prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import os import sys import math from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() sys.path.append( os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) ) import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.backends.backend_pdf import PdfPages from src.data.config import SITE, FOUNTAIN, FOLDERS from multiprocessing import Pool from src.models.air import Icestupa class Discharge_Icestupa(Icestupa): # def __init__(self): # self.df = pd.read_hdf(FOLDERS["input_folder"] + "model_input_extended.h5", "df") def run(self, experiment): self.df = pd.read_hdf(FOLDERS["input_folder"] + "model_input_extended.h5", "df") key = experiment.get("dia_f") self.dia_f = key self.melt_freeze() Max_IceV = self.df["iceV"].max() Efficiency = ( (self.df["meltwater"].iloc[-1] + self.df["ice"].iloc[-1]) / (self.df["input"].iloc[-1]) * 100 ) Duration = self.df.index[-1] * 5 / (60 * 24) h_r = self.df.h_ice.max() / self.df.r_ice.max() water_stored = self.df["meltwater"].iloc[-1] + self.df["ice"].iloc[-1] water_lost = self.df["vapour"].iloc[-1] unfrozen_water = self.df["unfrozen_water"].iloc[-1] avg_freeze_rate = self.df[self.df["Discharge"] > 0]["solid"].mean() / 5 print("\nDia", key) print("Ice Volume Max", float(self.df["iceV"].max())) print("Fountain efficiency", Efficiency) print("Ice Mass Remaining", self.df["ice"].iloc[-1]) print("Meltwater", self.df["meltwater"].iloc[-1]) print("Ppt", self.df["ppt"].sum()) print("Deposition", self.df["dpt"].sum()) print("Duration", Duration) result = pd.Series( [ experiment.get("dia_f"), Max_IceV, Efficiency, Duration, h_r, water_stored, water_lost, unfrozen_water, avg_freeze_rate, ] ) self.df = self.df.set_index("When").resample("H").mean().reset_index() return ( key, self.df["When"].values, self.df["SA"].values, self.df["iceV"].values, self.df["solid"].values, self.df["Discharge"].values, self.df["input"].values, self.df["meltwater"].values, result, ) if __name__ == "__main__": param_values = np.arange(0.002, 0.015, 0.001).tolist() print(param_values) experiments = pd.DataFrame(param_values, columns=["dia_f"]) model = Discharge_Icestupa() variables = ["When", "SA", "iceV", "solid", "Discharge", "input", "meltwater"] df_out =
pd.DataFrame()
pandas.DataFrame
from os.path import abspath, dirname, join, isfile, normpath, relpath from pandas.testing import assert_frame_equal from numpy.testing import assert_allclose from scipy.interpolate import interp1d import matplotlib.pylab as plt from datetime import datetime import mhkit.wave as wave from io import StringIO import pandas as pd import numpy as np import contextlib import unittest import netCDF4 import inspect import pickle import json import sys import os import time from random import seed, randint testdir = dirname(abspath(__file__)) datadir = normpath(join(testdir,relpath('../../examples/data/wave'))) class TestResourceSpectrum(unittest.TestCase): @classmethod def setUpClass(self): omega = np.arange(0.1,3.5,0.01) self.f = omega/(2*np.pi) self.Hs = 2.5 self.Tp = 8 df = self.f[1] - self.f[0] Trep = 1/df self.t = np.arange(0, Trep, 0.05) @classmethod def tearDownClass(self): pass def test_pierson_moskowitz_spectrum(self): S = wave.resource.pierson_moskowitz_spectrum(self.f,self.Tp) Tp0 = wave.resource.peak_period(S).iloc[0,0] error = np.abs(self.Tp - Tp0)/self.Tp self.assertLess(error, 0.01) def test_bretschneider_spectrum(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) Hm0 = wave.resource.significant_wave_height(S).iloc[0,0] Tp0 = wave.resource.peak_period(S).iloc[0,0] errorHm0 = np.abs(self.Tp - Tp0)/self.Tp errorTp0 = np.abs(self.Hs - Hm0)/self.Hs self.assertLess(errorHm0, 0.01) self.assertLess(errorTp0, 0.01) def test_surface_elevation_seed(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default eta0 = wave.resource.surface_elevation(S, self.t) eta1 = wave.resource.surface_elevation(S, self.t, seed=seednum) assert_frame_equal(eta0, eta1) def test_surface_elevation_phasing(self): S = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) eta0 = wave.resource.surface_elevation(S, self.t) sig = inspect.signature(wave.resource.surface_elevation) seednum = sig.parameters['seed'].default np.random.seed(seednum) phases = np.random.rand(len(S)) * 2 * np.pi eta1 = wave.resource.surface_elevation(S, self.t, phases=phases) assert_frame_equal(eta0, eta1) def test_surface_elevation_phases_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) phases_np = np.random.rand(S.shape[0], S.shape[1]) * 2 * np.pi phases_pd = pd.DataFrame(phases_np, index=S.index, columns=S.columns) eta_np = wave.resource.surface_elevation(S, self.t, phases=phases_np) eta_pd = wave.resource.surface_elevation(S, self.t, phases=phases_pd) assert_frame_equal(eta_np, eta_pd) def test_surface_elevation_frequency_bins_np_and_pd(self): S0 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs) S1 = wave.resource.bretschneider_spectrum(self.f,self.Tp,self.Hs*1.1) S = pd.concat([S0, S1], axis=1) eta0 = wave.resource.surface_elevation(S, self.t) f_bins_np = np.array([np.diff(S.index)[0]]*len(S)) f_bins_pd =
pd.DataFrame(f_bins_np, index=S.index, columns=['df'])
pandas.DataFrame
# Databricks notebook source # MAGIC %md # MAGIC ScaDaMaLe Course [site](https://lamastex.github.io/scalable-data-science/sds/3/x/) and [book](https://lamastex.github.io/ScaDaMaLe/index.html) # MAGIC # MAGIC This is a 2019-2021 augmentation and update of [<NAME>](https://www.linkedin.com/in/adbreind)'s initial notebooks. # MAGIC # MAGIC _Thanks to [<NAME>](https://www.linkedin.com/in/christianvonkoch/) and [<NAME>](https://www.linkedin.com/in/william-anz%C3%A9n-b52003199/) for their contributions towards making these materials Spark 3.0.1 and Python 3+ compliant._ # COMMAND ---------- # MAGIC %md # MAGIC ##Keras Deep Feed-Forward Network # MAGIC ### (solution) # COMMAND ---------- from keras.models import Sequential from keras.layers import Dense import numpy as np import pandas as pd input_file = "/dbfs/databricks-datasets/Rdatasets/data-001/csv/ggplot2/diamonds.csv" df = pd.read_csv(input_file, header = 0) df.drop(df.columns[0], axis=1, inplace=True) df =
pd.get_dummies(df, prefix=['cut_', 'color_', 'clarity_'])
pandas.get_dummies
import pandas as pd import numpy as np from scipy.stats import skew df_test =
pd.read_csv("../../test.csv")
pandas.read_csv
import vectorbt as vbt import numpy as np import pandas as pd from numba import njit from datetime import datetime import pytest from vectorbt.generic import nb as generic_nb from vectorbt.generic.enums import range_dt from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) mask = pd.DataFrame([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ]), columns=['a', 'b', 'c']) ts = pd.Series([1., 2., 3., 2., 1.], index=mask.index) price = pd.DataFrame({ 'open': [10, 11, 12, 11, 10], 'high': [11, 12, 13, 12, 11], 'low': [9, 10, 11, 10, 9], 'close': [11, 12, 11, 10, 9] }) group_by = pd.Index(['g1', 'g1', 'g2']) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# accessors.py ############# # class TestAccessors: def test_indexing(self): assert mask.vbt.signals['a'].total() == mask['a'].vbt.signals.total() def test_freq(self): assert mask.vbt.signals.wrapper.freq == day_dt assert mask['a'].vbt.signals.wrapper.freq == day_dt assert mask.vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert mask['a'].vbt.signals(freq='2D').wrapper.freq == day_dt * 2 assert pd.Series([False, True]).vbt.signals.wrapper.freq is None assert pd.Series([False, True]).vbt.signals(freq='3D').wrapper.freq == day_dt * 3 assert pd.Series([False, True]).vbt.signals(freq=np.timedelta64(4, 'D')).wrapper.freq == day_dt * 4 @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_fshift(self, test_n): pd.testing.assert_series_equal(mask['a'].vbt.signals.fshift(test_n), mask['a'].shift(test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.fshift(test_n).values, generic_nb.fshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.fshift(test_n), mask.shift(test_n, fill_value=False)) @pytest.mark.parametrize( "test_n", [1, 2, 3, 4, 5], ) def test_bshift(self, test_n): pd.testing.assert_series_equal( mask['a'].vbt.signals.bshift(test_n), mask['a'].shift(-test_n, fill_value=False)) np.testing.assert_array_equal( mask['a'].vbt.signals.bshift(test_n).values, generic_nb.bshift_1d_nb(mask['a'].values, test_n, fill_value=False) ) pd.testing.assert_frame_equal(mask.vbt.signals.bshift(test_n), mask.shift(-test_n, fill_value=False)) def test_empty(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.empty(5, index=np.arange(10, 15), name='a'), pd.Series(np.full(5, False), index=np.arange(10, 15), name='a') ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty((5, 3), index=np.arange(10, 15), columns=['a', 'b', 'c']), pd.DataFrame(np.full((5, 3), False), index=np.arange(10, 15), columns=['a', 'b', 'c']) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.empty_like(mask['a']), pd.Series(np.full(mask['a'].shape, False), index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.empty_like(mask), pd.DataFrame(np.full(mask.shape, False), index=mask.index, columns=mask.columns) ) def test_generate(self): @njit def choice_func_nb(from_i, to_i, col, n): if col == 0: return np.arange(from_i, to_i) elif col == 1: return np.full(1, from_i) else: return np.full(1, to_i - n) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate(5, choice_func_nb, 1, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate((5, 2), choice_func_nb, 1) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [True, False, False], [True, False, False], [True, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate( (5, 3), choice_func_nb, 1, pick_first=True, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, False], [False, False, False], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_generate_both(self): @njit def entry_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] @njit def exit_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) en, ex = pd.Series.vbt.signals.generate_both( 5, entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, True, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, True], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=1, exit_wait=0) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.Series.vbt.signals.generate_both( (5,), entry_func_nb, (temp_int,), exit_func_nb, (temp_int,), index=mask['a'].index, name=mask['a'].name, entry_wait=0, exit_wait=1) pd.testing.assert_series_equal( en, pd.Series( np.array([True, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, True, True, True]), index=mask['a'].index, name=mask['a'].name ) ) @njit def entry_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] @njit def exit_func2_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i if from_i + 1 < to_i: temp_int[1] = from_i + 1 return temp_int[:2] return temp_int[:1] en, ex = pd.DataFrame.vbt.signals.generate_both( (5, 3), entry_func2_nb, (temp_int,), exit_func2_nb, (temp_int,), entry_pick_first=False, exit_pick_first=False, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [True, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_exits(self): @njit def choice_func_nb(from_i, to_i, col, temp_int): temp_int[0] = from_i return temp_int[:1] temp_int = np.empty((mask.shape[0],), dtype=np.int_) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_exits(choice_func_nb, temp_int), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func_nb, temp_int, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) @njit def choice_func2_nb(from_i, to_i, col, temp_int): for i in range(from_i, to_i): temp_int[i - from_i] = i return temp_int[:to_i - from_i] pd.testing.assert_frame_equal( mask.vbt.signals.generate_exits(choice_func2_nb, temp_int, until_next=False, pick_first=False), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [True, True, False], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) mask2 = pd.Series([True, True, True, True, True], index=mask.index) pd.testing.assert_series_equal( mask2.vbt.signals.generate_exits(choice_func_nb, temp_int, until_next=False, skip_until_exit=True), pd.Series( np.array([False, True, False, True, False]), index=mask.index ) ) def test_clean(self): entries = pd.DataFrame([ [True, False, True], [True, False, False], [True, True, True], [False, True, False], [False, True, True] ], index=mask.index, columns=mask.columns) exits = pd.Series([True, False, True, False, True], index=mask.index) pd.testing.assert_frame_equal( entries.vbt.signals.clean(), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries), pd.DataFrame( np.array([ [True, False, True], [False, False, False], [False, True, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( entries.vbt.signals.clean(exits, entry_first=False)[1], pd.DataFrame( np.array([ [False, True, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[0], pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.clean(entries, exits)[1], pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.clean(entries, entries, entries) def test_generate_random(self): pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, n=3, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([False, True, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), n=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=3, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [True, True, True], [True, True, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, False, True], [False, False, True], [False, False, False], [False, True, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( pd.Series.vbt.signals.generate_random( 5, prob=0.5, seed=seed, index=mask['a'].index, name=mask['a'].name), pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) with pytest.raises(Exception): _ = pd.Series.vbt.signals.generate_random((5, 2), prob=3) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=0.5, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [True, True, True], [False, True, False], [False, False, False], [False, False, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, True, True], [False, False, True], [False, False, True], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) pd.testing.assert_frame_equal( pd.DataFrame.vbt.signals.generate_random( (5, 3), prob=[0., 0.5, 1.], pick_first=True, seed=seed, index=mask.index, columns=mask.columns), pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_random_both(self): # n en, ex = pd.Series.vbt.signals.generate_random_both( 5, n=2, seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, True, False, False]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=2, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [True, True, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, True, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), n=[0, 1, 2], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, False, True], [False, True, False], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, True], [False, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((2, 3), n=2, seed=seed, entry_wait=1, exit_wait=0) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True] ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((3, 3), n=2, seed=seed, entry_wait=0, exit_wait=1) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], ]) ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both((7, 3), n=2, seed=seed, entry_wait=2, exit_wait=2) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False] ]) ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, False], [True, True, True] ]) ) ) n = 10 a = np.full(n * 2, 0.) for i in range(10000): en, ex = pd.Series.vbt.signals.generate_random_both(1000, n, entry_wait=2, exit_wait=2) _a = np.empty((n * 2,), dtype=np.int_) _a[0::2] = np.flatnonzero(en) _a[1::2] = np.flatnonzero(ex) a += _a greater = a > 10000000 / (2 * n + 1) * np.arange(0, 2 * n) less = a < 10000000 / (2 * n + 1) * np.arange(2, 2 * n + 2) assert np.all(greater & less) # probs en, ex = pd.Series.vbt.signals.generate_random_both( 5, entry_prob=0.5, exit_prob=1., seed=seed, index=mask['a'].index, name=mask['a'].name) pd.testing.assert_series_equal( en, pd.Series( np.array([True, False, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_series_equal( ex, pd.Series( np.array([False, True, False, False, False]), index=mask['a'].index, name=mask['a'].name ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=0.5, exit_prob=1., seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [False, False, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=[0., 0.5, 1.], exit_prob=[0., 0.5, 1.], seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [False, True, True], [False, False, False], [False, False, True], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, True, True], [False, False, False], [False, False, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., exit_wait=0, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=False, exit_pick_first=True, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) en, ex = pd.DataFrame.vbt.signals.generate_random_both( (5, 3), entry_prob=1., exit_prob=1., entry_pick_first=True, exit_pick_first=False, seed=seed, index=mask.index, columns=mask.columns) pd.testing.assert_frame_equal( en, pd.DataFrame( np.array([ [True, True, True], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( ex, pd.DataFrame( np.array([ [False, False, False], [True, True, True], [True, True, True], [True, True, True], [True, True, True] ]), index=mask.index, columns=mask.columns ) ) # none with pytest.raises(Exception): pd.DataFrame.vbt.signals.generate_random((5, 3)) def test_generate_random_exits(self): pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(seed=seed), pd.Series( np.array([False, False, True, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [True, True, False], [False, False, False], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(seed=seed, wait=0), pd.DataFrame( np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_series_equal( mask['a'].vbt.signals.generate_random_exits(prob=1., seed=seed), pd.Series( np.array([False, True, False, False, True]), index=mask['a'].index, name=mask['a'].name ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=[0., 0.5, 1.], seed=seed), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., wait=0, seed=seed), pd.DataFrame( np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_random_exits(prob=1., until_next=False, seed=seed), pd.DataFrame( np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) def test_generate_stop_exits(self): e = pd.Series([True, False, False, False, False, False]) t = pd.Series([2, 3, 4, 3, 2, 1]).astype(np.float64) # stop loss pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits(t.vbt.tile(3), [np.nan, -0.5, -1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, True, False], [False, True, False] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # take profit pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1), pd.Series(np.array([False, False, False, False, False, True])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True), pd.Series(np.array([False, False, False, True, False, False])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, pick_first=False), pd.Series(np.array([False, False, False, True, True, True])) ) pd.testing.assert_frame_equal( e.vbt.signals.generate_stop_exits((4 - t).vbt.tile(3), [np.nan, 0.5, 1.], trailing=True, pick_first=False), pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [False, True, True], [False, True, True] ])) ) pd.testing.assert_series_equal( e.vbt.signals.generate_stop_exits(4 - t, 0.1, trailing=True, exit_wait=3), pd.Series(np.array([False, False, False, False, True, False])) ) # chain e = pd.Series([True, True, True, True, True, True]) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, True])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, entry_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, False, True])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) en, ex = e.vbt.signals.generate_stop_exits(t, -0.1, trailing=True, exit_wait=2, chain=True) pd.testing.assert_series_equal( en, pd.Series(np.array([True, False, False, False, True, False])) ) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, False, False, True, False, False])) ) # until_next and pick_first e2 = pd.Series([True, True, True, True, True, True]) t2 = pd.Series([6, 5, 4, 3, 2, 1]).astype(np.float64) ex = e2.vbt.signals.generate_stop_exits(t2, -0.1, until_next=False, pick_first=False) pd.testing.assert_series_equal( ex, pd.Series(np.array([False, True, True, True, True, True])) ) def test_generate_ohlc_stop_exits(self): with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=-0.1) with pytest.raises(Exception): _ = mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=-0.1) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, 0.1, trailing=True), mask.vbt.signals.generate_ohlc_stop_exits(ts, sl_stop=0.1, sl_trail=True, reverse=True) ) pd.testing.assert_frame_equal( mask.vbt.signals.generate_stop_exits(ts, -0.1), mask.vbt.signals.generate_ohlc_stop_exits(ts, tp_stop=0.1, reverse=True) ) def _test_ohlc_stop_exits(**kwargs): out_dict = {'stop_price': np.nan, 'stop_type': -1} result = mask.vbt.signals.generate_ohlc_stop_exits( price['open'], price['high'], price['low'], price['close'], out_dict=out_dict, **kwargs ) if isinstance(result, tuple): _, ex = result else: ex = result return result, out_dict['stop_price'], out_dict['stop_type'] ex, stop_price, stop_type = _test_ohlc_stop_exits() pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, -1, 0], [0, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, False, False], [False, True, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 11.7, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, -1, -1], [-1, 1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=[np.nan, 0.1, 0.2], sl_trail=True, tp_stop=[np.nan, 0.1, 0.2]) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [False, False, False], [False, True, False], [False, False, False], [False, False, True] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, 9.6] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, -1], [-1, -1, 1] ]), index=mask.index, columns=mask.columns) ) ex, stop_price, stop_type = _test_ohlc_stop_exits(sl_stop=0.1, sl_trail=True, tp_stop=0.1, exit_wait=0) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [True, False, False], [False, False, False], [False, True, False], [False, False, True], [True, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [9.0, np.nan, np.nan], [np.nan, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 11.7], [10.8, 9.0, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [1, -1, -1], [-1, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, 1, -1] ]), index=mask.index, columns=mask.columns) ) (en, ex), stop_price, stop_type = _test_ohlc_stop_exits( sl_stop=0.1, sl_trail=True, tp_stop=0.1, chain=True) pd.testing.assert_frame_equal( en, pd.DataFrame(np.array([ [True, False, False], [False, True, False], [False, False, True], [True, False, False], [False, True, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( ex, pd.DataFrame(np.array([ [False, False, False], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_price, pd.DataFrame(np.array([ [np.nan, np.nan, np.nan], [11.0, np.nan, np.nan], [np.nan, 12.1, np.nan], [np.nan, np.nan, 10.8], [9.9, np.nan, np.nan] ]), index=mask.index, columns=mask.columns) ) pd.testing.assert_frame_equal( stop_type, pd.DataFrame(np.array([ [-1, -1, -1], [2, -1, -1], [-1, 2, -1], [-1, -1, 1], [1, -1, -1] ]), index=mask.index, columns=mask.columns) ) def test_between_ranges(self): ranges = mask.vbt.signals.between_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 0, 3, 1), (1, 1, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask.vbt.wrapper mask2 = pd.DataFrame([ [True, True, True], [True, True, True], [False, False, False], [False, False, False], [False, False, False] ], index=mask.index, columns=mask.columns) other_mask = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [False, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_ranges(other=other_mask) record_arrays_close( ranges.values, np.array([ (0, 0, 0, 1, 1), (1, 0, 1, 1, 1), (2, 1, 0, 2, 1), (3, 1, 1, 2, 1), (4, 2, 0, 3, 1), (5, 2, 1, 3, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper ranges = mask2.vbt.signals.between_ranges(other=other_mask, from_other=True) record_arrays_close( ranges.values, np.array([ (0, 0, 1, 1, 1), (1, 0, 1, 2, 1), (2, 1, 1, 2, 1), (3, 1, 1, 3, 1), (4, 2, 1, 3, 1), (5, 2, 1, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_partition_ranges(self): mask2 = pd.DataFrame([ [False, False, False], [True, False, False], [True, True, False], [False, True, True], [True, False, True] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 0, 4, 4, 0), (2, 1, 2, 4, 1), (3, 2, 3, 4, 0) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_between_partition_ranges(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) ranges = mask2.vbt.signals.between_partition_ranges() record_arrays_close( ranges.values, np.array([ (0, 0, 1, 3, 1), (1, 1, 2, 4, 1) ], dtype=range_dt) ) assert ranges.wrapper == mask2.vbt.wrapper def test_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.pos_rank(), pd.Series([-1, 0, 1, -1, 0], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 2, 2], [2, -1, 3] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask['a'], allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 1, -1], [-1, 0, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.pos_rank(reset_by=mask, allow_gaps=True), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 1], [1, 0, -1], [-1, 1, 0], [0, -1, 1] ]), index=mask.index, columns=mask.columns ) ) def test_partition_pos_rank(self): pd.testing.assert_series_equal( (~mask['a']).vbt.signals.partition_pos_rank(), pd.Series([-1, 0, 0, -1, 1], index=mask['a'].index, name=mask['a'].name) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 1, 1], [1, -1, 1] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(after_false=True), pd.DataFrame( np.array([ [-1, -1, -1], [0, -1, -1], [0, 0, -1], [-1, 0, 0], [1, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask['a']), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 1, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.partition_pos_rank(reset_by=mask), pd.DataFrame( np.array([ [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0], [0, -1, 0] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_fns(self): pd.testing.assert_frame_equal( (~mask).vbt.signals.first(), pd.DataFrame( np.array([ [False, True, True], [True, False, False], [False, True, False], [False, False, True], [True, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(1), pd.DataFrame( np.array([ [False, False, False], [False, False, True], [True, False, False], [False, True, False], [False, False, True] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.nth(2), pd.DataFrame( np.array([ [False, False, False], [False, False, False], [False, False, False], [False, False, False], [False, False, False] ]), index=mask.index, columns=mask.columns ) ) pd.testing.assert_frame_equal( (~mask).vbt.signals.from_nth(0), pd.DataFrame( np.array([ [False, True, True], [True, False, True], [True, True, False], [False, True, True], [True, False, True] ]), index=mask.index, columns=mask.columns ) ) def test_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 1, 0, 0, 1, 0, 0, 1]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_partition_pos_rank_mapped(self): mask2 = pd.DataFrame([ [True, False, False], [True, True, False], [False, True, True], [True, False, True], [False, True, False] ], index=mask.index, columns=mask.columns) mapped = mask2.vbt.signals.partition_pos_rank_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 0, 1, 0, 0, 1, 0, 0]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 1, 3, 1, 2, 4, 2, 3]) ) assert mapped.wrapper == mask2.vbt.wrapper def test_nth_index(self): assert mask['a'].vbt.signals.nth_index(0) == pd.Timestamp('2020-01-01 00:00:00') pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1), pd.Series([ pd.Timestamp('2020-01-04 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-2), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-02 00:00:00'), np.nan ], index=mask.columns, name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(0, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) pd.testing.assert_series_equal( mask.vbt.signals.nth_index(-1, group_by=group_by), pd.Series([ pd.Timestamp('2020-01-05 00:00:00'), pd.Timestamp('2020-01-03 00:00:00') ], index=['g1', 'g2'], name='nth_index', dtype='datetime64[ns]') ) def test_norm_avg_index(self): assert mask['a'].vbt.signals.norm_avg_index() == -0.25 pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(), pd.Series([-0.25, 0.25, 0.0], index=mask.columns, name='norm_avg_index') ) pd.testing.assert_series_equal( mask.vbt.signals.norm_avg_index(group_by=group_by), pd.Series([0.0, 0.0], index=['g1', 'g2'], name='norm_avg_index') ) def test_index_mapped(self): mapped = mask.vbt.signals.index_mapped() np.testing.assert_array_equal( mapped.values, np.array([0, 3, 1, 4, 2]) ) np.testing.assert_array_equal( mapped.col_arr, np.array([0, 0, 1, 1, 2]) ) np.testing.assert_array_equal( mapped.idx_arr, np.array([0, 3, 1, 4, 2]) ) assert mapped.wrapper == mask.vbt.wrapper def test_total(self): assert mask['a'].vbt.signals.total() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total(), pd.Series([2, 2, 1], index=mask.columns, name='total') ) pd.testing.assert_series_equal( mask.vbt.signals.total(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total') ) def test_rate(self): assert mask['a'].vbt.signals.rate() == 0.4 pd.testing.assert_series_equal( mask.vbt.signals.rate(), pd.Series([0.4, 0.4, 0.2], index=mask.columns, name='rate') ) pd.testing.assert_series_equal( mask.vbt.signals.rate(group_by=group_by), pd.Series([0.4, 0.2], index=['g1', 'g2'], name='rate') ) def test_total_partitions(self): assert mask['a'].vbt.signals.total_partitions() == 2 pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(), pd.Series([2, 2, 1], index=mask.columns, name='total_partitions') ) pd.testing.assert_series_equal( mask.vbt.signals.total_partitions(group_by=group_by), pd.Series([4, 1], index=['g1', 'g2'], name='total_partitions') ) def test_partition_rate(self): assert mask['a'].vbt.signals.partition_rate() == 1.0 pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(), pd.Series([1.0, 1.0, 1.0], index=mask.columns, name='partition_rate') ) pd.testing.assert_series_equal( mask.vbt.signals.partition_rate(group_by=group_by), pd.Series([1.0, 1.0], index=['g1', 'g2'], name='partition_rate') ) def test_stats(self): stats_index = pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance: Min', 'Distance: Max', 'Distance: Mean', 'Distance: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object') pd.testing.assert_series_equal( mask.vbt.signals.stats(), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 1.6666666666666667, 33.333333333333336, pd.Timestamp('2020-01-02 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 1.6666666666666667, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='agg_func_mean' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a'), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan, 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(to_timedelta=False)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 5, 2, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, 3.0, 3.0, 3.0, np.nan, 2, 100.0, 1.0, 1.0, 1.0, 0.0, 3.0, 3.0, 3.0, np.nan ], index=stats_index, name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='a', settings=dict(other=mask['b'], from_other=True)), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 2, 40.0, 0, 0.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-04 00:00:00'), -0.25, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 2, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), np.nan ], index=pd.Index([ 'Start', 'End', 'Period', 'Total', 'Rate [%]', 'Total Overlapping', 'Overlapping Rate [%]', 'First Index', 'Last Index', 'Norm Avg Index [-1, 1]', 'Distance <- Other: Min', 'Distance <- Other: Max', 'Distance <- Other: Mean', 'Distance <- Other: Std', 'Total Partitions', 'Partition Rate [%]', 'Partition Length: Min', 'Partition Length: Max', 'Partition Length: Mean', 'Partition Length: Std', 'Partition Distance: Min', 'Partition Distance: Max', 'Partition Distance: Mean', 'Partition Distance: Std' ], dtype='object'), name='a' ) ) pd.testing.assert_series_equal( mask.vbt.signals.stats(column='g1', group_by=group_by), pd.Series([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 4, 40.0, pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), 0.0, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('3 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), 4, 100.0, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 00:00:00'), pd.Timedelta('3 days 00:00:00'),
pd.Timedelta('3 days 00:00:00')
pandas.Timedelta
""" .. module:: volatility :synopsis: Volatility Indicators. .. moduleauthor:: <NAME> (Bukosabino) """ import numpy as np import pandas as pd from ta.utils import IndicatorMixin class AverageTrueRange(IndicatorMixin): """Average True Range (ATR) The indicator provide an indication of the degree of price volatility. Strong moves, in either direction, are often accompanied by large ranges, or large True Ranges. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:average_true_range_atr Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. window(int): n period. fillna(bool): if True, fill nan values. """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, window: int = 14, fillna: bool = False, ): self._high = high self._low = low self._close = close self._window = min(window, len(self._close)) self._fillna = fillna self._run() def _run(self): close_shift = self._close.shift(1) true_range = self._true_range(self._high, self._low, close_shift) atr = np.zeros(len(self._close)) #print(len(atr), ' window: ', self._window, len(true_range)) atr[self._window - 1] = true_range[0 : self._window].mean() for i in range(self._window, len(atr)): atr[i] = (atr[i - 1] * (self._window - 1) + true_range.iloc[i]) / float( self._window ) self._atr = pd.Series(data=atr, index=true_range.index) def average_true_range(self) -> pd.Series: """Average True Range (ATR) Returns: pandas.Series: New feature generated. """ atr = self._check_fillna(self._atr, value=0) return pd.Series(atr, name="atr") class BollingerBands(IndicatorMixin): """Bollinger Bands https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_bands Args: close(pandas.Series): dataset 'Close' column. window(int): n period. window_dev(int): n factor standard deviation fillna(bool): if True, fill nan values. """ def __init__( self, close: pd.Series, window: int = 20, window_dev: int = 2, fillna: bool = False, ): self._close = close self._window = window self._window_dev = window_dev self._fillna = fillna self._run() def _run(self): min_periods = 0 if self._fillna else self._window self._mavg = self._close.rolling(self._window, min_periods=min_periods).mean() self._mstd = self._close.rolling(self._window, min_periods=min_periods).std( ddof=0 ) self._hband = self._mavg + self._window_dev * self._mstd self._lband = self._mavg - self._window_dev * self._mstd def bollinger_mavg(self) -> pd.Series: """Bollinger Channel Middle Band Returns: pandas.Series: New feature generated. """ mavg = self._check_fillna(self._mavg, value=-1) return pd.Series(mavg, name="mavg") def bollinger_hband(self) -> pd.Series: """Bollinger Channel High Band Returns: pandas.Series: New feature generated. """ hband = self._check_fillna(self._hband, value=-1) return pd.Series(hband, name="hband") def bollinger_lband(self) -> pd.Series: """Bollinger Channel Low Band Returns: pandas.Series: New feature generated. """ lband = self._check_fillna(self._lband, value=-1) return pd.Series(lband, name="lband") def bollinger_wband(self) -> pd.Series: """Bollinger Channel Band Width From: https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_width Returns: pandas.Series: New feature generated. """ wband = ((self._hband - self._lband) / self._mavg) * 100 wband = self._check_fillna(wband, value=0) return pd.Series(wband, name="bbiwband") def bollinger_pband(self) -> pd.Series: """Bollinger Channel Percentage Band From: https://school.stockcharts.com/doku.php?id=technical_indicators:bollinger_band_perce Returns: pandas.Series: New feature generated. """ pband = (self._close - self._lband) / (self._hband - self._lband) pband = self._check_fillna(pband, value=0) return pd.Series(pband, name="bbipband") def bollinger_hband_indicator(self) -> pd.Series: """Bollinger Channel Indicator Crossing High Band (binary). It returns 1, if close is higher than bollinger_hband. Else, it returns 0. Returns: pandas.Series: New feature generated. """ hband = pd.Series( np.where(self._close > self._hband, 1.0, 0.0), index=self._close.index ) hband = self._check_fillna(hband, value=0) return pd.Series(hband, index=self._close.index, name="bbihband") def bollinger_lband_indicator(self) -> pd.Series: """Bollinger Channel Indicator Crossing Low Band (binary). It returns 1, if close is lower than bollinger_lband. Else, it returns 0. Returns: pandas.Series: New feature generated. """ lband = pd.Series( np.where(self._close < self._lband, 1.0, 0.0), index=self._close.index ) lband = self._check_fillna(lband, value=0) return pd.Series(lband, name="bbilband") class KeltnerChannel(IndicatorMixin): """KeltnerChannel Keltner Channels are a trend following indicator used to identify reversals with channel breakouts and channel direction. Channels can also be used to identify overbought and oversold levels when the trend is flat. https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. window(int): n period. window_atr(int): n atr period. Only valid if original_version param is False. fillna(bool): if True, fill nan values. original_version(bool): if True, use original version as the centerline (SMA of typical price) if False, use EMA of close as the centerline. More info: https://school.stockcharts.com/doku.php?id=technical_indicators:keltner_channels """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, window: int = 20, window_atr: int = 10, fillna: bool = False, original_version: bool = True, ): self._high = high self._low = low self._close = close self._window = window self._window_atr = window_atr self._fillna = fillna self._original_version = original_version self._run() def _run(self): min_periods = 1 if self._fillna else self._window if self._original_version: self._tp = ( ((self._high + self._low + self._close) / 3.0) .rolling(self._window, min_periods=min_periods) .mean() ) self._tp_high = ( (((4 * self._high) - (2 * self._low) + self._close) / 3.0) .rolling(self._window, min_periods=0) .mean() ) self._tp_low = ( (((-2 * self._high) + (4 * self._low) + self._close) / 3.0) .rolling(self._window, min_periods=0) .mean() ) else: self._tp = self._close.ewm( span=self._window, min_periods=min_periods, adjust=False ).mean() atr = AverageTrueRange( close=self._close, high=self._high, low=self._low, window=self._window_atr, fillna=self._fillna, ).average_true_range() self._tp_high = self._tp + (2 * atr) self._tp_low = self._tp - (2 * atr) def keltner_channel_mband(self) -> pd.Series: """Keltner Channel Middle Band Returns: pandas.Series: New feature generated. """ tp_middle = self._check_fillna(self._tp, value=-1) return pd.Series(tp_middle, name="mavg") def keltner_channel_hband(self) -> pd.Series: """Keltner Channel High Band Returns: pandas.Series: New feature generated. """ tp_high = self._check_fillna(self._tp_high, value=-1) return pd.Series(tp_high, name="kc_hband") def keltner_channel_lband(self) -> pd.Series: """Keltner Channel Low Band Returns: pandas.Series: New feature generated. """ tp_low = self._check_fillna(self._tp_low, value=-1) return pd.Series(tp_low, name="kc_lband") def keltner_channel_wband(self) -> pd.Series: """Keltner Channel Band Width Returns: pandas.Series: New feature generated. """ wband = ((self._tp_high - self._tp_low) / self._tp) * 100 wband = self._check_fillna(wband, value=0) return
pd.Series(wband, name="bbiwband")
pandas.Series
import datetime as dt import numpy as np import pandas as pd from pandas.testing import assert_series_equal, assert_frame_equal import pytest from solarforecastarbiter.datamodel import Observation from solarforecastarbiter.validation import tasks, validator from solarforecastarbiter.validation.quality_mapping import ( LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING, DAILY_VALIDATION_FLAG) @pytest.fixture() def make_observation(single_site): def f(variable): return Observation( name='test', variable=variable, interval_value_type='mean', interval_length=pd.Timedelta('1hr'), interval_label='beginning', site=single_site, uncertainty=0.1, observation_id='OBSID', provider='Organization 1', extra_parameters='') return f @pytest.fixture() def default_index(single_site): return [pd.Timestamp('2019-01-01T08:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T09:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T10:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T11:00:00', tz=single_site.timezone), pd.Timestamp('2019-01-01T13:00:00', tz=single_site.timezone)] @pytest.fixture() def daily_index(single_site): out = pd.date_range(start='2019-01-01T08:00:00', end='2019-01-01T19:00:00', freq='1h', tz=single_site.timezone) return out.append( pd.Index([pd.Timestamp('2019-01-02T09:00:00', tz=single_site.timezone)])) def test_validate_ghi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi') data = pd.Series([10, 1000, -100, 500, 300], index=default_index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_validate_mostly_clear(mocker, make_observation): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi']] obs = make_observation('ghi').replace(interval_length=pd.Timedelta('5min')) index = pd.date_range(start='2019-04-01T11:00', freq='5min', tz=obs.site.timezone, periods=11) data = pd.Series([742, 749, 756, 763, 769, 774, 779, 784, 789, 793, 700], index=index) flags = tasks.validate_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series([1] * 10 + [0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_apply_immediate_validation( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) def test_apply_immediate_validation_already_validated( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 18), (100, 18), (200, 18), (-1, 19), (1500, 18)], index=default_index, columns=['value', 'quality_flag']) val = tasks.apply_immediate_validation(obs, data) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert_frame_equal(val, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity']) def test_apply_immediate_validation_other( mocker, make_observation, default_index, var): mock = mocker.MagicMock() mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: mock}) obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called @pytest.mark.parametrize('var', ['availability', 'curtailment', 'event', 'net_load']) def test_apply_immediate_validation_defaults( mocker, make_observation, default_index, var): mock = mocker.spy(tasks, 'validate_defaults') obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) tasks.apply_immediate_validation(obs, data) assert mock.called def test_fetch_and_validate_observation_ghi(mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_ghi_nones( mocker, make_observation, default_index): obs = make_observation('ghi') data = pd.DataFrame( [(None, 1)] * 5, index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() base = ( DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | LATEST_VERSION_FLAG ) out['quality_flag'] = [ base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base, base, base, base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_fetch_and_validate_observation_not_listed(mocker, make_observation, default_index): obs = make_observation('curtailment') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dni(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dni_limits_QCRad']] obs = make_observation('dni') data = pd.Series([10, 1000, -100, 500, 500], index=default_index) flags = tasks.validate_dni(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dni(mocker, make_observation, default_index): obs = make_observation('dni') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dhi(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dhi_limits_QCRad']] obs = make_observation('dhi') data = pd.Series([10, 1000, -100, 200, 200], index=default_index) flags = tasks.validate_dhi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dhi(mocker, make_observation, default_index): obs = make_observation('dhi') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_poa_global(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_poa_clearsky']] obs = make_observation('poa_global') data = pd.Series([10, 1000, -400, 300, 300], index=default_index) flags = tasks.validate_poa_global(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_poa_global(mocker, make_observation, default_index): obs = make_observation('poa_global') data = pd.DataFrame( [(0, 0), (100, 0), (200, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED']] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_air_temp(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_temperature_limits']] obs = make_observation('air_temperature') data = pd.Series([10, 1000, -400, 30, 20], index=default_index) flags = tasks.validate_air_temperature(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_air_temperature( mocker, make_observation, default_index): obs = make_observation('air_temperature') data = pd.DataFrame( [(0, 0), (200, 0), (20, 0), (-1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_wind_speed(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_wind_limits']] obs = make_observation('wind_speed') data = pd.Series([10, 1000, -400, 3, 20], index=default_index) flags = tasks.validate_wind_speed(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_wind_speed( mocker, make_observation, default_index): obs = make_observation('wind_speed') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (1, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_relative_humidity(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_rh_limits']] obs = make_observation('relative_humidity') data = pd.Series([10, 101, -400, 60, 20], index=default_index) flags = tasks.validate_relative_humidity(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_relative_humidity( mocker, make_observation, default_index): obs = make_observation('relative_humidity') data = pd.DataFrame( [(0, 0), (200, 0), (15, 0), (40, 1), (1500, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_ac_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ac_power_limits']] obs = make_observation('ac_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power(mocker, make_observation, default_index): obs = make_observation('ac_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_dc_power(mocker, make_observation, default_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_dc_power_limits']] obs = make_observation('dc_power') data = pd.Series([0, 1, -1, 0.001, 0.001], index=default_index) flags = tasks.validate_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED']) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power(mocker, make_observation, default_index): obs = make_observation('dc_power') data = pd.DataFrame( [(0, 0), (1, 0), (-1, 0), (0.001, 1), (0.001, 0)], index=default_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | LATEST_VERSION_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | LATEST_VERSION_FLAG ] assert post_mock.call_count == 2 assert_frame_equal(post_mock.call_args_list[0][0][1], out[:-1]) assert_frame_equal(post_mock.call_args_list[1][0][1], out[-1:]) def test_validate_daily_ghi(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'check_ghi_limits_QCRad', 'check_ghi_clearsky', 'detect_clearsky_ghi', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('ghi') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [10, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ghi(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'], pd.Series(0, index=data.index) * DESCRIPTION_MASK_MAPPING['CLEARSKY'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ghi_daily(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['CLEARSKY EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_fetch_and_validate_observation_ghi_zeros(mocker, make_observation, daily_index): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0)] * 13, index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) base = ( DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG ) out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG, base, base, base, base, base, base, base, base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['NIGHTTIME'], base | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_dc_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation']] obs = make_observation('dc_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 1000, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_dc_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_dc_power_daily( mocker, make_observation, daily_index): obs = make_observation('dc_power') data = pd.DataFrame( [(10, 0), (1000, 0), (-100, 0), (500, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) def test_validate_daily_ac_power(mocker, make_observation, daily_index): mocks = [mocker.patch.object(validator, f, new=mocker.MagicMock( wraps=getattr(validator, f))) for f in ['check_timestamp_spacing', 'check_irradiance_day_night', 'detect_stale_values', 'detect_interpolation', 'detect_clipping']] obs = make_observation('ac_power') data = pd.Series( # 8 9 10 11 12 13 14 15 16 17 18 19 23 [0, 100, -100, 100, 300, 300, 300, 300, 100, 0, 100, 0, 0], index=daily_index) flags = tasks.validate_daily_ac_power(obs, data) for mock in mocks: assert mock.called expected = (pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] ) for flag, exp in zip(flags, expected): assert_series_equal(flag, exp | LATEST_VERSION_FLAG, check_names=False) def test_fetch_and_validate_observation_ac_power_daily( mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame( [(10, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) BASE_FLAG = LATEST_VERSION_FLAG | DAILY_VALIDATION_FLAG out = data.copy() out['quality_flag'] = [ DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['STALE VALUES'] | DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['USER FLAGGED'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['OK'] | DESCRIPTION_MASK_MAPPING['NIGHTTIME'] | BASE_FLAG, DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'] | BASE_FLAG ] assert post_mock.called posted_df = pd.concat([cal[0][1] for cal in post_mock.call_args_list]) assert_frame_equal(posted_df, out) @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity', 'net_load', ]) def test_fetch_and_validate_observation_other(var, mocker, make_observation, daily_index): obs = make_observation(var) data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') validated = pd.Series(2, index=daily_index) validate_mock = mocker.MagicMock(return_value=validated) mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: validate_mock}) tasks.fetch_and_validate_observation( '', obs.observation_id, data.index[0], data.index[-1]) assert post_mock.called assert validate_mock.called @pytest.mark.parametrize('var', ['air_temperature', 'wind_speed', 'dni', 'dhi', 'poa_global', 'relative_humidity']) def test_apply_daily_validation_other( mocker, make_observation, daily_index, var): mock = mocker.MagicMock() mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {var: mock}) mocks = [mock, mocker.spy(tasks, '_validate_stale_interpolated')] obs = make_observation(var) data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 10, 1900, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 0}, index=daily_index) out = tasks.apply_daily_validation(obs, data) assert (out['quality_flag'] | DAILY_VALIDATION_FLAG).all() for mock in mocks: assert mock.called @pytest.mark.parametrize('var', ['net_load']) def test_apply_daily_validation_defaults( mocker, make_observation, daily_index, var): mocks = [mocker.spy(tasks, 'validate_defaults'), mocker.spy(tasks, '_validate_stale_interpolated')] obs = make_observation(var) data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 10, 1900, -100, 500, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 0}, index=daily_index) out = tasks.apply_daily_validation(obs, data) assert (out['quality_flag'] | DAILY_VALIDATION_FLAG).all() for mock in mocks: assert mock.called def test_apply_daily_validation(mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame({ 'value': [ # 8 9 10 11 12 13 14 15 16 17 18 19 23 0, 100, -100, 100, 300, 300, 300, 300, 100, 0, 100, 0, 0], 'quality_flag': 94}, index=daily_index) out = tasks.apply_daily_validation(obs, data) qf = (pd.Series(LATEST_VERSION_FLAG, index=data.index), pd.Series(DAILY_VALIDATION_FLAG, index=data.index), pd.Series([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], index=data.index) * DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'], pd.Series([1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['NIGHTTIME'], pd.Series([0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['LIMITS EXCEEDED'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['STALE VALUES'], pd.Series([0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['INTERPOLATED VALUES'], pd.Series([0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], index=data.index) * DESCRIPTION_MASK_MAPPING['CLIPPED VALUES'] ) exp = data.copy() exp['quality_flag'] = sum(qf) assert_frame_equal(exp, out) def test_apply_daily_validation_not_enough(mocker, make_observation): obs = make_observation('ghi') data = pd.DataFrame( [(0, 0)], index=pd.date_range(start='2019-01-01T0000Z', end='2019-01-01T0100Z', tz='UTC', freq='1h'), columns=['value', 'quality_flag']) with pytest.raises(IndexError): tasks.apply_daily_validation(obs, data) def test_fetch_and_validate_all_observations(mocker, make_observation, daily_index): obs = [make_observation('dhi'), make_observation('dni')] obs += [make_observation('ghi').replace(provider='Organization 2')] data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.list_observations', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs[0].provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') validated = pd.Series(2, index=daily_index) validate_mock = mocker.MagicMock(return_value=validated) mocker.patch.dict( 'solarforecastarbiter.validation.tasks.IMMEDIATE_VALIDATION_FUNCS', {'dhi': validate_mock, 'dni': validate_mock}) tasks.fetch_and_validate_all_observations( '', data.index[0], data.index[-1], only_missing=False) assert post_mock.called assert validate_mock.call_count == 2 def test_fetch_and_validate_all_observations_only_missing( mocker, make_observation, daily_index): obs = [make_observation('dhi'), make_observation('dni')] obs += [make_observation('ghi').replace(provider='Organization 2')] data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.list_observations', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs[0].provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values_not_flagged', # NOQA return_value=np.array(['2019-01-01', '2019-01-02'], dtype='datetime64[D]')) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_all_observations( '', data.index[0], data.index[-1], only_missing=True) assert post_mock.called assert (post_mock.call_args_list[0][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[1][0][1].index.date == dt.date(2019, 1, 2)).all() assert (post_mock.call_args_list[2][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[3][0][1].index.date == dt.date(2019, 1, 2)).all() def test_fetch_and_validate_observation_only_missing( mocker, make_observation, daily_index): obs = make_observation('ac_power') data = pd.DataFrame( [(0, 0), (100, 0), (-100, 0), (100, 0), (300, 0), (300, 0), (300, 0), (300, 0), (100, 0), (0, 0), (100, 1), (0, 0), (0, 0)], index=daily_index, columns=['value', 'quality_flag']) mocker.patch('solarforecastarbiter.io.api.APISession.get_observation', return_value=obs) mocker.patch('solarforecastarbiter.io.api.APISession.get_user_info', return_value={'organization': obs.provider}) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values', return_value=data) mocker.patch( 'solarforecastarbiter.io.api.APISession.get_observation_values_not_flagged', # NOQA return_value=np.array(['2019-01-01', '2019-01-02'], dtype='datetime64[D]')) post_mock = mocker.patch( 'solarforecastarbiter.io.api.APISession.post_observation_values') tasks.fetch_and_validate_observation( 'token', 'obsid', data.index[0], data.index[-1], only_missing=True) assert post_mock.called assert (post_mock.call_args_list[0][0][1].index.date == dt.date(2019, 1, 1)).all() assert (post_mock.call_args_list[1][0][1].index.date == dt.date(2019, 1, 2)).all() def test__group_continuous_week_post(mocker, make_observation): split_dfs = [ pd.DataFrame([(0, LATEST_VERSION_FLAG)], columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-03T00:00', end='2020-05-03T23:59', tz='UTC', freq='1h')), # new week split pd.DataFrame([(0, LATEST_VERSION_FLAG)], columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-04T00:00', end='2020-05-04T11:59', tz='UTC', freq='1h')), # missing 12 pd.DataFrame( [(0, LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'])] + # NOQA [(1, LATEST_VERSION_FLAG)] * 7, columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-04T13:00', end='2020-05-04T20:00', tz='UTC', freq='1h')), # missing a week+ pd.DataFrame( [(9, LATEST_VERSION_FLAG | DESCRIPTION_MASK_MAPPING['UNEVEN FREQUENCY'])] + # NOQA [(3, LATEST_VERSION_FLAG)] * 7, columns=['value', 'quality_flag'], index=pd.date_range( start='2020-05-13T09:00', end='2020-05-13T16:59', tz='UTC', freq='1h')), ] ov = pd.concat(split_dfs, axis=0) obs = make_observation('ghi') session = mocker.MagicMock() tasks._group_continuous_week_post(session, obs, ov) call_list = session.post_observation_values.call_args_list assert len(call_list) == 4 for i, cal in enumerate(call_list): assert_frame_equal(split_dfs[i], cal[0][1]) @pytest.mark.parametrize('vals,func', [ (pd.DataFrame({'value': 0, 'quality_flag': 4}, index=pd.DatetimeIndex( [pd.Timestamp.utcnow()], name='timestamp')), 'apply_immediate_validation'), (pd.DataFrame({'value': [0.0] * 5 + [None] * 10, 'quality_flag': 4}, index=pd.date_range('now', name='timestamp', freq='2h', periods=15)), 'apply_immediate_validation'), (pd.DataFrame({'value': [0.0] * 15 + [None] * 11, 'quality_flag': 4}, index=pd.date_range('now', name='timestamp', freq='1h', periods=26)), 'apply_daily_validation'), ]) def test_apply_validation(make_observation, mocker, vals, func): obs = make_observation('ac_power') fmock = mocker.patch.object(tasks, func, autospec=True) tasks.apply_validation(obs, vals) assert fmock.called def test_apply_validation_empty(make_observation, mocker): obs = make_observation('dhi') daily = mocker.patch.object(tasks, 'apply_daily_validation') immediate = mocker.patch.object(tasks, 'apply_immediate_validation') data = pd.DataFrame({'value': [], 'quality_flag': []}, index=pd.DatetimeIndex([], name='timestamp')) out = tasks.apply_validation(obs, data) assert_frame_equal(out, data) assert not daily.called assert not immediate.called def test_apply_validation_bad_df(make_observation, mocker): obs = make_observation('dhi') data = pd.DataFrame() with pytest.raises(TypeError): tasks.apply_validation(obs, data) with pytest.raises(TypeError): tasks.apply_validation(obs, pd.Series( index=pd.DatetimeIndex([]), dtype=float)) def test_apply_validation_agg(aggregate, mocker): data = pd.DataFrame({'value': [1], 'quality_flag': [0]}, index=pd.DatetimeIndex( ['2020-01-01T00:00Z'], name='timestamp')) out = tasks.apply_validation(aggregate, data) assert_frame_equal(data, out) def test_find_unvalidated_time_ranges(mocker): session = mocker.MagicMock() session.get_observation_values_not_flagged.return_value = np.array( ['2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16', '2019-04-18', '2019-05-22', '2019-05-23'], dtype='datetime64[D]') obs = mocker.MagicMock() obs.observation_id = '' obs.site.timezone = 'UTC' out = list(tasks._find_unvalidated_time_ranges( session, obs, '2019-01-01T00:00Z', '2020-01-01T00:00Z')) assert out == [ (pd.Timestamp('2019-04-13T00:00Z'), pd.Timestamp('2019-04-17T00:00Z')), (pd.Timestamp('2019-04-18T00:00Z'), pd.Timestamp('2019-04-19T00:00Z')), (pd.Timestamp('2019-05-22T00:00Z'), pd.Timestamp('2019-05-24T00:00Z')), ] def test_find_unvalidated_time_ranges_all(mocker): session = mocker.MagicMock() session.get_observation_values_not_flagged.return_value = np.array( ['2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16'], dtype='datetime64[D]') obs = mocker.MagicMock() obs.observation_id = '' obs.site.timezone = 'Etc/GMT+7' out = list(tasks._find_unvalidated_time_ranges( session, obs, '2019-01-01T00:00Z', '2020-01-01T00:00Z')) assert out == [ (pd.Timestamp('2019-04-13T00:00-07:00'),
pd.Timestamp('2019-04-17T00:00-07:00')
pandas.Timestamp
from lib.detection_strategies import * import threading import numpy as np import pyautogui from pyautogui import press, hotkey, click, scroll, typewrite, moveRel, moveTo, position import time from subprocess import call import os from lib.system_toggles import mute_sound, toggle_speechrec, toggle_eyetracker, turn_on_sound import pandas as pd import matplotlib.pyplot as plt class TestMode: def __init__(self, modeSwitcher): self.mode = "regular" self.modeSwitcher = modeSwitcher def start( self ): self.mode = "regular" self.centerXPos, self.centerYPos = pyautogui.position() toggle_eyetracker() mute_sound() self.testdata = [] self.starttime = time.time() self.preventDoubleClickInPlotMode = time.time() self.plot_in_seconds( 15.00 ) def handle_input( self, dataDicts ): ## Alter the data dicts into the right format for plotting dataRow = {'time': int((time.time() - self.starttime ) * 1000) / 1000 } for column in dataDicts[-1]: dataRow['intensity'] = dataDicts[-1][ column ]['intensity'] dataRow[column] = dataDicts[-1][ column ]['percent'] if( dataDicts[-1][ column ]['winner'] ): dataRow['winner'] = column if( self.mode == "regular" ): self.testdata.append( dataRow ) ## Allow any loud sound to click to let us close the plot once every second elif( dataRow['intensity'] > 2000 and ( time.time() - self.preventDoubleClickInPlotMode ) > 1 ): click() self.preventDoubleClickInPlotMode = time.time() def plot_in_seconds( self, time ): t = threading.Timer( time , self.display_results) t.daemon = True t.start() def display_results( self ): print( "Plotting results - Use any loud sound to click" ) time.sleep( 2 ) self.mode = "plotting" self.preventDoubleClickInPlotMode = time.time() plt.style.use('seaborn-darkgrid') palette = plt.get_cmap('Set1') num = 0 bottom=0 self.testdata =
pd.DataFrame(data=self.testdata)
pandas.DataFrame
from itertools import product as it_product from typing import List, Dict import numpy as np import os import pandas as pd from scipy.stats import spearmanr, wilcoxon from provided_code.constants_class import ModelParameters from provided_code.data_loader import DataLoader from provided_code.dose_evaluation_class import EvaluateDose from provided_code.general_functions import get_paths, get_predictions_to_optimize def consolidate_data_for_analysis(cs: ModelParameters, force_new_consolidate: bool = False) \ -> [pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]: """ Consolidated data of all reference plans, dose predictions, and KBP plans. This may take about an hour to run, but only needs to be run once for a given set of experiments. Args: cs: A constants object. force_new_consolidate: Flag that will force consolidating data, which will overwrite previous data that was consolidated in previous iterations. Returns: df_dose_error: Summary of dose error df_dvh_metrics: Summary of DVH metric performance (can be converted to DVH error later) df_clinical_criteria: Summary of clinical criteria performance df_ref_dvh_metrics: Summary of reference dose DVH metrics df_ref_clinical_criteria: Summary of reference dose clinical criteria performance df_objective_data: The data from the objective functions (e.g., weights, objective function values) df_solve_time: The time it took to solve models """ # Run consolidate_data_for_analysis when new predictions or plans consolidate_data_paths = {'dose': f'{cs.results_data_dir}/dose_error_df.csv', 'dvh': f'{cs.results_data_dir}/dvh_metric_df.csv', 'clinical_criteria': f'{cs.results_data_dir}/clinical_criteria_df.csv', 'ref_dvh': f'{cs.results_data_dir}/reference_metrics.csv', 'ref_clinical_criteria': f'{cs.results_data_dir}/reference_criteria.csv', 'weights': f'{cs.results_data_dir}/weights_df.csv', 'solve_time': f'{cs.results_data_dir}/solve_time_df.csv' } # Check if consolidated data already exists no_consolidated_date = False for p in consolidate_data_paths.values(): if not os.path.isfile(p): print(p) no_consolidated_date = True os.makedirs(cs.results_data_dir, exist_ok=True) # Make dir for results # Consolidate data if it doesn't exist yet or force flag is True if no_consolidated_date or force_new_consolidate: # Prepare strings for data that will be evaluated predictions_to_optimize, prediction_names = get_predictions_to_optimize(cs) patient_names = os.listdir(cs.reference_data_dir) hold_out_plan_paths = get_paths(cs.reference_data_dir, ext='') # list of paths used for held out testing # Evaluate dose metrics patient_data_loader = DataLoader(hold_out_plan_paths, mode_name='evaluation') # Set data loader dose_evaluator_sample = EvaluateDose(patient_data_loader) # Make reference dose DVH metrics and clinical criteria dose_evaluator_sample.make_metrics() dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_dose_metric_df').to_csv( consolidate_data_paths['ref_dvh']) dose_evaluator_sample.melt_dvh_metrics('Reference', 'reference_criteria_df').to_csv( consolidate_data_paths['ref_clinical_criteria']) # Initialize DataFrames for all scores and errors optimizer_names = os.listdir(cs.plans_dir) # Get names of all optimizers dose_error_index_dict, dvh_metric_index_dict = make_error_and_metric_indices(patient_names, dose_evaluator_sample, optimizer_names) df_dose_error_indices = pd.MultiIndex.from_product(**dose_error_index_dict) df_dvh_error_indices = pd.MultiIndex.from_arrays(**dvh_metric_index_dict) # Make DataFrames df_dose_error =
pd.DataFrame(columns=prediction_names, index=df_dose_error_indices)
pandas.DataFrame
import os import pandas as pd import numpy as np import pyddem.tdem_tools as tt in_ext = '/home/atom/ongoing/work_worldwide/tables/table_man_gard_zemp_wout.csv' df_ext = pd.read_csv(in_ext) reg_dir = '/home/atom/ongoing/work_worldwide/vol/final' fn_tarea = '/home/atom/data/inventory_products/RGI/tarea_zemp.csv' list_fn_reg= [os.path.join(reg_dir,'dh_'+str(i).zfill(2)+'_rgi60_int_base_reg.csv') for i in [1,2,3,4,5,6,7,8,9,10,11,12,16,17,18,19]] + [os.path.join(reg_dir,'dh_13_14_15_rgi60_int_base_reg.csv')] + [os.path.join(reg_dir,'dh_01_02_rgi60_int_base_reg.csv')] tlim_zemp = [np.datetime64('2006-01-01'),np.datetime64('2016-01-01')] tlim_wouters = [np.datetime64('2002-01-01'),np.datetime64('2017-01-01')] tlim_cira = [np.datetime64('2002-01-01'),np.datetime64('2020-01-01')] tlim_gardner = [np.datetime64('2003-01-01'),np.datetime64('2010-01-01')] # tlim_shean = [np.datetime64('2000-01-01'),np.datetime64('2018-01-01')] # tlim_braun = [np.datetime64('2000-01-01'),np.datetime64('2013-01-01')] list_tlim = [tlim_zemp,tlim_wouters,tlim_cira,tlim_gardner] list_tag = ['hugonnet_2021_period_zemp','hugonnet_2021_period_wout','hugonnet_2021_period_cira','hugonnet_2021_period_gard'] list_df = [] for fn_reg in list_fn_reg: df_reg = pd.read_csv(fn_reg) df_agg = tt.aggregate_all_to_period(df_reg,list_tlim=list_tlim,fn_tarea=fn_tarea,frac_area=1,list_tag=list_tag) list_df.append(df_agg) df = pd.concat(list_df) list_fn_reg_multann = [os.path.join(reg_dir,'dh_'+str(i).zfill(2)+'_rgi60_int_base_reg_subperiods.csv') for i in np.arange(1,20)] df_all = pd.DataFrame() for fn_reg_multann in list_fn_reg_multann: df_all= df_all.append(pd.read_csv(fn_reg_multann)) tlims = [np.datetime64('20'+str(i).zfill(2)+'-01-01') for i in range(21)] list_df_glob = [] list_df_per = [] for i in range(len(tlims)-1): period = str(tlims[i])+'_'+str(tlims[i+1]) df_p = df_all[df_all.period==period] df_global = tt.aggregate_indep_regions_rates(df_p) df_global['period']=period df_noperiph = tt.aggregate_indep_regions_rates(df_p[~df_p.reg.isin([5, 19])]) df_noperiph['period']=period list_df_glob.append(df_global) list_df_per.append(df_noperiph) df_glob = pd.concat(list_df_glob) df_per = pd.concat(list_df_per) df_glob['reg']=23 df_per['reg']=22 df_glob['tag']='hugonnet_2021_yearly' df_per['tag']='hugonnet_2021_yearly' df = pd.concat([df,df_glob,df_per]) tlims = [np.datetime64('20'+str(5*i).zfill(2)+'-01-01') for i in range(5)] list_df_glob = [] list_df_per = [] for i in range(len(tlims)-1): period = str(tlims[i])+'_'+str(tlims[i+1]) df_p = df_all[df_all.period==period] df_global = tt.aggregate_indep_regions_rates(df_p) df_global['period']=period df_noperiph = tt.aggregate_indep_regions_rates(df_p[~df_p.reg.isin([5, 19])]) df_noperiph['period']=period list_df_glob.append(df_global) list_df_per.append(df_noperiph) df_glob = pd.concat(list_df_glob) df_per = pd.concat(list_df_per) df_glob['reg']=23 df_per['reg']=22 df_glob['tag']='hugonnet_2021_5year' df_per['tag']='hugonnet_2021_5year' df = pd.concat([df,df_glob,df_per]) df = df.drop(columns=['dhdt','err_dhdt','dvoldt','err_dvoldt','valid_obs','valid_obs_py','perc_area_meas','perc_area_res','area_nodata']) #put all to 2-sigma level df['err_dmdt'] *= 2 df['err_dmdtda'] *= 2 df_gar = df_ext[['reg','gar','gar_err']] df_gar.columns = ['reg','dmdtda','err_dmdtda'] df_gar['tag']= 'gardner_2013' df_gar['period'] = str(tlim_gardner[0])+'_'+str(tlim_gardner[1]) df_zemp = df_ext[['reg','zemp','zemp_err']] df_zemp.columns = ['reg','dmdtda','err_dmdtda'] df_zemp['tag']= 'zemp_2019' df_zemp['period'] = str(tlim_zemp[0])+'_'+str(tlim_zemp[1]) df_wout = df_ext[['reg','wout','wout_err']] df_wout.columns = ['reg','dmdtda','err_dmdtda'] df_wout['tag']= 'wouters_2019' df_wout['period'] = str(tlim_wouters[0])+'_'+str(tlim_wouters[1]) df_cir = df_ext[['reg','cira','cira_err']] df_cir.columns = ['reg','dmdtda','err_dmdtda'] df_cir['tag']= 'ciraci_2020' df_cir['period'] = str(tlim_cira[0])+'_'+str(tlim_cira[1]) df =
pd.concat([df,df_gar,df_zemp,df_wout,df_cir])
pandas.concat
# Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Helper functions for loading files.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import pandas as pd def filename(env_name, noops, dev_measure, dev_fun, baseline, beta, value_discount, seed, path='', suffix=''): """Generate filename for the given set of parameters.""" noop_str = 'noops' if noops else 'nonoops' seed_str = '_' + str(seed) if seed else '' filename_template = ('{env_name}_{noop_str}_{dev_measure}_{dev_fun}' + '_{baseline}_beta_{beta}_vd_{value_discount}' + '{suffix}{seed_str}.csv') full_path = os.path.join(path, filename_template.format( env_name=env_name, noop_str=noop_str, dev_measure=dev_measure, dev_fun=dev_fun, baseline=baseline, beta=beta, value_discount=value_discount, suffix=suffix, seed_str=seed_str)) return full_path def load_files(baseline, dev_measure, dev_fun, value_discount, beta, env_name, noops, path, suffix, seed_list, final=True): """Load result files generated by run_experiment with the given parameters.""" def try_loading(f, final): if os.path.isfile(f): df =
pd.read_csv(f, index_col=0)
pandas.read_csv
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite":
pandas.StringDtype()
pandas.StringDtype
# -*- coding: utf-8 -*- import csv import os import platform import codecs import re import sys from datetime import datetime import pytest import numpy as np from pandas._libs.lib import Timestamp import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex from pandas import compat from pandas.compat import (StringIO, BytesIO, PY3, range, lrange, u) from pandas.errors import DtypeWarning, EmptyDataError, ParserError from pandas.io.common import URLError from pandas.io.parsers import TextFileReader, TextParser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ # Parsers support only length-1 decimals msg = 'Only length-1 decimal markers supported' with tm.assert_raises_regex(ValueError, msg): self.read_csv(StringIO(data), decimal='') def test_bad_stream_exception(self): # Issue 13652: # This test validates that both python engine # and C engine will raise UnicodeDecodeError instead of # c engine raising ParserError and swallowing exception # that caused read to fail. handle = open(self.csv_shiftjs, "rb") codec = codecs.lookup("utf-8") utf8 = codecs.lookup('utf-8') # stream must be binary UTF8 stream = codecs.StreamRecoder( handle, utf8.encode, utf8.decode, codec.streamreader, codec.streamwriter) if compat.PY3: msg = "'utf-8' codec can't decode byte" else: msg = "'utf8' codec can't decode byte" with tm.assert_raises_regex(UnicodeDecodeError, msg): self.read_csv(stream) stream.close() def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) self.read_csv(fname, index_col=0, parse_dates=True) def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) assert isinstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # see gh-8217 # Series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) assert not result._is_view def test_malformed(self): # see gh-6607 # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#') # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(5) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read(3) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ msg = 'Expected 3 fields in line 6, saw 5' with tm.assert_raises_regex(Exception, msg): it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) it.read() # skipfooter is not supported with the C parser yet if self.engine == 'python': # skipfooter data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ msg = 'Expected 3 fields in line 4, saw 5' with tm.assert_raises_regex(Exception, msg): self.read_table(StringIO(data), sep=',', header=1, comment='#', skipfooter=1) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" # noqa pytest.raises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') assert len(df) == 3 def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], dtype=np.int64) df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) tm.assert_index_equal(df.columns, Index(['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4'])) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ expected = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}) out = self.read_csv(StringIO(data)) tm.assert_frame_equal(out, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D'])) assert df.index.name == 'index' assert isinstance( df.index[0], (datetime, np.datetime64, Timestamp)) assert df.values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) tm.assert_index_equal(df.columns, pd.Index(['A', 'B', 'C', 'D', 'E'])) assert isinstance(df.index[0], (datetime, np.datetime64, Timestamp)) assert df.loc[:, ['A', 'B', 'C', 'D']].values.dtype == np.float64 tm.assert_frame_equal(df, df2) def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = self.read_table(fin, sep=";", encoding="utf-8", header=None) assert isinstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ pytest.raises(ValueError, self.read_csv, StringIO(data)) def test_read_duplicate_index_explicit(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) result = self.read_table(StringIO(data), sep=',', index_col=0) expected = self.read_table(StringIO(data), sep=',', ).set_index( 'index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # make sure an error isn't thrown self.read_csv(StringIO(data)) self.read_table(
StringIO(data)
pandas.compat.StringIO
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2019 Snowflake Computing Inc. All right reserved. # import random import string import numpy as np import pandas as pd import pytest import snowflake.sqlalchemy import sqlalchemy from sqlalchemy import Column, ForeignKey, Integer, MetaData, Sequence, String, Table def _create_users_addresses_tables(engine_testaccount, metadata): users = Table('users', metadata, Column('id', Integer, Sequence('user_id_seq'), primary_key=True), Column('name', String), Column('fullname', String), ) addresses = Table('addresses', metadata, Column('id', Integer, Sequence('address_id_seq'), primary_key=True), Column('user_id', None, ForeignKey('users.id')), Column('email_address', String, nullable=False) ) metadata.create_all(engine_testaccount) return users, addresses def _create_users_addresses_tables_without_sequence(engine_testaccount, metadata): users = Table('users', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('fullname', String), ) addresses = Table('addresses', metadata, Column('id', Integer, primary_key=True), Column('user_id', None, ForeignKey('users.id')), Column('email_address', String, nullable=False) ) metadata.create_all(engine_testaccount) return users, addresses def test_a_simple_read_sql(engine_testaccount): metadata = MetaData() users, addresses = _create_users_addresses_tables( engine_testaccount, metadata) try: # inserts data with an implicitly generated id ins = users.insert().values(name='jack', fullname='<NAME>') results = engine_testaccount.execute(ins) assert results.inserted_primary_key == [1], 'sequence value' results.close() # inserts data with the given id conn = engine_testaccount.connect() ins = users.insert() conn.execute(ins, id=2, name='wendy', fullname='<NAME>') df = pd.read_sql("SELECT * FROM users WHERE name =%(name)s", params={'name': 'jack'}, con=engine_testaccount) assert len(df.values) == 1 assert df.values[0][0] == 1 assert df.values[0][1] == 'jack' assert hasattr(df, 'id') assert hasattr(df, 'name') assert hasattr(df, 'fullname') finally: # drop tables addresses.drop(engine_testaccount) users.drop(engine_testaccount) def get_engine_with_numpy(db_parameters, user=None, password=None, account=None): """ Creates a connection using the parameters defined in JDBC connect string """ from sqlalchemy import create_engine from snowflake.sqlalchemy import URL if user is not None: db_parameters['user'] = user if password is not None: db_parameters['password'] = password if account is not None: db_parameters['account'] = account from sqlalchemy.pool import NullPool engine = create_engine(URL( user=db_parameters['user'], password=db_parameters['password'], host=db_parameters['host'], port=db_parameters['port'], database=db_parameters['database'], schema=db_parameters['schema'], account=db_parameters['account'], protocol=db_parameters['protocol'], numpy=True, ), poolclass=NullPool) return engine def test_numpy_datatypes(db_parameters): engine = get_engine_with_numpy(db_parameters) try: specific_date = np.datetime64('2016-03-04T12:03:05.123456789') engine.execute( "CREATE OR REPLACE TABLE {name}(" "c1 timestamp_ntz)".format(name=db_parameters['name'])) engine.execute( "INSERT INTO {name}(c1) values(%s)".format( name=db_parameters['name']), (specific_date,) ) df = pd.read_sql_query( "SELECT * FROM {name}".format( name=db_parameters['name'] ), engine ) assert df.c1.values[0] == specific_date finally: engine.execute( "DROP TABLE IF EXISTS {name}".format(name=db_parameters['name']) ) engine.dispose() def test_to_sql(db_parameters): engine = get_engine_with_numpy(db_parameters) total_rows = 10000 engine.execute(""" create or replace table src(c1 float) as select random(123) from table(generator(timelimit=>1)) limit {0} """.format(total_rows)) engine.execute(""" create or replace table dst(c1 float) """) tbl = pd.read_sql_query( 'select * from src', engine) tbl.to_sql('dst', engine, if_exists='append', chunksize=1000, index=False) df = pd.read_sql_query( 'select count(*) as cnt from dst', engine ) assert df.cnt.values[0] == total_rows def test_no_indexes(engine_testaccount, db_parameters): conn = engine_testaccount.connect() data = pd.DataFrame([('1.0.0',), ('1.0.1',)]) with pytest.raises(NotImplementedError) as exc: data.to_sql('versions', schema=db_parameters['schema'], index=True, index_label='col1', con=conn, if_exists='replace') assert str(exc.value) == "Snowflake does not support indexes" def test_timezone(db_parameters): test_table_name = ''.join([random.choice(string.ascii_letters) for _ in range(5)]) sa_engine = sqlalchemy.create_engine(snowflake.sqlalchemy.URL( account=db_parameters['account'], password=db_parameters['password'], database=db_parameters['database'], port=db_parameters['port'], user=db_parameters['user'], host=db_parameters['host'], protocol=db_parameters['protocol'], schema=db_parameters['schema'], numpy=True, )) sa_engine2 = sqlalchemy.create_engine(snowflake.sqlalchemy.URL( account=db_parameters['account'], password=db_parameters['password'], database=db_parameters['database'], port=db_parameters['port'], user=db_parameters['user'], host=db_parameters['host'], protocol=db_parameters['protocol'], schema=db_parameters['schema'], timezone='America/Los_Angeles', numpy='')).raw_connection() sa_engine.execute(""" CREATE OR REPLACE TABLE {table}( tz_col timestamp_tz, ntz_col timestamp_ntz, decimal_col decimal(10,1), float_col float );""".format(table=test_table_name)) try: sa_engine.execute(""" INSERT INTO {table} SELECT current_timestamp(), current_timestamp()::timestamp_ntz, to_decimal(.1, 10, 1), .10;""".format(table=test_table_name)) qry = """ SELECT tz_col, ntz_col, CONVERT_TIMEZONE('America/Los_Angeles', tz_col) AS tz_col_converted, CONVERT_TIMEZONE('America/Los_Angeles', ntz_col) AS ntz_col_converted, decimal_col, float_col FROM {table};""".format(table=test_table_name) result = pd.read_sql_query(qry, sa_engine) result2 = pd.read_sql_query(qry, sa_engine2) # Check sqlalchemy engine result assert(pd.api.types.is_datetime64tz_dtype(result.tz_col)) assert(not pd.api.types.is_datetime64tz_dtype(result.ntz_col)) assert(pd.api.types.is_datetime64tz_dtype(result.tz_col_converted)) assert(pd.api.types.is_datetime64tz_dtype(result.ntz_col_converted)) assert(np.issubdtype(result.decimal_col, np.float64)) assert(np.issubdtype(result.float_col, np.float64)) # Check sqlalchemy raw connection result assert(
pd.api.types.is_datetime64tz_dtype(result2.TZ_COL)
pandas.api.types.is_datetime64tz_dtype
import os import sys from pprint import pprint from altair.vegalite.v4.schema.core import UtcSingleTimeUnit import ccxt #import ccxt.async_support as ccxt from pyti.exponential_moving_average import exponential_moving_average as ema import pandas as pd import datetime import time import numpy as np import matplotlib from matplotlib import pyplot as plt from IPython.display import clear_output import numpy as np import datetime as dt import pytz # import mplcursors import streamlit as st # from compute2d import compute_2d_histogram import numpy as np import pandas as pd import altair as at from copy import copy import plotly.graph_objects as go # from paracoords import create_paracoords from mpl_toolkits.mplot3d import axes3d from matplotlib import cm import plotly import plotly.graph_objs as go import warnings warnings.filterwarnings('ignore') # root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) # sys.path.append(root + '/python') # print('CCXT Version:', ccxt.__version__) def get_last_n_kline_closes(n=50,interval='1h',symbol='BTCUSDT',exchange=None): if exchange is None: print('Exchange not initiated') return None # exchange = ccxt.binance({ # 'apiKey': g_api_key, # 'secret': g_secret_key, # 'enableRateLimit': True, # 'options': { # 'defaultType': 'future', # }, # 'hedgeMode':True # }) # # symbol = 'BTC/USDT' # market = exchange.load_markets() closes = [[dt.datetime.utcfromtimestamp(float(elem[0]) / 1000.),elem[4]] for elem in exchange.fapiPublic_get_klines({'symbol':symbol,'interval':interval})][-n:-1] dates = [elem[0] for elem in closes] values = [float(elem[1]) for elem in closes] df = pd.DataFrame([(elem[0],elem[1]) for elem in zip(dates,values)],columns=['datetime','closes']) return df def generate_signal(candles=50,interval='1h',symbol='BTCUSDT',strat='ema_cross_over_under',strat_params={'fast_ema':10,'slow_ema':40},exchange=None): if exchange is None: return 'Exchange not Initiated' allowed_strats = ['ema_diff_peak_trough','ema_cross_over_under','ema_oscillator_peak_trough'] if strat not in allowed_strats: print('INVALID STRATEGY') return "NONE" if strat == 'ema_oscillator_peak_trough': '''under development''' return "NONE" if strat == 'ema_diff_peak_trough': candles = strat_params['slow_ema'] + 10 current_input=get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange) min_input_length = np.max([float(strat_params['fast_ema']),float(strat_params['slow_ema'])]) if len(list(current_input['closes'].values))<min_input_length: return "INPUT HAS TOO FEW ELEMENTS" closes = current_input['closes'].astype(float) # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) ema_diff = pd.DataFrame(ema(closes.tolist(),strat_params['fast_ema']) - ema(closes.tolist(),strat_params['slow_ema']),columns=['ema_diff']) p = strat_params['slow_ema']+1 closes = closes[p:].reset_index(drop=True) ema_diff = ema_diff[p:].reset_index(drop=True) last = ema_diff.values[-1] second_last = ema_diff.values[-2] third_last = ema_diff.values[-3] # short if local peak if last < second_last and third_last < second_last: return 'SHORT' # long if local trough if last > second_last and third_last > second_last: return 'LONG' return "NONE" if strat == 'ema_cross_over_under': candles = strat_params['slow_ema'] + 10 current_input=get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange) min_input_length = np.max([float(strat_params['fast_ema']),float(strat_params['slow_ema'])]) if len(list(current_input['closes'].values))<min_input_length: return "INPUT HAS TOO FEW ELEMENTS" closes = current_input['closes'].astype(float) # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) ema_diff = pd.DataFrame(ema(closes.tolist(),strat_params['fast_ema']) - ema(closes.tolist(),strat_params['slow_ema']),columns=['ema_diff']) p = strat_params['slow_ema']+1 closes = closes[p:].reset_index(drop=True) ema_diff = ema_diff[p:].reset_index(drop=True) last = ema_diff.values[-1] second_last = ema_diff.values[-2] third_last = ema_diff.values[-3] # long if diff cross over 0 if last > 0 and second_last < 0: return "LONG" # short if diff cross under 0 if last < 0 and second_last > 0: return "SHORT" return "NONE" def get_open_positions(mode='live',exchange=None): if exchange is None: return 'Exchange Not Initiated' allowed_modes = ['live','paper'] if mode not in allowed_modes: return "INVALID MODE" if mode == 'live': # exchange = ccxt.binance({ # 'apiKey': g_api_key, # 'secret': g_secret_key, # 'enableRateLimit': True, # 'options': { # 'defaultType': 'future', # }, # 'hedgeMode':True # }) # markets = exchange.load_markets() #exchange.verbose=True # market = exchange.market(symbol) positions = [elem for elem in exchange.fapiPrivate_get_positionrisk() if float(elem['positionAmt'])!=0] if len(positions)==0: return 0 return positions if mode == 'paper': paper_trades = pd.read_csv('paper_trades.csv',index_col=0) if paper_trades.position_type.iloc[-1] == '-': return 0 return paper_trades.iloc[-1] def get_balance(mode='live',asset='USDT',exchange=None): if exchange is None: return 'Exchange not initiated' allowed_modes = ['paper','live'] if mode not in allowed_modes: print("INVALID MODE") return None # exchange = ccxt.binance({ # 'apiKey': g_api_key, # 'secret': g_secret_key, # 'enableRateLimit': True, # 'options': { # 'defaultType': 'future', # }, # 'hedgeMode':True # }) # markets = exchange.load_markets() if mode == 'live': live_balance = str(float([float(elem['balance']) for elem in exchange.fapiPrivate_get_balance() if elem['asset']==asset][0])) unrealized_pnl = str(sum([float(elem['unRealizedProfit']) for elem in exchange.fapiPrivateV2_get_positionrisk() if float(elem['positionAmt']) >0])) unrealized_pnl_percent = str(float(unrealized_pnl)/float(live_balance)) balance = {'wallet_balance': live_balance, 'unrealized_pnl_percent': unrealized_pnl_percent} return balance if mode == 'paper': paper_trades = pd.read_csv('paper_trades.csv',index_col=0) if paper_trades.paper_equity.iloc[-1] == '-': paper_balance = paper_trades.paper_equity.iloc[-2] else: paper_balance = paper_trades.paper_equity.iloc[-1] if paper_trades.entry_price.iloc[-1] == '-': entry = None else: entry = paper_trades.entry_price.iloc[-1] if paper_trades.position_type.iloc[-1] == 'LONG': position = 1 if paper_trades.position_type.iloc[-1] == 'SHORT': position = -1 else: position = 0 if entry is not None and position != 0: if paper_trades.exit_price.iloc[-1] == '-': symbol = paper_trades.market_name.iloc[-1] last_price = float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) pnl = (last_price-float(entry))/float(entry)*100*float(position) else: pnl = 0 else: pnl = 0 balance = {'wallet_balance':paper_balance,'unrealized_pnl_percent':pnl} return balance def close_all_open_positions(mode='live',exchange=None): if exchange is None: return 'Exchange not Initiated' allowed_modes = ['paper','live'] if mode not in allowed_modes: return "INVALID MODE" if mode == 'live': # exchange = ccxt.binance({ # 'apiKey': g_api_key, # 'secret': g_secret_key, # 'enableRateLimit': True, # 'options': { # 'defaultType': 'future', # }, # 'hedgeMode':True # }) # markets = exchange.load_markets() #exchange.verbose=True # market = exchange.market(symbol) open_positions = get_open_positions(mode=mode,exchange=exchange) if open_positions == 0: return None if np.sign(float(open_positions[0]['positionAmt'])) == -1.0: opp_side = "BUY" if np.sign(float(open_positions[0]['positionAmt'])) == 1.0: opp_side = "SELL" baseqty= abs(float(open_positions[0]['positionAmt'])) symbol = open_positions[0]['symbol'] positionSide = open_positions[0]['positionSide'] order = exchange.fapiPrivatePostOrder({'symbol':symbol, 'type':"MARKET", 'side':opp_side,'positionSide':positionSide ,'quantity':baseqty}) return order if mode == 'paper': paper_trades = pd.read_csv('paper_trades.csv',index_col=0) if paper_trades.position_type.iloc[-1] == '-': return None if paper_trades.exit_price.iloc[-1] != '-': return None # exchange = ccxt.binance({ # 'apiKey': g_api_key, # 'secret': g_secret_key, # 'enableRateLimit': True, # 'options': { # 'defaultType': 'future', # }, # 'hedgeMode':True # }) # markets = exchange.load_markets() symbol = paper_trades.market_name.iloc[-1] entry_price = paper_trades.entry_price.iloc[-1] leverage= paper_trades.leverage.iloc[-1] leverage = int(leverage) if paper_trades.position_type.iloc[-1] == 'LONG': position = 1 exit_price = 0.999*float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) exit_time = datetime.datetime.utcnow() if paper_trades.position_type.iloc[-1] == 'SHORT': position = -1 exit_price = 1.001*float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) exit_time = datetime.datetime.utcnow() trade_pnl_pct = float(position)*float(leverage)*(float(exit_price)-float(entry_price))/float(entry_price)*100 balance = float(paper_trades.paper_equity.iloc[-2])*(1+trade_pnl_pct/100) paper_trades.exit_time.iloc[-1] = exit_time paper_trades.exit_price.iloc[-1] = exit_price paper_trades.trade_pnl_pct.iloc[-1] = trade_pnl_pct paper_trades.paper_equity.iloc[-1] = balance paper_trades.to_csv('paper_trades.csv') trade = paper_trades.iloc[-1] return trade def open_market_order(mode='live',balance=1,symbol='BTCUSDT',leverage="5",side="BUY",hedge_mode="BOTH",exchange=None): if exchange is None: return 'Exchange not initiated' allowed_modes = ['paper','live'] if mode not in allowed_modes: return "INVALID MODE" if mode == 'live': closed_position = close_all_open_positions(mode=mode,exchange=exchange) quoteqty = float([elem for elem in exchange.fapiPrivate_get_balance({'asset':"USDT"}) if elem['asset']=='USDT'][0]['balance']) * balance price = float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) baseqty = "{:.3f}".format(quoteqty*float(leverage)/price) baseqty = float(baseqty)-float([elem for elem in exchange.fapiPublic_get_exchangeinfo()['symbols'] if elem['symbol']==symbol][0]['filters'][2]['minQty']) baseqty = "{:.3f}".format(baseqty) baseqty = str(baseqty) lev_req = exchange.fapiPrivate_post_leverage({'symbol':symbol,'leverage':leverage}) order = exchange.fapiPrivatePostOrder({'symbol':symbol, 'type':"MARKET", 'side':side,'positionSide':hedge_mode ,'quantity':baseqty}) return order,closed_position if mode == 'paper': closed_position = close_all_open_positions(mode=mode,exchange=exchange) paper_trades = pd.read_csv('paper_trades.csv',index_col=0) if side == 'BUY': position_type = 'LONG' entry_price = 1.001*float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) entry_time = datetime.datetime.utcnow() if side == 'SELL': position_type = 'SHORT' entry_price = 0.999*float(exchange.fapiPublic_get_ticker_price({'symbol':symbol})['price']) entry_time = datetime.datetime.utcnow() trade = pd.DataFrame([[symbol,position_type,entry_time,'-', entry_price,'-',leverage,'-','-']],columns=['market_name','position_type','entry_time','exit_time','entry_price','exit_price','leverage','trade_pnl_pct','paper_equity']) paper_trades = paper_trades.append(trade,ignore_index=True) paper_trades.to_csv('paper_trades.csv') return paper_trades.iloc[-1],closed_position # def get_strat_performance(strat='ema_cross_over_under',leverage=1,strat_params={'fast_ema':4,'slow_ema':20},interval='4h',symbol='BTCUSDT',candles=50,input=None,exchange=None): # if exchange is None: # return 'Exchange not initiated' # allowed_strats = ['ema_cross_over_under','ema_diff_peak_trough'] # if strat not in allowed_strats: # print("INVALID STRATEGY") # return None # if input == None: # current_input=get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange) # else: # current_input = input # closes = pd.DataFrame(current_input,columns=['close']) # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) # ema_diff = pd.DataFrame(ema(closes['close'].tolist(),strat_params['fast_ema']) - ema(closes['close'].tolist(),strat_params['slow_ema']),columns=['ema_diff']) # p = strat_params['slow_ema']+1 # closes = closes[p:].reset_index(drop=True) # ema_diff = ema_diff[p:].reset_index(drop=True) # if strat == 'ema_cross_over_under': # signal = [0]+[1 if float(ema_diff.loc[index]) > 0 and float(ema_diff.loc[index-1]) < 0 else -1 if float(ema_diff.loc[index]) < 0 and float(ema_diff.loc[index-1]) > 0 else 0 for index in ema_diff.index[1:]] # if strat == 'ema_diff_peak_trough': # signal = [0,0]+ [-1 if float(ema_diff.loc[index]) < float(ema_diff.loc[index-1]) and float(ema_diff.loc[index-1]) > float(ema_diff.loc[index-2]) else 1 if float(ema_diff.loc[index]) > float(ema_diff.loc[index-1]) and float(ema_diff.loc[index-1]) < float(ema_diff.loc[index-2]) else 0 for index in ema_diff.index[2:]] # trades = list() # for idx in range(len(signal)): # if signal[idx] != 0: # trades.append([closes.loc[idx],signal[idx]]) # result = list() # for idx in range(len(trades)): # if idx > 0: # position = trades[idx-1][1] * leverage # performance = position * ((trades[idx][0]['close'] - trades[idx-1][0]['close']) / trades[idx-1][0]['close'])*100 # trade = [position,performance] # result.append(trade) # equity_curve = list() # principal = 1 # for elem in result: # principal = principal * (1 + elem[1]/100) # # print(principal) # equity_curve.append(principal) # pd.DataFrame(equity_curve).plot() # trade_pnl = list() # principal = 1 # for elem in result: # pnl=elem[1] # # print(principal) # trade_pnl.append(pnl) # pd.DataFrame(trade_pnl).plot(kind='bar') def get_strat_price_ti_plot(strat='ema_cross_over_under',strat_params={'fast_ema':4,'slow_ema':20},symbol='DEFIUSDT',leverage=1,decay=0.995,interval='1d',candles=50,exchange=None,animate=False,data=None): if exchange is None: return 'Exchange not initiated' allowed_strats = ['ema_cross_over_under','ema_diff_peak_trough','ema_oscillator_peak_trough'] if strat not in allowed_strats: print("INVALID STRATEGY") return None if strat == 'ema_oscillator_peak_trough': '''in devlopment''' # current_input=list(get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange)['closes'].values) # closes = pd.DataFrame(current_input,columns=['close']) # # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) # ema_oscillator = list() return None if data is None: current_input=get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange) if data == 'complete': current_input = pd.read_parquet('C:\\Users\\ZankarSS\\Downloads\\BTC-USDT.parquet')['close'].astype(float).values current_input = pd.read_csv('Binance_BTCUSDT_d.csv').iloc[::-1][['date','close']] current_input['datetime'] = [pd.Timestamp(elem) for elem in current_input['date'].values] current_input['closes'] = [np.float64(elem) for elem in current_input['close'].values] del current_input['date'] del current_input['close'] current_input.reset_index(drop=True) # dates = True if strat == 'ema_cross_over_under': min_input_length = np.max([float(strat_params['fast_ema']),float(strat_params['slow_ema'])]) if len(list(current_input['closes'].values))<min_input_length: return "INPUT HAS TOO FEW ELEMENTS" closes = current_input['closes'].astype(float) datetimes = current_input['datetime'] # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) indicator = pd.DataFrame(ema(closes.tolist(),strat_params['fast_ema']) - ema(closes.tolist(),strat_params['slow_ema']),columns=['ema_diff']) p = strat_params['slow_ema']+1 closes = closes[p:].reset_index(drop=True) indicator = indicator[p:].reset_index(drop=True) datetimes = datetimes[p:].reset_index(drop=True) signal = [0] + [1 if float(indicator.loc[index]) > 0 and float(indicator.loc[index-1]) < 0 else -1 if float(indicator.loc[index]) < 0 and float(indicator.loc[index-1]) > 0 else 0 for index in indicator.index[1:]] if strat == 'ema_diff_peak_trough': # current_input=get_last_n_kline_closes(symbol=symbol,n=candles,interval=interval,exchange=exchange) min_input_length = np.max([float(strat_params['fast_ema']),float(strat_params['slow_ema'])]) if len(list(current_input['closes'].values))<min_input_length: return "INPUT HAS TOO FEW ELEMENTS" closes = current_input['closes'].astype(float) datetimes = current_input['datetime'] # closes = closes[:-1] # closes['close'] = closes['close'].astype(float) indicator = pd.DataFrame(ema(closes.tolist(),strat_params['fast_ema']) - ema(closes.tolist(),strat_params['slow_ema']),columns=['ema_diff']) p = strat_params['slow_ema']+1 closes = closes[p:].reset_index(drop=True) indicator = indicator[p:].reset_index(drop=True) datetimes = datetimes[p:].reset_index(drop=True) signal = [0,0]+ [-1 if float(indicator.loc[index]) < float(indicator.loc[index-1]) and float(indicator.loc[index-1]) > float(indicator.loc[index-2]) else 1 if float(indicator.loc[index]) > float(indicator.loc[index-1]) and float(indicator.loc[index-1]) < float(indicator.loc[index-2]) else 0 for index in indicator.index[2:]] navs = list() current_position = 0 current_nav = 1 current_position_entry = 0 cumulative_nav = 1 for idx in indicator.index[2:]: # if idx == 0 or idx == 1: # navs.append(current_nav) # continue if current_position == 1: current_position_entry = current_position_entry * float(1/float(decay)) current_nav = (float(closes[idx]) / float(current_position_entry)) * float(cumulative_nav) navs.append(current_nav) if current_position == -1: current_position_entry = current_position_entry * float(decay) current_nav = (1 + ((float(current_position_entry) - float(closes[idx])) / float(current_position_entry))) * float(cumulative_nav) navs.append(current_nav) if current_position == 0: navs.append(current_nav) if signal[idx] != current_position and signal[idx] != 0: current_position = signal[idx] current_position_entry = closes[idx] cumulative_nav = current_nav navs = [1,1] + navs # for elem in zip(closes.values,signal): # if elem[1] == 0: # if last_position == 0: # last_nav = # navs.append(last_nav) # if last_position != 0: # last_nav = # navs.append(last_nav) # if elem[1] == 1: # last_position =1 # last_nav = # navs.append(last_nav) # if elem[1] == -1: # last_position = -1 # last_nav = # navs.append(last_nav) dynamic_closes = list() dynamic_signal = list() dynamic_indicator = list() dynamic_dates = list() dynamic_nav = list() assert len(closes) == len(signal) == len(indicator) == len(datetimes) == len(navs) for elem in zip(closes.values,signal,indicator.values,datetimes.values,navs): dynamic_closes.append(elem[0]) dynamic_signal.append(elem[1]) dynamic_indicator.append(elem[2]) dynamic_dates.append(elem[3]) dynamic_nav.append(elem[4]) clear_output(wait=True) if animate is False and elem != [elem for elem in zip(closes.values,signal,indicator.values,datetimes.values,navs)][-1]: continue fig, (ax1,ax2,ax3,ax4) = plt.subplots(nrows=4, sharex=True, subplot_kw=dict(frameon=True),figsize=(20,20)) # frameon=False removes frames # x = range(len(dynamic_signal)) # plt.subplots_adjust(hspace=.0) ax1.grid() ax1.plot(dynamic_dates, dynamic_closes, color='green',linewidth=2) for i in range(len(dynamic_signal)): if dynamic_signal[i] == 1: ax1.axvline(pd.DataFrame(dynamic_dates).iloc[pd.DataFrame(dynamic_dates).index.values[i]],color='g') if dynamic_signal[i] == -1: ax1.axvline(pd.DataFrame(dynamic_dates).iloc[pd.DataFrame(dynamic_dates).index.values[i]],color='r') # closes.plot() ax1.axhline(dynamic_closes[-1],color='k') ax1.legend([str(symbol)+': '+ str(float(dynamic_closes[-1]))] ) # ax1.set_xlabel('Days') ax1.set_ylabel('Price') ax2.grid() ax2.plot(dynamic_dates, dynamic_indicator, color='lightgreen', linestyle='--',linewidth=2) # indicator.plot() for i in range(len(dynamic_signal)): if dynamic_signal[i] == 1: ax2.axvline(pd.DataFrame(dynamic_dates).iloc[pd.DataFrame(dynamic_dates).index.values[i]],color='g') if dynamic_signal[i] == -1: ax2.axvline(pd.DataFrame(dynamic_dates).iloc[pd.DataFrame(dynamic_dates).index.values[i]],color='r') ax2.axhline(0,color='k',linestyle='--') ax2.legend([float(dynamic_indicator[-1])]) ax2.set_ylabel('Trend Indicator') ax3.grid() ax3.plot(dynamic_dates, dynamic_nav, color='darkmagenta',linewidth=2) # leg_strat = ax3.legend(strat_plot,'Strategy: '+ str(dynamic_nav[-1])) # bh = [dynamic_closes[idx]/dynamic_closes[0] for idx in range(len(dynamic_closes))] # buy_hold_plot = ax3.plot(dynamic_dates, bh, color='y',linewidth=2) # leg_bh = ax3.legend(buy_hold_plot,'Strategy: '+ str(bh[-1])) for i in range(len(dynamic_signal)): if dynamic_signal[i] == 1: ax3.axvline(pd.DataFrame(dynamic_dates).iloc[pd.DataFrame(dynamic_dates).index.values[i]],color='g') if dynamic_signal[i] == -1: ax3.axvline(pd.DataFrame(dynamic_dates).iloc[
pd.DataFrame(dynamic_dates)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 29 21:55:02 2021 @author: dariu """ import numpy as np import pandas as pd import os from tqdm import tqdm import pacmap import matplotlib.pyplot as plt from sklearn.manifold import TSNE import umap from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN #import sklearn.cluster from sklearn.decomposition import PCA from sklearn import metrics from sklearn.cluster import OPTICS, cluster_optics_dbscan import matplotlib.gridspec as gridspec path = "C:\\Users\dariu\\Documents\\Master Wirtschaftsinformatik\\Data Challenges\Data\\" directorys = [ ['training_setA/training/', 'p0'], ['training_setB/training_setB/', 'p1'] ] #%% dfs = [] for z, (directory, file_head) in enumerate(directorys): for i, filename in enumerate(tqdm(os.listdir(path + directory))): df_temp = pd.read_csv(path + directory + filename, skiprows=0, sep='|') # patient_gender = df_temp["Gender"][1] # if df_temp["Age"][1] >= 40: dfs.append(df_temp) df =
pd.concat(dfs)
pandas.concat
########## # Built-in ########## import glob import logging from pathlib import Path from typing import Dict ######## # Libs # ######## import pandas as pd logger = logging.getLogger(__name__) class CustomPreprocessor(): def __init__(self, cfg: object): """Custom preprocessor for malaria datasets at https://github.com/rfordatascience/tidytuesday/tree/master/data/2018/2018-11-13. :param cfg: python configuration file imported as a module :type cfg: module object """ # attributes from python configuration file self.folder_path = getattr(cfg, "DATA_FOLDER_RELATIVE_PATH", None) self.rename_dict = getattr(cfg, "RENAME_DICT", None) self.uk_list = getattr(cfg, "UK_LIST", None) self.income_demo = getattr(cfg, "INCOME_DEMO", None) ################## # Helper functions ################## def get_df_list(self, folder_path: str) -> list: """Get a list of csv filepaths to load as DataFrames :param folder_path: relative file path to raw data folder containing csv files :type folder_path: str :return: a list of absolute filepaths to load as DataFrames :rtype: list """ full_folder_path = Path(__file__).parents[3] / folder_path df_list = [ file for file in glob.glob( f'{full_folder_path}/*.csv' ) ] return df_list def get_entity_type( self, code: str, entity: str, income_demo: list )-> str: """Get entity type value for each row based on multiple conditions :param code: 'code' column value in the dataframe indicating country code for that row :type code: str :param entity: 'entity' column value in the dataframe indicating entity for that row :type entity: str :param income_demo: list of entities to be categorized under 'Income/Demographic' entity_type :type income_demo: list :return: value for entity_type for that row :rtype: str """ if entity == 'World': entity_type = 'World' elif not
pd.isnull(code)
pandas.isnull
# -*- coding: utf-8 -*- """ Created on Wed Aug 12 18:24:12 2020 @author: omar.elfarouk """ import pandas import numpy import seaborn import scipy import matplotlib.pyplot as plt data =
pandas.read_csv('gapminder.csv', low_memory=False)
pandas.read_csv
# Task2 Get market data from Binance ### Required #### 1. **Use Binance Python SDK** to get public data # import libraries import time import dateparser import pytz import json import pandas as pd from datetime import datetime from binance.client import Client # write functions to convert time and inverval def date_to_milliseconds(date_str): epoch = datetime.utcfromtimestamp(0).replace(tzinfo=pytz.utc) d = dateparser.parse(date_str) if d.tzinfo is None or d.tzinfo.utcoffset(d) is None: d = d.replace(tzinfo=pytz.utc) return int((d - epoch).total_seconds() * 1000.0) def interval_to_milliseconds(interval): ms = None seconds_per_unit = { "m": 60, "h": 60 * 60, "d": 24 * 60 * 60, "w": 7 * 24 * 60 * 60 } unit = interval[-1] if unit in seconds_per_unit: try: ms = int(interval[:-1]) * seconds_per_unit[unit] * 1000 except ValueError: pass return ms # write function to get candle/klines data def get_historical_klines(symbol, interval, start_str, end_str=None): client = Client("", "") output_data = [] limit = 500 timeframe = interval_to_milliseconds(interval) start_ts = date_to_milliseconds(start_str) end_ts = None if end_str: end_ts = date_to_milliseconds(end_str) idx = 0 symbol_existed = False while True: temp_data = client.get_klines( symbol=symbol, interval=interval, limit=limit, startTime=start_ts, endTime=end_ts ) if not symbol_existed and len(temp_data): symbol_existed = True if symbol_existed: output_data = output_data + temp_data start_ts = temp_data[len(temp_data) - 1][0] + timeframe else: start_ts = start_ts + timeframe idx = idx + 1 if len(temp_data) < limit: break if idx % 3 == 0: time.sleep(1) return output_data # write function to format candle/klines data def format_klines(df): formatted_klines = pd.DataFrame(df, columns=['Open time', 'Open', 'High', 'Low', 'Close', 'Volume', 'Close time', 'Quote asset volume', 'Number of trades', 'Taker buy base asset volume', 'Taker buy quote asset volume', 'Ignore'], index=None) formatted_klines = formatted_klines.drop(['Ignore'], axis=1) formatted_klines['Open time'] = pd.to_datetime(formatted_klines['Open time'], unit='ms') formatted_klines['Close time'] =
pd.to_datetime(formatted_klines['Close time'], unit='ms')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun May 3 17:09:00 2020 @author: krishna """ #----------Here I had applied the algorithis which needs scaling with 81 and 20 features------------------- import time import numpy as np import pandas as pd import matplotlib.pyplot as plt data=pd.read_csv('Phishing.csv') column_names=list(data.columns) data['URL_Type_obf_Type'].value_counts() #creating a category of malicious and non-malicious # data['category']='malicious' # data['category'][7930:15711]='non-malicious' # data['category'].value_counts() #shuffling the dataframe shuffled_dataset=data.sample(frac=1).reset_index(drop=True) #dropping the categorical value # categorical_data=shuffled_dataset[['URL_Type_obf_Type','category']] # data1=shuffled_dataset.drop(['URL_Type_obf_Type','category'],axis=1) #checking for na and inf values shuffled_dataset.replace([np.inf,-np.inf],np.nan,inplace=True) #handling the infinite value shuffled_dataset.fillna(shuffled_dataset.mean(),inplace=True) #handling the na value #checking if any value in data1 now contains infinite and null value or not null_result=shuffled_dataset.isnull().any(axis=0) inf_result=shuffled_dataset is np.inf #scaling the dataset with standard scaler shuffled_x=shuffled_dataset.drop(['URL_Type_obf_Type'],axis=1) shuffled_y=shuffled_dataset[['URL_Type_obf_Type']] from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() shuffled_dataset_scaled=sc_x.fit_transform(shuffled_x) shuffled_dataset_scaled=pd.DataFrame(shuffled_dataset_scaled) shuffled_dataset_scaled.columns=shuffled_x.columns dataset_final=pd.concat([shuffled_dataset_scaled,shuffled_y],axis=1) dataset_final.drop(['ISIpAddressInDomainName'],inplace=True,axis=1) #dropping this column since it always contain zero #Preparing the dataset with the reduced features of K-Best # reduced_features=['SymbolCount_Domain','domain_token_count','tld','Entropy_Afterpath','NumberRate_AfterPath','ArgUrlRatio','domainUrlRatio','URLQueries_variable','SymbolCount_FileName','delimeter_Count','argPathRatio','delimeter_path','pathurlRatio','SymbolCount_Extension','SymbolCount_URL','NumberofDotsinURL','Arguments_LongestWordLength','SymbolCount_Afterpath','CharacterContinuityRate','domainlength'] # reduced_features.append('URL_Type_obf_Type') # reduced_features.append('category') # shuffled_dataset1=shuffled_dataset[reduced_features] #Applying the top 30 features phising_columns=[] dataset_final=dataset_final[list] #splitting the dataset into train set and test set from sklearn.model_selection import train_test_split train_set,test_set=train_test_split(dataset_final,test_size=0.2,random_state=42) #sorting the train_set and test set pd.DataFrame.sort_index(train_set,axis=0,ascending=True,inplace=True) pd.DataFrame.sort_index(test_set,axis=0,ascending=True,inplace=True) #splitting further ito train_x,train_y,test_x,test_x ----Multiclass classification----- train_y=train_set['URL_Type_obf_Type'] #train data for binary classification train_y_binary=train_set['category'] train_x=train_set.drop(['URL_Type_obf_Type','category'],axis=1,inplace=True) train_x=train_set test_y=test_set['URL_Type_obf_Type'] test_y_binary=test_set['category'] #test data for binary classsification test_x=test_set.drop(['URL_Type_obf_Type','category'],axis=1,inplace=True) test_x=test_set #Encoding the categorical variables #for SVM classification train_y_svm=train_y test_y_svm=test_y #for other types of classification train_y=
pd.get_dummies(train_y)
pandas.get_dummies
import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from MyAIGuide.utilities.dataFrameUtilities import ( subset_period, insert_data_to_tracker_mean_steps, adjust_var_and_place_in_data, insert_rolling_mean_columns, insert_relative_values_columns ) def create_test_dataframe(start_date, num_periods): """This creates a dummy dataframe for testing. It has date index starting at given start date with a number of periods. Params: start_date: initial date for the index num_periods: number of index values """ i = pd.date_range(start_date, periods=num_periods, freq='1D') sLength = len(i) empty = pd.Series(np.zeros(sLength)).values d = { 'col1': empty + 1, 'col2': empty + 3, 'tracker_mean_steps': empty } return pd.DataFrame(data=d, index=i) def test_subset_period(): # create empty (full of 0s) test dataframe test_data = create_test_dataframe('2020-07-01', 4) # only 1 day period1 = ('2020-07-01', '2020-07-01') # usual period of more than 1 day period2 = ('2020-07-01', '2020-07-02') # wrong period with start_date > end_date period3 = ('2020-07-01', '2020-06-30') # generate expected dataframes expected_data1 = create_test_dataframe('2020-07-01', 1) expected_data2 = create_test_dataframe('2020-07-01', 2) expected_data3 = create_test_dataframe('2020-07-01', 0) # run the function with the test data result1 = subset_period(test_data, period1[0], period1[1]) result2 = subset_period(test_data, period2[0], period2[1]) # attention, function does not raise warning when start_date > end_date result3 = subset_period(test_data, period3[0], period3[1]) # compare results and expected dataframes assert_frame_equal(result1, expected_data1) assert_frame_equal(result2, expected_data2) assert_frame_equal(result3, expected_data3) def test_insert_data_to_tracker_mean_steps(): # create empty (full of 0s) test dataframe test_data = create_test_dataframe('2020-07-01', 4) # only 1 day period1 = ('2020-07-01', '2020-07-01') # usual period of more than 1 day period2 = ('2020-07-01', '2020-07-02') # wrong period with start_date > end_date period3 = ('2020-07-01', '2020-06-30') # generate expected dataframes expected_data1 = create_test_dataframe('2020-07-01', 4) expected_data1['tracker_mean_steps'] = [1.0, 0.0, 0.0, 0.0] expected_data2 = create_test_dataframe('2020-07-01', 4) expected_data2['tracker_mean_steps'] = [1.0, 1.0, 0.0, 0.0] expected_data3 = create_test_dataframe('2020-07-01', 4) # run the function with the test data result1 = insert_data_to_tracker_mean_steps(period1, test_data, 'col1', 'tracker_mean_steps') result2 = insert_data_to_tracker_mean_steps(period2, test_data, 'col1', 'tracker_mean_steps') # attention, function does not raise warning when start_date > end_date result3 = insert_data_to_tracker_mean_steps(period3, test_data, 'col1', 'tracker_mean_steps') # compare results and expected dataframes assert_frame_equal(result1, expected_data1) assert_frame_equal(result2, expected_data2)
assert_frame_equal(result3, expected_data3)
pandas.testing.assert_frame_equal
from __future__ import print_function import os import stat from errno import ENOENT, EIO from fuse import Operations, FuseOSError import threading import time import pandas as pd from fuse import FUSE def str_to_time(s): t =
pd.to_datetime(s)
pandas.to_datetime
"""Tests for the sdv.constraints.tabular module.""" import pandas as pd from sdv.constraints.tabular import ( ColumnFormula, CustomConstraint, GreaterThan, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test__valid_separator_valid(self): """Test ``_valid_separator`` for a valid separator. If the separator and data are valid, result is ``True``. Input: - Table data (pandas.DataFrame) Output: - True (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert is_valid def test__valid_separator_non_valid_separator_contained(self): """Test ``_valid_separator`` passing a column that contains the separator. If any of the columns contains the separator string, result is ``False``. Input: - Table data (pandas.DataFrame) with a column that contains the separator string ('#') Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', '#', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert not is_valid def test__valid_separator_non_valid_name_joined_exists(self): """Test ``_valid_separator`` passing a column whose name is obtained after joining the column names using the separator. If the column name obtained after joining the column names using the separator already exists, result is ``False``. Input: - Table data (pandas.DataFrame) with a column name that will be obtained by joining the column names and the separator. Output: - False (bool). """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance._separator = '#' # Run table_data = pd.DataFrame({ 'b#c': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) is_valid = instance._valid_separator(table_data) # Assert assert not is_valid def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = set(table_data[columns].itertuples(index=False)) assert instance._separator == '#' assert instance._joint_column == 'b#c' assert instance._combinations == expected_combinations def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) pd.testing.assert_frame_equal(expected_out, out) def reverse_transform(self): """Test the ``UniqueCombinations.reverse_transform`` method. It is expected to return the original data separating the concatenated columns. Input: - Table data transformed (pandas.DataFrame) Output: - Original table data, with the concatenated columns separated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup transformed_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b#c': ['d#g', 'e#h', 'f#i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(transformed_data) # Run out = instance.reverse_transform(transformed_data) # Assert expected_out = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) pd.testing.assert_frame_equal(expected_out, out) class TestGreaterThan(): def test___init___strict_false(self): """Test the ``GreaterThan.__init__`` method. It is expected to create a new Constraint instance and receiving ``low`` and ``high``, names of the columns that contain the low and high value. Input: - low = 'a' - high = 'b' Side effects: - instance._low == 'a' - instance._high == 'b' - instance._strict == False """ # Run instance = GreaterThan(low='a', high='b') # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is False def test___init___strict_true(self): """Test the ``GreaterThan.__init__`` method. It is expected to create a new Constraint instance and receiving ``low`` and ``high``, names of the columns that contain the low and high value. It also receives ``strict``, a bool that indicates the comparison of the values should be strict. Input: - low = 'a' - high = 'b' - strict = True Side effects: - instance._low == 'a' - instance._high == 'b' - instance._stric == True """ # Run instance = GreaterThan(low='a', high='b', strict=True) # Asserts assert instance._low == 'a' assert instance._high == 'b' assert instance._strict is True def test_fit(self): """Test the ``GreaterThan.fit`` method. It is expected to return the dtype of the ``high`` column. Input: - Table data (pandas.DataFrame) Output: - dtype of the ``high`` column. """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance.fit(table_data) # Asserts expected = table_data['b'].dtype assert instance._dtype == expected def test_is_valid_true_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are valid and the comparison is strict. If the columns satisfy the constraint, result is a series of ``True`` values. Input: - Table data, where the values of the ``low`` column are lower than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are not valid and the comparison is strict. If the columns do not satisfy the costraint, result is a series of ``False`` values. Input: - Table data, where the values of the ``low`` column are higher or equal than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1, 1, 1], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_true_not_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are valid and the comparison is not strict. If the columns satisfy the constraint, result is a series of ``True`` values. Input: - Table data, where the values of the ``low`` column are lower or equal than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 2, 3], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false_not_strict(self): """Test the ``GreaterThan.is_valid`` method when the column values are not valid and the comparison is not strict. If the columns do not satisfy the costraint, result is a series of ``False`` values. Input: - Table data, where the values of the ``low`` column are higher than the values of the ``high`` column (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup instance = GreaterThan(low='a', high='b') # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [0, 1, 2], 'c': [7, 8, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``GreaterThan.transform`` method. The ``GreaterThan.transform`` method is expected to: - Transform the original table data. Input: - Table data (pandas.DataFrame) Output: - Table data transformed (pandas.DataFrame) """ # Setup instance = GreaterThan(low='a', high='b', strict=True) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [1.3862944, 1.3862944, 1.3862944] }) pd.testing.assert_frame_equal(out, expected_out) def test_reverse_transform(self): """Test the ``GreaterThan.reverse_transform`` method. The ``GreaterThan.reverse_transform`` method is expected to: - Return the original table data. Input: - Table data transformed (pandas.DataFrame) Output: - Table data (pandas.DataFrame) Side effects: - Since ``reverse_transform`` uses the class variable ``_dtype``, the ``fit`` method must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9] }) instance = GreaterThan(low='a', high='b', strict=True) instance.fit(table_data) # Run out = instance.reverse_transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [55, 149, 405], 'c': [7, 8, 9], }) pd.testing.assert_frame_equal(out, expected_out) def new_column(data): """Formula to be used for the ``TestColumnFormula`` class.""" return data['a'] + data['b'] class TestColumnFormula(): def test___init__(self): """Test the ``ColumnFormula.__init__`` method. It is expected to create a new Constraint instance and import the formula to use for the computation. Input: - column = 'c' - formula = new_column """ # Setup column = 'c' # Run instance = ColumnFormula(column=column, formula=new_column) # Assert assert instance._column == column assert instance._formula == new_column def test_is_valid_valid(self): """Test the ``ColumnFormula.is_valid`` method for a valid data. If the data fulfills the formula, result is a series of ``True`` values. Input: - Table data fulfilling the formula (pandas.DataFrame) Output: - Series of ``True`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([True, True, True]) pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_valid(self): """Test the ``ColumnFormula.is_valid`` method for a non-valid data. If the data does not fulfill the formula, result is a series of ``False`` values. Input: - Table data not fulfilling the formula (pandas.DataFrame) Output: - Series of ``False`` values (pandas.Series) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [1, 2, 3] }) instance = ColumnFormula(column=column, formula=new_column) out = instance.is_valid(table_data) # Assert expected_out = pd.Series([False, False, False]) pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``ColumnFormula.transform`` method. It is expected to drop the indicated column from the table. Input: - Table data (pandas.DataFrame) Output: - Table data without the indicated column (pandas.DataFrame) """ # Setup column = 'c' instance = ColumnFormula(column=column, formula=new_column) # Run table_data = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [5, 7, 9] }) out = instance.transform(table_data) # Assert expected_out = pd.DataFrame({ 'a': [1, 2, 3], 'b': [4, 5, 6], })
pd.testing.assert_frame_equal(expected_out, out)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- from flask import Flask, render_template, request, redirect, url_for import numpy as np import pandas as pd import numpy as np import lightgbm as lgb import os import pickle from sklearn import metrics from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from sklearn.linear_model import LinearRegression from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier as RandomForest from sklearn.model_selection import GridSearchCV app = Flask(__name__) def pred(n) : name = n.split(',') ## CSV読み込み train = pd.read_csv("data/train.csv") ARR1 = [] for i in range(1,13,2) : for j in range(1,16,1) : ARR1.append([1,name[0],name[2], 2019, i, j]) test1 = pd.DataFrame(ARR1, columns=['w_judge','w_name','e_name','year','month','day']) ### 欠損値の削除 train = train.dropna() test1 = test1.dropna() train = train.drop(columns=['e_judge']) train = train.drop(columns=['ruler']) train = train.drop(columns=['w_rank']) train = train.drop(columns=['e_rank']) # データセットを結合 train1 = pd.concat([train,test1], ignore_index=True) ### Category Encorder for column in ['w_judge']: le = LabelEncoder() le.fit(train1[column]) train1[column] = le.transform(train1[column]) le.fit(test1[column]) test1[column] = le.transform(test1[column]) ### OneHot Encording oh_w_class =
pd.get_dummies(train1.w_name)
pandas.get_dummies
import pprint import numpy as np import pandas as pd from features import mfcc_features, logfbank_features, zcr_features, ssc_features from utils import get_fname_label_pairs def generate_feature_mat(folder="a", train=True): """ Generate feature matrix """ training_df = get_fname_label_pairs(folder=folder, train=train) features_df =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.api import Int64Index class TestDataFrameTruncate: def test_truncate(self, datetime_frame, frame_or_series): ts = datetime_frame[::3] if frame_or_series is Series: ts = ts.iloc[:, 0] start, end = datetime_frame.index[3], datetime_frame.index[6] start_missing = datetime_frame.index[2] end_missing = datetime_frame.index[7] # neither specified truncated = ts.truncate() tm.assert_equal(truncated, ts) # both specified expected = ts[1:3] truncated = ts.truncate(start, end) tm.assert_equal(truncated, expected) truncated = ts.truncate(start_missing, end_missing) tm.assert_equal(truncated, expected) # start specified expected = ts[1:] truncated = ts.truncate(before=start) tm.assert_equal(truncated, expected) truncated = ts.truncate(before=start_missing) tm.assert_equal(truncated, expected) # end specified expected = ts[:3] truncated = ts.truncate(after=end)
tm.assert_equal(truncated, expected)
pandas._testing.assert_equal
# -*- coding: utf-8 -*- import requests as req import pandas as pd #import json import csv import os import matplotlib.pyplot as plt from pandas.tools.plotting import scatter_matrix from common import globals as glob from common import utils from . import wb_check_quality as cq def get_WDI_CSV_FILE_NAME(year): csv_file_name = glob.WDI_CSV_FILE csv_file_name = csv_file_name.replace('__YEAR__', year) return csv_file_name def get_wdi_name_list(): #first read the indicators which need to be retrieved. These have been selected offline #and stored in a file called WDI_Series.csv. Refer to #https://datahelpdesk.worldbank.org/knowledgebase/topics/125589-developer-information. #The API end point for all the World Development Indicators (WDI) is #http://api.worldbank.org/indicators?format=json. count = 0 #create a list of WDI indicators and add each indicator parsed from the file to this list wdi_names = [] with open(glob.WDI_FILE_NAME) as csvfile: wdi_list = csv.reader(csvfile) for row in wdi_list: wdi_names.append(row[0]) count += 1 glob.log.info('total number of indicators %d' %(count)) return wdi_names def get_wdi_data(wdi, wdi_data, year): #example URL http://api.worldbank.org/countries/ALL/indicators/IC.REG.DURS?date=2015&format=json&per_page=10000 #the WB_API_ENDPOINT has a token called __YEAR__ which needs to be replaced with the exact year api = glob.WB_API_ENDPOINT + wdi + glob.WB_API_SUFFIX api = api.replace('__YEAR__', year) r = req.get(api) #if the return code is not 200 ok then its an errors if r.ok != True: glob.log.error('Error while retrieving information about WDI %s, server sent status code %d' %(wdi, r.status_code)) glob.log.error('Here is everything that was sent by the server...') glob.log.error(r.text) else: #looks like we got the response glob.log.info('successfully received a response from the WB API endpoint ' + api) #parse out the response. The response is a json array by country #we want to get the {country, value} tuple and store it in the input dict # the format is such that data if intrest starts from the second element in the json # see response to example URL mentioned above resp = r.json()[1] num_elems = len(resp) for i in range(num_elems): elem = resp[i] id = elem['country']['id'] if id not in wdi_data.keys(): wdi_data[id] = {} wdi_data[id]['name'] = elem['country']['value'] #check if the value is valid or null, if null then put a np.Nan if
pd.notnull(elem['value'])
pandas.notnull
import pandas as pd x = pd.Series([1, 3, 5, 7, 9]) # print(pd.__version__) # print() # print(x) mp = {"Bir": 1, "İki": 2, "Üç": 3, "Dört": 4} y =
pd.Series(mp)
pandas.Series
"""This module contains tests for recoding""" from unittest import TestCase import datetime import pandas as pd from kernel.recoding import recode, recode_dates, recode_ordinal, recode_nominal, recode_range from kernel.util import reduce_string class TestStringGeneralization(TestCase): """Class containing tests for string generalization""" def test_generalization(self): postcode = 'NE9 5YE' generalized = reduce_string(postcode) self.assertNotEqual(postcode, generalized) def test_single_step_generalization(self): postcode_1 = 'HP2 7PW' postcode_2 = 'HP2 7PF' generalized_1 = reduce_string(postcode_1) generalized_2 = reduce_string(postcode_2) self.assertNotEqual(postcode_1, postcode_2) self.assertEqual(generalized_1, generalized_2) def test_multistep_generalization(self): postcode_1 = 'HP2 7PW' postcode_2 = 'HP2 4DY' number_of_generalization_steps = 0 while(postcode_1 != postcode_2): if (len(postcode_1) > len(postcode_2)): postcode_1 = reduce_string(postcode_1) else: postcode_2 = reduce_string(postcode_2) number_of_generalization_steps = number_of_generalization_steps + 1 self.assertEqual(postcode_1, postcode_2) self.assertEqual(number_of_generalization_steps, 6) def test_total_generalization(self): postcode_1 = 'HP2 7PW' postcode_2 = 'CF470JD' number_of_generalization_steps = 0 while(postcode_1 != postcode_2): if (len(postcode_1) > len(postcode_2)): postcode_1 = reduce_string(postcode_1) else: postcode_2 = reduce_string(postcode_2) number_of_generalization_steps = number_of_generalization_steps + 1 self.assertEqual(postcode_1, postcode_2) self.assertEqual(number_of_generalization_steps, 14) self.assertEqual(postcode_1, '*') class TestRangeGeneralization(TestCase): """Class containing tests for range generalization""" def test_range_of_ints_generalization(self): numbers = [2, 5, 27, 12, 3] generalized = recode_range(pd.Series(numbers)) self.assertIsInstance(generalized, range) self.assertEqual(generalized, range(2, 28)) def test_range_of_floats_generalization(self): numbers = [8.7, 4.12, 27.3, 18] generalized = recode_range(pd.Series(numbers)) self.assertIsInstance(generalized, range) self.assertEqual(generalized, range(4, 29)) class TestDateGeneralization(TestCase): """Class containing tests for date generalization""" def test_time_generalization(self): date_1 = datetime.datetime(2020, 9, 28, 12, 32, 00) date_2 = datetime.datetime(2020, 9, 28, 15, 27, 48) series = pd.Series([date_1, date_2]) generalized = recode_dates(series) self.assertEqual(generalized, datetime.datetime(2020, 9, 28)) def test_day_generalization(self): date_1 = datetime.datetime(2020, 9, 27, 12, 32, 00) date_2 = datetime.datetime(2020, 9, 28, 15, 27, 48) series = pd.Series([date_1, date_2]) generalized = recode_dates(series) self.assertEqual(generalized.to_timestamp(), datetime.datetime(2020, 9, 1)) def test_month_generalization(self): date_1 = datetime.datetime(2020, 10, 27, 12, 32, 00) date_2 = datetime.datetime(2020, 9, 28, 15, 27, 48) series = pd.Series([date_1, date_2]) generalized = recode_dates(series) self.assertEqual(generalized.to_timestamp(), datetime.datetime(2020, 1, 1)) def test_year_generalization(self): date_1 = datetime.datetime(2021, 10, 27, 12, 32, 00) date_2 = datetime.datetime(2020, 9, 28, 15, 27, 48) series = pd.Series([date_1, date_2]) generalized = recode_dates(series) self.assertEqual(generalized, range(2020, 2022)) class TestOrdinalGeneralization(TestCase): """Class containing tests for ordinal generalization""" def test_ordinal_generalization_raises_exception(self): categories = ['A', 'B', 'C'] values = ['A', 'A', 'A'] series = pd.Series(pd.Categorical(values, categories, ordered=False)) self.assertRaises(Exception, recode_ordinal, series) def test_ordinal_generalization_with_single_category(self): categories = ['A', 'B', 'C'] values = ['A', 'A', 'A'] series = pd.Series(pd.Categorical(values, categories, ordered=True)) generalized = recode_ordinal(series) self.assertEqual(generalized, 'A') def test_ordinal_generalization_with_multiple_categories(self): categories = set(['A', 'B', 'C']) values = ['B', 'A', 'B', 'C', 'A'] series = pd.Series(
pd.Categorical(values, categories, ordered=True)
pandas.Categorical
#%% import pandas as pd import prot.stats from tqdm import tqdm # Load the dataset (s) condition_data = pd.read_csv('../../data/schmidt2016_longform.csv') genes =
pd.read_csv('../../data/schmidt2016_genes_processes.csv')
pandas.read_csv
import base64 import datetime import io import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from xlrd.xldate import xldate_as_datetime from yattag import Doc plt.rcParams.update({"figure.autolayout": True}) import matplotlib.gridspec as gridspec import pandas as pd import scipy.stats import tensorflow as tf from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import logging """ TF_CPP_MIN_LOG_LEVEL: Defaults to 0, so all logs are shown. Set TF_CPP_MIN_LOG_LEVEL to 1 to filter out INFO logs, 2 to additionally filter out WARNING, 3 to additionally filter out ERROR. """ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" from tensorflow import keras class NNetwork(object): def __init__(self, network_count=200, epochs=1000): logging.getLogger().setLevel(logging.INFO) self.xl_dateformat = r"%Y-%m-%dT%H:%M" self.model = None self.pretrained_networks = [] self.software_version = "2.0.1" self.input_filename = None self.today = str(datetime.date.today()) self.avg_time_elapsed = 0 self.predictors_scaler = MinMaxScaler(feature_range=(-1, 1)) self.targets_scaler = MinMaxScaler(feature_range=(-1, 1)) self.history = None self.file = None self.skipped_rows = [] self.ruleset = [] self.layer1_neurons = 12 self.network_count = network_count self.epochs = epochs self.predictors = None self.targets = None self.predictions = None self.avg_case_results_am = None self.avg_case_results_pm = None self.worst_case_results_am = None self.worst_case_results_pm = None self.WB_bandwidth = None self.post_process_check = False # Is post-processed better than raw. If False, uses raw results, if true, uses post-processed results self.optimizer = keras.optimizers.Nadam(lr=0.01, beta_1=0.9, beta_2=0.999) self.model = keras.models.Sequential() self.model.add( keras.layers.Dense(self.layer1_neurons, input_dim=5, activation="tanh") ) self.model.add(keras.layers.Dense(1, activation="linear")) self.model.compile(loss="mse", optimizer=self.optimizer, metrics=["mse"]) def import_data_from_csv(self, filename): """ Imports data to the network by a comma-separated values (CSV) file. Load data to a network that are stored in .csv file format. The data loaded from this method can be used both for training reasons as well as to make predictions. :param filename: String containing the filename of the .csv file containing the input data (e.g "input_data.csv") """ df = pd.read_csv(filename) self.file = df.copy() global FRC_IN global FRC_OUT global WATTEMP global COND # Locate the fields used as inputs/predictors and outputs in the loaded file # and split them if "se1_frc" in self.file.columns: FRC_IN = "se1_frc" WATTEMP = "se1_wattemp" COND = "se1_cond" FRC_OUT = "se4_frc" elif "ts_frc1" in self.file.columns: FRC_IN = "ts_frc1" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc1" elif "ts_frc" in self.file.columns: FRC_IN = "ts_frc" WATTEMP = "ts_wattemp" COND = "ts_cond" FRC_OUT = "hh_frc" # Standardize the DataFrame by specifying rules # To add a new rule, call the method execute_rule with the parameters (description, affected_column, query) self.execute_rule("Invalid tapstand FRC", FRC_IN, self.file[FRC_IN].isnull()) self.execute_rule("Invalid household FRC", FRC_OUT, self.file[FRC_OUT].isnull()) self.execute_rule( "Invalid tapstand date/time", "ts_datetime", self.valid_dates(self.file["ts_datetime"]), ) self.execute_rule( "Invalid household date/time", "hh_datetime", self.valid_dates(self.file["hh_datetime"]), ) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) # fix dropped indices in pandas # Locate the rows of the missing data drop_threshold = 0.90 * len(self.file.loc[:, [FRC_IN]]) nan_rows_watt = self.file.loc[self.file[WATTEMP].isnull()] if len(nan_rows_watt) < drop_threshold: self.execute_rule( "Missing Water Temperature Measurement", WATTEMP, self.file[WATTEMP].isnull(), ) nan_rows_cond = self.file.loc[self.file[COND].isnull()] if len(nan_rows_cond) < drop_threshold: self.execute_rule("Missing EC Measurement", COND, self.file[COND].isnull()) self.skipped_rows = df.loc[df.index.difference(self.file.index)] self.file.reset_index(drop=True, inplace=True) start_date = self.file["ts_datetime"] end_date = self.file["hh_datetime"] durations = [] all_dates = [] collection_time = [] for i in range(len(start_date)): try: # excel type start = float(start_date[i]) end = float(end_date[i]) start = xldate_as_datetime(start, datemode=0) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = xldate_as_datetime(end, datemode=0) except ValueError: # kobo type start = start_date[i][:16].replace("/", "-") end = end_date[i][:16].replace("/", "-") start = datetime.datetime.strptime(start, self.xl_dateformat) if start.hour > 12: collection_time = np.append(collection_time, 1) else: collection_time = np.append(collection_time, 0) end = datetime.datetime.strptime(end, self.xl_dateformat) durations.append((end - start).total_seconds()) all_dates.append(datetime.datetime.strftime(start, self.xl_dateformat)) self.durations = durations self.time_of_collection = collection_time self.avg_time_elapsed = np.mean(durations) # Extract the column of dates for all data and put them in YYYY-MM-DD format self.file["formatted_date"] = all_dates predictors = { FRC_IN: self.file[FRC_IN], "elapsed time": (np.array(self.durations) / 3600), "time of collection (0=AM, 1=PM)": self.time_of_collection, } self.targets = self.file.loc[:, FRC_OUT] self.var_names = [ "Tapstand FRC (mg/L)", "Elapsed Time", "time of collection (0=AM, 1=PM)", ] self.predictors =
pd.DataFrame(predictors)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2021/12/2 11:22 Desc: 新浪财经-债券-沪深可转债-实时行情数据和历史行情数据 http://vip.stock.finance.sina.com.cn/mkt/#hskzz_z """ import datetime import json import re import pandas as pd import requests from bs4 import BeautifulSoup from py_mini_racer import py_mini_racer from tqdm import tqdm from akshare.bond.cons import ( zh_sina_bond_hs_cov_count_url, zh_sina_bond_hs_cov_payload, zh_sina_bond_hs_cov_url, zh_sina_bond_hs_cov_hist_url, ) from akshare.stock.cons import hk_js_decode from akshare.utils import demjson def _get_zh_bond_hs_cov_page_count() -> int: """ 新浪财经-行情中心-债券-沪深可转债的总页数 http://vip.stock.finance.sina.com.cn/mkt/#hskzz_z :return: 总页数 :rtype: int """ params = { "node": "hskzz_z", } r = requests.get(zh_sina_bond_hs_cov_count_url, params=params) page_count = int(re.findall(re.compile(r"\d+"), r.text)[0]) / 80 if isinstance(page_count, int): return page_count else: return int(page_count) + 1 def bond_zh_hs_cov_spot() -> pd.DataFrame: """ 新浪财经-债券-沪深可转债的实时行情数据; 大量抓取容易封IP http://vip.stock.finance.sina.com.cn/mkt/#hskzz_z :return: 所有沪深可转债在当前时刻的实时行情数据 :rtype: pandas.DataFrame """ big_df = pd.DataFrame() page_count = _get_zh_bond_hs_cov_page_count() zh_sina_bond_hs_payload_copy = zh_sina_bond_hs_cov_payload.copy() for page in tqdm(range(1, page_count + 1), leave=False): zh_sina_bond_hs_payload_copy.update({"page": page}) res = requests.get(zh_sina_bond_hs_cov_url, params=zh_sina_bond_hs_payload_copy) data_json = demjson.decode(res.text) big_df = big_df.append(pd.DataFrame(data_json), ignore_index=True) return big_df def bond_zh_hs_cov_daily(symbol: str = "sz123111") -> pd.DataFrame: """ 新浪财经-债券-沪深可转债的历史行情数据, 大量抓取容易封 IP http://vip.stock.finance.sina.com.cn/mkt/#hskzz_z :param symbol: 沪深可转债代码; e.g., sh010107 :type symbol: str :return: 指定沪深可转债代码的日 K 线数据 :rtype: pandas.DataFrame """ r = requests.get( zh_sina_bond_hs_cov_hist_url.format( symbol, datetime.datetime.now().strftime("%Y_%m_%d") ) ) js_code = py_mini_racer.MiniRacer() js_code.eval(hk_js_decode) dict_list = js_code.call( "d", r.text.split("=")[1].split(";")[0].replace('"', "") ) # 执行js解密代码 data_df = pd.DataFrame(dict_list) data_df['date'] = pd.to_datetime(data_df["date"]).dt.date return data_df def _code_id_map() -> dict: """ 东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict """ url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) return code_id_dict def bond_zh_hs_cov_min( symbol: str = "sh113570", period: str = '15', adjust: str = '', start_date: str = "1979-09-01 09:32:00", end_date: str = "2222-01-01 09:32:00", ) -> pd.DataFrame: """ 东方财富网-可转债-分时行情 https://quote.eastmoney.com/concept/sz128039.html :param symbol: 转债代码 :type symbol: str :param period: choice of {'1', '5', '15', '30', '60'} :type period: str :param adjust: choice of {'', 'qfq', 'hfq'} :type adjust: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :return: 分时行情 :rtype: pandas.DataFrame """ market_type = {'sh': '1', 'sz': '0'} if period == '1': url = 'https://push2.eastmoney.com/api/qt/stock/trends2/get' params = { "fields1": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58", "ut": "fa5fd1943c7b386f172d6893dbfba10b", "ndays": "5", "iscr": "0", 'iscca': '0', "secid": f"{market_type[symbol[:2]]}.{symbol[2:]}", "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["trends"]]) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "最新价", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["最新价"] = pd.to_numeric(temp_df["最新价"]) temp_df['时间'] = pd.to_datetime(temp_df['时间']).astype(str) # 带日期时间 return temp_df else: adjust_map = { '': '0', 'qfq': '1', 'hfq': '2', } url = 'https://push2his.eastmoney.com/api/qt/stock/kline/get' params = { 'fields1': 'f1,f2,f3,f4,f5,f6', 'fields2': 'f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61', 'ut': '7eea3edcaed734bea9cbfc24409ed989', 'klt': period, 'fqt': adjust_map[adjust], 'secid': f"{market_type[symbol[:2]]}.{symbol[2:]}", 'beg': '0', 'end': '20500000', '_': '1630930917857', } r = requests.get(url, params=params) data_json = r.json() temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]["klines"]]) temp_df.columns = [ "时间", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["时间"]) temp_df = temp_df[start_date:end_date] temp_df.reset_index(drop=True, inplace=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_numeric(temp_df["成交额"]) temp_df["振幅"] = pd.to_numeric(temp_df["振幅"]) temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"]) temp_df["涨跌额"] = pd.to_
numeric(temp_df["涨跌额"])
pandas.to_numeric
import warnings from datetime import datetime, timedelta import pandas as pd import psycopg2 class MarketDataCleaner(object): """Get data from main_market table and preprocess it into pandas.Dataframe""" def __init__(self): # DB connection and cursor instances. self.conn = psycopg2.connect() def clean(self): # Load all rows from the main_price. market_df = self._get_df() # Convert all the datetimes to UTC time zone. market_df['date'] = pd.to_datetime(market_df['date'], utc=True) # Add day and hour columns for better work with date. market_df['daycol'] = market_df['date'].dt.date market_df['hourcol'] = market_df['date'].dt.hour # Remove data points which share the same date&hour. print('Start removing data points with same date and hour') ids_to_drop = [] grouped_by_dayhour = market_df.groupby(['daycol', 'hourcol']) for _, df in grouped_by_dayhour: if df.shape[0] != 1: for value in df.index.values[1:]: ids_to_drop.append(value) market_df = market_df.drop(ids_to_drop) # Check if there are Null values. print('There are {0} NA values main_market'.format( market_df.isnull().sum().sum())) # Compare with real hourly data points - fill missing values. cur_date = datetime.now() finish_date = datetime(2016, 1, 1) hour_timedelta = timedelta(hours=1) while cur_date > finish_date: filter_day = market_df['daycol'] == cur_date.date() filter_hour = market_df['hourcol'] == cur_date.hour if market_df[filter_day & filter_hour].empty: print( 'Found empty value from market_data at {0}'.format(cur_date)) df_to_add_data = { 'date': [cur_date], 'globalmarketcap': [market_df[filter_day].mean()['globalmarketcap']], 'mchoursentiment': [market_df[filter_day].mean()['mchoursentiment']], 'mchourprediction': [market_df[filter_day].mean()['mchourprediction']], 'mchourtrend': [market_df[filter_day].mean()['mchourtrend']], 'globalvolume': [market_df[filter_day].mean()['globalvolume']], 'daycol': [cur_date.date()], 'hourcol': [cur_date.hour] } df_to_add = pd.DataFrame(df_to_add_data) market_df.append(df_to_add, ignore_index=True) cur_date -= hour_timedelta # Return cleaned data. return market_df def _get_df(self): select_query = """select * from main_market;""" data_df =
pd.read_sql_query(select_query, self.conn, index_col='id')
pandas.read_sql_query
import argparse import glob import pandas as pd import os from deeppipeline.kvs import GlobalKVS import torch.optim.lr_scheduler as lr_scheduler def gen_image_id(fname, sample_id): prj, slice_num = fname.split('/')[-1].split('.')[0].split('_') return f'{sample_id}_{slice_num}_{prj}' def init_metadata(): kvs = GlobalKVS() imgs = glob.glob(os.path.join(kvs['args'].dataset, '*', 'imgs', '*.png')) imgs.sort(key=lambda x: x.split('/')[-1]) masks = glob.glob(os.path.join(kvs['args'].dataset, '*', 'masks', '*.png')) masks.sort(key=lambda x: x.split('/')[-1]) sample_id = list(map(lambda x: x.split('/')[-3], imgs)) subject_id = list(map(lambda x: x.split('/')[-3].split('_')[0], imgs)) metadata = pd.DataFrame(data={'img_fname': imgs, 'mask_fname': masks, 'sample_id': sample_id, 'subject_id': subject_id}) metadata['sample_subject_proj'] = metadata.apply(lambda x: gen_image_id(x.img_fname, x.sample_id), 1) grades =
pd.read_csv(kvs['args'].grades)
pandas.read_csv
import numpy as np import pandas as pd import xarray as xr import copy import warnings try: from plotly import graph_objs as go plotly_installed = True except: plotly_installed = False # warnings.warn("PLOTLY not installed so interactive plots are not available. This may result in unexpected funtionality") global_3d_mapper = np.repeat(0, 256 * 4).reshape(256, -1) global_3d_mapper[ord('T'), :] = np.array([0, 0, 0, 1]) global_3d_mapper[ord('C'), :] = np.array([0, 1, 0, 0]) global_3d_mapper[ord('A'), :] = np.array([1, 0, 0, 0]) global_3d_mapper[ord('G'), :] = np.array([0, 0, 1, 0]) def compare_sequence_matrices(seq_arr1, seq_arr2, flip=False, treat_as_match=[], ignore_characters=[], return_num_bases=False): """ This will "align" seq_arr1 to seq_arr2. It will calculate which positions in each sequence defined by seq_arr1 matches each position in each sequence defined by seq_arr2 seq_arr1 = NxP matrix where N = # of sequences represented in seq_arr1 and P represents each base pair position/the length of the string seq_arr2 = MxP matrix where M = # of sequences represented in seq_arr1 and P represents each base pair position/the length of the string This operation will return a NxPxM boolean matrix where each position represents whether the base pair in sequence N and the base pair in sequence M represented at position P match In other words, if bool_arr = compare_sequence_matrices(A, B) then the total hamming distance between the second and third sequence in matrices A and B respective can be found as >>> bool_arr.sum(axis=1)[1][2] Args: seq_arr1 (np.array): MxP matrix of sequences represented as array of numbers seq_arr2 (np.array): NxP matrix of sequences represented as array of numbers flip (bool): If False then "true" means that letters are equal at specified positoin, If True then return positions that are NOT equal to one another treat_as_match (list of chars): Treat any positions that have any of these letters in either matricies as True ignore_characters (list of chars): Ignore positions that have letters in either matricies at specified positions .. warning:: datatype When ignore character is defined, the array is passed back as a np.float dtype because it must accomodate np.nan return_num_bases (False): If true then it will return a second parameter that defines the number of non nan values between alignments Returns: NxPxM array of boolean values """ assert seq_arr1.shape[1] == seq_arr2.shape[1], 'Matrices do not match!' # use np.int8 because it ends upbeing faster seq_arr1 = seq_arr1.view(np.uint8) seq_arr2 = seq_arr2.view(np.uint8) # this will return true of pos X in seqA and seqB are equal diff_arr = (seq_arr1[..., np.newaxis].view(np.uint8) == seq_arr2.T[np.newaxis, ...]) # print(diff_arr.shape) if treat_as_match: # treat any of these letters at any positions as true regardles of whether they match in respective pairwise sequences if not isinstance(treat_as_match, list): treat_as_match = [treat_as_match] treat_as_match = [ord(let) for let in treat_as_match] # now we have to ignore characters that are equal to specific values # return True for any positions that is equal to "treat_as_true" ignore_pos = ((seq_arr1 == treat_as_match[0])[..., np.newaxis]) | ((seq_arr2 == treat_as_match[0])[..., np.newaxis].T) for chr_p in treat_as_match[1:]: ignore_pos = ignore_pos | ((seq_arr1 == chr_p)[..., np.newaxis]) | ((seq_arr2 == chr_p)[..., np.newaxis].T) # now adjust boolean results to ignore any positions == treat_as_true diff_arr = (diff_arr | ignore_pos) # if flip is False else (diffs | ignore_pos) if flip is False: diff_arr = diff_arr # (~(~diffarr)) else: diff_arr = ~diff_arr # (~diffarr) # print(diff_arr.shape) if ignore_characters: # do not treat these characters as true OR false if not isinstance(ignore_characters, list): ignore_characters = [ignore_characters] ignore_characters = [ord(let) for let in ignore_characters] # now we have to ignore characters that are equal to specific values ignore_pos = (seq_arr1 == ignore_characters[0])[..., np.newaxis] | ((seq_arr2 == ignore_characters[0])[..., np.newaxis].T) for chr_p in ignore_characters[1:]: ignore_pos = ignore_pos | ((seq_arr1 == chr_p)[..., np.newaxis]) | ((seq_arr2 == chr_p)[..., np.newaxis]).T diff_arr = diff_arr.astype(np.float) diff_arr[ignore_pos] = np.nan diff_arr = diff_arr if return_num_bases: num_bases = np.apply_along_axis( arr=diff_arr, axis=1, func1d=lambda x: len(x[~np.isnan(x)]) ) return diff_arr, num_bases else: return diff_arr def numpy_value_counts_bin_count(arr, weights=None): """ Use the 'bin count' function in numpy to calculate the unique values in every column of a dataframe clocked at about 3-4x faster than pandas_value_counts (df.apply(pd.value_counts)) Args: arr (dataframe, or np array): Should represent rows as sequences and columns as positions. All values should be int weights (np array): Should be a list of weights to place on each """ if not isinstance(arr, np.ndarray): raise Exception('The provided parameter for arr is not a dataframe or numpy array') if len(arr.shape) == 1: # its a ONE D array, lets make it two D arr = arr.reshape(-1, 1) arr = arr.view(np.uint8) # returns an array of length equal to the the max value in array + 1. each element represents number of times an integer appeared in array. bins = [ np.bincount(arr[:, x], weights=weights) for x in range(arr.shape[1]) ] indices = [np.nonzero(x)[0] for x in bins] # only look at non zero bins series = [pd.Series(y[x], index=x) for (x, y) in zip(indices, bins)] return pd.concat(series, axis=1).fillna(0) def get_quality_dist( arr, col_names=None, bins='even', exclude_null_quality=True, sample=None, percentiles=[10, 25, 50, 75, 90], stats=['mean', 'median', 'max', 'min'], plotly_sampledata_size=20, use_multiindex=True, ): """ Returns the distribution of quality across the given sequence, similar to FASTQC quality seq report. Args: arr (np.array): a matrix of quality scores where rows represent a sequence and columns represent a position col_names (list): column header for the numpy array (either from xarray or pandas) bins(list of ints or tuples, or 'fastqc', or 'even'): bins defines how to group together the columns/sequence positions when aggregating the statistics. .. note:: bins='fastqc' or 'even' if bins is not a set of numbers and instead one of the two predefined strings ('fastqc' and 'even') then calculation of bins will be defined as follows: 1. fastqc: Identical to the bin ranges used by fastqc report 2. even: Creates 10 evenly sized bins based on sequence lengths percentiles (list of floats, default=[10, 25, 50, 75, 90]): value passed into numpy quantiles function. exclude_null_quality (boolean, default=True): do not include quality scores of 0 in the distribution sample (int, default=None): If defined, then we will only calculate the distribution on a random subsampled population of sequences plotly_sampledata_size (int, default=20): Number of values to store in a sample numpy array used for creating box plots in plotly .. note:: min size note the minimum value for a sampledata size is 10 Returns: data (DataFrame): contains the distribution information at every bin (min value, max value, desired precentages and quartiles) graphs (plotly object): contains plotly graph objects for generating plots of the data afterwards Examples: Show the median of the quality at the first ten positions in the sequence >>> table = SeqTable(['AAAAAAAAAA', 'AAAAAAAAAC', 'CCCCCCCCCC'], qualitydata=['6AA9-C9--6C', '6AA!1C9BA6C', '6AA!!C9!-6C']) >>> box_data, graphs = table.get_quality_dist(bins=range(10), percentiles=[50]) Now repeat the example from above, except group together all values from the first 5 bases and the next 5 bases i.e. All qualities between positions 0-4 will be grouped together before performing median, and all qualities between 5-9 will be grouped together). Also, return the bottom 10 and upper 90 percentiles in the statsitics >>> box_data, graphs = table.get_quality_dist(bins=[(0,4), (5,9)], percentiles=[10, 50, 90]) We can also plot the results as a series of boxplots using plotly >>> from plotly.offline import init_notebook_mode, iplot, plot, iplot_mpl # assuming ipython.. >>> init_notebook_mode() >>> plotly.iplot(graphs) # using outside of ipython >>> plotly.plot(graphs) """ from collections import OrderedDict current_stats = ['min', 'max', 'mean', 'median'] assert set(stats).issubset(set(current_stats)), "The stats provided are not currently supported. We only support {0}".format(','.join(current_stats)) # current base positions in dataframe if col_names is None: col_names = np.arange(1, arr.shape[1] + 1) else: assert len(col_names) == arr.shape[1], 'Column names does not match shape' # print(bins) if bins is 'fastqc': # use default bins as defined by fastqc report bins = [ (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), (10, 14), (15, 19), (20, 24), (25, 29), (30, 34), (35, 39), (40, 44), (45, 49), (50, 54), (55, 59), (60, 64), (65, 69), (70, 74), (80, 84), (85, 89), (90, 94), (95, 99), (100, 104), (105, 109), (110, 114), (115, 119), (120, 124), (125, 129), (130, 134), (135, 139), (140, 144), (145, 149), (150, 154), (155, 159), (160, 164), (165, 169), (170, 174), (175, 179), (180, 184), (185, 189), (190, 194), (195, 199), (200, 204), (205, 209), (210, 214), (215, 219), (220, 224), (225, 229), (230, 234), (235, 239), (240, 244), (245, 249), (250, 254), (255, 259), (260, 264), (265, 269), (270, 274), (275, 279), (280, 284), (285, 289), (290, 294), (295, 299), ] + [(p, p + 9) for p in np.arange(300, arr.shape[1], 10)] bins = [x if isinstance(x, int) else (x[0], x[1]) for x in bins] elif bins is 'even': # create an equal set of 10 bins based on df shape binsize = int(arr.shape[1] / 10) bins = [] for x in range(0, arr.shape[1], binsize): c1 = col_names[x] c2 = col_names[min(x + binsize - 1, arr.shape[1] - 1)] bins.append((c1, c2)) # print(bins) else: # just in case its a generator (i.e. range function) # convert floats to ints, otherwise keep original bins = [(int(x), int(x)) if isinstance(x, float) else x if isinstance(x, tuple) else (x, x) for x in bins] binnames = OrderedDict() for b in bins: if b[0] < min(col_names) or b[0] > max(col_names): continue # create names for each bin if isinstance(b, int): binnames[str(b)] = (b, b) elif len(b) == 2: binnames[str(b[0]) + '-' + str(b[1])] = (b[0], b[1]) temp = xr.DataArray( arr[np.random.choice(arr.shape[0], sample), :] if sample else arr, dims=('read', 'position'), coords={'position': col_names} ) # define the quantile percentages we will return for each quality bin percentiles = [round(p, 0) for p in percentiles] per = copy.copy(percentiles) # ensure that the following percentiles will ALWAYS be present program_required = [0, 10, 25, 50, 75, 90, 100] to_add_manually = set(program_required) - set(per) # update percentil list per = sorted(per + list(to_add_manually)) # loop through each of the binnames/bin counts binned_data = OrderedDict() binned_data_stats = OrderedDict() graphs = [] # for storing plotly graphs plotlychosendata = pd.DataFrame(0, index=list(binnames.keys()), columns=['min', 'max', 'mean', 'median']) for name, binned_cols in binnames.items(): userchosen_stats = {} userchosen = {} if isinstance(binned_cols, int): # not binning together multiple positions in sequence binned_cols = (binned_cols, binned_cols) # create a list of all column/base positions listed within this bin # set_cols = set(list(range(binned_cols[0], binned_cols[1] + 1))) # identify columns in dataframe that intersect with columns listed above # sel_cols = list(col_names_set & set_cols) # select qualities within bin, unwind list into a single list p = list(set(np.arange(binned_cols[0], binned_cols[1] + 1)) & set(temp.position.values)) # make sure positions are present in columns bin_qual = temp.sel(position=p).values.ravel() if exclude_null_quality: quantile_res = np.percentile(bin_qual[bin_qual > 0], per) mean_val = bin_qual[bin_qual > 0].mean() plotlychosendata.loc[name, 'mean'] = mean_val if 'mean' in stats: userchosen_stats['mean'] = mean_val else: mean_val = bin_qual[bin_qual > 0].mean() quantile_res = np.percentile(bin_qual, per) plotlychosendata.loc[name, 'mean'] = mean_val if 'mean' in stats: userchosen_stats['mean'] = mean_val storevals = [] for p, qnt in zip(per, quantile_res): if p == 0: plotlychosendata.loc[name, 'min'] = qnt if 'min' in stats: userchosen_stats['min'] = qnt if p == 100: plotlychosendata.loc[name, 'max'] = qnt if 'max' in stats: userchosen_stats['max'] = qnt if p in program_required: # store the values required by the program in storevals storevals.append(qnt) if p in percentiles: # store original quantile values desired by user in variable percentiles userchosen[str(int(p)) + '%'] = qnt if p == 50: # store median median = qnt if 'median' in stats: userchosen_stats['median'] = qnt plotlychosendata.loc[name, 'median'] = qnt userchosen = pd.Series(userchosen) if plotly_sampledata_size < 10: warnings.warn('Warning, the desired plotly_sampledata_size is too low, value has been changed to 10') plotly_sampledata_size = 10 # next a fake set of data that we can pass into plotly for making boxplots. datas descriptive statistics will match current set sample_data = np.zeros(plotly_sampledata_size) # these indices in subsets indicates the 5% index values for the provided sample_data_size subsets = [int(x) for x in np.arange(0, 1.00, 0.05) * plotly_sampledata_size] # we hardcoded the values in program_required, so we can add those values into fake subsets sample_data[0:subsets[1]] = storevals[1] # store min value in these indices sample_data[subsets[1]:subsets[3]] = storevals[1] # store bottom 10% of data within 5-15% data range sample_data[subsets[3]:subsets[7]] = storevals[2] # store 25% of data sample_data[subsets[7]:subsets[13]] = storevals[3] # store median of data sample_data[subsets[13]:subsets[17]] = storevals[4] # store 75% of data sample_data[subsets[17]:subsets[19]] = storevals[5] # store max val sample_data[subsets[19]:] = storevals[5] # store max val color = 'red' if median < 20 else 'blue' if median < 30 else 'green' if plotly_installed is True: # create a box plot using the fake sample_data, again this is better for memory resources since plotly stores all datapoints in javascript plotdata = go.Box( y=sample_data, pointpos=0, name=name, boxpoints=False, fillcolor=color, showlegend=False, line={ 'color': 'black', 'width': 0.7 }, marker=dict( color='rgb(107, 174, 214)', size=3 ) ) else: warnings.warn('PLOTLY not installed. No graph object data was returned') plotdata = None graphs.append(plotdata) binned_data[name] = userchosen binned_data_stats[name] = userchosen_stats if plotly_installed is True: # also include a scatter plot for the minimum value, maximum value, and mean in distribution scatter_min = go.Scatter(x=list(plotlychosendata.index), y=plotlychosendata['min'], mode='markers', name='min', showlegend=False) scatter_max = go.Scatter(x=list(plotlychosendata.index), y=plotlychosendata['max'], mode='markers', name='max') scatter_mean = go.Scatter( x=list(plotlychosendata.index), y=plotlychosendata['mean'], line=dict(shape='spline'), name='mean' ) graphs.extend([scatter_min, scatter_max, scatter_mean]) if use_multiindex is True: stats_df = pd.concat([pd.DataFrame(binned_data), pd.DataFrame(binned_data_stats)], keys=['percentile', 'stats']) else: stats_df = pd.concat([
pd.DataFrame(binned_data)
pandas.DataFrame
import matplotlib.pyplot as plt import numpy as np import pandas as pd from numba import njit ############################################################################### #Non-Standard Imports ############################################################################### import addpath import dunlin as dn import dunlin._utils_model.dun_file_reader as dfr import dunlin._utils_model.ode_coder as odc if __name__ == '__main__': dun_data0 = dfr.read_file('dun_test_files/M20.dun') dun_data1 = dfr.read_file('dun_test_files/M21.dun') model_data0 = dun_data0['M1'] model_data1 = dun_data1['M2'] model_data2 = dun_data1['M3'] ############################################################################### #Part 1: Low Level Code Generation ############################################################################### funcs = model_data0['funcs'] vrbs = model_data0['vrbs'] rxns = model_data0['rxns'] states = model_data0['states'] #Test func def name, args = 'test_func', ['a', 'b'] code = odc.make_def(name, *args) test_func = f'{code}\n\treturn [a, b]' exec(test_func) a, b = 1, 2 assert test_func(a, b) == [1, 2] #Test code generation for local functions code = odc.funcs2code(funcs) test_func = f'def test_func(v, x, k):\n{code}\n\treturn MM(v, x, k)' exec(test_func) assert test_func(2, 4, 6) == 0.8 #Test local variable code = odc.vrbs2code(vrbs) test_func = f'def test_func(x2, k1):\n{code}\n\treturn sat2' exec(test_func) assert test_func(1, 1) == 0.5 #Parse single reaction stripper = lambda *s: ''.join(s).replace(' ', '').strip() r = odc._parse_rxn(*rxns['r0']) assert {'x0': '-1', 'x1': '-2', 'x2': '+1'} == r[0] assert stripper(rxns['r0'][1], '-', rxns['r0'][2]) == stripper(r[1]) r = odc._parse_rxn(*rxns['r1']) assert {'x2': '-1', 'x3': '+1'} == r[0] assert stripper(rxns['r1'][1]) == stripper(r[1]) r = odc._parse_rxn(*rxns['r2']) assert {'x3': '-1'} == r[0] assert stripper(rxns['r2'][1]) == stripper(r[1]) #Test code generation for multiple reactions code = odc.rxns2code(model_data0) MM = lambda v, x, k: 0 sat2 = 0.5 test_func = f'def test_func(x0, x1, x2, x3, x4, p0, p1, p2, p3, p4):\n{code}\treturn [d_x0, d_x1, d_x2, d_x3, d_x4]' exec(test_func) r = test_func(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) assert r == [-1.0, -2.0, 0.5, -0.5, 1] #Test code generation for hierarchical models #We need to create the "submodel" MM = lambda v, x, k: 0 code = odc.rxns2code(model_data1) test_func0 = 'def model_M2(*args): return np.array([1, 1])' exec(test_func0) code = odc.rxns2code(model_data2) test_func = f'def test_func(t, x0, x1, x2, x3, p0, p1, p2, p3, k2):\n{code}\treturn [d_x0, d_x1, d_x2, d_x3]' exec(test_func) r = test_func(0, 1, 1, 1, 1, 1, 1, 1, 1, 1) assert r == [-1, 2, 1, 1] temp = dun_data1['M3']['rxns']['r1'] dun_data1['M3']['rxns']['r1'] = {'submodel': 'M2', 'substates': {'xx0': 'x1', 'xx1': 'x2'}, 'subparams': {'pp0' : 'p0', 'pp1' : 'p1', 'kk1': 'k2'} } try: code = odc.rxns2code(model_data2) except NotImplementedError as e: assert True else: assert False dun_data1['M3']['rxns']['r1'] = temp ############################################################################### #Part 2: High Level Code Generation ############################################################################### template0 = odc.make_template(model_data0) template1 = odc.make_template(model_data1) template2 = odc.make_template(model_data2) params = model_data0['params'] exvs = model_data0['exvs'] events = model_data0['events'] modify = model_data0['modify'] #Generate code for ode rhs code = odc.rhs2code(template0, model_data0)[1] test_func = code.replace('model_M1', 'test_func') exec(test_func) t = 0 y = np.ones(5) p = pd.DataFrame(params).values[0] dy = test_func(t, y, p) assert all( dy == np.array([-0.5, -1, 0, -1.5 , 2]) ) #Generate code for sim code = odc.sim2code(template0, model_data0)[1] test_func = code.replace('sim_M1', 'test_func') exec(test_func) t = np.array([0, 1]) y = np.ones((5, 2)) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) answer = {'x0' : np.array([1., 1.]), 'x1' : np.array([1., 1.]), 'x2' : np.array([1., 1.]), 'x3' : np.array([1., 1.]), 'x4' : np.array([1., 1.]), 'sat2': np.array([0.5, 0.5]), 'd_x0': np.array([-0.5, -0.5]), 'd_x1': np.array([-1., -1.]), 'd_x2': np.array([0., 0.]), 'd_x3': np.array([-1.5, -1.5]), 'd_x4': np.array([2., 2.]), 't' : np.array([0, 1]) } for k, v in answer.items(): assert np.all(v == r[k]) #Generate code for exv codes = odc.exvs2code(template0, model_data0) test_func = codes['r0'][1].replace('exv_M1_r0', 'test_func') exec(test_func) t = np.array([0, 1]) y = np.ones((5, 2)) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert all(r == 0.5) #Generate code for single event trigger trigger = events['e0'][0] code = odc.trigger2code('e0', trigger, template0, model_data0)[1] test_func = code.replace('trigger_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r == 0.5 #Generate code for single event assignment assignment = events['e0'][1] code = odc.assignment2code('e0', assignment, template0, model_data0)[1] test_func = code.replace('assignment_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r[0][0] == 5 assert r[1][0] == 0.5 #Generate code for single event codes = odc.event2code('e0', template0, model_data0) test_func = codes['trigger'][1].replace('trigger_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r == 0.5 test_func = codes['assignment'][1].replace('assignment_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r[0][0] == 5 assert r[1][0] == 0.5 #Generate code for all events codes = odc.events2code(template0, model_data0) test_func = codes['e0']['trigger'][1].replace('trigger_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r == 0.5 test_func = codes['e0']['assignment'][1].replace('assignment_M1_e0', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(t, y, p) assert r[0][0] == 5 assert r[1][0] == 0.5 #Generate modify code = odc.modify2code(template0, model_data0)[1] test_func = code.replace('modify_M1', 'test_func') exec(test_func) t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = test_func(y, p, scenario=1) assert all( r[0] == np.array([10, 1, 1, 1, 1]) ) assert all( r[1] == p) ############################################################################### #Part 3A: Function Generation ############################################################################### #Generate single function from code code = 'x = lambda t: t+1' scope = {} test_func = odc.code2func(['x', code]) assert test_func(5) == 6 #Generate multiple functions from codes #The second function requires access to the first one codes = {'fx': ['x', 'def x(t):\n\treturn t+1'], 'fy': ['y', 'def y(t):\n\treturn x(t)+2'] } r = odc.code2func(codes) test_func = r['fx'] assert test_func(5) == 6 test_func = r['fy'] assert test_func(5) == 8 ############################################################################### #Part 3B: Function Generation ############################################################################### template0 = odc.make_template(model_data0) template1 = odc.make_template(model_data1) template2 = odc.make_template(model_data2) params = model_data0['params'] exvs = model_data0['exvs'] events = model_data0['events'] modify = model_data0['modify'] #Generate rhs function func = odc.rhs2func(template0, model_data0) t = 0 y = np.ones(5) p = pd.DataFrame(params).values[0] dy = func(t, y, p) assert all( dy == np.array([-0.5, -1, 0, -1.5 , 2]) ) #Generate exv functions funcs = odc.exvs2func(template0, model_data0) func = funcs['r0'] t = np.array([0, 1]) y = np.ones((5, 2)) p = pd.DataFrame(params).values[0] r = func(t, y, p) assert all(r == 0.5) #Generate event functions for one event funcs = odc.event2func('e0', template0, model_data0) func = funcs['trigger'] t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = func(t, y, p) assert r == 0.5 func = funcs['assignment'] t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = func(t, y, p) assert r[0][0] == 5 assert r[1][0] == 0.5 #Generate event functions for all events funcs = odc.events2func(template0, model_data0) func = funcs['e0']['trigger'] t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = func(t, y, p) assert r == 0.5 func = funcs['e0']['assignment'] t = 10 y = np.array([0, 1, 1, 1, 1]) p = pd.DataFrame(params).values[0] r = func(t, y, p) assert r[0][0] == 5 assert r[1][0] == 0.5 #Generate modify func = odc.modify2func(template0, model_data0) t = 10 y = np.array([0, 1, 1, 1, 1]) p =
pd.DataFrame(params)
pandas.DataFrame
import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( Categorical, DataFrame, DatetimeIndex, NaT, PeriodIndex, Series, TimedeltaIndex, Timestamp, date_range, ) import pandas._testing as tm from pandas.tests.frame.common import _check_mixed_float class TestFillNA: def test_fillna_datetime(self, datetime_frame): tf = datetime_frame tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = datetime_frame.fillna(0) assert (zero_filled.loc[zero_filled.index[:5], "A"] == 0).all() padded = datetime_frame.fillna(method="pad") assert np.isnan(padded.loc[padded.index[:5], "A"]).all() assert ( padded.loc[padded.index[-5:], "A"] == padded.loc[padded.index[-5], "A"] ).all() msg = "Must specify a fill 'value' or 'method'" with pytest.raises(ValueError, match=msg): datetime_frame.fillna() msg = "Cannot specify both 'value' and 'method'" with pytest.raises(ValueError, match=msg): datetime_frame.fillna(5, method="ffill") def test_fillna_mixed_type(self, float_string_frame): mf = float_string_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan # TODO: make stronger assertion here, GH 25640 mf.fillna(value=0) mf.fillna(method="pad") def test_fillna_mixed_float(self, mixed_float_frame): # mixed numeric (but no float16) mf = mixed_float_frame.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) _check_mixed_float(result, dtype={"C": None}) result = mf.fillna(method="pad") _check_mixed_float(result, dtype={"C": None}) def test_fillna_empty(self): # empty frame (GH#2778) df = DataFrame(columns=["x"]) for m in ["pad", "backfill"]: df.x.fillna(method=m, inplace=True) df.x.fillna(method=m) def test_fillna_different_dtype(self): # with different dtype (GH#3386) df = DataFrame( [["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"]] ) result = df.fillna({2: "foo"}) expected = DataFrame( [["a", "a", "foo", "a"], ["b", "b", "foo", "b"], ["c", "c", "foo", "c"]] ) tm.assert_frame_equal(result, expected) return_value = df.fillna({2: "foo"}, inplace=True) tm.assert_frame_equal(df, expected) assert return_value is None def test_fillna_limit_and_value(self): # limit and value df = DataFrame(np.random.randn(10, 3)) df.iloc[2:7, 0] = np.nan df.iloc[3:5, 2] = np.nan expected = df.copy() expected.iloc[2, 0] = 999 expected.iloc[3, 2] = 999 result = df.fillna(999, limit=1) tm.assert_frame_equal(result, expected) def test_fillna_datelike(self): # with datelike # GH#6344 df = DataFrame( { "Date": [NaT, Timestamp("2014-1-1")], "Date2": [Timestamp("2013-1-1"), NaT], } ) expected = df.copy() expected["Date"] = expected["Date"].fillna(df.loc[df.index[0], "Date2"]) result = df.fillna(value={"Date": df["Date2"]}) tm.assert_frame_equal(result, expected) def test_fillna_tzaware(self): # with timezone # GH#15855 df = DataFrame({"A": [Timestamp("2012-11-11 00:00:00+01:00"), NaT]}) exp = DataFrame( { "A": [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] } ) tm.assert_frame_equal(df.fillna(method="pad"), exp) df = DataFrame({"A": [NaT, Timestamp("2012-11-11 00:00:00+01:00")]}) exp = DataFrame( { "A": [ Timestamp("2012-11-11 00:00:00+01:00"), Timestamp("2012-11-11 00:00:00+01:00"), ] } ) tm.assert_frame_equal(df.fillna(method="bfill"), exp) def test_fillna_tzaware_different_column(self): # with timezone in another column # GH#15522 df = DataFrame( { "A": date_range("20130101", periods=4, tz="US/Eastern"), "B": [1, 2, np.nan, np.nan], } ) result = df.fillna(method="pad") expected = DataFrame( { "A": date_range("20130101", periods=4, tz="US/Eastern"), "B": [1.0, 2.0, 2.0, 2.0], } ) tm.assert_frame_equal(result, expected) def test_na_actions_categorical(self): cat = Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) vals = ["a", "b", np.nan, "d"] df = DataFrame({"cats": cat, "vals": vals}) cat2 = Categorical([1, 2, 3, 3], categories=[1, 2, 3]) vals2 = ["a", "b", "b", "d"] df_exp_fill = DataFrame({"cats": cat2, "vals": vals2}) cat3 = Categorical([1, 2, 3], categories=[1, 2, 3]) vals3 = ["a", "b", np.nan] df_exp_drop_cats = DataFrame({"cats": cat3, "vals": vals3}) cat4 = Categorical([1, 2], categories=[1, 2, 3]) vals4 = ["a", "b"] df_exp_drop_all = DataFrame({"cats": cat4, "vals": vals4}) # fillna res = df.fillna(value={"cats": 3, "vals": "b"}) tm.assert_frame_equal(res, df_exp_fill) msg = "Cannot setitem on a Categorical with a new category" with pytest.raises(ValueError, match=msg): df.fillna(value={"cats": 4, "vals": "c"}) res = df.fillna(method="pad") tm.assert_frame_equal(res, df_exp_fill) # dropna res = df.dropna(subset=["cats"]) tm.assert_frame_equal(res, df_exp_drop_cats) res = df.dropna() tm.assert_frame_equal(res, df_exp_drop_all) # make sure that fillna takes missing values into account c = Categorical([np.nan, "b", np.nan], categories=["a", "b"]) df = DataFrame({"cats": c, "vals": [1, 2, 3]}) cat_exp = Categorical(["a", "b", "a"], categories=["a", "b"]) df_exp = DataFrame({"cats": cat_exp, "vals": [1, 2, 3]}) res = df.fillna("a") tm.assert_frame_equal(res, df_exp) def test_fillna_categorical_nan(self): # GH#14021 # np.nan should always be a valid filler cat = Categorical([np.nan, 2, np.nan]) val = Categorical([np.nan, np.nan, np.nan]) df = DataFrame({"cats": cat, "vals": val}) # GH#32950 df.median() is poorly behaved because there is no # Categorical.median median = Series({"cats": 2.0, "vals": np.nan}) res = df.fillna(median) v_exp = [np.nan, np.nan, np.nan] df_exp = DataFrame({"cats": [2, 2, 2], "vals": v_exp}, dtype="category") tm.assert_frame_equal(res, df_exp) result = df.cats.fillna(np.nan) tm.assert_series_equal(result, df.cats) result = df.vals.fillna(np.nan) tm.assert_series_equal(result, df.vals) idx = DatetimeIndex( ["2011-01-01 09:00", "2016-01-01 23:45", "2011-01-01 09:00", NaT, NaT] ) df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) idx = PeriodIndex(["2011-01", "2011-01", "2011-01", NaT, NaT], freq="M") df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) idx = TimedeltaIndex(["1 days", "2 days", "1 days", NaT, NaT]) df = DataFrame({"a": Categorical(idx)}) tm.assert_frame_equal(df.fillna(value=NaT), df) @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) implement downcast def test_fillna_downcast(self): # GH#15277 # infer int64 from float64 df = DataFrame({"a": [1.0, np.nan]}) result = df.fillna(0, downcast="infer") expected = DataFrame({"a": [1, 0]}) tm.assert_frame_equal(result, expected) # infer int64 from float64 when fillna value is a dict df = DataFrame({"a": [1.0, np.nan]}) result = df.fillna({"a": 0}, downcast="infer") expected = DataFrame({"a": [1, 0]}) tm.assert_frame_equal(result, expected) @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) object upcasting def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = DataFrame(index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) result = df.dtypes expected = Series([np.dtype("object")] * 5, index=[1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) result = df.fillna(1) expected = DataFrame(1, index=["A", "B", "C"], columns=[1, 2, 3, 4, 5]) tm.assert_frame_equal(result, expected) # empty block df = DataFrame(index=range(3), columns=["A", "B"], dtype="float64") result = df.fillna("nan") expected = DataFrame("nan", index=range(3), columns=["A", "B"]) tm.assert_frame_equal(result, expected) # equiv of replace df = DataFrame({"A": [1, np.nan], "B": [1.0, 2.0]}) for v in ["", 1, np.nan, 1.0]: expected = df.replace(np.nan, v) result = df.fillna(v) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test def test_fillna_datetime_columns(self): # GH#7095 df = DataFrame( { "A": [-1, -2, np.nan], "B":
date_range("20130101", periods=3)
pandas.date_range
import pytest import numpy as np import pandas as pd from pypbl.elicitation import BayesPreference from pypbl.priors import Normal, Exponential @pytest.fixture def basic_model(): data =
pd.DataFrame({'x': [1, 0, 1], 'y': [0, 1, 1]}, index=['item 0', 'item 1', 'item 2'])
pandas.DataFrame
from more_itertools import unique_everseen from collections import Counter from lxml import etree import pandas as pd import numpy as np from iteration import * import os def save_yearly_data(years, dirin, dirout): all_data = [] for y in years: paths = [] rootdir = dirin+str(y)+'/' print(rootdir) for subdir_month, dirs, files in os.walk(rootdir): paths.append(subdir_month) year = min(paths, key=len) paths.remove(year) monthly_data = [] list_keys = [] for path in paths: if path != year: print(path) monthly = get_all_monthly_data(path) monthly_data.append(monthly) list_keys.append(path[-13:-6]) # df_Master = pd.concat(monthly_data, keys=list_keys) df_Master =
pd.concat(monthly_data)
pandas.concat
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import pandas as pd import numba as nb import time from warnings import warn import scipy.sparse as sp from scipy.sparse import coo_matrix, csc_matrix from scipy.sparse import hstack as hs, vstack as vs from scipy.sparse.linalg import factorized, spsolve, inv from matplotlib import pyplot as plt from GridCal.Engine import * def SysMat(Y, Ys, pq, pvpq): """ Computes the system Jacobian matrix in polar coordinates Args: Ybus: Admittance matrix V: Array of nodal voltages Ibus: Array of nodal current injections pq: Array with the indices of the PQ buses pvpq: Array with the indices of the PV and PQ buses Returns: The system Jacobian matrix """ A11 = -Ys.imag[np.ix_(pvpq, pvpq)] A12 = Y.real[np.ix_(pvpq, pq)] A21 = -Ys.real[np.ix_(pq, pvpq)] A22 = -Y.imag[np.ix_(pq, pq)] Asys = sp.vstack([sp.hstack([A11, A12]), sp.hstack([A21, A22])], format="csc") return Asys def compute_acptdf(Ybus, Yseries, Yf, Yt, Cf, V, pq, pv, distribute_slack): """ Compute the AC-PTDF :param Ybus: admittance matrix :param Yf: Admittance matrix of the buses "from" :param Yt: Admittance matrix of the buses "to" :param Cf: Connectivity branch - bus "from" :param V: voltages array :param Ibus: array of currents :param pq: array of pq node indices :param pv: array of pv node indices :return: AC-PTDF matrix (branches, buses) """ n = len(V) pvpq = np.r_[pv, pq] npq = len(pq) # compute the Jacobian J = SysMat(Ybus, Yseries, pq, pvpq) if distribute_slack: dP = np.ones((n, n)) * (-1 / (n - 1)) for i in range(n): dP[i, i] = 1.0 else: dP = np.eye(n, n) # compose the compatible array (the Q increments are considered zero dQ = np.zeros((npq, n)) # dQ = np.eye(n, n)[pq, :] dS = np.r_[dP[pvpq, :], dQ] # solve the voltage increments dx = spsolve(J, dS) # compute branch derivatives If = Yf * V E = V / np.abs(V) Vdiag = sp.diags(V) Vdiag_conj = sp.diags(np.conj(V)) Ediag = sp.diags(E) Ediag_conj = sp.diags(np.conj(E)) If_diag_conj = sp.diags(np.conj(If)) Yf_conj = Yf.copy() Yf_conj.data = np.conj(Yf_conj.data) Yt_conj = Yt.copy() Yt_conj.data = np.conj(Yt_conj.data) dSf_dVa = 1j * (If_diag_conj * Cf * Vdiag - sp.diags(Cf * V) * Yf_conj * Vdiag_conj) dSf_dVm = If_diag_conj * Cf * Ediag - sp.diags(Cf * V) * Yf_conj * Ediag_conj # compose the final AC-PTDF dPf_dVa = dSf_dVa.real[:, pvpq] dPf_dVm = dSf_dVm.real[:, pq] PTDF = sp.hstack((dPf_dVa, dPf_dVm)) * dx return PTDF def make_lodf(circuit: SnapshotCircuit, PTDF, correct_values=True): """ :param circuit: :param PTDF: PTDF matrix in numpy array form :return: """ nl = circuit.nbr # compute the connectivity matrix Cft = circuit.C_branch_bus_f - circuit.C_branch_bus_t H = PTDF * Cft.T # old code # h = sp.diags(H.diagonal()) # LODF = H / (np.ones((nl, nl)) - h * np.ones(nl)) # divide each row of H by the vector 1 - H.diagonal # LODF = H / (1 - H.diagonal()) # replace possible nan and inf # LODF[LODF == -np.inf] = 0 # LODF[LODF == np.inf] = 0 # LODF = np.nan_to_num(LODF) # this loop avoids the divisions by zero # in those cases the LODF column should be zero LODF = np.zeros((nl, nl)) div = 1 - H.diagonal() for j in range(H.shape[1]): if div[j] != 0: LODF[:, j] = H[:, j] / div[j] # replace the diagonal elements by -1 # old code # LODF = LODF - sp.diags(LODF.diagonal()) - sp.eye(nl, nl), replaced by: for i in range(nl): LODF[i, i] = - 1.0 if correct_values: i1, j1 = np.where(LODF > 1) for i, j in zip(i1, j1): LODF[i, j] = 1 i2, j2 = np.where(LODF < -1) for i, j in zip(i2, j2): LODF[i, j] = -1 return LODF def get_branch_time_series(circuit: TimeCircuit, PTDF): """ :param grid: :return: """ # option 2: call the power directly P = circuit.Sbus.real Pbr = np.dot(PTDF, P).T * circuit.Sbase return Pbr def multiple_failure_old(flows, LODF, beta, delta, alpha): """ :param flows: array of all the pre-contingency flows :param LODF: Line Outage Distribution Factors Matrix :param beta: index of the first failed line :param delta: index of the second failed line :param alpha: index of the line where you want to see the effects :return: post contingency flow in the line alpha """ # multiple contingency matrix M = np.ones((2, 2)) M[0, 1] = -LODF[beta, delta] M[1, 0] = -LODF[delta, beta] # normal flows of the lines beta and delta F = flows[[beta, delta]] # contingency flows after failing the ines beta and delta Ff = np.linalg.solve(M, F) # flow delta in the line alpha after the multiple contingency of the lines beta and delta L = LODF[alpha, :][[beta, delta]] dFf_alpha = np.dot(L, Ff) return F[alpha] + dFf_alpha def multiple_failure(flows, LODF, failed_idx): """ From the paper: Multiple Element Contingency Screening IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 26, NO. 3, AUGUST 2011 <NAME> and <NAME> :param flows: array of all the pre-contingency flows (the base flows) :param LODF: Line Outage Distribution Factors Matrix :param failed_idx: indices of the failed lines :return: all post contingency flows """ # multiple contingency matrix M = -LODF[np.ix_(failed_idx, failed_idx)] for i in range(len(failed_idx)): M[i, i] = 1.0 # normal flows of the failed lines indicated by failed_idx F = flows[failed_idx] # Affected flows after failing the lines indicated by failed_idx Ff = np.linalg.solve(M, F) # flow delta in the line alpha after the multiple contingency of the lines indicated by failed_idx L = LODF[:, failed_idx] dFf_alpha = np.dot(L, Ff) # return the final contingency flow as the base flow plus the contingency flow delta return flows + dFf_alpha def get_n_minus_1_flows(circuit: MultiCircuit): opt = PowerFlowOptions() branches = circuit.get_branches() m = circuit.get_branch_number() Pmat = np.zeros((m, m)) # monitored, contingency for c, branch in enumerate(branches): if branch.active: branch.active = False pf = PowerFlowDriver(circuit, opt) pf.run() Pmat[:, c] = pf.results.Sbranch.real branch.active = True return Pmat def check_lodf(grid: MultiCircuit): flows_n1_nr = get_n_minus_1_flows(grid) # assume 1 island nc = compile_snapshot_circuit(grid) islands = split_into_islands(nc) circuit = islands[0] pf_driver = PowerFlowDriver(grid, PowerFlowOptions()) pf_driver.run() PTDF = compute_acptdf(Ybus=circuit.Ybus, Yseries=circuit.Yseries, Yf=circuit.Yf, Yt=circuit.Yt, Cf=circuit.C_branch_bus_f, V=pf_driver.results.voltage, pq=circuit.pq, pv=circuit.pv, distribute_slack=True) LODF = make_lodf(circuit, PTDF) Pbus = circuit.get_injections(False).real flows_n = np.dot(PTDF, Pbus) nl = circuit.nbr flows_n1 = np.zeros((nl, nl)) for c in range(nl): # branch that fails (contingency) # for m in range(nl): # branch to monitor # flows_n1[m, c] = flows_n[m] + LODF[m, c] * flows_n[c] flows_n1[:, c] = flows_n[:] + LODF[:, c] * flows_n[c] return flows_n, flows_n1_nr, flows_n1 def test_ptdf(grid): """ Sigma-distances test :param grid: :return: """ nc = compile_snapshot_circuit(grid) islands = split_into_islands(nc) circuit = islands[0] # pick the first island pf_driver = PowerFlowDriver(grid, PowerFlowOptions()) pf_driver.run() PTDF = compute_acptdf(Ybus=circuit.Ybus, Yseries=circuit.Yseries, Yf=circuit.Yf, Yt=circuit.Yt, Cf=circuit.C_branch_bus_f, V=pf_driver.results.voltage, pq=circuit.pq, pv=circuit.pv, distribute_slack=False) print('PTDF:') print(PTDF) if __name__ == '__main__': from GridCal.Engine import FileOpen import pandas as pd np.set_printoptions(threshold=sys.maxsize, linewidth=200000000) # np.set_printoptions(linewidth=2000, suppress=True) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1000) # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE39_1W.gridcal' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE 14.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/lynn5buspv.xlsx' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE 118.xlsx' fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/1354 Pegase.xlsx' # fname = 'helm_data1.gridcal' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/IEEE 14 PQ only.gridcal' # fname = 'IEEE 14 PQ only full.gridcal' # fname = '/home/santi/Descargas/matpower-fubm-master/data/case5.m' # fname = '/home/santi/Descargas/matpower-fubm-master/data/case30.m' # fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/PGOC_6bus.gridcal' grid_ = FileOpen(fname).open() test_ptdf(grid_) name = os.path.splitext(fname.split(os.sep)[-1])[0] method = 'ACPTDF (No Jacobian, V=Vpf)' nc_ = compile_snapshot_circuit(grid_) islands_ = split_into_islands(nc_) circuit_ = islands_[0] pf_driver_ = PowerFlowDriver(grid_, PowerFlowOptions()) pf_driver_.run() H_ = compute_acptdf(Ybus=circuit_.Ybus, Yseries=circuit_.Yseries, Yf=circuit_.Yf, Yt=circuit_.Yt, Cf=circuit_.C_branch_bus_f, V=pf_driver_.results.voltage, pq=circuit_.pq, pv=circuit_.pv, distribute_slack=False) LODF_ = make_lodf(circuit_, H_) if H_.shape[0] < 50: print('PTDF:\n', H_) print('LODF:\n', LODF_) flows_n_, flows_n1_nr_, flows_n1_ = check_lodf(grid_) # in the case of the grid PGOC_6bus flows_multiple = multiple_failure(flows=flows_n_, LODF=LODF_, failed_idx=[1, 5]) # failed lines 2 and 6 Pn1_nr_df = pd.DataFrame(data=flows_n1_nr_, index=nc_.branch_names, columns=nc_.branch_names) flows_n1_df =
pd.DataFrame(data=flows_n1_, index=nc_.branch_names, columns=nc_.branch_names)
pandas.DataFrame
# REQ 4.2.3.1 (REQ4) Chache TextRank information for future runs where we can compare against an existing sample set instead of regenerating the TextRank graph (this feature has been removed, instead textrank is just regenerated each time) # REQ 4.2.3.2 (REQ5) Generate sentence summarization graphs of all MLAs using TextRank algorithm # REQ 4.3.3.1 (REQ7) Get top N sentences from sentence summarization generated per MLA import re from storage_clients import MySqlClient, MinioClient from preprocess.speech_parser import SpeechParser from nltk.tokenize import sent_tokenize from textrank import MLA, Session, Sentence, Summarizer from pandas import DataFrame from storage_clients import DbSchema from pkgutil import get_data import time minio_client = MinioClient() null_sentences = {sentence.strip() for sentence in str(get_data('data', 'sentences.txt').decode('utf-8')).split('\n')} def run_textrank(mysql_client): table = DbSchema.ranks mysql_client.drop_table(table) mysql_client.create_table(table) i = 1 s = 0 startTime = time.clock() for mla in load_data(mysql_client): print(f'processing MLA {i} / 87: {mla.firstname} {mla.lastname}') # loads information from minio to list of MLA classes summarizer = Summarizer(mla.sentences) save_to_sql(mla, table, mysql_client) s += mla.numberOfSentences i += 1 def load_data(mysql_client): """ generator for querying mlas, documents and loading speech data from the minio instance. this allows prefetching of metadata, while also only querying the mlas underlying speech data at the runtime for the summarizer. """ bucket = 'speeches' mla_table = mysql_client.read_data("SELECT * FROM mlas") documents = mysql_client.read_data("SELECT Id, DateCode FROM documents") for index, row in mla_table.iterrows(): mla = MLA(row.FirstName, row.LastName, row.Caucus, row.Id) # get sessions contained in files files = minio_client.list_objects( bucket, prefix=f'{mla.firstname}_{mla.lastname}', recursive=True) for file in files: date_code = file.object_name.split('/')[-1] document_id = int( documents.loc[documents['DateCode'] == date_code]['Id']) session = Session(date_code, mla, document_id) speeches_from_session = minio_client.get_object( bucket, file.object_name).read().decode('utf-8') for sent in sent_tokenize(speeches_from_session): # Variables # --------------------------------------------------------------------------------------------- s = sent.strip() if s not in null_sentences: sentence = Sentence(s, session) yield mla def save_to_sql(mla, table, mysql_client): summary_info = [] for session in mla.sessions: for sentence in session.sentences: summary_info.append({ 'MLAId': mla.id, 'DocumentId': session.id, 'Sentence': str(sentence.text), 'MLARank': sentence.rank, 'Caucus': mla.caucus }) df =
DataFrame(summary_info)
pandas.DataFrame
""" Plotting of behavioral metrics during the full task (biased blocks) per lab <NAME> 6 May 2020 """ import seaborn as sns import numpy as np from os.path import join import matplotlib.pyplot as plt from scipy import stats import scikit_posthocs as sp from paper_behavior_functions import (figpath, seaborn_style, group_colors, institution_map, FIGURE_WIDTH, FIGURE_HEIGHT, QUERY, fit_psychfunc, dj2pandas, load_csv) import pandas as pd from statsmodels.stats.multitest import multipletests # Initialize seaborn_style() figpath = figpath() pal = group_colors() institution_map, col_names = institution_map() col_names = col_names[:-1] # %% Process data if QUERY is True: # query sessions from paper_behavior_functions import query_sessions_around_criterion from ibl_pipeline import reference, subject, behavior use_sessions, _ = query_sessions_around_criterion(criterion='ephys', days_from_criterion=[2, 0], force_cutoff=True) session_keys = (use_sessions & 'task_protocol LIKE "%biased%"').fetch('KEY') ses = ((use_sessions & 'task_protocol LIKE "%biased%"') * subject.Subject * subject.SubjectLab * reference.Lab * (behavior.TrialSet.Trial & session_keys)) ses = ses.proj('institution_short', 'subject_nickname', 'task_protocol', 'session_uuid', 'trial_stim_contrast_left', 'trial_stim_contrast_right', 'trial_response_choice', 'task_protocol', 'trial_stim_prob_left', 'trial_feedback_type', 'trial_response_time', 'trial_stim_on_time', 'session_end_time').fetch( order_by='institution_short, subject_nickname,session_start_time, trial_id', format='frame').reset_index() behav = dj2pandas(ses) behav['institution_code'] = behav.institution_short.map(institution_map) else: behav = load_csv('Fig4.csv') biased_fits = pd.DataFrame() for i, nickname in enumerate(behav['subject_nickname'].unique()): if np.mod(i+1, 10) == 0: print('Processing data of subject %d of %d' % (i+1, len(behav['subject_nickname'].unique()))) # Get lab lab = behav.loc[behav['subject_nickname'] == nickname, 'institution_code'].unique()[0] # Fit psychometric curve left_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname) & (behav['probabilityLeft'] == 80)]) right_fit = fit_psychfunc(behav[(behav['subject_nickname'] == nickname) & (behav['probabilityLeft'] == 20)]) fits = pd.DataFrame(data={'threshold_l': left_fit['threshold'], 'threshold_r': right_fit['threshold'], 'bias_l': left_fit['bias'], 'bias_r': right_fit['bias'], 'lapselow_l': left_fit['lapselow'], 'lapselow_r': right_fit['lapselow'], 'lapsehigh_l': left_fit['lapsehigh'], 'lapsehigh_r': right_fit['lapsehigh'], 'nickname': nickname, 'lab': lab}) biased_fits = biased_fits.append(fits, sort=False) # %% Statistics stats_tests =
pd.DataFrame(columns=['variable', 'test_type', 'p_value'])
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import pandas as pd from numpy import nan, float64 from jqfactor_analyzer.prepare import get_clean_factor_and_forward_returns from jqfactor_analyzer.performance import ( factor_information_coefficient, factor_autocorrelation, mean_information_coefficient, quantile_turnover, factor_returns, factor_alpha_beta, average_cumulative_return_by_quantile ) from jqfactor_analyzer.utils import get_forward_returns_columns dr = pd.date_range(start='2015-1-1', end='2015-1-2') dr.name = 'date' tickers = ['A', 'B', 'C', 'D'] factor = pd.DataFrame(index=dr, columns=tickers, data=[[1, 2, 3, 4], [4, 3, 2, 1]]).stack() factor.index = factor.index.set_names(['date', 'asset']) factor.name = 'factor' factor_data = pd.DataFrame() factor_data['factor'] = factor factor_data['group'] = pd.Series(index=factor.index, data=[1, 1, 2, 2, 1, 1, 2, 2],) factor_data['weights'] = pd.Series(range(8), index=factor.index, dtype=float64) + 1 @pytest.mark.parametrize( ('factor_data', 'forward_returns', 'group_adjust', 'by_group', 'expected_ix', 'expected_ic_val'), [(factor_data, [4, 3, 2, 1, 1, 2, 3, 4], False, False, dr, [-1., -1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], False, False, dr, [1., 1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], False, True, pd.MultiIndex.from_product([dr, [1, 2]], names=['date', 'group']), [1., 1., 1., 1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], True, True, pd.MultiIndex.from_product([dr, [1, 2]], names=['date', 'group']), [1., 1., 1., 1.])] ) def test_information_coefficient(factor_data, forward_returns, group_adjust, by_group, expected_ix, expected_ic_val): factor_data = factor_data.copy() factor_data['period_1'] = pd.Series(index=factor_data.index, data=forward_returns) ic = factor_information_coefficient(factor_data=factor_data, group_adjust=group_adjust, by_group=by_group) expected_ic_df = pd.DataFrame(index=expected_ix, columns=pd.Index(['period_1'], dtype='object'), data=expected_ic_val) pd.testing.assert_frame_equal(ic, expected_ic_df) @pytest.mark.parametrize( ( 'factor_data', 'forward_returns', 'group_adjust', 'by_group', 'by_time', 'expected_ix', 'expected_ic_val' ), [ (factor_data, [4, 3, 2, 1, 1, 2, 3, 4], False, False, 'D', dr, [-1., -1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], False, False, 'W', pd.DatetimeIndex(['2015-01-04'], name='date', freq='W-SUN'), [1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], False, True, None, pd.Int64Index([1, 2], name='group'), [1., 1.]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], False, True, 'W', pd.MultiIndex.from_product( [pd.DatetimeIndex(['2015-01-04'], name='date', freq='W-SUN'), [1, 2]], names=['date', 'group'] ), [1., 1.]) ] ) def test_mean_information_coefficient(factor_data, forward_returns, group_adjust, by_group, by_time, expected_ix, expected_ic_val): factor_data = factor_data.copy() factor_data['period_1'] = pd.Series(index=factor_data.index, data=forward_returns) ic = mean_information_coefficient(factor_data, group_adjust=group_adjust, by_group=by_group, by_time=by_time) expected_ic_df = pd.DataFrame(index=expected_ix, columns=pd.Index(['period_1']), data=expected_ic_val) pd.testing.assert_frame_equal(ic, expected_ic_df, check_index_type=False, check_column_type=False) @pytest.mark.parametrize( ('quantile_values', 'test_quantile', 'expected_vals'), [([[1.0, 2.0, 3.0, 4.0], [4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]], 4.0, [nan, 1.0, 1.0, 0.0]), ([[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]], 3.0, [nan, 0.0, 0.0, 0.0]), ([[1.0, 2.0, 3.0, 4.0], [4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0], [4.0, 3.0, 2.0, 1.0]], 2.0, [nan, 1.0, 1.0, 1.0])] ) def test_quantile_turnover(quantile_values, test_quantile, expected_vals): dr = pd.date_range(start='2015-1-1', end='2015-1-4') dr.name = 'date' tickers = ['A', 'B', 'C', 'D'] quantized_test_factor = pd.Series( pd.DataFrame(index=dr, columns=tickers, data=quantile_values).stack() ) quantized_test_factor.index = quantized_test_factor.index.set_names( ['date', 'asset'] ) to = quantile_turnover(quantized_test_factor, test_quantile) expected = pd.Series( index=quantized_test_factor.index.levels[0], data=expected_vals) expected.name = test_quantile pd.testing.assert_series_equal(to, expected) @pytest.mark.parametrize( ('factor_data', 'factor_vals', 'fwd_return_vals', 'group_adjust', 'expected_vals'), [(factor_data, [1, 2, 3, 4, 4, 3, 2, 1], [4, 3, 2, 1, 1, 2, 3, 4], False, [-1.25000, -1.25000]), (factor_data, [1, 1, 1, 1, 1, 1, 1, 1], [4, 3, 2, 1, 1, 2, 3, 4], False, [0.0, 0.0]), (factor_data, [1, 2, 3, 4, 4, 3, 2, 1], [4, 3, 2, 1, 1, 2, 3, 4], True, [-0.5, -0.5]), (factor_data, [1, 2, 3, 4, 1, 2, 3, 4], [1, 4, 1, 2, 1, 2, 2, 1], True, [1.0, 0.0]), (factor_data, [1, 1, 1, 1, 1, 1, 1, 1], [4, 3, 2, 1, 1, 2, 3, 4], True, [0.0, 0.0])] ) def test_factor_returns(factor_data, factor_vals, fwd_return_vals, group_adjust, expected_vals): factor_data = factor_data.copy() factor_data['period_1'] = fwd_return_vals factor_data['factor'] = factor_vals factor_returns_s = factor_returns(factor_data=factor_data, demeaned=True, group_adjust=group_adjust) expected = pd.DataFrame( index=dr, data=expected_vals, columns=get_forward_returns_columns(factor_data.columns) ) pd.testing.assert_frame_equal(factor_returns_s, expected) @pytest.mark.parametrize( ('factor_data', 'fwd_return_vals', 'alpha', 'beta'), [(factor_data, [1, 2, 3, 4, 1, 1, 1, 1], -1, 5. / 6.)] ) def test_factor_alpha_beta(factor_data, fwd_return_vals, alpha, beta): factor_data = factor_data.copy() factor_data['period_1'] = fwd_return_vals ab = factor_alpha_beta(factor_data=factor_data) expected = pd.DataFrame(columns=['period_1'], index=['Ann. alpha', 'beta'], data=[alpha, beta]) pd.testing.assert_frame_equal(ab, expected) @pytest.mark.parametrize( ('factor_values', 'end_date', 'period', 'expected_vals'), [([[1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0], [1.0, 2.0, 3.0, 4.0]], '2015-1-4', 1, [nan, 1.0, 1.0, 1.0]), ([[4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0], [4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0]], '2015-1-4', 1, [nan, -1.0, -1.0, -1.0]), ([[1.0, 2.0, 3.0, 4.0], [2.0, 1.0, 4.0, 3.0], [4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0], [2.0, 1.0, 4.0, 3.0], [4.0, 3.0, 2.0, 1.0], [2.0, 1.0, 4.0, 3.0], [4.0, 3.0, 2.0, 1.0], [1.0, 2.0, 3.0, 4.0], [2.0, 1.0, 4.0, 3.0], [2.0, 1.0, 4.0, 3.0], [4.0, 3.0, 2.0, 1.0]], '2015-1-12', 3, [nan, nan, nan, 1.0, 1.0, 1.0, 0.6, -0.6, -1.0, 1.0, -0.6, -1.0])] ) def test_factor_autocorrelation(factor_values, end_date, period, expected_vals): dr = pd.date_range(start='2015-1-1', end=end_date) dr.name = 'date' tickers = ['A', 'B', 'C', 'D'] factor = pd.DataFrame(index=dr, columns=tickers, data=factor_values).stack() factor.index = factor.index.set_names(['date', 'asset']) factor_df = pd.DataFrame() factor_df['factor'] = factor fa = factor_autocorrelation(factor_df, period) expected = pd.Series(index=dr, data=expected_vals) expected.name = period pd.testing.assert_series_equal(fa, expected) @pytest.mark.parametrize( ('before', 'after', 'demeaned', 'quantiles', 'expected_vals'), [(1, 2, False, 4, [[1.00, 0.0, -0.50, -0.75], [0.0, 0.0, 0.0, 0.0], [0.00, 0.00, 0.00, 0.00], [0.0, 0.0, 0.0, 0.0], [-0.20, 0.0, 0.25, 0.5625], [0.0, 0.0, 0.0, 0.0], [-0.3333333, 0.0, 0.50, 1.25], [0.0, 0.0, 0.0, 0.0]]), (1, 2, True, 4, [[0.8833333, 0.0, -0.5625, -1.015625], [0.0, 0.0, 0.0, 0.0], [-0.1166667, 0.0, -0.0625, -0.265625], [0.0, 0.0, 0.0, 0.0], [-0.3166667, 0.0, 0.1875, 0.296875], [0.0, 0.0, 0.0, 0.0], [-0.4500000, 0.0, 0.4375, 0.984375], [0.0, 0.0, 0.0, 0.0]]), (3, 0, False, 4, [[7.0, 3.0, 1.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0], [-0.488, -0.36, -0.2, 0.0], [0.0, 0.0, 0.0, 0.0], [-0.703704, -0.55555555, -0.333333333, 0.0], [0.0, 0.0, 0.0, 0.0]]), (0, 3, True, 4, [[0.0, -0.5625, -1.015625, -1.488281], [0.0, 0.0, 0.0, 0.0], [0.0, -0.0625, -0.265625, -0.613281], [0.0, 0.0, 0.0, 0.0], [0.0, 0.1875, 0.296875, 0.339844], [0.0, 0.0, 0.0, 0.0], [0.0, 0.4375, 0.984375, 1.761719], [0.0, 0.0, 0.0, 0.0]]), (3, 3, False, 2, [[3.5, 1.5, 0.5, 0.0, -0.25, -0.375, -0.4375], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.595852, -0.457778, -0.266667, 0.0, 0.375, 0.90625, 1.664062], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]), (3, 3, True, 2, [[2.047926, 0.978888, 0.383333, 0.0, -0.3125, -0.640625, -1.050781], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-2.047926, -0.978888, -0.383333, 0.0, 0.3125, 0.640625, 1.050781], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]])] ) def test_average_cumulative_return_by_quantile(before, after, demeaned, quantiles, expected_vals): dr =
pd.date_range(start='2015-1-15', end='2015-2-1')
pandas.date_range
""" Copyright 2020 Google LLC. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ ''' Reads in articles from the New York Times API and saves them to a cache. ''' import time import os import datetime import argparse # News archive api from nytimesarticle import articleAPI import pandas as pd import requests from dateutil.rrule import rrule, MONTHLY NYT_KEY = open('nyt_key.txt').read().strip() api = articleAPI(NYT_KEY) def parse_articles(articles): ''' This function takes in a response to the NYT api and parses the articles into a list of dictionaries ''' news = [] for i in articles['response']['docs']: if 'abstract' not in i.keys(): continue if 'headline' not in i.keys(): continue if 'news_desk' not in i.keys(): continue if 'pub_date' not in i.keys(): continue if 'snippet' not in i.keys(): continue dic = {} dic['id'] = i['_id'] if i.get('abstract', 'EMPTY') is not None: dic['abstract'] = i.get('abstract', 'EMPTY').encode("utf8") dic['headline'] = i['headline']['main'].encode("utf8") dic['desk'] = i.get('news_desk', 'EMPTY') if len(i['pub_date']) < 20: continue dic['date'] = i['pub_date'][0:10] # cutting time of day. dic['time'] = i['pub_date'][11:19] dic['section'] = i.get('section_name', 'EMPTY') if i['snippet'] is not None: dic['snippet'] = i['snippet'].encode("utf8") dic['source'] = i.get('source', 'EMPTY') dic['type'] = i.get('type_of_material', 'EMPTY') dic['word_count'] = i.get('type_of_material', 0) news.append(dic) return pd.DataFrame(news) def day_interval(days_back): today = datetime.datetime.today() that_day = today - datetime.timedelta(days=days_back) day_ago = that_day - datetime.timedelta(days=1) return (int(that_day.strftime('%Y%m%d')), int(day_ago.strftime('%Y%m%d'))) def bulk_look_up(start_year): # create a list of year, month, pairs for the data # from start dt to end date inclusive # Source of API data: https://developer.nytimes.com/docs/archive-product/1/overview start_dt = datetime.date(start_year, 1, 1) end_dt = datetime.datetime.today() dates = [(dt.year, dt.month) for dt in rrule(MONTHLY, dtstart=start_dt, until=end_dt)] wait = 20 dfs = [] for year, month in dates: found_df = False for i in range(20): try: url = ( "https://api.nytimes.com/svc/archive/v1/{year}/{month}.json?&api-key={key}" .format(year=year, month=month, key=NYT_KEY) ) r = requests.get(url) df = parse_articles(r.json()) found_df = True break except: print(f'Error when getting articles, trying again in {wait} seconds...') continue if not found_df: continue print('Got {} articles for {}/{}'.format(df.shape[0], month, year)) dfs.append(df) print(f'Waiting {wait} seconds for next request...') time.sleep(20) return
pd.concat(dfs, ignore_index=True)
pandas.concat
import pytest from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG, _period_code_map from pandas.errors import OutOfBoundsDatetime from pandas import Period, Timestamp, offsets class TestFreqConversion: """Test frequency conversion of date objects""" @pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"]) def test_asfreq_near_zero(self, freq): # GH#19643, GH#19650 per = Period("0001-01-01", freq=freq) tup1 = (per.year, per.hour, per.day) prev = per - 1 assert prev.ordinal == per.ordinal - 1 tup2 = (prev.year, prev.month, prev.day) assert tup2 < tup1 def test_asfreq_near_zero_weekly(self): # GH#19834 per1 = Period("0001-01-01", "D") + 6 per2 = Period("0001-01-01", "D") - 6 week1 = per1.asfreq("W") week2 = per2.asfreq("W") assert week1 != week2 assert week1.asfreq("D", "E") >= per1 assert week2.asfreq("D", "S") <= per2 def test_to_timestamp_out_of_bounds(self): # GH#19643, used to incorrectly give Timestamp in 1754 per = Period("0001-01-01", freq="B") msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): per.to_timestamp() def test_asfreq_corner(self): val = Period(freq="A", year=2007) result1 = val.asfreq("5t") result2 = val.asfreq("t") expected = Period("2007-12-31 23:59", freq="t") assert result1.ordinal == expected.ordinal assert result1.freqstr == "5T" assert result2.ordinal == expected.ordinal assert result2.freqstr == "T" def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq="A", year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1) ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4) ival_A_to_M_start = Period(freq="M", year=2007, month=1) ival_A_to_M_end = Period(freq="M", year=2007, month=12) ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31) ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31) ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31) ival_A_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_A_to_T_end = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_A_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_A_to_S_end = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1) assert ival_A.asfreq("Q", "S") == ival_A_to_Q_start assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end assert ival_A.asfreq("M", "s") == ival_A_to_M_start assert ival_A.asfreq("M", "E") == ival_A_to_M_end assert ival_A.asfreq("W", "S") == ival_A_to_W_start assert ival_A.asfreq("W", "E") == ival_A_to_W_end assert ival_A.asfreq("B", "S") == ival_A_to_B_start assert ival_A.asfreq("B", "E") == ival_A_to_B_end assert ival_A.asfreq("D", "S") == ival_A_to_D_start assert ival_A.asfreq("D", "E") == ival_A_to_D_end assert ival_A.asfreq("H", "S") == ival_A_to_H_start assert ival_A.asfreq("H", "E") == ival_A_to_H_end assert ival_A.asfreq("min", "S") == ival_A_to_T_start assert ival_A.asfreq("min", "E") == ival_A_to_T_end assert ival_A.asfreq("T", "S") == ival_A_to_T_start assert ival_A.asfreq("T", "E") == ival_A_to_T_end assert ival_A.asfreq("S", "S") == ival_A_to_S_start assert ival_A.asfreq("S", "E") == ival_A_to_S_end assert ival_AJAN.asfreq("D", "S") == ival_AJAN_to_D_start assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end assert ival_AJUN.asfreq("D", "S") == ival_AJUN_to_D_start assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end assert ival_ANOV.asfreq("D", "S") == ival_ANOV_to_D_start assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end assert ival_A.asfreq("A") == ival_A def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq="Q", year=2007, quarter=1) ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq="A", year=2007) ival_Q_to_M_start = Period(freq="M", year=2007, month=1) ival_Q_to_M_end = Period(freq="M", year=2007, month=3) ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_Q_to_T_end = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_Q_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_Q_to_S_end = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30) assert ival_Q.asfreq("A") == ival_Q_to_A assert ival_Q_end_of_year.asfreq("A") == ival_Q_to_A assert ival_Q.asfreq("M", "S") == ival_Q_to_M_start assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end assert ival_Q.asfreq("W", "S") == ival_Q_to_W_start assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end assert ival_Q.asfreq("B", "S") == ival_Q_to_B_start assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end assert ival_Q.asfreq("D", "S") == ival_Q_to_D_start assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end assert ival_Q.asfreq("H", "S") == ival_Q_to_H_start assert ival_Q.asfreq("H", "E") == ival_Q_to_H_end assert ival_Q.asfreq("Min", "S") == ival_Q_to_T_start assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end assert ival_Q.asfreq("S", "S") == ival_Q_to_S_start assert ival_Q.asfreq("S", "E") == ival_Q_to_S_end assert ival_QEJAN.asfreq("D", "S") == ival_QEJAN_to_D_start assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end assert ival_QEJUN.asfreq("D", "S") == ival_QEJUN_to_D_start assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end assert ival_Q.asfreq("Q") == ival_Q def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq="M", year=2007, month=1) ival_M_end_of_year = Period(freq="M", year=2007, month=12) ival_M_end_of_quarter = Period(freq="M", year=2007, month=3) ival_M_to_A = Period(freq="A", year=2007) ival_M_to_Q = Period(freq="Q", year=2007, quarter=1) ival_M_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_M_to_W_end = Period(freq="W", year=2007, month=1, day=31) ival_M_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_M_to_B_end = Period(freq="B", year=2007, month=1, day=31) ival_M_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_M_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_M_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq="H", year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_M_to_T_end = Period( freq="Min", year=2007, month=1, day=31, hour=23, minute=59 ) ival_M_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_M_to_S_end = Period( freq="S", year=2007, month=1, day=31, hour=23, minute=59, second=59 ) assert ival_M.asfreq("A") == ival_M_to_A assert ival_M_end_of_year.asfreq("A") == ival_M_to_A assert ival_M.asfreq("Q") == ival_M_to_Q assert ival_M_end_of_quarter.asfreq("Q") == ival_M_to_Q assert ival_M.asfreq("W", "S") == ival_M_to_W_start assert ival_M.asfreq("W", "E") == ival_M_to_W_end assert ival_M.asfreq("B", "S") == ival_M_to_B_start assert ival_M.asfreq("B", "E") == ival_M_to_B_end assert ival_M.asfreq("D", "S") == ival_M_to_D_start assert ival_M.asfreq("D", "E") == ival_M_to_D_end assert ival_M.asfreq("H", "S") == ival_M_to_H_start assert ival_M.asfreq("H", "E") == ival_M_to_H_end assert ival_M.asfreq("Min", "S") == ival_M_to_T_start assert ival_M.asfreq("Min", "E") == ival_M_to_T_end assert ival_M.asfreq("S", "S") == ival_M_to_S_start assert ival_M.asfreq("S", "E") == ival_M_to_S_end assert ival_M.asfreq("M") == ival_M def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq="W", year=2007, month=1, day=1) ival_WSUN = Period(freq="W", year=2007, month=1, day=7) ival_WSAT = Period(freq="W-SAT", year=2007, month=1, day=6) ival_WFRI = Period(freq="W-FRI", year=2007, month=1, day=5) ival_WTHU = Period(freq="W-THU", year=2007, month=1, day=4) ival_WWED = Period(freq="W-WED", year=2007, month=1, day=3) ival_WTUE = Period(freq="W-TUE", year=2007, month=1, day=2) ival_WMON = Period(freq="W-MON", year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq="D", year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq="D", year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq="D", year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq="D", year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq="D", year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq="D", year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq="D", year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq="D", year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq="D", year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq="D", year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq="D", year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq="D", year=2007, month=1, day=1) ival_W_end_of_year = Period(freq="W", year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq="W", year=2007, month=3, day=31) ival_W_end_of_month = Period(freq="W", year=2007, month=1, day=31) ival_W_to_A = Period(freq="A", year=2007) ival_W_to_Q = Period(freq="Q", year=2007, quarter=1) ival_W_to_M = Period(freq="M", year=2007, month=1) if Period(freq="D", year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq="A", year=2007) else: ival_W_to_A_end_of_year = Period(freq="A", year=2008) if Period(freq="D", year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=2) if Period(freq="D", year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=2) ival_W_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_W_to_B_end = Period(freq="B", year=2007, month=1, day=5) ival_W_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_W_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_W_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq="H", year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_W_to_T_end = Period( freq="Min", year=2007, month=1, day=7, hour=23, minute=59 ) ival_W_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_W_to_S_end = Period( freq="S", year=2007, month=1, day=7, hour=23, minute=59, second=59 ) assert ival_W.asfreq("A") == ival_W_to_A assert ival_W_end_of_year.asfreq("A") == ival_W_to_A_end_of_year assert ival_W.asfreq("Q") == ival_W_to_Q assert ival_W_end_of_quarter.asfreq("Q") == ival_W_to_Q_end_of_quarter assert ival_W.asfreq("M") == ival_W_to_M assert ival_W_end_of_month.asfreq("M") == ival_W_to_M_end_of_month assert ival_W.asfreq("B", "S") == ival_W_to_B_start assert ival_W.asfreq("B", "E") == ival_W_to_B_end assert ival_W.asfreq("D", "S") == ival_W_to_D_start assert ival_W.asfreq("D", "E") == ival_W_to_D_end assert ival_WSUN.asfreq("D", "S") == ival_WSUN_to_D_start assert ival_WSUN.asfreq("D", "E") == ival_WSUN_to_D_end assert ival_WSAT.asfreq("D", "S") == ival_WSAT_to_D_start assert ival_WSAT.asfreq("D", "E") == ival_WSAT_to_D_end assert ival_WFRI.asfreq("D", "S") == ival_WFRI_to_D_start assert ival_WFRI.asfreq("D", "E") == ival_WFRI_to_D_end assert ival_WTHU.asfreq("D", "S") == ival_WTHU_to_D_start assert ival_WTHU.asfreq("D", "E") == ival_WTHU_to_D_end assert ival_WWED.asfreq("D", "S") == ival_WWED_to_D_start assert ival_WWED.asfreq("D", "E") == ival_WWED_to_D_end assert ival_WTUE.asfreq("D", "S") == ival_WTUE_to_D_start assert ival_WTUE.asfreq("D", "E") == ival_WTUE_to_D_end assert ival_WMON.asfreq("D", "S") == ival_WMON_to_D_start assert ival_WMON.asfreq("D", "E") == ival_WMON_to_D_end assert ival_W.asfreq("H", "S") == ival_W_to_H_start assert ival_W.asfreq("H", "E") == ival_W_to_H_end assert ival_W.asfreq("Min", "S") == ival_W_to_T_start assert ival_W.asfreq("Min", "E") == ival_W_to_T_end assert ival_W.asfreq("S", "S") == ival_W_to_S_start assert ival_W.asfreq("S", "E") == ival_W_to_S_end assert ival_W.asfreq("W") == ival_W msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): ival_W.asfreq("WK") def test_conv_weekly_legacy(self): # frequency conversion tests: from Weekly Frequency msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): Period(freq="WK", year=2007, month=1, day=1) with pytest.raises(ValueError, match=msg): Period(freq="WK-SAT", year=2007, month=1, day=6) with pytest.raises(ValueError, match=msg): Period(freq="WK-FRI", year=2007, month=1, day=5) with pytest.raises(ValueError, match=msg): Period(freq="WK-THU", year=2007, month=1, day=4) with pytest.raises(ValueError, match=msg): Period(freq="WK-WED", year=2007, month=1, day=3) with pytest.raises(ValueError, match=msg): Period(freq="WK-TUE", year=2007, month=1, day=2) with pytest.raises(ValueError, match=msg): Period(freq="WK-MON", year=2007, month=1, day=1) def test_conv_business(self): # frequency conversion tests: from Business Frequency" ival_B = Period(freq="B", year=2007, month=1, day=1) ival_B_end_of_year = Period(freq="B", year=2007, month=12, day=31) ival_B_end_of_quarter = Period(freq="B", year=2007, month=3, day=30) ival_B_end_of_month = Period(freq="B", year=2007, month=1, day=31) ival_B_end_of_week = Period(freq="B", year=2007, month=1, day=5) ival_B_to_A = Period(freq="A", year=2007) ival_B_to_Q = Period(freq="Q", year=2007, quarter=1) ival_B_to_M = Period(freq="M", year=2007, month=1) ival_B_to_W = Period(freq="W", year=2007, month=1, day=7) ival_B_to_D = Period(freq="D", year=2007, month=1, day=1) ival_B_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_B_to_H_end = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_B_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_B_to_T_end = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_B_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_B_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) assert ival_B.asfreq("A") == ival_B_to_A assert ival_B_end_of_year.asfreq("A") == ival_B_to_A assert ival_B.asfreq("Q") == ival_B_to_Q assert ival_B_end_of_quarter.asfreq("Q") == ival_B_to_Q assert ival_B.asfreq("M") == ival_B_to_M assert ival_B_end_of_month.asfreq("M") == ival_B_to_M assert ival_B.asfreq("W") == ival_B_to_W assert ival_B_end_of_week.asfreq("W") == ival_B_to_W assert ival_B.asfreq("D") == ival_B_to_D assert ival_B.asfreq("H", "S") == ival_B_to_H_start assert ival_B.asfreq("H", "E") == ival_B_to_H_end assert ival_B.asfreq("Min", "S") == ival_B_to_T_start assert ival_B.asfreq("Min", "E") == ival_B_to_T_end assert ival_B.asfreq("S", "S") == ival_B_to_S_start assert ival_B.asfreq("S", "E") == ival_B_to_S_end assert ival_B.asfreq("B") == ival_B def test_conv_daily(self): # frequency conversion tests: from Business Frequency" ival_D = Period(freq="D", year=2007, month=1, day=1) ival_D_end_of_year = Period(freq="D", year=2007, month=12, day=31) ival_D_end_of_quarter = Period(freq="D", year=2007, month=3, day=31) ival_D_end_of_month = Period(freq="D", year=2007, month=1, day=31) ival_D_end_of_week = Period(freq="D", year=2007, month=1, day=7) ival_D_friday = Period(freq="D", year=2007, month=1, day=5) ival_D_saturday = Period(freq="D", year=2007, month=1, day=6) ival_D_sunday = Period(freq="D", year=2007, month=1, day=7) # TODO: unused? # ival_D_monday = Period(freq='D', year=2007, month=1, day=8) ival_B_friday = Period(freq="B", year=2007, month=1, day=5) ival_B_monday = Period(freq="B", year=2007, month=1, day=8) ival_D_to_A = Period(freq="A", year=2007) ival_Deoq_to_AJAN = Period(freq="A-JAN", year=2008) ival_Deoq_to_AJUN = Period(freq="A-JUN", year=2007) ival_Deoq_to_ADEC = Period(freq="A-DEC", year=2007) ival_D_to_QEJAN = Period(freq="Q-JAN", year=2007, quarter=4) ival_D_to_QEJUN = Period(freq="Q-JUN", year=2007, quarter=3) ival_D_to_QEDEC = Period(freq="Q-DEC", year=2007, quarter=1) ival_D_to_M = Period(freq="M", year=2007, month=1) ival_D_to_W = Period(freq="W", year=2007, month=1, day=7) ival_D_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_D_to_H_end = Period(freq="H", year=2007, month=1, day=1, hour=23) ival_D_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_D_to_T_end = Period( freq="Min", year=2007, month=1, day=1, hour=23, minute=59 ) ival_D_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_D_to_S_end = Period( freq="S", year=2007, month=1, day=1, hour=23, minute=59, second=59 ) assert ival_D.asfreq("A") == ival_D_to_A assert ival_D_end_of_quarter.asfreq("A-JAN") == ival_Deoq_to_AJAN assert ival_D_end_of_quarter.asfreq("A-JUN") == ival_Deoq_to_AJUN assert ival_D_end_of_quarter.asfreq("A-DEC") == ival_Deoq_to_ADEC assert ival_D_end_of_year.asfreq("A") == ival_D_to_A assert ival_D_end_of_quarter.asfreq("Q") == ival_D_to_QEDEC assert ival_D.asfreq("Q-JAN") == ival_D_to_QEJAN assert ival_D.asfreq("Q-JUN") == ival_D_to_QEJUN assert ival_D.asfreq("Q-DEC") == ival_D_to_QEDEC assert ival_D.asfreq("M") == ival_D_to_M assert ival_D_end_of_month.asfreq("M") == ival_D_to_M assert ival_D.asfreq("W") == ival_D_to_W assert ival_D_end_of_week.asfreq("W") == ival_D_to_W assert ival_D_friday.asfreq("B") == ival_B_friday assert ival_D_saturday.asfreq("B", "S") == ival_B_friday assert ival_D_saturday.asfreq("B", "E") == ival_B_monday assert ival_D_sunday.asfreq("B", "S") == ival_B_friday assert ival_D_sunday.asfreq("B", "E") == ival_B_monday assert ival_D.asfreq("H", "S") == ival_D_to_H_start assert ival_D.asfreq("H", "E") == ival_D_to_H_end assert ival_D.asfreq("Min", "S") == ival_D_to_T_start assert ival_D.asfreq("Min", "E") == ival_D_to_T_end assert ival_D.asfreq("S", "S") == ival_D_to_S_start assert ival_D.asfreq("S", "E") == ival_D_to_S_end assert ival_D.asfreq("D") == ival_D def test_conv_hourly(self): # frequency conversion tests: from Hourly Frequency" ival_H = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_H_end_of_year = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_H_end_of_quarter = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_H_end_of_month = Period(freq="H", year=2007, month=1, day=31, hour=23) ival_H_end_of_week = Period(freq="H", year=2007, month=1, day=7, hour=23) ival_H_end_of_day =
Period(freq="H", year=2007, month=1, day=1, hour=23)
pandas.Period
import argparse import csv import glob import itertools import json import multiprocessing as mp import os import re import datetime import subprocess import sys import warnings from functools import partial from operator import itemgetter import cxxfilt import numpy as np import pandas as pd from sklearn.cluster import KMeans from sqlalchemy import create_engine from sofa_config import * from sofa_ml import hsg_v1, hsg_v2, swarms_to_sofatrace from sofa_models import SOFATrace from sofa_print import * import random from DDS.sofa_ds_preprocess import ds_dds_preprocess sofa_fieldnames = [ "timestamp", # 0 "event", # 1 "duration", # 2 "deviceId", # 3 "copyKind", # 4 "payload", # 5 "bandwidth", # 6 "pkt_src", # 7 "pkt_dst", # 8 "pid", # 9 "tid", # 10 "name", # 11 "category"] # 12 def random_generate_color(): rand = lambda: random.randint(0, 255) return '#%02X%02X%02X' % ( 200, 200, rand()) def list_downsample(list_in, plot_ratio): new_list = [] for i in range(len(list_in)): if i % plot_ratio == 0: # print("%d"%(i)) new_list.append(list_in[i]) return new_list def trace_init(): t_begin = 0 deviceId = 0 metric = 0 event = -1 copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = -1 name = '' category = 0 trace = [ t_begin, event, metric, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, name, category] return trace def list_to_csv_and_traces(logdir, _list, csvfile, _mode): traces = [] if len(_list[1:]) > 0: traces = pd.DataFrame(_list[1:]) traces.columns = sofa_fieldnames _header = True if _mode == 'w' else False traces.to_csv(logdir + csvfile, mode=_mode, header=_header, index=False, float_format='%.6f') else: print_warning('Empty list cannot be exported to %s!' % csvfile) return traces # 0/0 [004] 96050.733788: 1 bus-cycles: ffffffff8106315a native_write_msr_safe # 0/0 [004] 96050.733788: 7 cycles: ffffffff8106315a native_write_msr_safe # 359342/359342 2493492.850125: 1 bus-cycles: ffffffff8106450a native_write_msr_safe # 359342/359342 2493492.850128: 1 cycles: ffffffff8106450a # native_write_msr_safe def cpu_trace_read(sample, cfg, t_offset, cpu_mhz_xp, cpu_mhz_fp): fields = sample.split() event = event_raw = 0 counts = 0 if re.match('\[\d+\]', fields[1]) is not None: time = float(fields[2].split(':')[0]) func_name = '[%s]'%fields[4].replace('-','_') + fields[6] + fields[7] counts = float(fields[3]) event_raw = 1.0 * int("0x01" + fields[5], 16) else: time = float(fields[1].split(':')[0]) func_name = '[%s]'%fields[3].replace('-','_') + fields[5] + fields[6] counts = float(fields[2]) event_raw = 1.0 * int("0x01" + fields[4], 16) if not cfg.absolute_timestamp: time = time - cfg.time_base t_begin = time + t_offset t_end = time + t_offset if len(cpu_mhz_xp) > 1: duration = counts/(np.interp(t_begin, cpu_mhz_xp, cpu_mhz_fp)*1e6) else: duration = counts/(3000.0*1e6) event = np.log10(event_raw) if cfg.perf_events.find('cycles') == -1: duration = np.log2(event_raw/1e14) trace = [t_begin, # 0 event, # % 1000000 # 1 duration, # 2 -1, # 3 -1, # 4 0, # 5 0, # 6 -1, # 7 -1, # 8 int(fields[0].split('/')[0]), # 9 int(fields[0].split('/')[1]), # 10 func_name, # 11 0] # 12 return trace def net_trace_read(packet, cfg, t_offset): #21234 1562233011.469681 IP 192.168.88.88.56828 > 172.16.31.10.5400: UDP, length 851 #21235 1562233011.471352 IP 10.57.185.172.8554 > 192.168.88.88.53528: tcp 0 fields = packet.split() time = float(fields[0]) if not cfg.absolute_timestamp: time = time - cfg.time_base t_begin = time + t_offset t_end = time + t_offset if fields[1] != 'IP': return [] protocol = fields[5] if protocol == 'UDP,': payload = int(fields[7]) elif protocol == 'tcp': payload = int(fields[6]) else: return [] duration = float(payload / 128.0e6) bandwidth = 128.0e6 pkt_src = 0 pkt_dst = 0 for i in range(4): pkt_src = pkt_src + \ int(fields[2].split('.')[i]) * np.power(1000, 3 - i) pkt_dst = pkt_dst + \ int(fields[4].split('.')[i]) * np.power(1000, 3 - i) trace = [ t_begin, payload * 100 + 17, duration, -1, -1, payload, bandwidth, pkt_src, pkt_dst, -1, -1, "network:%s:%d_to_%d_with_%d" % (protocol, pkt_src, pkt_dst, payload), 0 ] return trace def cuda_api_trace_read( record, cfg, indices, n_cudaproc, ts_rescale, dt_rescale, payload_unit, t_offset): values = record.replace('"', '').split(',') api_name = '[CUDA_API]' + values[indices.index('Name')] # print("kernel name = %s" % kernel_name) time = float(values[indices.index('Start')]) / ts_rescale + t_offset if not cfg.absolute_timestamp: time = time - cfg.time_base duration = float(values[indices.index('Duration')]) / dt_rescale t_begin = time t_end = time + duration payload = 0 bandwidth = 0 pid = n_cudaproc deviceId = -1 tid = stream_id = -1 pkt_src = pkt_dst = copyKind = 0 # print("%d:%d [%s] ck:%d, %lf,%lf: %d -> %d: payload:%d, bandwidth:%lf, # duration:%lf "%(deviceId, streamId, kernel_name, copyKind, # t_begin,t_end, pkt_src, pkt_dst, payload, bandwidth, duration)) trace = [t_begin, payload * 100 + 17, duration, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, api_name, 0] return trace def gpu_trace_read( record, cfg, indices, n_cudaproc, ts_rescale, dt_rescale, payload_unit, t_offset): values = record.replace('"', '').split(',') kernel_name = values[indices.index('Name')] time = float(values[indices.index('Start')]) / ts_rescale + t_offset if not cfg.absolute_timestamp: time = time - cfg.time_base duration = float(values[indices.index('Duration')]) / dt_rescale t_begin = time t_end = time + duration try: payload = int(float(values[indices.index('Size')]) * payload_unit) except BaseException: payload = 0 try: bandwidth = float(values[indices.index('Throughput')]) except BaseException: bandwidth = 0 pid = n_cudaproc deviceId = -1 try: deviceId = int(float(values[indices.index('Context')])) except BaseException: deviceId = -1 tid = stream_id = -1 try: tid = streamId = int(float(values[indices.index('Stream')])) except BaseException: tid = streamId = -1 pkt_src = pkt_dst = copyKind = 0 if kernel_name.find('HtoD') != -1: copyKind = 1 pkt_src = 0 pkt_dst = deviceId kernel_name = "CUDA_COPY_H2D_%dB" % (payload) elif kernel_name.find('DtoH') != -1: copyKind = 2 pkt_src = deviceId pkt_dst = 0 kernel_name = "CUDA_COPY_D2H_%dB" % (payload) elif kernel_name.find('DtoD') != -1: copyKind = 8 pkt_src = deviceId pkt_dst = deviceId kernel_name = "CUDA_COPY_D2D_%dB" % (payload) elif kernel_name.find('PtoP') != -1: copyKind = 10 try: pkt_src = int(values[indices.index('Src Ctx')]) except BaseException: pkt_src = 0 try: pkt_dst = int(values[indices.index('Dst Ctx')]) except BaseException: pkt_dst = 0 kernel_name = "[CUDA_COPY_P2P]from_gpu%d_to_gpu%d_%dB" % (pkt_src, pkt_dst, payload) else: copyKind = 0 if deviceId != -1: kernel_name = '[gpu%d]'%deviceId + kernel_name trace = [t_begin, payload * 100 + 17, duration, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, kernel_name, 0] return trace def traces_to_json(traces, path, cfg, pid): if len(traces) == 0: print_warning("Empty traces!") return with open(path, 'w') as f: for trace in traces: if len(trace.data) > 0: f.write(trace.name + " = ") trace.data.rename( columns={ trace.x_field: 'x', trace.y_field: 'y'}, inplace=True) sofa_series = { "name": trace.title, "color": trace.color, "data": json.loads( trace.data.to_json( orient='records'))} json.dump(sofa_series, f) trace.data.rename( columns={ 'x': trace.x_field, 'y': trace.y_field}, inplace=True) f.write("\n\n") if cfg.ds: f.write("sofa_traces%s = [ "%pid) else: f.write("sofa_traces = [ ") for trace in traces: if len(trace.data) > 0: f.write(trace.name + ",") if cfg.ds: pass #f.write("hl%s"%pid) f.write(" ]") def sofa_preprocess(cfg): cfg.time_base = 0 t_glb_gpu_base = 0 logdir = cfg.logdir with open(logdir + 'misc.txt', 'r') as f: lines = f.readlines() if len(lines) == 4: cfg.pid = int(lines[3].split()[1]) else: print_warning('Incorrect misc.txt content. Some profiling information may not be available.') if int(os.system('command -v perf 1> /dev/null')) == 0: with open(logdir + 'perf.script', 'w') as logfile: subprocess.call(['perf', 'script', '--kallsym', '%s/kallsyms' % logdir, '-i', '%s/perf.data' % logdir, '-F', 'time,pid,tid,event,ip,sym,dso,symoff,period,brstack,brstacksym'], stdout=logfile) with open(logdir + 'sofa_time.txt') as f: lines = f.readlines() cfg.time_base = float(lines[0]) + cfg.cpu_time_offset print_info(cfg,'Time offset applied to timestamp (s):' + str(cfg.cpu_time_offset)) print_info(cfg,'SOFA global time base (s):' + str(cfg.time_base)) cpu_mhz_xp = [0.0] cpu_mhz_fp = [3000.0] #np.interp(2.5, xp, fp) try: with open(logdir + 'cpuinfo.txt') as f: lines = f.readlines() for line in lines: fields = line.split() timestamp = float(fields[0]) mhz = float(fields[1]) cpu_mhz_xp.append(timestamp) cpu_mhz_fp.append(mhz) except: print_warning('no cpuinfo file is found, default cpu MHz = %lf'%(fp[0])) net_traces = [] cpu_traces = [] cpu_traces_viz = [] blk_d_traces = [] blk_traces = [] vm_usr_traces = [] vm_sys_traces = [] vm_bi_traces = [] vm_b0_traces = [] vm_in_traces = [] vm_cs_traces = [] vm_wa_traces = [] vm_st_traces = [] mpstat_traces = [] diskstat_traces = [] tx_traces = [] rx_traces = [] strace_traces = [] pystacks_traces = [] nvsmi_sm_traces = [] nvsmi_mem_traces = [] nvsmi_enc_traces = [] nvsmi_dec_traces = [] pcm_pcie_traces = [] pcm_core_traces = [] pcm_memory_traces = [] gpu_traces = [] gpu_traces_viz = [] gpu_api_traces = [] gpu_api_traces_viz = [] gpu_kernel_traces = [] gpu_memcpy_traces = [] gpu_memcpy2_traces = [] gpu_memcpy_h2d_traces = [] gpu_memcpy_d2h_traces = [] gpu_memcpy_d2d_traces = [] gpu_glb_kernel_traces = [] gpu_glb_memcpy_traces = [] gpu_glb_memcpy2_traces = [] gpu_glb_memcpy_h2d_traces = [] gpu_glb_memcpy_d2h_traces = [] gpu_glb_memcpy_d2d_traces = [] ds_traces = [] gpulog_mode = 'w' gpulog_header = 'True' cpu_count = mp.cpu_count() with open('%s/mpstat.txt' % logdir) as f: mpstat = np.genfromtxt(logdir+'/mpstat.txt', delimiter=',', invalid_raise=False ) header = mpstat[0] mpstat = mpstat[1:] mpstat_list = [] mpstat_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) n_cores = int(mpstat[:,1].max() + 1) stride = n_cores + 1 for i in range(len(mpstat)): if len(mpstat[i]) < len(header): continue if i <= stride or mpstat[i,1] == -1: continue #time, cpu, user,nice, system, idle, iowait, irq, softirq core = mpstat[i,1] d_mp = mpstat[i,:] - mpstat[i-stride,:] d_mp_total = d_mp[2] + d_mp[4] + d_mp[5] + d_mp[6] + d_mp[7] if d_mp_total == 0 : print_info(cfg, 'No increases in mpstat values') continue d_mp_usr = d_mp[2] * 100 / float(d_mp_total) d_mp_sys = d_mp[4] * 100 / float(d_mp_total) d_mp_idl = d_mp[5] * 100 / float(d_mp_total) d_mp_iow = d_mp[6] * 100 / float(d_mp_total) d_mp_irq = d_mp[7] * 100 / float(d_mp_total) cpu_time = (d_mp_total - d_mp[5]) * 0.01 t_begin = mpstat[i,0] if not cfg.absolute_timestamp: t_begin = t_begin - cfg.time_base deviceId = core metric = cpu_time event = -1 copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = -1 mpstat_info = 'mpstat_core%d (usr|sys|idl|iow|irq): |%3d|%3d|%3d|%3d|%3d|' % (core, d_mp_usr, d_mp_sys, d_mp_idl, d_mp_iow, d_mp_irq) trace_usr = [ t_begin, event, metric, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, mpstat_info, 0] mpstat_list.append(trace_usr) mpstat_traces = list_to_csv_and_traces(logdir, mpstat_list, 'mpstat.csv', 'w') #============================================================================== ds_pid = -1 if cfg.ds: # ds global variables declaration for later raw data processing with open(logdir + 'pid.txt') as pidfd: ds_pid = int(pidfd.readline()) ds_dds_traces = ds_dds_preprocess(cfg, logdir, ds_pid) #============================================================================== with open('%s/diskstat.txt' % logdir) as f: diskstats = f.readlines() diskstat_list = [] diskstat_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) tmp_list = [] for diskstat in diskstats: m = diskstat[:-1] m = m.split(',') tmp_list.append(m) devs = list(map(lambda x: x[1], tmp_list)) n_dev = len(set(devs)) for i in range(len(diskstats)): if i < n_dev: continue m = diskstats[i][:-1] m = m.split(',') dev = m[1] m_last = diskstats[i-n_dev][:-1] m_last = m_last.split(',') secsize=0 # get sector size try: f = open('/sys/block/'+dev+'/queue/hw_sector_size') s = f.readline() s = re.match("\d+", s) secsize = int(s.group()) except: pass d_read = int(m[2]) - int(m_last[2]) d_read *= secsize d_write = int(m[3]) - int(m_last[3]) d_write *= secsize d_disk_total = d_read + d_write #total bytes if not d_disk_total: continue t_begin = float(m_last[0]) if not cfg.absolute_timestamp: t_begin = t_begin - cfg.time_base d_duration = float(m[0]) - float(m_last[0]) # MB/s d_throughput = round((d_disk_total/d_duration)/float(1024 ** 2),2) event = -1 duration = d_duration deviceId = m[1] copyKind = -1 payload = d_disk_total bandwidth = d_throughput pkt_src = -1 pkt_dst = -1 pid = -1 tid = -1 diskstat_info = 'diskstat_dev:%s (read|write): |%3d|%3d| bytes' % (m[1], d_read, d_write) trace = [ t_begin, event, duration, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, diskstat_info, 0] diskstat_list.append(trace) diskstat_traces = list_to_csv_and_traces(logdir, diskstat_list, 'diskstat.csv', 'w') # dev cpu sequence timestamp pid event operation start_block+number_of_blocks process # <mjr,mnr> number # 8,0 6 1 0.000000000 31479 A W 691248304 + 1024 <- (8,5) 188175536 # 8,0 6 2 0.000001254 31479 Q W 691248304 + 1024 [dd] # 8,0 6 3 0.000003353 31479 G W 691248304 + 1024 [dd] # 8,0 6 4 0.000005004 31479 I W 691248304 + 1024 [dd] # 8,0 6 5 0.000006175 31479 D W 691248304 + 1024 [dd] # 8,0 2 1 0.001041752 0 C W 691248304 + 1024 [0] if cfg.blktrace_device is not None: with open('%s/blktrace.txt' % logdir) as f: lines = f.readlines() print_info(cfg,"Length of blktrace = %d" % len(lines)) if len(lines) > 0: blktrace_d_list = [] blktrace_list = [] blktrace_d_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) blktrace_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) record_error_flag = 0 t = 0 for i in range(len(lines)): # filter some total calculate information in the below of blktrace.txt file if len(lines[i]) > 50 and "Read" not in lines[i] and "CPU" not in lines[i] and "IO unplugs" not in lines[i]: fields = lines[i].split() blktrace_dev = fields[0] blktrace_cpu = fields[1] blktrace_sequence_number = fields[2] blktrace_timestamp = float(fields[3]) blktrace_pid = fields[4] blktrace_event = fields[5] blktrace_operation = fields[6] try: blktrace_start_block = int(fields[7]) except: blktrace_start_block = 0 record_error_flag = 1 pass # the two column blktrace_block_size and blktrace_process is for future used if len(fields) > 10: blktrace_block_size = fields[9] blktrace_process = fields[10] t_begin = blktrace_timestamp deviceId = cpuid = blktrace_cpu event = blktrace_event copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = blktrace_pid name_info = 'starting_block='+str(blktrace_start_block) trace = [ t_begin, event, blktrace_start_block, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, name_info, cpuid] if 'D' is event: blktrace_d_list.append(trace) if 'C' is event: for i in range(len(blktrace_d_list)): if i==0: continue if int(blktrace_d_list[i][2])==int(blktrace_start_block): time_consume = float(blktrace_timestamp)-float(blktrace_d_list[i][0]) # print('blktrace_d_list[i]:%s'%blktrace_d_list[i]) # print('int(blktrace_timestamp):%f, int(blktrace_d_list[i][0]:%f, time_consume:%f' % (float(blktrace_timestamp), float(blktrace_d_list[i][0]), time_consume)) trace = [ blktrace_d_list[i][0], event, float(time_consume), deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, name_info, cpuid] blktrace_list.append(trace) blktrace_d_list[i][11] = 'latency=%0.6f' % float(time_consume) blk_d_traces = list_to_csv_and_traces( logdir, blktrace_d_list, 'blktrace.csv', 'w') blk_traces = list_to_csv_and_traces( logdir, blktrace_list, 'blktrace.csv', 'a') if record_error_flag == 1 : print_warning('blktrace maybe record failed!') # procs -----------------------memory---------------------- ---swap-- - # r b swpd free buff cache si so bi bo in cs us sy id wa st # 2 0 0 400091552 936896 386150912 0 0 3 18 0 1 5 0 95 0 0 # ============ Preprocessing VMSTAT Trace ========================== with open('%s/vmstat.txt' % logdir) as f: lines = f.readlines() print_info(cfg,"Length of vmstat_traces = %d" % len(lines)) if len(lines) > 0: vm_usr_list = [] vm_sys_list = [] vm_bi_list = [] vm_bo_list = [] vm_in_list = [] vm_cs_list = [] vm_wa_list = [] vm_st_list = [] vm_usr_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_sys_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_bi_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_bo_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_in_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_cs_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_wa_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) vm_st_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) t = 0 t_begin = 0 if not cfg.absolute_timestamp: t_begin = t - cfg.cpu_time_offset else: t_begin = t_begin + t for i in range(len(lines)): if lines[i].find('procs') == - \ 1 and lines[i].find('swpd') == -1: fields = lines[i].split() if len(fields) < 17: continue vm_r = float(fields[0]) + 1e-5 vm_b = float(fields[1]) + 1e-5 vm_sw = float(fields[2]) + 1e-5 vm_fr = float(fields[3]) + 1e-5 vm_bu = float(fields[4]) + 1e-5 vm_ca = float(fields[5]) + 1e-5 vm_si = float(fields[6]) + 1e-5 vm_so = float(fields[7]) + 1e-5 vm_bi = float(fields[8]) + 1e-5 vm_bo = float(fields[9]) + 1e-5 vm_in = float(fields[10]) + 1e-5 vm_cs = float(fields[11]) + 1e-5 vm_usr = float(fields[12]) + 1e-5 vm_sys = float(fields[13]) + 1e-5 vm_idl = float(fields[14]) + 1e-5 vm_wa = float(fields[15]) + 1e-5 vm_st = float(fields[16]) + 1e-5 deviceId = cpuid = -1 event = -1 copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = -1 vmstat_info = 'r=' + str(int(vm_r)) + '|'\ + 'b=' + str(int(vm_b)) + '|'\ + 'sw=' + str(int(vm_sw)) + '|'\ + 'fr=' + str(int(vm_fr)) + '|'\ + 'bu=' + str(int(vm_bu)) + '|'\ + 'ca=' + str(int(vm_ca)) + '|'\ + 'si=' + str(int(vm_si)) + '|'\ + 'so=' + str(int(vm_so)) + '|'\ + 'bi=' + str(int(vm_bi)) + '|'\ + 'bo=' + str(int(vm_bo)) + '|'\ + 'in=' + str(int(vm_in)) + '|'\ + 'cs=' + str(int(vm_cs)) + '|'\ + 'usr=' + str(int(vm_usr)) + '|'\ + 'sys=' + str(int(vm_sys)) + '|'\ + 'idl=' + str(int(vm_idl)) + '|'\ + 'wa=' + str(int(vm_wa)) + '|'\ + 'st=' + str(int(vm_st)) trace = [ t_begin, event, vm_bi, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_bi_list.append(trace) trace = [ t_begin, event, vm_bo, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_bo_list.append(trace) trace = [ t_begin, event, vm_in, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_in_list.append(trace) trace = [ t_begin, event, vm_cs, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_cs_list.append(trace) trace = [ t_begin, event, vm_wa, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_wa_list.append(trace) trace = [ t_begin, event, vm_st, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_st_list.append(trace) trace = [ t_begin, event, vm_usr, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_usr_list.append(trace) trace = [ t_begin, event, vm_sys, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, vmstat_info, cpuid] vm_sys_list.append(trace) t_begin = t_begin + 1 vm_bi_traces = list_to_csv_and_traces( logdir, vm_bi_list, 'vmstat.csv', 'w') vm_bo_traces = list_to_csv_and_traces( logdir, vm_bo_list, 'vmstat.csv', 'a') vm_in_traces = list_to_csv_and_traces( logdir, vm_in_list, 'vmstat.csv', 'a') vm_cs_traces = list_to_csv_and_traces( logdir, vm_cs_list, 'vmstat.csv', 'a') vm_wa_traces = list_to_csv_and_traces( logdir, vm_wa_list, 'vmstat.csv', 'a') vm_st_traces = list_to_csv_and_traces( logdir, vm_st_list, 'vmstat.csv', 'a') vm_usr_traces = list_to_csv_and_traces( logdir, vm_usr_list, 'vmstat.csv', 'a') vm_sys_traces = list_to_csv_and_traces( logdir, vm_sys_list, 'vmstat.csv', 'a') # timestamp, name, index, utilization.gpu [%], utilization.memory [%] # 2019/05/16 16:49:04.650, GeForce 940MX, 0, 0 %, 0 % if os.path.isfile('%s/nvsmi_query.txt' % logdir): with open('%s/nvsmi_query.txt' % logdir) as f: next(f) lines = f.readlines() nvsmi_query_has_data = True for line in lines: if line.find('failed') != -1 or line.find('Failed') != -1: nvsmi_query_has_data = False print_warning('No nvsmi query data.') break if nvsmi_query_has_data: print_info(cfg,"Length of nvsmi_query_traces = %d" % len(lines)) nvsmi_sm_list = [] nvsmi_mem_list = [] nvsmi_sm_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) nvsmi_mem_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) for i in range(len(lines)): fields = lines[i].split(',') nv_time = fields[0] nv_time = datetime.datetime.strptime(nv_time, '%Y/%m/%d %H:%M:%S.%f').timestamp() + cfg.nvsmi_time_zone * 3600 nvsmi_id = int(fields[2]) nvsmi_sm = int(fields[3][:-2]) nvsmi_mem = int(fields[4][:-2]) # nvtime t_begin = nv_time if not cfg.absolute_timestamp: t_begin = t_begin - cfg.time_base deviceId = cpuid = nvsmi_id event = -1 copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = -1 sm_info = "GPUID_sm=%d_%d" % (nvsmi_id, nvsmi_sm) mem_info = "GPUID_mem=%d_%d" % (nvsmi_id, nvsmi_mem) trace = [ t_begin, 0, nvsmi_sm, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, sm_info, cpuid] nvsmi_sm_list.append(trace) trace = [ t_begin, 1, nvsmi_mem, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, mem_info, cpuid] nvsmi_mem_list.append(trace) if len(nvsmi_sm_list)>1: nvsmi_sm_traces = list_to_csv_and_traces(logdir, nvsmi_sm_list, 'nvsmi_trace.csv', 'w') nvsmi_mem_traces = list_to_csv_and_traces(logdir, nvsmi_mem_list, 'nvsmi_trace.csv', 'a') # gpu sm mem enc dec # Idx % % % % # 0 0 0 0 0 # 1 0 0 0 0 # 2 0 0 0 0 if os.path.isfile('%s/nvsmi.txt' % logdir): with open('%s/nvsmi.txt' % logdir) as f: lines = f.readlines() nvsmi_has_data = True for line in lines: if line.find('failed') != -1 or line.find('Failed') != -1: nvsmi_has_data = False print_warning('No nvsmi data.') break if nvsmi_has_data: print_info(cfg,"Length of nvsmi_traces = %d" % len(lines)) nvsmi_enc_list = [] nvsmi_dec_list = [] nvsmi_enc_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) nvsmi_dec_list.append(np.empty((len(sofa_fieldnames), 0)).tolist()) t = 0 for i in range(len(lines)): if lines[i].find('gpu') == -1 and lines[i].find('Idx') == -1: fields = lines[i].split() if len(fields) < 5: continue nvsmi_id = int(fields[0]) if fields[3] == '-': nvsmi_enc = int(0) else: nvsmi_enc = int(fields[3]) if fields[4] == '-': nvsmi_dec = int(0) else: nvsmi_dec = int(fields[4]) if cfg.absolute_timestamp: t_begin = t + cfg.time_base else: t_begin = t deviceId = cpuid = nvsmi_id event = -1 copyKind = -1 payload = -1 bandwidth = -1 pkt_src = pkt_dst = -1 pid = tid = -1 enc_info = "GPUID_enc=%d_%d" % (nvsmi_id, nvsmi_enc) dec_info = "GPUID_dec=%d_%d" % (nvsmi_id, nvsmi_dec) trace = [ t_begin, 2, nvsmi_enc, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, enc_info, cpuid] if t > 3 : nvsmi_enc_list.append(trace) trace = [ t_begin, 3, nvsmi_dec, deviceId, copyKind, payload, bandwidth, pkt_src, pkt_dst, pid, tid, dec_info, cpuid] if t > 3 : nvsmi_dec_list.append(trace) if nvsmi_id == 0: t = t + 1 if len(nvsmi_enc_list)>1: cfg.nvsmi_data = True nvsmi_enc_traces = list_to_csv_and_traces(logdir, nvsmi_enc_list, 'nvsmi_trace.csv', 'a') nvsmi_dec_traces = list_to_csv_and_traces(logdir, nvsmi_dec_list, 'nvsmi_trace.csv', 'a') else: print_warning("Program exectution time is fewer than 3 seconds, so nvsmi trace analysis will not be displayed.") # ============ Preprocessing Network Trace ========================== if os.path.isfile('%s/sofa.pcap' % logdir): with open(logdir + 'net.tmp', 'w') as f: subprocess.check_call( ["tcpdump", "-q", "-n", "-tt", "-r", "%s/sofa.pcap"%logdir ], stdout=f, stderr=subprocess.DEVNULL) with open(logdir + 'net.tmp') as f: packets = lines = f.readlines() print_info(cfg,"Length of net_traces = %d" % len(packets)) if packets: with mp.Pool(processes=cpu_count) as pool: res = pool.map( partial( net_trace_read, cfg=cfg, t_offset=0), packets) res_viz = list_downsample(res, cfg.plot_ratio) net_traces = pd.DataFrame(res_viz) net_traces.columns = sofa_fieldnames net_traces.to_csv( logdir + 'nettrace.csv', mode='w', header=True, index=False, float_format='%.6f') # ============ Apply for Network filter ===================== if cfg.net_filters: filtered_net_groups = [] packet_not_zero = net_traces['payload'] > 0 start = (net_traces['pkt_src'] == float(cfg.net_filters[0])) for filter in cfg.net_filters[1:]: end = (net_traces['pkt_dst'] == float(filter)) group = net_traces[packet_not_zero & start & end] filtered_net_groups.append({'group': group, 'color': 'rgba(%s,%s,%s,0.8)' %(random.randint(0,255),random.randint(0,255),random.randint(0,255)), 'keyword': 'to_%s' %filter}) end = (net_traces['pkt_dst'] == float(cfg.net_filters[0])) for filter in cfg.net_filters[1:]: start = (net_traces['pkt_src'] == float(filter)) group = net_traces[packet_not_zero & start & end] filtered_net_groups.append({'group': group, 'color': 'rgba(%s,%s,%s,0.8)' %(random.randint(0,255),random.randint(0,255),random.randint(0,255)), 'keyword': 'from_%s' %filter}) else: print_warning("no network traces were recorded.") # ============ Preprocessing Network Bandwidth Trace ============ with open('%s/netstat.txt' % logdir) as f: lines = f.readlines() if lines: tmp_time = float(lines[0].split(',')[0]) tmp_tx = int(lines[0].split(',')[1]) tmp_rx = int(lines[0].split(',')[2]) all_time = [] all_tx = [] all_rx = [] tx_list = [] rx_list = [] bandwidth_result = pd.DataFrame([], columns=['time', 'tx_bandwidth', 'rx_bandwidth']) for line in lines[1:]: time = float(line.split(',')[0]) tx = int(line.split(',')[1]) rx = int(line.split(',')[2]) tx_bandwidth = (tx - tmp_tx) / (time - tmp_time) rx_bandwidth = (rx - tmp_rx) / (time - tmp_time) #sofa_fieldnames = [ # "timestamp", # 0 # "event", # 1 # "duration", # 2 # "deviceId", # 3 # "copyKind", # 4 # "payload", # 5 # "bandwidth", # 6 # "pkt_src", # 7 # "pkt_dst", # 8 # "pid", # 9 # "tid", # 10 # "name", # 11 # "category"] # 12 t_begin = time if not cfg.absolute_timestamp: t_begin = t_begin - cfg.time_base trace = [ t_begin, # timestamp 0, # event -1, -1, -1, -1, tx_bandwidth, # tx bandwidth -1, -1, -1, -1, "network_bandwidth_tx(bytes):%d" % tx_bandwidth, 0 ] tx_list.append(trace) trace = [ t_begin, # timestamp 1, # event -1, -1, -1, -1, rx_bandwidth, # rx bandwidth -1, -1, -1, -1, "network_bandwidth_rx(bytes):%d" % rx_bandwidth, 0 ] rx_list.append(trace) # for visualize all_time.append(time) all_tx.append(tx_bandwidth) all_rx.append(rx_bandwidth) # for pandas result = [t_begin, tx_bandwidth, rx_bandwidth] tmp_bandwidth_result = pd.DataFrame([result], columns=['time', 'tx_bandwidth', 'rx_bandwidth']) bandwidth_result = pd.concat([bandwidth_result, tmp_bandwidth_result], ignore_index=True) bandwidth_result.to_csv('%s/netbandwidth.csv' %logdir, header=True) # prepare for next round loop tmp_time = time tmp_tx = tx tmp_rx = rx tx_traces = pd.DataFrame(tx_list, columns = sofa_fieldnames) tx_traces.to_csv( logdir + 'netstat.csv', mode='w', header=True, index=False, float_format='%.6f') rx_traces = pd.DataFrame(rx_list, columns = sofa_fieldnames) rx_traces.to_csv( logdir + 'netstat.csv', mode='a', header=False, index=False, float_format='%.6f') # ============ Preprocessing GPU Trace ========================== num_cudaproc = 0 filtered_gpu_groups = [] indices = [] for nvvp_filename in glob.glob(logdir + "gputrace*[0-9].nvvp"): print_progress("Read " + nvvp_filename + " by nvprof -- begin") with open(logdir + "gputrace.tmp", "w") as f: subprocess.call(["nvprof", "--csv", "--print-gpu-trace", "-i", nvvp_filename], stderr=f) #Automatically retrieve the timestamp of the first CUDA activity(e.g. kernel, memory op, etc..) engine = create_engine("sqlite:///"+nvvp_filename) t_glb_gpu_bases = [] try: t_glb_gpu_bases.append( (pd.read_sql_table('CUPTI_ACTIVITY_KIND_MEMSET',engine)).iloc[0]['start']) except BaseException: print_info(cfg,'NO MEMSET') try: t_glb_gpu_bases.append( (pd.read_sql_table('CUPTI_ACTIVITY_KIND_MEMCPY',engine)).iloc[0]['start']) except BaseException: print_info(cfg,'NO MEMCPY') try: t_glb_gpu_bases.append( (pd.read_sql_table('CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL',engine)).iloc[0]['start']) except BaseException: print_info(cfg,'NO CONCURRENT KERNEL') try: t_glb_gpu_bases.append( (pd.read_sql_table('CUPTI_ACTIVITY_KIND_KERNEL',engine)).iloc[0]['start']) except BaseException: print_info(cfg,'NO KERNEL') if len(t_glb_gpu_bases) > 0: t_glb_gpu_base = sorted(t_glb_gpu_bases)[0]*1.0/1e+9 else: print_warning("There is no data in tables of NVVP file.") print_info(cfg,"Timestamp of the first GPU trace = " + str(t_glb_gpu_base)) print_progress("Read " + nvvp_filename + " by nvprof -- end") num_cudaproc = num_cudaproc + 1 with open(logdir + 'gputrace.tmp') as f: records = f.readlines() # print(records[1]) if len(records) > 0 and records[1].split(',')[0] == '"Start"': indices = records[1].replace( '"', '').replace( '\n', '').split(',') # ms,ms,,,,,,,,B,B,MB,GB/s,,,, payload_unit = 1 if records[2].split(',')[11] == 'GB': payload_unit = np.power(1024,3) elif records[2].split(',')[11] == 'MB': payload_unit = np.power(1024,2) elif records[2].split(',')[11] == 'KB': payload_unit = np.power(1024,1) elif records[2].split(',')[11] == 'B': payload_unit = 1 else: print_info(cfg,"The payload unit in gputrace.tmp was not recognized!") sys.exit(1) ts_rescale = 1.0 if records[2].split(',')[0] == 'ms': ts_rescale = 1.0e3 elif records[2].split(',')[0] == 'us': ts_rescale = 1.0e6 dt_rescale = 1.0 if records[2].split(',')[1] == 'ms': dt_rescale = 1.0e3 elif records[2].split(',')[1] == 'us': dt_rescale = 1.0e6 records = records[3:] print_info(cfg,"Length of gpu_traces = %d" % len(records)) t_base = float(records[0].split(',')[0]) with mp.Pool(processes=cpu_count) as pool: res = pool.map( partial( gpu_trace_read, cfg=cfg, indices=indices, ts_rescale=ts_rescale, dt_rescale=dt_rescale, payload_unit=payload_unit, n_cudaproc=num_cudaproc, t_offset=t_glb_gpu_base - t_base), records) gpu_traces = pd.DataFrame(res) gpu_traces.columns = sofa_fieldnames res_viz = list_downsample(res, cfg.plot_ratio) gpu_traces_viz = pd.DataFrame(res_viz) gpu_traces_viz.columns = sofa_fieldnames gpu_traces.to_csv( logdir + 'gputrace.csv', mode='w', header=True, index=False, float_format='%.6f') # Apply filters for GPU traces df_grouped = gpu_traces.groupby('name') for filter in cfg.gpu_filters: group = gpu_traces[gpu_traces['name'].str.contains( filter.keyword)] filtered_gpu_groups.append({'group': group, 'color': filter.color, 'keyword': filter.keyword}) else: print_warning( "gputrace existed, but no kernel traces were recorded.") os.system('cat %s/gputrace.tmp' % logdir) # ============ Preprocessing GPU API Trace ========================== if cfg.cuda_api_tracing: num_cudaproc = 0 indices = [] for nvvp_filename in glob.glob(logdir + "gputrace*[0-9].nvvp"): print_progress("Read " + nvvp_filename + " for API traces by nvprof -- begin") with open(logdir + "cuda_api_trace.tmp", "w") as f: subprocess.call(["nvprof", "--csv", "--print-api-trace", "-i", nvvp_filename], stderr=f) #Automatically retrieve the timestamp of the first CUDA activity(e.g. kernel, memory op, etc..) engine = create_engine("sqlite:///"+nvvp_filename) t_glb_gpu_bases = [] first_corid = 1 try: t_glb_gpu_bases.append((pd.read_sql_table('CUPTI_ACTIVITY_KIND_RUNTIME',engine)).iloc[0]['start']) first_corid = (pd.read_sql_table('CUPTI_ACTIVITY_KIND_RUNTIME',engine)).iloc[0]['correlationId'] except BaseException: print_info(cfg,'NO RUNTIME') if len(t_glb_gpu_bases) > 0: t_glb_gpu_base = sorted(t_glb_gpu_bases)[0]*1.0/1e+9 else: print_warning("There is no data in tables of NVVP file.") print_info(cfg,"Timestamp of the first CUDA API trace = " + str(t_glb_gpu_base)) print_progress("Read " + nvvp_filename + " by nvprof -- end") num_cudaproc = num_cudaproc + 1 with open(logdir + 'cuda_api_trace.tmp') as f: records = f.readlines() # print(records[1]) if len(records) > 0 and records[1].split(',')[0] == '"Start"': indices = records[1].replace( '"', '').replace( '\n', '').split(',') ts_rescale = 1.0 if records[2].split(',')[0] == 'ms': ts_rescale = 1.0e3 elif records[2].split(',')[0] == 'us': ts_rescale = 1.0e6 dt_rescale = 1.0 if records[2].split(',')[1] == 'ms': dt_rescale = 1.0e3 elif records[2].split(',')[1] == 'us': dt_rescale = 1.0e6 records = records[3:] print_info(cfg,"Length of cuda_api_traces = %d" % len(records)) #TODO: Apply parallel search to speed up t_base = float(records[0].split(',')[0]) if len(records[0].split(',')) == 4: for record in records: if int(record.split(',')[3]) == first_corid: t_base = float(record.split(',')[0]) print_info(cfg,'First Correlation_ID ' + str(first_corid) + ' is found in cuda_api_trace.tmp') print_info(cfg,'First API trace timestamp is ' + str(t_base)) break with mp.Pool(processes=cpu_count) as pool: res = pool.map( partial( cuda_api_trace_read, cfg=cfg, indices=indices, ts_rescale=ts_rescale, dt_rescale=dt_rescale, payload_unit=payload_unit, n_cudaproc=num_cudaproc, t_offset=t_glb_gpu_base - t_base), records) cuda_api_traces = pd.DataFrame(res) cuda_api_traces.columns = sofa_fieldnames res_viz = list_downsample(res, cfg.plot_ratio) cuda_api_traces_viz =
pd.DataFrame(res_viz)
pandas.DataFrame
# Import standard python packages import numbers import copy import pandas as pd import pathlib import numpy as np import sys # EIA reports coal counties using the FIPS Codes for the county. The county can be a one, two, or three digit number. # For standardization sake, we convert them all to a three digit number. # This function takes one input: an array of FIPS county codes. # This function returns one output: an array of three-digit FIPS county codes # This function is used in the following codes: eia_coal_consumption_data.py def convert_fips_county_three_digits(fips_codes): fips_three = [] fips_codes = int(fips_codes) for county_fips in fips_codes: if len(str(int(county_fips))) == 1: fips_three.append('00' + str(int(county_fips))) elif len(str(int(county_fips))) == 2: fips_three.append('0' + str(int(county_fips))) elif len(str(int(county_fips))) == 3: fips_three.append(str(int(county_fips))) fips_three = pd.Series(fips_three) fips_three = fips_three.values return fips_three def convert_fips_state_two_digits(fips_codes): fips_two = [] for state_fips in fips_codes: if len(str(int(state_fips))) == 1: fips_two.append('0' + str(int(state_fips))) elif len(str(int(state_fips))) == 2: fips_two.append(str(int(state_fips))) fips_two = pd.Series(fips_two) fips_two = fips_two.values return fips_two # FIPS county codes can be one to three digits. The standard way of reporting them is to report them with three digits # with preceding zeros. This function converts adds the preceding zeros to the county codes in an array if necessary. # It then combines the fips code with the state abbreviation. # This function takes two inputs: a pandas array of FIPS county codes and a pandas array of state abbreviations. # This function returns one output: a pandas array of State Abbreviation and FIPS county codes. # This function is used in the following codes: CFPP_fuel_data_processing_2015.py, CFPP_fuel_data_processing.py def fips_codes_state_county_codes(fips_county_codes, state_abbreviations): i = 0 t = 0 temp = [] state_county_codes = [] while i < len(fips_county_codes): if isinstance(fips_county_codes.iloc[i], numbers.Number): code = int(fips_county_codes.iloc[i]) if fips_county_codes.iloc[i] / 100 >= 1: state_county_codes.append(state_abbreviations.iloc[i] + ', ' + str(code)) elif fips_county_codes.iloc[i] / 10 >= 1: state_county_codes.append(state_abbreviations.iloc[i] + ', 0' + str(code)) elif fips_county_codes.iloc[i] / 1 >= 0: state_county_codes.append(state_abbreviations.iloc[i] + ', 00' + str(code)) else: state_county_codes.append(state_abbreviations.iloc[i] + ', ' + str(fips_county_codes.iloc[i])) i += 1 state_county_codes = pd.Series(state_county_codes) state_county_codes = state_county_codes.values return state_county_codes # EIA reports coal rank using a three letter abbreviations. COALQUAL reports everything using the full rank name. # This function converts those three letter abbreviations to the full rank name (in all caps). # This function takes one inputs: a pandas array of coal rank abbreviations. # This function returns one output: a pandas array of coal ranks. # This function is used in the following codes: CFPP_fuel_data_processing_2015.py, CFPP_fuel_data_processing.py def rank_abbreviation_to_full_name(coal_rank_abbreviations): i = 0 fuel_abbreviation = [] while i < len(coal_rank_abbreviations): if coal_rank_abbreviations.iloc[i] == 'BIT': fuel_abbreviation.append('BITUMINOUS') elif coal_rank_abbreviations.iloc[i] == 'SUB': fuel_abbreviation.append('SUBBITUMINOUS') elif coal_rank_abbreviations.iloc[i] == 'LIG': fuel_abbreviation.append('LIGNITE') i += 1 fuel_abbreviation = pd.Series(fuel_abbreviation) fuel_abbreviation = fuel_abbreviation.values return fuel_abbreviation # EIA and coal mine data includes both county names and county codes, but we need to create a merge key that has both # these county identifiers and the relevant state. This code concatenates these functions. # This function takes two inputs: two arrays to concatenate with a comma between them. # This function returns one input: an array of the concatenated strings. # This function is used in the following codes: eia_coal_consumption_data.py def fips_code_county_name_state_concatenation(identifiers_1, identifiers_2): concatenated_strings = [] i = 0 while i < len(identifiers_1): if ~isinstance(identifiers_1.iloc[i], str): identifier_1 = str(identifiers_1.iloc[i]) else: identifier_1 = identifiers_1.iloc[i] if ~isinstance(identifiers_2.iloc[i], str): identifier_2 = str(identifiers_2.iloc[i]) else: identifier_2 = identifiers_2.iloc[i] concatenated_strings.append(identifier_1 + ", " + identifier_2) i += 1 concatenated_strings = pd.Series(concatenated_strings) concatenated_strings = concatenated_strings.values return concatenated_strings def state_county_fips_code_concatenation(identifiers_1, identifiers_2): concatenated_strings = [] i = 0 while i < len(identifiers_1): if ~isinstance(identifiers_1.iloc[i], str): identifier_1 = str(identifiers_1.iloc[i]) else: identifier_1 = identifiers_1.iloc[i] if ~isinstance(identifiers_2.iloc[i], str): identifier_2 = str(identifiers_2.iloc[i]) else: identifier_2 = identifiers_2.iloc[i] concatenated_strings.append(identifier_1 + identifier_2) i += 1 concatenated_strings = pd.Series(concatenated_strings) concatenated_strings = concatenated_strings.values return concatenated_strings def state_code_to_abbreviation(series): state_dic = {1:"AL", 2: 'AK', 3: 'IM', 4: 'AZ', 5: 'AR', 6: 'CA', 8: 'CO', 9: 'CT', 10: 'DE', 11: 'DC', 12: 'FL', 13: 'GA', 15: 'HI', 16: 'ID', 17: 'IL', 18: 'IN', 19: 'IA', 20: 'KS', 21: 'KY', 22: 'LA', 23: 'ME', 24: 'MD', 25: 'MA', 26: 'MI', 27: 'MN', 28: 'MS', 29: 'MO', 30: 'MT', 31: 'NE', 32: 'NV', 33: 'NH', 34: 'NJ', 35: 'NM', 36: 'NY', 37: 'NC', 38: 'ND', 39: 'OH', 40: 'OK', 41: 'OR', 42: 'PA', 44: 'RI', 45: 'SC', 46: 'SD', 47: 'TN', 48: 'TX', 49: 'UT', 50: 'VT', 51: 'VA', 53: 'WA', 54: 'WV', 55: 'WI', 56: 'WY'} i = 0 temp = [] while i < len(series): state = state_dic[series.iloc[i]] temp.append(state) i = i + 1 return pd.Series(temp) def data_filtering(dataframe, capacity, outputfile): # Filter plants that (1) don't use coal and (2) use either imported coal (IMP) or waste coal (WC). if type(dataframe.Fuel_Group.iloc[2]) != str: dataframe = dataframe[dataframe.Fuel_Group == 1] temp = ['Coal'] * len(dataframe.Fuel_Group) fuel =
pd.Series(temp)
pandas.Series
import pandas as pd import numpy as np import datetime as dt import pytz def make_df(days_ago: int, df_len: int) -> pd.DataFrame: """ Make a dataframe similar to the online csv Parameters ---------- days_ago : int How many days ago the df should start at df_len : int How long the df should be Returns ------- pd.DataFrame A df with a datetime index """ start_date = dt.datetime.now(pytz.utc) - dt.timedelta(days=days_ago) times = [start_date + dt.timedelta(days=day + 1) for day in range(df_len)] values = [[val, val + 1] for val in range(df_len)] df = pd.DataFrame(values, times) return df def make_full_df( days_ago_start: int = 100, len_cluster: int = 2, num_clusters: int = 6, cluster_interval: int = 14, ) -> pd.DataFrame: df_all =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.linear_model import LogisticRegression # from sklearn.tree import DecisionTreeClassifier # from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import train_test_split import sklearn.metrics as metrics from sklearn.metrics import confusion_matrix, multilabel_confusion_matrix from skmultilearn.problem_transform import ClassifierChain from skmultilearn.problem_transform import BinaryRelevance from skmultilearn.adapt import MLkNN from keras.layers import Dense from keras.models import Sequential from keras.metrics import * ########################################################## # Section 1 - Data Loading ########################################################## # Getting feature data finalData = np.array(pd.read_csv('D:/UIP/finaldata.csv', index_col='Name')) biodata = finalData[:, 21:] # Getting type data as dataframe for visualisations pType = pd.read_csv('D:/UIP/primType.csv', index_col=0) sType = pd.read_csv('D:/UIP/secondType.csv', index_col=0) bTypes = pd.read_csv('D:/UIP/sparseTypes.csv', index_col=0) # Getting features as numpy arrays for model inputs primType = np.array(pType) secType = np.array(sType) bothTypes = np.array(bTypes) # Get splitted data Xtrain, Xtest, Ytrain, Ytest = train_test_split(finalData, bothTypes, test_size=0.2, random_state=12345) XtrainPrim, XtestPrim, YtrainPrim, YtestPrim = train_test_split(finalData, primType, test_size=0.2, random_state=12345) XtrainSec, XtestSec, YtrainSec, YtestSec = train_test_split(finalData, secType, test_size=0.2, random_state=12345) # Get splitted biodata XtrainBio, XtestBio, YtrainBio, YtestBio = train_test_split(biodata, bothTypes, test_size=0.2, random_state=12345) XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio = train_test_split(biodata, primType, test_size=0.2, random_state=12345) XtrainSecBio, XtestSecBio, YtrainSecBio, YtestSecBio = train_test_split(biodata, secType, test_size=0.2, random_state=12345) ########################################################## # Section 2 - Data Visualisation ########################################################## # Visualising class distribution for Pokemon type def visualiseTypeDist(typeData, nat): # Type Categories categories = list(typeData.columns.values) plt.figure(figsize=(15, 8)) ax = sns.barplot(categories, typeData.sum().values) # Axis labels if nat == 1: plt.title("Distribution of Primary Pokemon Types", fontsize=14) elif nat == 2: plt.title("Distribution of Secondary Pokemon Types", fontsize=14) else: plt.title("Distribution of Pokemon Types (single and dual)", fontsize=14) plt.ylabel('Pokemon of that Type', fontsize=14) plt.xlabel('Pokemon Type', fontsize=14) rects = ax.patches labels = typeData.sum().values # Print hist labels for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height + 1, label, ha='center', va='bottom', fontsize=12) plt.show() visualiseTypeDist(pType, 1) visualiseTypeDist(sType, 2) visualiseTypeDist(bTypes, 0) # Function to re-encode output of Neural Network into one-hot encoding def reEncode(predictions): newOut = np.ndarray((len(predictions), len(predictions[0]))) for i in range(len(predictions)): row = predictions[i] m = max(row) for j in range(len(predictions[0])): if row[j] == m: newOut[i][j] = 1 else: newOut[i][j] = 0 return newOut # Setting epsilon for re-encoding multiple type predictions epsilon = 0.03 # Function to re-encode output of Neural Network into multiple-hot encoding def reEncodeMulti(predictions): newOut = np.ndarray((len(predictions), len(predictions[0]))) for i in range(len(predictions)): row = predictions[i] m = max(row) rowAlt = [e for e in row if e != m] tx = max(rowAlt) rowAltB = [e for e in rowAlt if e != tx] tb = max(rowAltB) for j in range(len(predictions[0])): if row[j] == m: newOut[i][j] = 1 elif row[j] == tx: if (tx - tb) >= epsilon: newOut[i][j] = 1 else: newOut[i][j] = 0 return newOut # ############################################################### # # Section 3 - Multi-class classification for Type 1 of Pokemon # ############################################################### # Neural Network with Softmax + Categorical Crossentropy def test_network(Xtrain, Xtest, Ytrain, Ytest): model = Sequential() feat = len(Xtrain[0]) # Hidden Layers model.add(Dense(64, activation='relu', input_dim=feat)) # model.add(Dense(64, activation='relu')) # Output layer with 18 nodes using Softmax activation (we have 18 Pokemon types) model.add(Dense(18, activation='softmax')) # Running the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(Xtrain, Ytrain, epochs=40, batch_size=32) # Accuracy Metrics and Predictions score = model.evaluate(Xtest, Ytest, batch_size=16) predictions = model.predict(Xtest) return predictions, score # # Decision Tree - (Deprecated) # def test_tree(Xtrain, Xtest, Ytrain, Ytest): # # Setting tree parameters # classifier = DecisionTreeClassifier(criterion='entropy', max_depth=10, random_state=12345) # classifier.fit(Xtrain, Ytrain) # # Accuracy Metrics and Predictions # print('Accuracy Score for Decision Tree on training set: {:.2f}'.format(classifier.score(Xtrain, Ytrain))) # print('Accuracy Score for Decision Tree on test set: {:.2f}'.format(classifier.score(Xtest, Ytest))) # predictions = classifier.predict(Xtest) # return predictions # K-Nearest Neighbours for Multi-Class classification def test_knn(Xtrain, Xtest, Ytrain, Ytest): # Setting k = 3 classifier = KNeighborsClassifier(n_neighbors=3) classifier.fit(Xtrain, Ytrain) # Accuracy Metrics and Predictions predictions = classifier.predict(Xtest) score = classifier.score(Xtest, Ytest) return predictions, score # ###################################################################### # # Section 4 - Multi-class, Multi-label approach to Type classification # ###################################################################### # Neural Network with Softmax + Binary Crossentropy def test_network2(Xtrain, Xtest, Ytrain, Ytest): model = Sequential() feat = len(Xtrain[0]) # Hidden Layers model.add(Dense(64, activation='relu', input_dim=feat)) # model.add(Dense(64, activation='relu')) # Output layer with 18 nodes using Softmax activation (we have 18 Pokemon types) model.add(Dense(18, activation='softmax')) # Running the model model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(Xtrain, Ytrain, epochs=40, batch_size=32) # Accuracy Metrics and Predictions score = model.evaluate(Xtest, Ytest, batch_size=16) predictions = model.predict(Xtest) return predictions, score # Multilabel k Nearest Neighbours (MLkNN) def test_mlknn(Xtrain, Xtest, Ytrain, Ytest): # Training the classfier and making predictions classifier = MLkNN(k=1) classifier.fit(Xtrain, Ytrain) predictions = classifier.predict(Xtest) # Measuring accuracy scores = classifier.score(Xtest, Ytest) loss = metrics.hamming_loss(Ytest, predictions) return predictions, scores, loss # Binary Relevance with Logistic Regression def test_logistic(Xtrain, Xtest, Ytrain, Ytest): # Setting parameters for Logistic Regression reg = LogisticRegression(C = 1.0, solver='lbfgs', random_state=12345) # Initialising the Binary Relevance Pipeline classifier = BinaryRelevance(classifier=reg) # Training the classfiers and making predictions classifier.fit(Xtrain, Ytrain) predictions = classifier.predict(Xtest) # Measuring accuracy scores = classifier.score(Xtest, Ytest) loss = metrics.hamming_loss(Ytest, predictions) return predictions, scores, loss ############################################################### # Section 5 - Getting results from models ############################################################### typeList = ['Normal', 'Fighting', 'Flying', 'Poison', 'Ground', 'Rock', 'Bug', 'Ghost', 'Steel', 'Fire', 'Water', 'Grass', 'Electric', 'Psychic', 'Ice', 'Dragon', 'Dark', 'Fairy'] pokemon = pd.read_csv('D:/UIP/testList.csv', header=0)['Name'] #### Section 5.1 - Predicting a Pokemon's primary type. First with bio + move data, then only biodata. #### # Neural Network primaryNet_predic, primaryNet_acc = test_network(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim) pd.DataFrame(reEncode(primaryNet_predic), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictionsPrim.csv') primaryNet_predicBio, primaryNet_accBio = test_network(XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio) pd.DataFrame(reEncode(primaryNet_predicBio), index=pokemon, columns=typeList).to_csv('D:/UIP/Pred/NetPredictionsPrimWithoutMoves.csv') # # Decision Tree # primaryForest_predic = test_tree(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim) # primaryForest_predicBio = test_tree(XtrainPrimBio, XtestPrimBio, YtrainPrimBio, YtestPrimBio) # K Nearest Neighbours primaryKNN_predic, primaryKNN_acc = test_knn(XtrainPrim, XtestPrim, YtrainPrim, YtestPrim)
pd.DataFrame(primaryKNN_predic, index=pokemon, columns=typeList)
pandas.DataFrame
from typing import Tuple import numpy as np import pandas as pd from HW4.decisionstump import DecisionStump class Adaboost: def __init__(self): self.T = 0 self.h = [] self.alpha = pd.Series([]) self.w = pd.DataFrame([]) def train(self, X_train: pd.DataFrame, y_train: pd.Series, n_iter: int = 10): # Initialize parameters N, D = X_train.shape self.T = n_iter self.h = [] self.alpha = [] self.w = [] w_t = pd.Series(np.full(N, 1/N), index=y_train.index, name=f"iter 0") # Boosting for t in range(self.T): h_t = DecisionStump() # Compute the weighted training error of h_t err_t = h_t.train(X_train, y_train, w_t) # Compute the importance of h_t alpha_t = 0.5 * np.log((1 - err_t) / err_t) # Update the weights h_t_pred = h_t.predict(X_train) w_t = w_t * np.exp(-alpha_t * y_train * h_t_pred) w_t = w_t / w_t.sum() w_t =
pd.Series(w_t, index=y_train.index, name=f"iter {t+1}")
pandas.Series
"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods, `_TestSQLAlchemyConn` tests the API with a SQLAlchemy Connection object. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ import csv from datetime import date, datetime, time from io import StringIO import sqlite3 import warnings import numpy as np import pytest from pandas.core.dtypes.common import is_datetime64_dtype, is_datetime64tz_dtype import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm import pandas.io.sql as sql from pandas.io.sql import read_sql_query, read_sql_table try: import sqlalchemy import sqlalchemy.schema import sqlalchemy.sql.sqltypes as sqltypes from sqlalchemy.ext import declarative from sqlalchemy.orm import session as sa_session SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False SQL_STRINGS = { "create_iris": { "sqlite": """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""", "mysql": """CREATE TABLE iris ( `SepalLength` DOUBLE, `SepalWidth` DOUBLE, `PetalLength` DOUBLE, `PetalWidth` DOUBLE, `Name` VARCHAR(200) )""", "postgresql": """CREATE TABLE iris ( "SepalLength" DOUBLE PRECISION, "SepalWidth" DOUBLE PRECISION, "PetalLength" DOUBLE PRECISION, "PetalWidth" DOUBLE PRECISION, "Name" VARCHAR(200) )""", }, "insert_iris": { "sqlite": """INSERT INTO iris VALUES(?, ?, ?, ?, ?)""", "mysql": """INSERT INTO iris VALUES(%s, %s, %s, %s, "%s");""", "postgresql": """INSERT INTO iris VALUES(%s, %s, %s, %s, %s);""", }, "create_test_types": { "sqlite": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""", "mysql": """CREATE TABLE types_test_data ( `TextCol` TEXT, `DateCol` DATETIME, `IntDateCol` INTEGER, `IntDateOnlyCol` INTEGER, `FloatCol` DOUBLE, `IntCol` INTEGER, `BoolCol` BOOLEAN, `IntColWithNull` INTEGER, `BoolColWithNull` BOOLEAN )""", "postgresql": """CREATE TABLE types_test_data ( "TextCol" TEXT, "DateCol" TIMESTAMP, "DateColWithTz" TIMESTAMP WITH TIME ZONE, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" DOUBLE PRECISION, "IntCol" INTEGER, "BoolCol" BOOLEAN, "IntColWithNull" INTEGER, "BoolColWithNull" BOOLEAN )""", }, "insert_test_types": { "sqlite": { "query": """ INSERT INTO types_test_data VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "mysql": { "query": """ INSERT INTO types_test_data VALUES("%s", %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, "postgresql": { "query": """ INSERT INTO types_test_data VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) """, "fields": ( "TextCol", "DateCol", "DateColWithTz", "IntDateCol", "IntDateOnlyCol", "FloatCol", "IntCol", "BoolCol", "IntColWithNull", "BoolColWithNull", ), }, }, "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": 'SELECT * FROM iris WHERE `Name`="%s" AND `SepalLength`=%s', "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`="%(name)s" AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "create_view": { "sqlite": """ CREATE VIEW iris_view AS SELECT * FROM iris """ }, } class MixInBase: def teardown_method(self, method): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): for tbl in self._get_all_tables(): self.drop_table(tbl) self._close_conn() class MySQLMixIn(MixInBase): def drop_table(self, table_name): cur = self.conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_mysql_name(table_name)}") self.conn.commit() def _get_all_tables(self): cur = self.conn.cursor() cur.execute("SHOW TABLES") return [table[0] for table in cur.fetchall()] def _close_conn(self): from pymysql.err import Error try: self.conn.close() except Error: pass class SQLiteMixIn(MixInBase): def drop_table(self, table_name): self.conn.execute( f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}" ) self.conn.commit() def _get_all_tables(self): c = self.conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def _close_conn(self): self.conn.close() class SQLAlchemyMixIn(MixInBase): def drop_table(self, table_name): sql.SQLDatabase(self.conn).drop_table(table_name) def _get_all_tables(self): meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() table_list = meta.tables.keys() return table_list def _close_conn(self): pass class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def _get_exec(self): if hasattr(self.conn, "execute"): return self.conn else: return self.conn.cursor() @pytest.fixture(params=[("data", "iris.csv")]) def load_iris_data(self, datapath, request): import io iris_csv_file = datapath(*request.param) if not hasattr(self, "conn"): self.setup_connect() self.drop_table("iris") self._get_exec().execute(SQL_STRINGS["create_iris"][self.flavor]) with io.open(iris_csv_file, mode="r", newline=None) as iris_csv: r = csv.reader(iris_csv) next(r) # skip header row ins = SQL_STRINGS["insert_iris"][self.flavor] for row in r: self._get_exec().execute(ins, row) def _load_iris_view(self): self.drop_table("iris_view") self._get_exec().execute(SQL_STRINGS["create_view"][self.flavor]) def _check_iris_loaded_frame(self, iris_frame): pytype = iris_frame.dtypes[0].type row = iris_frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _load_test1_data(self): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] self.test_frame1 = DataFrame(data, columns=columns) def _load_test2_data(self): df = DataFrame( dict( A=[4, 1, 3, 6], B=["asd", "gsq", "ylt", "jkl"], C=[1.1, 3.1, 6.9, 5.3], D=[False, True, True, False], E=["1990-11-22", "1991-10-26", "1993-11-26", "1995-12-12"], ) ) df["E"] = to_datetime(df["E"]) self.test_frame2 = df def _load_test3_data(self): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2 ** 31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] self.test_frame3 = DataFrame(data, columns=columns) def _load_raw_sql(self): self.drop_table("types_test_data") self._get_exec().execute(SQL_STRINGS["create_test_types"][self.flavor]) ins = SQL_STRINGS["insert_test_types"][self.flavor] data = [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "DateColWithTz": "2000-01-01 00:00:00-08:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "DateColWithTz": "2000-06-01 00:00:00-07:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, }, ] for d in data: self._get_exec().execute( ins["query"], [d[field] for field in ins["fields"]] ) def _count_rows(self, table_name): result = ( self._get_exec() .execute(f"SELECT count(*) AS count_1 FROM {table_name}") .fetchone() ) return result[0] def _read_sql_iris(self): iris_frame = self.pandasSQL.read_query("SELECT * FROM iris") self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_parameter(self): query = SQL_STRINGS["read_parameters"][self.flavor] params = ["Iris-setosa", 5.1] iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _read_sql_iris_named_parameter(self): query = SQL_STRINGS["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) self._check_iris_loaded_frame(iris_frame) def _to_sql(self, method=None): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=method) assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _to_sql_empty(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1.iloc[:0], "test_frame1") def _to_sql_fail(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") assert self.pandasSQL.has_table("test_frame1") msg = "Table 'test_frame1' already exists" with pytest.raises(ValueError, match=msg): self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") self.drop_table("test_frame1") def _to_sql_replace(self): self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="replace") assert self.pandasSQL.has_table("test_frame1") num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_append(self): # Nuke table just in case self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="fail") # Add to table again self.pandasSQL.to_sql(self.test_frame1, "test_frame1", if_exists="append") assert self.pandasSQL.has_table("test_frame1") num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries self.drop_table("test_frame1") def _to_sql_method_callable(self): check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) self.drop_table("test_frame1") self.pandasSQL.to_sql(self.test_frame1, "test_frame1", method=sample) assert self.pandasSQL.has_table("test_frame1") assert check == [1] num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1") def _roundtrip(self): self.drop_table("test_frame_roundtrip") self.pandasSQL.to_sql(self.test_frame1, "test_frame_roundtrip") result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) self.pandasSQL.to_sql(df, "test_to_sql_saves_index") ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: trans.execute("CREATE TABLE test_trans (A INT, B TEXT)") class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str def setup_connect(self): self.conn = self.connect() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def load_test_data_and_sql(self): self._load_iris_view() self._load_test1_data() self._load_test2_data() self._load_test3_data() self._load_raw_sql() def test_read_sql_iris(self): iris_frame = sql.read_sql_query("SELECT * FROM iris", self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) self._check_iris_loaded_frame(iris_frame) def test_to_sql(self): sql.to_sql(self.test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(self.test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self): sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(self.test_frame1) num_rows = self._count_rows("test_frame3") assert num_rows == num_entries def test_to_sql_append(self): sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="fail") # Add to table again sql.to_sql(self.test_frame1, "test_frame4", self.conn, if_exists="append") assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(self.test_frame1) num_rows = self._count_rows("test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self): sql.to_sql(self.test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(self.test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self): sql.to_sql(self.test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = self.test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, self.test_frame1) def test_roundtrip_chunksize(self): sql.to_sql( self.test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, self.test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = sql.execute("SELECT * FROM iris", con=self.conn) row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types_test_data", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ pd.Timestamp(2000, 1, 3, 0, 0, 0), pd.Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ pd.Timestamp(1986, 12, 25, 0, 0, 0), pd.Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ pd.Timestamp("2010-10-10"), pd.Timestamp("2010-12-12"), ] def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types_test_data", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): df.to_sql("test_timedelta", self.conn) result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].astype("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): df.to_sql("test_complex", self.conn) @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' sql.to_sql(temp_frame, "test_index_label", self.conn) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] sql.to_sql(temp_frame, "test_index_label", self.conn, if_exists="replace") frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql("test_multiindex_roundtrip", self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self): create_sql = sql.get_schema(self.test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_dtypes(self): float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) dtype = sqlalchemy.Integer if self.mode == "sqlalchemy" else "INTEGER" create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema( self.test_frame1, "test", con=self.conn, keys=["A", "B"] ) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list("abcde")) df.to_sql("test_chunksize", self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["<NAME>", "<NAME>", "<NAME>"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql("test_categorical", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql("test_unicode", self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("d1187b08-4943-4c8d-a7f6", self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) @pytest.mark.single @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" def connect(self): return sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self): # test columns argument in read_table sql.to_sql(self.test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): # create invalid table qry = """CREATE TABLE invalid (x INTEGER, y UNKNOWN);""" self.conn.execute(qry) qry = """CREATE TABLE other_table (x INTEGER, y INTEGER);""" self.conn.execute(qry) with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) # Verify some things assert len(w) == 0 def test_warning_case_insensitive_table_name(self): # see gh-7815 # # We can't test that this warning is triggered, a the database # configuration would have to be altered. But here we test that # the warning is certainly NOT triggered in a normal case. with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # This should not trigger a Warning self.test_frame1.to_sql("CaseSensitive", self.conn) # Verify some things assert len(w) == 0 def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, sqltypes.TIMESTAMP) def test_database_uri_string(self): # Test read_sql and .to_sql method with a database URI (GH10654) test_frame1 = self.test_frame1 # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(table, db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) # using driver that will not be installed on Travis to trigger error # in sqlalchemy.create_engine -> test passing of this error to user try: # the rest of this test depends on pg8000's being absent import pg8000 # noqa pytest.skip("pg8000 is installed") except ImportError: pass db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def _make_iris_table_metadata(self): sa = sqlalchemy metadata = sa.MetaData() iris = sa.Table( "iris", metadata, sa.Column("SepalLength", sa.REAL), sa.Column("SepalWidth", sa.REAL), sa.Column("PetalLength", sa.REAL), sa.Column("PetalWidth", sa.REAL), sa.Column("Name", sa.TEXT), ) return iris def test_query_by_text_obj(self): # WIP : GH10846 name_text = sqlalchemy.text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 iris = self._make_iris_table_metadata() name_select = sqlalchemy.select([iris]).where( iris.c.Name == sqlalchemy.bindparam("name") ) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} class _EngineToConnMixin: """ A mixin that causes setup_connect to create a conn rather than an engine. """ @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): super().load_test_data_and_sql() engine = self.conn conn = engine.connect() self.__tx = conn.begin() self.pandasSQL = sql.SQLDatabase(conn) self.__engine = engine self.conn = conn yield self.__tx.rollback() self.conn.close() self.conn = self.__engine self.pandasSQL = sql.SQLDatabase(self.__engine) # XXX: # super().teardown_method(method) @pytest.mark.single class TestSQLApiConn(_EngineToConnMixin, TestSQLApi): pass @pytest.mark.single class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: conn = self.connect(name) sql.to_sql(self.test_frame3, "test_frame3_legacy", conn, index=False) conn.close() conn = self.connect(name) result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) conn.close() tm.assert_frame_equal(self.test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas_nosetest" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_safe_names_warning(self): # GH 6798 df = DataFrame([[1, 2], [3, 4]], columns=["a", "b "]) # has a space # warns on create table with spaces in names with tm.assert_produces_warning(): sql.to_sql(df, "test_frame3_legacy", self.conn, index=False) def test_get_schema2(self): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(self.test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('""') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["201412120154", "201412110254"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @pytest.fixture(autouse=True, scope="class") def setup_class(cls): cls.setup_import() cls.setup_driver() conn = cls.connect() conn.connect() def load_test_data_and_sql(self): self._load_raw_sql() self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() @classmethod def setup_import(cls): # Skip this test if SQLAlchemy not available if not SQLALCHEMY_INSTALLED: pytest.skip("SQLAlchemy not installed") @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def connect(cls): raise NotImplementedError() def setup_connect(self): try: self.conn = self.connect() self.pandasSQL = sql.SQLDatabase(self.conn) # to test if connection can be made: self.conn.connect() except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): self._to_sql(method="multi") def test_to_sql_method_callable(self): self._to_sql_method_callable() def test_create_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") def test_drop_table(self): temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) pandasSQL.to_sql(temp_frame, "temp_frame") assert temp_conn.has_table("temp_frame") pandasSQL.drop_table("temp_frame") assert not temp_conn.has_table("temp_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) self._check_iris_loaded_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, np.object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2 ** 62]}) df.to_sql("test_bigint", self.conn, index=False) result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if is_datetime64_dtype(col.dtype): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif is_datetime64tz_dtype(col.dtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = pd.read_sql_query("select * from types_test_data", self.conn) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) df = pd.read_sql_query( "select * from types_test_data", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): pytest.skip("no column with datetime with time zone") col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = pd.concat( list( pd.read_sql_query( "select * from types_test_data", self.conn, chunksize=1 ) ), ignore_index=True, ) col = df.DateColWithTz assert is_datetime64tz_dtype(col.dtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types_test_data", self.conn) col = expected.DateColWithTz assert is_datetime64tz_dtype(col.dtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types_test_data", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) expected.to_sql("test_datetime_tz", self.conn, index=False) if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H") expected = DataFrame({"nums": range(5)}, index=dates) expected.to_sql("foo_table", self.conn, index_label="info_date") result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types_test_data", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types_test_data", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types_test_data", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.to_sql("test_datetime", self.conn) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan df.to_sql("test_datetime", self.conn, index=False) # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = TestSQLiteFallback.connect() sql.to_sql(df, "test_time2", sqlite_conn, index=False) res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter sql.to_sql(df, "test_time3", self.conn, index=False) if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2 ** 25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again df.to_sql("test_read_write", self.conn, index=False) df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) df.to_sql("test_nan", self.conn, index=False) # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) df.to_sql("test_nan", self.conn, index=False) # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) self._load_test3_data() tbl = "test_get_schema_create_table" create_sql = sql.get_schema(self.test_frame3, tbl, con=self.conn) blank_test_df = self.test_frame3.iloc[:0] self.drop_table(tbl) self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl) def test_dtype(self): cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": sqlalchemy.TEXT}) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, sqlalchemy.TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": str}) # GH9083 df.to_sql("dtype_test3", self.conn, dtype={"B": sqlalchemy.String(10)}) meta.reflect() sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, sqlalchemy.String) assert sqltype.length == 10 # single dtype df.to_sql("single_dtype_test", self.conn, dtype=sqlalchemy.TEXT) meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, sqlalchemy.TEXT) assert isinstance(sqltypeb, sqlalchemy.TEXT) def test_notna_dtype(self): cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) returned_df = sql.read_sql_table(tbl, self.conn) # noqa meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() if self.flavor == "mysql": my_type = sqltypes.Integer else: my_type = sqltypes.Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, sqltypes.DateTime) assert isinstance(col_dict["Int"].type, sqltypes.Integer) assert isinstance(col_dict["Float"].type, sqltypes.Float) def test_double_precision(self): V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) df.to_sql( "test_dtypes", self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": sqlalchemy.Float(precision=23)}, ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = sqlalchemy.schema.MetaData(bind=self.conn) meta.reflect() col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, sqltypes.Float) assert isinstance(col_dict["f64"].type, sqltypes.Float) assert isinstance(col_dict["i32"].type, sqltypes.Integer) assert isinstance(col_dict["i64"].type, sqltypes.BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 def foo(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def bar(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def main(connectable): with connectable.connect() as conn: with conn.begin(): foo_data = conn.run_callable(foo) conn.run_callable(bar, foo_data) DataFrame({"test_foo_data": [0, 1, 2]}).to_sql("test_foo_data", self.conn) main(self.conn) def test_temporary_table(self): test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative.declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) spam = sqlalchemy.Column(sqlalchemy.Unicode(30), nullable=False) Session = sa_session.sessionmaker(bind=self.conn) session = Session() with session.transaction: conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=sqlalchemy.select([Temporary.spam]), con=conn) tm.assert_frame_equal(df, expected) class _TestSQLAlchemyConn(_EngineToConnMixin, _TestSQLAlchemy): def test_transactions(self): pytest.skip("Nested transactions rollbacks don't work with Pandas") class _TestSQLiteAlchemy: """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types_test_data", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") df.to_sql("test_bigintwarning", self.conn, index=False) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") sql.read_sql_table("test_bigintwarning", self.conn) assert len(w) == 0 class _TestMySQLAlchemy: """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" @classmethod def connect(cls): url = "mysql+{driver}://root@localhost/pandas_nosetest" return sqlalchemy.create_engine( url.format(driver=cls.driver), connect_args=cls.connect_args ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): df = sql.read_sql_table("types_test_data", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_read_procedure(self): import pymysql # see GH7324. Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql("test_procedure", self.conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_procedure; END""" connection = self.conn.connect() trans = connection.begin() try: r1 = connection.execute(proc) # noqa trans.commit() except pymysql.Error: trans.rollback() raise res1 = sql.read_sql_query("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", self.conn) tm.assert_frame_equal(df, res2) class _TestPostgreSQLAlchemy: """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" @classmethod def connect(cls): url = "postgresql+{driver}://postgres@localhost/pandas_nosetest" return sqlalchemy.create_engine(url.format(driver=cls.driver)) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe to different schema's df.to_sql("test_schema_public", self.conn, index=False) df.to_sql( "test_schema_public_explicit", self.conn, index=False, schema="public" ) df.to_sql("test_schema_other", self.conn, index=False, schema="other") # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema self.conn.execute("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.execute("CREATE SCHEMA other;") # write dataframe with different if_exists options df.to_sql("test_schema_other", self.conn, schema="other", index=False) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="replace", ) df.to_sql( "test_schema_other", self.conn, schema="other", index=False, if_exists="append", ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, sqlalchemy.engine.Engine): engine2 = self.connect() meta = sqlalchemy.MetaData(engine2, schema="other") pdsql = sql.SQLDatabase(engine2, meta=meta) pdsql.to_sql(df, "test_schema_other2", index=False) pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_copy_from_callable_insertion_method(self): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join(f'"{k}"' for k in keys) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) expected.to_sql( "test_copy_insert", self.conn, index=False, method=psql_insert_copy ) result = sql.read_sql_table("test_copy_insert", self.conn) tm.assert_frame_equal(result, expected) @pytest.mark.single @pytest.mark.db class TestMySQLAlchemy(_TestMySQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestMySQLAlchemyConn(_TestMySQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemy(_TestPostgreSQLAlchemy, _TestSQLAlchemy): pass @pytest.mark.single @pytest.mark.db class TestPostgreSQLAlchemyConn(_TestPostgreSQLAlchemy, _TestSQLAlchemyConn): pass @pytest.mark.single class TestSQLiteAlchemy(_TestSQLiteAlchemy, _TestSQLAlchemy): pass @pytest.mark.single class TestSQLiteAlchemyConn(_TestSQLiteAlchemy, _TestSQLAlchemyConn): pass # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback @pytest.mark.single class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def connect(cls): return sqlite3.connect(":memory:") def setup_connect(self): self.conn = self.connect() def load_test_data_and_sql(self): self.pandasSQL = sql.SQLiteDatabase(self.conn) self._load_test1_data() @pytest.fixture(autouse=True) def setup_method(self, load_iris_data): self.load_test_data_and_sql() def test_read_sql(self): self._read_sql_iris() def test_read_sql_parameter(self): self._read_sql_iris_parameter() def test_read_sql_named_parameter(self): self._read_sql_iris_named_parameter() def test_to_sql(self): self._to_sql() def test_to_sql_empty(self): self._to_sql_empty() def test_to_sql_fail(self): self._to_sql_fail() def test_to_sql_replace(self): self._to_sql_replace() def test_to_sql_append(self): self._to_sql_append() def test_to_sql_method_multi(self): # GH 29921 self._to_sql(method="multi") def test_create_and_drop_table(self): temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) self.pandasSQL.to_sql(temp_frame, "drop_test_frame") assert self.pandasSQL.has_table("drop_test_frame") self.pandasSQL.drop_table("drop_test_frame") assert not self.pandasSQL.has_table("drop_test_frame") def test_roundtrip(self): self._roundtrip() def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) df.to_sql("test_date", self.conn, index=False) res = read_sql_query("SELECT * FROM test_date", self.conn) if self.flavor == "sqlite": # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == "mysql": tm.assert_frame_equal(res, df) def test_datetime_time(self): # test support for datetime.time, GH #8341 df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) df.to_sql("test_time", self.conn, index=False) res = read_sql_query("SELECT * FROM test_time", self.conn) if self.flavor == "sqlite": # comes back as strings expected = df.applymap(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " + f"AND tbl_name = '{tbl_name}'", self.conn, ) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute(f"PRAGMA table_info({table})") for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError(f"Table {table}, column {column} not found") def test_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) df.to_sql("dtype_test", self.conn) df.to_sql("dtype_test2", self.conn, dtype={"B": "STRING"}) # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER" assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING" msg = r"B \(<class 'bool'>\) not a string" with pytest.raises(ValueError, match=msg): df.to_sql("error", self.conn, dtype={"B": bool}) # single dtype df.to_sql("single_dtype_test", self.conn, dtype="STRING") assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING" assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING" def test_notna_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" df.to_sql(tbl, self.conn) assert self._get_sqlite_column_type(tbl, "Bool") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Date") == "TIMESTAMP" assert self._get_sqlite_column_type(tbl, "Int") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Float") == "REAL" def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) msg = "Empty table or column name specified" with pytest.raises(ValueError, match=msg): df.to_sql("", self.conn) for ndx, weird_name in enumerate( [ "test_weird_name]", "test_weird_name[", "test_weird_name`", 'test_weird_name"', "test_weird_name'", "_b.test_weird_name_01-30", '"_b.test_weird_name_01-30"', "99beginswithnumber", "12345", "\xe9", ] ): df.to_sql(weird_name, self.conn) sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) c_tbl = f"test_weird_col_name{ndx:d}" df2.to_sql(c_tbl, self.conn) sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) def date_format(dt): """Returns date in YYYYMMDD format.""" return dt.strftime("%Y%m%d") _formatters = { datetime: "'{}'".format, str: "'{}'".format, np.str_: "'{}'".format, bytes: "'{}'".format, float: "{:.8f}".format, int: "{:d}".format, type(None): lambda x: "NULL", np.float64: "{:.10f}".format, bool: "'{!s}'".format, } def format_query(sql, *args): """ """ processed_args = [] for arg in args: if isinstance(arg, float) and isna(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None, cur=None): """Replace removed sql.tquery function""" res = sql.execute(query, con=con, cur=cur).fetchall() if res is None: return None else: return list(res) @pytest.mark.single class TestXSQLite(SQLiteMixIn): @pytest.fixture(autouse=True) def setup_method(self, request, datapath): self.method = request.function self.conn = sqlite3.connect(":memory:") # In some test cases we may close db connection # Re-open conn here so we can perform cleanup in teardown yield self.method = request.function self.conn = sqlite3.connect(":memory:") def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) cur = self.conn.cursor() ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, check_less_precise=True) def test_execute(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.iloc[0] sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for l in lines: tokens = l.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert 'PRIMARY KEY ("A", "B")' in create_sql cur = self.conn.cursor() cur.execute(create_sql) def test_execute_fail(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = self.conn.cursor() cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception): tquery("select * from test", con=self.conn) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): sql.to_sql(frame, name="test_table", con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, expected) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() new_idx = Index(np.arange(len(frame2))) + 10 frame2["Idx"] = new_idx.copy() sql.to_sql(frame2, name="test_table2", con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col="Idx") expected = frame.copy() expected.index = new_idx expected.index.name = "Idx" tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({"From": np.ones(5)}) sql.to_sql(df, con=self.conn, name="testkeywords", index=False) def test_onecolumn_of_integer(self): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=["c0"]) sql.to_sql(mono_df, con=self.conn, name="mono_df", index=False) # computing the sum via sql con_x = self.conn the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) # it should not fail, and gives 3 ( Issue #3628 ) assert the_sum == 3 result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) table_name = "table_if_exists" sql_select = f"SELECT * FROM {table_name}" def clean_up(test_table_to_drop): """ Drops tables created from individual tests so no dependencies arise from sequential tests """ self.drop_table(test_table_to_drop) msg = "'notvalidvalue' is not valid for if_exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="notvalidvalue", ) clean_up(table_name) # test if_exists='fail' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) msg = "Table 'table_if_exists' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail" ) # test if_exists='replace' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=self.conn) == [(3, "C"), (4, "D"), (5, "E")] clean_up(table_name) # test if_exists='append' sql.to_sql( frame=df_if_exists_1, con=self.conn, name=table_name, if_exists="fail", index=False, ) assert tquery(sql_select, con=self.conn) == [(1, "A"), (2, "B")] sql.to_sql( frame=df_if_exists_2, con=self.conn, name=table_name, if_exists="append", index=False, ) assert tquery(sql_select, con=self.conn) == [ (1, "A"), (2, "B"), (3, "C"), (4, "D"), (5, "E"), ] clean_up(table_name) @pytest.mark.single @pytest.mark.db @pytest.mark.skip( reason="gh-13611: there is no support for MySQL if SQLAlchemy is not installed" ) class TestXMySQL(MySQLMixIn): @pytest.fixture(autouse=True, scope="class") def setup_class(cls): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas_nosetest") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) except pymysql.Error: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) @pytest.fixture(autouse=True) def setup_method(self, request, datapath): pymysql = pytest.importorskip("pymysql") pymysql.connect(host="localhost", user="root", passwd="", db="pandas_nosetest") try: pymysql.connect(read_default_group="pandas") except pymysql.ProgrammingError: raise RuntimeError( "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) except pymysql.Error: raise RuntimeError( "Cannot connect to database. " "Create a group of connection parameters under the heading " "[pandas] in your system's mysql default file, " "typically located at ~/.my.cnf or /etc/.my.cnf." ) self.method = request.function def test_basic(self): frame = tm.makeTimeDataFrame() self._check_roundtrip(frame) def test_write_row_by_row(self): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for idx, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, cur=cur) self.conn.commit() result = sql.read_sql("select * from test", con=self.conn) result.index = frame.index tm.assert_frame_equal(result, frame, check_less_precise=True) def test_chunksize_read_type(self): frame = tm.makeTimeDataFrame() frame.index.name = "index" drop_sql = "DROP TABLE IF EXISTS test" cur = self.conn.cursor() cur.execute(drop_sql) sql.to_sql(frame, name="test", con=self.conn) query = "select * from test" chunksize = 5 chunk_gen = pd.read_sql_query( sql=query, con=self.conn, chunksize=chunksize, index_col="index" ) chunk_df = next(chunk_gen) tm.assert_frame_equal(frame[:chunksize], chunk_df) def test_execute(self): frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test") cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" row = frame.iloc[0].values.tolist() sql.execute(ins, self.conn, params=tuple(row)) self.conn.commit() result = sql.read_sql("select * from test", self.conn) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for l in lines: tokens = l.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" frame = tm.makeTimeDataFrame() drop_sql = "DROP TABLE IF EXISTS test" create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert "PRIMARY KEY (`A`, `B`)" in create_sql cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) def test_execute_fail(self): drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)', self.conn) with pytest.raises(Exception): sql.execute('INSERT INTO test VALUES("foo", "bar", 7)', self.conn) def test_execute_closed_connection(self, request, datapath): drop_sql = "DROP TABLE IF EXISTS test" create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a(5), b(5)) ); """ cur = self.conn.cursor() cur.execute(drop_sql) cur.execute(create_sql) sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)', self.conn) self.conn.close() with pytest.raises(Exception): tquery("select * from test", con=self.conn) # Initialize connection again (needed for tearDown) self.setup_method(request, datapath) def test_na_roundtrip(self): pass def _check_roundtrip(self, frame): drop_sql = "DROP TABLE IF EXISTS test_table" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame, name="test_table", con=self.conn, index=False) result = sql.read_sql("select * from test_table", self.conn) # HACK! Change this once indexes are handled properly. result.index = frame.index result.index.name = frame.index.name expected = frame tm.assert_frame_equal(result, expected) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() index = Index(np.arange(len(frame2))) + 10 frame2["Idx"] = index drop_sql = "DROP TABLE IF EXISTS test_table2" cur = self.conn.cursor() with warnings.catch_warnings(): warnings.filterwarnings("ignore", "Unknown table.*") cur.execute(drop_sql) sql.to_sql(frame2, name="test_table2", con=self.conn, index=False) result = sql.read_sql("select * from test_table2", self.conn, index_col="Idx") expected = frame.copy() # HACK! Change this once indexes are handled properly. expected.index = index expected.index.names = result.index.names tm.assert_frame_equal(expected, result) def test_keyword_as_column_names(self): df = DataFrame({"From": np.ones(5)}) sql.to_sql( df, con=self.conn, name="testkeywords", if_exists="replace", index=False ) def test_if_exists(self): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 =
DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]})
pandas.DataFrame
import pandas as pd import numpy as np import os def parse_uniProt_map(uniProtMap): df = pd.read_csv(uniProtMap, sep='\t') df.dropna(inplace=True) uniProtMapping = dict(zip(list(df['Entry']), list(df['Gene names (primary )']))) return uniProtMapping def parse_HuRI(ppiFile='./data/atlas/HuRI.psi', uniProtMap="./data/UniProt/uniprot-taxonomy_9606.tab", wFile_PPI='./data/parsed/HuRI_PPI.pkl', root='./'): ppiFile, uniProtMap, wFile_PPI = root+ppiFile, root+uniProtMap, root+wFile_PPI if os.path.exists(wFile_PPI): return pd.read_pickle(wFile_PPI) uniProtMapping = parse_uniProt_map(uniProtMap) # only direct interaction & physical association & association are PPIs ppi_df = pd.read_csv(ppiFile, sep='\t', header=None) inv_ppis = np.transpose(np.asarray([ppi_df[0], ppi_df[1]])) ppis = [] for i in inv_ppis: if i[0] == "-" or i[1] == "-": continue ppi_h = "-".join(i[0].split(":")[1].split("-")[:-1]) if len(i[0].split(":")[1].split("-")) > 1 else i[0].split(":")[1].split("-")[0] ppi_t = "-".join(i[1].split(":")[1].split("-")[:-1]) if len(i[1].split(":")[1].split("-")) > 1 else i[1].split(":")[1].split("-")[0] ppis.append([ppi_h, ppi_t]) mappedPPIs = [] for ppi in ppis: if ppi[0] not in uniProtMapping or ppi[1] not in uniProtMapping: continue mappedPPIs.append([uniProtMapping[ppi[0]], uniProtMapping[ppi[1]]]) mappedPPIs = np.transpose(np.asarray(mappedPPIs)) ppi_df =
pd.DataFrame({'nodeA': mappedPPIs[0], 'nodeB': mappedPPIs[1]})
pandas.DataFrame
from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import QThread, pyqtSignal from GUI import Ui_MainWindow # generated GUI py file import sys import os import pandas as pd import numpy as np from dateutil.relativedelta import relativedelta from datetime import datetime import ctypes import matplotlib.pyplot as plt import matplotlib.ticker as mtick import pwlf from GPyOpt.methods import BayesianOptimization import openpyxl import math from scipy import stats # python included dependencies: datetime, ctypes, math, os, sys # installed package dependencies: dateutil, gpy, matplotlib, numpy, openpyxl (and image), pandas (and xlsxwriter), pwlf, pyqt, scipi # class to populate a PyQT table view with a pandas dataframe class PandasModel(QtCore.QAbstractTableModel): def __init__(self, data, parent=None): QtCore.QAbstractTableModel.__init__(self, parent) self._data = data def rowCount(self, parent=None): return self._data.shape[0] def columnCount(self, parent=None): return self._data.shape[1] def data(self, index, role=QtCore.Qt.DisplayRole): if index.isValid(): if role == QtCore.Qt.DisplayRole: return str(self._data.iloc[index.row(), index.column()]) return None def headerData(self, col, orientation, role): if orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole: return self._data.columns[col] return None # class to handle threading of datapoints so GUI is responsive class DataPointsWorkThread(QThread): signal = pyqtSignal('PyQt_PyObject') signal_pb = pyqtSignal('PyQt_PyObject') def __init__(self, data, start_date, end_date, pb_inc, option): QThread.__init__(self) # create instance of WorkerThread class and pass variables from application class as instance variables self.data = data self.start_date = start_date self.end_date = end_date self.pb_inc = pb_inc self.option = option def run(self): # local variables from instance variables for reference convenience data = self.data start_date = self.start_date end_date = self.end_date pb_inc = self.pb_inc option = self.option # initialize datapoints data frame and progress bar df = pd.DataFrame() pb_update = 0 # group data into month intervals increasing each item by 1 day for date in pd.date_range(start_date, end_date): start_date_add_days = date + relativedelta(months=+1,days=-1) paid_date = start_date_add_days + relativedelta(months=+2) if option == "option2": start_date_add_month = date + relativedelta(months=+1) start_date_add_months = date + relativedelta(months=+2,days=-1) paid_date_add_months = start_date_add_months + relativedelta(months=+2) elif option == "option3": start_date_add_month = date + relativedelta(months=+1) start_date_add_months = date + relativedelta(months=+12,days=-1) paid_date_add_months = start_date_add_months + relativedelta(months=+2) col1 = date col2 = start_date_add_days # sum payment data following criteria of allowing for additional 2 months of paid dates if option == "option1": col3 = round(data[(data.a >= date) & (data.a <= start_date_add_days) & (data.b <= paid_date)].sum()['c'],2) elif option == "option2": col3 = round(data[(data.a >= date) & (data.a <= start_date_add_days) & (data.b <= paid_date)].sum()['c'],2) elif option == "option3": col3 = round(data[(data.a >= date) & (data.a <= start_date_add_days) & (data.b <= paid_date)].sum()['c'],2) * 12 if option == "option1": df = df.append({'A' : col1 , 'B' : col2, 'C' : col3},ignore_index=True) else: col4 = round(data[(data.a >= start_date_add_month) & (data.a <= start_date_add_months) & (data.b <= paid_date_add_months)].sum()['c'],2) col5 = col3 - col4 df = df.append({'A' : col1 , 'B' : col2, 'C' : col3, 'D' : col4, 'E' : col5},ignore_index=True) # update progress pb_update = pb_update + (100/pb_inc) self.signal_pb.emit(pb_update) # find index of maximum and corresponding date refactor == True is redundant isChecked is Boolean if option == "option1": index_max_C = df[(df.C == df.max()['C'])].index.tolist() else: index_max_C = df[(df.E == df.max()['E'])].index.tolist() list_date_max_C = df['A'].iloc[index_max_C].tolist() list_dollars_max_C = df['C'].iloc[index_max_C].tolist() # clear dataframe df = pd.DataFrame() # reconstruct dataframe respective to maximum date date_max_C = list_date_max_C[0] dollars_max_C = list_dollars_max_C[0] DOI = (date_max_C + relativedelta(months=+1)).strftime("%#m/%#d/%Y") DOI_dollars = '${:,.2f}'.format(dollars_max_C) date_max_C_end = date_max_C + relativedelta(months=+3,days=-1) for its in range(36): df = df.append({'A': str(date_max_C).replace('00:00:00',''), 'B': str(date_max_C + relativedelta(months=+1,days=-1)).replace('00:00:00',''), 'C': round(data[(data.a >= date_max_C) & (data.a <= date_max_C + relativedelta(months=+1,days=-1)) & (data.b <= date_max_C_end)].sum()['c'],2)},ignore_index=True) # update progress pb_update = pb_update + (100/pb_inc) self.signal_pb.emit(pb_update) date_max_C = date_max_C + relativedelta(months=-1) # sort new dataframe and reset index df = df.sort_values(by="A") df = df.reset_index(drop=True) # define x and y outputs x = np.arange(1,37) y = np.array(df['C'].tolist()) # drop and readd A and B with formatting A_format, B_format = [], [] a = np.array(df['A'].tolist()) b = np.array(df['B'].tolist()) for each in a: A_format.append(pd.to_datetime(each).strftime("%#m/%#d/%Y")) df.drop(columns=['A']) df['A'] = A_format for each in b: B_format.append(pd.to_datetime(each).strftime("%#m/%#d/%Y")) df.drop(columns=['A']) df['B'] = B_format # replace with final C_format = [] for each in y: C_format.append('${:,.2f}'.format(each)) df.drop(columns=['C']) df['C'] = C_format # create a dictionary of variables to pass to display dp_output = { "df":df, "x":x, "y":y, "DOI":DOI, "DOI_dollars":DOI_dollars } # emitting a pyqtSignal named display_output with output dictionary data self.signal.emit(dp_output) # class to handle threading of regression so GUI is responsive class RegressionWorkThread(QThread): signal = pyqtSignal('PyQt_PyObject') def __init__(self, x, y, df, max_segments, max_iter, isnt_discretized): QThread.__init__(self) # create instance of WorkerThread class and pass variables from application class as instance variables self.x = x self.y = y self.df = df self.max_segments = max_segments self.max_iter = max_iter self.isnt_discretized = isnt_discretized def run(self): # local variables from instance variables for reference convenience x = self.x y = self.y df = self.df max_segments = self.max_segments max_iter = self.max_iter isnt_discretized = self.isnt_discretized # reduce df if user has already populated df, selected new option, and ran again if len(df.columns) > 3: df = df[['Date Range Start','Date Range End','Sum']] def my_obj(x): l = y.mean()*0.001 # penalty parameter f = np.zeros(x.shape[0]) for i, j in enumerate(x): my_pwlf.fit(j[0]) f[i] = my_pwlf.ssr + (l*j[0]) return f # initialize piecewise linear fit with your x and y data my_pwlf = pwlf.PiecewiseLinFit(x, y) # define the lower and upper bound for the number of line segements bounds = [{'name': 'var_1', 'type': 'discrete', 'domain': np.arange(2, max_segments + 1)}] np.random.seed(12121) myBopt = BayesianOptimization(my_obj, domain=bounds, model_type='GP', initial_design_numdata=10, initial_design_type='latin', exact_feval=True, verbosity=False, verbosity_model=False) # perform the bayesian optimization to find the optimum number of line segments myBopt.run_optimization(max_iter=max_iter, verbosity=False) # perform the fit for the optimum my_pwlf.fit(myBopt.x_opt) # generate regression model and prepare variables and stats for df if isnt_discretized: # time recode is continuous without discretization, all explanatory variables vary # predict for the determined points xHat = np.linspace(min(x), max(x), num=3501) # stretch linespace so segments are not jagged yHat = my_pwlf.predict(xHat) # calculate n n = len(x) # get model parameters beta = my_pwlf.beta # calculate k k = len(beta) # calculate the standard errors associated with each beta parameter se = my_pwlf.standard_errors() # calculate t-value t = beta / se # calculate the p-values pvalues = my_pwlf.p_values() # calculate r-squared, multiple r, and r-squared adjusted # because k includes y-intercept: n-(k+1) => (n-k) for r_sq_adj, mse, and dof , (k) => (k-1) for dof and msr r_sq = my_pwlf.r_squared() r_mult = math.sqrt(r_sq) r_sq_adj = 1 - ((n - 1) / (n - k) * (1 - r_sq)) # calculate sums of squares, means of squares, and standard error fit_breaks = my_pwlf.fit_breaks ybar = np.ones(my_pwlf.n_data) * np.mean(my_pwlf.y_data) ydiff = my_pwlf.y_data - ybar sst = np.dot(ydiff, ydiff) sse = my_pwlf.fit_with_breaks(fit_breaks) ssr = (sst - sse) mse = sse / (n - k) msr = ssr / (k - 1) S = math.sqrt(mse) # calculate F-statistic Fstat = (msr / mse) # calculate degrees of freedom (regression, residual/errors, and total) dof = [(k - 1),(n - k),(n - 1)] # populate yHats array unique to pwlf yHat_values, yHat_index = [], 0 for yHats in range(1,37): yHat_values.append("${:,.2f}".format(yHat[yHat_index])) yHat_index += 100 # construct independent variables dataframe # construct the regression matrix A = np.zeros((n, my_pwlf.n_parameters)) A[:, 0] = 1.0 A[:, 1] = x - my_pwlf.fit_breaks[0] for i in range(my_pwlf.n_segments-1): int_locations = x > my_pwlf.fit_breaks[i+1] if sum(int_locations) > 0: int_index = np.argmax(int_locations) A[int_index:, i+2] = x[int_index:] - my_pwlf.fit_breaks[i+1] # transform regression matrix to a dataframe with structure columns = yint, x1, x2, ..., xn B = list(map(list,zip(*A))) # construct independent variables dataframe df_variables = pd.DataFrame() for arrays in range(len(A[0])): df_variables.insert(loc=arrays,column="col:"+str(arrays),value=B[arrays]) # drop y-intercept column df_variables.drop(df_variables.columns[0], axis=1, inplace=True) else: # time recode is continuous with discretization, one explanatory variables varies while others held constant # discretize breakpoints breaks = my_pwlf.fit(myBopt.x_opt) breaks_int = [] for breakpoint in breaks: breaks_int.append(round(breakpoint,0)) # construct regression matrix result = []; template = [0] * ( len(breaks_int) - 1 ) # create a 0-initialized array of the length of the number of segments cursorPosition = 0; cursorValue = 1; cursorMax = breaks_int[cursorPosition+1] for row in range( int(breaks_int[-1]) ): thisrow = template.copy() # change the value for this row thisrow[cursorPosition] = cursorValue result.append(thisrow) # refer to the result to build on next time template = thisrow # move the cursor and reset its values if (cursorValue >= cursorMax): cursorPosition += 1 if cursorPosition >= (len(breaks_int) - 1): break cursorValue = 1 cursorMax = breaks_int[cursorPosition+1] - breaks_int[cursorPosition] else: cursorValue += 1 # transpose A so the form is correct result = list(map(list, zip(*result))) # add intercept row result.append([1]*len(result[0])) # transpose to regression matrix form A = (np.array(result)).T # calculate beta and sse # note: y-intercept is last value in beta beta, sse, rank, s = np.linalg.lstsq(A, y, rcond=None) # predict for the determined points xHat = np.linspace(min(x), max(x), num=36, endpoint=True) yHat = np.dot(A,beta) # calculate n n = len(x) # calculate k k = len(beta) # calculate residuals e = yHat - y # calculate variance variance = np.dot(e, e) / (n - k) # calculate se se = np.sqrt(variance * (np.linalg.inv(np.dot(A.T,A)).diagonal())) # calculate t-value t = beta / se # calculate p-value pvalues = 2.0 * stats.t.sf(np.abs(t), df=n-k-1) # calculate sums of squares, means of squares, and standard error # because k includes y-intercept: n-(k+1) => (n-k) for r_sq_adj, mse, and dof , (k) => (k-1) for dof and msr ybar = np.ones(n) * np.mean(y) ydiff = y - ybar sst = np.dot(ydiff, ydiff) sse = sse[0] ssr = (sst - sse) mse = sse / (n - k) msr = ssr / (k - 1) S = math.sqrt(mse) # calculate F-statistic Fstat = (msr / mse) # calculate degrees of freedom (regression, residual/errors, and total) dof = [(k - 1),(n - k),(n - 1)] # calculate r-squared, multiple r, and r-squared adjusted r_sq = 1.0 - (sse / sst) r_mult = math.sqrt(r_sq) r_sq_adj = 1 - ((n - 1) / (n - k) * (1 - r_sq)) # construct independent variables dataframe df_variables = pd.DataFrame() loc = 0 colnum = 0 for arrays in result: col = "col" + str(colnum) df_variables.insert(loc=loc,column=col,value=arrays) loc += 1 colnum += 1 # drop y-intercept column df_variables.drop(df_variables.columns[-1], axis=1, inplace=True) # populate yHats array unique to this option yHat_values = [] for yHats in yHat: yHat_values.append("${:,.2f}".format(yHats)) # in discrete calcs y-intercept parameters are listed last as opposed to first in pwlf, so we need to reorder new_beta, new_se, new_t, new_pvalues = [], [], [], [] new_beta.append(beta[-1]) new_se.append(se[-1]) new_t.append(t[-1]) new_pvalues.append(pvalues[-1]) for i in range(0,k-1): new_beta.append(beta[i]) new_se.append(se[i]) new_t.append(t[i]) new_pvalues.append(pvalues[i]) beta = new_beta se = new_se t = new_t pvalues = new_pvalues # complete dataframes # insert yHats into df df.insert(loc=3,column='col4',value=yHat_values) # insert ind variables into df loc = 4 for columns in df_variables: df.insert(loc=loc,column='x-'+str(loc-3),value=df_variables[columns]) loc += 1 # build summary statistics dataframe regres_stats_labels = ["Multiple R","R Square","Adjusted R Square","Standard Error","Observations"] regress_stats = ["{:0.2f}".format(r_mult),"{:0.2f}".format(r_sq),"{:0.2f}".format(r_sq_adj),"{:0.2f}".format(S),n] df_regress_stats = pd.DataFrame({"Regression":regres_stats_labels,"Statistics":regress_stats}) # build ANOVA dataframe SS = ["{:0.2f}".format(ssr),"{:0.2f}".format(sse),"{:0.2f}".format(sst)] MS = ["{:0.2f}".format(msr),"{:0.2f}".format(mse),''] F = ["{:0.2f}".format(Fstat),'',''] anova_labels = ['Regression','Residual','Total'] df_anova = pd.DataFrame({'':anova_labels,'df':dof,'SS':SS,'MS':MS,'F':F}) # build coefficients dataframe df_coef_labels = [] df_coef_labels.append('Y-Intercept') for i in range(1,k): df_coef_labels.append('x-'+str(i)) beta_format, se_format, t_format, pvalues_format = [], [], [], [] for i in range(k): roundbeta, roundse, roundt, roundp = "{:0.2f}".format(beta[i]), "{:0.2f}".format(se[i]), "{:0.2f}".format(t[i]), "{:0.2f}".format(pvalues[i]) beta_format.append(roundbeta) se_format.append(roundse) t_format.append(roundt) pvalues_format.append(roundp) df_coef = pd.DataFrame({'':df_coef_labels,"Coefficients":beta_format,"Standard Error":se_format,"t Stat":t_format,"P-value":pvalues_format}) # plot the results and save as a temporary file to be overwritten each iterations plt.figure() plt.plot(x, y, '-') plt.plot(xHat, yHat, 'r--') # # provide number of segments from model num_segments = str(myBopt.x_opt).replace("[","").replace(".]","") # provide function value from model func_value = "{:0.2f}".format(myBopt.fx_opt) # create a dictionary of variables to pass to display regression_output = { "num_segments":num_segments, "func_value":func_value, "df_regress_stats":df_regress_stats, "df_anova":df_anova, "df_coef":df_coef, "x":x, "y":y, "xHat":xHat, "yHat":yHat, "df":df, "plt":plt, } # emitting a pyqtSignal with output dictionary data self.signal.emit(regression_output) # main window class class DPR(QtWidgets.QMainWindow): def __init__(self, parent=None): # call the parent class's constructor QtWidgets.QMainWindow.__init__(self, parent) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.ui.pushButton_1.clicked.connect(self.select_file) self.ui.pushButton_2.clicked.connect(self.run_datapoints) self.ui.dateEdit_1.setDateTime(QtCore.QDateTime.currentDateTime()) self.ui.dateEdit_2.setDateTime(QtCore.QDateTime.currentDateTime()) self.ui.dateEdit_1.dateChanged.connect(self.update_date) self.ui.radioButton_1.setChecked(True) self.ui.radioButton_4.setChecked(True) self.ui.pushButton_3.clicked.connect(self.run_regression) self.ui.lineEdit_3.setText("5") self.ui.lineEdit_4.setText("10") self.ui.pushButton_4.clicked.connect(self.write_excel) self.ui.graphicsView_1.hide() self.ui.graphicsView_2.hide() self.MessageBox = ctypes.windll.user32.MessageBoxW # after first date edit is changed, update second date edit to be a year later def update_date(self): get_date = self.ui.dateEdit_1.date().toString("yyyy-M-d") new_datetime = pd.to_datetime(get_date) + relativedelta(months=+12) change_datetime = QtCore.QDateTime.fromString(str(new_datetime), "yyyy-M-d hh:mm:ss") self.ui.dateEdit_2.setDateTime(change_datetime) # check if file is selected def select_file(self): filename, _ = QtWidgets.QFileDialog.getOpenFileName(None, "Select File", "","Text Files (*.txt)") if filename: # outputs self.ui.lineEdit_1.setText(filename) self.filename = filename def run_datapoints(self): delimiter = str(self.ui.comboBox_1.currentText()) has_headers = self.ui.checkBox_1.isChecked() if self.ui.lineEdit_1.text() == "": self.MessageBox(None, "No file selected.", "File Error", 0) return try: data = self.prepare_data(delimiter, has_headers) except pd.errors.EmptyDataError: self.MessageBox(None, "No data in file.", "Empty Data Error", 0) return if data is 0: self.MessageBox(None, "Problem reading file. Check header declaration.", "Attribute Error", 0) return elif data is 1: self.MessageBox(None, "Column 1 should be date type.", "Attribute Error", 0) return elif data is 2: self.MessageBox(None, "Column 2 should be date type.", "Attribute Error", 0) return elif data is 3: self.MessageBox(None, "Column 3 should be currency.", "Attribute Error", 0) return # disable calculate button self.ui.pushButton_2.setEnabled(False) start_date = pd.to_datetime(self.ui.dateEdit_1.date().toString("M/d/yyyy")) end_date = pd.to_datetime(self.ui.dateEdit_2.date().toString("M/d/yyyy")) pb_inc = (end_date - start_date).days + 36 #number of items in the 2 loops in datapoints fxs if self.ui.radioButton_1.isChecked(): option = "option1" elif self.ui.radioButton_2.isChecked(): option = "option2" else: option = "option3" self.worker_thread = DataPointsWorkThread(data, start_date, end_date, pb_inc, option) self.worker_thread.signal.connect(self.display_datapoints) self.worker_thread.signal_pb.connect(self.update_progressbar) self.worker_thread.start() def update_progressbar(self, pb_update): self.ui.progressBar_1.setValue(pb_update) # construct raw data dataframe from file data def prepare_data(self, delimiter, has_headers): if delimiter == "Tab Delimited": sep = "\t" elif delimiter == 'Comma Delimited': sep = "," elif delimiter == 'Pipe Delimited': sep = "|" if has_headers: # data file has headers try: data = pd.read_csv(self.filename, skiprows=1, sep=sep, header=None) except AttributeError: return 0 else: # data file does not have headers try: data = pd.read_csv(self.filename, sep=sep, header=None) except AttributeError: return 0 data.columns = ["a", "b", "c"] try: data['a'] =
pd.to_datetime(data['a'])
pandas.to_datetime
# Copyright (c) 2019-2021 - for information on the respective copyright owner # see the NOTICE file and/or the repository # https://github.com/boschresearch/pylife # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys, os, copy import warnings import pytest import numpy as np import pandas as pd import numpy.testing as testing import pylife.strength.meanstress as MST from pylife.strength.sn_curve import FiniteLifeCurve def goodman_signal_sm(): Sm = np.array([-4., -2., -1., 0., 0.4, 2./3., 7./6.]) Sa = np.array([ 2., 2., 3./2., 1., 0.8, 2./3., 7./12.]) return pd.DataFrame({'sigma_m': Sm, 'sigma_a': Sa }) def goodman_signal_r(): Sm = np.array([-4., -2., -1., 0., 0.4, 2./3., 7./6.]) Sa = np.array([ 2., 2., 3./2., 1., 0.8, 2./3., 7./12.]) warnings.simplefilter('ignore', RuntimeWarning) R = (Sm-Sa)/(Sm+Sa) warnings.simplefilter('default', RuntimeWarning) return pd.DataFrame({'sigma_a': Sa, 'R': R}) def five_segment_signal_sm(): Sm = np.array([-12./5., -2., -1., 0., 2./5., 2./3., 7./6., 1.+23./75., 2.+1./150., 3.+11./25., 3.+142./225.]) Sa = np.array([ 6./5., 2., 3./2., 1., 4./5., 2./3., 7./12., 14./25., 301./600., 86./225., 43./225.]) return pd.DataFrame({'sigma_m': Sm, 'sigma_a': Sa }) def five_segment_signal_r(): Sm = np.array([-12./5., -2., -1., 0., 2./5., 2./3., 7./6., 1.+23./75., 2.+1./150., 3.+11./25., 3.+142./225.]) Sa = np.array([ 6./5., 2., 3./2., 1., 4./5., 2./3., 7./12., 14./25., 301./600., 86./225., 43./225.]) warnings.simplefilter('ignore', RuntimeWarning) R = (Sm-Sa)/(Sm+Sa) warnings.simplefilter('default', RuntimeWarning) return pd.DataFrame({'sigma_a': Sa, 'R': R }) def test_FKM_goodman_plain_sm(): cyclic_signal = goodman_signal_sm() Sa = cyclic_signal.sigma_a.to_numpy() Sm = cyclic_signal.sigma_m.to_numpy() M = 0.5 R_goal = 1. testing.assert_raises(ValueError, MST.FKM_goodman, Sa, Sm, M, M/3, R_goal) R_goal = -1. res = MST.FKM_goodman(Sa, Sm, M, M/3, R_goal) np.testing.assert_array_almost_equal(res, np.ones_like(res)) Sm = np.array([5]) Sa = np.array([0]) res = MST.FKM_goodman(Sa, Sm, M, M/3, R_goal) assert np.equal(res,0.) def test_FKM_goodman_single_M_sm(): cyclic_signal = goodman_signal_sm() M = 0.5 R_goal = -1. res = cyclic_signal.meanstress_mesh.FKM_goodman(pd.Series({ 'M':M, 'M2':M/3 }), R_goal).sigma_a np.testing.assert_array_almost_equal(res, np.ones_like(res)) def test_FKM_goodman_single_M_R(): cyclic_signal = goodman_signal_r() M = 0.5 R_goal = -1. res = cyclic_signal.meanstress_mesh.FKM_goodman(
pd.Series({ 'M':M, 'M2':M/3 })
pandas.Series
# coding=utf-8 """ 对train和test数据进行特征工程,生成的数据提供给make_tfrecords.py @author: yuhaitao """ import pandas as pd import os import numpy as np import gc import pickle import datetime import logging import sys import json import multiprocessing from data_loader import myDataLoader def make_features(data, params, out_dir, label_id, mode): """ 特征工程,并保存到新的数据文件中 """ with open('./feature_info.json', 'r') as f: feature_infos = json.load(f) feature_imps = pd.read_csv( f'./data/feature_imps/feature_imps_{label_id}.csv', index_col=False) # 去掉后面特征 if params['drop_1500']: del_feats = list(feature_imps['feature'].values.astype(str)[-1500:]) data_new = data.drop(axis=1, columns=del_feats) print(f'After drop 1500, data shape:{data_new.shape}') imp_feats = list(feature_imps['feature'].values.astype(str)[:50]) wide_imp_feats = [] deep_imp_feats = [] for feat in imp_feats: if data[feat].dtype == float: deep_imp_feats.append(feat) elif data[feat].dtype == int: wide_imp_feats.append(feat) else: raise ValueError # wide特征交叉 if params['wide_cross']: str_df = pd.DataFrame() for i in range(len(wide_imp_feats) - 1): for j in range(i + 1, len(wide_imp_feats)): i_name, j_name = wide_imp_feats[i], wide_imp_feats[j] str_df['c_' + i_name + '_' + j_name] = data_new[i_name].astype( str).values + '_' + data_new[j_name].astype(str).values def get_cross(x, feature_infos): i_name, j_name = x.name.split('_')[1], x.name.split('_')[2] i_list, j_list = feature_infos[i_name]['list'], feature_infos[j_name]['list'] out = [] for one in x: i, j = int(one.split('_')[0]), int(one.split('_')[1]) if i not in i_list or j not in j_list: out.append(0) else: out.append(i_list.index(i) * len(j_list) + j_list.index(j) + 1) return out cross_df = str_df.apply(get_cross, args=(feature_infos,), axis=0) data_new = pd.concat([data_new, cross_df], axis=1) print(f'After wide cross, data shape:{data_new.shape}') # data_new.to_csv(os.path.join( # out_dir, f'{label_id}_feature_data_widecross_{mode}.csv'), index=False) # print(f'feature data saved.') # deep 特征分桶 if params['bucket']: def get_bucket(x, d_name, feature_infos): d_min, d_max = feature_infos[d_name]['min'], feature_infos[d_name]['max'] if x[0] > d_max: return 11 elif x[0] < d_min: return 0 elif x[0] == d_max: return 10 else: return int(10 * (x[0] - d_min) / (d_max - d_min)) + 1 bucket_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt from asreview.state.utils import open_state from scipy.stats import spearmanr def probability_matrix_from_h5_state(state_fp): """Get the probability matrix from an .h5 state file. Arguments ---------- state_fp: str Path to state file. Returns ------- pandas.DataFrame: A dataframe of shape (num_papers, num_queries), with in (i,j) the probability that paper i was relevant according to the model at query j. Note that the row index starts at 0, but the column index starts at 1. """ proba_dict = {} with open_state(state_fp, read_only=True) as state: queries = [int(num) for num in state.f['results'].keys()] total_queries = max(queries) for i in range(1, total_queries+1): proba_dict[i] = state.f[f'results/{i}/proba'][:] proba_matrix =
pd.DataFrame.from_dict(proba_dict)
pandas.DataFrame.from_dict
import matplotlib.pyplot as plt import pandas as pd import numpy as np import os import glob import subprocess from libraries.lib_percentiles import * from libraries.lib_gtap_to_final import gtap_to_final from libraries.lib_common_plotting_functions import greys, quint_colors, quint_labels from libraries.lib_country_params import get_FD_scale_fac,iso_to_name from libraries.lib_get_hh_survey import get_hh_survey#, get_miembros_hogar from libraries.lib_survey_categories import get_dict_gtap_to_final from libraries.lib_results_to_excel import save_to_results_file from matplotlib.ticker import FormatStrFormatter import matplotlib as mpl mpl.rcParams['hatch.linewidth'] = 0.2 import seaborn as sns div_pal = sns.color_palette('BrBG', n_colors=11) def plot_expenditures_by_category(pais,hies_FD,hies_FD_tot): out_dir = 'output/' if pais == 'brb': out_dir = '/Users/brian/Desktop/Dropbox/IDB/Barbados/output/' #################### # Plot expenditures by category # --> as fraction of total expenditures hies_FD = hies_FD.reset_index().set_index(['cod_hogar','quintile']) hies_FD_tot = hies_FD_tot.reset_index().set_index(['cod_hogar','quintile']) final_FD_quints = pd.DataFrame(index=hies_FD_tot.sum(level='quintile').index).sort_index() # Reset df do_not_plot = [] plt.figure(figsize=(6,6)) fdict = get_dict_gtap_to_final() for _h in fdict: hies_FD_tot[_h] = hies_FD[[fdict[_h][1]]].sum(axis=1) final_FD_quints[_h] = 100.*(hies_FD_tot[['hhwgt',_h]].prod(axis=1)/hies_FD_tot['totex_hh']).sum(level='quintile')/hies_FD_tot['hhwgt'].sum(level='quintile') _ = final_FD_quints.T.copy() _.columns = ['Q1','Q2','Q3','Q4','Q5'] ########################################################################################## # Record sample (all countries) stats in out_dir+'all_countries/hh_expenditures_table.csv' try: hhexp = pd.read_csv(out_dir+'all_countries/hh_expenditures_table.csv').set_index('category') except: hhexp = pd.DataFrame({pais.upper():0,'category':[fdict[i][1] for i in fdict]},index=None).set_index('category') for _ex in fdict: hhexp.loc[fdict[_ex][1],pais.upper()] = _.loc[_ex].mean() try: hhexp.to_csv(out_dir+'all_countries/hh_expenditures_table.csv') except: pass ########################################################################################## ########################################################################################## # Record sample (all countries) stats in out_dir+'all_countries/hh_regressivity_table.csv' for _q in ['Q1','Q2','Q3','Q4']: try: hhreg = pd.read_csv(out_dir+'all_countries/hh_regressivity_table_'+_q+'.csv').set_index('category') except: hhreg = pd.DataFrame({pais.upper():0,'category':[fdict[i][1] for i in fdict]},index=None).set_index('category') for _ex in fdict: hhreg.loc[fdict[_ex][1],pais.upper()] = _.loc[_ex,'Q1']/_.loc[_ex,'Q5'] try: hhreg.to_csv(out_dir+'all_countries/hh_regressivity_table_'+_q+'.csv') except: pass ########################################################################################## _ = _[['Q1','Q5']].T.sort_values(by='Q1',axis=1) null_col = [] for _c in _: if round(_[_c].mean(),1)==0: null_col.append(_c) if _[_c].mean()<0.1: do_not_plot.append(_c) _ = _.drop(null_col,axis=1) final_FD_quints.to_csv(out_dir+'expenditures/'+pais+'_gasto_by_cat_and_quint.csv') col_wid=_.shape[1]/2 ax = plt.barh(np.arange(0,_.shape[1],1)*col_wid,_.iloc[0],color=sns.color_palette('BrBG', n_colors=11)[2],height=2.5) plt.barh(np.arange(0,_.shape[1],1)*col_wid+2.5,_.iloc[1],color=sns.color_palette('BrBG', n_colors=11)[8],height=2.5) plt.gca().grid(False) sns.despine(bottom=True) plt.gca().set_yticks(np.arange(0,_.shape[1],1)*col_wid+1) plt.gca().set_yticklabels([fdict[_h][1] for _h in _.columns],ha='right',fontsize=10,weight='light',color=greys[7]) plt.gca().set_xticklabels([]) ax = plt.gca() _y = [0.,0.] rects = ax.patches for rect in rects: if (rect.get_y()+rect.get_height()/2.) > _y[0]: _y.append(rect.get_y()+rect.get_height()/2.);_y.sort();_y.pop(0) for rect in rects: _w = rect.get_width() pct = '' if (rect.get_y()+rect.get_height()/2.) in _y: pct = '%' ax.annotate(str(round(_w,1))+pct,xy=(rect.get_x()+rect.get_width()+0.5, rect.get_y()+rect.get_height()/2.-0.1), ha='left', va='center',color=greys[7],fontsize=7,zorder=100,clip_on=False,style='italic') ax.annotate('Wealthiest quintile',xy=(0.8,_y[1]),ha='left',va='center',color=greys[0],fontsize=7,zorder=100,style='italic') ax.annotate('Poorest quintile',xy=(0.8,_y[0]),ha='left',va='center',color=greys[7],fontsize=7,zorder=100,style='italic') plt.title('Household expenditures in '+iso_to_name[pais],weight='bold',color=greys[7],fontsize=12,loc='right') plt.draw() try: plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gastos_all_categories.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gastos_all_categories.png',format='png',bbox_inches='tight') except: pass plt.cla(); plt.close('all') return hies_FD,hies_FD_tot,null_col def plot_gtap_exp(pais,do_tax_food=True,verbose=False): out_dir = 'output/' if pais == 'brb': out_dir = '/Users/brian/Desktop/Dropbox/IDB/Barbados/output/' ############################ # Kuishuang's code (mostly): # load household survey data hh_hhsector = get_hh_survey(pais) hh_hhsector = hh_hhsector.drop([i for i in hh_hhsector.columns if 'ing' in i or 'ict' in i],axis=1) #hh_hhsector = hh_hhsector.fillna(1E5)#flag if verbose: print(hh_hhsector.shape) # load bridge matrix xl = pd.ExcelFile('consumption_and_household_surveys/2017-10-13/Bridge_matrix_consumption_items_to_GTAP_power_sectors.xlsx') if pais in xl.sheet_names: # all sheet names print('using '+pais+' tab') bridge_to_use = xl.parse(pais).fillna(0).drop(['Item_english'],axis = 1).set_index('Item') # read the specific sheet else: if verbose: print('using default tab') bridge_to_use = xl.parse('nae_of_default_tab').fillna(0).drop(['Item_english'],axis = 1).set_index('Item') cols_to_drop = [] for i in bridge_to_use.columns: if verbose: print(i,bridge_to_use[i].sum()) if bridge_to_use[i].sum(axis=0)==0: cols_to_drop.append(i) bridge_to_use = bridge_to_use.drop(cols_to_drop,axis=1) # household survey in GTAP sectors hh_gtap_sector = hh_hhsector[bridge_to_use.index].fillna(0).dot(bridge_to_use) hh_gtap_sector = hh_gtap_sector.reset_index() try: hh_gtap_sector['cod_hogar'] = hh_gtap_sector['cod_hogar'].astype('int') except: hh_gtap_sector['cod_hogar'] = hh_gtap_sector['cod_hogar'].astype('str') hh_gtap_sector = hh_gtap_sector.reset_index().set_index('cod_hogar') ## Run test. #print(hh_hhsector.columns) #print(hh_hhsector.head()) #_hh_hhsector = hh_hhsector.copy() #for _c in _hh_hhsector.columns: # if _c != 'gasto_ali':#and _c != 'gasto_alihogar': # _hh_hhsector[_c] = 0 #_hh_gtap_sector = _hh_hhsector[bridge_to_use.index].fillna(0).dot(bridge_to_use) if verbose: print(hh_gtap_sector.head(8)) # calcuate each household's share of national consumption, by category hh_share = (hh_gtap_sector.mul(hh_hhsector.factor_expansion, axis=0).fillna(0))/(hh_gtap_sector.mul(hh_hhsector.factor_expansion, axis=0).fillna(0).sum()) # Read household consumption vector from GTAP _iot_code = pais if pais != 'brb' else 'xcb' try: hh_fd_file = 'GTAP_power_IO_tables_with_imports/Household_consumption_both_domestic_import.xlsx' household_FD = get_FD_scale_fac(pais)*pd.read_excel(hh_fd_file,index_col=[0])[_iot_code].squeeze() except: if pais == 'brb': household_FD = get_FD_scale_fac(pais)*pd.read_excel('GTAP_power_IO_tables/xcbIOT.xlsx',sheet_name='Final_Demand',index_col=[0])['Hou'].squeeze() else: assert(False) # ^ get_FD_scale_fac(pais) != 1. ONLY IF pais == 'brb' # Final demand matrix hh_FD = household_FD*hh_share.fillna(0) for i in hh_FD.columns: hh_FD[i]/=hh_hhsector['factor_expansion'] if verbose: print(household_FD.head()) print(hh_FD.head(5)) #################### # Use gtap_to_final script to translate both expenditures & cc into HIES cats hies_FD, hies_FD_tot, hies_sf = gtap_to_final(hh_hhsector,hh_FD,pais,verbose=True) # Now, this df should be consistent with the FD vector if verbose: print((hh_FD.sum(axis=1)*hh_hhsector['factor_expansion']).sum()) print(hies_FD_tot[['totex_hh','hhwgt']].prod(axis=1).sum()) print('FD:',round(hies_FD_tot[['totex_hh','hhwgt']].prod(axis=1).sum(),3),round((hh_FD.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),3)) assert(hies_FD_tot[['totex_hh','hhwgt']].prod(axis=1).sum()/(hh_FD.sum(axis=1)*hh_hhsector['factor_expansion']).sum()>0.999) assert(hies_FD_tot[['totex_hh','hhwgt']].prod(axis=1).sum()/(hh_FD.sum(axis=1)*hh_hhsector['factor_expansion']).sum()<1.001) #################### #################### if pais == 'brb': energy_tax_total = get_FD_scale_fac(pais)*pd.read_csv('/Users/brian/Desktop/Dropbox/IDB/Barbados/output/tax_cost_to_hh_in_gtap_cats.csv').set_index('cod_hogar') final_CC,wgts,_ = gtap_to_final(hh_hhsector,energy_tax_total,pais) hhwgts = wgts[['pcwgt','hhwgt','hhsize']].copy().dropna() final_CC_ind = final_CC.copy() final_CC_CO2 = final_CC.copy() final_CC_nonCO2 = final_CC.copy() for col in final_CC_nonCO2.columns: final_CC_nonCO2[col].values[:] = 0 final_CC_dir = final_CC.copy() for col in final_CC_dir.columns: final_CC_dir[col].values[:] = 0 #print(hhwgts.shape[0],hhwgts.dropna().shape[0]) # HACK: ^ should be no NAs in this df else: # Indirect carbon costs - CO2 ccdf_ind_CO2 = get_FD_scale_fac(pais)*pd.read_csv(out_dir+'carbon_cost/CC_per_hh_indirect_'+pais+'_CO2.csv').set_index('cod_hogar') # Indirect carbon costs - non-CO2 ccdf_ind_nonCO2 = get_FD_scale_fac(pais)*pd.read_csv(out_dir+'carbon_cost/CC_per_hh_indirect_'+pais+'_nonCO2.csv').set_index('cod_hogar') # Indirect carbon costs (allGHG) ccdf_ind = get_FD_scale_fac(pais)*pd.read_csv(out_dir+'carbon_cost/CC_per_hh_indirect_'+pais+'_allGHG.csv').set_index('cod_hogar') # Direct carbon costs (allGHG) ccdf_dir = get_FD_scale_fac(pais)*pd.read_csv(out_dir+'carbon_cost/CC_per_hh_direct_'+pais+'_allGHG.csv').set_index('cod_hogar') # ^ these files are per household (multiply by factor_expansion for total) # HACK _bypass = pd.DataFrame(index=ccdf_ind.index.copy()) hacker_dict = {'col':['frac_gas'], 'gtm':['frac_gas'], 'pan':['frac_gas'], 'hnd':['frac_gas'], 'nic':['frac_gas','frac_water'], 'pry':['frac_gas','frac_electricity']} if pais in hacker_dict: for _set in hacker_dict[pais]: _gtap_cols = get_dict_gtap_to_final()[_set][0] _i = [i for i in _gtap_cols if i in ccdf_ind.columns] _d = [d for d in _gtap_cols if d in ccdf_dir.columns] _bypass[_set] = ccdf_ind[_i].sum(axis=1) + ccdf_dir[_d].sum(axis=1) _bypass[_set] *= hh_hhsector['factor_expansion'] try: ccdf_ind_CO2[_i] = [0,0] ccdf_ind_nonCO2[_i] = [0,0] ccdf_ind[_i] = [0,0] except: ccdf_ind_CO2[_i],ccdf_ind_nonCO2[_i],ccdf_ind[_i] = 0,0,0 try: ccdf_dir[_d] = [0,0] except: ccdf_dir[_d] = 0 _bypass = _bypass.sum()*1E-6*get_FD_scale_fac(pais) if not do_tax_food: ccdf_ind_CO2[['pdr','wht','gro','v_f','osd','c_b','ocr','ctl','oap','rmk','fsh','cmt','omt','vol','mil','pcr','sgr','ofd','b_t']] = 0 ccdf_ind_nonCO2[['pdr','wht','gro','v_f','osd','c_b','ocr','ctl','oap','rmk','fsh','cmt','omt','vol','mil','pcr','sgr','ofd','b_t']] = 0 ccdf_ind[['pdr','wht','gro','v_f','osd','c_b','ocr','ctl','oap','rmk','fsh','cmt','omt','vol','mil','pcr','sgr','ofd','b_t']] = 0 # No food categories in ccdf_dir final_CC_ind,wgts,_ = gtap_to_final(hh_hhsector,ccdf_ind,pais) final_CC_dir,wgts,_ = gtap_to_final(hh_hhsector,ccdf_dir,pais) final_CC = final_CC_ind + final_CC_dir #final_CC_tot = final_CC_ind_tot + final_CC_dir_tot final_CC_ind_CO2,wgts,_ = gtap_to_final(hh_hhsector,ccdf_ind_CO2,pais) final_CC_CO2 = final_CC_ind_CO2 + final_CC_dir #final_CC_tot_CO2 = final_CC_ind_tot_CO2 + final_CC_dir_tot final_CC_nonCO2,wgts,_ = gtap_to_final(hh_hhsector,ccdf_ind_nonCO2,pais) hhwgts = wgts[['pcwgt','hhwgt','hhsize']].copy() if verbose: #print('FD:',round(hhwgts[['totex_hh','hhwgt']].prod(axis=1).sum(),1),round((hh_FD.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),3)) print('Direct costs:',round((final_CC_dir.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),1), round((ccdf_dir.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),1)) print('Indirect cost:',round((final_CC_ind.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),1), round((ccdf_ind.sum(axis=1)*hh_hhsector['factor_expansion']).sum(),1)) assert((final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum()/(ccdf_dir.sum(axis=1)*hh_hhsector['factor_expansion']).sum()>0.99) assert((final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum()/(ccdf_dir.sum(axis=1)*hh_hhsector['factor_expansion']).sum()<1.01) assert((final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum()/(ccdf_ind.sum(axis=1)*hh_hhsector['factor_expansion']).sum()>0.99) assert((final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum()/(ccdf_ind.sum(axis=1)*hh_hhsector['factor_expansion']).sum()<1.01) # 5 dataframes with results in them # --> final_CC # --> final_CC_CO2 & final_CC_nonCO2 # --> final_CC_ind & final_CC_dir #hhwgts = wgts[['pcwgt','hhwgt','hhsize']].copy() # ^ plus this, with necessary weights ######################### # Assign decile based on totex (household expenditures, mapped to gtap) hies_FD_tot['pais'] = pais if 'quintile' not in hies_FD_tot.columns: _deciles=np.arange(0.10, 1.01, 0.10) _quintiles=np.arange(0.20, 1.01, 0.20) hies_FD_tot = hies_FD_tot.groupby('pais',sort=True).apply(lambda x:match_percentiles(x,perc_with_spline(reshape_data(x.totex_pc),reshape_data(x.pcwgt),_deciles),'decile','totex_pc')) hies_FD_tot = hies_FD_tot.groupby('pais',sort=True).apply(lambda x:match_percentiles(x,perc_with_spline(reshape_data(x.totex_pc),reshape_data(x.pcwgt),_quintiles),'quintile','totex_pc')) hies_FD_tot = hies_FD_tot.drop(['pais'],axis=1) hies_FD['decile'] = hies_FD_tot['decile'].copy() hies_FD['quintile'] = hies_FD_tot['quintile'].copy() ################################### # Price hikes in all goods due to gasoline increase (% of current price) fdict = get_dict_gtap_to_final() try: df = pd.read_csv(out_dir+'all_countries/price_increase_full.csv').set_index('category') except: df = pd.DataFrame({pais.upper():0,'category':[fdict[i][1] for i in fdict]},index=None).set_index('category') for i in fdict: table_value = None gtap_cat_array = get_dict_gtap_to_final()[i][0] #table_value_n = (final_CC_ind_tot['hhwgt']*(final_CC_ind[fdict[i][0]].sum(axis=1)+final_CC_dir[fdict[i][0]].sum(axis=1))/1E6).sum() # ^ this is already zero when there's no data in the survey if pais == 'brb': table_value_n = energy_tax_total[[_g for _g in gtap_cat_array if _g in energy_tax_total.columns]].sum(axis=1).sum() table_value_d = get_FD_scale_fac(pais)*float(pd.read_excel('GTAP_power_IO_tables/xcbIOT.xlsx',sheet_name='Final_Demand',index_col=[0])['Hou'].squeeze()[gtap_cat_array].sum()) # ^ get_FD_scale_fac(pais) != 1. ONLY IF pais == 'brb' else: table_value_n = ((ccdf_ind[[_g for _g in gtap_cat_array if _g in ccdf_ind.columns]].sum(axis=1) +ccdf_dir[[_g for _g in gtap_cat_array if _g in ccdf_dir.columns]].sum(axis=1))*hh_hhsector['factor_expansion']).sum()/1E6 #table_value_d = get_FD_scale_fac(pais)*float(pd.read_excel('GTAP_power_IO_tables/' # +_iot_code+'IOT.xlsx','Final_Demand',index_col=[0])['Hou'].squeeze()[gtap_cat_array].sum()) _fname = 'GTAP_power_IO_tables_with_imports/Household_consumption_both_domestic_import.xlsx' table_value_d = get_FD_scale_fac(pais)*float(pd.read_excel(_fname,index_col=[0])[pais].squeeze()[gtap_cat_array].sum()) # ^ get_FD_scale_fac(pais) != 1. ONLY IF pais == 'brb'. so this should be deleted if table_value_n == 0 and table_value_d != 0: print('BYPASS:',pais,_bypass) try: table_value_n = float(_bypass[i]) except: pass # throw results...look how clever we are! if verbose: print(i,table_value_n,table_value_d) print('ind:',(ccdf_ind[[_g for _g in gtap_cat_array if _g in ccdf_ind.columns]].sum(axis=1)*hh_hhsector['factor_expansion']).sum()/1E6) print('dir:',(ccdf_dir[[_g for _g in gtap_cat_array if _g in ccdf_dir.columns]].sum(axis=1)*hh_hhsector['factor_expansion']).sum()/1E6) table_value = round(100*table_value_n/table_value_d,1) df.loc[fdict[i][1],pais.upper()] = table_value if pais == 'brb': df['BRB']/=1000. df.loc['Petroleum, gasoline & diesel'] = 6.2 # HACK: don't understand why *=1/1000. would be justified; haven't checked units # HACK: not sure why 'Petroleum, gasoline & diesel' doesn't come through analysis _df = df.sort_values(pais.upper(),ascending=False).drop([fdict[i][1] for i in cols_to_drop])[pais.upper()] _df.name = '[%]' _df.index.name = 'Relative increase' _df.round(1).to_latex(out_dir+'latex/pct_change_'+pais.lower()+'.tex') with open(out_dir+'latex/pct_change_'+pais.lower()+'.tex', 'r') as f: with open(out_dir+'latex/out_pct_change_'+pais.lower()+'.tex', 'w') as f2: f2.write(r'\documentclass[10pt]{article}'+'\n') f2.write(r'\usepackage{amssymb} %maths'+'\n') f2.write(r'\usepackage{amsmath} %maths'+'\n') f2.write(r'\usepackage{booktabs}'+'\n') f2.write(r'\begin{document}'+'\n') f2.write(f.read()) f2.write(r'\end{document}') f2.close() subprocess.call('cd '+out_dir+'latex/; pdflatex out_pct_change_'+pais.lower()+'.tex',shell=True) for f in glob.glob(out_dir+'latex/*.aux'): os.remove(f) for f in glob.glob(out_dir+'latex/*.log'): os.remove(f) for f in glob.glob(out_dir+'latex/out_*.tex'): os.remove(f) if pais != 'brb': df.to_csv('output/all_countries/price_increase_full.csv') hies_FD,hies_FD_tot,cols_to_drop = plot_expenditures_by_category(pais,hies_FD,hies_FD_tot) ################################### # Current spending on all energy (electricity, petroleum, gasoline, diesel, natural gas, & coal), as % of totex energy_categories = [fdict['frac_fuels'][1],fdict['frac_gas'][1],fdict['frac_char'][1]] # ^ includes: gasto_tcomb = Household expenditure on transportation fuels # ^ gasto_vpgk = Household expenditure on petroleum, gasoline and kerosene for domestic use # ^ gasto_vlp = Household expenditure on liquified petroleum gas for domestic use # ^ gasto_vdi = Household expenditure on diesel for domestic use" final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() final_FD_quints['Direct fuel consumption'] = 100.*((hies_FD_tot['hhwgt']*hies_FD[energy_categories].sum(axis=1)/hies_FD_tot['totex_hh']).sum(level='quintile') /hies_FD_tot['hhwgt'].sum(level='quintile')) _hack = final_CC_dir.copy() _hack['quintile'] = hies_FD_tot.reset_index('quintile')['quintile'].copy() _hack = _hack.reset_index().set_index(['cod_hogar','quintile']) final_FD_quints['Direct fuel consumption tax'] = (100./1E6*(_hack.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') /hies_FD_tot[['totex_pc','pcwgt']].prod(axis=1).sum(level='quintile')) final_FD_quints.plot(final_FD_quints.index,'Direct fuel consumption',kind='bar',color=quint_colors,legend=False) plt.gca().set_xticklabels(quint_labels,ha='center',rotation=0) plt.ylabel('Direct fuel consumption [% of total expenditures]',fontsize=11,weight='bold',labelpad=8) plt.xlabel('') plt.ylim([0,final_FD_quints[['Direct fuel consumption','Direct fuel consumption tax']].sum(axis=1).max()*1.05]) rects = plt.gca().patches for rect in rects: _w = rect.get_height() plt.gca().annotate(str(round(_w,1))+'%',xy=(rect.get_x()+rect.get_width()/2, rect.get_y()+rect.get_height()+0.025), ha='center', va='bottom',color='black',fontsize=8,weight='bold',clip_on=False) plt.gca().grid(False) sns.despine() plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gasoline_as_pct_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gasoline_as_pct_by_quintile.png',format='png',bbox_inches='tight') ############################ # Try to plot tax on top of expenditures #ax = plt.gca() plt.cla() final_FD_quints.plot(final_FD_quints.index,'Direct fuel consumption',kind='bar',color=quint_colors,legend=False) # Below labels the total cost, etc, by quintile if False: rects = plt.gca().patches for rect in rects: _w = rect.get_height() plt.gca().annotate(str(round(_w,1))+'%',xy=(rect.get_x()+rect.get_width()-0.025, rect.get_y()+rect.get_height()/2.), ha='right', va='center',color='black',fontsize=8,weight='bold',clip_on=False) final_FD_quints.plot(final_FD_quints.index,'Direct fuel consumption tax',kind='bar',color=sns.color_palette('Set1', n_colors=9)[5],legend=False,bottom=final_FD_quints['Direct fuel consumption'],ax=plt.gca()) plt.ylim([0,final_FD_quints[['Direct fuel consumption','Direct fuel consumption tax']].sum(axis=1).max()*1.05]) plt.gca().grid(False) sns.despine() plt.gca().set_xticklabels(quint_labels,ha='center',rotation=0) plt.ylabel('Direct fuel consumption [% of total expenditures]',fontsize=11,weight='bold',labelpad=8) plt.xlabel('') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gasoline_as_pct_by_quintile_with_tax.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_gasoline_as_pct_by_quintile_with_tax.png',format='png',bbox_inches='tight') plt.cla() ################################### # Put quintile info into final_CC_tot, final_CC_tot_CO2, final_CC_tot_nonCO2 hies_FD_tot = hies_FD_tot.reset_index().set_index('cod_hogar') try: hies_FD_tot['quintile'] = hies_FD_tot['quintile'].astype('int') except: hies_FD_tot['quintile'] = hies_FD_tot['quintile'].astype('str') # hhwgts['quintile'] = hies_FD_tot['quintile'].copy() hhwgts = hhwgts.reset_index().set_index(['cod_hogar','quintile']) # final_CC['quintile'] = hies_FD_tot['quintile'].copy() final_CC = final_CC.reset_index().set_index(['cod_hogar','quintile']) # try: final_CC_ind['quintile'] = hies_FD_tot['quintile'].copy() final_CC_ind = final_CC_ind.reset_index().set_index(['cod_hogar','quintile']) # final_CC_dir['quintile'] = hies_FD_tot['quintile'].copy() final_CC_dir = final_CC_dir.reset_index().set_index(['cod_hogar','quintile']) # final_CC_CO2['quintile'] = hies_FD_tot['quintile'].copy() final_CC_CO2 = final_CC_CO2.reset_index().set_index(['cod_hogar','quintile']) # final_CC_nonCO2['quintile'] = hies_FD_tot['quintile'].copy() final_CC_nonCO2 = final_CC_nonCO2.reset_index().set_index(['cod_hogar','quintile']) # except: pass # ^ this (t/e) pair is for pais != 'brb' hies_FD_tot = hies_FD_tot.reset_index().set_index(['cod_hogar','quintile']) ########################################################################################## # Record sample (all countries) stats in hh_tax_cost_table.csv # total cost try: hhcost_t = pd.read_csv('output/all_countries/hh_tax_cost_table.csv').set_index('quintile') except: hhcost_t = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') # Direct try: hhcost_d = pd.read_csv('output/all_countries/hh_direct_tax_cost_table.csv').set_index('quintile') except: hhcost_d = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') # Indirect try: hhcost_i = pd.read_csv('output/all_countries/hh_indirect_tax_cost_table.csv').set_index('quintile') except: hhcost_i = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') # Direct frac of tax try: taxfrac_d = pd.read_csv('output/all_countries/hh_direct_tax_frac_table.csv').set_index('quintile') except: taxfrac_d = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') # Indirect frac of tax try: taxfrac_i = pd.read_csv('output/all_countries/hh_indirect_tax_frac_table.csv').set_index('quintile') except: taxfrac_i = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') # Indirect frac of tax - FOOD, ELEC, and PUBTRANS try: taxfrac_if = pd.read_csv('output/all_countries/hh_indirect_tax_foodnonCO2_frac_table.csv').set_index('quintile') except: taxfrac_if = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') try: taxfrac_ie = pd.read_csv('output/all_countries/hh_indirect_tax_elecCO2_frac_table.csv').set_index('quintile') except: taxfrac_ie = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') try: taxfrac_ipt = pd.read_csv('output/all_countries/hh_indirect_tax_pubtransCO2_frac_table.csv').set_index('quintile') except: taxfrac_ipt = pd.DataFrame({pais.upper():0,'quintile':['Q1','Q2','Q3','Q4','Q5']},index=None).set_index('quintile') _ = (100./1E6)*(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['totex_pc','pcwgt']].prod(axis=1).sum(level='quintile') for _nq in [1,2,3,4,5]: hhcost_t.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] if pais != 'brb': _ = (100./1E6)*(final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['totex_pc','pcwgt']].prod(axis=1).sum(level='quintile') for _nq in [1,2,3,4,5]: hhcost_d.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] _ = (100./1E6)*(final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['totex_pc','pcwgt']].prod(axis=1).sum(level='quintile') for _nq in [1,2,3,4,5]: hhcost_i.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] # # _ = (100.)*(final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') for _nq in [1,2,3,4,5]: taxfrac_d.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] _ = (100.)*(final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') for _nq in [1,2,3,4,5]: taxfrac_i.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] # _ = (100.)*(final_CC_nonCO2[fdict['frac_food'][1]]*hhwgts['hhwgt']).sum(level='quintile')/(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') for _nq in [1,2,3,4,5]: taxfrac_if.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] _ = (100.)*(final_CC_CO2[fdict['frac_electricity'][1]]*hhwgts['hhwgt']).sum(level='quintile')/(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') for _nq in [1,2,3,4,5]: taxfrac_ie.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] _ = (100.)*(final_CC_CO2[fdict['frac_pubtrans'][1]]*hhwgts['hhwgt']).sum(level='quintile')/(final_CC.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile') for _nq in [1,2,3,4,5]: taxfrac_ipt.loc['Q'+str(_nq),pais.upper()] = _.loc[_nq] hhcost_t.to_csv(out_dir+'all_countries/hh_tax_cost_table.csv') hhcost_d.to_csv(out_dir+'all_countries/hh_direct_tax_cost_table.csv') hhcost_i.to_csv(out_dir+'all_countries/hh_indirect_tax_cost_table.csv') taxfrac_d.to_csv(out_dir+'all_countries/hh_direct_tax_frac_table.csv') taxfrac_i.to_csv(out_dir+'all_countries/hh_indirect_tax_frac_table.csv') taxfrac_if.to_csv(out_dir+'all_countries/hh_indirect_tax_foodnonCO2_frac_table.csv') taxfrac_ie.to_csv(out_dir+'all_countries/hh_indirect_tax_elecCO2_frac_table.csv') taxfrac_ipt.to_csv(out_dir+'all_countries/hh_indirect_tax_pubtransCO2_frac_table.csv') ########################################################################################## ################################### # Cost of indirect carbon price increase (in $) final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() final_FD_quints['indirect USD'] = (final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hhwgts['pcwgt'].sum(level='quintile') final_FD_quints.plot(final_FD_quints.index,'indirect USD',kind='bar',color=quint_colors,legend=False) plt.gca().set_xticklabels(quint_labels,ha='right') plt.ylabel('Indirect carbon cost [INT$ per capita]',fontsize=11,labelpad=8) plt.xlabel('') plt.title(iso_to_name[pais],fontsize=14,weight='bold') rects = plt.gca().patches for rect in rects: _w = rect.get_width() plt.gca().annotate('$'+str(int(round(_w,0))),xy=(rect.get_x()+rect.get_width()/2,rect.get_y()+rect.get_height()+0.05), ha='left', va='center',color='black',fontsize=8,weight='bold',clip_on=False) plt.gca().grid(False) sns.despine(left=True) plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_indirect_tax_total_USD_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_indirect_tax_total_USD_by_quintile.png',format='png',bbox_inches='tight') # Plot total cost (stacked) in INT$ plt.cla() final_FD_quints['direct USD'] = (final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hhwgts['pcwgt'].sum(level='quintile') final_FD_quints.plot(final_FD_quints.index,'direct USD',kind='bar',color=quint_colors,legend=False) final_FD_quints.plot(final_FD_quints.index,'indirect USD',kind='bar',color=quint_colors,legend=False,alpha=0.5,ax=plt.gca(),bottom=final_FD_quints['direct USD']) plt.gca().set_xticklabels(quint_labels,ha='right') plt.ylabel('Total carbon tax burden [INT$ per capita]',fontsize=11,labelpad=8) plt.xlabel('') sns.despine(left=True) plt.gca().grid(False) plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_tax_total_USD_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_tax_total_USD_by_quintile.png',format='png',bbox_inches='tight') plt.cla() ################################### # Cost of indirect carbon price increase (% of totex) final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() final_FD_quints['pct of expenditures'] = (100./1E6)*(final_CC_ind.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['pcwgt','totex_pc']].prod(axis=1).sum(level='quintile') final_FD_quints.plot(final_FD_quints.index,'pct of expenditures',kind='bar',color=quint_colors,legend=False) plt.gca().set_xticklabels(quint_labels,ha='right') plt.ylabel('Indirect carbon cost relative to expenditures [%]',fontsize=11,weight='bold',labelpad=8) plt.xlabel('') plt.title(iso_to_name[pais],fontsize=14,weight='bold') rects = plt.gca().patches for rect in rects: _w = rect.get_width() plt.gca().annotate(str(round(_w,1))+'%',xy=(rect.get_x()+1.025*rect.get_width(),rect.get_y()+rect.get_height()/2.), ha='left', va='center',color='black',fontsize=8,weight='bold',clip_on=False) plt.gca().grid(False) sns.despine(left=True) plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_indirect_tax_as_pct_of_gastos_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.gcf().savefig(out_dir+'expenditures/'+pais+'_indirect_tax_as_pct_of_gastos_by_quintile.png',format='png',bbox_inches='tight') plt.cla() ################################### # Cost of direct carbon price increase (in $) final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() final_FD_quints['total USD'] = (final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hhwgts['pcwgt'].sum(level='quintile') final_FD_quints.plot(final_FD_quints.index,'total USD',kind='bar',color=quint_colors,legend=False) plt.gca().set_xticklabels(quint_labels,ha='right') plt.ylabel('Carbon tax on fuels [INT$ per capita]',fontsize=11,weight='bold',labelpad=8) plt.xlabel('') plt.title(iso_to_name[pais],fontsize=14,weight='bold') rects = plt.gca().patches for rect in rects: _w = rect.get_width() plt.gca().annotate('$'+str(int(round(_w,0))),xy=(rect.get_x()+1.025*rect.get_width(),rect.get_y()+rect.get_height()/2.), ha='left', va='center',color='black',fontsize=8,weight='bold',clip_on=False) plt.gca().grid(False) sns.despine(left=True) plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_direct_tax_total_USD_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.cla() ################################### # Cost of direct carbon price increase (% of tot_exp) final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() final_FD_quints['pct of expenditures'] = 100./1E6*(final_CC_dir.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['totex_pc','pcwgt']].prod(axis=1).sum(level='quintile') final_FD_quints.plot(final_FD_quints.index,'pct of expenditures',kind='bar',color=quint_colors,legend=False) plt.gca().set_xticklabels(quint_labels,ha='right') #_x_ticks = plt.gca().get_xticks() #plt.gca().set_xticklabels([str(round(_x,1)) for _x in _x_ticks[::2]]) plt.ylabel('Carbon tax on direct fuel consumption [% of total expenditures]',fontsize=11,weight='bold',labelpad=8) plt.xlabel('') plt.title(iso_to_name[pais],fontsize=14,weight='bold') rects = plt.gca().patches for rect in rects: _w = rect.get_width() plt.gca().annotate(str(round(_w,1))+'%',xy=(rect.get_x()+rect.get_width()+0.002,rect.get_y()+rect.get_height()/2.), ha='left', va='center',color='black',fontsize=8,clip_on=False,weight='bold') plt.gca().grid(False) sns.despine() plt.draw() plt.gcf().savefig(out_dir+'expenditures/'+pais+'_direct_tax_as_pct_of_gastos_by_quintile.pdf',format='pdf',bbox_inches='tight') plt.cla() ################################### # Cost of direct & indirect carbon price increase (% of totex) do_column_annotations = False plt.figure(figsize=(6,6)) final_FD_quints = pd.DataFrame(index=hies_FD.reset_index().set_index('quintile').sum(level='quintile').index).sort_index() ########## # All CO2-related costs final_FD_quints['CO2 expenditures'] = (100./1E6)*(final_CC_CO2.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['pcwgt','totex_pc']].prod(axis=1).sum(level='quintile') ########## # All nonCO2-related costs final_FD_quints['nonCO2 expenditures'] = (100./1E6)*(final_CC_nonCO2.sum(axis=1)*hhwgts['hhwgt']).sum(level='quintile')/hies_FD_tot[['pcwgt','totex_pc']].prod(axis=1).sum(level='quintile') orig_columns = final_FD_quints.columns ########## # This grabs the largest category endogenously find_max_CO2 =
pd.DataFrame({'abs':[]})
pandas.DataFrame
import pandas as pd import argparse import numpy as np from sklearn.linear_model import LinearRegression parser = argparse.ArgumentParser( description="Générer un vecteur à partir d'un modèle sauvegardé") parser.add_argument("input_normal") parser.add_argument("input_doc2vec") parser.add_argument("train_file") parser.add_argument("validation_file") parser.add_argument("test_file") parser.add_argument("output_file") args = parser.parse_args() input_normal_name = args.input_normal input_doc2vec_name = args.input_doc2vec train_file_name = args.train_file validation_file_name = args.validation_file test_file_name = args.test_file output_file_name = args.output_file df_embeddings = pd.read_csv(input_normal_name, sep=",", index_col=0) df_hindex = pd.read_csv(input_doc2vec_name, sep=",", index_col=0) df_train = pd.read_csv(train_file_name, sep=";", index_col=0) df_validation =
pd.read_csv(validation_file_name, sep=";", index_col=0)
pandas.read_csv
# Copyright(C) 2020 Google Inc. # # Licensed under the Apache License, Version 2.0(the "License"); you may not # use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.See the # License for the specific language governing permissions and limitations under # the License. import operator import os import string import warnings from datetime import date, datetime import numpy as np import pandas as pd import pandas.util.testing as tm import pytest from pytest import param import ibis import ibis.expr.datatypes as dt from ibis import literal as L import ibis.expr.types as ir from ibis.expr.window import rows_with_max_lookback sa = pytest.importorskip('sqlalchemy') pytest.importorskip('snowflake') pytestmark = pytest.mark.snowflake @pytest.fixture def guid(con): name = ibis.util.guid() try: yield name finally: con.drop_table(name, force=True) @pytest.fixture def guid2(con): name = ibis.util.guid() try: yield name finally: con.drop_table(name, force=True) @pytest.mark.parametrize( ('left_func', 'right_func'), [ param( lambda t: t.double_col.cast('int8'), lambda at: sa.cast(at.c.double_col, sa.SMALLINT), id='double_to_int8', ), param( lambda t: t.double_col.cast('int16'), lambda at: sa.cast(at.c.double_col, sa.SMALLINT), id='double_to_int16', ), param( lambda t: t.string_col.cast('double'), # https://docs.snowflake.com/en/sql-reference/data-types-numeric.html#double-double-precision-real lambda at: sa.cast( at.c.string_col, sa.DECIMAL ), id='string_to_double', ), param( lambda t: t.string_col.cast('float'), lambda at: sa.cast(at.c.string_col, sa.FLOAT), id='string_to_float', ), param( lambda t: t.string_col.cast('decimal'), lambda at: sa.cast(at.c.string_col, sa.NUMERIC(9, 0)), id='string_to_decimal_no_params', ), param( lambda t: t.string_col.cast('decimal(9, 3)'), lambda at: sa.cast(at.c.string_col, sa.NUMERIC(9, 3)), id='string_to_decimal_params', ), ], ) def test_cast(alltypes, at, translate, left_func, right_func): left = left_func(alltypes) right = right_func(at) assert str(translate(left).compile()) == str(right.compile()) def test_date_cast(alltypes, at, translate): result = alltypes.date_string_col.cast('date') expected = sa.cast(at.c.date_string_col, sa.DATE) assert str(translate(result)) == str(expected) @pytest.mark.parametrize( 'column', [ '`INDEX`', 'Unnamed: 0', 'id', 'bool_col', 'tinyint_col', 'smallint_col', 'int_col', 'bigint_col', 'float_col', 'double_col', 'date_string_col', 'string_col', 'timestamp_col', 'year', 'month', ], ) def test_noop_cast(alltypes, at, translate, column): col = alltypes[column] result = col.cast(col.type()) expected = at.c[column] assert result.equals(col) assert str(translate(result)) == str(expected) def test_timestamp_cast_noop(alltypes, at, translate): result1 = alltypes.timestamp_col.cast('timestamp') result2 = alltypes.int_col.cast('timestamp') assert isinstance(result1, ir.TimestampColumn) assert isinstance(result2, ir.TimestampColumn) expected1 = at.c.timestamp_col assert str(translate(result1)) == "CAST({} AS TIMESTAMP)".format(str(expected1)) @pytest.mark.parametrize( ('func', 'expected'), [ param(operator.methodcaller('year'), 2015, id='year'), param(operator.methodcaller('month'), 9, id='month'), param(operator.methodcaller('day'), 1, id='day'), param(operator.methodcaller('hour'), 14, id='hour'), param(operator.methodcaller('minute'), 48, id='minute'), param(operator.methodcaller('second'), 5, id='second'), param(lambda x: x.day_of_week.index(), 1, id='day_of_week_index'), param( lambda x: x.day_of_week.full_name(), 'Tue', id='day_of_week_full_name', ), ], ) def test_simple_datetime_operations(con, func, expected, translate): value= L('2015-09-01 14:48:05.359').cast(dt.string).cast(dt.timestamp) assert con.execute(func(value)) == expected @pytest.mark.parametrize( ('func', 'left', 'right', 'expected'), [ param(operator.add, L(3), L(4), 7, id='add'), param(operator.sub, L(3), L(4), -1, id='sub'), param(operator.mul, L(3), L(4), 12, id='mul'), param(operator.truediv, L(12), L(4), 3, id='truediv_no_remainder'), param(operator.pow, L(12), L(2), 144, id='pow'), param(operator.mod, L(12), L(5), 2, id='mod'), param(operator.truediv, L(7), L(2), 3.5, id='truediv_remainder'), param(operator.floordiv, L(7), L(2), 3, id='floordiv'), param( lambda x, y: x.floordiv(y), L(7), 2, 3, id='floordiv_no_literal' ), param( lambda x, y: x.rfloordiv(y), L(2), 7, 3, id='rfloordiv_no_literal' ), ], ) def test_binary_arithmetic(con, func, left, right, expected): expr = func(left, right) result = con.execute(expr) assert result == expected @pytest.mark.parametrize( ('value', 'expected'), [ param(L('foo_bar'), 'VARCHAR', id='text'), param(L(5), 'INTEGER', id='integer'), param(ibis.NA, None, id='null'), # TODO(phillipc): should this really be double? param(L(1.2345), 'DECIMAL', id='numeric'), param( L('2015-09-01 14:48:05.359').cast(dt.string).cast(dt.timestamp), 'TIMESTAMP_NTZ', id='timestamp_without_time_zone', ) ], ) def test_typeof(con, value, expected): assert con.execute(value.typeof()) == expected @pytest.mark.parametrize(('value', 'expected'), [(0, None), (5.5, 5.5)]) def test_nullifzero(con, value, expected): assert con.execute(L(value).nullifzero()) == expected @pytest.mark.parametrize(('value', 'expected'), [('foo_bar', 7), ('', 0)]) def test_string_length(con, value, expected): assert con.execute(L(value).length()) == expected @pytest.mark.parametrize( ('op', 'expected'), [ param(operator.methodcaller('left', 3), 'foo', id='left'), param(operator.methodcaller('right', 3), 'bar', id='right'), param(operator.methodcaller('substr', 0, 3), 'foo', id='substr_0_3'), param(operator.methodcaller('substr', 4, 3), 'bar', id='substr_4, 3'), param(operator.methodcaller('substr', 1), 'oo_bar', id='substr_1'), ], ) def test_string_substring(con, op, expected): value = L('foo_bar') assert con.execute(op(value)) == expected @pytest.mark.parametrize( ('opname', 'expected'), [('lstrip', 'foo '), ('rstrip', ' foo'), ('strip', 'foo')], ) def test_string_strip(con, opname, expected): op = operator.methodcaller(opname) value = L(' foo ') assert con.execute(op(value)) == expected @pytest.mark.parametrize( ('opname', 'count', 'char', 'expected'), [('lpad', 6, ' ', ' foo'), ('rpad', 6, ' ', 'foo ')], ) def test_string_pad(con, opname, count, char, expected): op = operator.methodcaller(opname, count, char) value = L('foo') assert con.execute(op(value)) == expected def test_string_reverse(con): assert con.execute(L('foo').reverse()) == 'oof' def test_string_upper(con): assert con.execute(L('foo').upper()) == 'FOO' def test_string_lower(con): assert con.execute(L('FOO').lower()) == 'foo' @pytest.mark.parametrize( ('haystack', 'needle', 'expected'), [ ('foobar', 'bar', True), ('foobar', 'foo', True), ('foobar', 'baz', False), ('100%', '%', True), ('a_b_c', '_', True), ], ) def test_string_contains(con, haystack, needle, expected): value = L(haystack) expr = value.contains(needle) assert con.execute(expr) == expected @pytest.mark.parametrize( ('value', 'expected'), [('foo bar foo', 'Foo Bar Foo'), ('foobar Foo', 'Foobar Foo')], ) def test_capitalize(con, value, expected): assert con.execute(L(value).capitalize()) == expected def test_repeat(con): expr = L('bar ').repeat(3) assert con.execute(expr) == 'bar bar bar ' def test_re_replace(con): expr = L('fudge|||chocolate||candy').re_replace('\\|{2,3}', ', ') assert con.execute(expr) == 'fudge, chocolate, candy' def test_translate(con): expr = L('faab').translate('a', 'b') assert con.execute(expr) == 'fbbb' @pytest.mark.parametrize( ('raw_value', 'expected'), [('a', 0), ('b', 1), ('d', -1), (None, 3)] ) def test_find_in_set(demonstration, con, raw_value, expected): value = L('a', dt.string) haystack = demonstration.array1 expr = value.find_in_set(haystack) assert con.execute(expr) == expected @pytest.mark.parametrize( ('raw_value', 'opname', 'expected'), [ (None, 'isnull', True), (1, 'isnull', False), (None, 'notnull', False), (1, 'notnull', True), ], ) def test_isnull_notnull(con, raw_value, opname, expected): lit = L(raw_value) op = operator.methodcaller(opname) expr = op(lit) assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(L('foobar').find('bar'), 3, id='find_pos'), param(L('foobar').find('baz'), -1, id='find_neg'), param(L('foobar').like('%bar'), True, id='like_left_pattern'), param(L('foobar').like('foo%'), True, id='like_right_pattern'), param(L('foobar').like('%baz%'), False, id='like_both_sides_pattern'), param(L('foobar').like(['%bar']), True, id='like_list_left_side'), param(L('foobar').like(['foo%']), True, id='like_list_right_side'), param(L('foobar').like(['%baz%']), False, id='like_list_both_sides'), param( L('foobar').like(['%bar', 'foo%']), True, id='like_list_multiple' ), param(L('foobarfoo').replace('foo', 'H'), 'HbarH', id='replace'), param(L('a').ascii_str(), ord('a'), id='ascii_str'), ], ) def test_string_functions(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(L('San Francisco').re_search('San* [fF].*'), True, id='re_search_match'), param(L('abcd').re_search(r'[\d]+'), False, id='re_search_no_match'), param( L('1222').re_search(r'[\d]+'), True, id='re_search_match_number' ), ], ) def test_regexp(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param( L('abcd').re_extract('([a-z]+)', 1), 'abcd', id='re_extract_whole' ), param( L('How are you doing today?').re_extract('\\b\\S*o\\S*\\b', 3), 'you', id='re_extract_first' ), # valid group number but no match => NULL for snowflake param(L('abcd').re_extract(r'(\d)', 1), None, id='re_extract_no_match'), # match but not a valid group number => NULL param(L('abcd').re_extract('abcd', 3), None, id='re_extract_match'), ], ) def test_regexp_extract(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.NA.fillna(5), 5, id='filled'), param(L(5).fillna(10), 5, id='not_filled'), param(L(5).nullif(5), None, id='nullif_null'), param(L(10).nullif(5), 10, id='nullif_not_null'), ], ) def test_fillna_nullif(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.coalesce(5, None, 4), 5, id='first'), param(ibis.coalesce(ibis.NA, 4, ibis.NA), 4, id='second'), param(ibis.coalesce(ibis.NA, ibis.NA, 3.14), 3.14, id='third'), ], ) def test_coalesce(con, expr, expected): assert con.execute(expr) == expected @pytest.mark.parametrize( ('expr', 'expected'), [ param(ibis.coalesce(ibis.NA, ibis.NA), None, id='all_null'), param( ibis.coalesce(ibis.NA, ibis.NA, ibis.NA.cast('double')), None, id='all_nulls_with_one_cast', ), param( ibis.coalesce( ibis.NA.cast('int8'), ibis.NA.cast('int8'), ibis.NA.cast('int8'), ), None, id='all_nulls_with_all_cast', ), ], ) def test_coalesce_all_na(con, expr, expected): assert con.execute(expr) == expected def test_numeric_builtins_work(alltypes, df): expr = alltypes.double_col.fillna(0) result = expr.execute() expected = df.double_col.fillna(0) expected.name = 'tmp' tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('op', 'pandas_op'), [ param( lambda t: (t.double_col > 20).ifelse(10, -20), lambda df: pd.Series( np.where(df.double_col > 20, 10, -20), dtype='int8' ), id='simple', ), param( lambda t: (t.double_col > 20).ifelse(10, -20).abs(), lambda df: pd.Series( np.where(df.double_col > 20, 10, -20), dtype='int8' ).abs(), id='abs', ), ], ) def test_ifelse(alltypes, df, op, pandas_op): expr = op(alltypes) result = expr.execute() result.name = None expected = pandas_op(df) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( ('distinct1', 'distinct2', 'expected1', 'expected2'), [ (True, True, 'UNION', 'UNION'), (True, False, 'UNION', 'UNION ALL'), (False, True, 'UNION ALL', 'UNION'), (False, False, 'UNION ALL', 'UNION ALL'), ], ) def test_union_cte(alltypes, distinct1, distinct2, expected1, expected2): t = alltypes expr1 = t.group_by(t.string_col).aggregate(metric=t.double_col.sum()) expr2 = expr1.view() expr3 = expr1.view() expr = expr1.union(expr2, distinct=distinct1).union( expr3, distinct=distinct2 ) result = '\n'.join( map( lambda line: line.rstrip(), # strip trailing whitespace str( expr.compile().compile(compile_kwargs=dict(literal_binds=True)) ).splitlines(), ) ) expected = """\ WITH anon_1 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col), anon_2 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col), anon_3 AS (SELECT t0.string_col AS string_col, sum(t0.double_col) AS metric FROM functional_alltypes AS t0 GROUP BY t0.string_col) (SELECT anon_1.string_col, anon_1.metric FROM anon_1 {} SELECT anon_2.string_col, anon_2.metric FROM anon_2) {} SELECT anon_3.string_col, anon_3.metric FROM anon_3""".format( expected1, expected2 ) assert str(result) == expected @pytest.mark.parametrize( ('func', 'pandas_func'), [ param( lambda t, cond: t.bool_col.count(), lambda df, cond: df.bool_col.count(), id='count', ), param( lambda t, cond: t.double_col.sum(), lambda df, cond: df.double_col.sum(), id='sum', ), param( lambda t, cond: t.double_col.mean(), lambda df, cond: df.double_col.mean(), id='mean', ), param( lambda t, cond: t.double_col.min(), lambda df, cond: df.double_col.min(), id='min', ), param( lambda t, cond: t.double_col.max(), lambda df, cond: df.double_col.max(), id='max', ), param( lambda t, cond: t.double_col.var(), lambda df, cond: df.double_col.var(), id='var', ), param( lambda t, cond: t.double_col.std(), lambda df, cond: df.double_col.std(), id='std', ), param( lambda t, cond: t.double_col.var(how='sample'), lambda df, cond: df.double_col.var(ddof=1), id='samp_var', ), param( lambda t, cond: t.double_col.std(how='pop'), lambda df, cond: df.double_col.std(ddof=0), id='pop_std', ), param( lambda t, cond: t.bool_col.count(where=cond), lambda df, cond: df.bool_col[cond].count(), id='count_where', ), param( lambda t, cond: t.double_col.mean(where=cond), lambda df, cond: df.double_col[cond].mean(), id='mean_where', ), param( lambda t, cond: t.double_col.min(where=cond), lambda df, cond: df.double_col[cond].min(), id='min_where', ), param( lambda t, cond: t.double_col.max(where=cond), lambda df, cond: df.double_col[cond].max(), id='max_where', ), param( lambda t, cond: t.double_col.var(where=cond), lambda df, cond: df.double_col[cond].var(), id='var_where', ), param( lambda t, cond: t.double_col.std(where=cond), lambda df, cond: df.double_col[cond].std(), id='std_where', ), param( lambda t, cond: t.double_col.var(where=cond, how='sample'), lambda df, cond: df.double_col[cond].var(), id='samp_var_where', ), param( lambda t, cond: t.double_col.std(where=cond, how='pop'), lambda df, cond: df.double_col[cond].std(ddof=0), id='pop_std_where', ), ], ) def test_aggregations(alltypes, df, func, pandas_func): table = alltypes.limit(100) df = df.head(table.count().execute()) cond = table.string_col.isin(['1', '7']) expr = func(table, cond) result = expr.execute() expected = pandas_func(df, cond.execute()) np.testing.assert_allclose(result, expected) def test_not_contains(alltypes, df): n = 100 table = alltypes.limit(n) expr = table.string_col.notin(['1', '7']) result = expr.execute() expected = ~df.head(n).string_col.isin(['1', '7']) tm.assert_series_equal(result, expected, check_names=False) def test_group_concat(alltypes, df): expr = alltypes.string_col.group_concat() result = expr.execute() expected = ','.join(df.string_col.dropna()) assert result == expected def test_distinct_aggregates(alltypes, df): expr = alltypes.limit(100).double_col.nunique() result = expr.execute() assert result == df.head(100).double_col.nunique() def test_not_exists(alltypes, df): t = alltypes t2 = t.view() expr = t[~((t.string_col == t2.string_col).any())] result = expr.execute() left, right = df, t2.execute() expected = left[left.string_col != right.string_col] tm.assert_frame_equal( result, expected, check_index_type=False, check_dtype=False ) def test_subquery(alltypes, df): t = alltypes expr = ( t.mutate(d=t.double_col.fillna(0)) .limit(1000) .group_by('string_col') .size() ) result = expr.execute().sort_values('string_col').reset_index(drop=True) expected = ( df.assign(d=df.double_col.fillna(0)) .head(1000) .groupby('string_col') .string_col.count() .reset_index(name='count') .sort_values('string_col') .reset_index(drop=True) ) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize('func', ['mean', 'sum']) def test_rolling_window(alltypes, func, df): t = alltypes df = ( df[['double_col', 'timestamp_col']] .sort_values('timestamp_col') .reset_index(drop=True) ) window = ibis.window(order_by=t.timestamp_col, preceding=6, following=0) f = getattr(t.double_col, func) df_f = getattr(df.double_col.rolling(7, min_periods=0), func) result = ( t.projection([f().over(window).name('double_col')]) .execute() .double_col ) expected = df_f() tm.assert_series_equal(result, expected) @pytest.mark.parametrize('func', ['min', 'max']) def test_cumulative_ordered_window(alltypes, func, df): t = alltypes df = df.sort_values('timestamp_col').reset_index(drop=True) window = ibis.cumulative_window(order_by=t.timestamp_col) f = getattr(t.double_col, func) expr = t.projection([(t.double_col - f().over(window)).name('double_col')]) result = expr.execute().double_col expected = df.double_col - getattr(df.double_col, 'cum%s' % func)() tm.assert_series_equal(result, expected) @pytest.mark.parametrize('func', ['min', 'max']) def test_cumulative_partitioned_ordered_window(alltypes, func, df): t = alltypes df = df.sort_values(['string_col', 'timestamp_col']).reset_index(drop=True) window = ibis.cumulative_window( order_by=t.timestamp_col, group_by=t.string_col ) f = getattr(t.double_col, func) expr = t.projection([(t.double_col - f().over(window)).name('double_col')]) result = expr.execute().double_col method = operator.methodcaller('cum{}'.format(func)) expected = df.groupby(df.string_col).double_col.transform( lambda c: c - method(c) ) tm.assert_series_equal(result, expected) def test_null_column(alltypes): t = alltypes nrows = t.count().execute() expr = t.mutate(na_column=ibis.NA).na_column result = expr.execute() tm.assert_series_equal(result, pd.Series([None] * nrows, name='na_column')) def test_null_column_union(alltypes, df): t = alltypes s = alltypes[['double_col']].mutate(string_col=ibis.NA.cast('string')) expr = t[['double_col', 'string_col']].union(s) result = expr.execute() nrows = t.count().execute() expected = pd.concat( [ df[['double_col', 'string_col']], pd.concat( [ df[['double_col']], pd.DataFrame({'string_col': [None] * nrows}), ], axis=1, ), ], axis=0, ignore_index=True, )
tm.assert_frame_equal(result, expected)
pandas.util.testing.assert_frame_equal
from collections import OrderedDict from datetime import timedelta import numpy as np import pytest from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import DataFrame, Series, Timestamp, date_range, option_context import pandas._testing as tm def _check_cast(df, v): """ Check if all dtypes of df are equal to v """ assert all(s.dtype.name == v for _, s in df.items()) class TestDataFrameDataTypes: def test_concat_empty_dataframe_dtypes(self): df = DataFrame(columns=list("abc")) df["a"] = df["a"].astype(np.bool_) df["b"] = df["b"].astype(np.int32) df["c"] = df["c"].astype(np.float64) result = pd.concat([df, df]) assert result["a"].dtype == np.bool_ assert result["b"].dtype == np.int32 assert result["c"].dtype == np.float64 result = pd.concat([df, df.astype(np.float64)]) assert result["a"].dtype == np.object_ assert result["b"].dtype == np.float64 assert result["c"].dtype == np.float64 def test_empty_frame_dtypes(self): empty_df = pd.DataFrame() tm.assert_series_equal(empty_df.dtypes, pd.Series(dtype=object)) nocols_df = pd.DataFrame(index=[1, 2, 3]) tm.assert_series_equal(nocols_df.dtypes, pd.Series(dtype=object)) norows_df = pd.DataFrame(columns=list("abc")) tm.assert_series_equal(norows_df.dtypes, pd.Series(object, index=list("abc"))) norows_int_df = pd.DataFrame(columns=list("abc")).astype(np.int32) tm.assert_series_equal( norows_int_df.dtypes, pd.Series(np.dtype("int32"), index=list("abc")) ) odict = OrderedDict df = pd.DataFrame(odict([("a", 1), ("b", True), ("c", 1.0)]), index=[1, 2, 3]) ex_dtypes = pd.Series( odict([("a", np.int64), ("b", np.bool_), ("c", np.float64)]) ) tm.assert_series_equal(df.dtypes, ex_dtypes) # same but for empty slice of df tm.assert_series_equal(df[:0].dtypes, ex_dtypes) def test_datetime_with_tz_dtypes(self): tzframe = DataFrame( { "A": date_range("20130101", periods=3), "B": date_range("20130101", periods=3, tz="US/Eastern"), "C": date_range("20130101", periods=3, tz="CET"), } ) tzframe.iloc[1, 1] = pd.NaT tzframe.iloc[1, 2] = pd.NaT result = tzframe.dtypes.sort_index() expected = Series( [ np.dtype("datetime64[ns]"), DatetimeTZDtype("ns", "US/Eastern"), DatetimeTZDtype("ns", "CET"), ], ["A", "B", "C"], ) tm.assert_series_equal(result, expected) def test_dtypes_are_correct_after_column_slice(self): # GH6525 df = pd.DataFrame(index=range(5), columns=list("abc"), dtype=np.float_) odict = OrderedDict tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) tm.assert_series_equal( df.iloc[:, 2:].dtypes, pd.Series(odict([("c", np.float_)])) ) tm.assert_series_equal( df.dtypes, pd.Series(odict([("a", np.float_), ("b", np.float_), ("c", np.float_)])), ) def test_dtypes_gh8722(self, float_string_frame): float_string_frame["bool"] = float_string_frame["A"] > 0 result = float_string_frame.dtypes expected = Series( {k: v.dtype for k, v in float_string_frame.items()}, index=result.index )
tm.assert_series_equal(result, expected)
pandas._testing.assert_series_equal
# Import modules import pandas as pd import numpy as np from sklearn.cluster import KMeans import sklearn.metrics as metrics # SAX package - source https://github.com/seninp/saxpy from saxpy.alphabet import cuts_for_asize from saxpy.sax import ts_to_string from saxpy.paa import paa from sklearn.preprocessing import StandardScaler, MinMaxScaler # Plotting modules import seaborn as sns from collections import Counter import matplotlib.pyplot as plt plt.rcdefaults() import plotly.figure_factory as ff import plotly.graph_objects as go from plotly.subplots import make_subplots from plotly.offline import init_notebook_mode init_notebook_mode(connected = True) import plotly.io as pio ######################################################################################## ### Pre-Processing functions ### ######################################################################################## def reduce_mem_usage(df, verbose=True): """"Function to reduce the memory usage of a dataframe. Source: https://www.kaggle.com/caesarlupum/ashrae-start-here-a-gentle-introduction""" numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] start_mem = df.memory_usage().sum() / 1024**2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == 'int': if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max: df[col] = df[col].astype(np.float16) elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max: df[col] = df[col].astype(np.float32) else: df[col] = df[col].astype(np.float64) end_mem = df.memory_usage().sum() / 1024**2 if verbose: print('Mem. usage decreased to {:5.2f} Mb ({:.1f}% reduction)'.format(end_mem, 100 * (start_mem - end_mem) / start_mem)) return df ######################################################################################## ### Pre-Mining functions ### ######################################################################################## ### Data Selection functions def multicol_2ndColumnSelection(df_multicol, allcol1, col2): """"Function to select data from a multi-column dataframe based on the 2nd column value. From a defined 2nd-level column of interest - col2, the function loops over the dataframe from all the values interest from the 1st-level column - allcol1""" df = pd.DataFrame() for i in allcol1: df[i] = df_multicol[i, col2].copy() return df def multi2singlecol_1stCol(df_in): """"Function to transform a 2 column dataframe to a single one, while appending the 2nd column information to a new attribute.""" # Extract upper level column meter_type information meter_type_list = [] for meter_type, blg_id in df_in.columns.values: meter_type_list.append(meter_type) meter_type_list = list(set(meter_type_list)) dfs = [] for i in meter_type_list: df1 = pd.melt(df_in[i].reset_index(), id_vars=df_in.index.name, var_name="building_id", value_name=i) df1.set_index(["building_id", df_in.index.name], inplace=True) dfs.append(df1) # append to list meter_df =
pd.concat(dfs, axis=1)
pandas.concat
import pandas as pd import numpy as np data_path = "/home/clairegayral/Documents/openclassroom/data/P4/" res_path = "/home/clairegayral/Documents/openclassroom/res/P4/" from sklearn import preprocessing from sklearn.impute import KNNImputer ################### #### open data #### ################### product_category_name_translation = pd.read_csv(data_path + "product_category_name_translation.csv") sellers = pd.read_csv(data_path + "olist_sellers_dataset.csv") products = pd.read_csv(data_path + "olist_products_dataset.csv") orders = pd.read_csv(data_path + "olist_orders_dataset.csv") order_reviews = pd.read_csv(data_path + "olist_order_reviews_dataset.csv") order_payments = pd.read_csv(data_path + "olist_order_payments_dataset.csv") order_items = pd.read_csv(data_path + "olist_order_items_dataset.csv") geolocation = pd.read_csv(data_path + "olist_geolocation_dataset.csv") customers = pd.read_csv(data_path + "olist_customers_dataset.csv") ## Lien entre les tables : ## order-product link_order_product = pd.merge(orders["order_id"], order_items[["order_id","product_id"]], on = "order_id", how = 'right') link_order_product ## customer-order link_customer_order = pd.merge(customers[["customer_unique_id","customer_id"]], orders[["customer_id","order_id"]], on = "customer_id", how = 'right') ########################## #### Construction RFM #### ########################## ## ## Recency ## tmp = pd.merge(customers[["customer_id","customer_unique_id"]], orders[["customer_id", "order_id","order_purchase_timestamp"]], on="customer_id", how="right") ## get the lastest order date of each customer customer_last_timestamp = tmp[["customer_unique_id", "order_purchase_timestamp"]].groupby("customer_unique_id").max() ## use datetime format customer_last_timestamp = pd.to_datetime(customer_last_timestamp["order_purchase_timestamp"], format = "%Y-%m-%d %H:%M:%S") ## substrack the date of the latest command in the data : t_max = customer_last_timestamp.max() recency = pd.Series(t_max-customer_last_timestamp, name = "recency") ## get the difference in decimal days format : recency = recency / np.timedelta64(1, "D") recency = recency.reset_index() rfm = recency ## ## Frequency ## frequency = tmp.customer_unique_id.value_counts() frequency =
pd.Series(frequency)
pandas.Series
import duckdb from pandas import DataFrame import pytest class TestInsertInto(object): def test_insert_into_schema(self, duckdb_cursor): # open connection con = duckdb.connect() con.execute('CREATE SCHEMA s') con.execute('CREATE TABLE s.t (id INTEGER PRIMARY KEY)') # make relation df =
DataFrame([1],columns=['id'])
pandas.DataFrame
import streamlit as st import pandas as pd import altair as alt import numpy as np from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error @st.cache(allow_output_mutation=True) # add caching so we load the data only once def load_data(): return pd.read_csv("data/fifa19.csv", encoding="UTF-8", index_col=0) def write(): df = load_data() #st.write(df.head()) st.header("Feature Correlation Analysis") st.write("""Let's explore the relationships between some of the quantitative variables in the dataset. Select an independent (x-axis) and a dependent (y-axis) variable below and see a scatter plot of these two variables with a fitted 5th degree polynomial line, and see their correlation coefficient as well. You may also select the "use color" checkbox and select a third variable to be represented by the color of the points on the plot. Hover your mouse over the points on the plot to see which player that point represents. Note that noise has been added to the variables in the plot due to the high number of overlapping points in the dataset, but the correlation coefficient is calculated using the original data.""") # Here, we remove the extra text around the wage to get it as an integer wage_array = df["Value"].to_numpy() fixed_wages = [] for wage in wage_array: if wage[-1]=="M": wage = float(wage[1:-1])*1000000 elif wage[-1]=="K": wage = float(wage[1:-1])*1000 else: wage=0 fixed_wages.append(wage) df["Player_Wage"] = fixed_wages df = df[df.Player_Wage!=''] df["Player_Wage"] = df["Player_Wage"].astype(np.int64)*1000 correlation_options = ['Age', 'Overall', 'Potential', 'Player_Wage', 'International Reputation', 'Skill Moves', 'Crossing','Finishing', 'HeadingAccuracy', 'ShortPassing', 'Volleys', 'Dribbling', 'Curve', 'FKAccuracy', 'LongPassing', 'BallControl', 'Acceleration', 'SprintSpeed', 'Agility', 'Reactions', 'Balance', 'ShotPower', 'Jumping', 'Stamina', 'Strength', 'LongShots', 'Aggression', 'Interceptions', 'Positioning', 'Vision', 'Penalties', 'Composure', 'Marking', 'StandingTackle', 'SlidingTackle', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes'] df_quant = df[correlation_options].copy().dropna() noise = np.random.normal(0,0.3,df_quant.shape) df_quant_noise = df_quant + noise df_quant_noise["Name"] = df["Name"].copy() df_quant_noise["Position"] = df["Position"].copy() x_var = st.selectbox("Independent Variable", options = correlation_options, index=0) y_var = st.selectbox("Dependent Variable", options = correlation_options, index=1) use_color = st.checkbox("Use Color?", value = False) if use_color: color_var = st.selectbox("Color Variable", options = correlation_options, index=2) chart = alt.Chart(df_quant_noise).mark_circle(color="#000000",size=10).encode( x=alt.X(x_var, scale=alt.Scale(zero=False)), y=alt.Y(y_var, scale=alt.Scale(zero=False)), color=alt.Y(color_var), tooltip = ["Name","Position"] ) else: chart = alt.Chart(df_quant_noise).mark_circle(color="#000000",size=10,opacity=.3).encode( x=alt.X(x_var, scale=alt.Scale(zero=False)), y=alt.Y(y_var, scale=alt.Scale(zero=False)), tooltip = ["Name","Position"] ) correlation = np.corrcoef(df_quant[x_var],df_quant[y_var])[0][1] st.write("Correlation: %.2f" % correlation) chart = chart + chart.transform_regression(x_var,y_var,method="poly",order=5).mark_line(color="#0000FF") chart = chart.properties( width=800, height=500 ).interactive() st.write(chart) st.header("Machine Learning Exploration") st.write("""Now we will examine how well we can predict attributes of a player using this dataset. Below you can select a target variable and one or many predictor variables, and a support vector regression model will be built using the input. We split the dataset into a training set and a testing set, as is common practice in machine learning (see [here](https://developers.google.com/machine-learning/crash-course/training-and-test-sets/splitting-data)). You can see the mean-squared-error of the model on the testing portion of the data, as well as a plot of the residuals. A residual is the difference between the predicted values and the actual values, and thus for a perfect classifier all residuals would be 0.""") target_var = st.selectbox("Target Variable", options = correlation_options, index=1) features = st.multiselect("Predictor Variables", options = correlation_options) if features != []: df_X = df_quant[features] df_y = df_quant[target_var] X_train, X_test, y_train, y_test = train_test_split( df_X, df_y, test_size=0.25) clf = make_pipeline(StandardScaler(), SVR()) clf.fit(X_train, y_train) test_preds = clf.predict(X_test) mse = mean_squared_error(y_test,test_preds) st.write("Testing MSE = $$\\frac{1}{n}\Sigma_{i=1}^n(y_i-\hat{y}_i)^2$$ = %.2f" % mse) residuals = y_test - test_preds ml_df = pd.DataFrame({"residuals":residuals, "y_test":y_test, "predictions":test_preds}) ml_chart = alt.Chart(ml_df).mark_circle(color="#000000",size=10,opacity=.3).encode( x=alt.X("y_test", scale=alt.Scale(zero=False), title="Actual"), y=alt.Y("residuals", scale=alt.Scale(zero=False), title="Residuals") ).properties( width=800, height=500 ) ml_chart += alt.Chart(
pd.DataFrame({'y': [0]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import itertools import logging import os import shutil import time from multiprocessing import Pool, cpu_count from pathlib import Path import numpy as np import pandas as pd import tqdm from Bio import SeqIO from Bio.Blast.Applications import NcbimakeblastdbCommandline from sklearn.cluster import AgglomerativeClustering, KMeans import config from common.align_fasta import FastaAligner from common.check_input import CheckInput from common.prepare_fasta import PrepFasta as pf from common.prime_fasta import PrimeFastaWriter from common.prime_fasta_processing import FastaFinalizer from common.quick_union import QuickUnion from report.report_generator import HtmlReportGenerator from report.summary_table import ReportTableConstructor parser = argparse.ArgumentParser(description=( "REcomp2 - pipeline for comparative analysis of potentially unlimited" " number of RepeatExplorer results" ), epilog="Please report about all bugs") parser.add_argument("-v", "--version", help="show version", action="version", version=f"REcomp {config.PIPELINE_VERSION}") parser.add_argument("i", help="path(s) to RE results (top level)", type=str, metavar="path") parser.add_argument("p", help="prefix(es) for each paths", type=str, metavar="prefix") parser.add_argument("out", help="path to output directory") parser.add_argument("-r", "--references", help="path to fasta with references repeats", metavar="REF") parser.add_argument("-l", help="save logfile in output directory", action="store_true", dest="log") parser.add_argument("-c", help="number of CPU to use", type=int, default=cpu_count(), dest="cpu_number", metavar="CPU") parser.add_argument("-io", "--include-other", help=( "include `other` contigs and clusters " "in analysis (default: False)" ), action="store_true", dest="include_other") parser.add_argument("-ir", "--include-ribosomal", action="store_true", help=( "include rDNA clusters (rank 4) in analysis " "(default: False)" ), dest="include_ribosomal") parser.add_argument("--evalue", help=( "evalue threshold for alignments for supercluster " "assembly (default: 1e-05)" ), default=config.EVALUE, type=float) parser.add_argument("--low-memory", help=("use small amount of RAM for 'all to all' " "blast by using small chunk size (1000) but it " "can take much time (default chunk size: 10000)" ), action="store_true", dest="low_memory") parser.add_argument("-ss", "-superclusters-search", help=( "alignments for union of sequences in supercluster " "can be performed either blastn or megablast (default)" ": blastn is slower and required more RAM but " "more sensitive" ), choices=["blastn", "megablast"], default="megablast", dest="task") args = parser.parse_args() # catch assertions assert len(args.p.split()) == len( set(args.p.split())), ("Prefixes are not unique") assert len(args.i.split()) == len( set(args.i.split())), ("Paths are not unique") assert 0 < args.cpu_number <= cpu_count(), ("CPU count is not valid") assert args.evalue >= 0.0, ("Wrong E-value thershold") out_path = Path(args.out) out_path.mkdir(parents=True, exist_ok=True) # logging if args.log: logging.basicConfig(level=logging.DEBUG, filename=Path(args.out).joinpath("REcomp.log"), format=("\n%(asctime)s - %(funcName)s - " "%(levelname)s -\n%(message)s\n"), filemode="w") console = logging.StreamHandler() console.setLevel(logging.DEBUG) formatter = logging.Formatter( "\n%(asctime)s - %(funcName)s - %(levelname)s -\n%(message)s\n") console.setFormatter(formatter) logging.getLogger("").addHandler(console) else: logging.basicConfig(level=logging.INFO, format=("\n%(asctime)s - %(funcName)s - " "%(levelname)s -\n%(message)s\n"),) logging.info( ( f"------------------------------------------------------------------\n" f"PIPELINE VERSION : {config.PIPELINE_VERSION}\n" f" \n" f"AUTHOR : <NAME> \n" f"------------------------------------------------------------------\n" ) ) logging.info(args) # check input check_input = CheckInput() check_input.check_blast(os.environ["PATH"]) if args.references is not None: check_input.check_references(args.references) work_dirs = {path: prefix for path, prefix in zip( args.i.split(), args.p.split())} check_table = check_input.print_check_table(work_dirs) logging.info((f"Pipeline will be in progress in 30 seconds\n" f"Check matching of paths to RE results and their " f"prefixes\n{check_table}")) time.sleep(30) # create folder structure logging.info("creating directory structure") fasta_path = Path(args.out).joinpath("fasta") fasta_path.mkdir(parents=True, exist_ok=True) prime_fasta = Path(args.out).joinpath("results", "prime_fasta") prime_fasta.mkdir(parents=True, exist_ok=True) final_fasta = Path(args.out).joinpath("results", "final_fasta") final_fasta.mkdir(parents=True, exist_ok=True) # prepare fasta files with ranks and "others" logging.info("creating fasta containing all sequences for analysis") for path, prefix in work_dirs.items(): fasta_prep = pf(path, args.references, prefix) fasta_prep.create_united_fasta(fasta_path, include_other=args.include_other, include_ribosomal=args.include_ribosomal) if args.references: with open(Path(fasta_path).joinpath("fasta.fasta"), "a") as fasta: for record in SeqIO.parse(args.references, "fasta"): SeqIO.write(record, fasta, "fasta") # chunk fasta for parallel records_number = 0 record_iter = SeqIO.parse( open(Path(fasta_path).joinpath("fasta.fasta")), "fasta") chunk_size = config.CHUNK_SIZE if args.low_memory: chunk_size = config.CHUNK_SIZE / 10 logging.info(f"chunk size: {int(chunk_size)}") time.sleep(3) for i, batch in enumerate(fasta_prep.batch_iterator(record_iter, chunk_size)): records_number += len(batch) filename = Path(fasta_path).joinpath(f"fasta{i}.fasta") with open(filename, "w") as handle: count = SeqIO.write(batch, handle, "fasta") logging.info(f"saving chunk {'/'.join(filename.parts[-3:])}") # prepare connectivity table cline = NcbimakeblastdbCommandline( input_file=Path(fasta_path).joinpath("fasta.fasta"), dbtype="nucl" ) cline() logging.info("running all to all blast") fasta_aligner = FastaAligner(args.evalue, args.task, Path(fasta_path).joinpath("fasta.fasta")) files = [path for path in fasta_path.rglob("*.fasta") if any(map(str.isdigit, Path(path).stem))] print(f"Running in {args.cpu_number} cpu(s) in parallel") time.sleep(3) pool = Pool(processes=args.cpu_number) result = tqdm.tqdm(pool.imap_unordered(fasta_aligner.align_fasta, files), total=len(files)) blast_table = pd.concat(result) pool.close() logging.info("all to all blast finished") blast_table = blast_table[blast_table["qseqid"] != blast_table["sseqid"]] logging.info("removing of junk alignments") if args.include_other: kmeans = KMeans(n_clusters=2).fit(blast_table[["qcovs"]].to_numpy()) else: kmeans = AgglomerativeClustering(linkage="single").fit( blast_table[["qcovs"]].to_numpy()) bt_kmeans = np.concatenate((blast_table.to_numpy(), kmeans.labels_.reshape(-1, 1)), axis=1) blast_table =
pd.DataFrame(data=bt_kmeans[0:, 0:])
pandas.DataFrame
from . import mol_utils as mu from . import hyperparameters import random import yaml from .models import load_encoder, load_decoder, load_property_predictor import numpy as np import pandas as pd import os from .mol_utils import fast_verify class VAEUtils(object): def __init__(self, exp_file='exp.json', encoder_file=None, decoder_file=None, directory=None): # files if directory is not None: curdir = os.getcwd() os.chdir(os.path.join(curdir, directory)) # exp_file = os.path.join(directory, exp_file) # load parameters self.params = hyperparameters.load_params(exp_file, False) if encoder_file is not None: self.params["encoder_weights_file"] = encoder_file if decoder_file is not None: self.params["decoder_weights_file"] = decoder_file # char stuff chars = yaml.safe_load(open(self.params['char_file'])) self.chars = chars self.params['NCHARS'] = len(chars) self.char_indices = dict((c, i) for i, c in enumerate(chars)) self.indices_char = dict((i, c) for i, c in enumerate(chars)) # encoder, decoder self.enc = load_encoder(self.params) self.dec = load_decoder(self.params) self.encode, self.decode = self.enc_dec_functions() self.data = None if self.params['do_prop_pred']: self.property_predictor = load_property_predictor(self.params) # Load data without normalization as dataframe df = pd.read_csv(self.params['data_file']) df.iloc[:, 0] = df.iloc[:, 0].str.strip() df = df[df.iloc[:, 0].str.len() <= self.params['MAX_LEN']] self.smiles = df.iloc[:, 0].tolist() if df.shape[1] > 1: self.data = df.iloc[:, 1:] self.estimate_estandarization() if directory is not None: os.chdir(curdir) return def estimate_estandarization(self): print('Standarization: estimating mu and std values ...', end='') # sample Z space smiles = self.random_molecules(size=5000) # this was at 50000 batch = 250 # this was at 2500 Z = np.zeros((len(smiles), self.params['hidden_dim'])) for chunk in self.chunks(list(range(len(smiles))), batch): sub_smiles = [smiles[i] for i in chunk] one_hot = self.smiles_to_hot(sub_smiles) Z[chunk, :] = self.encode(one_hot, False) self.mu = np.mean(Z, axis=0) self.std = np.std(Z, axis=0) self.Z = self.standardize_z(Z) print('done!') return def standardize_z(self, z): return (z - self.mu) / self.std def unstandardize_z(self, z): return (z * self.std) + self.mu def perturb_z(self, z, noise_norm, constant_norm=False): if noise_norm > 0.0: noise_vec = np.random.normal(0, 1, size=z.shape) noise_vec = noise_vec / np.linalg.norm(noise_vec) if constant_norm: return z + (noise_norm * noise_vec) else: noise_amp = np.random.uniform( 0, noise_norm, size=(z.shape[0], 1)) return z + (noise_amp * noise_vec) else: return z def smiles_distance_z(self, smiles, z0): x = self.smiles_to_hot(smiles) z_rep = self.encode(x) return np.linalg.norm(z0 - z_rep, axis=1) def prep_mol_df(self, smiles, z): df = pd.DataFrame({'smiles': smiles}) sort_df = pd.DataFrame(df[['smiles']].groupby( by='smiles').size().rename('count').reset_index()) df = df.merge(sort_df, on='smiles') df.drop_duplicates(subset='smiles', inplace=True) df = df[df['smiles'].apply(fast_verify)] if len(df) > 0: df['mol'] = df['smiles'].apply(mu.smiles_to_mol) if len(df) > 0: df = df[
pd.notnull(df['mol'])
pandas.notnull
# -*- coding: utf-8 -*- import random import numpy as np import time import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable import datetime from dateutil import parser import os import csv import matplotlib.pyplot as plt import pandas as pd def data_preprocess(dir_path): dir_list = os.listdir(dir_path) total_data = [] for dir_csv in dir_list: total_path = dir_path+'/'+dir_csv+'/prices.csv' # print(total_path) file = open(total_path,'r') rdr = csv.reader(file) # for d in rdr: # if 'FAX' in d[0]: # total_data.append(d) # break [total_data.append(d) for d in rdr if 'FAX' in d[0]] # total_data = list(set(total_data)) # print(total_data) return total_data def data_pre_pro_walk(dir_path, key): total_data = [] for (paths, dirs, files) in os.walk(dir_path): for fs in files: if fs == 'prices.csv': # print(paths,fs) with open(paths+'/'+fs,'r') as file: rdr = csv.reader(file) # [total_data.append(d) for d in rdr if key in d[0]] for da in [d for d in rdr if key in d[0]]: da.extend([parser.parse(da[1]).weekday()]) total_data.append(da) # print(da) np_sdata = np.array(total_data) #np_sdata[:,1] is means the date # following command applies unique to the date! # unique is always sorted uni_np, indic = np.unique(np_sdata[:,1],return_index=True) # print(np_sdata[indic]) # print(uni_np) #sdata_sorted = sorted(sdata,key=lambda x: time.mktime(time.strptime(x[1],"%Y-%m-%d"))) return np_sdata[indic] #data = data_preprocess('2017data') #sdata = sorted(data, key=lambda x: time.mktime(time.strptime(x[1],"%Y-%m-%d"))) def data_pre_pro_walk_pandas(dir_path, key): total_data = [] for (paths, dirs, files) in os.walk(dir_path): for fs in files: if fs == 'prices.csv': # print(paths,fs) with open(paths+'/'+fs,'r') as file: rdr = csv.reader(file) # [total_data.append(d) for d in rdr if key in d[0]] for da in [d for d in rdr if key in d[0]]: da.extend([parser.parse(da[1]).weekday()]) total_data.append(da) # print(da) np_sdata = np.array(total_data) #np_sdata[:,1] is means the date # following command applies unique to the date! # unique is always sorted uni_np, indic = np.unique(np_sdata[:,1],return_index=True) udata = np_sdata[indic] dates = pd.DatetimeIndex(udata[:,1]) uni_data = np.delete(udata, 1,1) uni_data = np.delete(uni_data, 0,1) uni_data = np.float64(uni_data) labels = ['open','high','low','close','volume','adj_close','week'] df = pd.DataFrame(uni_data, index=dates,columns=labels) return df def data_pre_pro_walk_pandas_multikey(dir_path, key_list): total_data = pd.DataFrame() for (paths, dirs, files) in os.walk(dir_path): for fs in files: if fs == 'prices.csv': with open(paths+'/'+fs,'r') as file: try: df = pd.read_csv(file) for key in key_list: aa = df[df.symbol==key] total_data=total_data.append(aa,ignore_index=True) except: pass df = total_data.set_index('date').sort_index().drop_duplicates(keep='last') return df def data_pre_pro_walk_pandas_multikey_ReturnArray(dir_path, key_list): total_data =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51":
pandas.StringDtype()
pandas.StringDtype
# -*- coding: utf-8 -*- """ Created on Sat Mar 2 12:16:43 2019 @author: <NAME> """ import pandas as pd import numpy as np from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score, roc_auc_score from sklearn.preprocessing import StandardScaler #%% train_full = pd.read_csv("D:\Kaggle\Santander_classification\Data\\train.csv") train = train_full.sample(n = 20000).reset_index() #%% features = train.drop(columns = ["index", "ID_code", "target"]) #%% def preprocessing(dataframe): standardized = StandardScaler().fit_transform(dataframe) PrincipalComponent = PCA(n_components=199) PrincipleComp = PrincipalComponent.fit_transform(standardized) variance = PrincipalComponent.explained_variance_ratio_ variance_ratio = np.cumsum(np.round(variance, decimals=10)*100) print(variance_ratio) return PrincipleComp PrincipleComp = preprocessing(features) #%% output = train["target"] #%% x_train, x_test, y_train, y_test = train_test_split(PrincipleComp, output) #%% import keras import keras.backend as K from keras.models import Sequential from keras.layers import Dense, Dropout, BatchNormalization import tensorflow as tf #%% def auc(y_true, y_pred): auc = tf.metrics.auc(y_true, y_pred)[1] K.get_session().run(tf.local_variables_initializer()) return auc #%% model = Sequential([ Dense(256, input_dim = 150, kernel_initializer='normal', activation='relu'), Dropout(0.6), BatchNormalization(), Dense(64, kernel_initializer='normal', activation='relu'), Dropout(0.5), BatchNormalization(), Dense(16, kernel_initializer='normal', activation='relu'), Dropout(0.4), BatchNormalization(), Dense(4, kernel_initializer='normal', activation='tanh'), Dropout(0.3), BatchNormalization(), Dense(1, kernel_initializer='normal', activation='sigmoid') ]) #%% model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy', auc]) model.summary() #%% model.fit(x_train, y_train, batch_size=500, epochs = 10, validation_data=(x_test, y_test)) #%% predictions = model.predict(x_test) #predictions = (predictions > 0.5) * 1 score = f1_score(y_test, predictions) auc = roc_auc_score(y_test, predictions) #%% test_full = pd.read_csv("D:\Kaggle\Santander_classification\Data\\test.csv") test = test_full.drop(columns = ["ID_code"]) test_features = preprocessing(test) target = model.predict(test_features) target = (target > 0.5) * 1 #%% submission =
pd.DataFrame()
pandas.DataFrame
import string import pandas as pd import numpy as np import doctest from texthero import preprocessing, stopwords from . import PandasTestCase """ Test doctest """ def load_tests(loader, tests, ignore): tests.addTests(doctest.DocTestSuite(preprocessing)) return tests class TestPreprocessing(PandasTestCase): """ Test remove digits. """ def test_remove_digits_only_block(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits h1n1") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_any(self): s = pd.Series("remove block of digits 1234 h1n1") s_true = pd.Series("remove block of digits h n ") self.assertEqual(preprocessing.remove_digits(s, only_blocks=False), s_true) def test_remove_digits_brackets(self): s = pd.Series("Digits in bracket (123 $) needs to be cleaned out") s_true = pd.Series("Digits in bracket ( $) needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_start(self): s = pd.Series("123 starting digits needs to be cleaned out") s_true = pd.Series(" starting digits needs to be cleaned out") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_end(self): s = pd.Series("end digits needs to be cleaned out 123") s_true = pd.Series("end digits needs to be cleaned out ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_phone(self): s = pd.Series("+41 1234 5678") s_true = pd.Series("+ ") self.assertEqual(preprocessing.remove_digits(s), s_true) def test_remove_digits_punctuation(self): s = pd.Series(string.punctuation) s_true = pd.Series(string.punctuation) self.assertEqual(preprocessing.remove_digits(s), s_true) """ Test replace digits """ def test_replace_digits(self): s = pd.Series("1234 falcon9") s_true = pd.Series("X falcon9") self.assertEqual(preprocessing.replace_digits(s, "X"), s_true) def test_replace_digits_any(self): s = pd.Series("1234 falcon9") s_true = pd.Series("X falconX") self.assertEqual( preprocessing.replace_digits(s, "X", only_blocks=False), s_true ) """ Remove punctuation. """ def test_remove_punctation(self): s = pd.Series("Remove all! punctuation!! ()") s_true = pd.Series( "Remove all punctuation " ) # TODO maybe just remove space? self.assertEqual(preprocessing.remove_punctuation(s), s_true) """ Remove diacritics. """ def test_remove_diactitics(self): s = pd.Series("Montréal, über, 12.89, Mère, Françoise, noël, 889, اِس, اُس") s_true = pd.Series("Montreal, uber, 12.89, Mere, Francoise, noel, 889, اس, اس") self.assertEqual(preprocessing.remove_diacritics(s), s_true) """ Remove whitespace. """ def test_remove_whitespace(self): s = pd.Series("hello world hello world ") s_true = pd.Series("hello world hello world") self.assertEqual(preprocessing.remove_whitespace(s), s_true) """ Test pipeline. """ def test_pipeline_stopwords(self): s = pd.Series("E-I-E-I-O\nAnd on") s_true = pd.Series("e-i-e-i-o\n ") pipeline = [preprocessing.lowercase, preprocessing.remove_stopwords] self.assertEqual(preprocessing.clean(s, pipeline=pipeline), s_true) """ Test stopwords. """ def test_remove_stopwords(self): text = "i am quite intrigued" text_default_preprocessed = " quite intrigued" text_spacy_preprocessed = " intrigued" text_custom_preprocessed = "i quite " self.assertEqual( preprocessing.remove_stopwords(pd.Series(text)), pd.Series(text_default_preprocessed), ) self.assertEqual( preprocessing.remove_stopwords( pd.Series(text), stopwords=stopwords.SPACY_EN ), pd.Series(text_spacy_preprocessed), ) self.assertEqual( preprocessing.remove_stopwords( pd.Series(text), stopwords={"am", "intrigued"} ), pd.Series(text_custom_preprocessed), ) def test_stopwords_are_set(self): self.assertEqual(type(stopwords.DEFAULT), set) self.assertEqual(type(stopwords.NLTK_EN), set) self.assertEqual(type(stopwords.SPACY_EN), set) """ Test remove html tags """ def test_remove_html_tags(self): s = pd.Series("<html>remove <br>html</br> tags<html> &nbsp;") s_true = pd.Series("remove html tags ") self.assertEqual(preprocessing.remove_html_tags(s), s_true) """ Text tokenization """ def test_tokenize(self): s = pd.Series("text to tokenize") s_true = pd.Series([["text", "to", "tokenize"]]) self.assertEqual(preprocessing.tokenize(s), s_true) def test_tokenize_multirows(self): s = pd.Series(["first row", "second row"]) s_true =
pd.Series([["first", "row"], ["second", "row"]])
pandas.Series
""" Comparison between solving with only one initial estimate and taking the best of 6 initial estimates (corresponding to the 6 axis-aligned unit vectors) for u. """ from calibration.util import * from calibration.solver import bf_slsqp, slsqp import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # change working directory to the directory this file is in (for saving data) os.chdir(os.path.dirname(os.path.abspath(__file__))) SENSOR_NOISES = [0, 20, 40] SAMPLES = 100 GEN_DATA = False if(GEN_DATA): results = { "solver_type": [], "noise": [], "p_error": [], "u_error": [], "a_error": [], "d_error": [] } for noise in SENSOR_NOISES: i = 0 while i < SAMPLES: p = [np.random.uniform(-100, 100) for _ in range(3)] u = random_unit_vector() a = random_unit_vector() d = np.random.uniform(-200, 200) obs = gen_observation(p, u, a, d) if(obs != float('inf') and angle_between(u, a) < 1): print(i) x_0 = obs[1] tfs = generate_motions(p, u, a, d, x_0, [[-1000, 1000]]*3, radius=2000, n=32) tfd_ps = [from_hom(tf @ to_hom(p)) for tf in tfs] tfd_us = [from_hom(tf @ np.append(u, [0])) for tf in tfs] measurements = [gen_observation(tfd_p, tfd_u, a, d)[0] for tfd_p, tfd_u in zip(tfd_ps, tfd_us)] measurements = [m + np.random.normal(0, noise) for m in measurements] soln, loss = slsqp( tfs, measurements, a_est=[0, 0, 1], d_est=0, p_est=[0, 0, 0], u_est=[0, 0, -1], p_bounds=[ [-100, 100], [-100, 100], [-100, 100] ], d_bounds = [-200, 200] ) results["solver_type"].append("One") results["noise"].append(noise) results["p_error"].append(np.linalg.norm(np.array(p) - np.array(soln[0]))) #TODO check results["u_error"].append(angle_between(u, soln[1])) results["a_error"].append(angle_between(a, soln[2])) results["d_error"].append(np.abs(d - soln[3])) soln, loss = bf_slsqp( tfs, measurements, p_bounds=[ [-100, 100], [-100, 100], [-100, 100] ], d_bounds = [-200, 200] ) results["solver_type"].append("Best of 6") results["noise"].append(noise) results["p_error"].append(np.linalg.norm(np.array(p) - np.array(soln[0]))) #TODO check results["u_error"].append(angle_between(u, soln[1])) results["a_error"].append(angle_between(a, soln[2])) results["d_error"].append(np.abs(d - soln[3])) i+=1 results = pd.DataFrame(results) results.to_csv('data/simulated/initial_est_test.csv') else: results =
pd.read_csv("data/simulated/initial_est_test.csv")
pandas.read_csv
import math from abc import ABC from typing import Optional, Iterable import pandas as pd from django.db import connection from pandas import DataFrame from recipe_db.analytics import METRIC_PRECISION, POPULARITY_START_MONTH, POPULARITY_CUT_OFF_DATE from recipe_db.analytics.scope import RecipeScope, StyleProjection, YeastProjection, HopProjection, \ FermentableProjection from recipe_db.analytics.utils import remove_outliers, get_style_names_dict, get_hop_names_dict, get_yeast_names_dict, \ get_fermentable_names_dict, RollingAverage, Trending, months_ago from recipe_db.models import Recipe class RecipeLevelAnalysis(ABC): def __init__(self, scope: RecipeScope) -> None: self.scope = scope class RecipesListAnalysis(RecipeLevelAnalysis): def random(self, num_recipes: int) -> Iterable[Recipe]: scope_filter = self.scope.get_filter() query = ''' SELECT r.uid AS recipe_id FROM recipe_db_recipe AS r WHERE r.name IS NOT NULL {} ORDER BY random() LIMIT %s '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters + [num_recipes]) recipe_ids = df['recipe_id'].values.tolist() if len(recipe_ids) == 0: return [] return Recipe.objects.filter(uid__in=recipe_ids).order_by('name') class RecipesCountAnalysis(RecipeLevelAnalysis): def total(self) -> int: scope_filter = self.scope.get_filter() query = ''' SELECT count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) if len(df) == 0: return 0 return df['total_recipes'].values.tolist()[0] def per_day(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT date(r.created) AS day, count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} GROUP BY date(r.created) '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = df.set_index('day') return df def per_month(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT date(r.created, 'start of month') AS month, count(r.uid) AS total_recipes FROM recipe_db_recipe AS r WHERE created IS NOT NULL {} GROUP BY date(r.created, 'start of month') ORDER BY month ASC '''.format(scope_filter.where) df = pd.read_sql(query, connection, params=scope_filter.parameters) df = df.set_index('month') return df def per_style(self) -> DataFrame: scope_filter = self.scope.get_filter() query = ''' SELECT ras.style_id, count(DISTINCT r.uid) AS total_recipes FROM recipe_db_recipe AS r JOIN recipe_db_recipe_associated_styles ras ON r.uid = ras.recipe_id WHERE 1 {} GROUP BY ras.style_id ORDER BY ras.style_id ASC '''.format(scope_filter.where) df =
pd.read_sql(query, connection, params=scope_filter.parameters)
pandas.read_sql
import pandas as pd import os import sys # Header name = "Topsis-Harmanjit-101903287" __version__ = "0.0.1" __author__ = '<NAME>' __credits__ = 'Thapar Institute of Engineering and Technology' # Code def main(): # Checking for command line arguments if len(sys.argv) != 5: print("ERROR : NUMBER OF PARAMETERS") print("USAGE EXAMPLE : python 101903287.py <input_file.csv> 1,1,1,1 +,+,-,+ <result_file.csv> ") exit(1) # Checking for input file in directory elif not os.path.isfile(sys.argv[1]): print(f"ERROR : {sys.argv[1]} Don't exist!!") exit(1) # Checking for input file formats elif ".csv" != (os.path.splitext(sys.argv[1]))[1]: print(f"ERROR : {sys.argv[1]} is not csv!") exit(1) # Checking for output file formats elif (".csv" != (os.path.splitext(sys.argv[4]))[1]): print("ERROR : Output file extension is wrong") exit(1) # Function Code else: df = pd.read_csv(sys.argv[1]) col = len(df.columns.values) # Checking for columns if col < 3: print("ERROR : Input file have less than 3 columns") exit(1) # Handling errors of weighted and impact arrays try: weights = [int(i) for i in sys.argv[2].split(',')] except: print("ERROR : In weights array please check again") exit(1) impact = sys.argv[3].split(',') for i in impact: if not (i == '+' or i == '-'): print("ERROR : In impact array please check again") exit(1) # Checking number of column,weights and impacts is same or not if col != len(weights)+1 or col != len(impact)+1: print( "ERROR : Number of weights, number of impacts and number of columns not same") exit(1) # Handeling non-numeric data and filling non-numeric data with mean for i in range(1, col):
pd.to_numeric(df.iloc[:, i], errors='coerce')
pandas.to_numeric
''' prep.py : reads and prepares raster files for time series feature extraction authors: m.mann & a.bedada ''' import numpy as np import glob import os.path import pandas as pd import geopandas as gpd import rasterio from rasterio import features import gdal from re import sub from pathlib import Path def set_df_mindex(df): ''' Returns dataframe with pixel_id and time index ''' df.set_index(['pixel_id', 'time'], inplace=True) return df def set_df_index(df): df.set_index(['pixel_id'], inplace=True) return df def reset_df_index(df): df.reset_index(inplace=True) return df def set_common_index(a, b): a = reset_df_index(if_series_to_df(a)) b = reset_df_index(if_series_to_df(b)) index_value = a.columns.intersection(b.columns) \ .intersection(['pixel_id','time']).tolist() a.set_index(index_value, inplace=True) b.set_index(index_value, inplace=True) return a, b def read_my_df(path): my_df = pd.read_csv(os.path.join(path,'my_df.csv')) my_df = set_df_mindex(my_df) #sort # add columns needed for tsfresh my_df = reset_df_index(my_df) return(my_df) def path_to_var(path): ''' Returns variable name from path to folder of tifs ''' return([sub(r'[^a-zA-Z ]+', '', os.path.basename(x).split('.')[0]) for x in glob.glob("{}/**/*.tif".format(path), recursive=True) ][0]) def image_names(path): ''' Reads raster files from multiple folders and returns their names :param path: directory path :return: names of the raster files ''' images = glob.glob("{}/**/*.tif".format(path), recursive=True) image_name = [os.path.basename(tif).split('.')[0] for tif in images] # handle single tif case if len(image_name) == 0: image_name = [os.path.basename(path).split('.')[0]] return image_name def read_images(path): ''' Reads a set of associated raster bands from a file. Can read one or multiple files stored in different folders. :param path: file name or directory path :return: raster files opened as GDALDataset ''' if os.path.isdir(path): images = glob.glob("{}/**/*.tif".format(path), recursive=True) raster_files = [gdal.Open(f, gdal.GA_ReadOnly) for f in images] else: raster_files = [gdal.Open(path, gdal.GA_ReadOnly)] return raster_files def image_to_array(path): ''' Converts images inside multiple folders to stacked array :param path: directory path :return: stacked numpy array ''' raster_array = np.stack([raster.ReadAsArray() for raster in read_images(path)], axis=-1) return raster_array def image_to_series(path): ''' Converts images to one dimensional array with axis labels :param path: directory path :return: pandas series ''' data = image_to_array(path) rows, cols, num = data.shape data = data.reshape(rows*cols, num) # create index index = pd.RangeIndex(start=0, stop=len(data), step=1, name = 'pixel_id') # create wide df with images as columns df = pd.DataFrame(data=data[0:,0:], index=index, dtype=np.float32, columns=image_names(path)) #reindex and sort columns df2 = df.reindex(sorted(df.columns), axis=1) # stack columns as 1d array df2 = df2.stack().reset_index() # create a time series column df2['time'] = df2['level_1'].str.split('[- _]').str[1] df2['kind'] = df2['level_1'].str.split('[- _]').str[0] # set multiindex df2.set_index(['pixel_id', 'time'], inplace=True) #rename all columns df2.columns =[ 'level_1', 'value', 'kind'] df2.drop(['level_1'], axis=1, inplace = True) # add columns needed for tsfresh df2.reset_index(inplace=True, level=['pixel_id','time']) # df2['pixel_id'] = df2.index.get_level_values('pixel_id') # df2['time'] = df2.index.get_level_values('time') return df2 def image_to_series_simple(file,dtype = np.int8): ''' Reads and prepares single raster file :param file: raster file name :param dtype: numpy data type to return (default:np.int8) :return: One-dimensional ndarray with axis ''' # read image as array and reshape its dimension rows, cols, num = image_to_array(file).shape data = image_to_array(file).reshape(rows * cols) # create an index for each pixel index = pd.RangeIndex(start=0, stop=len(data), step=1, name = 'pixel_id') # convert N-dimension array to one dimension array df = pd.Series(data = data, index = index, dtype = dtype, name = 'value') return df def poly_rasterizer(poly,raster_ex, raster_path_prefix, buffer_poly_cells=0): ''' Rasterizes polygons by assigning a value 1. It can also add a buffer at a distance that is multiples of the example raster resolution :param poly: polygon to to convert to raster :param raster_ex: example tiff :param raster_path_prefix: directory path to the output file example: 'F:/Boundary/StatePoly_buf' :param buffer_poly_cells: buffer size in cell count example: 1 = buffer by one cell :return: a GeoTiff raster ''' # check if polygon is already geopandas dataframe if so, don't read again if ('poly' in locals()): if not(isinstance(poly, gpd.geodataframe.GeoDataFrame)): poly = gpd.read_file(poly) else: poly = poly # create column of ones to rasterize for presence (1) poly['ONES'] = 1 # get example metadata with rasterio.open(raster_ex) as src: array = src.read() profile = src.profile profile.update(dtype=rasterio.float32, count=1, compress='lzw',nodata=0) out_arr = src.read(1) # get data from first band, this gets updated in write out_arr.fill(0) #set all values of raster to zero # reproject polygon to match crs of raster poly = poly.to_crs(src.crs) # buffer polygon to avoid edge effects if buffer_poly_cells != 0: poly['geometry'] = poly.buffer(buffer_poly_cells*src.res[0] ) # this creates an empty polygon geoseries # Write to tif, using the same profile as the source with rasterio.open(raster_path_prefix+'.tif', 'w', **profile) as dst: # generator of geom, value pairs to use in rasterizing shapes = ((geom,value) for geom, value in zip(poly.geometry, poly.ONES)) #rasterize shapes burned_value = features.rasterize(shapes=shapes, fill=0, out=out_arr, transform=dst.transform) dst.write(burned_value,1) def poly_rasterizer_year_group(poly,raster_exmpl,raster_path_prefix, year_col_name='YEAR_',year_sub_list=range(1980,1990)): ''' Rasterizes polygons by assigning a value 1 to pixel. Utilizes year column to create an aggregated polygon across multiple year groups. :param poly: polygon to to convert to raster :param raster_ex: example tiff to base output on :param raster_path_prefix: directory path to the output file example: 'F:/Boundary/StatePoly_buf' :param year_col_name: column storing year to compare year_sub_list to :param year_sub_list: an int year, range(), or list of start end dates [1951, 1955] :return: a GeoTiff raster ''' # year or year groups must be forced into a list or range if type(year_sub_list)==int: year_sub_list = [year_sub_list] elif type(year_sub_list) == range: year_sub_list = year_sub_list elif type(year_sub_list) == list: # convert to range so all years are rasterized year_sub_list = range(year_sub_list[0],year_sub_list[1]+1) # check if polygon is already geopandas dataframe if so, don't read again if not('polys' in locals()): polys = gpd.read_file(poly) if ('polys' in locals()): if not(isinstance(polys, gpd.geodataframe.GeoDataFrame)): polys = gpd.read_file(poly) else: polys = poly # subset to year and convert to integer polys = polys[polys.loc[:,year_col_name].isin( [str(i) for i in year_sub_list] )] # create column of ones to rasterize for presence (1) of fire polys['ONES'] = 1 # get example metadata with rasterio.open(raster_exmpl) as src: array = src.read() profile = src.profile profile.update(dtype=rasterio.float32, count=1, compress='lzw',nodata=0) out_arr = src.read(1) # get data from first band, this gets updated in write # Write to tif, using the same profile as the source with rasterio.open(raster_path_prefix+str(year_sub_list[0])+'_'+str(year_sub_list[-1])+'.tif', 'w', **profile) as dst: # generator of geom, value pairs to use in rasterizing shapes = ((geom,value) for geom, value in zip(polys.geometry, polys.ONES)) #rasterize shapes rasterized_value = features.rasterize(shapes=shapes, fill=0, out=out_arr, transform=dst.transform) dst.write(rasterized_value,1) def poly_to_series(poly,raster_ex, field_name, nodata=-9999, plot_output=True): ''' Rasterizes polygons by assigning a value 1. It can also add a buffer at a distance that is multiples of the example raster resolution :param poly: polygon to to convert to raster :param raster_ex: example tiff :param raster_path_prefix: directory path to the output file example: 'F:/Boundary/StatePoly_buf' :param nodata: (int or float, optional) – Used as fill value for all areas not covered by input geometries. :param nodata: (True False, optional) – Plot rasterized polygon data? :return: a pandas dataframe with a named column of rasterized data ''' # check if polygon is already geopandas dataframe if so, don't read again if ('poly' in locals()): if not(isinstance(poly, gpd.geodataframe.GeoDataFrame)): poly = gpd.read_file(poly) else: poly = poly # get example metadata with rasterio.open(raster_ex) as src: array = src.read() profile = src.profile profile.update(dtype=rasterio.float32, count=1, compress='lzw',nodata=nodata) out_arr = src.read(1) # get data from first band, this gets updated in write out_arr.fill(nodata) #set all values of raster to missing data value # reproject polygon to match crs of raster poly = poly.to_crs(src.crs) # generator of geom, value pairs to use in rasterizing shapes = ((geom,value) for geom, value in zip(poly.geometry, poly[field_name])) #rasterize shapes burned_value = features.rasterize(shapes=shapes, fill=nodata, out=out_arr, transform=src.transform) if plot_output == True: import matplotlib.pyplot as plt plt_burned_value = burned_value.copy() plt_burned_value[plt_burned_value==nodata] = np.NaN plt.imshow(plt_burned_value) plt.set_cmap("Reds") plt.colorbar( ) plt.show() # convert to array rows, cols = burned_value.shape data = burned_value.reshape(rows*cols, 1) # create index index = pd.RangeIndex(start=0, stop=len(data), step=1, name='pixel_id') # create wide df with images as columns df = pd.DataFrame(data=data[:,:], index=index, dtype=np.float32, columns=[field_name]) return df def mask_df(raster_mask, original_df, missing_value = -9999, reset_index = True): ''' Reads in raster mask and subsets dataframe by mask index :param raster_mask: tif containing (0,1) mask where 1's are retained :param original_df: a path to a pandas dataframe, a series to mask, or a list of 2 dfs :param missing_value: additional missing values to be masked out :param reset_index: if true, any df index will be reset (added as columns to df) :return: masked df ''' # convert mask to pandas series keep only cells with value 1 index_mask = image_to_series_simple(raster_mask) index_mask = index_mask[index_mask == 1] # if original_df is list concatenate by index if type(original_df) == list: list_flag = True first_df_shape = if_series_to_df(original_df[0]).shape try: original_df = pd.concat(original_df, axis=1, ignore_index=False) except: print('time index missing in one element, merging list elements using only pixel_id index') original_df = [set_df_index(reset_df_index(if_series_to_df(df))) for df in original_df] original_df = pd.concat(original_df, axis=1, ignore_index=False) original_df = reset_df_index(original_df) else: list_flag = False # check if polygon is already geopandas dataframe if so, don't read again if not(isinstance(original_df, pd.core.series.Series)) and \ not(isinstance(original_df, pd.core.frame.DataFrame)): original_df = read_my_df(original_df) # limit to matching pixels in index from index_mask try: original_df = original_df.iloc[original_df.index.get_level_values('pixel_id').isin(index_mask.index)] except KeyError: # set multiindex original_df.set_index(['pixel_id', 'time'], inplace=True) original_df = original_df.iloc[original_df.index.get_level_values('pixel_id').isin(index_mask.index)] # remove any more missing values if missing_value != None: # inserts nan in missing value locations try: original_df = original_df[original_df.iloc[:,:] != missing_value] except: original_df = original_df[original_df.iloc[:] != missing_value] original_df.dropna(inplace=True) if list_flag == True: # split back out list elements a , b = original_df.iloc[:,range(first_df_shape[1])], original_df.iloc[:,first_df_shape[1]:] # reset index as columns if reset_index == True: a = reset_df_index(if_series_to_df(a)) b = reset_df_index(if_series_to_df(b)) return a , b else: # reset index as columns if reset_index == True: original_df = reset_df_index(if_series_to_df(original_df)) return original_df def unmask_df(original_df, mask_df_output): ''' Unmasks a dataframe with the raster file used for masking :param original_df: a data frame with the correct unmasked index values :param mask_df_output: a path to a pandas dataframe or series to mask :return: unmasked output ''' # check if df is already dataframe if so, don't read again if not(isinstance(original_df, pd.core.series.Series)) and \ not(isinstance(original_df, pd.core.frame.DataFrame)): original_df = read_my_df(original_df) else: original_df = original_df # cover series to dataframes original_df = if_series_to_df(original_df) mask_df_output = if_series_to_df(mask_df_output) # find common index and set original_df, mask_df_output = set_common_index(a = original_df, b = mask_df_output) # limit original_df to col # of mask_df and change names to match original_df = original_df.iloc[:,:mask_df_output.shape[1]] original_df.columns = mask_df_output.columns original_df['value'] = -9999 try: # replace values based on masked values, iterate through kind if multiple features for knd in mask_df_output['kind'].unique(): original_df.update(mask_df_output[mask_df_output['kind']==knd]) except: # replace values based on masked values for non long form data types original_df.update(mask_df_output) return original_df def unmask_from_mask(mask_df_output, raster_mask, missing_value = -9999): ''' Unmasks a multiindex dataframe with the raster file used for masking :param mask_df_output: a path to a pandas dataframe or series to mask with matching (multi)index values :param raster_mask: path to a rask max where 0 values are treated as missing :param missing_value: value assigned to missing values generally used for writing raster tifs :return: unmasked output ''' # set up df with correct index to unmask to unmask_df = if_series_to_df(image_to_series_simple(raster_mask,dtype = np.float32)) unmask_df[unmask_df.value==0] = missing_value unmask_df.reset_index(inplace=True) time_index = mask_df_output.reset_index().time.unique()[0] unmask_df['time'] = time_index unmask_df = set_df_mindex(unmask_df) # add placeholders for unmasked values for name in mask_df_output.columns: unmask_df[name] = unmask_df['value'] unmask_df.drop(columns=['value'],inplace=True) try: # replace values based on masked values, iterate through kind if multiple features for knd in mask_df_output['kind'].unique(): unmask_df.update(mask_df_output[mask_df_output['kind']==knd]) except: # replace values based on masked values for non long form data types unmask_df.update(mask_df_output) return unmask_df def check_mask(raster_mask, raster_input_ex): ''' Checks that mask and input rasters have identical properties :param raster_mask: full path and prefix for raster name :param raster_input_ex: int specifying number of cells to buffer polygon with, 0 for no buffer :return: raster ''' mask_list = [] ex_list = [] test_list = ['Mask','Resolution','Bounds','Shape'] with rasterio.open(raster_mask) as mask: mask_list = [mask.crs,mask.res,mask.bounds,mask.shape] with rasterio.open(raster_input_ex) as ex: ex_list = [ex.crs,ex.res,ex.bounds, ex.shape] for i in range(0,len(mask_list)): if mask_list[i] == ex_list[i]: print(test_list[i]+": passed") else: print(test_list[i]+": FAILED") # close rasters mask.close() ex.close() def combine_extracted_features(path, write_out=True,index_col=0): ''' Combines multiple extracted_features.csv files and assigns year prefix based on subfolder names. Folder structure assumed as follows: Precip> monthly1990-1995> extracted_features.csv extracted_features.tif monthly1996-2000> extracted_features.csv extracted_features.tif :param path: path to parent directory holding folders containing extracted features. (Example: Test) :param write_out: Should combined df be written to csv :param index_col: position of index in extracted_features.csv to be combined (default: 0, otherwise use None) :return: merged df containing all extracted_features.csv data with assigned year prefix ''' # get paths of all extracted_features.csv files all_files = [os.path.join(root, name) for root, dirs, files in os.walk(path) for name in files if name.endswith(( "features.csv"))] # extract numeric values from parent folder name parent_folder_years = [sub(r'\D', "", parent_folder) for parent_folder in all_files] print('Combining folder year names',parent_folder_years) # data read generator add year prefix to all column names REMOVE? df_from_each_file = (pd.read_csv(all_files[i],index_col= index_col )\ .drop(['time'],errors='ignore', axis=1)\ .add_suffix('-'+parent_folder_years[i]) \ for i in range(len(all_files))) # create joined df with all extraced_features data concatenated_df = pd.concat(df_from_each_file, axis=1, ignore_index=False) # set index to match others concatenated_df.index.names = ['pixel_id'] # deal with output location out_path = Path(path).parent.joinpath(Path(path).stem+"_features") out_path.mkdir(parents=True, exist_ok=True) # write combined extracted features data if write_out == True: concatenated_df.to_csv(os.path.join(out_path,'combined_extracted_features_df.csv'), chunksize=50000, index=False) return(concatenated_df) def combine_target_rasters(path, target_file_prefix, dep_var_name ='Y',write_out=True): ''' Combines multiple extracted_features.csv files and assigns year prefix based on subfolder names. Folder structure assumed as follows: Path> target_2000-2005.tif target_2006-2010.tif target_2011-2016.tif :param path: path to parent directory holding folders containing extracted features. (Example: Test) :param target_file_prefix: prefix to search for in path (ex above: "target_") :param dep_var_name: column name to assign (default: "Y") :param write_out: Should combined df be written to csv :return: merged df containing all extracted_features.csv data with assigned year prefix ''' targets = glob.glob(("{}/**/"+target_file_prefix+"*.tif").format(path), recursive=True) targets_years = [sub(r'\D', "", i) for i in targets] # rename columns with Y- prefix series_from_each_file = [ image_to_series_simple(targets[i]).rename('Y-'+targets_years[i]) for i in range(len(targets_years))] # create joined df with all target data concatenated_df = pd.concat(series_from_each_file, axis=1, ignore_index=False) # deal with output location out_path = Path(path).parent.joinpath(Path(path).stem+"_target") out_path.mkdir(parents=True, exist_ok=True) # write combined extracted features data if write_out == True: print('writing file to ',out_path) concatenated_df.to_csv(os.path.join(out_path,'combined_target_df.csv'), chunksize=50000, index=False) return(concatenated_df) def wide_to_long_target_features(target,features,sep='-'): ''' Reads in target and feature data in wide format and returns long format :param target: target (Y) data wide format multiple years :param features: attribute (X) data wide format multiple years :return: target, attribute both in long format ''' # get variables to convert to long by removing dates at end of name target_stubs = list(set([sub(sep+r'\d+', "", i) for i in target.columns if i !='pixel_id' ])) features_stubs = list(set([sub(sep+r'\d+', "", i) for i in features.columns if i !='pixel_id' ])) target['pixel_id'] = target.index features['pixel_id'] = features.index target_ln =
pd.wide_to_long(target,i='pixel_id',j="time", stubnames = target_stubs, sep=sep)
pandas.wide_to_long
import json from typing import Tuple, Union import pandas as pd import numpy as np import re import os from tableone import TableOne from collections import defaultdict from io import StringIO from .gene_patterns import * import plotly.express as px import pypeta from pypeta import Peta from pypeta import filter_description class SampleIdError(RuntimeError): def __init__(self, sample_id: str, message: str): self.sample_id = sample_id self.message = message class NotNumericSeriesError(RuntimeError): def __init__(self, message: str): self.message = message class UnknowSelectionTypeError(RuntimeError): def __init__(self, message: str): self.message = message class NotInColumnError(RuntimeError): def __init__(self, message: str): self.message = message class GenesRelationError(RuntimeError): def __init__(self, message: str): self.message = message class VariantUndefinedError(RuntimeError): def __init__(self, message: str): self.message = message class ListsUnEqualLengthError(RuntimeError): def __init__(self, message: str): self.message = message class DatetimeFormatError(RuntimeError): def __init__(self, message: str): self.message = message class CDx_Data(): """[summary] """ def __init__(self, mut_df: pd.DataFrame = None, cli_df: pd.DataFrame = None, cnv_df: pd.DataFrame = None, sv_df: pd.DataFrame = None, json_str: str = None): """Constructor method with DataFrames Args: mut_df (pd.DataFrame, optional): SNV and InDel info. Defaults to None. cli_df (pd.DataFrame, optional): Clinical info. Defaults to None. cnv_df (pd.DataFrame, optional): CNV info. Defaults to None. sv_df (pd.DataFrame, optional): SV info. Defaults to None. """ self.json_str = json_str self.mut = mut_df self.cnv = cnv_df self.sv = sv_df if not cli_df is None: self.cli = cli_df self.cli = self._infer_datetime_columns() else: self._set_cli() self.crosstab = self.get_crosstab() def __len__(self): return 0 if self.cli is None else len(self.cli) def __getitem__(self, n): return self.select_by_sample_ids([self.cli.sampleId.iloc[n]]) def __sub__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = None if self.cli is None and cdx.cli is None else pd.concat( [self.cli, cdx.cli]).drop_duplicates(keep=False) mut = None if self.mut is None and cdx.mut is None else pd.concat( [self.mut, cdx.mut]).drop_duplicates(keep=False) cnv = None if self.cnv is None and cdx.cnv is None else pd.concat( [self.cnv, cdx.cnv]).drop_duplicates(keep=False) sv = None if self.sv is None and cdx.sv is None else pd.concat( [self.sv, cdx.sv]).drop_duplicates(keep=False) return CDx_Data(cli_df=cli, mut_df=mut, cnv_df=cnv, sv_df=sv) def __add__(self, cdx): if self.cli is None and cdx.cli is None: return CDx_Data() cli = pd.concat([self.cli, cdx.cli]).drop_duplicates() mut = pd.concat([self.mut, cdx.mut]).drop_duplicates() cnv =
pd.concat([self.cnv, cdx.cnv])
pandas.concat
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. import logging from typing import Dict, List, Tuple import numpy as np import pandas as pd import torch from caffe2.python import workspace from ml.rl.caffe_utils import C2, StackedAssociativeArray from ml.rl.preprocessing import normalization from ml.rl.preprocessing.normalization import MISSING_VALUE logger = logging.getLogger(__name__) class SparseToDenseProcessor: def __init__( self, sorted_features: List[int], set_missing_value_to_zero: bool = False ): self.sorted_features = sorted_features self.set_missing_value_to_zero = set_missing_value_to_zero def __call__(self, sparse_data): return self.process(sparse_data) class Caffe2SparseToDenseProcessor(SparseToDenseProcessor): def __init__( self, sorted_features: List[int], set_missing_value_to_zero: bool = False ): super().__init__(sorted_features, set_missing_value_to_zero) def process( self, sparse_data: StackedAssociativeArray ) -> Tuple[str, str, List[str]]: lengths_blob = sparse_data.lengths keys_blob = sparse_data.keys values_blob = sparse_data.values MISSING_SCALAR = C2.NextBlob("MISSING_SCALAR") missing_value = 0.0 if self.set_missing_value_to_zero else MISSING_VALUE workspace.FeedBlob(MISSING_SCALAR, np.array([missing_value], dtype=np.float32)) C2.net().GivenTensorFill([], [MISSING_SCALAR], shape=[], values=[missing_value]) parameters: List[str] = [MISSING_SCALAR] assert len(self.sorted_features) > 0, "Sorted features is empty" dense_input = C2.NextBlob("dense_input") dense_input_presence = C2.NextBlob("dense_input_presence") C2.net().SparseToDenseMask( [keys_blob, values_blob, MISSING_SCALAR, lengths_blob], [dense_input, dense_input_presence], mask=self.sorted_features, return_presence_mask=True, ) if self.set_missing_value_to_zero: dense_input_presence = C2.And( C2.GT(dense_input, -1e-4, broadcast=1), C2.LT(dense_input, 1e-4, broadcast=1), ) return dense_input, dense_input_presence, parameters class PandasSparseToDenseProcessor(SparseToDenseProcessor): def __init__( self, sorted_features: List[int], set_missing_value_to_zero: bool = False ): super().__init__(sorted_features, set_missing_value_to_zero) def process(self, sparse_data) -> Tuple[torch.Tensor, torch.Tensor]: missing_value = normalization.MISSING_VALUE if self.set_missing_value_to_zero: missing_value = 0.0 state_features_df =
pd.DataFrame(sparse_data)
pandas.DataFrame
import logging from operator import itemgetter from logging.config import dictConfig from datetime import datetime, timedelta, date from math import ceil import dash import dash_table from dash_table.Format import Format, Scheme import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import plotly.express as px import pandas as pd from chinese_calendar import get_holidays import plotly.graph_objects as go import numpy as np from keysersoze.models import ( Deal, Asset, AssetMarketHistory, ) from keysersoze.utils import ( get_accounts_history, get_accounts_summary, ) from keysersoze.apps.app import APP from keysersoze.apps.utils import make_card_component LOGGER = logging.getLogger(__name__) dictConfig({ 'version': 1, 'formatters': { 'simple': { 'format': '%(asctime)s - %(filename)s:%(lineno)s: %(message)s', } }, 'handlers': { 'default': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple', "stream": "ext://sys.stdout", }, }, 'loggers': { '__main__': { 'handlers': ['default'], 'level': 'DEBUG', 'propagate': True }, 'keysersoze': { 'handlers': ['default'], 'level': 'DEBUG', 'propagate': True } } }) pd.options.mode.chained_assignment = 'raise' COLUMN_MAPPINGS = { 'code': '代码', 'name': '名称', 'ratio': '占比', 'return_rate': '收益率', 'cost': '投入', 'avg_cost': '成本', 'price': '价格', 'price_date': '价格日期', 'amount': '份额', 'money': '金额', 'return': '收益', 'action': '操作', 'account': '账户', 'date': '日期', 'time': '时间', 'fee': '费用', 'position': '仓位', 'day_return': '日收益', } FORMATS = { '价格日期': {'type': 'datetime', 'format': Format(nully='N/A')}, '日期': {'type': 'datetime', 'format': Format(nully='N/A')}, '时间': {'type': 'datetime', 'format': Format(nully='N/A')}, '占比': {'type': 'numeric', 'format': Format(scheme='%', precision=2)}, '收益率': {'type': 'numeric', 'format': Format(nully='N/A', scheme='%', precision=2)}, '份额': {'type': 'numeric', 'format': Format(nully='N/A', precision=2, scheme=Scheme.fixed)}, '金额': {'type': 'numeric', 'format': Format(nully='N/A', precision=2, scheme=Scheme.fixed)}, '费用': {'type': 'numeric', 'format': Format(nully='N/A', precision=2, scheme=Scheme.fixed)}, '投入': {'type': 'numeric', 'format': Format(nully='N/A', precision=2, scheme=Scheme.fixed)}, '成本': {'type': 'numeric', 'format': Format(nully='N/A', precision=4, scheme=Scheme.fixed)}, '价格': {'type': 'numeric', 'format': Format(nully='N/A', precision=4, scheme=Scheme.fixed)}, '收益': {'type': 'numeric', 'format': Format(nully='N/A', precision=2, scheme=Scheme.fixed)}, } ACCOUNT_PRIORITIES = { '长期投资': 0, '长赢定投': 1, 'U定投': 2, '投资实证': 3, '稳健投资': 4, '证券账户': 6, '蛋卷基金': 7, } all_accounts = [deal.account for deal in Deal.select(Deal.account).distinct()] all_accounts.sort(key=lambda name: ACCOUNT_PRIORITIES.get(name, 1000)) layout = html.Div( [ dcc.Store(id='assets'), dcc.Store(id='stats'), dcc.Store(id='accounts_history'), dcc.Store(id='index_history'), dcc.Store(id='deals'), dcc.Store(id='start-date'), dcc.Store(id='end-date'), html.H3('投资账户概览'), dbc.Checklist( id='show-money', options=[{'label': '显示金额', 'value': 'show'}], value=[], switch=True, ), html.Hr(), dbc.InputGroup( [ dbc.InputGroupAddon('选择账户', addon_type='prepend', className='mr-2'), dbc.Checklist( id='checklist', options=[{'label': a, 'value': a} for a in all_accounts], value=[all_accounts[0]], inline=True, className='my-auto' ), ], className='my-2', ), html.Div(id='account-summary'), html.Br(), dbc.Tabs([ dbc.Tab( label='资产走势', children=[ dcc.Graph( id='asset-history-chart', config={ 'displayModeBar': False, } ), ] ), dbc.Tab( label='累计收益走势', children=[ dcc.Graph( id="total-return-chart", config={ 'displayModeBar': False } ), ] ), dbc.Tab( label='累计收益率走势', children=[ dbc.InputGroup( [ dbc.InputGroupAddon('比较基准', addon_type='prepend', className='mr-2'), dbc.Checklist( id='compare', options=[ {'label': '中证全指', 'value': '000985.CSI'}, {'label': '上证指数', 'value': '000001.SH'}, {'label': '深证成指', 'value': '399001.SZ'}, {'label': '沪深300', 'value': '000300.SH'}, {'label': '中证500', 'value': '000905.SH'}, ], value=['000985.CSI'], inline=True, className='my-auto' ), ], className='my-2', ), dcc.Graph( id="return-curve-chart", config={ 'displayModeBar': False } ), ] ), dbc.Tab( label='日收益历史', children=[ dcc.Graph( id="day-return-chart", config={ 'displayModeBar': False }, ), ] ), ]), html.Center( [ dbc.RadioItems( id="date-range", className='btn-group', labelClassName='btn btn-light border', labelCheckedClassName='active', options=[ {"label": "近一月", "value": "1m"}, {"label": "近三月", "value": "3m"}, {"label": "近半年", "value": "6m"}, {"label": "近一年", "value": "12m"}, {"label": "今年以来", "value": "thisyear"}, {"label": "本月", "value": "thismonth"}, {"label": "本周", "value": "thisweek"}, {"label": "所有", "value": "all"}, {"label": "自定义", "value": "customized"}, ], value="thisyear", ), ], className='radio-group', ), html.Div( id='customized-date-range-container', children=[ dcc.RangeSlider( id='customized-date-range', min=2018, max=2022, step=None, marks={year: str(year) for year in range(2018, 2023)}, value=[2018, 2022], ) ], className='my-auto ml-0 mr-0', style={'max-width': '100%', 'display': 'none'} ), html.Hr(), dbc.Tabs([ dbc.Tab( label='持仓明细', children=[ html.Br(), dbc.Checklist( id='show-cleared', options=[{'label': '显示清仓品种', 'value': 'show'}], value=[], switch=True, ), html.Div(id='assets_cards'), html.Center( [ dbc.RadioItems( id="assets-pagination", className="btn-group", labelClassName="btn btn-secondary", labelCheckedClassName="active", options=[ {"label": "1", "value": 0}, ], value=0, ), ], className='radio-group', ), ] ), dbc.Tab( label='交易记录', children=[ html.Br(), html.Div(id='deals_table'), html.Center( [ dbc.RadioItems( id="deals-pagination", className="btn-group", labelClassName="btn btn-secondary", labelCheckedClassName="active", options=[ {"label": "1", "value": 0}, ], value=0, ), ], className='radio-group', ), ] ), ]) ], ) @APP.callback( [ dash.dependencies.Output('assets', 'data'), dash.dependencies.Output('stats', 'data'), dash.dependencies.Output('accounts_history', 'data'), dash.dependencies.Output('index_history', 'data'), dash.dependencies.Output('deals', 'data'), dash.dependencies.Output('deals-pagination', 'options'), dash.dependencies.Output('assets-pagination', 'options'), ], [ dash.dependencies.Input('checklist', 'value'), dash.dependencies.Input('compare', 'value'), ], ) def update_after_check(accounts, index_codes): accounts = accounts or all_accounts summary_data, assets_data = get_accounts_summary(accounts) history = get_accounts_history(accounts).to_dict('records') history.sort(key=itemgetter('account', 'date')) index_history = [] for index_code in index_codes: index = Asset.get(zs_code=index_code) for record in index.history: index_history.append({ 'account': index.name, 'date': record.date, 'price': record.close_price }) index_history.sort(key=itemgetter('account', 'date')) deals = [] for record in Deal.get_deals(accounts): deals.append({ 'account': record.account, 'time': record.time, 'code': record.asset.zs_code, 'name': record.asset.name, 'action': record.action, 'amount': record.amount, 'price': record.price, 'money': record.money, 'fee': record.fee, }) deals.sort(key=itemgetter('time'), reverse=True) valid_deals_count = 0 for item in deals: if item['action'] == 'fix_cash': continue if item['code'] == 'CASH' and item['action'] == 'reinvest': continue valid_deals_count += 1 pagination_options = [ {'label': idx + 1, 'value': idx} for idx in range(ceil(valid_deals_count / 100)) ] assets_pagination_options = [] return ( assets_data, summary_data, history, index_history, deals, pagination_options, assets_pagination_options ) @APP.callback( dash.dependencies.Output('account-summary', 'children'), [ dash.dependencies.Input('stats', 'data'), dash.dependencies.Input('show-money', 'value') ] ) def update_summary(stats, show_money): body_content = [] body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '总资产', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'money', 'content': stats['money'], 'color': 'bg-primary', }, ], show_money=show_money, inverse=True ) ) body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '日收益', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'money', 'content': stats['day_return'], 'color': 'bg-primary', }, { 'item_cls': html.P, 'type': 'percent', 'content': stats['day_return_rate'], 'color': 'bg-primary', }, ], show_money=show_money, inverse=True ) ) body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '累计收益', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'money', 'content': stats['return'], 'color': 'bg-primary', }, { 'item_cls': html.P, 'type': 'percent', 'content': stats['return_rate'] if stats['amount'] > 0 else 'N/A(已清仓)', 'color': 'bg-primary', }, ], show_money=show_money, inverse=True ) ) body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '年化收益率', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'percent', 'content': stats['annualized_return'], 'color': 'bg-primary', }, ], show_money=show_money, inverse=True, ) ) body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '现金', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'money', 'content': stats['cash'], 'color': 'bg-primary', }, ], show_money=show_money, inverse=True ) ) body_content.append( make_card_component( [ { 'item_cls': html.P, 'type': 'text', 'content': '仓位', 'color': 'bg-primary', }, { 'item_cls': html.H4, 'type': 'percent', 'content': stats['position'], 'color': 'bg-primary', }, ], show_money=show_money, inverse=True ) ) card = dbc.Card( [ dbc.CardBody( dbc.Row( [dbc.Col([card_component]) for card_component in body_content], ), className='py-2', ) ], className='my-auto', color='primary', ) return [card] @APP.callback( dash.dependencies.Output('assets_cards', 'children'), [ dash.dependencies.Input('assets', 'data'), dash.dependencies.Input('show-money', 'value'), dash.dependencies.Input('show-cleared', 'value'), ] ) def update_assets_table(assets_data, show_money, show_cleared): cards = [html.Hr()] for row in assets_data: if not show_cleared and abs(row['amount']) <= 0.001: continue if row["code"] in ('CASH', 'WZZNCK'): continue cards.append(make_asset_card(row, show_money)) cards.append(html.Br()) return cards def make_asset_card(asset_info, show_money=True): def get_color(value): if not isinstance(value, (float, int)): return None if value > 0: return 'text-danger' if value < 0: return 'text-success' return None header = dbc.CardHeader([ html.H5( html.A( f'{asset_info["name"]}({asset_info["code"]})', href=f'/asset/{asset_info["code"].replace(".", "").lower()}', target='_blank' ), className='mb-0' ), html.P(f'更新日期 {asset_info["price_date"]}', className='mb-0'), ]) body_content = [] body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '持有金额/份额'}, {'item_cls': html.H4, 'type': 'money', 'content': asset_info['money']}, {'item_cls': html.P, 'type': 'amount', 'content': asset_info['amount']} ], show_money=show_money, ) ) body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '日收益'}, { 'item_cls': html.H4, 'type': 'money', 'content': asset_info['day_return'], 'color': get_color(asset_info['day_return']), }, { 'item_cls': html.P, 'type': 'percent', 'content': asset_info['day_return_rate'], 'color': get_color(asset_info['day_return']), } ], show_money=show_money, ) ) body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '现价/成本'}, {'item_cls': html.H4, 'type': 'price', 'content': asset_info['price']}, {'item_cls': html.P, 'type': 'price', 'content': asset_info['avg_cost'] or 'N/A'} ], show_money=show_money, ) ) asset = Asset.get(zs_code=asset_info['code']) prices = [] for item in asset.history.order_by(AssetMarketHistory.date.desc()).limit(10): if item.close_price is not None: prices.append({ 'date': item.date, 'price': item.close_price, }) else: prices.append({ 'date': item.date, 'price': item.nav, }) if len(prices) >= 10: break prices.sort(key=itemgetter('date')) df = pd.DataFrame(prices) df['date'] = pd.to_datetime(df['date']) fig = go.Figure() fig.add_trace( go.Scatter( x=df['date'], y=df['price'], showlegend=False, marker={'color': 'orange'}, mode='lines+markers', ) ) fig.update_layout( width=150, height=100, margin={'l': 4, 'r': 4, 'b': 20, 't': 10, 'pad': 4}, xaxis={'showticklabels': False, 'showgrid': False, 'fixedrange': True}, yaxis={'showticklabels': False, 'showgrid': False, 'fixedrange': True}, ) fig.update_xaxes( rangebreaks=[ {'bounds': ["sat", "mon"]}, { 'values': get_holidays(df.date.min(), df.date.max(), False) } ] ) body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '十日走势'}, { 'item_cls': None, 'type': 'figure', 'content': fig } ], show_money=show_money ) ) body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '累计收益'}, { 'item_cls': html.H4, 'type': 'money', 'content': asset_info['return'], 'color': get_color(asset_info['return']), }, { 'item_cls': html.P, 'type': 'percent', 'content': asset_info['return_rate'], 'color': get_color(asset_info['return']), } ], show_money=show_money, ) ) body_content.append( make_card_component( [ {'item_cls': html.P, 'type': 'text', 'content': '占比'}, {'item_cls': html.H4, 'type': 'percent', 'content': asset_info['position']}, ], show_money=show_money, ) ) card = dbc.Card( [ header, dbc.CardBody( dbc.Row( [dbc.Col([card_component]) for card_component in body_content], ), className='py-2', ) ], className='my-auto' ) return card @APP.callback( dash.dependencies.Output('return-curve-chart', 'figure'), [ dash.dependencies.Input('accounts_history', 'data'), dash.dependencies.Input('index_history', 'data'), dash.dependencies.Input('start-date', 'data'), dash.dependencies.Input('end-date', 'data'), ] ) def draw_return_chart(accounts_history, index_history, start_date, end_date): df =
pd.DataFrame(accounts_history)
pandas.DataFrame
""" test fancy indexing & misc """ from datetime import datetime import re import weakref import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.common import ( is_float_dtype, is_integer_dtype, ) import pandas as pd from pandas import ( DataFrame, Index, NaT, Series, date_range, offsets, timedelta_range, ) import pandas._testing as tm from pandas.core.api import Float64Index from pandas.tests.indexing.common import _mklbl from pandas.tests.indexing.test_floats import gen_obj # ------------------------------------------------------------------------ # Indexing test cases class TestFancy: """pure get/set item & fancy indexing""" def test_setitem_ndarray_1d(self): # GH5508 # len of indexer vs length of the 1d ndarray df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) # invalid msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df.loc[df.index[2:5], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) # valid df.loc[df.index[2:6], "bar"] = np.array([2.33j, 1.23 + 0.1j, 2.2, 1.0]) result = df.loc[df.index[2:6], "bar"] expected = Series( [2.33j, 1.23 + 0.1j, 2.2, 1.0], index=[3, 4, 5, 6], name="bar" ) tm.assert_series_equal(result, expected) def test_setitem_ndarray_1d_2(self): # GH5508 # dtype getting changed? df = DataFrame(index=Index(np.arange(1, 11))) df["foo"] = np.zeros(10, dtype=np.float64) df["bar"] = np.zeros(10, dtype=complex) msg = "Must have equal len keys and value when setting with an iterable" with pytest.raises(ValueError, match=msg): df[2:5] = np.arange(1, 4) * 1j def test_getitem_ndarray_3d( self, index, frame_or_series, indexer_sli, using_array_manager ): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) msgs = [] if frame_or_series is Series and indexer_sli in [tm.setitem, tm.iloc]: msgs.append(r"Wrong number of dimensions. values.ndim > ndim \[3 > 1\]") if using_array_manager: msgs.append("Passed array should be 1-dimensional") if frame_or_series is Series or indexer_sli is tm.iloc: msgs.append(r"Buffer has wrong number of dimensions \(expected 1, got 3\)") if using_array_manager: msgs.append("indexer should be 1-dimensional") if indexer_sli is tm.loc or ( frame_or_series is Series and indexer_sli is tm.setitem ): msgs.append("Cannot index with multidimensional key") if frame_or_series is DataFrame and indexer_sli is tm.setitem: msgs.append("Index data must be 1-dimensional") if isinstance(index, pd.IntervalIndex) and indexer_sli is tm.iloc: msgs.append("Index data must be 1-dimensional") if isinstance(index, (pd.TimedeltaIndex, pd.DatetimeIndex, pd.PeriodIndex)): msgs.append("Data must be 1-dimensional") if len(index) == 0 or isinstance(index, pd.MultiIndex): msgs.append("positional indexers are out-of-bounds") msg = "|".join(msgs) potential_errors = (IndexError, ValueError, NotImplementedError) with pytest.raises(potential_errors, match=msg): idxr[nd3] def test_setitem_ndarray_3d(self, index, frame_or_series, indexer_sli): # GH 25567 obj = gen_obj(frame_or_series, index) idxr = indexer_sli(obj) nd3 = np.random.randint(5, size=(2, 2, 2)) if indexer_sli is tm.iloc: err = ValueError msg = f"Cannot set values with ndim > {obj.ndim}" else: err = ValueError msg = "|".join( [ r"Buffer has wrong number of dimensions \(expected 1, got 3\)", "Cannot set values with ndim > 1", "Index data must be 1-dimensional", "Data must be 1-dimensional", "Array conditional must be same shape as self", ] ) with pytest.raises(err, match=msg): idxr[nd3] = 0 def test_getitem_ndarray_0d(self): # GH#24924 key = np.array(0) # dataframe __getitem__ df = DataFrame([[1, 2], [3, 4]]) result = df[key] expected = Series([1, 3], name=0) tm.assert_series_equal(result, expected) # series __getitem__ ser = Series([1, 2]) result = ser[key] assert result == 1 def test_inf_upcast(self): # GH 16957 # We should be able to use np.inf as a key # np.inf should cause an index to convert to float # Test with np.inf in rows df = DataFrame(columns=[0]) df.loc[1] = 1 df.loc[2] = 2 df.loc[np.inf] = 3 # make sure we can look up the value assert df.loc[np.inf, 0] == 3 result = df.index expected = Float64Index([1, 2, np.inf]) tm.assert_index_equal(result, expected) def test_setitem_dtype_upcast(self): # GH3216 df = DataFrame([{"a": 1}, {"a": 3, "b": 2}]) df["c"] = np.nan assert df["c"].dtype == np.float64 df.loc[0, "c"] = "foo" expected = DataFrame( [{"a": 1, "b": np.nan, "c": "foo"}, {"a": 3, "b": 2, "c": np.nan}] ) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("val", [3.14, "wxyz"]) def test_setitem_dtype_upcast2(self, val): # GH10280 df = DataFrame( np.arange(6, dtype="int64").reshape(2, 3), index=list("ab"), columns=["foo", "bar", "baz"], ) left = df.copy() left.loc["a", "bar"] = val right = DataFrame( [[0, val, 2], [3, 4, 5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_integer_dtype(left["foo"]) assert is_integer_dtype(left["baz"]) def test_setitem_dtype_upcast3(self): left = DataFrame( np.arange(6, dtype="int64").reshape(2, 3) / 10.0, index=list("ab"), columns=["foo", "bar", "baz"], ) left.loc["a", "bar"] = "wxyz" right = DataFrame( [[0, "wxyz", 0.2], [0.3, 0.4, 0.5]], index=list("ab"), columns=["foo", "bar", "baz"], ) tm.assert_frame_equal(left, right) assert is_float_dtype(left["foo"]) assert is_float_dtype(left["baz"]) def test_dups_fancy_indexing(self): # GH 3455 df = tm.makeCustomDataframe(10, 3) df.columns = ["a", "a", "b"] result = df[["b", "a"]].columns expected = Index(["b", "a", "a"]) tm.assert_index_equal(result, expected) def test_dups_fancy_indexing_across_dtypes(self): # across dtypes df = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]], columns=list("aaaaaaa")) df.head() str(df) result = DataFrame([[1, 2, 1.0, 2.0, 3.0, "foo", "bar"]]) result.columns = list("aaaaaaa") # TODO(wesm): unused? df_v = df.iloc[:, 4] # noqa res_v = result.iloc[:, 4] # noqa tm.assert_frame_equal(df, result) def test_dups_fancy_indexing_not_in_order(self): # GH 3561, dups not in selected order df = DataFrame( {"test": [5, 7, 9, 11], "test1": [4.0, 5, 6, 7], "other": list("abcd")}, index=["A", "A", "B", "C"], ) rows = ["C", "B"] expected = DataFrame( {"test": [11, 9], "test1": [7.0, 6], "other": ["d", "c"]}, index=rows ) result = df.loc[rows] tm.assert_frame_equal(result, expected) result = df.loc[Index(rows)] tm.assert_frame_equal(result, expected) rows = ["C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] # see GH5553, make sure we use the right indexer rows = ["F", "G", "H", "C", "B", "E"] with pytest.raises(KeyError, match="not in index"): df.loc[rows] def test_dups_fancy_indexing_only_missing_label(self): # List containing only missing label dfnu = DataFrame(np.random.randn(5, 3), index=list("AABCD")) with pytest.raises( KeyError, match=re.escape( "\"None of [Index(['E'], dtype='object')] are in the [index]\"" ), ): dfnu.loc[["E"]] # ToDo: check_index_type can be True after GH 11497 @pytest.mark.parametrize("vals", [[0, 1, 2], list("abc")]) def test_dups_fancy_indexing_missing_label(self, vals): # GH 4619; duplicate indexer with missing label df = DataFrame({"A": vals}) with pytest.raises(KeyError, match="not in index"): df.loc[[0, 8, 0]] def test_dups_fancy_indexing_non_unique(self): # non unique with non unique selector df = DataFrame({"test": [5, 7, 9, 11]}, index=["A", "A", "B", "C"]) with pytest.raises(KeyError, match="not in index"): df.loc[["A", "A", "E"]] def test_dups_fancy_indexing2(self): # GH 5835 # dups on index and missing values df = DataFrame(np.random.randn(5, 5), columns=["A", "B", "B", "B", "A"]) with pytest.raises(KeyError, match="not in index"): df.loc[:, ["A", "B", "C"]] def test_dups_fancy_indexing3(self): # GH 6504, multi-axis indexing df = DataFrame( np.random.randn(9, 2), index=[1, 1, 1, 2, 2, 2, 3, 3, 3], columns=["a", "b"] ) expected = df.iloc[0:6] result = df.loc[[1, 2]] tm.assert_frame_equal(result, expected) expected = df result = df.loc[:, ["a", "b"]] tm.assert_frame_equal(result, expected) expected = df.iloc[0:6, :] result = df.loc[[1, 2], ["a", "b"]] tm.assert_frame_equal(result, expected) def test_duplicate_int_indexing(self, indexer_sl): # GH 17347 ser = Series(range(3), index=[1, 1, 3]) expected = Series(range(2), index=[1, 1]) result = indexer_sl(ser)[[1]] tm.assert_series_equal(result, expected) def test_indexing_mixed_frame_bug(self): # GH3492 df = DataFrame( {"a": {1: "aaa", 2: "bbb", 3: "ccc"}, "b": {1: 111, 2: 222, 3: 333}} ) # this works, new column is created correctly df["test"] = df["a"].apply(lambda x: "_" if x == "aaa" else x) # this does not work, ie column test is not changed idx = df["test"] == "_" temp = df.loc[idx, "a"].apply(lambda x: "-----" if x == "aaa" else x) df.loc[idx, "test"] = temp assert df.iloc[0, 2] == "-----" def test_multitype_list_index_access(self): # GH 10610 df = DataFrame(np.random.random((10, 5)), columns=["a"] + [20, 21, 22, 23]) with pytest.raises(KeyError, match=re.escape("'[26, -8] not in index'")): df[[22, 26, -8]] assert df[21].shape[0] == df.shape[0] def test_set_index_nan(self): # GH 3586 df = DataFrame( { "PRuid": { 17: "nonQC", 18: "nonQC", 19: "nonQC", 20: "10", 21: "11", 22: "12", 23: "13", 24: "24", 25: "35", 26: "46", 27: "47", 28: "48", 29: "59", 30: "10", }, "QC": { 17: 0.0, 18: 0.0, 19: 0.0, 20: np.nan, 21: np.nan, 22: np.nan, 23: np.nan, 24: 1.0, 25: np.nan, 26: np.nan, 27: np.nan, 28: np.nan, 29: np.nan, 30: np.nan, }, "data": { 17: 7.9544899999999998, 18: 8.0142609999999994, 19: 7.8591520000000008, 20: 0.86140349999999999, 21: 0.87853110000000001, 22: 0.8427041999999999, 23: 0.78587700000000005, 24: 0.73062459999999996, 25: 0.81668560000000001, 26: 0.81927080000000008, 27: 0.80705009999999999, 28: 0.81440240000000008, 29: 0.80140849999999997, 30: 0.81307740000000006, }, "year": { 17: 2006, 18: 2007, 19: 2008, 20: 1985, 21: 1985, 22: 1985, 23: 1985, 24: 1985, 25: 1985, 26: 1985, 27: 1985, 28: 1985, 29: 1985, 30: 1986, }, } ).reset_index() result = ( df.set_index(["year", "PRuid", "QC"]) .reset_index() .reindex(columns=df.columns) ) tm.assert_frame_equal(result, df) def test_multi_assign(self): # GH 3626, an assignment of a sub-df to a df df = DataFrame( { "FC": ["a", "b", "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": list(range(6)), "col2": list(range(6, 12)), } ) df.iloc[1, 0] = np.nan df2 = df.copy() mask = ~df2.FC.isna() cols = ["col1", "col2"] dft = df2 * 2 dft.iloc[3, 3] = np.nan expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": Series([0, 1, 4, 6, 8, 10]), "col2": [12, 7, 16, np.nan, 20, 22], } ) # frame on rhs df2.loc[mask, cols] = dft.loc[mask, cols] tm.assert_frame_equal(df2, expected) # with an ndarray on rhs # coerces to float64 because values has float64 dtype # GH 14001 expected = DataFrame( { "FC": ["a", np.nan, "a", "b", "a", "b"], "PF": [0, 0, 0, 0, 1, 1], "col1": [0.0, 1.0, 4.0, 6.0, 8.0, 10.0], "col2": [12, 7, 16, np.nan, 20, 22], } ) df2 = df.copy() df2.loc[mask, cols] = dft.loc[mask, cols].values tm.assert_frame_equal(df2, expected) def test_multi_assign_broadcasting_rhs(self): # broadcasting on the rhs is required df = DataFrame( { "A": [1, 2, 0, 0, 0], "B": [0, 0, 0, 10, 11], "C": [0, 0, 0, 10, 11], "D": [3, 4, 5, 6, 7], } ) expected = df.copy() mask = expected["A"] == 0 for col in ["A", "B"]: expected.loc[mask, col] = df["D"] df.loc[df["A"] == 0, ["A", "B"]] = df["D"] tm.assert_frame_equal(df, expected) # TODO(ArrayManager) setting single item with an iterable doesn't work yet # in the "split" path @td.skip_array_manager_not_yet_implemented def test_setitem_list(self): # GH 6043 # iloc with a list df = DataFrame(index=[0, 1], columns=[0]) df.iloc[1, 0] = [1, 2, 3] df.iloc[1, 0] = [1, 2] result = DataFrame(index=[0, 1], columns=[0]) result.iloc[1, 0] = [1, 2] tm.assert_frame_equal(result, df) def test_string_slice(self): # GH 14424 # string indexing against datetimelike with object # dtype should properly raises KeyError df = DataFrame([1], Index([pd.Timestamp("2011-01-01")], dtype=object)) assert df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="'2011'"): df.loc["2011", 0] def test_string_slice_empty(self): # GH 14424 df = DataFrame() assert not df.index._is_all_dates with pytest.raises(KeyError, match="'2011'"): df["2011"] with pytest.raises(KeyError, match="^0$"): df.loc["2011", 0] def test_astype_assignment(self): # GH4312 (iloc) df_orig = DataFrame( [["1", "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2].astype(np.int64) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.iloc[:, 0:2] = df.iloc[:, 0:2]._convert(datetime=True, numeric=True) expected = DataFrame( [[1, 2, "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) # GH5702 (loc) df = df_orig.copy() df.loc[:, "A"] = df.loc[:, "A"].astype(np.int64) expected = DataFrame( [[1, "2", "3", ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) df = df_orig.copy() df.loc[:, ["B", "C"]] = df.loc[:, ["B", "C"]].astype(np.int64) expected = DataFrame( [["1", 2, 3, ".4", 5, 6.0, "foo"]], columns=list("ABCDEFG") ) tm.assert_frame_equal(df, expected) def test_astype_assignment_full_replacements(self): # full replacements / no nans df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.iloc[:, 0] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) df = DataFrame({"A": [1.0, 2.0, 3.0, 4.0]}) df.loc[:, "A"] = df["A"].astype(np.int64) expected = DataFrame({"A": [1, 2, 3, 4]}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [tm.getitem, tm.loc]) def test_index_type_coercion(self, indexer): # GH 11836 # if we have an index type and set it with something that looks # to numpy like the same, but is actually, not # (e.g. setting with a float or string '0') # then we need to coerce to object # integer indexes for s in [Series(range(5)), Series(range(5), index=range(1, 6))]: assert s.index.is_integer() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 exp = s.index if 0 not in s: exp = Index(s.index.tolist() + [0]) tm.assert_index_equal(s2.index, exp) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() for s in [Series(range(5), index=np.arange(5.0))]: assert s.index.is_floating() s2 = s.copy() indexer(s2)[0.1] = 0 assert s2.index.is_floating() assert indexer(s2)[0.1] == 0 s2 = s.copy() indexer(s2)[0.0] = 0 tm.assert_index_equal(s2.index, s.index) s2 = s.copy() indexer(s2)["0"] = 0 assert s2.index.is_object() class TestMisc: def test_float_index_to_mixed(self): df = DataFrame({0.0: np.random.rand(10), 1.0: np.random.rand(10)}) df["a"] = 10 expected = DataFrame({0.0: df[0.0], 1.0: df[1.0], "a": [10] * 10}) tm.assert_frame_equal(expected, df) def test_float_index_non_scalar_assignment(self): df = DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]}, index=[1.0, 2.0, 3.0]) df.loc[df.index[:2]] = 1 expected = DataFrame({"a": [1, 1, 3], "b": [1, 1, 5]}, index=df.index)
tm.assert_frame_equal(expected, df)
pandas._testing.assert_frame_equal
import os import re import scrapy import pandas as pd def parse_page(filename): with open(filename, 'r') as file: selector = scrapy.Selector(text=file.read()) # Get name. name = selector.css('div#coreInfo > h1::text').get() # Get all sections separately. journals = get_citations_for_section(selector, 'journal-articles') books = get_citations_for_section(selector, 'books') chapters = get_citations_for_section(selector, 'chapters') conferences = get_citations_for_section(selector, 'conferences') scholarly = get_citations_for_section(selector, 'scholarly-editions') posters = get_citations_for_section(selector, 'posters') others = get_citations_for_section(selector, 'others') # Make and populate the DF. person_df =
pd.DataFrame(columns=['Name', 'Type', 'Citation'])
pandas.DataFrame
import math import timeit import networkx as nx import numpy as np import pandas as pd from scipy import sparse from tqdm import tqdm from tiedecay.dataset import Dataset class TieDecayNetwork(object): """ Object representing the tie strengths between nodes in the network. The user can use this class to find the tie strength over any given window of time contained in the dataset. Args: dataset (Dataset): dataset object alpha (float): tie-decay parameter """ def __init__(self, dataset: Dataset, alpha: float): assert type(dataset) is Dataset, "Invalid type for dataset." self.dataset = dataset self.alpha = alpha self.history_loaded = False # threshold below which to filter tie strength to 0 self.threshold = 1e-7 return def compute_from_dataset(self, t: str, t_start: str = None) -> nx.DiGraph: """ Compute the tie decay values over a given time window, using the dataset Args: t (str): time as a string that can be converted to pd.Datetime t_start (str): start time as a string that can be converted to pd.Datetime - if not provided, the initial time in the dataset will be used Returns: B (nx.DiGraph): graph with tie strengths as edge weights """ if t_start is not None: t_start = pd.to_datetime(t_start) assert t_start >= pd.to_datetime( self.dataset.t_first ), f"t_start: {t_start} must be after {pd.to_datetime(self.dataset.t_first)}" assert t_start < pd.to_datetime( self.dataset.t_last ), f"t_start: {t_start} must be before {pd.to_datetime(self.dataset.t_last)}" else: t_start = pd.to_datetime(self.dataset.t_first) t = pd.to_datetime(t) assert t >= t_start, f"Time t: {t} is before t_start: {t_start}" df = pd.DataFrame(self.dataset.adj_list) df.columns = ["source", "target", "time"] df.time = pd.to_datetime(df.time) df = df[df.time <= t] B = self._get_decay_graph(df, t) self.history_loaded = True self.B = B return B def _get_decay_graph(self, df: pd.DataFrame, t: pd.Timestamp) -> nx.DiGraph: """ Get the TieDecay matrix B(t) using a dataframe Args: df (pd.DataFrame): dataframe with 'source', 'target', 'time' t (pd.Timestamp): timestamp at which to evaluate the td values Returns: B (nx.DiGraph): graph with tie strengths as edge weights """ # get tie strength for each interaction df["weight"] = df.apply( lambda x: math.exp(-self.alpha * (t - x.time).total_seconds()), axis=1 ) # zero out small values df.weight = df.weight.mask(df.weight < self.threshold, 0) # sum across each pair of nodes td_df = df.groupby(["source", "target"]).sum().reset_index() td_df["weight"] = td_df["weight"] # construct graph B = nx.from_pandas_edgelist( td_df, source="source", target="target", edge_attr="weight", create_using=nx.DiGraph(), ) return B def compute_centrality_trajectories_from_dataset( self, number_of_samples: int, centrality_method: str ) -> pd.DataFrame: """ Sample tie-decay PageRank values from the dataset at a given resolution (number of samples). Args: number_of_samples (int): number of time points at which to evaluate tie strengths centrality_method (str): supported options: - pagerank Returns: centrality_df (pd.DataFrame): dataframe with node indices as the df index, and centrality values at each sampled time point sampled_times (pandas.core.indexes.datetimes.DatetimeIndex): the timestamps that were sampled """ total_seconds = ( pd.to_datetime(self.dataset.t_last) - pd.to_datetime(self.dataset.t_first) ).total_seconds() seconds_per_sample = int(total_seconds / number_of_samples) sampling_range = pd.date_range( start=self.dataset.t_first, end=self.dataset.t_last, freq=str(seconds_per_sample) + "s", ) df =
pd.DataFrame(self.dataset.adj_list)
pandas.DataFrame
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from numpy import select from numpy.random import choice from urllib.parse import quote import json import pandas as pd import plotly.graph_objs as go import plotly.plotly as py from Credentials import credentials from spotifyScrape import spotifyScrape external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] songs_df = pd.read_csv('all_songs.csv') artist_averages =
pd.read_csv('artist_averages.csv')
pandas.read_csv
import logging import os import re import shutil from datetime import datetime from itertools import combinations from random import randint import numpy as np import pandas as pd import psutil import pytest from dask import dataframe as dd from distributed.utils_test import cluster from tqdm import tqdm import featuretools as ft from featuretools import EntitySet, Timedelta, calculate_feature_matrix, dfs from featuretools.computational_backends import utils from featuretools.computational_backends.calculate_feature_matrix import ( FEATURE_CALCULATION_PERCENTAGE, _chunk_dataframe_groups, _handle_chunk_size, scatter_warning ) from featuretools.computational_backends.utils import ( bin_cutoff_times, create_client_and_cluster, n_jobs_to_workers ) from featuretools.feature_base import ( AggregationFeature, DirectFeature, IdentityFeature ) from featuretools.primitives import ( Count, Max, Min, Percentile, Sum, TransformPrimitive ) from featuretools.tests.testing_utils import ( backward_path, get_mock_client_cluster, to_pandas ) from featuretools.utils.gen_utils import Library, import_or_none ks = import_or_none('databricks.koalas') def test_scatter_warning(caplog): logger = logging.getLogger('featuretools') match = "EntitySet was only scattered to {} out of {} workers" warning_message = match.format(1, 2) logger.propagate = True scatter_warning(1, 2) logger.propagate = False assert warning_message in caplog.text # TODO: final assert fails w/ Dask def test_calc_feature_matrix(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed dataframe result not ordered') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) labels = [False] * 3 + [True] * 2 + [False] * 9 + [True] + [False] * 2 property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, verbose=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() error_text = 'features must be a non-empty list of features' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix('features', es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([], es, cutoff_time=cutoff_time) with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([1, 2, 3], es, cutoff_time=cutoff_time) error_text = "cutoff_time times must be datetime type: try casting via "\ "pd\\.to_datetime\\(\\)" with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=17) error_text = 'cutoff_time must be a single value or DataFrame' with pytest.raises(TypeError, match=error_text): calculate_feature_matrix([property_feature], es, instance_ids=range(17), cutoff_time=times) cutoff_times_dup = pd.DataFrame({'time': [datetime(2018, 3, 1), datetime(2018, 3, 1)], es['log'].index: [1, 1]}) error_text = 'Duplicated rows in cutoff time dataframe.' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], entityset=es, cutoff_time=cutoff_times_dup) cutoff_reordered = cutoff_time.iloc[[-1, 10, 1]] # 3 ids not ordered by cutoff time feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_reordered, verbose=True) assert all(feature_matrix.index == cutoff_reordered["id"].values) # fails with Dask and Koalas entitysets, cutoff time not reordered; cannot verify out of order # - can't tell if wrong/different all are false so can't check positional def test_cfm_warns_dask_cutoff_time(es): times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) instances = range(17) cutoff_time = pd.DataFrame({'time': times, es['log'].index: instances}) cutoff_time = dd.from_pandas(cutoff_time, npartitions=4) property_feature = ft.Feature(es['log']['value']) > 10 match = "cutoff_time should be a Pandas DataFrame: " \ "computing cutoff_time, this may take a while" with pytest.warns(UserWarning, match=match): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_cfm_compose(es, lt): property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, verbose=True) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_compose_approximate(es, lt): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('dask does not support approximate') property_feature = ft.Feature(es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=lt, approximate='1s', verbose=True) assert(type(feature_matrix) == pd.core.frame.DataFrame) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() def test_cfm_dask_compose(dask_es, lt): property_feature = ft.Feature(dask_es['log']['value']) > 10 feature_matrix = calculate_feature_matrix([property_feature], dask_es, cutoff_time=lt, verbose=True) feature_matrix = feature_matrix.compute() assert (feature_matrix[property_feature.get_name()] == feature_matrix['label_func']).values.all() # tests approximate, skip for dask/koalas def test_cfm_approximate_correct_ordering(): trips = { 'trip_id': [i for i in range(1000)], 'flight_time': [datetime(1998, 4, 2) for i in range(350)] + [datetime(1997, 4, 3) for i in range(650)], 'flight_id': [randint(1, 25) for i in range(1000)], 'trip_duration': [randint(1, 999) for i in range(1000)] } df = pd.DataFrame.from_dict(trips) es = EntitySet('flights') es.entity_from_dataframe("trips", dataframe=df, index="trip_id", time_index='flight_time') es.normalize_entity(base_entity_id="trips", new_entity_id="flights", index="flight_id", make_time_index=True) features = dfs(entityset=es, target_entity='trips', features_only=True) flight_features = [feature for feature in features if isinstance(feature, DirectFeature) and isinstance(feature.base_features[0], AggregationFeature)] property_feature = IdentityFeature(es['trips']['trip_id']) cutoff_time = pd.DataFrame.from_dict({'instance_id': df['trip_id'], 'time': df['flight_time']}) time_feature = IdentityFeature(es['trips']['flight_time']) feature_matrix = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time_in_index=True, cutoff_time=cutoff_time) feature_matrix.index.names = ['instance', 'time'] assert(np.all(feature_matrix.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix[['trip_id', 'flight_time']].values)) feature_matrix_2 = calculate_feature_matrix(flight_features + [property_feature, time_feature], es, cutoff_time=cutoff_time, cutoff_time_in_index=True, approximate=Timedelta(2, 'd')) feature_matrix_2.index.names = ['instance', 'time'] assert(np.all(feature_matrix_2.reset_index('time').reset_index()[['instance', 'time']].values == feature_matrix_2[['trip_id', 'flight_time']].values)) for column in feature_matrix: for x, y in zip(feature_matrix[column], feature_matrix_2[column]): assert ((pd.isnull(x) and pd.isnull(y)) or (x == y)) # uses approximate, skip for dask/koalas entitysets def test_cfm_no_cutoff_time_index(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat4 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat4, pd_es['sessions']) cutoff_time = pd.DataFrame({ 'time': [datetime(2013, 4, 9, 10, 31, 19), datetime(2013, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(12, 's'), cutoff_time=cutoff_time) assert feature_matrix.index.name == 'id' assert feature_matrix.index.values.tolist() == [0, 2] assert feature_matrix[dfeat.get_name()].tolist() == [10, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] cutoff_time = pd.DataFrame({ 'time': [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)], 'instance_id': [0, 2] }) feature_matrix_2 = calculate_feature_matrix([dfeat, agg_feat], pd_es, cutoff_time_in_index=False, approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix_2.index.name == 'id' assert feature_matrix_2.index.tolist() == [0, 2] assert feature_matrix_2[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix_2[agg_feat.get_name()].tolist() == [5, 1] # TODO: fails with dask entitysets # TODO: fails with koalas entitysets def test_cfm_duplicated_index_in_cutoff_time(es): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('Distributed results not ordered, missing duplicates') times = [datetime(2011, 4, 1), datetime(2011, 5, 1), datetime(2011, 4, 1), datetime(2011, 5, 1)] instances = [1, 1, 2, 2] property_feature = ft.Feature(es['log']['value']) > 10 cutoff_time = pd.DataFrame({'id': instances, 'time': times}, index=[1, 1, 1, 1]) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, chunk_size=1) assert (feature_matrix.shape[0] == cutoff_time.shape[0]) # TODO: fails with Dask, Koalas def test_saveprogress(es, tmpdir): if not all(isinstance(entity.df, pd.DataFrame) for entity in es.entities): pytest.xfail('saveprogress fails with distributed entitysets') times = list([datetime(2011, 4, 9, 10, 30, i * 6) for i in range(5)] + [datetime(2011, 4, 9, 10, 31, i * 9) for i in range(4)] + [datetime(2011, 4, 9, 10, 40, 0)] + [datetime(2011, 4, 10, 10, 40, i) for i in range(2)] + [datetime(2011, 4, 10, 10, 41, i * 3) for i in range(3)] + [datetime(2011, 4, 10, 11, 10, i * 3) for i in range(2)]) cutoff_time = pd.DataFrame({'time': times, 'instance_id': range(17)}) property_feature = ft.Feature(es['log']['value']) > 10 save_progress = str(tmpdir) fm_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time, save_progress=save_progress) _, _, files = next(os.walk(save_progress)) files = [os.path.join(save_progress, file) for file in files] # there are 17 datetime files created above assert len(files) == 17 list_df = [] for file_ in files: df = pd.read_csv(file_, index_col="id", header=0) list_df.append(df) merged_df = pd.concat(list_df) merged_df.set_index(pd.DatetimeIndex(times), inplace=True, append=True) fm_no_save = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) assert np.all((merged_df.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (fm_save.sort_index().values)) assert np.all((fm_no_save.sort_index().values) == (merged_df.sort_index().values)) shutil.rmtree(save_progress) def test_cutoff_time_correctly(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) labels = [10, 5, 0] assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_binning(): cutoff_time = pd.DataFrame({ 'time': [ datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1) ], 'instance_id': [1, 2, 3] }) binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(4, 'h')) labels = [datetime(2011, 4, 9, 12), datetime(2011, 4, 10, 8), datetime(2011, 4, 10, 12)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(25, 'h')) labels = [datetime(2011, 4, 8, 22), datetime(2011, 4, 9, 23), datetime(2011, 4, 9, 23)] for i in binned_cutoff_times.index: assert binned_cutoff_times['time'][i] == labels[i] error_text = "Unit is relative" with pytest.raises(ValueError, match=error_text): binned_cutoff_times = bin_cutoff_times(cutoff_time, Timedelta(1, 'mo')) def test_training_window_fails_dask(dask_es): property_feature = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['customers'], primitive=Count) error_text = "Using training_window is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([property_feature], dask_es, training_window='2 hours') def test_cutoff_time_columns_order(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] id_col_names = ['instance_id', es['customers'].index] time_col_names = ['time', es['customers'].time_index] for id_col in id_col_names: for time_col in time_col_names: cutoff_time = pd.DataFrame({'dummy_col_1': [1, 2, 3], id_col: [0, 1, 2], 'dummy_col_2': [True, False, False], time_col: times}) feature_matrix = calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) labels = [10, 5, 0] feature_matrix = to_pandas(feature_matrix, index='id', sort_index=True) assert (feature_matrix[property_feature.get_name()] == labels).values.all() def test_cutoff_time_df_redundant_column_names(es): property_feature = ft.Feature(es['log']['id'], parent_entity=es['customers'], primitive=Count) times = [datetime(2011, 4, 10), datetime(2011, 4, 11), datetime(2011, 4, 7)] cutoff_time = pd.DataFrame({es['customers'].index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "instance_id" and a column' \ ' with the same name as the target entity index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) cutoff_time = pd.DataFrame({es['customers'].time_index: [0, 1, 2], 'instance_id': [0, 1, 2], 'dummy_col': [True, False, False], 'time': times}) err_msg = 'Cutoff time DataFrame cannot contain both a column named "time" and a column' \ ' with the same name as the target entity time index' with pytest.raises(AttributeError, match=err_msg): calculate_feature_matrix([property_feature], es, cutoff_time=cutoff_time) def test_training_window(pd_es): property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) # make sure features that have a direct to a higher level agg # so we have multiple "filter eids" in get_pandas_data_slice, # and we go through the loop to pull data with a training_window param more than once dagg = DirectFeature(top_level_agg, pd_es['customers']) # for now, warns if last_time_index not present times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 1, 2]}) warn_text = "Using training_window but last_time_index is not set on entity customers" with pytest.warns(UserWarning, match=warn_text): feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours') pd_es.add_last_time_indexes() error_text = 'Training window cannot be in observations' with pytest.raises(AssertionError, match=error_text): feature_matrix = calculate_feature_matrix([property_feature], pd_es, cutoff_time=cutoff_time, training_window=Timedelta(2, 'observations')) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True) prop_values = [4, 5, 1] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False) prop_values = [5, 5, 2] dagg_values = [3, 2, 1] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case3. include_cutoff_time = False with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-09 10:40:00"), training_window='9 minutes', include_cutoff_time=False) prop_values = [0, 4, 0] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case4. include_cutoff_time = True with single cutoff time value feature_matrix = calculate_feature_matrix([property_feature, dagg], pd_es, cutoff_time=pd.to_datetime("2011-04-10 10:40:00"), training_window='2 days', include_cutoff_time=True) prop_values = [0, 10, 1] dagg_values = [3, 3, 3] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() def test_training_window_overlap(pd_es): pd_es.add_last_time_indexes() count_log = ft.Feature( base=pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:40:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=True, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [1, 9]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=pd_es, cutoff_time=cutoff_time, cutoff_time_in_index=True, training_window='10 minutes', include_cutoff_time=False, )['COUNT(log)'] np.testing.assert_array_equal(actual.values, [0, 9]) def test_include_cutoff_time_without_training_window(es): es.add_last_time_indexes() count_log = ft.Feature( base=es['log']['id'], parent_entity=es['customers'], primitive=Count, ) cutoff_time = pd.DataFrame({ 'id': [0, 0], 'time': ['2011-04-09 10:30:00', '2011-04-09 10:31:00'], }).astype({'time': 'datetime64[ns]'}) # Case1. include_cutoff_time = True actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [1, 6]) # Case2. include_cutoff_time = False actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=cutoff_time, cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [0, 5]) # Case3. include_cutoff_time = True with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=True, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [6]) # Case4. include_cutoff_time = False with single cutoff time value actual = calculate_feature_matrix( features=[count_log], entityset=es, cutoff_time=pd.to_datetime("2011-04-09 10:31:00"), instance_ids=[0], cutoff_time_in_index=True, include_cutoff_time=False, )['COUNT(log)'] actual = to_pandas(actual) np.testing.assert_array_equal(actual.values, [5]) def test_approximate_dfeat_of_agg_on_target_include_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) cutoff_time = pd.DataFrame({'time': [datetime(2011, 4, 9, 10, 31, 19)], 'instance_id': [0]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat2, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=False) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # excluded due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [5] assert feature_matrix[agg_feat.get_name()].tolist() == [5] feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(20, 's'), cutoff_time=cutoff_time, include_cutoff_time=True) # binned cutoff_time will be datetime(2011, 4, 9, 10, 31, 0) and # log event 5 at datetime(2011, 4, 9, 10, 31, 0) will be # included due to approximate cutoff time point assert feature_matrix[dfeat.get_name()].tolist() == [6] assert feature_matrix[agg_feat.get_name()].tolist() == [5] def test_training_window_recent_time_index(pd_es): # customer with no sessions row = { 'id': [3], 'age': [73], u'région_id': ['United States'], 'cohort': [1], 'cancel_reason': ["Lost interest"], 'loves_ice_cream': [True], 'favorite_quote': ["Don't look back. Something might be gaining on you."], 'signup_date': [datetime(2011, 4, 10)], 'upgrade_date': [datetime(2011, 4, 12)], 'cancel_date': [datetime(2011, 5, 13)], 'date_of_birth': [datetime(1938, 2, 1)], 'engagement_level': [2], } to_add_df = pd.DataFrame(row) to_add_df.index = range(3, 4) # have to convert category to int in order to concat old_df = pd_es['customers'].df old_df.index = old_df.index.astype("int") old_df["id"] = old_df["id"].astype(int) df = pd.concat([old_df, to_add_df], sort=True) # convert back after df.index = df.index.astype("category") df["id"] = df["id"].astype("category") pd_es['customers'].update_data(df=df, recalculate_last_time_indexes=False) pd_es.add_last_time_indexes() property_feature = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['customers'], primitive=Count) top_level_agg = ft.Feature(pd_es['customers']['id'], parent_entity=pd_es[u'régions'], primitive=Count) dagg = DirectFeature(top_level_agg, pd_es['customers']) instance_ids = [0, 1, 2, 3] times = [datetime(2011, 4, 9, 12, 31), datetime(2011, 4, 10, 11), datetime(2011, 4, 10, 13, 10, 1), datetime(2011, 4, 10, 1, 59, 59)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': instance_ids}) # Case1. include_cutoff_time = True feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=True, ) prop_values = [4, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # Case2. include_cutoff_time = False feature_matrix = calculate_feature_matrix( [property_feature, dagg], pd_es, cutoff_time=cutoff_time, training_window='2 hours', include_cutoff_time=False, ) prop_values = [5, 5, 1, 0] assert (feature_matrix[property_feature.get_name()] == prop_values).values.all() dagg_values = [3, 2, 1, 3] feature_matrix.sort_index(inplace=True) assert (feature_matrix[dagg.get_name()] == dagg_values).values.all() # TODO: add test to fail w/ koalas def test_approximate_fails_dask(dask_es): agg_feat = ft.Feature(dask_es['log']['id'], parent_entity=dask_es['sessions'], primitive=Count) error_text = "Using approximate is not supported with Dask Entities" with pytest.raises(ValueError, match=error_text): calculate_feature_matrix([agg_feat], dask_es, approximate=Timedelta(1, 'week')) def test_approximate_multiple_instances_per_cutoff_time(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix.shape[0] == 2 assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_with_multiple_paths(pd_diamond_es): pd_es = pd_diamond_es path = backward_path(pd_es, ['regions', 'customers', 'transactions']) agg_feat = ft.AggregationFeature(pd_es['transactions']['id'], parent_entity=pd_es['regions'], relationship_path=path, primitive=Count) dfeat = DirectFeature(agg_feat, pd_es['customers']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat], pd_es, approximate=Timedelta(1, 'week'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [6, 2] def test_approximate_dfeat_of_agg_on_target(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, instance_ids=[0, 2], approximate=Timedelta(10, 's'), cutoff_time=cutoff_time) assert feature_matrix[dfeat.get_name()].tolist() == [7, 10] assert feature_matrix[agg_feat.get_name()].tolist() == [5, 1] def test_approximate_dfeat_of_need_all_values(pd_es): p = ft.Feature(pd_es['log']['value'], primitive=Percentile) agg_feat = ft.Feature(p, parent_entity=pd_es['sessions'], primitive=Sum) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) feature_matrix = calculate_feature_matrix([dfeat, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) log_df = pd_es['log'].df instances = [0, 2] cutoffs = [pd.Timestamp('2011-04-09 10:31:19'), pd.Timestamp('2011-04-09 11:00:00')] approxes = [pd.Timestamp('2011-04-09 10:31:10'), pd.Timestamp('2011-04-09 11:00:00')] true_vals = [] true_vals_approx = [] for instance, cutoff, approx in zip(instances, cutoffs, approxes): log_data_cutoff = log_df[log_df['datetime'] < cutoff] log_data_cutoff['percentile'] = log_data_cutoff['value'].rank(pct=True) true_agg = log_data_cutoff.loc[log_data_cutoff['session_id'] == instance, 'percentile'].fillna(0).sum() true_vals.append(round(true_agg, 3)) log_data_approx = log_df[log_df['datetime'] < approx] log_data_approx['percentile'] = log_data_approx['value'].rank(pct=True) true_agg_approx = log_data_approx.loc[log_data_approx['session_id'].isin([0, 1, 2]), 'percentile'].fillna(0).sum() true_vals_approx.append(round(true_agg_approx, 3)) lapprox = [round(x, 3) for x in feature_matrix[dfeat.get_name()].tolist()] test_list = [round(x, 3) for x in feature_matrix[agg_feat.get_name()].tolist()] assert lapprox == true_vals_approx assert test_list == true_vals def test_uses_full_entity_feat_of_approximate(pd_es): agg_feat = ft.Feature(pd_es['log']['value'], parent_entity=pd_es['sessions'], primitive=Sum) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) agg_feat3 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Max) dfeat = DirectFeature(agg_feat2, pd_es['sessions']) dfeat2 = DirectFeature(agg_feat3, pd_es['sessions']) p = ft.Feature(dfeat, primitive=Percentile) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time = pd.DataFrame({'time': times, 'instance_id': [0, 2]}) # only dfeat2 should be approximated # because Percentile needs all values feature_matrix_only_dfeat2 = calculate_feature_matrix( [dfeat2], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) assert feature_matrix_only_dfeat2[dfeat2.get_name()].tolist() == [50, 50] feature_matrix_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, approximate=Timedelta(10, 's'), cutoff_time_in_index=True, cutoff_time=cutoff_time) assert feature_matrix_only_dfeat2[dfeat2.get_name()].tolist() == feature_matrix_approx[dfeat2.get_name()].tolist() feature_matrix_small_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, approximate=Timedelta(10, 'ms'), cutoff_time_in_index=True, cutoff_time=cutoff_time) feature_matrix_no_approx = calculate_feature_matrix( [p, dfeat, dfeat2, agg_feat], pd_es, cutoff_time_in_index=True, cutoff_time=cutoff_time) for f in [p, dfeat, agg_feat]: for fm1, fm2 in combinations([feature_matrix_approx, feature_matrix_small_approx, feature_matrix_no_approx], 2): assert fm1[f.get_name()].tolist() == fm2[f.get_name()].tolist() def test_approximate_dfeat_of_dfeat_of_agg_on_target(pd_es): agg_feat = ft.Feature(pd_es['log']['id'], parent_entity=pd_es['sessions'], primitive=Count) agg_feat2 = ft.Feature(agg_feat, parent_entity=pd_es['customers'], primitive=Sum) dfeat = DirectFeature(ft.Feature(agg_feat2, pd_es["sessions"]), pd_es['log']) times = [datetime(2011, 4, 9, 10, 31, 19), datetime(2011, 4, 9, 11, 0, 0)] cutoff_time =
pd.DataFrame({'time': times, 'instance_id': [0, 2]})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Apr 22 13:38:01 2020 @author: <NAME> Produces to the total mass of CO2 flux and new production for different boxes. Requires: 'datasets/co2/landschutzer_co2/spco2_MPI_SOM-FFN_v2018.nc' 'processed/flux/fratios.nc' avg_npp_rg_cbpm.nc datasets/npp_satellite/avg_npp_rg_cafe.nc xr.open_dataarray('processed/earth_m2.nc Produces: processed/results/enso_basin_means.csv processed/results/carbon_mass.csv figs/Figure6_basinavg_pG.png """ import numpy as np import pandas as pd import xarray as xr import matplotlib.pyplot as plt from carbon_math import * import matplotlib from matplotlib.ticker import (MultipleLocator, FormatStrFormatter, AutoMinorLocator, ScalarFormatter) class FixedOrderFormatter(ScalarFormatter): """Formats axis ticks using scientific notation with a constant order of magnitude https://stackoverflow.com/a/3679918/9965678 """ def __init__(self, order_of_mag=0, useOffset=True, useMathText=False): self._order_of_mag = order_of_mag ScalarFormatter.__init__(self, useOffset=useOffset, useMathText=useMathText) def _set_orderOfMagnitude(self, range): """Over-riding this to avoid having orderOfMagnitude reset elsewhere""" self.orderOfMagnitude = self._order_of_mag def trends(ax,x,y,c='r'): from scipy.stats import linregress mean=np.nanmean(y) std=np.nanstd(y)*1 #x_n=np.arange(0,len(x)) # x1=np.arange(np.datetime64(x[0],'M'),np.datetime64(x[-1],'M')+np.timedelta64(1,'M')) #x1=trd.index.values.astype('datetime64[D]') x1=x.astype('datetime64[D]') x_n=pd.to_numeric(x1) slope, intercept, r_value, p_value, std_err = linregress(x_n,y) mn=min(x_n) mx=max(x_n) x1=np.linspace(mn,mx,len(x)) y1=slope*x1+intercept ax.plot(pd.to_datetime(x),y1,':'+c,linewidth=2.5) #ax.text(x1[-1]-(x1[-1]*0.1),y1[-1]-(y1[-1]*0.1),'R2='+str(np.round(r_value**2,3))) return slope, intercept, r_value,p_value,std_err def justtrends(x,y,c='r'): from scipy.stats import linregress mean=np.nanmean(y) std=np.nanstd(y)*1 #x_n=np.arange(0,len(x)) # x1=np.arange(np.datetime64(x[0],'M'),np.datetime64(x[-1],'M')+np.timedelta64(1,'M')) #x1=trd.index.values.astype('datetime64[D]') x1=x.astype('datetime64[D]') x_n=pd.to_numeric(x1) slope, intercept, r_value, p_value, std_err = linregress(x_n,y) mn=min(x_n) mx=max(x_n) x1=np.linspace(mn,mx,len(x)) y1=slope*x1+intercept #ax.text(x1[-1]-(x1[-1]*0.1),y1[-1]-(y1[-1]*0.1),'R2='+str(np.round(r_value**2,3))) return slope, intercept, r_value,p_value,std_err seamask=xr.open_dataset('processed/seamask.nc') #Because 2020 version doesn't have it. seamask= seamask.assign_coords(lon=(seamask.lon % 360)).roll(lon=(seamask.dims['lon']),roll_coords=False).sortby('lon') landsch_fp='datasets/co2/landschutzer_co2/spco2_MPI-SOM_FFN_v2020.nc' landschutzer=xr.open_dataset(landsch_fp) landschutzer= landschutzer.assign_coords(lon=(landschutzer.lon % 360)).roll(lon=(landschutzer.dims['lon']),roll_coords=False).sortby('lon') #EPIC 1 line fix for the dateline problem. land_pac=landschutzer.sel(lon=slice(120,290),lat=slice(-20,20)) #land_pac.to_netcdf('processed/fluxmaps/landshutzer.nc') land_pac=moles_to_carbon(land_pac.fgco2_smoothed) #JMA=moles_to_carbon(xr.open_mfdataset('datasets/co2/JMA_co2/jma_flux.nc').flux.sel(lon=slice(120,290),lat=slice(-20,20))) #yasanaka=moles_to_carbon(xr.open_mfdataset('datasets/co2/yasanaka_co2/Yasunaka_pCO2_flux.nc').flux_masked).sel(lon=slice(120,290),lat=slice(-20,20)) f_ratios=xr.open_mfdataset('processed/flux/fratios.nc') ratio=f_ratios.laws2000#laws2000,laws2011a,laws2011b,henson2011 npp=(xr.open_dataset('processed/flux/avg_npp_rg_cbpm.nc').avg_npp/1000*365) npp=(xr.open_dataset('processed/flux/avg_npp_rg_cafe.nc').avg_npp/1000*365) #grid=xr.open_dataarray('processed/tropics_size_m2.nc') grid=xr.open_dataarray('processed/earth_m2.nc') grid['lon']=grid.lon+180 grid=grid.where(seamask.seamask==1) #fig=plt.figure(figsize=(8,10)) limits=[['West',165,180], ['Central',205,220], ['East',235,250], #['Basin_check',180,280]] ['Basin',150,270]] #As used in the paper #['Ishii',135,270]] #['Borgne',135,270]] #Le Borgne 2002 Warm Pool #['Wyrtiki',180,270]] #Borgne is lims=1 #Wyrtiki is both lims=5 and 10 lims=15 mass_table=pd.DataFrame({}) check_lag_corr_x=[] check_lag_corr_y=[] #Calculating overall flux rates. plt.figure(figsize=(13,10)) for i,ty in enumerate(limits): if i <=2: ax = plt.subplot(2,3,i+1) else: ax=plt.subplot(2,1,2) startl= ty[1]#120#80#160#135#180#135#180 #not 150 endl=ty[2]#280 #80W #270 #90W gs=grid.sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum() print('\n'+ty[0]) print('gridsize= '+str(gs.values/1e13)) # if i==0: # #ax.text() # plt.text('2000-01-01',1.6e14,'10NS, 165E-180W, '+str(np.round(gs.values/1e13,3))+'x10$^{13}$ m$^2$') # elif i==1: # plt.text('2000-01-01',1.6e14,'10NS, 170W-155W, '+str(np.round(gs.values/1e13,3))+'x10$^{13}$ m$^2$') # elif i==2: # plt.text('2000-01-01',1.6e14,'10NS, 130W-115W, '+str(np.round(gs.values/1e13,3))+'x10$^{13}$ m$^2$') # elif i==3: # plt.text('2007-01-01',trenNP[3]0.5e14,'10NS, 150E-80W, '+str(np.round(gs.values/1e13,3))+'x10$^{13}$ m$^2$') #Year average of CO2 flux CO2=(land_pac*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) #JMC=(JMA*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) #YAS=(yasanaka*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) #plt.show() CO2['time']=CO2['time'].astype('datetime64[M]') #Year average of CO2 flux henson=(npp*f_ratios.henson2011*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) laws2000=(npp*f_ratios.laws2000*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) laws2011a=(npp*f_ratios.laws2011a*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) laws2011b=(npp*f_ratios.laws2011b*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon']) #dunne=(npp*f_ratios.dunne2005_tpca*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon'])#.plot(label='Dunne 2005') dunne=(npp*f_ratios.dunne2005*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon'])#.plot(label='Dunne 2005') trim=(npp*f_ratios.trim*grid).sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum(dim=['lat','lon'])#.plot(label='Dunne 2005') #JMC.plot(label='Iida flux',ax=ax) #YAS.plot(label='Yasanaka flux',ax=ax) #ax.plot(CO2.time,CO2,c='k') CO=CO2.sel(time=slice('2000-01-01','2019-12-01')) trenCO=trends(ax,CO.time.values,CO.values,c='k') annual_rate_of_changeCO=trenCO[0]*365 #henson.plot(label='Henson',ax=ax) #laws2011b.plot(label='Laws2011b',ax=ax,c='pink') mod=laws2011a.sel(time=slice('2000-01-01','2019-12-01')) trenNP=trends(ax,mod.time.values,mod.values) annual_rate_of_changeNP=trenNP[0]*365 #(CO2+laws2011a).plot(label='combined',ax=ax,c='m') if i==3: trim.plot(label='DeVries and Webber 2017',ax=ax,c='darkorange',linewidth=2)#,linestyle='--') #laws2011b.plot(label='Laws2011b',ax=ax,c='slategray',linewidth=2) dunne.sel(time=slice('1997-01-01','2019-07-01')).plot(label='Dunne 2005',ax=ax,c='darkblue') laws2000.plot(label='Laws 2000',ax=ax,c='green',linestyle='--') laws2011a.plot(label='Laws 2011a',ax=ax,c='r',linewidth=2.5) CO2.plot(label='CO$_{2}$ outgassing',ax=ax,c='k',linewidth=2.5) #Calc trends for the other models #Not actually used just a test. trim1=trim.sel(time=slice('2000-01-01','2019-12-01')) dunne1=dunne.sel(time=slice('2000-01-01','2019-12-01')) laws20001=laws2000.sel(time=slice('2000-01-01','2019-12-01')) laws2011a1=laws2011a.sel(time=slice('2000-01-01','2019-12-01')) trenNP1_trim=justtrends(trim1.time.values,trim1.values)[0]*365/1e15 trenNP1_dunne=justtrends(dunne1.time.values,dunne1.values)[0]*365/1e15 trenNP1_laws2000=justtrends(laws20001.time.values,laws20001.values)[0]*365/1e15 trenNP1_laws2011=justtrends(laws2011a1.time.values,laws2011a1.values)[0]*365/1e15 else: laws2011a.plot(label='Laws 2011a',ax=ax,c='r') CO2.plot(label='CO$_{2}$ outgassing',ax=ax,c='k') #henson.plot(label='Henson',ax=ax,c='deeppink') ax.set_xlim([np.datetime64('1997-06-01'),np.datetime64('2020-01-01')]) #ax.xaxis.grid(True, which='both') ax.xaxis.set_minor_locator(AutoMinorLocator()) #plt.grid() ax.set_xlabel('Year') if i <=2: #ax.set_ylim([0,0.27*1e15])131 ax.set_ylim([-0.015*1e15,0.25*1e15]) ax.set_title(chr(97+i)+') '+ty[0]+' Pacific',pad=16) ax.set_ylabel('New production and CO$_{2}$ flux (PgC yr$^{-1}$)') ax.yaxis.set_major_formatter(FixedOrderFormatter(15)) #y_formatter = matplotlib.ticker.ScalarFormatter(useOffset=False) #ax.yaxis.set_major_formatter(y_formatter) else: ax.legend(loc='lower center',ncol=5) ax.set_title(chr(97+i)+') Entire Basin') ax.set_ylabel('New Production and CO$_{2}$ flux (PgC yr$^{-1}$)') ax.set_ylim([0,1.6*1e15]) import matplotlib.patches as patches dat=CO2.to_dataframe(name='CO2') dat['henson']=henson.to_dataframe(name='henson').henson dat['laws2011a']=laws2011a.to_dataframe(name='laws2011a').laws2011a dat['laws2011b']=laws2011b.to_dataframe(name='laws2011b').laws2011b dat['laws2000']=laws2000.to_dataframe(name='laws2000').laws2000 dat['dunne']=dunne.to_dataframe(name='dunne2005').dunne2005 dat['strim']=trim.to_dataframe(name='simpletrim').simpletrim # dat['JMC']=JMC.to_dataframe(name='jmc').jmc #gs=grid.sel(lat=slice(-lims,lims)).sel(lon=slice(startl,endl)).sum() #print('gridsize= '+str(gs.values/1e14)) print('CO2: '+str(dat.CO2.mean()/1e15)) print('CO2 STD: '+str(dat.CO2.std()/1e15)) print('henson: '+str(dat.henson.mean()/1e15)) print('laws2011a: '+str(dat.laws2011a.mean()/1e15)) print('laws2011a STD: '+str(dat.laws2011a.std()/1e15)) print('laws2011b: '+str(dat.laws2011b.mean()/1e15)) print('laws2000: '+str(dat.laws2000.mean()/1e15)) print('Dunne: '+str(dat.dunne.mean()/1e15)) #print('JMC: '+str(dat.JMC.mean()/1e15)) print('NP Trend: '+ str(annual_rate_of_changeNP/1e15)+' ' +u"\u00B1 "+str((trenNP[4]*365)/1e15) +' PgC/yr/yr') print('pval= '+str(trenNP[3])) print('CO2 Trend: '+str(annual_rate_of_changeCO/1e15)+' ' +u"\u00B1 " +str((trenCO[4]*365)/1e15)+' PgC/yr/yr') print('pval= '+str(trenCO[3])) dat=dat[dat.index>np.datetime64('1997-08')] lanina=pd.read_csv('processed/indexes/la_nina_events.csv') cp_nino=pd.read_csv('processed/indexes/cp_events.csv') #cpc.to_csv('processed/indexes/cold_cp_events.csv') ep_nino=pd.read_csv('processed/indexes/ep_events.csv') info=dat ninaf=pd.DataFrame() epf=pd.DataFrame() cpf=pd.DataFrame() for i in lanina.iterrows(): ninaf=ninaf.append(info[slice(i[1].start,i[1].end)]) for i in ep_nino.iterrows(): epf=epf.append(info[slice(i[1].start,i[1].end)]) for i in cp_nino.iterrows(): cpf=cpf.append(info[slice(i[1].start,i[1].end)]) nina_dates=ninaf.index ep_dates=epf.index cp_dates=cpf.index ensofps=['processed/indexes/ep_events.csv','processed/indexes/la_nina_events.csv','processed/indexes/cp_events.csv'] for whichenso,fp in enumerate(ensofps): events=
pd.read_csv(fp)
pandas.read_csv
import json import argparse import logging import os import csv from multiprocessing import Pool import numpy as np import pandas as pd from sklearn.model_selection import KFold import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import rankdata from milieu.data.network import Network from milieu.data.associations import load_diseases from milieu.paper.figures.figure import Figure from milieu.util.util import set_logger, parse_id_rank_pair, prepare_sns class RecallCurve(Figure): """ Base class for all disease protein prediction methods. """ def __init__(self, dir, params): """ Initialize the Args: dir (string) The directory where the experiment should be run params (dict) """ super().__init__(dir, params) self._load_data() prepare_sns(sns, self.params) logging.info("Recall Curve") logging.info("<NAME> -- SNAP Group") logging.info("======================================") def _run(self): """ """ self._generate() def _load_data(self): """ """ logging.info("Loading Disease Associations...") self.diseases_dict = load_diseases(self.params["associations_path"]) def _generate_recall_curve(self, ranks_path): """ """ count = 0 recall_curve_sum = np.zeros(self.params["length"]) with open(ranks_path, 'r') as ranks_file: rank_reader = csv.reader(ranks_file) for i, row in enumerate(rank_reader): if i == 0: continue if (("associations_threshold" in self.params) and self.params["associations_threshold"] > len(row) - 2): continue if (("splits" in self.params) and self.diseases_dict[row[0]].split not in self.params["splits"]): continue if self.diseases_dict[row[0]].split == "none": continue count += 1 ranks = [parse_id_rank_pair(rank_str)[1] for rank_str in row[2:]] ranks = np.array(ranks).astype(int) rank_bin_count = np.bincount(ranks) recall_curve = 1.0 * np.cumsum(rank_bin_count) / len(ranks) if len(recall_curve) < self.params["length"]: recall_curve = np.pad(recall_curve, (0, self.params["length"] - len(recall_curve)), 'edge') recall_curve_sum += recall_curve[:self.params["length"]] recall_curve = (recall_curve_sum / (count)) return recall_curve def _generate(self): """ """ count = 0 recall_curves = {} for name, method_exp_dir in self.params["method_exp_dirs"].items(): logging.info(name) if os.path.isdir(os.path.join(method_exp_dir, 'run_0')): # if there are multiple runs of the experiment consider all data = [] runs = [] for dir_name in os.listdir(method_exp_dir): if dir_name[:3] != "run": continue path = os.path.join(method_exp_dir, dir_name, 'ranks.csv') run = self._generate_recall_curve(path) runs.append(run) for threshold, recall in enumerate(run): data.append((recall, threshold)) data =
pd.DataFrame(data=data, columns=["recall", "threshold"])
pandas.DataFrame
import pickle import pandas as pd from sklearn.externals import joblib from sklearn import preprocessing clf = joblib.load("train_model.m") data_test = pd.read_csv("cleaning_test.csv") df = pd.read_csv("data/test.csv") f_names = ['OverallQual', 'GrLivArea', 'TotalBsmtSF', 'GarageArea', '1stFlrSF', 'FullBath', 'TotRmsAbvGrd', 'YearRemodAdd', 'YearBuilt', 'CentralAir', 'Neighborhood', 'RoofMatl', 'HouseStyle', 'KitchenQual', 'SaleCondition', 'SaleType'] for key in f_names: data_test[key].fillna(data_test[key].mode()[0], inplace=True) # 读取模型参数,对测试进行再编码 x = data_test.values y_te_pred = clf.predict(x) y_scaler = joblib.load('scalarY') prediction = pd.DataFrame(y_te_pred, columns=['SalePrice']) p = y_scaler.inverse_transform(prediction) result = pd.concat([df['Id'],
pd.DataFrame(p, columns=['SalePrice'])
pandas.DataFrame
import numpy as np import random import pandas as pd param_grid = { 'patience': list(range(20, 21)), 'lr': list(np.logspace(np.log10(0.0005), np.log10(0.1), base=10, num=100)), 'lr_decay': list(np.linspace(0.6, 1, num=8)), 'weight_decay': [5e-6, 5e-5, 1e-5, 5e-4, 1e-4, 5e-3, 1e-3], 'drop_out': [0.5, 0.6, 0.7, 0.8, 0.9], 'batch_size': [64], 'hidden_dimension': [128] } params_20ng = { 'patience': [-1], 'lr': [0.0005, 0.0001], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [256, 512], 'batch_size': [128, 256] } params_aclImdb = { 'patience': [-1], 'lr': [0.0001, 0.0005], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [256, 512], 'batch_size': [128, 256] } params_ohsumed = { 'patience': [-1], 'lr': [0.001], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [256, 512], 'batch_size': [128, 256] } params_R52 = { 'patience': [-1], 'lr': [0.001, 0.0005], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [256, 512], 'batch_size': [128, 256] } params_R8 = { 'patience': [-1], 'lr': [0.001, 0.0005], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [96, 128], 'batch_size': [64, 128] } params_mr = { 'patience': [-1], 'lr': [0.001, 0.0005], 'lr_decay': [1], 'weight_decay': [0], 'drop_out': [0.5], 'hidden_dimension': [96, 128], 'batch_size': [64, 128] } # def save_parameters(): # ''' # random search # :return: # ''' # MAX_EVALS = 10 # dfs = [] # for tune_id in range(MAX_EVALS): # np.random.seed(tune_id) # hps = {k: random.sample(v, 1) for k, v in param_grid_for_docs.items()} # dfs.append(pd.DataFrame.from_dict(hps)) # dfs = pd.concat(dfs).reset_index(drop=True) # dfs.to_csv('parameters_for_tuning_docs_new', sep='\t', index=False) # print(dfs) from sklearn.model_selection import ParameterGrid def save_parameters(): ''' grid search :return: ''' dataset = 'ohsumed' dfs = [] grids = list(ParameterGrid(params_ohsumed)) for grid in grids: print(pd.DataFrame.from_dict(grid, orient='index').T) dfs.append(pd.DataFrame.from_dict(grid, orient='index').T) dfs =
pd.concat(dfs)
pandas.concat
import warnings warnings.filterwarnings("ignore") from flask import Flask from flask import render_template, request, jsonify from plotly.graph_objs import Bar from sklearn.externals import joblib from sqlalchemy import create_engine import json import plotly import pandas as pd import numpy as np import xgboost as xgb from catboost import CatBoostRegressor import lightgbm as lgb from pandas_datareader import data import datetime app=Flask(__name__) # load model model = joblib.load("models/regressor.pkl") def technical_indicators(df): """ Technical Indicator Calculator Function. This Function's Output Is A Pandas DataFrame Of Various Techincal Indicators Such As RSI,SMA,EVM,EWMA BB And ROC Using Different Time Intervals. Parameters: df (DataFrame) : Pandas DataFrame Of Stock Price Returns: new_df (DataFrame) : Pandas DataFrame Of Techincal Indicators """ new_df = pd.DataFrame() dm = ((df['High'] + df['Low'])/2) - ((df['High'].shift(1) + df['Low'].shift(1))/2) br = (df['Volume'] / 100000000) / ((df['High'] - df['Low'])) EVM = dm / br new_df['EVM_15'] = EVM.rolling(15).mean() sma_60 = pd.Series.rolling(df['Close'], window=60, center=False).mean() new_df["SMA_60"] = sma_60 sma_200 = pd.Series.rolling(df['Close'], window=30, center=False).mean() new_df["SMA_200"] = sma_200 ewma_50 = df['Close'].ewm(span = 50, min_periods = 50 - 1).mean() new_df["EWMA_50"] = ewma_50 ewma_200 = df['Close'].ewm(span = 200, min_periods = 200 - 1).mean() new_df["EWMA_200"] = ewma_200 sma_5 = pd.Series.rolling(df['Close'], window=5, center=False).mean() std_5 = pd.Series.rolling(df['Close'], window=5, center=False).std() bb_5_upper = sma_5 + (2 * std_5) bb_5_lower = sma_5 - (2 * std_5) new_df["BB_5_UPPER"] = bb_5_upper new_df["BB_5_LOWER"] = bb_5_lower new_df["SMA_5"] = sma_5 sma_10 = pd.Series.rolling(df['Close'], window=10, center=False).mean() std_10 = pd.Series.rolling(df['Close'], window=10, center=False).std() bb_10_upper = sma_10 + (2 * std_10) bb_10_lower = sma_10 - (2 * std_10) new_df["BB_10_UPPER"] = bb_10_upper new_df["BB_10_LOWER"] = bb_10_lower new_df["SMA_10"] = sma_10 sma_20 = pd.Series.rolling(df['Close'], window=20, center=False).mean() std_20 = pd.Series.rolling(df['Close'], window=20, center=False).std() bb_20_upper = sma_20 + (2 * std_20) bb_20_lower = sma_20 - (2 * std_20) new_df["BB_20_UPPER"] = bb_20_upper new_df["BB_20_LOWER"] = bb_20_lower new_df["SMA_20"] = sma_20 roc_5 = df['Close'][5:]/df['Close'][:-5].values - 1 new_df["ROC_5"] = roc_5 roc_10 = df['Close'][10:]/df['Close'][:-10].values - 1 new_df["ROC_10"] = roc_10 roc_20 = df['Close'][20:]/df['Close'][:-20].values - 1 new_df["ROC_20"] = roc_20 delta = df['Close'].diff() up, down = delta.copy(), delta.copy() up[up < 0] = 0 down[down > 0] = 0 up_5 =
pd.Series.rolling(up, window=5, center=False)
pandas.Series.rolling
import pytest from datetime import datetime import pandas as pd from tadpole_algorithms.transformations import convert_to_year_month, \ convert_to_year_month_day, map_string_diagnosis def test_forecastDf_date_conversion(): forecastDf = pd.DataFrame([{'Forecast Date': '2019-07'}]) assert pd.api.types.is_string_dtype(forecastDf.dtypes) # original conversion code forecastDf['Forecast Date'] = [datetime.strptime(x, '%Y-%m') for x in forecastDf['Forecast Date']] # considers every month estimate to be the actual first day 2017-01 print(forecastDf.dtypes) assert
pd.api.types.is_datetime64_ns_dtype(forecastDf['Forecast Date'])
pandas.api.types.is_datetime64_ns_dtype
from pathsetup import run_path_setup run_path_setup() import os import gl gl.isTrain = False from model_config import model_argparse config = model_argparse() os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = config['device'] import tensorflow as tf tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True sess = tf.Session(config=tf_config) import numpy as np import pandas as pd import utils from ved import VEDModel from sklearn.model_selection import train_test_split np.random.seed(1337) if config['dataset'] == 'daily': train_data = pd.read_csv(config['data_dir'] + 'DailyDial/de_duplicated/df_daily_train.csv') val_data =
pd.read_csv(config['data_dir'] + 'DailyDial/de_duplicated/df_daily_valid_without_duplicates.csv')
pandas.read_csv
############### Results Tables ############### import pandas as pd import numpy as np import os # set path to media-bias-prediction repository repo_path = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) os.chdir(os.path.join(repo_path, 'deep_learning_models')) file_names = ['full_without_wrongly_labeled', 'aggregators_removed', 'tabloids_removed', 'duplicates_removed', 'aggregators_tabloids_duplicates_removed'] ### Applied datasets results wanted_results = [] for name in file_names: score_list = [] for i in range(3): scores = pd.read_csv(os.path.join('scores', f'metric_scores_allsides_{name}_rerun_{i+1}.csv')).iloc[-1,:] score_list.append(scores) wanted_results += score_list applied_datasets_each_run = pd.DataFrame(wanted_results).drop(columns=['epoch', 'time', 'train_precision', 'train_recall', 'val_precision', 'val_recall', 'test_precision', 'test_recall', 'train_loss', 'val_loss', 'test_loss', 'memory']).__round__(4) standard_deviations = np.zeros((5,9)) for i in range(0,13,3): std_array = np.std(applied_datasets_each_run.iloc[i:i+3,:],axis=0, ddof=1) standard_deviations[int(i/3),:] = std_array.round(4) applied_datasets_std = pd.DataFrame(standard_deviations, columns=applied_datasets_each_run.columns) # move latex function from back to beginning if needed #latex_output_fct(applied_datasets_std) average_results = [] for i in range(0,len(wanted_results),3): average_results.append((wanted_results[i+0]+wanted_results[i+1]+wanted_results[i+2])/3) average_results_df = pd.DataFrame(average_results, index=file_names).__round__(4) final_results = average_results_df.drop(columns=['epoch', 'time', 'train_precision', 'train_recall', 'val_precision', 'val_recall', 'test_precision', 'test_recall', 'train_loss', 'val_loss', 'test_loss', 'memory']) ### SHA-BiLSTM benchmark scores dl_score_list = [] for i in range(3): scores = pd.read_csv(os.path.join('dl_benchmark_scores', f'metric_scores_dl_benchmark_allsides_all_removed_rerun_{i+1}.csv')).iloc[-1,:] dl_score_list.append(scores) dl_score_df = pd.DataFrame(dl_score_list).drop(columns=['epoch', 'time', 'train_precision', 'train_recall', 'val_precision', 'val_recall', 'test_precision', 'test_recall', 'train_loss', 'val_loss', 'test_loss', 'memory']) dl_standard_deviations = np.std(dl_score_df,axis=0).round(4) dl_average_results = np.mean(dl_score_df, axis=0).__round__(4) #latex_output_fct(dl_standard_deviations) ### Benchmark time and memory results # Bert bert_time_memory_df = pd.DataFrame(columns=['time','memory']) for i in range(3): temp_df = pd.read_csv(os.path.join('scores', f'metric_scores_allsides_aggregators_tabloids_duplicates_removed_rerun_{i+1}.csv'))[['time','memory']] bert_time_memory_df = pd.concat([bert_time_memory_df,temp_df],) bert_avg_time = round(np.sum(bert_time_memory_df['time'])/3,2) bert_max_memory = np.max(bert_time_memory_df['memory']) # SHA-BiLSTM # batch=64 bilstm_time_memory_df = pd.DataFrame(columns=['time','memory']) for i in range(3): temp_df = pd.read_csv(os.path.join('dl_benchmark_scores', f'metric_scores_dl_benchmark_allsides_all_removed_rerun_{i+1}.csv'))[['time','memory']] bilstm_time_memory_df = pd.concat([bilstm_time_memory_df,temp_df],) bilstm_avg_time = round(np.sum(bilstm_time_memory_df['time'])/3,2) bilstm_max_memory = np.max(bilstm_time_memory_df['memory']) # batch=16 bilstm16_df = pd.read_csv(os.path.join('dl_benchmark_scores', f'metric_scores_dl_benchmark_allsides_batch_16_all_removed_rerun_1.csv'))[['time','memory']] bilstm16_avg_time = round(np.sum(bilstm16_df['time']),2) # /3 bilstm16_max_memory = np.max(bilstm16_df['memory']) ### Cost sensitive results cost_sensitive_score_list = [] for i in range(3): scores = pd.read_csv(os.path.join('scores', f'metric_scores_allsides_cost_sensitive_all_removed_rerun_{i+1}.csv')).iloc[-1,:] cost_sensitive_score_list.append(scores) cost_sensitive_score_df = pd.DataFrame(cost_sensitive_score_list).drop(columns=['epoch', 'time', 'train_precision', 'train_recall', 'val_precision', 'val_recall', 'test_precision', 'test_recall', 'train_loss', 'val_loss', 'test_loss', 'memory']) cost_sensitive_standard_deviations = np.std(cost_sensitive_score_df, axis=0).round(4) cost_sensitive_average_results = np.mean(cost_sensitive_score_df,axis=0).round(4) #latex_output_fct(cost_sensitive_standard_deviations) ### Excluded sources results excluded_sources_results = [] excluded_sources_std = [] for group,sources_in_training in zip(['small', 'small', 'large', 'large'], ['with_sources', 'without_sources','with_sources', 'without_sources']): results_per_category_list = [] for run in range(1,4): single_run_df = pd.read_csv(os.path.join('scores', f'accuracy_scores_{group}_{sources_in_training}_run_{run}.csv')).iloc[0,:] results_per_category_list.append(single_run_df) results_per_category_df = pd.DataFrame(results_per_category_list) average_per_category = np.mean(results_per_category_df, axis=0) std_per_category = np.std(results_per_category_df, axis=0) excluded_sources_results.append(average_per_category) excluded_sources_std.append(std_per_category) excluded_sources_small = pd.DataFrame(excluded_sources_results[:2]).__round__(4) excluded_sources_small excluded_sources_large = pd.DataFrame(excluded_sources_results[2:]).__round__(4) excluded_sources_large excluded_sources_small_std = pd.DataFrame(excluded_sources_std[:2]).__round__(4) excluded_sources_large_std =
pd.DataFrame(excluded_sources_std[2:])
pandas.DataFrame
from functools import partial import json import numpy as np import pandas as pd import pandas.testing as pdt import pytest from solarforecastarbiter.io import utils # data for test Dataframe TEST_DICT = {'value': [2.0, 43.9, 338.0, -199.7, 0.32], 'quality_flag': [1, 1, 9, 5, 2]} DF_INDEX = pd.date_range(start=pd.Timestamp('2019-01-24T00:00'), freq='1min', periods=5, tz='UTC', name='timestamp') DF_INDEX.freq = None TEST_DATA = pd.DataFrame(TEST_DICT, index=DF_INDEX) EMPTY_SERIES = pd.Series(dtype=float) EMPTY_TIMESERIES = pd.Series([], name='value', index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) EMPTY_DATAFRAME = pd.DataFrame(dtype=float) EMPTY_TIME_DATAFRAME = pd.DataFrame([], index=pd.DatetimeIndex( [], name='timestamp', tz='UTC'), dtype=float) TEST_DATAFRAME = pd.DataFrame({ '25.0': [0.0, 1, 2, 3, 4, 5], '50.0': [1.0, 2, 3, 4, 5, 6], '75.0': [2.0, 3, 4, 5, 6, 7]}, index=pd.date_range(start='20190101T0600', end='20190101T1100', freq='1h', tz='America/Denver', name='timestamp')).tz_convert('UTC') @pytest.mark.parametrize('dump_quality,default_flag,flag_value', [ (False, None, 1), (True, 2, 2) ]) def test_obs_df_to_json(dump_quality, default_flag, flag_value): td = TEST_DATA.copy() if dump_quality: del td['quality_flag'] converted = utils.observation_df_to_json_payload(td, default_flag) converted_dict = json.loads(converted) assert 'values' in converted_dict values = converted_dict['values'] assert len(values) == 5 assert values[0]['timestamp'] == '2019-01-24T00:00:00Z' assert values[0]['quality_flag'] == flag_value assert isinstance(values[0]['value'], float) def test_obs_df_to_json_no_quality(): td = TEST_DATA.copy() del td['quality_flag'] with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_obs_df_to_json_no_values(): td = TEST_DATA.copy().rename(columns={'value': 'val1'}) with pytest.raises(KeyError): utils.observation_df_to_json_payload(td) def test_forecast_series_to_json(): series = pd.Series([0, 1, 2, 3, 4], index=pd.date_range( start='2019-01-01T12:00Z', freq='5min', periods=5)) expected = [{'value': 0.0, 'timestamp': '2019-01-01T12:00:00Z'}, {'value': 1.0, 'timestamp': '2019-01-01T12:05:00Z'}, {'value': 2.0, 'timestamp': '2019-01-01T12:10:00Z'}, {'value': 3.0, 'timestamp': '2019-01-01T12:15:00Z'}, {'value': 4.0, 'timestamp': '2019-01-01T12:20:00Z'}] json_out = utils.forecast_object_to_json(series) assert json.loads(json_out)['values'] == expected def test_json_payload_to_observation_df(observation_values, observation_values_text): out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_json_payload_to_forecast_series(forecast_values, forecast_values_text): out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) def test_empty_payload_to_obsevation_df(): out = utils.json_payload_to_observation_df({'values': []}) assert set(out.columns) == {'value', 'quality_flag'} assert isinstance(out.index, pd.DatetimeIndex) def test_empty_payload_to_forecast_series(): out = utils.json_payload_to_forecast_series({'values': []}) assert isinstance(out.index, pd.DatetimeIndex) def test_null_json_payload_to_observation_df(): observation_values_text = b""" { "_links": { "metadata": "" }, "observation_id": "OBSID", "values": [ { "quality_flag": 1, "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "quality_flag": 1, "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') observation_values = pd.DataFrame({ 'value': pd.Series([None, None], index=ind, dtype=float), 'quality_flag': pd.Series([1, 1], index=ind) }) out = utils.json_payload_to_observation_df( json.loads(observation_values_text)) pdt.assert_frame_equal(out, observation_values) def test_null_json_payload_to_forecast_series(): forecast_values_text = b""" { "_links": { "metadata": "" }, "forecast_id": "OBSID", "values": [ { "timestamp": "2019-01-01T12:00:00-0700", "value": null }, { "timestamp": "2019-01-01T12:05:00-0700", "value": null } ] }""" ind = pd.DatetimeIndex([ pd.Timestamp("2019-01-01T19:00:00Z"), pd.Timestamp("2019-01-01T19:05:00Z") ], name='timestamp') forecast_values = pd.Series([None, None], index=ind, dtype=float, name='value') out = utils.json_payload_to_forecast_series( json.loads(forecast_values_text)) pdt.assert_series_equal(out, forecast_values) @pytest.mark.parametrize('label,exp,start,end', [ ('instant', TEST_DATA, None, None), (None, TEST_DATA, None, None), ('ending', TEST_DATA.iloc[1:], None, None), ('beginning', TEST_DATA.iloc[:-1], None, None), pytest.param('er', TEST_DATA, None, None, marks=pytest.mark.xfail(raises=ValueError)), # start/end outside data ('ending', TEST_DATA, pd.Timestamp('20190123T2300Z'), None), ('beginning', TEST_DATA, None, pd.Timestamp('20190124T0100Z')), # more limited ('ending', TEST_DATA.iloc[2:],
pd.Timestamp('20190124T0001Z')
pandas.Timestamp
import json from pyspark.sql import SQLContext sqlContext = SQLContext(sc) import pandas as pd import pandas import matplotlib.pyplot as plt import warnings warnings.filterwarnings('ignore') import os import glob mydir="/home/cloudera/streamData/output*" #Running the program continuously while(True): # mydir="file:/home/cloudera/streamData/output*" output_files = [file for file in glob.glob(os.path.join(mydir, 'part-*'))] output_files.sort(key=os.path.getmtime,reverse=True) #Reading the most rececntly modified file while plotting myrdd1 = sc.wholeTextFiles('file:'+output_files[0]) print('file:'+output_files[0]) #Converting to spark DataFrame dataDF=myrdd1.toDF() dataDF=dataDF.toPandas() dataDF.columns=["filename","cities"] #Filtering the empty cities dataDF=dataDF[dataDF['cities']!=""] dataDF=dataDF[dataDF['filename']!=""] if not dataDF.empty: newDF=dataDF if newDF.shape[0]!=0: location=pd.DataFrame(newDF['cities'][0].split('\n')) location.columns=['cities'] location["cities"]=location["cities"].astype(str) splitDF=location['cities'].apply(lambda x: pd.Series(x.split(','))) splitDF.columns=['cities','counts'] splitDF['counts']=splitDF['counts'].map(lambda x: str(x).replace(')','')) splitDF=splitDF[splitDF["cities"]!='nan'] splitDF=splitDF[splitDF["counts"]!='nan'] splitDF['counts']=
pd.to_numeric(splitDF['counts'])
pandas.to_numeric
# ClinVarome annotation functions # Gather all genes annotations : gene, gene_id, # (AF, FAF,) diseases, clinical features, mecanismes counts, nhomalt. # Give score for genes according their confidence criteria # Commented code is the lines needed to make the AgglomerativeClustering import pandas as pd import numpy as np import pysam from scipy.stats import poisson # from sklearn.preprocessing import QuantileTransformer # from sklearn.cluster import AgglomerativeClustering from clinvarome.utils.dictionary import ( EFFECTS, MC_CATEGORIES, MC_SHORT, # ARRAY_TRANSFORM, # CLUSTER_NAMES, ) import logging # For logs def get_logger(scope: str, level=logging.DEBUG): """ get_logger """ logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=level ) return logging.getLogger(scope) logger = get_logger(__name__) # Clinical features def gather_clinical_features(record, gene_finding, gene_disease): """ update gene_finding and gene_disease dictionary using information from a VCF record """ geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] if "CLNDISEASE" in record.info: clndisease = record.info["CLNDISEASE"][0].split("|") gene_disease.setdefault(geneinfo, []) gene_disease[geneinfo].append(clndisease) if "CLNFINDING" in record.info: clnfinding = record.info["CLNFINDING"][0].split("|") gene_finding.setdefault(geneinfo, []) gene_finding[geneinfo].append(clnfinding) def get_clinical_dataframe(gene_disease, gene_finding): """ Process dictionary output from gather_clinical_features function into a dataframe """ for key, value in gene_disease.items(): flat_list = [j for i in value for j in i] gene_disease[key] = ";".join(sorted(list(set(flat_list)))) gene_disease_df = pd.DataFrame( gene_disease.items(), columns=["gene_info", "clinical_disease"] ) for key, value in gene_finding.items(): flat_list = [j for i in value for j in i] gene_finding[key] = ";".join(sorted(list(set(flat_list)))) gene_finding_df = pd.DataFrame( gene_finding.items(), columns=["gene_info", "clinical_finding"] ) gene_features = gene_disease_df.merge(gene_finding_df, how="outer") return gene_features # FAF def calcul_max_AF(AC, AN): """ For a given AC and AN, calcul the maximum AF: the upper bound of the Poisson 95 % CI. """ if (AC == 0) and (AN != 0): max_AF_pois = 1 / AN elif (AC != 0) and (AN != 0): max_AC_pois = poisson.ppf(0.95, AC) max_AF_pois = float(max_AC_pois / AN) else: max_AF_pois = 0 return max_AF_pois def gather_dict_gene_max_AF(record, gene_AF_pois_dict): """ Update the maximum FAF of a gene using information in a VCF record """ ls_AC = [] ls_AN = [] ls_AF_pois = [] geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] gene_AF_pois_dict.setdefault(geneinfo, []) if "AC_afr" in record.info: AC_afr = record.info["AC_afr"] AC_amr = record.info["AC_amr"] AC_nfe = record.info["AC_nfe"] AC_eas = record.info["AC_eas"] AN_afr = record.info["AN_afr"] AN_amr = record.info["AN_amr"] AN_nfe = record.info["AN_nfe"] AN_eas = record.info["AN_eas"] ls_AC = [AC_afr, AC_amr, AC_nfe, AC_eas] ls_AN = [AN_afr, AN_amr, AN_nfe, AN_eas] for k in range(0, len(ls_AC)): ls_AF_pois.append(calcul_max_AF(ls_AC[k], ls_AN[k])) max_af_pois = max(ls_AF_pois) gene_AF_pois_dict[geneinfo].append(max_af_pois) else: gene_AF_pois_dict[geneinfo].append(0) def get_AF_max_by_gene(gene_AF_dict): """For a given gene, return the maximum FAF (among its variants) and get a dataframe.""" gene_AF_max = {} for key, values in gene_AF_dict.items(): gene_max_AF = max(values) gene_AF_max.setdefault(key, []) gene_AF_max[key].append(gene_max_AF) print(gene_AF_max) gene_anno_pois = pd.DataFrame.from_dict( gene_AF_max, orient="index", columns=["FAF"] ) gene_anno_pois = gene_anno_pois.reset_index() gene_anno_pois = gene_anno_pois.rename(columns={"index": "gene_info"}) print(gene_anno_pois) return gene_anno_pois # Molecular consequence counts def mol_consequences_by_variant(record, gene_var_dict): """ Parse molecular consequences (mc) available for a variant and return the highest predicted effect """ geneinfo = record.info["GENEINFO"].split("|")[0].split(":")[0] gene_var_dict.setdefault(geneinfo, []) if "MC" in record.info: mc = record.info["MC"] mc_only = [i.split("|")[1] for i in mc] min_value = min([v for k, v in EFFECTS.items() if k in mc_only]) for key, value in EFFECTS.items(): if min_value == value: gene_var_dict[geneinfo].append(MC_CATEGORIES[key]) break else: gene_var_dict[geneinfo].append("Not_provided") def count_type_mol_consequences(gene_var_dict): """ Count occurence of molecular consequence (mc)from pathogenic variant for each gene """ gene_mc_count = {} for key, values in gene_var_dict.items(): list_mc = [] for k in MC_SHORT.keys(): if k in values: count = values.count(k) list_mc.append([count, k]) gene_mc_count.setdefault(key, []) gene_mc_count[key].append(list_mc) return gene_mc_count def get_mol_consequences_dataframe(gene_var_dict): """ Format molecular consequences occurences (mc) by gene dictionary into dataframe. """ gene_mc_count = count_type_mol_consequences(gene_var_dict) df_tot =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import pytest import unittest import datetime import sys import context from fastbt.utils import * def equation(a,b,c,x,y): return a*x**2 + b*y + c def test_multiargs_simple(): seq = pd.Series([equation(1,2,3,4,y) for y in range(20, 30)]).sort_index() seq.index = range(20,30) constants = {'a':1, 'b':2, 'c':3, 'x':4} variables = {'y': range(20, 30)} par = multi_args(equation, constants=constants, variables=variables).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert (x,) == y def test_multiargs_product(): seq = [] for x in range(0,10): for y in range(10,15): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 10), range(10, 15)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 10), 'y': range(10,15)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_multiargs_max_limit(): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() assert len(par) == 1000 assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y @pytest.mark.parametrize("maxLimit", [2000, 3000, 5000, 10000]) def test_multiargs_max_limit_adjust(maxLimit): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True, maxLimit=maxLimit).sort_index() assert len(par) == min(maxLimit, 5000) assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_tick(): assert tick(112.71) == 112.7 assert tick(112.73) == 112.75 assert tick(1054.85, tick_size=0.1) == 1054.8 assert tick(1054.851, tick_size=0.1) == 1054.9 assert tick(104.73, 1) == 105 assert tick(103.2856, 0.01) == 103.29 assert tick(0.007814, 0.001) == 0.008 assert tick(0.00003562, 0.000001) == 0.000036 assert tick(0.000035617, 0.00000002) == 0.00003562 def test_tick_series(): s = pd.Series([100.43, 200.32, 300.32]) result = [100.45, 200.3, 300.3] for x,y in zip(tick(s), result): assert x==y def test_stop_loss(): assert stop_loss(100, 3) == 97 assert stop_loss(100, 3, order='S') == 103 assert stop_loss(1013, 2.5, order='B', tick_size=0.1) == 987.7 assert stop_loss(100, -3) == 103 # This should be depreceated assert stop_loss(100, -3, order='S') == 97 def test_stop_loss_error(): with pytest.raises(ValueError): assert stop_loss(100, 3, 'BS') def test_stop_loss_series(): p =
pd.Series([100.75, 150.63, 180.32])
pandas.Series
# we could possibly use this file to store commands that will help us interface with excel. for example: # - read the excel file and output a df # - give me a list of all the tickers we currently have shares of # - etc. # this way, if we want to access the same data across different files and functions, we can all call that data from here (makes it easier to change code, and less work for us) # we can also use this to hold for example, a dictionary or set or wtv that stores all the tickers we own. and it can also store the latest trades for each ticker. this way we dont need to run through the whole list of trades every time we want to find the latest trade for a given ticker #lmk what u think of this chai! import pandas as pd import numpy as np import pickle import os excel_file_name = './trading_data.xlsx' excel_helper_file_name = './data_helper.xlsx' def get_df(): df =
pd.read_excel(excel_file_name)
pandas.read_excel
''' Group enabled ANPNetwork class and supporting classes. ''' from pyanp.pairwise import Pairwise from pyanp.prioritizer import Prioritizer, PriorityType from pyanp.general import islist, unwrap_list, get_matrix, matrix_as_df from typing import Union import pandas as pd from copy import deepcopy from pyanp.limitmatrix import normalize, calculus, priority_from_limit import numpy as np import re from pyanp.rating import Rating class ANPNode: ''' A node inside a cluster, inside a netowrk. The basic building block of an ANP netowrk. :param network: An ANPNetwork object that this node lives inside. :param cluster: An ANPCluster object that this node lives inside. :param name: The name of this node. ''' def __init__(self, network, cluster, name:str): self.name = name self.cluster = cluster self.network = network self.node_prioritizers = {} self.subnetwork = None self.invert = False def is_node_cluster_connection(self, dest_cluster:str)->bool: ''' Is this node connected to a cluster. :param dest_cluster: The name of the cluster :return: True/False ''' if dest_cluster in self.node_prioritizers: return True else: return False def node_connect(self, dest_node)->None: '''' Make a node connection from this node to dest_node :param dest_node: The destination node as a str, int, or ANPNode. It can be a list of nodes, and then we will coonect each node from this node. The dest_node should be in any format accepted by ANPNetwork._get_node() ''' if islist(dest_node): for dn in dest_node: self.node_connect(dn) else: prioritizer = self.get_node_prioritizer(dest_node, create=True) prioritizer.add_alt(dest_node, ignore_existing=True) #Make sure parent clusters are connected src_cluster = self.cluster dest_cluster = self.network._get_node_cluster(dest_node) src_cluster.cluster_connect(dest_cluster) def get_node_prioritizer(self, dest_node, create=False, create_class=Pairwise, dest_is_cluster=False)->Prioritizer: ''' Gets the node prioritizer for the other_node :param dest_node: The node as a int, str, or ANPNode object. :return: The prioritizer if it exists, or None ''' if dest_is_cluster: dest_cluster = self.network.cluster_obj(dest_node) dest_name = dest_cluster.name else: dest_cluster = self.network._get_node_cluster(dest_node) dest_name = dest_cluster.name if dest_name not in self.node_prioritizers: if create: prioritizer = create_class() self.node_prioritizers[dest_name] = prioritizer return prioritizer else: return None else: return self.node_prioritizers[dest_name] def is_node_node_connection(self, dest_node)->bool: ''' Checks if there is a node connection from this node to dest_node :param dest_node: The node as a int, str, or ANPNode object. :return: ''' pri = self.get_node_prioritizer(dest_node) if pri is None: return False elif not pri.is_alt(dest_node): return False else: return True def get_unscaled_column(self, username=None)->pd.Series: ''' Returns the column in the unscaled supermatrix for this node. :param username: The user/users to do this for. Typical Prioritizer calculation usage, i.e. None means do for all group average. :return: A pandas series indexed by the node names. ''' nnodes = self.network.nnodes() rval = pd.Series(data=[0.0]*nnodes, index=self.network.node_names()) prioritizer:Prioritizer for prioritizer in self.node_prioritizers.values(): vals = prioritizer.priority(username, PriorityType.NORMALIZE) for alt, val in vals.iteritems(): rval[alt] = val return rval def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] pri:Prioritizer for pri in self.node_prioritizers.values(): pri.data_names(append_to, post_pend="wrt "+self.name) return append_to def set_node_prioritizer_type(self, destNode, prioritizer_class): ''' Sets the node prioritizer type :param destNode: An ANPNode object, string, or integer location :param prioritizer_class: The new type :return: None ''' pri = self.get_node_prioritizer(destNode, create_class=prioritizer_class) if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) dest_cluster = self.network._get_node_cluster(destNode) dest_name = dest_cluster.name self.node_prioritizers[dest_name] = rval else: pass class ANPCluster: ''' A cluster in an ANP object :param network: The ANPNetowrk object this cluster is in. :param name: The name of the cluster to create. ''' def __init__(self, network, name:str): self.prioritizer = Pairwise() self.name = name self.network = network # The list of ANP nodes in this cluster self.nodes = {} def add_node(self, *nodes)->None: """ Adds one or more nodes :param nodes: A vararg list of node names to add to this cluster. The names should all be strings. :return: Nonthing """ nodes = unwrap_list(nodes) if islist(nodes): for node in nodes: if isinstance(node, str): self.add_node(node) else: self.nodes[nodes] = ANPNode(self.network, self, nodes) def nnodes(self)->int: """ :return: The number of nodes in this cluster. """ return len(self.nodes) def is_node(self, node_name:str)->bool: ''' Does a node by that name exist in this cluster :param node_name: The name of the node to look for :return: True/False ''' return node_name in self.nodes def node_obj(self, node_name): """ Get a node in this cluster. :param node_name: The node as either a string name, integer position, or simply the ANPObject, in which case there is nothing to do except return it. :return: ANPNode object. If it wasn't found, None is returned. """ if isinstance(node_name, ANPNode): return node_name else: return get_item(self.nodes, node_name) def node_names(self)->list: ''' :return: List of the string names of the nodes in this cluster ''' return list(self.nodes.keys()) def node_objs(self)->list: ''' :return: List of the ANPNode objects in this cluster. ''' return self.nodes.values() def cluster_connect(self, dest_cluster)->None: """ Make a cluster->cluster connection from this node to the destination. :param dest_cluster: Either the ANPCluster object to connect to, or the name of the destination cluster. :return: """ if isinstance(dest_cluster, ANPCluster): dest_cluster_name = dest_cluster.name else: dest_cluster_name = dest_cluster self.prioritizer.add_alt(dest_cluster_name, ignore_existing=True) def set_prioritizer_type(self, prioritizer_class)->None: ''' Sets the cluster prioritizer type :param prioritizer_class: The new type :return: None ''' pri = self.prioritizer if not isinstance(pri, prioritizer_class): #Wrong type, get alts from this one, and create correct one rval = prioritizer_class() rval.add_alt(pri.alt_names()) self.prioritizer = rval else: pass def data_names(self, append_to=None): ''' Used when exporting an Excel header for a network, for its data. :param append_to: If not None, append header strings to this list. Otherwise we create a new list to append to. :return: List of strings of comparison name headers. If append_to is not None, we return append_to with the new string headers appended. ''' if append_to is None: append_to = [] if self.prioritizer is not None: self.prioritizer.data_names(append_to, post_pend="wrt "+self.name) return append_to def get_item(tbl:dict, key): """ Looks up an item in a dictionary by key first, assuming the key is in the dictionary. Otherwise, it checks if the key is an integer, and returns the item in that position. :param tbl: The dictionary to look in :param key: The key, or integer position to get the item of :return: The item, or it not found, None """ if key in tbl: return tbl[key] elif not isinstance(key, int): return None # We have an integer key by this point if key < 0: return None elif key >= len(tbl): return None else: count = 0 for rval in tbl.values(): if count == key: return rval count+=1 #Should never make it here raise ValueError("Shouldn't happen in anp.get_item") __CLEAN_SPACES_RE = re.compile('\\s+') def clean_name(name:str)->str: """ Cleans up a string for usage by: 1. stripping off begging and ending spaces 2. All spaces convert to one space 3. \t and \n are treated like a space :param name: The string name to be cleaned :return: The cleaned name. """ rval = name.strip() return __CLEAN_SPACES_RE.sub(string=rval, repl=' ') def sum_subnetwork_formula(priorities:pd.Series, dict_of_series:dict): """ A function that takes the weighted sum of values. Used for synthesis. :param priorities: Series whose index are the nodes with subnetworks and values are their weights. :param dict_of_series: A dictionary whose keys are the same as the keys of priorities, i.e. the nodes with subnetworks. The values are Series whose keys are alternative names and values are the synthesized alternative scores under that subnetwork. :return: """ subpriorities = priorities[dict_of_series.keys()] if sum(subpriorities) != 0: subpriorities /= sum(subpriorities) rval = pd.Series() counts = pd.Series(dtype=int) for subnet_name, vals in dict_of_series.items(): priority = subpriorities[subnet_name] for alt_name, val in vals.iteritems(): if alt_name in rval: rval[alt_name] += val * priority counts[alt_name] += priority else: rval[alt_name] = val counts[alt_name] = priority # Now let's calculate the averages for alt_name, val in rval.iteritems(): if counts[alt_name] > 0: rval[alt_name] /= counts[alt_name] return rval class ANPNetwork(Prioritizer): ''' Represents an ANP prioritizer. Has clusters/nodes, comparisons, etc. :param create_alts_cluster: If True (which is the default) we start with a cluster that is the alternatives cluster. Otherwise the model starts empty. ''' def __init__(self, create_alts_cluster=True): self.clusters = {} if create_alts_cluster: cl = self.add_cluster("Alternatives") self.alts_cluster = cl self.users=[] self.limitcalc = calculus self.subnet_formula = sum_subnetwork_formula self.default_priority_type = None def add_cluster(self, *args)->ANPCluster: ''' Adds one or more clusters to a network :param args: Can be either a single string, or a list of strings :return: ANPCluster object or list of ANPCluster objects ''' clusters = unwrap_list(args) if islist(clusters): rval = [] for cl in clusters: rval.append(self.add_cluster(cl)) return rval else: #Adding a single cluster cl = ANPCluster(self, clusters) self.clusters[clusters] = cl return cl def cluster_names(self)->list: ''' :return: List of string names of the clusters ''' return list(self.clusters.keys()) def nclusters(self)->int: ''' :return: The number of clusters in the network. ''' return len(self.clusters) def cluster_obj(self, cluster_info:Union[ANPCluster, str])->ANPCluster: ''' Returns the cluster with given information :param cluster_info: Either the name of the cluster object to get or the cluster object, or its int position :return: The ANPCluster object ''' if isinstance(cluster_info, ANPCluster): return cluster_info else: return get_item(self.clusters, cluster_info) def add_node(self, cl, *nodes): ''' Adds nodes to a cluster :param cl: The cluster name or object :param nodes: The name or names of the nodes :return: Nothing ''' cluster = self.cluster_obj(cl) cluster.add_node(nodes) def nnodes(self, cluster=None)->int: """ Returns the number of nodes in the network, or a cluster. :param cluster: If None, we return the number of nodes in the network. Otherwise this is the integer position, string name, or ANPCluster object of the cluster to get the node count within. :return: The count. """ if cluster is None: rval = pd.Series() for cname, cluster in self.clusters.items(): rval[cname] = cluster.nnodes() return sum(rval) else: clobj = self.cluster_obj(cluster) return clobj.nnodes() def add_alt(self, alt_name:str): """ Adds an alternative to the model: 1. Adds the altenrative to alts_cluster if not None 2. For each node with a subnetwork, we add the alternative to that subnetwork. :param alt_name: The name of the alternative to add :return: Nothing """ if self.alts_cluster is not None: self.add_node(self.alts_cluster, alt_name) # We should add this alternative to each subnetwork for node in self.node_objs_with_subnet(): node.subnetwork.add_alt(alt_name) def is_user(self, uname)->bool: ''' Checks if a user exists :param uname: The name of the user to check for :return: bool ''' return uname in self.users def is_alt(self, altname)->bool: ''' Checks if an alternative exists :param altname: The alterantive name to look for :return: bool ''' return self.alts_cluster.is_node(altname) def add_user(self, uname, ignore_dupe=False): ''' Adds a user to the system :param uname: The name of the new user :return: Nothing :raise ValueError If the user already existed ''' if islist(uname): for un in uname: self.add_user(un, ignore_dupe=ignore_dupe) return if self.is_user(uname): if not ignore_dupe: raise ValueError("User by the name "+uname+" already existed") else: return self.users.append(uname) def nusers(self)->int: ''' :return: The number of users ''' return len(self.users) def user_names(self)->list: ''' :return: List of names of the users ''' return deepcopy(self.users) def node_obj(self, node_name)->ANPNode: ''' Gets the ANPNode object of the node with the given name :param node_name: The name of the node to get, or it's overall integer position, or the ANPNode object itself :return: The ANPNode if it exists, or None ''' if isinstance(node_name, ANPNode): return node_name elif isinstance(node_name, int): #Reference by integer node_pos = node_name node_count = 0 for cluster in self.clusters.values(): rel_pos = node_pos - node_count if rel_pos < cluster.nnodes(): return cluster.node_obj(rel_pos) #If we make it here, we were out of bounds return None #Okay handle string node name cluster: ANPCluster for cname, cluster in self.clusters.items(): rval = cluster.node_obj(node_name) if rval is not None: return rval #Made it here, the node didn't exist return None def _get_node_cluster(self, node)->ANPCluster: ''' Gets the ANPCluster object a node lives in :param node: The name/integer positions, or ANPNode object itself. See node_obj() method for more details. :return: The ANPCluster object this node lives in, or None if it doesn't exist. ''' n = self.node_obj(node) if n is None: # Could not find the node return None return n.cluster def node_connect(self, src_node, dest_node): ''' connects 2 nodes :param src_node: Source node as prescribed by node_object() function :param dest_node: Destination node as prescribed by node_object() function :return: Nothing ''' src = self.node_obj(src_node) src.node_connect(dest_node) def node_names(self, cluster=None)->list: ''' Returns a list of nodes in this network, organized by cluster :param cluster: If None, we get all nodes in network, else we get nodes in that cluster, otherwise format as specified by cluster_obj() function. :return: List of strs of node names ''' if cluster is not None: cl = self.cluster_obj(cluster) return cl.node_names() rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_names() for name in cnodes: rval.append(name) return rval def node_objs(self)->list: ''' Returns a list of ANPNodes in this network, organized by cluster :return: List of strs of node names ''' rval = [] cl:ANPCluster for cl in self.clusters.values(): cnodes = cl.node_objs() for name in cnodes: rval.append(name) return rval def cluster_objs(self)->list: """ :return: List of ANPCluster objects in the network """ return list(self.clusters.values()) def node_connections(self)->np.ndarray: """ Returns the node conneciton matrix for this network. :return: A numpy array of shape [nnode, nnodes] where item [row, col] 1 means there is a node connection from col -> row, and 0 means no connection. """ nnodes = self.nnodes() nnames = self.node_names() rval = np.zeros([nnodes, nnodes]) src_node:ANPNode for src in range(nnodes): srcname = nnames[src] src_node = self.node_obj(srcname) for dest in range(nnodes): dest_name = nnames[dest] if src_node.is_node_node_connection(dest_name): rval[dest,src]=1 return rval def unscaled_supermatrix(self, username=None, as_df=False)->np.array: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The unscaled supermatrix as a numpy.array of shape [nnode, nnodes] ''' nnodes = self.nnodes() rval = np.zeros([nnodes, nnodes]) nodes = self.node_objs() col = 0 node:ANPNode for node in nodes: rval[:,col] = node.get_unscaled_column(username) col += 1 if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def scaled_supermatrix(self, username=None, as_df=False)->np.ndarray: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The scaled supermatrix ''' rval = self.unscaled_supermatrix(username) # Now I need to normalized by cluster weights clusters = self.cluster_objs() nclusters = len(clusters) col = 0 for col_cp in range(nclusters): col_cluster:ANPCluster = clusters[col_cp] row_nnodes = col_cluster.nnodes() cluster_pris = col_cluster.prioritizer.priority(username, PriorityType.NORMALIZE) row_offset = 0 for col_node in col_cluster.node_objs(): row=0 for row_cp in range(nclusters): row_cluster:ANPCluster = clusters[row_cp] row_cluster_name = row_cluster.name if row_cluster_name in cluster_pris: priority = cluster_pris[row_cluster_name] else: priority = 0 for row_node in row_cluster.node_objs(): rval[row, col] *= priority row += 1 col += 1 normalize(rval, inplace=True) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def global_priority(self, username=None)->pd.Series: ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :return: The global priorities Series, index by node name ''' lm = self.limit_matrix(username) rval = priority_from_limit(lm) node_names = self.node_names() return pd.Series(data=rval, index=node_names) def global_priority_df(self, user_infos=None)->pd.DataFrame: ''' :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: The global priorities dataframe. Rows are the nodes and columns are the users. The first user/column is the Group Average ''' if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() for user in user_infos: if user is None: uname = "Group Average" else: uname = user rval[uname] = self.global_priority(user) return rval def limit_matrix(self, username=None, as_df=False): ''' :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param as_df: If True, returns as a dataframe with index and column names as the names of the nodes in the network. Otherwise just returns the array. :return: The limit supermatrix ''' sm = self.scaled_supermatrix(username) rval = self.limitcalc(sm) if not as_df: return rval else: return matrix_as_df(rval, self.node_names()) def alt_names(self)->list: ''' :return: List of alt names in this ANP model ''' if self.has_subnet(): # We have some v1 subnetworks, we get alternative names by looking # there. rval = [] node: ANPNode for node in self.node_objs_with_subnet(): alts = node.subnetwork.alt_names() for alt in alts: if alt not in rval: rval.append(alt) return rval else: return self.alts_cluster.node_names() def priority(self, username=None, ptype:PriorityType=None)->pd.Series: ''' Synthesize and return the alternative scores :param username: If None, gets it for all users. Otherwise gets it for the user specified. It can also be a list of users, in which case we combine them, as per the theory. :param ptype: The priority type to use :return: A pandas.Series indexed on alt names, values are the score ''' if ptype is None: # Use the default priority type for this network ptype = self.default_priority_type if self.has_subnet(): # Need to synthesize using subnetworks return self.subnet_synthesize(username=username, ptype=ptype) else: gp = self.global_priority(username) alt_names = self.alt_names() rval = gp[alt_names] if sum(rval) != 0: rval /= sum(rval) if ptype is not None: rval = ptype.apply(rval) return rval def data_names(self): ''' Returns the column headers needed to fill in the data for this model :return: A list of strings that would be usable in excel for parsing headers ''' node:ANPNode rval = [] cluster: ANPCluster for cluster in self.cluster_objs(): cluster.data_names(rval) for node in self.node_objs(): node.data_names(rval) return rval def node_connection_matrix(self, new_mat:np.ndarray=None): ''' Returns the current node conneciton matrix if new_mat is None. Otherwise, for each item [row, col] in the matrix with a value of 1 we connect from node[row] to node[col]. :param new_mat: The new node connection matrix. If None, we return the current one. :return: Current connection matrix. ''' src_node:ANPNode nnodes = self.nnodes() nodes = self.node_objs() node_names = self.node_names() if new_mat is not None: for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if new_mat[dest_node_pos, src_node_pos] != 0: src_node.node_connect(node_names[dest_node_pos]) rval = np.zeros([nnodes, nnodes]) for src_node_pos in range(nnodes): src_node = nodes[src_node_pos] for dest_node_pos in range(nnodes): if src_node.is_node_node_connection(node_names[dest_node_pos]): rval[dest_node_pos, src_node_pos] = 1 return rval def import_pw_series(self, series:pd.Series)->None: ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer (or cluster). The name should be A vs B wrt C, where A, B, C are node or cluster names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() wrtNode:ANPNode wrtNode = self.node_obj(wrt) info = info[0].split( ' vs ') if len(info) < 2: raise ValueError(" vs was not present in "+name) row, col = info rowNode = self.node_obj(row) colNode = self.node_obj(col) npri: Pairwise if (wrtNode is not None) and (rowNode is not None) and (colNode is not None): # Node pairwise npri = wrtNode.get_node_prioritizer(rowNode, create=True) #print("Node comparison "+name) if not isinstance(npri, Pairwise): raise ValueError("Node prioritizer was not pairwise") npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) else: # Try cluster pairwise wrtcluster = self.cluster_obj(wrt) rowcluster = self.cluster_obj(row) colcluster = self.cluster_obj(col) if wrtcluster is None: raise ValueError("wrt="+wrt+" was not a cluster, and the group was not a node comparison") if rowcluster is None: raise ValueError("row="+row+" was not a cluster, and the group was not a node comparison") if colcluster is None: raise ValueError("col="+col+" was not a cluster, and the group was not a node comparison") npri = self.cluster_prioritizer(wrtcluster) npri.vote_series(series, row, col, createUnknownUser=True) self.add_user(series.index, ignore_dupe=True) #print("Cluster comparison "+name) def set_alts_cluster(self, new_cluster): ''' Sets the new alternatives cluster :param new_cluster: Cluster specified as cluster_obj() expects. :return: Nothing ''' cl = self.cluster_obj(new_cluster) self.alts_cluster = cl def import_rating_series(self, series:pd.Series): ''' Takes in a well titled series of data, and pushes it into the right node's prioritizer as ratings (or cluster). Title should be A wrt B, where A and B are either both node names or both column names. :param series: The series of data for each user. Index is usernames. Values are the votes. :return: Nothing ''' name = series.name name = clean_name(name) info = name.split(' wrt ') if len(info) < 2: # We cannot do anything with this, we need a wrt raise ValueError("No wrt in "+name) wrt = info[1].strip() dest = info[0].strip() wrtNode:ANPNode destNode:ANPNode wrtNode = self.node_obj(wrt) destNode = self.node_obj(dest) npri:Rating if (wrtNode is not None) and (destNode is not None): # Node ratings npri = wrtNode.get_node_prioritizer(destNode, create=True, create_class=Rating) if not isinstance(npri, Rating): wrtNode.set_node_prioritizer_type(destNode, Rating) npri = wrtNode.get_node_prioritizer(destNode, create=True) npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) else: # Trying cluster ratings wrtcluster = self.cluster_obj(wrt) destcluster = self.cluster_obj(dest) if wrtcluster is None: raise ValueError("Ratings: wrt is not a cluster wrt="+wrt+" and wasn't a node either") if destcluster is None: raise ValueError("Ratings: dest is not a cluster dest="+dest+" and wasn't a node either") npri = wrtcluster.prioritizer if not isinstance(npri, Rating): wrtcluster.set_prioritizer_type(Rating) npri = wrtcluster.prioritizer npri.vote_column(votes=series, alt_name=dest, createUnknownUsers=True) def node_prioritizer(self, wrtnode=None, cluster=None): ''' Gets the prioritizer for node->cluster connection :param wrtnode: The node as understood by node_obj() function. :param cluster: Cluster as understood by cluster_obj() function. :return: If both wrtnode and cluster are specified, a single node prioritizer is returned for that comparison (or None if there was nothing there). Otherwise it returns a dictionary indexed by [wrtnode, cluster] and whose values are the prioritizers for that (only the non-None ones). ''' if wrtnode is not None and cluster is not None: node = self.node_obj(wrtnode) cl_obj = self.cluster_obj(cluster) cluster_name = cl_obj.name return node.get_node_prioritizer(dest_node=cluster_name, dest_is_cluster=True) elif wrtnode is not None: # Have wrtnode, do not have cluster rval = {} for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval elif cluster is not None: # Have cluster, but not wrtnode rval = {} for wrtnode in self.node_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval else: # Both wrtnode and cluster are none, want all rval = {} for wrtnode in self.node_names(): for cluster in self.cluster_names(): pri = self.node_prioritizer(wrtnode, cluster) if pri is not None: rval[(wrtnode, cluster)] = pri return rval def subnet(self, wrtnode): ''' Makes wrtnode have a subnetwork if it did not already. :param wrtnode: The node to give a subnetwork to, or get the subnetwork of. Node specified as node_obj() function expects. :return: The ANPNetwork that is the subnet of this node ''' node = self.node_obj(wrtnode) if node.subnetwork is not None: return node.subnetwork else: rval = ANPNetwork(create_alts_cluster=False) node.subnetwork = rval rval.default_priority_type = PriorityType.IDEALIZE return rval def node_invert(self, node, value=None): ''' Either sets, or tells if a node is inverted :param node: The node to do this on, as expected by node_obj() function :param value: If None, we return the boolean about if this node is inverted. Otherwise specifies the new value. :return: T/F if value=None, telling if the node is inverted. Otherwise returns nothing. ''' node = self.node_obj(node) if value is None: return node.invert else: node.invert = value def has_subnet(self)->bool: ''' :return: True/False telling if some node had a subentwork ''' for node in self.node_objs(): if node.subnetwork is not None: return True return False def subnet_synthesize(self, username=None, ptype:PriorityType=None): ''' Does the standard V1 subnetowrk synthesis. :param username: The user/users to synthesize for. If None, we group synthesize across all. If a single user, we sythesize for that user across all. If it is a list, we synthesize for the group that is that list of users. :return: Nothing ''' # First we need our global priorities pris = self.global_priority(username) # Next we need the alternative priorities from each subnetwork subnets = {} node:ANPNode for node in self.node_objs_with_subnet(): p = node.subnetwork.priority(username, ptype) if node.invert: p = self.invert_priority(p) subnets[node.name]=p rval = self.synthesize_combine(pris, subnets) if ptype is not None: rval = ptype.apply(rval) return rval def node_objs_with_subnet(self): """ :return: List of ANPNode objects in this network that have v1 subnets """ return [node for node in self.node_objs() if node.subnetwork is not None] def invert_priority(self, p): """ Makes a copy of the list like element p, and inverts. The current standard inversion is 1-p. There could be others implemented later. :param p: The list like to invert :return: New list-like of same type as p, with inverted priorities """ rval = deepcopy(p) for i in range(len(p)): rval[i] = 1 - rval[i] return rval def synthesize_combine(self, priorities:pd.Series, alt_scores:dict): """ Performs the actual sythesis step from anp v1 synthesis. :param priorities: Priorities of the subnetworks :param alt_scores: Alt scores as dictionary, keys are subnetwork names values are Series whose keys are alt names. :return: Series whose keys are alt names, and whose values are the synthesized scores. """ return self.subnet_formula(priorities, alt_scores) def cluster_prioritizer(self, wrtcluster=None): """ Gets the prioritizer for the clusters wrt a given cluster. :param wrtcluster: WRT cluster identifier as expected by cluster_obj() function. If None, then we return a dictionary indexed by cluster names and values are the prioritizers :return: THe prioritizer for that cluster, or a dictionary of all cluster prioritizers """ if wrtcluster is not None: cluster = self.cluster_obj(wrtcluster) return cluster.prioritizer else: rval = {} for cluster in self.cluster_objs(): rval[cluster.name] = cluster.prioritizer return rval def to_excel(self, fname): struct = pd.DataFrame() cluster:ANPCluster writer = pd.ExcelWriter(fname, engine='openpyxl') for cluster in self.cluster_objs(): cluster_name = cluster.name if cluster == self.alts_cluster: cluster_name = "*"+str(cluster_name) struct[cluster_name] = cluster.node_names() struct.to_excel(writer, sheet_name="struct", index=False) # Now the node connections mat = self.node_connection_matrix() pd.DataFrame(mat).to_excel(writer, sheet_name="connection", index=False, header=False) # Lastly let's write just the comparison structure cmp = self.data_names() pd.DataFrame({"":cmp}).to_excel(writer, sheet_name="votes", index=False, header=True) writer.save() writer.close() def cluster_incon_std_df(self, user_infos=None) -> pd.DataFrame: """ :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: DataFrame whose columns are clusters, rows are users (as controlled by user_infos params) and the value is the inconsistency for the given user on the given comparison. """ if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval = pd.DataFrame() # We need the name for the group (i.e. None) to be something useful) for cluster, pw in self.cluster_prioritizer().items(): if isinstance(pw, Pairwise): incon = [pw.incon_std(user) for user in user_infos] rval[cluster] = pd.Series(incon, index=user_infos) if None in rval.index: rval = rval.rename( lambda x: x if x is not None else "Group Average") return rval def node_incon_std_df(self, user_infos=None)->pd.DataFrame: """ :param user_infos: A list of users to do this for, if None is a part of this list, it means group average. If None, it defaults to None plus all users. :return: DataFrame whose columns are (node,cluster) pairs, rows are users (as controlled by user_infos params) and the value is the inconsistency for the given user on the given comparison. """ if user_infos is None: user_infos = list(self.user_names()) user_infos.insert(0, None) rval =
pd.DataFrame()
pandas.DataFrame
__author__ = 'jlu96' import prep_jobs as pj import sys import os import pickle import csv import pandas as pd import math import collections import itertools import geneTSmunging as gtm def get_parser(): # Parse arguments import argparse description = 'Prepare cluster jobs by partitioning tests by rows and hyper-parameters.' parser = argparse.ArgumentParser(description=description) parser.add_argument('-d', '--data_file', required=True) parser.add_argument('-d2', '--rand_data_file', required=True, help="The effect genes") parser.add_argument('-lr', '--load_reps', required=True, type=int) parser.add_argument('-o', '--output_name', required=True) parser.add_argument('-hlf', '--hyper_list_file', required=True) parser.add_argument('-t', '--test', required=True) parser.add_argument('-tn', '--test_name', required=True) parser.add_argument('-sn', '--script_num', type=int, default=3) parser.add_argument('-p', '--parallel_num', type=int, default=0) parser.add_argument('-l', '--lag', type=int, required=True) parser.add_argument('-n', '--null', type=str, required=True) parser.add_argument('-cv', '--cv', type=int, default=1, help="Do prep with CV or not. If 0, then skip the CV-making step.") parser.add_argument('-oa', '--only_array', type=int, default=0, help="Whehter to only save output coefs as arrays (1) or as whole matrices that are integrated by adding (0)") return parser def run(args): if args.test not in {"r", "l", "e"}: raise ValueError("args.test must be r (ridge), l (lasso) or e (elastic net)") if args.null not in {"l", "g"}: raise ValueError("args.null must be l (local) or g (global)") # Load files data_file = args.data_file rand_data_file = args.rand_data_file if args.load_reps: genes, geneTS = gtm.load_basic_rep_file_list(data_file) #dfs, genes, geneTS, df, __, __ = gtm.load_rep_file_list(data_file) else: df = pd.read_csv(data_file, sep="\t") genes, geneTS = gtm.get_gene_TS(df) n = len(genes) hyperlist = pickle.load(open(args.hyper_list_file, 'rb')) # hyper_names = cp.hyperlist_to_namelist(hyperlist) # Make hyper files for cross_validate loading. hyper_filenames = [] print("*************") print("HYPERS") print("*************") if not os.path.exists("hyper"): os.makedirs("hyper") # for hyper, hyper_name in zip(hyperlist, hyper_names): for hyper, h in zip(hyperlist, list(range(len(hyperlist)))): hyper_filename = "hyper" + os.sep + args.output_name + "-hyper-" + str(h) + ".p" hyper_filenames.append(hyper_filename) pickle.dump([hyper], open(hyper_filename, 'wb')) print("Hypers written in format: ", hyper_filename) # Make row files # Split up the rows according to number of input scripts partition_rows = pj.partition_inputs(list(range(n)), args.script_num) row_filenames = [] print("*************") print("ROWS") print("*************") if not os.path.exists("rows"): os.makedirs("rows") for partition_row, i in zip(partition_rows, list(range(len(partition_rows)))): row_filename = os.path.join("rows", args.output_name + "-row-" + str(i) + ".p") row_filenames.append(row_filename) pickle.dump(partition_row, open(row_filename, 'wb')) print("Row written in format: ", row_filename) if not os.path.exists("timing"): os.makedirs("timing") print("Folder timing created") resulttimefile = os.path.join("timing", "result_time.csv") if not os.path.exists(resulttimefile): with open(resulttimefile, 'w') as csvfile: f = csv.writer(csvfile) f.writerow(["Name", "Start", "End", "Elapsed"]) if args.cv != 0: print("*************") print("CV") print("*************") # Make CV scripts cv_scripts = [] hyper_output_dict = collections.OrderedDict() hyper_int_dict = collections.OrderedDict() if not os.path.exists("cv-scripts"): os.makedirs("cv-scripts") cvtimefile = os.path.join("timing", "hyper_time.csv") if not os.path.exists(cvtimefile): with open(cvtimefile, 'w') as csvfile: f = csv.writer(csvfile) f.writerow(["Name", "Start", "End", "Elapsed"]) for hyper, h, hyper_filename in zip(hyperlist, list(range(len(hyperlist))), hyper_filenames): hyper_output_group = [] for partition_row, i, row_filename in zip(partition_rows, list(range(len(partition_rows))), row_filenames): cv_prefix = args.output_name + "-cv-" + str(h) + "-row-" + str(i) cv_script = os.path.join("cv-scripts", cv_prefix + ".sh") cv_scripts.append(cv_script) cv_output = "hyper" + os.sep + cv_prefix + "-result.txt" hyper_output_group.append(cv_output) command_string = "time python cross_validate.py -d " + data_file + " -lr " + str(args.load_reps) + " -o " + cv_output + " -hl " + str(hyper_filename) \ + " -t " + args.test + " -l " + str(args.lag) + " -rl " + str(row_filename) with open(cv_script, 'w') as outputfile: outputfile.write("#!/bin/bash\n") outputfile.write("START=$(date)\n") #outputfile.write("module load python/2.7\n") # outputfile.write("module load python/2.7/scipy-mkl\n") # outputfile.write("module load python/2.7/numpy-mkl\n") #outputfile.write("module load anaconda\n") outputfile.write("module load anaconda3\n") outputfile.write(command_string) outputfile.write("\n") outputfile.write("END=$(date)\n") outputfile.write("echo " + cv_script + ",$START,$END,$SECONDS >> " + cvtimefile + "\n") os.chmod(cv_script, 0o777) # Set the output names, prepare for integration of all the hyper parameter fit results hyper_output_dict[str(hyper)] = hyper_output_group hyper_int_dict[str(hyper)] = "hyper" + os.sep + args.output_name + "-cv-" + str(h) + "-result.txt" hyper_output_df = pd.DataFrame(hyper_output_dict) hyper_int_df = pd.DataFrame(hyper_int_dict, index=[0]) print("Hyper output df is in form", hyper_output_df.head(n=5)) hyper_output_df.to_csv("cv_outputs.txt", sep="\t", index=0) hyper_int_df.to_csv("cv_integrated.txt", sep="\t", index=0) print("Partitioned CV fit_result_dfs in cv_outputs.txt", "Integrated CV fit_result_dfs in cv_integrated.txt") with open("cv_script_list.txt", 'w') as outfile: for cv_script in cv_scripts: outfile.write(cv_script + "\n") print("CV scripts written to cv_script_list.txt") if args.parallel_num > 0: print("Parallel Number (# processes per job): " + str(args.parallel_num)) script_groups = pj.partition_inputs(cv_scripts, number=int(math.ceil(len(cv_scripts) * 1.0/args.parallel_num))) print("Number of script groups ", len(script_groups)) parallel_scripts = [] for i, script_group in zip(list(range(len(script_groups))), script_groups): appended_script_filenames = ["./" + script_filename for script_filename in script_group] parallel_script = " & ".join(appended_script_filenames) parallel_scripts.append(parallel_script) with open("cv_parallel_script_list.txt", 'w') as scriptfile: for parallel_script in parallel_scripts: scriptfile.write(parallel_script + "\n") print("Parallel script list written to cv_parallel_script_list.txt") # Integrate hyperparameters # Begin whole normal fit hyper_script = "set_hyper.sh" with open(hyper_script, 'w') as outputfile: outputfile.write("#!/bin/bash\n") outputfile.write("START=$(date)\n") outputfile.write("set -e\n") outputfile.write("time python integrate_hyper.py -hfd cv_outputs.txt -ind cv_integrated.txt -hl " + args.hyper_list_file + "\n") outputfile.write("time python set_hyper.py -ind cv_integrated.txt -r " + "hyper" + os.sep + "hyper_df.txt -o " + "hyper" + os.sep + "best_hyper.p -hl " + args.hyper_list_file + " -tn " + args.test_name + " \n") outputfile.write("END=$(date)\n") outputfile.write("echo " + hyper_script + ",$START,$END,$SECONDS >> " + resulttimefile + "\n") os.chmod(hyper_script, 0o777) print("set_hyper.sh written") print("*************") print("FITTING") print("*************") # Run the actual fit if not os.path.exists("fit"): os.makedirs("fit") if not os.path.exists("fit-scripts"): os.makedirs("fit-scripts") fittimefile = os.path.join("timing", "fit_time.csv") if not os.path.exists(fittimefile): with open(fittimefile, 'w') as csvfile: f = csv.writer(csvfile) f.writerow(["Name", "Start", "End", "Elapsed"]) fit_scripts = [] fit_output_prefixes = [] for partition_row, i, row_filename in zip(partition_rows, list(range(len(partition_rows))), row_filenames): fit_prefix = args.output_name + "-fit-row-" + str(i) fit_script = os.path.join("fit-scripts", fit_prefix + ".sh") fit_scripts.append(fit_script) fit_output_prefix = "fit" + os.sep + fit_prefix fit_output_prefixes.append(fit_output_prefix) command_string = "time python fit_all.py -d " + data_file + " -rd " + rand_data_file + " -lr " + str(args.load_reps) + \ " -o " + fit_output_prefix + " -bh " + \ "hyper" + os.sep + "best_hyper.p" + " -t " + args.test + " -l " + str(args.lag) + " -rl " + \ str(row_filename) + " -n " + args.null + " -oa " + str(args.only_array) with open(fit_script, 'w') as outputfile: outputfile.write("#!/bin/bash\n") outputfile.write("START=$(date)\n") #outputfile.write("module load python/2.7\n") # outputfile.write("module load python/2.7/scipy-mkl\n") # outputfile.write("module load python/2.7/numpy-mkl\n") outputfile.write("module load anaconda3\n") outputfile.write(command_string) outputfile.write("\n") outputfile.write("END=$(date)\n") outputfile.write("echo " + fit_script + ",$START,$END,$SECONDS >> " + fittimefile + "\n") os.chmod(fit_script, 0o777) with open("fit_script_list.txt", 'w') as outfile: for fit_script in fit_scripts: outfile.write("./" + fit_script + "\n") print("Fit scripts written to fit_script_list.txt") if args.parallel_num > 0: print("Parallel Number (# processes per job): " + str(args.parallel_num)) script_groups = pj.partition_inputs(fit_scripts, number=int(math.ceil(len(fit_scripts) * 1.0/args.parallel_num))) print("Number of script groups ", len(script_groups)) parallel_scripts = [] for i, script_group in zip(list(range(len(script_groups))), script_groups): appended_script_filenames = ["./" + script_filename for script_filename in script_group] parallel_script = " & ".join(appended_script_filenames) parallel_scripts.append(parallel_script) with open("fit_parallel_script_list.txt", 'w') as scriptfile: for parallel_script in parallel_scripts: scriptfile.write(parallel_script + "\n") print("Parallel script list written to fit_parallel_script_list.txt") # Note the output files fit_coefs = [fit_output_prefix + "_coefs.p" for fit_output_prefix in fit_output_prefixes] fit_intercepts = [fit_output_prefix + "_intercepts.p" for fit_output_prefix in fit_output_prefixes] fit_results = [fit_output_prefix + "_fit_result_df.txt" for fit_output_prefix in fit_output_prefixes] fit_coefsr = [fit_output_prefix + "_coefsr.p" for fit_output_prefix in fit_output_prefixes] # fit_interceptsr = [fit_output_prefix + "_interceptsr.p" for fit_output_prefix in fit_output_prefixes] fit_resultsr = [fit_output_prefix + "_fit_result_dfr.txt" for fit_output_prefix in fit_output_prefixes] fit_output_dict = collections.OrderedDict() fit_output_dict["coef"] = fit_coefs fit_output_dict["coefr"] = fit_coefsr fit_output_dict["intercept"] = fit_intercepts # fit_output_dict["interceptr"] = fit_interceptsr output_matr_df = pd.DataFrame(fit_output_dict) output_matr_df.to_csv("output_matr_list.txt", sep="\t", index=False) print("Output matrices written to output_matr_list.txt") int_matr_dict = collections.OrderedDict() int_matr_dict["coef"] = "fit" + os.sep + args.output_name + "_coefs.p" int_matr_dict["coefr"] = "fit" + os.sep + args.output_name + "_coefsr.p" int_matr_dict["intercept"] = "fit" + os.sep + args.output_name + "_intercepts.p" # int_matr_dict["interceptr"] = "fit" + os.sep + args.output_name + "_interceptsr.p" int_matr_df = pd.DataFrame(int_matr_dict, index=[0]) int_matr_df.to_csv("int_matr_list.txt", sep="\t", index=False) print("integrated matrices written to int_matr_list.txt") fit_result_dict = collections.OrderedDict() fit_result_dict["fit_result"] = fit_results fit_result_dict["fit_resultr"] = fit_resultsr output_df_df =
pd.DataFrame(fit_result_dict)
pandas.DataFrame
# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # # fluctmatch --- https://github.com/tclick/python-fluctmatch # Copyright (c) 2013-2017 The fluctmatch Development Team and contributors # (see the file AUTHORS for the full list of names) # # Released under the New BSD license. # # Please cite your use of fluctmatch in published work: # # <NAME>, <NAME>, and <NAME>. # Calculation of Enzyme Fluctuograms from All-Atom Molecular Dynamics # Simulation. Meth Enzymology. 578 (2016), 327-342, # doi:10.1016/bs.mie.2016.05.024. # from __future__ import ( absolute_import, division, print_function, unicode_literals, ) from future.builtins import ( dict, open, range, ) from future.utils import ( native_str, ) import logging import time from os import environ import numpy as np import pandas as pd from MDAnalysis.lib import util from MDAnalysis.topology import PSFParser from MDAnalysis.topology.base import change_squash from MDAnalysis.core.topologyattrs import ( Atomids, Atomnames, Atomtypes, Masses, Charges, Resids, Resnums, Resnames, Segids, Bonds, Angles, Dihedrals, Impropers) from MDAnalysis.core.topology import Topology from fluctmatch.topology import base logger = logging.getLogger("MDAnalysis.topology.PSF") # Changed the segid squash_by to change_squash to prevent segment ID sorting. class PSF36Parser(PSFParser.PSFParser): """Read topology information from a CHARMM/NAMD/XPLOR PSF_ file. Creates a Topology with the following Attributes: - ids - names - types - masses - charges - resids - resnames - segids - bonds - angles - dihedrals - impropers .. _PSF: http://www.charmm.org/documentation/c35b1/struct.html """ format = 'PSF' def parse(self): """Parse PSF file into Topology Returns ------- MDAnalysis *Topology* object """ # Open and check psf validity with open(self.filename, 'r') as psffile: header = next(psffile) if not header.startswith("PSF"): err = ("{0} is not valid PSF file (header = {1})" "".format(self.filename, header)) logger.error(err) raise ValueError(err) header_flags = header[3:].split() if "NAMD" in header_flags: self._format = "NAMD" # NAMD/VMD elif "EXT" in header_flags: self._format = "EXTENDED" # CHARMM else: self._format = "STANDARD" # CHARMM if "XPLOR" in header_flags: self._format += "_XPLOR" next(psffile) title = next(psffile).split() if not (title[1] == "!NTITLE"): err = "{0} is not a valid PSF file".format(psffile.name) logger.error(err) raise ValueError(err) # psfremarks = [psffile.next() for i in range(int(title[0]))] for _ in range(int(title[0])): next(psffile) logger.info("PSF file {0}: format {1}" "".format(psffile.name, self._format)) # Atoms first and mandatory top = self._parse_sec(psffile, ('NATOM', 1, 1, self._parseatoms)) # Then possibly other sections sections = ( # ("atoms", ("NATOM", 1, 1, self._parseatoms)), (Bonds, ("NBOND", 2, 4, self._parsesection)), (Angles, ("NTHETA", 3, 3, self._parsesection)), (Dihedrals, ("NPHI", 4, 2, self._parsesection)), (Impropers, ("NIMPHI", 4, 2, self._parsesection)), # ("donors", ("NDON", 2, 4, self._parsesection)), # ("acceptors", ("NACC", 2, 4, self._parsesection)) ) try: for attr, info in sections: next(psffile) top.add_TopologyAttr(attr(self._parse_sec(psffile, info))) except StopIteration: # Reached the end of the file before we expected pass return top def _parseatoms(self, lines, atoms_per, numlines): """Parses atom section in a Charmm PSF file. Normal (standard) and extended (EXT) PSF format are supported. CHEQ is supported in the sense that CHEQ data is simply ignored. CHARMM Format from ``source/psffres.src``: CHEQ:: II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I),ECH(I),EHA(I) standard format: (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8,2G14.6) (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR expanded format EXT: (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8,2G14.6) (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR no CHEQ:: II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I) standard format: (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8) (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8) XPLOR expanded format EXT: (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8) (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8) XPLOR NAMD PSF space separated, see release notes for VMD 1.9.1, psfplugin at http://www.ks.uiuc.edu/Research/vmd/current/devel.html : psfplugin: Added more logic to the PSF plugin to determine cases where the CHARMM "EXTended" PSF format cannot accomodate long atom types, and we add a "NAMD" keyword to the PSF file flags line at the top of the file. Upon reading, if we detect the "NAMD" flag there, we know that it is possible to parse the file correctly using a simple space-delimited scanf() format string, and we use that strategy rather than holding to the inflexible column-based fields that are a necessity for compatibility with CHARMM, CNS, X-PLOR, and other formats. NAMD and the psfgen plugin already assume this sort of space-delimited formatting, but that's because they aren't expected to parse the PSF variants associated with the other programs. For the VMD PSF plugin, having the "NAMD" tag in the flags line makes it absolutely clear that we're dealing with a NAMD-specific file so we can take the same approach. """ # how to partition the line into the individual atom components atom_parsers = dict( STANDARD="I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2F14.6,I8", STANDARD_XPLOR="'(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2F14.6,I8", EXTENDED="I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2F14.6,I8", EXTENDED_XPLOR="I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A6,1X,2F14.6,I8", NAMD="I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2F14.6,I8", ) atom_parser = util.FORTRANReader(atom_parsers[self._format]) # Allocate arrays atomids = np.zeros(numlines, dtype=np.int32) segids = np.zeros(numlines, dtype=object) resids = np.zeros(numlines, dtype=np.int32) resnames = np.zeros(numlines, dtype=object) atomnames = np.zeros(numlines, dtype=object) atomtypes = np.zeros(numlines, dtype=object) charges = np.zeros(numlines, dtype=np.float32) masses = np.zeros(numlines, dtype=np.float64) for i in range(numlines): try: line = lines() except StopIteration: err = ("{0} is not valid PSF file" "".format(self.filename)) logger.error(err) raise ValueError(err) try: vals = atom_parser.read(line) except ValueError: # last ditch attempt: this *might* be a NAMD/VMD # space-separated "PSF" file from VMD version < 1.9.1 try: atom_parser = util.FORTRANReader(atom_parsers['NAMD']) vals = atom_parser.read(line) logger.warn("Guessing that this is actually a" " NAMD-type PSF file..." " continuing with fingers crossed!") logger.info("First NAMD-type line: {0}: {1}" "".format(i, line.rstrip())) except ValueError: atom_parser = util.FORTRANReader( atom_parsers[self._format].replace("A6", "A4")) vals = atom_parser.read(line) logger.warn("Guessing that this is actually a" " pre CHARMM36 PSF file..." " continuing with fingers crossed!") logger.info("First NAMD-type line: {0}: {1}" "".format(i, line.rstrip())) atomids[i] = vals[0] segids[i] = vals[1] if vals[1] else "SYSTEM" resids[i] = vals[2] resnames[i] = vals[3] atomnames[i] = vals[4] atomtypes[i] = vals[5] charges[i] = vals[6] masses[i] = vals[7] # Atom atomids = Atomids(atomids - 1) atomnames = Atomnames(atomnames) atomtypes = Atomtypes(atomtypes) charges = Charges(charges) masses = Masses(masses) # Residue # resids, resnames residx, (new_resids, new_resnames, perres_segids) = change_squash( (resids, resnames, segids), (resids, resnames, segids)) # transform from atom:Rid to atom:Rix residueids = Resids(new_resids) residuenums = Resnums(new_resids.copy()) residuenames = Resnames(new_resnames) # Segment segidx, (perseg_segids, ) = change_squash((perres_segids, ), (perres_segids, )) segids = Segids(perseg_segids) top = Topology( len(atomids), len(new_resids), len(segids), attrs=[ atomids, atomnames, atomtypes, charges, masses, residueids, residuenums, residuenames, segids ], atom_resindex=residx, residue_segindex=segidx) return top class PSFWriter(base.TopologyWriterBase): """PSF writer that implements the CHARMM PSF topology format. Requires the following attributes to be present: - ids - names - types - masses - charges - resids - resnames - segids - bonds .. versionchanged:: 3.0.0 Uses numpy arrays for bond, angle, dihedral, and improper outputs. Parameters ---------- filename : str or :class:`~MDAnalysis.lib.util.NamedStream` name of the output file or a stream n_atoms : int, optional The number of atoms in the output trajectory. extended extended format cmap include CMAP section cheq include charge equilibration title title lines at beginning of the file charmm_version Version of CHARMM for formatting (default: 41) """ format = "PSF" units = dict(time=None, length=None) _fmt = dict( STD="%8d %-4s %-4d %-4s %-4s %4d %14.6f%14.6f%8d", STD_XPLOR="{%8d %4s %-4d %-4s %-4s %-4s %14.6f%14.6f%8d", STD_XPLOR_C35="%4d %-4s %-4d %-4s %-4s %-4s %14.6f%14.6f%8d", EXT="%10d %-8s %8d %-8s %-8s %4d %14.6f%14.6f%8d", EXT_XPLOR="%10d %-8s %-8d %-8s %-8s %-6s %14.6f%14.6f%8d", EXT_XPLOR_C35="%10d %-8s %-8d %-8s %-8s %-4s %14.6f%14.6f%8d") def __init__(self, filename, **kwargs): self.filename = util.filename(filename, ext="psf") self._extended = kwargs.get("extended", True) self._cmap = kwargs.get("cmap", True) self._cheq = kwargs.get("cheq", True) self._version = kwargs.get("charmm_version", 41) self._universe = None self._fmtkey = "EXT" if self._extended else "STD" date = time.strftime("%a, %d %b %Y %H:%M:%S", time.localtime()) user = environ["USER"] self._title = kwargs.get( "title", ( "* Created by fluctmatch on {date}".format(date=date), "* User: {user}".format(user=user), )) if not util.iterable(self._title): self._title = util.asiterable(self._title) self.col_width = 10 if self._extended else 8 self.sect_hdr = "{:>10d} !{}" if self._extended else "{:>8d} !{}" self.sect_hdr2 = ("{:>10d}{:>10d} !{}" if self._extended else "{:>8d}{:>8d} !{}") self.sections = (("bonds", "NBOND: bonds\n", 8), ("angles", "NTHETA: angles\n", 9), ("dihedrals", "NPHI: dihedrals\n", 8), ("impropers", "NIMPHI: impropers\n", 8), ("donors", "NDON: donors\n", 8), ("acceptors", "NACC: acceptors\n", 8)) def write(self, universe): """Write universe to PSF format. Parameters ---------- universe : :class:`~MDAnalysis.Universe` or :class:`~MDAnalysis.AtomGroup` A collection of atoms in a universe or atomgroup with bond definitions. """ self._universe = universe xplor = not np.issubdtype(universe.atoms.types.dtype, np.signedinteger) header = "PSF" if self._extended: header += " EXT" if self._cheq: header += " CHEQ" if xplor: header += " XPLOR" if self._cmap: header += " CMAP" header += "\n" if xplor: self._fmtkey += "_XPLOR" if self._version < 36: self._fmtkey += "_C35" with open(self.filename, "wb") as psffile: psffile.write(header.encode()) psffile.write("\n".encode()) n_title = len(self._title) psffile.write(self.sect_hdr.format(n_title, "NTITLE").encode()) psffile.write("\n".encode()) for _ in self._title: psffile.write(_.encode()) psffile.write("\n".encode()) psffile.write("\n".encode()) self._write_atoms(psffile) for section in self.sections: self._write_sec(psffile, section) self._write_other(psffile) def _write_atoms(self, psffile): """Write atom section in a Charmm PSF file. Normal (standard) and extended (EXT) PSF format are supported. CHARMM Format from ``source/psffres.src``: no CHEQ:: standard format: (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8) (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8,2G14.6) CHEQ (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A6,1X,2G14.6,I8) XPLOR (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A6,1X,2G14.6,I8,2G14.6) XPLOR,CHEQ (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8) XPLOR,c35 (I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR,c35,CHEQ expanded format EXT: (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8) (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8,2G14.6) CHEQ (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A6,1X,2G14.6,I8) XPLOR (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A6,1X,2G14.6,I8,2G14.6) XPLOR,CHEQ (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8) XPLOR,c35 (I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR,c35,CHEQ """ fmt = self._fmt[self._fmtkey] psffile.write( self.sect_hdr.format(self._universe.atoms.n_atoms, "NATOM").encode()) psffile.write("\n".encode()) atoms = self._universe.atoms lines = (np.arange(atoms.n_atoms) + 1, atoms.segids, atoms.resids, atoms.resnames, atoms.names, atoms.types, atoms.charges, atoms.masses, np.zeros_like(atoms.ids)) lines = pd.concat([
pd.DataFrame(_)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Apr 28 11:18:37 2021 @author: <NAME> INFO: This script is run to extract variables of interest in a MIDAS AWS data file It creates a standardized data structure used in the UHA analysis and in the script MIDAS_DataTreatment_and_WindRoses_ERL.py """ import pandas as pd import os.path city = 'London' years = [2015, 2016, 2017, 2018, 2019, 2020] datadir = '' + city + '/' ### Directory where MIDAS stations has been downloaded savedir = '' + city + '/Filtered/' ### Directory where the newly organized data will be stored def find_csv_filenames(path_to_dir, suffix=".csv"): filenames = os.listdir(path_to_dir) return [ filename for filename in filenames if filename.endswith( suffix ) ] list_of_weather_stations_f = find_csv_filenames(datadir) f_info_name_out = 'MIDAS_MetaData_' + city + '.csv' info_length = 279 var_names_loc = info_length + 1 var_interest = ['id', 'air_temperature', 'wind_direction', 'wind_speed', 'wind_speed_unit_id', 'rltv_hum'] for yr in years: list_of_weather_stations_f_year = list(filter(lambda x: x.endswith(str(yr) + '.csv'), list_of_weather_stations_f)) period_interest = pd.date_range(start='01-01-' + str(yr), end='01-01-' + str(yr + 1), freq='1H', closed='left') for aws in list_of_weather_stations_f_year: info_aws =
pd.read_csv(datadir + aws, skiprows=0, nrows=info_length, index_col=False, header=None)
pandas.read_csv
from collections import OrderedDict from datetime import datetime, timedelta import numpy as np import numpy.ma as ma import pytest from pandas._libs import iNaT, lib from pandas.core.dtypes.common import is_categorical_dtype, is_datetime64tz_dtype from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) import pandas as pd from pandas import ( Categorical, DataFrame, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, Series, Timestamp, date_range, isna, period_range, timedelta_range, ) import pandas._testing as tm from pandas.core.arrays import IntervalArray, period_array class TestSeriesConstructors: @pytest.mark.parametrize( "constructor,check_index_type", [ # NOTE: some overlap with test_constructor_empty but that test does not # test for None or an empty generator. # test_constructor_pass_none tests None but only with the index also # passed. (lambda: Series(), True), (lambda: Series(None), True), (lambda: Series({}), True), (lambda: Series(()), False), # creates a RangeIndex (lambda: Series([]), False), # creates a RangeIndex (lambda: Series((_ for _ in [])), False), # creates a RangeIndex (lambda: Series(data=None), True), (lambda: Series(data={}), True), (lambda: Series(data=()), False), # creates a RangeIndex (lambda: Series(data=[]), False), # creates a RangeIndex (lambda: Series(data=(_ for _ in [])), False), # creates a RangeIndex ], ) def test_empty_constructor(self, constructor, check_index_type): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): expected = Series() result = constructor() assert len(result.index) == 0 tm.assert_series_equal(result, expected, check_index_type=check_index_type) def test_invalid_dtype(self): # GH15520 msg = "not understood" invalid_list = [pd.Timestamp, "pd.Timestamp", list] for dtype in invalid_list: with pytest.raises(TypeError, match=msg): Series([], name="time", dtype=dtype) def test_invalid_compound_dtype(self): # GH#13296 c_dtype = np.dtype([("a", "i8"), ("b", "f4")]) cdt_arr = np.array([(1, 0.4), (256, -13)], dtype=c_dtype) with pytest.raises(ValueError, match="Use DataFrame instead"): Series(cdt_arr, index=["A", "B"]) def test_scalar_conversion(self): # Pass in scalar is disabled scalar = Series(0.5) assert not isinstance(scalar, float) # Coercion assert float(Series([1.0])) == 1.0 assert int(Series([1.0])) == 1 def test_constructor(self, datetime_series): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty_series = Series() assert datetime_series.index.is_all_dates # Pass in Series derived = Series(datetime_series) assert derived.index.is_all_dates assert tm.equalContents(derived.index, datetime_series.index) # Ensure new index is not created assert id(datetime_series.index) == id(derived.index) # Mixed type Series mixed = Series(["hello", np.NaN], index=[0, 1]) assert mixed.dtype == np.object_ assert mixed[1] is np.NaN assert not empty_series.index.is_all_dates with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert not Series().index.is_all_dates # exception raised is of type Exception with pytest.raises(Exception, match="Data must be 1-dimensional"): Series(np.random.randn(3, 3), index=np.arange(3)) mixed.name = "Series" rs = Series(mixed).name xp = "Series" assert rs == xp # raise on MultiIndex GH4187 m = MultiIndex.from_arrays([[1, 2], [3, 4]]) msg = "initializing a Series from a MultiIndex is not supported" with pytest.raises(NotImplementedError, match=msg): Series(m) @pytest.mark.parametrize("input_class", [list, dict, OrderedDict]) def test_constructor_empty(self, input_class): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series() empty2 = Series(input_class()) # these are Index() and RangeIndex() which don't compare type equal # but are just .equals tm.assert_series_equal(empty, empty2, check_index_type=False) # With explicit dtype: empty = Series(dtype="float64") empty2 = Series(input_class(), dtype="float64") tm.assert_series_equal(empty, empty2, check_index_type=False) # GH 18515 : with dtype=category: empty = Series(dtype="category") empty2 = Series(input_class(), dtype="category") tm.assert_series_equal(empty, empty2, check_index_type=False) if input_class is not list: # With index: with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): empty = Series(index=range(10)) empty2 = Series(input_class(), index=range(10)) tm.assert_series_equal(empty, empty2) # With index and dtype float64: empty = Series(np.nan, index=range(10)) empty2 = Series(input_class(), index=range(10), dtype="float64") tm.assert_series_equal(empty, empty2) # GH 19853 : with empty string, index and dtype str empty = Series("", dtype=str, index=range(3)) empty2 = Series("", index=range(3)) tm.assert_series_equal(empty, empty2) @pytest.mark.parametrize("input_arg", [np.nan, float("nan")]) def test_constructor_nan(self, input_arg): empty = Series(dtype="float64", index=range(10)) empty2 = Series(input_arg, index=range(10)) tm.assert_series_equal(empty, empty2, check_index_type=False) @pytest.mark.parametrize( "dtype", ["f8", "i8", "M8[ns]", "m8[ns]", "category", "object", "datetime64[ns, UTC]"], ) @pytest.mark.parametrize("index", [None, pd.Index([])]) def test_constructor_dtype_only(self, dtype, index): # GH-20865 result = pd.Series(dtype=dtype, index=index) assert result.dtype == dtype assert len(result) == 0 def test_constructor_no_data_index_order(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): result = pd.Series(index=["b", "a", "c"]) assert result.index.tolist() == ["b", "a", "c"] def test_constructor_no_data_string_type(self): # GH 22477 result = pd.Series(index=[1], dtype=str) assert np.isnan(result.iloc[0]) @pytest.mark.parametrize("item", ["entry", "ѐ", 13]) def test_constructor_string_element_string_type(self, item): # GH 22477 result = pd.Series(item, index=[1], dtype=str) assert result.iloc[0] == str(item) def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 ser = Series(["x", None], dtype=string_dtype) result = ser.isna() expected = Series([False, True]) tm.assert_series_equal(result, expected) assert ser.iloc[1] is None ser = Series(["x", np.nan], dtype=string_dtype) assert np.isnan(ser.iloc[1]) def test_constructor_series(self): index1 = ["d", "b", "a", "c"] index2 = sorted(index1) s1 = Series([4, 7, -5, 3], index=index1) s2 = Series(s1, index=index2) tm.assert_series_equal(s2, s1.sort_index()) def test_constructor_iterable(self): # GH 21987 class Iter: def __iter__(self): for i in range(10): yield i expected = Series(list(range(10)), dtype="int64") result = Series(Iter(), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_sequence(self): # GH 21987 expected = Series(list(range(10)), dtype="int64") result = Series(range(10), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_single_str(self): # GH 21987 expected = Series(["abc"]) result = Series("abc") tm.assert_series_equal(result, expected) def test_constructor_list_like(self): # make sure that we are coercing different # list-likes to standard dtypes and not # platform specific expected = Series([1, 2, 3], dtype="int64") for obj in [[1, 2, 3], (1, 2, 3), np.array([1, 2, 3], dtype="int64")]: result = Series(obj, index=[0, 1, 2]) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("dtype", ["bool", "int32", "int64", "float64"]) def test_constructor_index_dtype(self, dtype): # GH 17088 s = Series(Index([0, 2, 4]), dtype=dtype) assert s.dtype == dtype @pytest.mark.parametrize( "input_vals", [ ([1, 2]), (["1", "2"]), (list(pd.date_range("1/1/2011", periods=2, freq="H"))), (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), ([pd.Interval(left=0, right=5)]), ], ) def test_constructor_list_str(self, input_vals, string_dtype): # GH 16605 # Ensure that data elements from a list are converted to strings # when dtype is str, 'str', or 'U' result = Series(input_vals, dtype=string_dtype) expected = Series(input_vals).astype(string_dtype) tm.assert_series_equal(result, expected) def test_constructor_list_str_na(self, string_dtype): result = Series([1.0, 2.0, np.nan], dtype=string_dtype) expected = Series(["1.0", "2.0", np.nan], dtype=object) tm.assert_series_equal(result, expected) assert np.isnan(result[2]) def test_constructor_generator(self): gen = (i for i in range(10)) result = Series(gen) exp = Series(range(10)) tm.assert_series_equal(result, exp) gen = (i for i in range(10)) result = Series(gen, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_map(self): # GH8909 m = map(lambda x: x, range(10)) result = Series(m) exp = Series(range(10)) tm.assert_series_equal(result, exp) m = map(lambda x: x, range(10)) result = Series(m, index=range(10, 20)) exp.index = range(10, 20) tm.assert_series_equal(result, exp) def test_constructor_categorical(self): cat = pd.Categorical([0, 1, 2, 0, 1, 2], ["a", "b", "c"], fastpath=True) res = Series(cat) tm.assert_categorical_equal(res.values, cat) # can cast to a new dtype result = Series(pd.Categorical([1, 2, 3]), dtype="int64") expected = pd.Series([1, 2, 3], dtype="int64") tm.assert_series_equal(result, expected) # GH12574 cat = Series(pd.Categorical([1, 2, 3]), dtype="category") assert is_categorical_dtype(cat) assert is_categorical_dtype(cat.dtype) s = Series([1, 2, 3], dtype="category") assert is_categorical_dtype(s) assert is_categorical_dtype(s.dtype) def test_constructor_categorical_with_coercion(self): factor = Categorical(["a", "b", "b", "a", "a", "c", "c", "c"]) # test basic creation / coercion of categoricals s = Series(factor, name="A") assert s.dtype == "category" assert len(s) == len(factor) str(s.values) str(s) # in a frame df = DataFrame({"A": factor}) result = df["A"] tm.assert_series_equal(result, s) result = df.iloc[:, 0] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) df = DataFrame({"A": s}) result = df["A"] tm.assert_series_equal(result, s) assert len(df) == len(factor) str(df.values) str(df) # multiples df = DataFrame({"A": s, "B": s, "C": 1}) result1 = df["A"] result2 = df["B"] tm.assert_series_equal(result1, s) tm.assert_series_equal(result2, s, check_names=False) assert result2.name == "B" assert len(df) == len(factor) str(df.values) str(df) # GH8623 x = DataFrame( [[1, "<NAME>"], [2, "<NAME>"], [1, "<NAME>"]], columns=["person_id", "person_name"], ) x["person_name"] = Categorical(x.person_name) # doing this breaks transform expected = x.iloc[0].person_name result = x.person_name.iloc[0] assert result == expected result = x.person_name[0] assert result == expected result = x.person_name.loc[0] assert result == expected def test_constructor_categorical_dtype(self): result = pd.Series( ["a", "b"], dtype=CategoricalDtype(["a", "b", "c"], ordered=True) ) assert is_categorical_dtype(result.dtype) is True tm.assert_index_equal(result.cat.categories, pd.Index(["a", "b", "c"])) assert result.cat.ordered result = pd.Series(["a", "b"], dtype=CategoricalDtype(["b", "a"])) assert is_categorical_dtype(result.dtype) tm.assert_index_equal(result.cat.categories, pd.Index(["b", "a"])) assert result.cat.ordered is False # GH 19565 - Check broadcasting of scalar with Categorical dtype result = Series( "a", index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) expected = Series( ["a", "a"], index=[0, 1], dtype=CategoricalDtype(["a", "b"], ordered=True) ) tm.assert_series_equal(result, expected) def test_constructor_categorical_string(self): # GH 26336: the string 'category' maintains existing CategoricalDtype cdt = CategoricalDtype(categories=list("dabc"), ordered=True) expected = Series(list("abcabc"), dtype=cdt) # Series(Categorical, dtype='category') keeps existing dtype cat = Categorical(list("abcabc"), dtype=cdt) result = Series(cat, dtype="category") tm.assert_series_equal(result, expected) # Series(Series[Categorical], dtype='category') keeps existing dtype result = Series(result, dtype="category") tm.assert_series_equal(result, expected) def test_categorical_sideeffects_free(self): # Passing a categorical to a Series and then changing values in either # the series or the categorical should not change the values in the # other one, IF you specify copy! cat = Categorical(["a", "b", "c", "a"]) s = Series(cat, copy=True) assert s.cat is not cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # setting s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) # however, copy is False by default # so this WILL change values cat = Categorical(["a", "b", "c", "a"]) s = Series(cat) assert s.values is cat s.cat.categories = [1, 2, 3] exp_s = np.array([1, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s) tm.assert_numpy_array_equal(cat.__array__(), exp_s) s[0] = 2 exp_s2 = np.array([2, 2, 3, 1], dtype=np.int64) tm.assert_numpy_array_equal(s.__array__(), exp_s2) tm.assert_numpy_array_equal(cat.__array__(), exp_s2) def test_unordered_compare_equal(self): left = pd.Series(["a", "b", "c"], dtype=CategoricalDtype(["a", "b"])) right = pd.Series(pd.Categorical(["a", "b", np.nan], categories=["a", "b"])) tm.assert_series_equal(left, right) def test_constructor_maskedarray(self): data = ma.masked_all((3,), dtype=float) result = Series(data) expected = Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) data[0] = 0.0 data[2] = 2.0 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0.0, np.nan, 2.0], index=index) tm.assert_series_equal(result, expected) data[1] = 1.0 result = Series(data, index=index) expected = Series([0.0, 1.0, 2.0], index=index) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=int) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=float) tm.assert_series_equal(result, expected) data[0] = 0 data[2] = 2 index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([0, np.nan, 2], index=index, dtype=float) tm.assert_series_equal(result, expected) data[1] = 1 result = Series(data, index=index) expected = Series([0, 1, 2], index=index, dtype=int) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype=bool) result = Series(data) expected = Series([np.nan, np.nan, np.nan], dtype=object) tm.assert_series_equal(result, expected) data[0] = True data[2] = False index = ["a", "b", "c"] result = Series(data, index=index) expected = Series([True, np.nan, False], index=index, dtype=object) tm.assert_series_equal(result, expected) data[1] = True result = Series(data, index=index) expected = Series([True, True, False], index=index, dtype=bool) tm.assert_series_equal(result, expected) data = ma.masked_all((3,), dtype="M8[ns]") result = Series(data) expected = Series([iNaT, iNaT, iNaT], dtype="M8[ns]") tm.assert_series_equal(result, expected) data[0] = datetime(2001, 1, 1) data[2] = datetime(2001, 1, 3) index = ["a", "b", "c"] result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), iNaT, datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) data[1] = datetime(2001, 1, 2) result = Series(data, index=index) expected = Series( [datetime(2001, 1, 1), datetime(2001, 1, 2), datetime(2001, 1, 3)], index=index, dtype="M8[ns]", ) tm.assert_series_equal(result, expected) def test_constructor_maskedarray_hardened(self): # Check numpy masked arrays with hard masks -- from GH24574 data = ma.masked_all((3,), dtype=float).harden_mask() result = pd.Series(data) expected = pd.Series([np.nan, np.nan, np.nan]) tm.assert_series_equal(result, expected) def test_series_ctor_plus_datetimeindex(self): rng = date_range("20090415", "20090519", freq="B") data = {k: 1 for k in rng} result = Series(data, index=rng) assert result.index is rng def test_constructor_default_index(self): s = Series([0, 1, 2]) tm.assert_index_equal(s.index, pd.Index(np.arange(3))) @pytest.mark.parametrize( "input", [ [1, 2, 3], (1, 2, 3), list(range(3)), pd.Categorical(["a", "b", "a"]), (i for i in range(3)), map(lambda x: x, range(3)), ], ) def test_constructor_index_mismatch(self, input): # GH 19342 # test that construction of a Series with an index of different length # raises an error msg = "Length of passed values is 3, index implies 4" with pytest.raises(ValueError, match=msg): Series(input, index=np.arange(4)) def test_constructor_numpy_scalar(self): # GH 19342 # construction with a numpy scalar # should not raise result = Series(np.array(100), index=np.arange(4), dtype="int64") expected = Series(100, index=np.arange(4), dtype="int64") tm.assert_series_equal(result, expected) def test_constructor_broadcast_list(self): # GH 19342 # construction with single-element container and index # should raise msg = "Length of passed values is 1, index implies 3" with pytest.raises(ValueError, match=msg): Series(["foo"], index=["a", "b", "c"]) def test_constructor_corner(self): df = tm.makeTimeDataFrame() objs = [df, df] s = Series(objs, index=[0, 1]) assert isinstance(s, Series) def test_constructor_sanitize(self): s = Series(np.array([1.0, 1.0, 8.0]), dtype="i8") assert s.dtype == np.dtype("i8") s = Series(np.array([1.0, 1.0, np.nan]), copy=True, dtype="i8") assert s.dtype == np.dtype("f8") def test_constructor_copy(self): # GH15125 # test dtype parameter has no side effects on copy=True for data in [[1.0], np.array([1.0])]: x = Series(data) y = pd.Series(x, copy=True, dtype=float) # copy=True maintains original data in Series tm.assert_series_equal(x, y) # changes to origin of copy does not affect the copy x[0] = 2.0 assert not x.equals(y) assert x[0] == 2.0 assert y[0] == 1.0 @pytest.mark.parametrize( "index", [ pd.date_range("20170101", periods=3, tz="US/Eastern"), pd.date_range("20170101", periods=3), pd.timedelta_range("1 day", periods=3), pd.period_range("2012Q1", periods=3, freq="Q"), pd.Index(list("abc")), pd.Int64Index([1, 2, 3]), pd.RangeIndex(0, 3), ], ids=lambda x: type(x).__name__, ) def test_constructor_limit_copies(self, index): # GH 17449 # limit copies of input s = pd.Series(index) # we make 1 copy; this is just a smoke test here assert s._mgr.blocks[0].values is not index def test_constructor_pass_none(self): with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(None, index=range(5)) assert s.dtype == np.float64 s = Series(None, index=range(5), dtype=object) assert s.dtype == np.object_ # GH 7431 # inference on the index with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): s = Series(index=np.array([None])) expected = Series(index=Index([None])) tm.assert_series_equal(s, expected) def test_constructor_pass_nan_nat(self): # GH 13467 exp =
Series([np.nan, np.nan], dtype=np.float64)
pandas.Series