrec][3]] eachRec['Province'] = [records[eachrec][5]] eachRec['Shape_Area'] = [records[eachrec][6]] shape_df = shape_df.append(pd.DataFrame.from_dict(eachRec)) china_provinces = shape_df china_provinces['GbProv'] = china_provinces['GbProv'].apply(lambda x: str(x)) full_data = pd.merge(latest_data_Normalized, china_provinces, on=['city', 'Province']) full_data = full_data[['city', 'Province', 'Date', 'Total Patient Count', 'lat', 'long']] full_data.columns = ['city', 'Province', 'data_date', 'no_pat', 'lat', 'long'] china_pop_data = load_support_data('China_Population_Data.xlsx','xl') china_pop_data['Province'] = china_pop_data['Province'].apply(lambda x: x.split('[')[0]) full_data = ps.sqldf( ''' select a.*,b.Population pop from full_data a left join china_pop_data b on a.Province = b.Province ''', locals()) full_data['no_pat'] = full_data.groupby(['city'])['no_pat'].apply(lambda x: x.cummax()) full_data['new_pat'] = full_data.groupby(['lat','long'])['no_pat'].diff() full_data = full_data.dropna() china_provinces.to_csv(tgtdir+'China_provinces_data.csv', index=False) full_data.to_csv(tgtdir+'China_covid_data_final.csv', index=False) print(' China Patient Data Created under Directory :' + tgtdir) def load_support_data(filename,type = 'xl'): # This is a stream-like object. If you want the actual info, call # stream.read() stream = pkg_resources.resource_stream(__name__, 'data/'+filename) if type == 'xl': return pd.read_excel(stream) elif type == 'csv': return pd.read_csv(stream) ## The below function will give us the Patient count along with population in timeseries manner for ITALY provinces along with County file ## Parameter Needed - Target Directory to save the File def fetch_italy_patientdata(tgtdir): url = 'https://github.com/pcm-dpc/COVID-19/archive/master.zip' urllib.request.urlretrieve(url, tgtdir+'/IT_covid19.zip') zip = ZipFile(tgtdir+'/IT_covid19.zip') zip.extractall(tgtdir) latest_data = pd.read_csv(tgtdir+'/COVID-19-master/dati-province/dpc-covid19-ita-province.csv') latest_data = ps.sqldf( ''' select Date(data) as data_date,denominazione_regione as "RegionName",denominazione_provincia as "ProvinceName", lat, long,totale_casi as "no_pat" from latest_data ''', locals()) latest_data_Area_Regions = latest_data[['RegionName', 'ProvinceName']].drop_duplicates() Unique_Provinces = latest_data_Area_Regions['ProvinceName'].unique() lat_long_df = pd.DataFrame() for i in range(len(Unique_Provinces)): if Unique_Provinces[i] != 'In fase di definizione/aggiornamento': each_lat_long_df = {} each_lat_long_df['ProvinceName'] = [Unique_Provinces[i]] Cordinates = getProvinceBoundaryBox(Unique_Provinces[i]) each_lat_long_df['minlong'] = [Cordinates[0]] each_lat_long_df['minlat'] = [Cordinates[1]] each_lat_long_df['maxlong'] = [Cordinates[2]] each_lat_long_df['maxlat'] = [Cordinates[3]] each_lat_long_df = pd.DataFrame.from_dict(each_lat_long_df) lat_long_df = lat_long_df.append(each_lat_long_df) full_data = ps.sqldf( ''' select a.*, b.* from latest_data a left join lat_long_df b on a."ProvinceName" = b."ProvinceName" ''', locals()) #full_data = latest_data Dates_in_Data = full_data['data_date'].unique() Regions_in_Data = full_data['RegionName'].unique() final_Data =
pd.DataFrame()
pandas.DataFrame
from pathlib import Path import pandas as pd
pd.set_option('display.max_colwidth', 250)
pandas.set_option
from sklearn.feature_extraction.text import CountVectorizer from sklearn.neighbors import NearestNeighbors import pandas as pd import dill # Data Pre-Processing # load the dataset df =
pd.read_csv('../data/stars.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Thu Apr 1 23:28:55 2021 @author: dv516 """ import numpy as np import pickle import pyro pyro.enable_validation(True) # can help with debugging pyro.set_rng_seed(1) from algorithms.PyBobyqa_wrapped.Wrapper_for_pybobyqa import PyBobyqaWrapper from algorithms.Bayesian_opt_Pyro.utilities_full import BayesOpt from algorithms.nesterov_random.nesterov_random import nesterov_random from algorithms.simplex.simplex_method import simplex_method from algorithms.CUATRO.CUATRO import CUATRO from algorithms.Finite_differences.Finite_differences import finite_Diff_Newton from algorithms.Finite_differences.Finite_differences import Adam_optimizer from algorithms.Finite_differences.Finite_differences import BFGS_optimizer from algorithms.SQSnobfit_wrapped.Wrapper_for_SQSnobfit import SQSnobFitWrapper from algorithms.DIRECT_wrapped.Wrapper_for_Direct import DIRECTWrapper from case_studies.Controller_tuning.Control_system import reactor_phi_2st, reactor_phi_2stNS import matplotlib.pyplot as plt import seaborn as sns import itertools import pandas as pd import pickle def average_from_list(solutions_list): N = len(solutions_list) f_best_all = np.zeros((N, 100)) for i in range(N): f_best = np.array(solutions_list[i]['f_best_so_far']) x_ind = np.array(solutions_list[i]['samples_at_iteration']) for j in range(100): ind = np.where(x_ind <= j+1) if len(ind[0]) == 0: f_best_all[i, j] = f_best[0] else: f_best_all[i, j] = f_best[ind][-1] f_median = np.median(f_best_all, axis = 0) # f_av = np.average(f_best_all, axis = 0) # f_std = np.std(f_best_all, axis = 0) f_min = np.min(f_best_all, axis = 0) f_max = np.max(f_best_all, axis = 0) return f_best_all, f_median, f_min, f_max def cost_control_noise(x, bounds_abs, noise, N_SAA, x0 = [.116, 368.489], \ N = 200, T = 20, NS = False): f_SAA = 0 ; g_SAA = -np.inf if not NS: f = lambda x: reactor_phi_2st(x, bounds_abs, noise, x0 = x0, N = N, \ T = T, return_sys_resp = False) else: f = lambda x: reactor_phi_2stNS(x, noise, x0 = x0, N = N, \ T = T, return_sys_resp = False) for i in range(N_SAA): f_sample = f(x) f_SAA += f_sample[0]/N_SAA g_SAA = np.maximum(g_SAA, float(f_sample[1][0])) return f_SAA, [g_SAA] max_it = 100 pi = [.8746, .0257, -1.43388, -0.00131, 0.00016, 55.8692, 0.7159, .0188, .00017] pi_init = [.8746, .0257, -1.43388, -0.00131, 0.00016, 0, 0, 0, 0, 0] bounds_abs = np.zeros((10, 2)) for i in range(5): if pi[i] > 0: bounds_abs[i] = [pi[i]/2, pi[i]*2] bounds_abs[i+5] = [-pi[i]*10, pi[i]*10] else: bounds_abs[i] = [pi[i]*2, pi[i]/2] bounds_abs[i+5] = [pi[i]*10, -pi[i]*10] x0 = (np.array(pi_init) - bounds_abs[:,0]) / (bounds_abs[:,1]-bounds_abs[:,0]) noise_previous = [.001, 1] n_noise = 6 noise_mat = np.zeros((n_noise, 2)) for i in range(n_noise): noise_mat[i] = 1/3*np.array(noise_previous)*i bounds = np.array([[0, 1]]*10) x0 = (np.array(pi_init) - bounds_abs[:,0]) / (bounds_abs[:,1]-bounds_abs[:,0]) x0_abs = np.array(pi_init) max_f_eval = 100 ; N_SAA = 1 # max_f_eval = 50 ; N_SAA = 2 N_samples = 20 # ContrSynNoise_list_DIRECT = [] # for i in range(n_noise): # print('Iteration ', i+1, ' of DIRECT') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # ContrSynNoise_DIRECT_f = lambda x, grad: f(x) # for j in range(N_samples): # sol = DIRECTWrapper().solve(ContrSynNoise_DIRECT_f, x0, bounds, \ # maxfun = max_f_eval, constraints=1) # best.append(sol['f_best_so_far'][-1]) # ContrSynNoise_list_DIRECT.append(best) # with open('DIRECTContrSyn_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoise_list_DIRECT, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('DIRECTContrSyn_listNoiseConv.pickle', 'rb') as handle: ContrSynNoise_list_DIRECT = pickle.load(handle) # # N_SAA = 1 # N_samples = 20 # ContrSynNoise_list_CUATROg = [] # for i in range(n_noise): # print('Iteration ', i+1, ' of CUATRO_g') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # for j in range(N_samples): # print(j+1) # sol = CUATRO(f, x0, 0.5, bounds = bounds, max_f_eval = max_f_eval, \ # N_min_samples = 6, tolerance = 1e-10,\ # beta_red = 0.9, rnd = j, method = 'global', \ # constr_handling = 'Discrimination') # best.append(sol['f_best_so_far'][-1]) # ContrSynNoise_list_CUATROg.append(best) # with open('CUATROgContrSyn_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoise_list_CUATROg, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('CUATROgContrSyn_listNoiseConv.pickle', 'rb') as handle: ContrSynNoise_list_CUATROg = pickle.load(handle) # N_samples = 20 # ContrSynNoise_list_simplex = [] # for i in range(n_noise): # print('Iteration ', i+1, ' of Simplex') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # for j in range(N_samples): # sol = simplex_method(f, x0, bounds, max_iter = 50, \ # constraints = 1, rnd_seed = j, mu_con = 1e6) # best.append(sol['f_best_so_far'][-1]) # ContrSynNoise_list_simplex.append(best) # with open('simplexContrSyn_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoise_list_simplex, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('simplexContrSyn_listNoiseConv.pickle', 'rb') as handle: ContrSynNoise_list_simplex = pickle.load(handle) noise = ['%.3f' % noise_mat[i][1] for i in range(n_noise)] noise_labels = [[noise[i]]*N_samples for i in range(n_noise)] min_list = np.array([np.min([np.min(ContrSynNoise_list_DIRECT[i]), np.min(ContrSynNoise_list_CUATROg[i]), np.min(ContrSynNoise_list_simplex[i])]) for i in range(n_noise)]) convergence = list(itertools.chain(*np.array(ContrSynNoise_list_DIRECT) - min_list.reshape(6,1))) + \ list(itertools.chain(*np.array(ContrSynNoise_list_CUATROg)- min_list.reshape(6,1))) + \ list(itertools.chain(*np.array(ContrSynNoise_list_simplex) - min_list.reshape(6,1))) noise = list(itertools.chain(*noise_labels))*3 method = ['DIRECT']*int(len(noise)/3) + ['CUATRO_g']*int(len(noise)/3) + \ ['Simplex']*int(len(noise)/3) data = {'Best function evaluation': convergence, \ "Noise standard deviation": noise, \ 'Method': method} df = pd.DataFrame(data) plt.rcParams["font.family"] = "Times New Roman" ft = int(15) font = {'size': ft} plt.rc('font', **font) params = {'legend.fontsize': 12.5, 'legend.handlelength': 1.2} ax = sns.boxplot(x = "Noise standard deviation", y = "Best function evaluation", hue = "Method", data = df, palette = "muted") plt.legend(bbox_to_anchor=(0,1.02,1,0.2), loc="lower left", mode="expand", borderaxespad=0, ncol=3) plt.tight_layout() plt.ylabel(r'$f_{best, sample}$ - $f_{opt, noise}$') plt.savefig('ContrSyn_publication_plots/ContrSyn_feval100Convergence.svg', format = "svg") # ax.set_ylim([0.1, 10]) # ax.set_yscale("log") plt.show() plt.clf() # max_f_eval = 100 ; N_SAA = 1 max_f_eval = 50 ; N_SAA = 2 N_samples = 20 # ContrSynNoiseSAA_list_DIRECT = [] # for i in range(n_noise): # print('Iteration ', i+1, ' of DIRECT') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # ContrSynNoise_DIRECT_f = lambda x, grad: f(x) # for j in range(N_samples): # sol = DIRECTWrapper().solve(ContrSynNoise_DIRECT_f, x0, bounds, \ # maxfun = max_f_eval, constraints=1) # best.append(sol['f_best_so_far'][-1]) # ContrSynNoiseSAA_list_DIRECT.append(best) # with open('DIRECTContrSynSAA_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoiseSAA_list_DIRECT, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('DIRECTContrSynSAA_listNoiseConv.pickle', 'rb') as handle: ContrSynNoiseSAA_list_DIRECT = pickle.load(handle) # N_SAA = 1 N_samples = 20 # ContrSynNoiseSAA_list_CUATROg = [] # for i in range(4): # print('Iteration ', i+1, ' of CUATRO_g') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # for j in range(N_samples): # print(j+1) # sol = CUATRO(f, x0, 0.5, bounds = bounds, max_f_eval = max_f_eval, \ # N_min_samples = 6, tolerance = 1e-10,\ # beta_red = 0.9, rnd = j, method = 'global', \ # constr_handling = 'Discrimination') # best.append(sol['f_best_so_far'][-1]) # ContrSynNoiseSAA_list_CUATROg.append(best) # with open('CUATROgContrSynSAA_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoiseSAA_list_CUATROg, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('CUATROgContrSynSAA_listNoiseConv.pickle', 'rb') as handle: ContrSynNoiseSAA_list_CUATROg = pickle.load(handle) N_samples = 20 # ContrSynNoiseSAA_list_simplex = [] # for i in range(n_noise): # print('Iteration ', i+1, ' of Simplex') # best = [] # best_constr = [] # f = lambda x: cost_control_noise(x, bounds_abs, noise_mat[i], N_SAA, \ # x0 = [.116, 368.489], N = 200, T = 20) # for j in range(N_samples): # sol = simplex_method(f, x0, bounds, max_iter = 50, \ # constraints = 1, rnd_seed = j, mu_con = 1e6) # best.append(sol['f_best_so_far'][-1]) # ContrSynNoiseSAA_list_simplex.append(best) # with open('simplexContrSynSAA_listNoiseConv.pickle', 'wb') as handle: # pickle.dump(ContrSynNoiseSAA_list_simplex, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('simplexContrSynSAA_listNoiseConv.pickle', 'rb') as handle: ContrSynNoiseSAA_list_simplex = pickle.load(handle) min_list = np.zeros(n_noise) for i in range(n_noise): if i <4: min_list[i] = np.array([np.min([np.min(ContrSynNoiseSAA_list_DIRECT[i]), np.min(ContrSynNoiseSAA_list_CUATROg[i]), np.min(ContrSynNoiseSAA_list_simplex[i])])]) else: min_list[i] = np.array([np.min([np.min(ContrSynNoiseSAA_list_DIRECT[i]), np.min(ContrSynNoiseSAA_list_simplex[i])])]) noise = ['%.3f' % noise_mat[i][1] for i in range(n_noise)] noise_labels = [[noise[i]]*N_samples for i in range(n_noise)] convergence = list(itertools.chain(*np.array(ContrSynNoiseSAA_list_DIRECT) - min_list.reshape(6,1))) + \ list(itertools.chain(*np.array(ContrSynNoiseSAA_list_CUATROg[:4])- min_list.reshape(6,1)[:4])) + \ list(itertools.chain(*np.array(ContrSynNoiseSAA_list_simplex) - min_list.reshape(6,1))) noise = list(itertools.chain(*noise_labels)) + list(itertools.chain(*noise_labels[:4])) + \ list(itertools.chain(*noise_labels)) method = ['DIRECT']*N_samples*n_noise + ['CUATRO_g*']*N_samples*(n_noise-2) + \ ['Simplex']*N_samples*n_noise data = {'Best function evaluation': convergence, \ "Noise standard deviation": noise, \ 'Method': method} df =
pd.DataFrame(data)
pandas.DataFrame
#!/usr/bin/python # -*- coding: utf-8 -*- import codecs import pandas as pd #导入数据 import numpy as np #矩阵计算 import matplotlib.pyplot as plt from math import sin as sin from math import cos as cos from math import exp as exp from pandas import Series,DataFrame import csv import sklearn.preprocessing as preprocessing #归一化 import operator from os import listdir from numpy import * import warnings # gensim导入问题 warnings.filterwarnings(action='ignore', category=UserWarning, module='gensim') from gensim.models import word2vec import gensim import logging import jieba import re import multiprocessing # header表示文件第0行为列索引,index_col为行索引 data_train = pd.read_csv(u"F:/answers.csv", header=0,index_col=None, encoding='gb18030') data_train1 =
pd.read_csv(u"F:/questions.csv", header=0,index_col=None, encoding='gb18030')
pandas.read_csv
import argparse from pathlib import Path import pandas as pd from finetune_v2.fmt_output import ResultFormatter dir_struct = ["model_name", "experiment", "checkpoint", "task", "run"] def is_path_ok(args, path): n = len(Path(args.results_dir).parts) assert len(path.parts[n:]) == len(dir_struct) if not (path / "output.csv").exists(): return False is_ok = True for key, part in zip(dir_struct, path.parts[n:]): if hasattr(args, key): value = getattr(args, key) if value is not None: is_ok &= part == value return is_ok def listdir(args): results_dir = args.results_dir for path in Path(results_dir).glob("*/" * len(dir_struct)): if is_path_ok(args, path): yield path def get_meta(args, path): n = len(Path(args.results_dir).parts) assert len(path.parts[n:]) == len(dir_struct) return {key: part for key, part in zip(dir_struct, path.parts[n:])} def collect_data(args, path): formatter = ResultFormatter(path / "output.csv") return get_meta(args, path), formatter.read() if __name__=="__main__": parser = argparse.ArgumentParser("show results") parser.add_argument("--results_dir", default="saved") parser.add_argument("--checkpoint", type=str, default=None) parser.add_argument("--experiment", type=str, default=None) parser.add_argument("--model_name", type=str, default=None) parser.add_argument("--task", type=str, default=None) parser.add_argument("--run", type=str, default=None) parser.add_argument("--groupby", type=str, default=None) parser.add_argument("--to_save", type=str, default="saved/final_result.csv") args = parser.parse_args() dfs = [] for path in listdir(args): meta, data = collect_data(args, path) for key in meta: data[key] = [meta[key]] * len(data) dfs.append(data) final_df =
pd.concat(dfs)
pandas.concat