prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python # coding: utf-8 # # [Memanggil Library Pandas](https://academy.dqlab.id/main/livecode/178/346/1682) # In[1]: import pandas as pd import numpy as np # # [DataFrame & Series](https://academy.dqlab.id/main/livecode/178/346/1683) # In[2]: import pandas as pd # Series number_list = pd.Series([1, 2, 3, 4, 5, 6]) print("Series:") print(number_list) # DataFrame matrix = [[1, 2, 3], ['a','b','c'], [3, 4, 5], ['d',4,6]] matrix_list = pd.DataFrame(matrix) print("DataFrame:") print(matrix_list) # # [Atribut DataFrame & Series - Part 1](https://academy.dqlab.id/main/livecode/178/346/1684) # In[3]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [1] attribute .info() print("[1] attribute .info()") print(matrix_list.info()) # [2] attribute .shape print("\n[2] attribute .shape") print(" Shape dari number_list:", number_list.shape) print(" Shape dari matrix_list:", matrix_list.shape) # [3] attribute .dtypes print("\n[3] attribute .dtypes") print(" Tipe data number_list:", number_list.dtypes) print(" Tipe data matrix_list:", matrix_list.dtypes) # [4] attribute .astype() print("\n[4] attribute .astype()") print(" Konversi number_list ke str:", number_list.astype("str")) print(" Konversi matrix_list ke str:", matrix_list.astype("str")) # # [Atribut DataFrame & Series - Part 2](https://academy.dqlab.id/main/livecode/178/346/1685) # In[4]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [5] attribute .copy() print("[5] attribute .copy()") num_list = number_list.copy() print(" Copy number_list ke num_list:", num_list) mtr_list = matrix_list.copy() print(" Copy matrix_list ke mtr_list:", mtr_list) # [6] attribute .to_list() print("[6] attribute .to_list()") print(number_list.to_list()) # [7] attribute .unique() print("[7] attribute .unique()") print(number_list.unique()) # # [Atribut DataFrame & Series - Part 3](https://academy.dqlab.id/main/livecode/178/346/1686) # In[5]: import pandas as pd # Series number_list = pd.Series([1,2,3,4,5,6]) # DataFrame matrix_list = pd.DataFrame([[1,2,3], ['a','b','c'], [3,4,5], ['d',4,6]]) # [8] attribute .index print("[8] attribute .index") print(" Index number_list:", number_list.index) print(" Index matrix_list:", matrix_list.index) # [9] attribute .columns print("[9] attribute .columns") print(" Column matrix_list:", matrix_list.columns) # [10] attribute .loc print("[10] attribute .loc") print(" .loc[0:1] pada number_list:", number_list.loc[0:1]) print(" .loc[0:1] pada matrix_list:", matrix_list.loc[0:1]) # [11] attribute .iloc print("[11] attribute .iloc") print(" iloc[0:1] pada number_list:", number_list.iloc[0:1]) print(" iloc[0:1] pada matrix_list:", matrix_list.iloc[0:1]) # # [Creating Series & Dataframe from List](https://academy.dqlab.id/main/livecode/178/346/1688) # In[6]: import pandas as pd # Creating series from list ex_list = ['a',1,3,5,'c','d'] ex_series =
pd.Series(ex_list)
pandas.Series
from pathlib import Path import pandas as pd import numpy as np import matplotlib from matplotlib import pyplot as plt from PIL import Image from PIL import ImageDraw from PIL import ImageFont import logging logger = logging.getLogger(__name__) def provide_ax(func): from raptgen.visualization import get_ax def wrapper_provide_ax(*args, **kwargs): no_ax_in_args = all(not isinstance( arg, matplotlib.axes.Axes) for arg in args) if no_ax_in_args and "ax" not in kwargs.keys(): logger.info("ax not provided") fig, ax = get_ax(return_fig=True) kwargs["ax"] = ax kwargs["fig"] = fig func(*args, **kwargs) return wrapper_provide_ax def get_results_df(result_dir: str) -> pd.DataFrame: """get results in the dir and make to dataframe with specified naming rule""" result = list() result_dir = Path(result_dir) for filepath in result_dir.glob("*.csv"): df =
pd.read_csv(filepath)
pandas.read_csv
from unittest.mock import patch import pytest from AWS_AACT_Pipeline.categorize_driver import Driver from AWS_AACT_Pipeline.mock_db_manager import MockDatabaseManager from AWS_AACT_Pipeline.categorizer import Categorizer from AWS_AACT_Pipeline.mock_db import MockDatabase import pandas as pd def test_missing_json_file(): categorizer = Categorizer() pytest.raises(Exception, categorizer.read_file_conditions, "fake_json") def test_misformatted_json_file(): categorizer = Categorizer() pytest.raises(Exception, categorizer.read_file_conditions, "misformatted_json") def test_good_driver_call(): og_df = pd.DataFrame(columns=['color', 'nct_id'], index=['kylie','willy', 'riley', 'ben', 'jonah']) og_df.loc['kylie'] = pd.Series({'color': "yellow", 'nct_id': 1}) og_df.loc['willy'] = pd.Series({'color': "turquoise", 'nct_id': 2}) og_df.loc['riley'] = pd.Series({'color': "blue", 'nct_id': 3}) og_df.loc['ben'] = pd.Series({'color': "blue", 'nct_id': 4}) og_df.loc['jonah'] =
pd.Series({'color': "blue", 'nct_id': 5})
pandas.Series
import os, sys, json, pickle import datetime import numpy as np import pandas as pd
pd.set_option('display.max_colwidth', 300)
pandas.set_option
from datetime import datetime import warnings import numpy as np import pytest from pandas.core.dtypes.generic import ABCDateOffset import pandas as pd from pandas import ( DatetimeIndex, Index, PeriodIndex, Series, Timestamp, bdate_range, date_range, ) from pandas.tests.test_base import Ops import pandas.util.testing as tm from pandas.tseries.offsets import BDay, BMonthEnd, CDay, Day, Hour START, END = datetime(2009, 1, 1), datetime(2010, 1, 1) class TestDatetimeIndexOps(Ops): def setup_method(self, method): super().setup_method(method) mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): f = lambda x: isinstance(x, DatetimeIndex) self.check_ops_properties(DatetimeIndex._field_ops, f) self.check_ops_properties(DatetimeIndex._object_ops, f) self.check_ops_properties(DatetimeIndex._bool_ops, f) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH#7206 msg = "'Series' object has no attribute '{}'" for op in ["year", "day", "second", "weekday"]: with pytest.raises(AttributeError, match=msg.format(op)): getattr(self.dt_series, op) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) assert s.year == 2000 assert s.month == 1 assert s.day == 10 msg = "'Series' object has no attribute 'weekday'" with pytest.raises(AttributeError, match=msg): s.weekday def test_repeat_range(self, tz_naive_fixture): tz = tz_naive_fixture rng = date_range("1/1/2000", "1/1/2001") result = rng.repeat(5) assert result.freq is None assert len(result) == 5 * len(rng) index = pd.date_range("2001-01-01", periods=2, freq="D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-02", "2001-01-02"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.date_range("2001-01-01", periods=2, freq="2D", tz=tz) exp = pd.DatetimeIndex( ["2001-01-01", "2001-01-01", "2001-01-03", "2001-01-03"], tz=tz ) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) assert res.freq is None index = pd.DatetimeIndex(["2001-01-01", "NaT", "2003-01-01"], tz=tz) exp = pd.DatetimeIndex( [ "2001-01-01", "2001-01-01", "2001-01-01", "NaT", "NaT", "NaT", "2003-01-01", "2003-01-01", "2003-01-01", ], tz=tz, ) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) assert res.freq is None def test_repeat(self, tz_naive_fixture): tz = tz_naive_fixture reps = 2 msg = "the 'axis' parameter is not supported" rng = pd.date_range(start="2016-01-01", periods=2, freq="30Min", tz=tz) expected_rng = DatetimeIndex( [ Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:00:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), Timestamp("2016-01-01 00:30:00", tz=tz, freq="30T"), ] ) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) assert res.freq is None tm.assert_index_equal(np.repeat(rng, reps), expected_rng) with pytest.raises(ValueError, match=msg): np.repeat(rng, reps, axis=1) def test_resolution(self, tz_naive_fixture): tz = tz_naive_fixture for freq, expected in zip( ["A", "Q", "M", "D", "H", "T", "S", "L", "U"], [ "day", "day", "day", "day", "hour", "minute", "second", "millisecond", "microsecond", ], ): idx = pd.date_range(start="2013-04-01", periods=30, freq=freq, tz=tz) assert idx.resolution == expected def test_value_counts_unique(self, tz_naive_fixture): tz = tz_naive_fixture # GH 7735 idx = pd.date_range("2011-01-01 09:00", freq="H", periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range("2011-01-01 18:00", freq="-1H", periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype="int64") for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range("2011-01-01 09:00", freq="H", periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex( [ "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 09:00", "2013-01-01 08:00", "2013-01-01 08:00", pd.NaT, ], tz=tz, ) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00"], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(["2013-01-01 09:00", "2013-01-01 08:00", pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map( DatetimeIndex, ( [0, 1, 0], [0, 0, -1], [0, -1, -1], ["2015", "2015", "2016"], ["2015", "2015", "2014"], ), ): assert idx[0] in idx @pytest.mark.parametrize( "idx", [ DatetimeIndex( ["2011-01-01", "2011-01-02", "2011-01-03"], freq="D", name="idx" ), DatetimeIndex( ["2011-01-01 09:00", "2011-01-01 10:00", "2011-01-01 11:00"], freq="H", name="tzidx", tz="Asia/Tokyo", ), ], ) def test_order_with_freq(self, idx): ordered = idx.sort_values() tm.assert_index_equal(ordered, idx) assert ordered.freq == idx.freq ordered = idx.sort_values(ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) assert ordered.freq == expected.freq assert ordered.freq.n == -1 ordered, indexer = idx.sort_values(return_indexer=True) tm.assert_index_equal(ordered, idx) tm.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) assert ordered.freq == idx.freq ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] tm.assert_index_equal(ordered, expected) tm.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) assert ordered.freq == expected.freq assert ordered.freq.n == -1 @pytest.mark.parametrize( "index_dates,expected_dates", [ ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( ["2011-01-01", "2011-01-03", "2011-01-05", "2011-01-02", "2011-01-01"], ["2011-01-01", "2011-01-01", "2011-01-02", "2011-01-03", "2011-01-05"], ), ( [pd.NaT, "2011-01-03", "2011-01-05", "2011-01-02", pd.NaT], [pd.NaT, pd.NaT, "2011-01-02", "2011-01-03", "2011-01-05"], ), ], ) def test_order_without_freq(self, index_dates, expected_dates, tz_naive_fixture): tz = tz_naive_fixture # without freq index = DatetimeIndex(index_dates, tz=tz, name="idx") expected = DatetimeIndex(expected_dates, tz=tz, name="idx") ordered = index.sort_values()
tm.assert_index_equal(ordered, expected)
pandas.util.testing.assert_index_equal
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import numpy as np import pandas as pd import re from collections import defaultdict, Counter import collections import copy import os import sys import random import logging import argparse def add_label(def_gold): if def_gold == "yes": return "entailment", "neutral" elif def_gold == "unk": return "neutral", "entailment" parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("--input_dir", nargs='?', type=str, help="input file") parser.add_argument("--obj", action='store_true', help="object") ARGS = parser.parse_args() files = glob.glob(ARGS.input_dir+"/*") sentences = [] for fi in files: print(fi) if re.search("all", fi): continue if not re.search("(yes|unk)", fi): continue def_gold = re.search("(yes|unk)", fi).group(1) def_label, rev_label = add_label(def_gold) pat = re.compile("."+def_gold) tmp = re.sub(pat, '', os.path.basename(fi)) origenre = re.sub('.txt', '', tmp) with open(fi, "r") as f: for line in f: genre = origenre s1, s2 = line.split("\t") if re.search("emptydet", s1): s1 = re.sub("emptydet ", "several ", s1) s2 = re.sub("emptydet ", "several ", s2) genre = genre+".empty" s1 = s1[0].upper() + s1[1:] s1 = s1.strip()+"." s2 = s2[0].upper() + s2[1:] s2 = s2.strip()+"." sentences.append([genre, s1, s2, def_label]) sentences.append([genre, s2, s1, rev_label]) df = pd.DataFrame(sentences, columns=['genre', 'sentence1', 'sentence2', 'gold_label']) df8 = df train =pd.DataFrame(index=[], columns=['index','promptID','pairID','genre','sentence1_binary_parse','sentence2_binary_parse','sentence1_parse','sentence2_parse','sentence1','sentence2','label1','gold_label']) train['index'] = df8.index train['promptID'] = df8.index train['pairID'] = df8.index train['gold_label'] = df8["gold_label"] train['genre'] = df8["genre"] train['sentence1'] = df8["sentence1"] train['sentence2'] = df8["sentence2"] final_train = train.sample(frac=1) final_train.to_csv(ARGS.input_dir+"/all_formatted.tsv", sep="\t", index=False) if ARGS.obj: pass else: depth0 = final_train.query('genre.str.contains("depth0")', engine='python') depth0.to_csv(ARGS.input_dir+"/depth0.tsv", sep="\t", index=False) depth1 = final_train.query('genre.str.contains("depth1")', engine='python') depth1.to_csv(ARGS.input_dir+"/depth1.tsv", sep="\t", index=False) depth2 = final_train.query('genre.str.contains("depth2")', engine='python') depth2.to_csv(ARGS.input_dir+"/depth2.tsv", sep="\t", index=False) depth3 = final_train.query('genre.str.contains("depth3")', engine='python') depth3.to_csv(ARGS.input_dir+"/depth3.tsv", sep="\t", index=False) depth4 = final_train.query('genre.str.contains("depth4")', engine='python') depth4.to_csv(ARGS.input_dir+"/depth4.tsv", sep="\t", index=False) sample_lex1_1 = depth0.query('genre.str.contains("empty")', engine='python') rest_1 = depth0.query('not genre.str.contains("empty")', engine='python') sample_lex1_2 = depth0.query('sentence1.str.contains("No ")', engine='python') rest_2 = depth0.query('not sentence1.str.contains("No ")', engine='python') allq_lex1_1_l = rest_1.query('genre.str.contains("lex.")', engine='python') allq_lex1_2_l = rest_2.query('genre.str.contains("lex.")', engine='python') rest_1_l = rest_1.query('not genre.str.contains("lex.")', engine='python') rest_2_l = rest_2.query('not genre.str.contains("lex.")', engine='python') allq_lex1_1_p = rest_1.query('genre.str.contains("pp.")', engine='python') allq_lex1_2_p = rest_2.query('genre.str.contains("pp.")', engine='python') rest_1_p = rest_1.query('not genre.str.contains("pp.")', engine='python') rest_2_p = rest_2.query('not genre.str.contains("pp.")', engine='python') rest_types = [[rest_1_l,sample_lex1_2,allq_lex1_2_l,sample_lex1_1,allq_lex1_1_l], [rest_2_l,sample_lex1_2,allq_lex1_2_l,sample_lex1_1,allq_lex1_1_l], [rest_1_p,sample_lex1_2,allq_lex1_2_p,sample_lex1_1,allq_lex1_1_p], [rest_2_p,sample_lex1_2,allq_lex1_2_p,sample_lex1_1,allq_lex1_1_p]] for i, rest_type in enumerate(rest_types): #sampling lex_1 train = pd.concat([rest_type[1],rest_type[2]]).drop_duplicates().reset_index(drop=True).sample(frac=1) test = rest_type[0] train.to_csv(ARGS.input_dir+"/lex_1_"+str(i)+".tsv", sep="\t", index=False) test.to_csv(ARGS.input_dir+"/dev_matched_lex_1_"+str(i)+".tsv", sep="\t", index=False) #1.{at least three, at most three}, {less than three, more than three},{a few, few} #2.{a few, few}, {at least three, at most three}, {less than three, more than three} at = test.query('sentence1.str.contains("At ")', engine='python') than = test.query('sentence1.str.contains(" than ")', engine='python') few = test.query('sentence1.str.contains("ew ")', engine='python') rest = test.query('not sentence1.str.contains("At ") and not sentence1.str.contains(" than ") and not sentence1.str.contains("ew ")', engine='python') lex_2 = pd.concat([rest_type[3],rest_type[4], at]).drop_duplicates().reset_index(drop=True).sample(frac=1) test_lex_2 = pd.concat([than, few, rest]).drop_duplicates().reset_index(drop=True) lex_2.to_csv(ARGS.input_dir+"/lex_2_"+str(i)+"_1.tsv", sep="\t", index=False) test_lex_2.to_csv(ARGS.input_dir+"/dev_matched_lex_2_"+str(i)+"_1.tsv", sep="\t", index=False) lex_3 =
pd.concat([rest_type[3],rest_type[4], at, than])
pandas.concat
import pandas as pd confirmed = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data' \ '/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv ' recovered = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data' \ '/csse_covid_19_time_series/time_series_covid19_recovered_global.csv ' deaths = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data' \ '/csse_covid_19_time_series/time_series_covid19_deaths_global.csv ' deaths = pd.read_csv(deaths) recovered = pd.read_csv(recovered) confirmed = pd.read_csv(confirmed) recovered = recovered.drop(columns=['Province/State']) deaths = deaths.drop(columns=['Province/State']) confirmed = confirmed.drop(columns=['Province/State']) recovered = recovered.rename(columns={'Country/Region': 'Country'}) deaths = deaths.rename(columns={'Country/Region': 'Country'}) confirmed = confirmed.rename(columns={'Country/Region': 'Country'}) class GlobalCases: def confirmed(self): df = confirmed.iloc[:, 4:].sum().max() df = {'Confirmed': int(df)} return df def deaths(self): df = deaths.iloc[:, 4:].sum().max() df = {'Deaths': int(df)} return df def recovered(self): df = recovered.iloc[:, 4:].sum().max() df = {'Recovered': int(df)} return df def active(self): df = GlobalCases.confirmed(self)['Confirmed'] - GlobalCases.deaths(self)['Deaths'] \ - GlobalCases.recovered(self)['Recovered'] df = {'Active': int(df)} return df def complete_world(self): df = { 'Confirmed': GlobalCases.confirmed(self), 'Deaths': GlobalCases.deaths(self), 'Recovered': GlobalCases.recovered(self), 'Active': GlobalCases.active(self) } return df def death_rate(self=None): df = GlobalCases.deaths(self)['Deaths'] / GlobalCases.confirmed(self)['Confirmed'] * 100 df = {'Death Rate': float(df)} return df def recovery_rate(self): df = GlobalCases.recovered(self)['Recovered'] / GlobalCases.confirmed(self)['Confirmed'] * 100 df = {'Recovery Rate': float(df)} return df def active_perc(self): df = GlobalCases.active(self)['Active'] / GlobalCases.confirmed(self)['Confirmed'] * 100 df = {'Active Percantage': float(df)} return df def daily_confirmed(self): df = confirmed.iloc[:, 3:].sum(axis=0) df.index = pd.to_datetime(df.index) df = pd.DataFrame(df).reset_index() df.columns = ['Date', 'Confirmed'] #df["Confirmed"].astype(int) return df.to_dict() def daily_deaths(self): df = deaths.iloc[:, 3:].sum(axis=0) df.index = pd.to_datetime(df.index) df =
pd.DataFrame(df)
pandas.DataFrame
import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm arrays = [pd.array([1, 2, 3, None], dtype=dtype) for dtype in tm.ALL_EA_INT_DTYPES] arrays += [pd.array([0.1, 0.2, 0.3, None], dtype=dtype) for dtype in tm.FLOAT_EA_DTYPES] arrays += [pd.array([True, False, True, None], dtype="boolean")] @pytest.fixture(params=arrays, ids=[a.dtype.name for a in arrays]) def data(request): return request.param @td.skip_if_no("pyarrow", min_version="0.15.0") def test_arrow_array(data): # protocol added in 0.15.0 import pyarrow as pa arr = pa.array(data) expected = pa.array( data.to_numpy(object, na_value=None), type=pa.from_numpy_dtype(data.dtype.numpy_dtype), ) assert arr.equals(expected) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_arrow_roundtrip(data): # roundtrip possible from arrow 0.16.0 import pyarrow as pa df = pd.DataFrame({"a": data}) table = pa.table(df) assert table.field("a").type == str(data.dtype.numpy_dtype) result = table.to_pandas() assert result["a"].dtype == data.dtype tm.assert_frame_equal(result, df) @td.skip_if_no("pyarrow", min_version="0.15.1.dev") def test_arrow_load_from_zero_chunks(data): # GH-41040 import pyarrow as pa df = pd.DataFrame({"a": data[0:0]}) table = pa.table(df) assert table.field("a").type == str(data.dtype.numpy_dtype) table = pa.table( [pa.chunked_array([], type=table.field("a").type)], schema=table.schema ) result = table.to_pandas() assert result["a"].dtype == data.dtype tm.assert_frame_equal(result, df) @td.skip_if_no("pyarrow", min_version="0.16.0") def test_arrow_from_arrow_uint(): # https://github.com/pandas-dev/pandas/issues/31896 # possible mismatch in types import pyarrow as pa dtype = pd.UInt32Dtype() result = dtype.__from_arrow__(pa.array([1, 2, 3, 4, None], type="int64")) expected = pd.array([1, 2, 3, 4, None], dtype="UInt32") tm.assert_extension_array_equal(result, expected) @
td.skip_if_no("pyarrow", min_version="0.16.0")
pandas.util._test_decorators.skip_if_no
import unittest import qteasy as qt import pandas as pd from pandas import Timestamp import numpy as np import math from numpy import int64 import itertools import datetime from qteasy.utilfuncs import list_to_str_format, regulate_date_format, time_str_format, str_to_list from qteasy.utilfuncs import maybe_trade_day, is_market_trade_day, prev_trade_day, next_trade_day from qteasy.utilfuncs import next_market_trade_day, unify, mask_to_signal, list_or_slice, labels_to_dict from qteasy.utilfuncs import weekday_name, prev_market_trade_day, is_number_like, list_truncate, input_to_list from qteasy.space import Space, Axis, space_around_centre, ResultPool from qteasy.core import apply_loop from qteasy.built_in import SelectingFinanceIndicator, TimingDMA, TimingMACD, TimingCDL, TimingTRIX from qteasy.tsfuncs import income, indicators, name_change, get_bar from qteasy.tsfuncs import stock_basic, trade_calendar, new_share, get_index from qteasy.tsfuncs import balance, cashflow, top_list, index_indicators, composite from qteasy.tsfuncs import future_basic, future_daily, options_basic, options_daily from qteasy.tsfuncs import fund_basic, fund_net_value, index_basic, stock_company from qteasy.evaluate import eval_alpha, eval_benchmark, eval_beta, eval_fv from qteasy.evaluate import eval_info_ratio, eval_max_drawdown, eval_sharp from qteasy.evaluate import eval_volatility from qteasy.tafuncs import bbands, dema, ema, ht, kama, ma, mama, mavp, mid_point from qteasy.tafuncs import mid_price, sar, sarext, sma, t3, tema, trima, wma, adx, adxr from qteasy.tafuncs import apo, bop, cci, cmo, dx, macd, macdext, aroon, aroonosc from qteasy.tafuncs import macdfix, mfi, minus_di, minus_dm, mom, plus_di, plus_dm from qteasy.tafuncs import ppo, roc, rocp, rocr, rocr100, rsi, stoch, stochf, stochrsi from qteasy.tafuncs import trix, ultosc, willr, ad, adosc, obv, atr, natr, trange from qteasy.tafuncs import avgprice, medprice, typprice, wclprice, ht_dcperiod from qteasy.tafuncs import ht_dcphase, ht_phasor, ht_sine, ht_trendmode, cdl2crows from qteasy.tafuncs import cdl3blackcrows, cdl3inside, cdl3linestrike, cdl3outside from qteasy.tafuncs import cdl3starsinsouth, cdl3whitesoldiers, cdlabandonedbaby from qteasy.tafuncs import cdladvanceblock, cdlbelthold, cdlbreakaway, cdlclosingmarubozu from qteasy.tafuncs import cdlconcealbabyswall, cdlcounterattack, cdldarkcloudcover from qteasy.tafuncs import cdldoji, cdldojistar, cdldragonflydoji, cdlengulfing from qteasy.tafuncs import cdleveningdojistar, cdleveningstar, cdlgapsidesidewhite from qteasy.tafuncs import cdlgravestonedoji, cdlhammer, cdlhangingman, cdlharami from qteasy.tafuncs import cdlharamicross, cdlhighwave, cdlhikkake, cdlhikkakemod from qteasy.tafuncs import cdlhomingpigeon, cdlidentical3crows, cdlinneck from qteasy.tafuncs import cdlinvertedhammer, cdlkicking, cdlkickingbylength from qteasy.tafuncs import cdlladderbottom, cdllongleggeddoji, cdllongline, cdlmarubozu from qteasy.tafuncs import cdlmatchinglow, cdlmathold, cdlmorningdojistar, cdlmorningstar from qteasy.tafuncs import cdlonneck, cdlpiercing, cdlrickshawman, cdlrisefall3methods from qteasy.tafuncs import cdlseparatinglines, cdlshootingstar, cdlshortline, cdlspinningtop from qteasy.tafuncs import cdlstalledpattern, cdlsticksandwich, cdltakuri, cdltasukigap from qteasy.tafuncs import cdlthrusting, cdltristar, cdlunique3river, cdlupsidegap2crows from qteasy.tafuncs import cdlxsidegap3methods, beta, correl, linearreg, linearreg_angle from qteasy.tafuncs import linearreg_intercept, linearreg_slope, stddev, tsf, var, acos from qteasy.tafuncs import asin, atan, ceil, cos, cosh, exp, floor, ln, log10, sin, sinh from qteasy.tafuncs import sqrt, tan, tanh, add, div, max, maxindex, min, minindex, minmax from qteasy.tafuncs import minmaxindex, mult, sub, sum from qteasy.history import get_financial_report_type_raw_data, get_price_type_raw_data from qteasy.history import stack_dataframes, dataframe_to_hp, HistoryPanel from qteasy.database import DataSource from qteasy.strategy import Strategy, SimpleTiming, RollingTiming, SimpleSelecting, FactoralSelecting from qteasy._arg_validators import _parse_string_kwargs, _valid_qt_kwargs from qteasy.blender import _exp_to_token, blender_parser, signal_blend class TestCost(unittest.TestCase): def setUp(self): self.amounts = np.array([10000., 20000., 10000.]) self.op = np.array([0., 1., -0.33333333]) self.amounts_to_sell = np.array([0., 0., -3333.3333]) self.cash_to_spend = np.array([0., 20000., 0.]) self.prices = np.array([10., 20., 10.]) self.r = qt.Cost(0.0) def test_rate_creation(self): """测试对象生成""" print('testing rates objects\n') self.assertIsInstance(self.r, qt.Cost, 'Type should be Rate') self.assertEqual(self.r.buy_fix, 0) self.assertEqual(self.r.sell_fix, 0) def test_rate_operations(self): """测试交易费率对象""" self.assertEqual(self.r['buy_fix'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['sell_fix'], 0.0, 'Item got is wrong') self.assertEqual(self.r['buy_rate'], 0.003, 'Item got is incorrect') self.assertEqual(self.r['sell_rate'], 0.001, 'Item got is incorrect') self.assertEqual(self.r['buy_min'], 5., 'Item got is incorrect') self.assertEqual(self.r['sell_min'], 0.0, 'Item got is incorrect') self.assertEqual(self.r['slipage'], 0.0, 'Item got is incorrect') self.assertEqual(np.allclose(self.r.calculate(self.amounts), [0.003, 0.003, 0.003]), True, 'fee calculation wrong') def test_rate_fee(self): """测试买卖交易费率""" self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 0. self.r.sell_min = 0. self.r.slipage = 0. print('\nSell result with fixed rate = 0.001 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33299.999667, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.333332999999996, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1.)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 33296.67, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33.33, msg='result incorrect') print('\nSell result with fixed rate = 0.001 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 0., -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], 32967.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 33, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997.00897308, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82053838484547, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 1:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 1)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 1) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 997., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -19999.82, msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 59.82, msg='result incorrect') print('\nPurchase result with fixed rate = 0.003 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_fee_result[1], -18054., msg='result incorrect') self.assertAlmostEqual(test_rate_fee_result[2], 54.0, msg='result incorrect') def test_min_fee(self): """测试最低交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 300 self.r.slipage = 0. print('\npurchase result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_min_fee_result[0], [0., 985, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_min_fee_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_min_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_min_fee_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with min fee = 300 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33033.333) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 33030) self.assertAlmostEqual(test_min_fee_result[2], 300.0) print('\nselling result with fixed cost rate with min fee = 300 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_min_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_min_fee_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_min_fee_result[1], 32700) self.assertAlmostEqual(test_min_fee_result[2], 300.0) def test_rate_with_min(self): """测试最低交易费用对其他交易费率参数的影响""" self.r.buy_rate = 0.0153 self.r.sell_rate = 0.01 self.r.buy_fix = 0. self.r.sell_fix = 0. self.r.buy_min = 300 self.r.sell_min = 333 self.r.slipage = 0. print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 984.9305624, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 301.3887520929774, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 10:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 10)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 10) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 980, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -19900.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\npurchase result with fixed cost rate with buy_rate = 0.0153, min fee = 300 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_rate_with_min_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0., 900, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], -18300.0, msg='result incorrect') self.assertAlmostEqual(test_rate_with_min_result[2], 300.0, msg='result incorrect') print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32999.99967) self.assertAlmostEqual(test_rate_with_min_result[2], 333.33333) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 1:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 1)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 1) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3333]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32996.7) self.assertAlmostEqual(test_rate_with_min_result[2], 333.3) print('\nselling result with fixed cost rate with sell_rate = 0.01, min fee = 333 and moq = 100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_rate_with_min_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_rate_with_min_result[0], [0, 0, -3300]), True, 'result incorrect') self.assertAlmostEqual(test_rate_with_min_result[1], 32667.0) self.assertAlmostEqual(test_rate_with_min_result[2], 333.0) def test_fixed_fee(self): """测试固定交易费用""" self.r.buy_rate = 0. self.r.sell_rate = 0. self.r.buy_fix = 200 self.r.sell_fix = 150 self.r.buy_min = 0 self.r.sell_min = 0 self.r.slipage = 0 print('\nselling result of fixed cost with fixed fee = 150 and moq=0:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 0)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], 33183.333, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150.0, msg='result incorrect') print('\nselling result of fixed cost with fixed fee = 150 and moq=100:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell, 100)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3300.]), True, f'result incorrect, {test_fixed_fee_result[0]} does not equal to [0,0,-3400]') self.assertAlmostEqual(test_fixed_fee_result[1], 32850., msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 150., msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 990., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') print('\npurchase result of fixed cost with fixed fee = 200:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18200.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 200.0, msg='result incorrect') def test_slipage(self): """测试交易滑点""" self.r.buy_fix = 0 self.r.sell_fix = 0 self.r.buy_min = 0 self.r.sell_min = 0 self.r.buy_rate = 0.003 self.r.sell_rate = 0.001 self.r.slipage = 1E-9 print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 0:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 0)) print('\npurchase result of fixed rate = 0.003 and slipage = 1E-10 and moq = 100:') print(self.r.get_purchase_result(self.prices, self.cash_to_spend, 100)) print('\nselling result with fixed rate = 0.001 and slipage = 1E-10:') print(self.r.get_selling_result(self.prices, self.amounts_to_sell)) test_fixed_fee_result = self.r.get_selling_result(self.prices, self.amounts_to_sell) self.assertIs(np.allclose(test_fixed_fee_result[0], [0, 0, -3333.3333]), True, f'{test_fixed_fee_result[0]} does not equal to [0, 0, -10000]') self.assertAlmostEqual(test_fixed_fee_result[1], 33298.88855591, msg=f'{test_fixed_fee_result[1]} does not equal to 99890.') self.assertAlmostEqual(test_fixed_fee_result[2], 34.44444409, msg=f'{test_fixed_fee_result[2]} does not equal to -36.666663.') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 0) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 996.98909294, 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -20000.0, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 60.21814121353513, msg='result incorrect') test_fixed_fee_result = self.r.get_purchase_result(self.prices, self.cash_to_spend, 100) self.assertIs(np.allclose(test_fixed_fee_result[0], [0., 900., 0.]), True, 'result incorrect') self.assertAlmostEqual(test_fixed_fee_result[1], -18054.36, msg='result incorrect') self.assertAlmostEqual(test_fixed_fee_result[2], 54.36, msg='result incorrect') class TestSpace(unittest.TestCase): def test_creation(self): """ test if creation of space object is fine """ # first group of inputs, output Space with two discr axis from [0,10] print('testing space objects\n') # pars_list = [[(0, 10), (0, 10)], # [[0, 10], [0, 10]]] # # types_list = ['discr', # ['discr', 'discr']] # # input_pars = itertools.product(pars_list, types_list) # for p in input_pars: # # print(p) # s = qt.Space(*p) # b = s.boes # t = s.types # # print(s, t) # self.assertIsInstance(s, qt.Space) # self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') # self.assertEqual(t, ['discr', 'discr'], 'types incorrect') # pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = ['foo, bar', ['foo', 'bar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['enum', 'enum'], 'types incorrect') pars_list = [[(0, 10), (0, 10)], [[0, 10], [0, 10]]] types_list = [['discr', 'foobar']] input_pars = itertools.product(pars_list, types_list) for p in input_pars: # print(p) s = Space(*p) b = s.boes t = s.types # print(s, t) self.assertEqual(b, [(0, 10), (0, 10)], 'boes incorrect!') self.assertEqual(t, ['discr', 'enum'], 'types incorrect') pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types='conti, enum') self.assertEqual(s.types, ['conti', 'enum']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10.0, 2)) self.assertEqual(s.shape, (np.inf, 2)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) pars_list = [(1, 2), (2, 3), (3, 4)] s = Space(pars=pars_list) self.assertEqual(s.types, ['discr', 'discr', 'discr']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (2, 2, 2)) self.assertEqual(s.shape, (2, 2, 2)) self.assertEqual(s.count, 8) self.assertEqual(s.boes, [(1, 2), (2, 3), (3, 4)]) pars_list = [(1, 2, 3), (2, 3, 4), (3, 4, 5)] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) pars_list = [((1, 2, 3), (2, 3, 4), (3, 4, 5))] s = Space(pars=pars_list) self.assertEqual(s.types, ['enum']) self.assertEqual(s.dim, 1) self.assertEqual(s.size, (3,)) self.assertEqual(s.shape, (3,)) self.assertEqual(s.count, 3) pars_list = ((1, 2, 3), (2, 3, 4), (3, 4, 5)) s = Space(pars=pars_list) self.assertEqual(s.types, ['enum', 'enum', 'enum']) self.assertEqual(s.dim, 3) self.assertEqual(s.size, (3, 3, 3)) self.assertEqual(s.shape, (3, 3, 3)) self.assertEqual(s.count, 27) self.assertEqual(s.boes, [(1, 2, 3), (2, 3, 4), (3, 4, 5)]) def test_extract(self): """ :return: """ pars_list = [(0, 10), (0, 10)] types_list = ['discr', 'discr'] s = Space(pars=pars_list, par_types=types_list) extracted_int, count = s.extract(3, 'interval') extracted_int_list = list(extracted_int) print('extracted int\n', extracted_int_list) self.assertEqual(count, 16, 'extraction count wrong!') self.assertEqual(extracted_int_list, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') extracted_rand, count = s.extract(10, 'rand') extracted_rand_list = list(extracted_rand) self.assertEqual(count, 10, 'extraction count wrong!') print('extracted rand\n', extracted_rand_list) for point in list(extracted_rand_list): self.assertEqual(len(point), 2) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) extracted_int2, count = s.extract(3, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list2 = list(extracted_int2) self.assertEqual(extracted_int_list2, [(0, 0), (0, 3), (0, 6), (0, 9), (3, 0), (3, 3), (3, 6), (3, 9), (6, 0), (6, 3), (6, 6), (6, 9), (9, 0), (9, 3), (9, 6), (9, 9)], 'space extraction wrong!') print('extracted int list 2\n', extracted_int_list2) self.assertIsInstance(extracted_int_list2[0][0], float) self.assertIsInstance(extracted_int_list2[0][1], (int, int64)) extracted_rand2, count = s.extract(10, 'rand') self.assertEqual(count, 10, 'extraction count wrong!') extracted_rand_list2 = list(extracted_rand2) print('extracted rand list 2:\n', extracted_rand_list2) for point in extracted_rand_list2: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], float) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], (int, int64)) self.assertLessEqual(point[1], 10) self.assertGreaterEqual(point[1], 0) pars_list = [(0., 10), ('a', 'b')] s = Space(pars=pars_list, par_types='enum, enum') extracted_int3, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list3 = list(extracted_int3) self.assertEqual(extracted_int_list3, [(0., 'a'), (0., 'b'), (10, 'a'), (10, 'b')], 'space extraction wrong!') print('extracted int list 3\n', extracted_int_list3) self.assertIsInstance(extracted_int_list3[0][0], float) self.assertIsInstance(extracted_int_list3[0][1], str) extracted_rand3, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list3 = list(extracted_rand3) print('extracted rand list 3:\n', extracted_rand_list3) for point in extracted_rand_list3: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (float, int)) self.assertLessEqual(point[0], 10) self.assertGreaterEqual(point[0], 0) self.assertIsInstance(point[1], str) self.assertIn(point[1], ['a', 'b']) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14))] s = Space(pars=pars_list, par_types='enum') extracted_int4, count = s.extract(1, 'interval') self.assertEqual(count, 4, 'extraction count wrong!') extracted_int_list4 = list(extracted_int4) it = zip(extracted_int_list4, [(0, 10), (1, 'c'), (0, 'b'), (1, 14)]) for item, item2 in it: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 4\n', extracted_int_list4) self.assertIsInstance(extracted_int_list4[0], tuple) extracted_rand4, count = s.extract(3, 'rand') self.assertEqual(count, 3, 'extraction count wrong!') extracted_rand_list4 = list(extracted_rand4) print('extracted rand list 4:\n', extracted_rand_list4) for point in extracted_rand_list4: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], (int, str)) self.assertIn(point[0], [0, 1, 'a']) self.assertIsInstance(point[1], (int, str)) self.assertIn(point[1], [10, 14, 'b', 'c']) self.assertIn(point, [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) pars_list = [((0, 10), (1, 'c'), ('a', 'b'), (1, 14)), (1, 4)] s = Space(pars=pars_list, par_types='enum, discr') extracted_int5, count = s.extract(1, 'interval') self.assertEqual(count, 16, 'extraction count wrong!') extracted_int_list5 = list(extracted_int5) for item, item2 in extracted_int_list5: print(item, item2) self.assertTrue(all([tuple(ext_item) == item for ext_item, item in it])) print('extracted int list 5\n', extracted_int_list5) self.assertIsInstance(extracted_int_list5[0], tuple) extracted_rand5, count = s.extract(5, 'rand') self.assertEqual(count, 5, 'extraction count wrong!') extracted_rand_list5 = list(extracted_rand5) print('extracted rand list 5:\n', extracted_rand_list5) for point in extracted_rand_list5: self.assertEqual(len(point), 2) self.assertIsInstance(point[0], tuple) print(f'type of point[1] is {type(point[1])}') self.assertIsInstance(point[1], (int, np.int64)) self.assertIn(point[0], [(0., 10), (1, 'c'), ('a', 'b'), (1, 14)]) print(f'test incremental extraction') pars_list = [(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)] s = Space(pars_list) ext, count = s.extract(64, 'interval') self.assertEqual(count, 4096) points = list(ext) # 已经取出所有的点,围绕其中10个点生成十个subspaces # 检查是否每个subspace都为Space,是否都在s范围内,使用32生成点集,检查生成数量是否正确 for point in points[1000:1010]: subspace = s.from_point(point, 64) self.assertIsInstance(subspace, Space) self.assertTrue(subspace in s) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) ext, count = subspace.extract(32) points = list(ext) self.assertGreaterEqual(count, 512) self.assertLessEqual(count, 4096) print(f'\n---------------------------------' f'\nthe space created around point <{point}> is' f'\n{subspace.boes}' f'\nand extracted {count} points, the first 5 are:' f'\n{points[:5]}') def test_axis_extract(self): # test axis object with conti type axis = Axis((0., 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'conti') self.assertEqual(axis.axis_boe, (0., 5.)) self.assertEqual(axis.count, np.inf) self.assertEqual(axis.size, 5.0) self.assertTrue(np.allclose(axis.extract(1, 'int'), [0., 1., 2., 3., 4.])) self.assertTrue(np.allclose(axis.extract(0.5, 'int'), [0., 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5])) extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(0 <= item <= 5) for item in extracted])) # test axis object with discrete type axis = Axis((1, 5)) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'discr') self.assertEqual(axis.axis_boe, (1, 5)) self.assertEqual(axis.count, 5) self.assertEqual(axis.size, 5) self.assertTrue(np.allclose(axis.extract(1, 'int'), [1, 2, 3, 4, 5])) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 2, 3, 4, 5]) for item in extracted])) # test axis object with enumerate type axis = Axis((1, 5, 7, 10, 'A', 'F')) self.assertIsInstance(axis, Axis) self.assertEqual(axis.axis_type, 'enum') self.assertEqual(axis.axis_boe, (1, 5, 7, 10, 'A', 'F')) self.assertEqual(axis.count, 6) self.assertEqual(axis.size, 6) self.assertEqual(axis.extract(1, 'int'), [1, 5, 7, 10, 'A', 'F']) self.assertRaises(ValueError, axis.extract, 0.5, 'int') extracted = axis.extract(8, 'rand') self.assertEqual(len(extracted), 8) self.assertTrue(all([(item in [1, 5, 7, 10, 'A', 'F']) for item in extracted])) def test_from_point(self): """测试从一个点生成一个space""" # 生成一个space,指定space中的一个点以及distance,生成一个sub-space pars_list = [(0., 10), (0, 10)] s = Space(pars=pars_list, par_types=None) self.assertEqual(s.types, ['conti', 'discr']) self.assertEqual(s.dim, 2) self.assertEqual(s.size, (10., 11)) self.assertEqual(s.shape, (np.inf, 11)) self.assertEqual(s.count, np.inf) self.assertEqual(s.boes, [(0., 10), (0, 10)]) print('create subspace from a point in space') p = (3, 3) distance = 2 subspace = s.from_point(p, distance) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'discr']) self.assertEqual(subspace.dim, 2) self.assertEqual(subspace.size, (4.0, 5)) self.assertEqual(subspace.shape, (np.inf, 5)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(1, 5), (1, 5)]) print('create subspace from a 6 dimensional discrete space') s = Space(pars=[(10, 250), (10, 250), (10, 250), (10, 250), (10, 250), (10, 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['discr', 'discr', 'discr', 'discr', 'discr', 'discr']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 65345616) self.assertEqual(subspace.size, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.shape, (16, 21, 21, 21, 21, 21)) self.assertEqual(subspace.count, 65345616) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace from a 6 dimensional continuous space') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = 10 subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 48000000) self.assertEqual(subspace.size, (15.0, 20.0, 20.0, 20.0, 20.0, 20.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (190, 210), (140, 160), (140, 160), (140, 160), (140, 160)]) print('create subspace with different distances on each dimension') s = Space(pars=[(10., 250), (10., 250), (10., 250), (10., 250), (10., 250), (10., 250)]) p = (15, 200, 150, 150, 150, 150) d = [10, 5, 5, 10, 10, 5] subspace = s.from_point(p, d) self.assertIsInstance(subspace, Space) self.assertEqual(subspace.types, ['conti', 'conti', 'conti', 'conti', 'conti', 'conti']) self.assertEqual(subspace.dim, 6) self.assertEqual(subspace.volume, 6000000) self.assertEqual(subspace.size, (15.0, 10.0, 10.0, 20.0, 20.0, 10.0)) self.assertEqual(subspace.shape, (np.inf, np.inf, np.inf, np.inf, np.inf, np.inf)) self.assertEqual(subspace.count, np.inf) self.assertEqual(subspace.boes, [(10, 25), (195, 205), (145, 155), (140, 160), (140, 160), (145, 155)]) class TestCashPlan(unittest.TestCase): def setUp(self): self.cp1 = qt.CashPlan(['2012-01-01', '2010-01-01'], [10000, 20000], 0.1) self.cp1.info() self.cp2 = qt.CashPlan(['20100501'], 10000) self.cp2.info() self.cp3 = qt.CashPlan(pd.date_range(start='2019-01-01', freq='Y', periods=12), [i * 1000 + 10000 for i in range(12)], 0.035) self.cp3.info() def test_creation(self): self.assertIsInstance(self.cp1, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp2, qt.CashPlan, 'CashPlan object creation wrong') self.assertIsInstance(self.cp3, qt.CashPlan, 'CashPlan object creation wrong') # test __repr__() print(self.cp1) print(self.cp2) print(self.cp3) # test __str__() self.cp1.info() self.cp2.info() self.cp3.info() # test assersion errors self.assertRaises(AssertionError, qt.CashPlan, '2016-01-01', [10000, 10000]) self.assertRaises(KeyError, qt.CashPlan, '2020-20-20', 10000) def test_properties(self): self.assertEqual(self.cp1.amounts, [20000, 10000], 'property wrong') self.assertEqual(self.cp1.first_day, Timestamp('2010-01-01')) self.assertEqual(self.cp1.last_day, Timestamp('2012-01-01')) self.assertEqual(self.cp1.investment_count, 2) self.assertEqual(self.cp1.period, 730) self.assertEqual(self.cp1.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01')]) self.assertEqual(self.cp1.ir, 0.1) self.assertAlmostEqual(self.cp1.closing_value, 34200) self.assertAlmostEqual(self.cp2.closing_value, 10000) self.assertAlmostEqual(self.cp3.closing_value, 220385.3483685) self.assertIsInstance(self.cp1.plan, pd.DataFrame) self.assertIsInstance(self.cp2.plan, pd.DataFrame) self.assertIsInstance(self.cp3.plan, pd.DataFrame) def test_operation(self): cp_self_add = self.cp1 + self.cp1 cp_add = self.cp1 + self.cp2 cp_add_int = self.cp1 + 10000 cp_mul_int = self.cp1 * 2 cp_mul_float = self.cp2 * 1.5 cp_mul_time = 3 * self.cp2 cp_mul_time2 = 2 * self.cp1 cp_mul_time3 = 2 * self.cp3 cp_mul_float2 = 2. * self.cp3 self.assertIsInstance(cp_self_add, qt.CashPlan) self.assertEqual(cp_self_add.amounts, [40000, 20000]) self.assertEqual(cp_add.amounts, [20000, 10000, 10000]) self.assertEqual(cp_add_int.amounts, [30000, 20000]) self.assertEqual(cp_mul_int.amounts, [40000, 20000]) self.assertEqual(cp_mul_float.amounts, [15000]) self.assertEqual(cp_mul_float.dates, [Timestamp('2010-05-01')]) self.assertEqual(cp_mul_time.amounts, [10000, 10000, 10000]) self.assertEqual(cp_mul_time.dates, [Timestamp('2010-05-01'), Timestamp('2011-05-01'), Timestamp('2012-04-30')]) self.assertEqual(cp_mul_time2.amounts, [20000, 10000, 20000, 10000]) self.assertEqual(cp_mul_time2.dates, [Timestamp('2010-01-01'), Timestamp('2012-01-01'), Timestamp('2014-01-01'), Timestamp('2016-01-01')]) self.assertEqual(cp_mul_time3.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31'), Timestamp('2031-12-29'), Timestamp('2032-12-29'), Timestamp('2033-12-29'), Timestamp('2034-12-29'), Timestamp('2035-12-29'), Timestamp('2036-12-29'), Timestamp('2037-12-29'), Timestamp('2038-12-29'), Timestamp('2039-12-29'), Timestamp('2040-12-29'), Timestamp('2041-12-29'), Timestamp('2042-12-29')]) self.assertEqual(cp_mul_float2.dates, [Timestamp('2019-12-31'), Timestamp('2020-12-31'), Timestamp('2021-12-31'), Timestamp('2022-12-31'), Timestamp('2023-12-31'), Timestamp('2024-12-31'), Timestamp('2025-12-31'), Timestamp('2026-12-31'), Timestamp('2027-12-31'), Timestamp('2028-12-31'), Timestamp('2029-12-31'), Timestamp('2030-12-31')]) self.assertEqual(cp_mul_float2.amounts, [20000.0, 22000.0, 24000.0, 26000.0, 28000.0, 30000.0, 32000.0, 34000.0, 36000.0, 38000.0, 40000.0, 42000.0]) class TestPool(unittest.TestCase): def setUp(self): self.p = ResultPool(5) self.items = ['first', 'second', (1, 2, 3), 'this', 24] self.perfs = [1, 2, 3, 4, 5] self.additional_result1 = ('abc', 12) self.additional_result2 = ([1, 2], -1) self.additional_result3 = (12, 5) def test_create(self): self.assertIsInstance(self.p, ResultPool) def test_operation(self): self.p.in_pool(self.additional_result1[0], self.additional_result1[1]) self.p.cut() self.assertEqual(self.p.item_count, 1) self.assertEqual(self.p.items, ['abc']) for item, perf in zip(self.items, self.perfs): self.p.in_pool(item, perf) self.assertEqual(self.p.item_count, 6) self.assertEqual(self.p.items, ['abc', 'first', 'second', (1, 2, 3), 'this', 24]) self.p.cut() self.assertEqual(self.p.items, ['second', (1, 2, 3), 'this', 24, 'abc']) self.assertEqual(self.p.perfs, [2, 3, 4, 5, 12]) self.p.in_pool(self.additional_result2[0], self.additional_result2[1]) self.p.in_pool(self.additional_result3[0], self.additional_result3[1]) self.assertEqual(self.p.item_count, 7) self.p.cut(keep_largest=False) self.assertEqual(self.p.items, [[1, 2], 'second', (1, 2, 3), 'this', 24]) self.assertEqual(self.p.perfs, [-1, 2, 3, 4, 5]) class TestCoreSubFuncs(unittest.TestCase): """Test all functions in core.py""" def setUp(self): pass def test_input_to_list(self): print('Testing input_to_list() function') input_str = 'first' self.assertEqual(qt.utilfuncs.input_to_list(input_str, 3), ['first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 4), ['first', 'first', 'first', 'first']) self.assertEqual(qt.utilfuncs.input_to_list(input_str, 2, None), ['first', 'first']) input_list = ['first', 'second'] self.assertEqual(qt.utilfuncs.input_to_list(input_list, 3), ['first', 'second', None]) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 4, 'padder'), ['first', 'second', 'padder', 'padder']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, 1), ['first', 'second']) self.assertEqual(qt.utilfuncs.input_to_list(input_list, -5), ['first', 'second']) def test_point_in_space(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) p2 = (-1, 3, 10) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') self.assertFalse(p2 in sp) print(f'point {p2} is not in space {sp}') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)], 'conti, conti, enum') p1 = (5.5, 3.2, 8) self.assertTrue(p1 in sp) print(f'point {p1} is in space {sp}') def test_space_in_space(self): print('test if a space is in another space') sp = Space([(0., 10.), (0., 10.), (0., 10.)]) sp2 = Space([(0., 10.), (0., 10.), (0., 10.)]) self.assertTrue(sp2 in sp) self.assertTrue(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is in space {sp2}\n' f'they are equal to each other\n') sp2 = Space([(0, 5.), (2, 7.), (3., 9.)]) self.assertTrue(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'{sp2} is a sub space of {sp}\n') sp2 = Space([(0, 5), (2, 7), (3., 9)]) self.assertFalse(sp2 in sp) self.assertFalse(sp in sp2) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') sp = Space([(0., 10.), (0., 10.), range(40, 3, -2)]) self.assertFalse(sp in sp2) self.assertFalse(sp2 in sp) print(f'space {sp2} is not in space {sp}\n' f'and space {sp} is not in space {sp2}\n' f'they have different types of axes\n') def test_space_around_centre(self): sp = Space([(0., 10.), (0., 10.), (0., 10.)]) p1 = (5.5, 3.2, 7) ssp = space_around_centre(space=sp, centre=p1, radius=1.2) print(ssp.boes) print('\ntest multiple diameters:') self.assertEqual(ssp.boes, [(4.3, 6.7), (2.0, 4.4), (5.8, 8.2)]) ssp = space_around_centre(space=sp, centre=p1, radius=[1, 2, 1]) print(ssp.boes) self.assertEqual(ssp.boes, [(4.5, 6.5), (1.2000000000000002, 5.2), (6.0, 8.0)]) print('\ntest points on edge:') p2 = (5.5, 3.2, 10) ssp = space_around_centre(space=sp, centre=p1, radius=3.9) print(ssp.boes) self.assertEqual(ssp.boes, [(1.6, 9.4), (0.0, 7.1), (3.1, 10.0)]) print('\ntest enum spaces') sp = Space([(0, 100), range(40, 3, -2)], 'discr, enum') p1 = [34, 12] ssp = space_around_centre(space=sp, centre=p1, radius=5, ignore_enums=False) self.assertEqual(ssp.boes, [(29, 39), (22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(ssp.boes) print('\ntest enum space and ignore enum axis') ssp = space_around_centre(space=sp, centre=p1, radius=5) self.assertEqual(ssp.boes, [(29, 39), (40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6, 4)]) print(sp.boes) def test_get_stock_pool(self): print(f'start test building stock pool function\n') share_basics = stock_basic(fields='ts_code,symbol,name,area,industry,market,list_date,exchange') print(f'\nselect all stocks by area') stock_pool = qt.get_stock_pool(area='上海') print(f'{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "上海"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].eq('上海').all()) print(f'\nselect all stocks by multiple areas') stock_pool = qt.get_stock_pool(area='贵州,北京,天津') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are in list of ["贵州", "北京", "天津"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['贵州', '北京', '天津']).all()) print(f'\nselect all stocks by area and industry') stock_pool = qt.get_stock_pool(area='四川', industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock areas are "四川", and industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(['四川']).all()) print(f'\nselect all stocks by industry') stock_pool = qt.get_stock_pool(industry='银行, 金融') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stocks industry in ["银行", "金融"]\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(['银行', '金融']).all()) print(f'\nselect all stocks by market') stock_pool = qt.get_stock_pool(market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) print(f'\nselect all stocks by market and list date') stock_pool = qt.get_stock_pool(date='2000-01-01', market='主板') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all stock market is "主板", and list date after "2000-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['market'].isin(['主板']).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('2000-01-01').all()) print(f'\nselect all stocks by list date') stock_pool = qt.get_stock_pool(date='1997-01-01') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all list date after "1997-01-01"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1997-01-01').all()) print(f'\nselect all stocks by exchange') stock_pool = qt.get_stock_pool(exchange='SSE') print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['exchange'].eq('SSE').all()) print(f'\nselect all stocks by industry, area and list date') industry_list = ['银行', '全国地产', '互联网', '环境保护', '区域地产', '酒店餐饮', '运输设备', '综合类', '建筑工程', '玻璃', '家用电器', '文教休闲', '其他商业', '元器件', 'IT设备', '其他建材', '汽车服务', '火力发电', '医药商业', '汽车配件', '广告包装', '轻工机械', '新型电力', '多元金融', '饲料'] area_list = ['深圳', '北京', '吉林', '江苏', '辽宁', '广东', '安徽', '四川', '浙江', '湖南', '河北', '新疆', '山东', '河南', '山西', '江西', '青海', '湖北', '内蒙', '海南', '重庆', '陕西', '福建', '广西', '上海'] stock_pool = qt.get_stock_pool(date='19980101', industry=industry_list, area=area_list) print(f'\n{len(stock_pool)} shares selected, first 5 are: {stock_pool[0:5]}\n' f'check if all exchanges are "SSE"\n' f'{share_basics[np.isin(share_basics.ts_code, stock_pool)].head()}') self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['list_date'].le('1998-01-01').all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['industry'].isin(industry_list).all()) self.assertTrue(share_basics[np.isin(share_basics.ts_code, stock_pool)]['area'].isin(area_list).all()) self.assertRaises(KeyError, qt.get_stock_pool, industry=25) self.assertRaises(KeyError, qt.get_stock_pool, share_name='000300.SH') self.assertRaises(KeyError, qt.get_stock_pool, markets='SSE') class TestEvaluations(unittest.TestCase): """Test all evaluation functions in core.py""" # 以下手动计算结果在Excel文件中 def setUp(self): """用np.random生成测试用数据,使用cumsum()模拟股票走势""" self.test_data1 = pd.DataFrame([5.34892759, 5.65768696, 5.79227076, 5.56266871, 5.88189632, 6.24795001, 5.92755558, 6.38748165, 6.31331899, 5.86001665, 5.61048472, 5.30696736, 5.40406792, 5.03180571, 5.37886353, 5.78608307, 6.26540339, 6.59348026, 6.90943801, 6.70911677, 6.33015954, 6.06697417, 5.9752499, 6.45786408, 6.95273763, 6.7691991, 6.70355481, 6.28048969, 6.61344541, 6.24620003, 6.47409983, 6.4522311, 6.8773094, 6.99727832, 6.59262674, 6.59014938, 6.63758237, 6.38331869, 6.09902105, 6.35390109, 6.51993567, 6.87244592, 6.83963485, 7.08797815, 6.88003144, 6.83657323, 6.97819483, 7.01600276, 7.12554256, 7.58941523, 7.61014457, 7.21224091, 7.48174399, 7.66490854, 7.51371968, 7.11586198, 6.97147399, 6.67453301, 6.2042138, 6.33967015, 6.22187938, 5.98426993, 6.37096079, 6.55897161, 6.26422645, 6.69363762, 7.12668015, 6.83232926, 7.30524081, 7.4262041, 7.54031383, 7.17545919, 7.20659257, 7.44886016, 7.37094393, 6.88011022, 7.08142491, 6.74992833, 6.5967097, 6.21336693, 6.35565105, 6.82347596, 6.44773408, 6.84538053, 6.47966466, 6.09699528, 5.63927014, 6.01081024, 6.20585303, 6.60528206, 7.01594726, 7.03684251, 6.76574977, 7.08740846, 6.65336462, 7.07126686, 6.80058956, 6.79241977, 6.47843472, 6.39245474], columns=['value']) self.test_data2 = pd.DataFrame([5.09276527, 4.83828592, 4.6000911, 4.63170487, 4.63566451, 4.50546921, 4.96390044, 4.64557907, 4.25787855, 3.76585551, 3.38826334, 3.76243422, 4.06365426, 3.87084726, 3.91400935, 4.13438822, 4.27064542, 4.56776104, 5.03800296, 5.31070529, 5.39902276, 5.21186286, 5.05683114, 4.68842046, 5.11895168, 5.27151571, 5.72294993, 6.09961056, 6.26569635, 6.48806151, 6.16058885, 6.2582459, 6.38934791, 6.57831057, 6.19508831, 5.70155153, 5.20435735, 5.36538825, 5.40450056, 5.2227697, 5.37828693, 5.53058991, 6.02996797, 5.76802181, 5.66166713, 6.07988994, 5.61794367, 5.63218151, 6.10728013, 6.0324168, 6.27164431, 6.27551239, 6.52329665, 7.00470007, 7.34163113, 7.33699083, 7.67661334, 8.09395749, 7.68086668, 7.58341161, 7.46219819, 7.58671899, 7.19348298, 7.40088323, 7.47562005, 7.93342043, 8.2286081, 8.3521632, 8.43590025, 8.34977395, 8.57563095, 8.81586328, 9.08738649, 9.01542031, 8.8653815, 9.21763111, 9.04233017, 8.59533999, 8.47590075, 8.70857222, 8.78890756, 8.92697606, 9.35743773, 9.68280866, 10.15622021, 10.55908549, 10.6337894, 10.55197128, 10.65435176, 10.54611045, 10.19432562, 10.48320884, 10.36176768, 10.03186854, 10.23656092, 10.0062843, 10.13669686, 10.30758958, 9.87904176, 10.05126375], columns=['value']) self.test_data3 = pd.DataFrame([5.02851874, 5.20700348, 5.02410709, 5.49836387, 5.06834371, 5.10956737, 5.15314979, 5.02256472, 5.09746382, 5.23909247, 4.93410336, 4.96316186, 5.40026682, 5.7353255, 5.53438319, 5.79092139, 5.67528173, 5.89840855, 5.75379463, 6.10855386, 5.77322365, 5.84538021, 5.6103973, 5.7518655, 5.49729695, 5.13610628, 5.30524121, 5.68093462, 5.73251319, 6.04420783, 6.26929843, 6.59610234, 6.09872345, 6.25475121, 6.72927396, 6.91395783, 7.00693283, 7.36217783, 7.71516676, 7.67580263, 7.62477511, 7.73600568, 7.53457914, 7.46170277, 7.83658014, 8.11481319, 8.03705544, 7.64948845, 7.52043731, 7.67247943, 7.46511982, 7.43541798, 7.58856517, 7.9392717, 8.25406287, 7.77031632, 8.03223447, 7.86799055, 7.57630999, 7.33230519, 7.22378732, 6.85972264, 7.17548456, 7.5387846, 7.2392632, 6.8455644, 6.59557185, 6.6496796, 6.73685623, 7.18598015, 7.13619128, 6.88060157, 7.1399681, 7.30308077, 6.94942434, 7.0247815, 7.37567798, 7.50080197, 7.59719284, 7.14520561, 7.29913484, 7.79551341, 8.15497781, 8.40456095, 8.86516528, 8.53042688, 8.94268762, 8.52048006, 8.80036284, 8.91602364, 9.19953385, 8.70828953, 8.24613093, 8.18770453, 7.79548389, 7.68627967, 7.23205036, 6.98302636, 7.06515819, 6.95068113], columns=['value']) self.test_data4 = pd.DataFrame([4.97926539, 5.44016005, 5.45122915, 5.74485615, 5.45600553, 5.44858945, 5.2435413, 5.47315161, 5.58464303, 5.36179749, 5.38236326, 5.29614981, 5.76523508, 5.75102892, 6.15316618, 6.03852528, 6.01442228, 5.70510182, 5.22748133, 5.46762379, 5.78926267, 5.8221362, 5.61236849, 5.30615725, 5.24200611, 5.41042642, 5.59940342, 5.28306781, 4.99451932, 5.08799266, 5.38865647, 5.58229139, 5.33492845, 5.48206276, 5.09721379, 5.39190493, 5.29965087, 5.0374415, 5.50798022, 5.43107577, 5.22759507, 4.991809, 5.43153084, 5.39966868, 5.59916352, 5.66412137, 6.00611838, 5.63564902, 5.66723484, 5.29863863, 4.91115153, 5.3749929, 5.75082334, 6.08308148, 6.58091182, 6.77848803, 7.19588758, 7.64862286, 7.99818347, 7.91824794, 8.30341071, 8.45984973, 7.98700002, 8.18924931, 8.60755649, 8.66233396, 8.91018407, 9.0782739, 9.33515448, 8.95870245, 8.98426422, 8.50340317, 8.64916085, 8.93592407, 8.63145745, 8.65322862, 8.39543204, 8.37969997, 8.23394504, 8.04062872, 7.91259763, 7.57252171, 7.72670114, 7.74486117, 8.06908188, 7.99166889, 7.92155906, 8.39956136, 8.80181323, 8.47464091, 8.06557064, 7.87145573, 8.0237959, 8.39481998, 8.68525692, 8.81185461, 8.98632237, 9.0989835, 8.89787405, 8.86508591], columns=['value']) self.test_data5 = pd.DataFrame([4.50258923, 4.35142568, 4.07459514, 3.87791297, 3.73715985, 3.98455684, 4.07587908, 4.00042472, 4.28276612, 4.01362051, 4.13713565, 4.49312372, 4.48633159, 4.4641207, 4.13444605, 3.79107217, 4.22941629, 4.56548511, 4.92472163, 5.27723158, 5.67409193, 6.00176917, 5.88889928, 5.55256103, 5.39308314, 5.2610492, 5.30738908, 5.22222408, 4.90332238, 4.57499908, 4.96097146, 4.81531011, 4.39115442, 4.63200662, 5.04588813, 4.67866025, 5.01705123, 4.83562258, 4.60381702, 4.66187576, 4.41292828, 4.86604507, 4.42280124, 4.07517294, 4.16317319, 4.10316596, 4.42913598, 4.06609666, 3.96725913, 4.15965746, 4.12379564, 4.04054068, 3.84342851, 3.45902867, 3.17649855, 3.09773586, 3.5502119, 3.66396995, 3.66306483, 3.29131401, 2.79558533, 2.88319542, 3.03671098, 3.44645857, 3.88167161, 3.57961874, 3.60180276, 3.96702102, 4.05429995, 4.40056979, 4.05653231, 3.59600456, 3.60792477, 4.09989922, 3.73503663, 4.01892626, 3.94597242, 3.81466605, 3.71417992, 3.93767156, 4.42806557, 4.06988106, 4.03713636, 4.34408673, 4.79810156, 5.18115011, 4.89798406, 5.3960077, 5.72504875, 5.61894017, 5.1958197, 4.85275896, 5.17550207, 4.71548987, 4.62408567, 4.55488535, 4.36532649, 4.26031979, 4.25225607, 4.58627048], columns=['value']) self.test_data6 = pd.DataFrame([5.08639513, 5.05761083, 4.76160923, 4.62166504, 4.62923183, 4.25070173, 4.13447513, 3.90890013, 3.76687608, 3.43342482, 3.67648224, 3.6274775, 3.9385404, 4.39771627, 4.03199346, 3.93265288, 3.50059789, 3.3851961, 3.29743973, 3.2544872, 2.93692949, 2.70893003, 2.55461976, 2.20922332, 2.29054475, 2.2144714, 2.03726827, 2.39007617, 2.29866155, 2.40607111, 2.40440444, 2.79374649, 2.66541922, 2.27018079, 2.08505127, 2.55478864, 2.22415625, 2.58517923, 2.58802256, 2.94870959, 2.69301739, 2.19991535, 2.69473146, 2.64704637, 2.62753542, 2.14240825, 2.38565154, 1.94592117, 2.32243877, 2.69337246, 2.51283854, 2.62484451, 2.15559054, 2.35410875, 2.31219177, 1.96018265, 2.34711266, 2.58083322, 2.40290041, 2.20439791, 2.31472425, 2.16228248, 2.16439749, 2.20080737, 1.73293206, 1.9264407, 2.25089861, 2.69269101, 2.59296687, 2.1420998, 1.67819153, 1.98419023, 2.14479494, 1.89055376, 1.96720648, 1.9916694, 2.37227761, 2.14446036, 2.34573903, 1.86162546, 2.1410721, 2.39204939, 2.52529064, 2.47079939, 2.9299031, 3.09452923, 2.93276708, 3.21731309, 3.06248964, 2.90413406, 2.67844632, 2.45621213, 2.41463398, 2.7373913, 3.14917045, 3.4033949, 3.82283446, 4.02285451, 3.7619638, 4.10346795], columns=['value']) self.test_data7 = pd.DataFrame([4.75233583, 4.47668283, 4.55894263, 4.61765848, 4.622892, 4.58941116, 4.32535872, 3.88112797, 3.47237806, 3.50898953, 3.82530406, 3.6718017, 3.78918195, 4.1800752, 4.01818557, 4.40822582, 4.65474654, 4.89287256, 4.40879274, 4.65505126, 4.36876403, 4.58418934, 4.75687172, 4.3689799, 4.16126498, 4.0203982, 3.77148242, 3.38198096, 3.07261764, 2.9014741, 2.5049543, 2.756105, 2.28779058, 2.16986991, 1.8415962, 1.83319008, 2.20898291, 2.00128981, 1.75747025, 1.26676663, 1.40316876, 1.11126484, 1.60376367, 1.22523829, 1.58816681, 1.49705679, 1.80244138, 1.55128293, 1.35339409, 1.50985759, 1.0808451, 1.05892796, 1.43414812, 1.43039101, 1.73631655, 1.43940867, 1.82864425, 1.71088265, 2.12015154, 2.45417128, 2.84777618, 2.7925612, 2.90975121, 3.25920745, 3.13801182, 3.52733677, 3.65468491, 3.69395211, 3.49862035, 3.24786017, 3.64463138, 4.00331929, 3.62509565, 3.78013949, 3.4174012, 3.76312271, 3.62054004, 3.67206716, 3.60596058, 3.38636199, 3.42580676, 3.32921095, 3.02976759, 3.28258676, 3.45760838, 3.24917528, 2.94618304, 2.86980011, 2.63191259, 2.39566759, 2.53159917, 2.96273967, 3.25626185, 2.97425402, 3.16412191, 3.58280763, 3.23257727, 3.62353556, 3.12806399, 2.92532313], columns=['value']) # 建立一个长度为 500 个数据点的测试数据, 用于测试数据点多于250个的情况下的评价过程 self.long_data = pd.DataFrame([9.879, 9.916, 10.109, 10.214, 10.361, 10.768, 10.594, 10.288, 10.082, 9.994, 10.125, 10.126, 10.384, 10.734, 10.4, 10.87, 11.338, 11.061, 11.415, 11.724, 12.077, 12.196, 12.064, 12.423, 12.19, 11.729, 11.677, 11.448, 11.485, 10.989, 11.242, 11.239, 11.113, 11.075, 11.471, 11.745, 11.754, 11.782, 12.079, 11.97, 12.178, 11.95, 12.438, 12.612, 12.804, 12.952, 12.612, 12.867, 12.832, 12.832, 13.015, 13.315, 13.249, 12.904, 12.776, 12.64, 12.543, 12.287, 12.225, 11.844, 11.985, 11.945, 11.542, 11.871, 12.245, 12.228, 12.362, 11.899, 11.962, 12.374, 12.816, 12.649, 12.252, 12.579, 12.3, 11.988, 12.177, 12.312, 12.744, 12.599, 12.524, 12.82, 12.67, 12.876, 12.986, 13.271, 13.606, 13.82, 14.161, 13.833, 13.831, 14.137, 13.705, 13.414, 13.037, 12.759, 12.642, 12.948, 13.297, 13.483, 13.836, 14.179, 13.709, 13.655, 13.198, 13.508, 13.953, 14.387, 14.043, 13.987, 13.561, 13.391, 12.923, 12.555, 12.503, 12.292, 11.877, 12.34, 12.141, 11.687, 11.992, 12.458, 12.131, 11.75, 11.739, 11.263, 11.762, 11.976, 11.578, 11.854, 12.136, 12.422, 12.311, 12.56, 12.879, 12.861, 12.973, 13.235, 13.53, 13.531, 13.137, 13.166, 13.31, 13.103, 13.007, 12.643, 12.69, 12.216, 12.385, 12.046, 12.321, 11.9, 11.772, 11.816, 11.871, 11.59, 11.518, 11.94, 11.803, 11.924, 12.183, 12.136, 12.361, 12.406, 11.932, 11.684, 11.292, 11.388, 11.874, 12.184, 12.002, 12.16, 11.741, 11.26, 11.123, 11.534, 11.777, 11.407, 11.275, 11.679, 11.62, 11.218, 11.235, 11.352, 11.366, 11.061, 10.661, 10.582, 10.899, 11.352, 11.792, 11.475, 11.263, 11.538, 11.183, 10.936, 11.399, 11.171, 11.214, 10.89, 10.728, 11.191, 11.646, 11.62, 11.195, 11.178, 11.18, 10.956, 11.205, 10.87, 11.098, 10.639, 10.487, 10.507, 10.92, 10.558, 10.119, 9.882, 9.573, 9.515, 9.845, 9.852, 9.495, 9.726, 10.116, 10.452, 10.77, 11.225, 10.92, 10.824, 11.096, 11.542, 11.06, 10.568, 10.585, 10.884, 10.401, 10.068, 9.964, 10.285, 10.239, 10.036, 10.417, 10.132, 9.839, 9.556, 9.084, 9.239, 9.304, 9.067, 8.587, 8.471, 8.007, 8.321, 8.55, 9.008, 9.138, 9.088, 9.434, 9.156, 9.65, 9.431, 9.654, 10.079, 10.411, 10.865, 10.51, 10.205, 10.519, 10.367, 10.855, 10.642, 10.298, 10.622, 10.173, 9.792, 9.995, 9.904, 9.771, 9.597, 9.506, 9.212, 9.688, 10.032, 9.723, 9.839, 9.918, 10.332, 10.236, 9.989, 10.192, 10.685, 10.908, 11.275, 11.72, 12.158, 12.045, 12.244, 12.333, 12.246, 12.552, 12.958, 13.11, 13.53, 13.123, 13.138, 13.57, 13.389, 13.511, 13.759, 13.698, 13.744, 13.467, 13.795, 13.665, 13.377, 13.423, 13.772, 13.295, 13.073, 12.718, 12.388, 12.399, 12.185, 11.941, 11.818, 11.465, 11.811, 12.163, 11.86, 11.935, 11.809, 12.145, 12.624, 12.768, 12.321, 12.277, 11.889, 12.11, 12.606, 12.943, 12.945, 13.112, 13.199, 13.664, 14.051, 14.189, 14.339, 14.611, 14.656, 15.112, 15.086, 15.263, 15.021, 15.346, 15.572, 15.607, 15.983, 16.151, 16.215, 16.096, 16.089, 16.32, 16.59, 16.657, 16.752, 16.583, 16.743, 16.373, 16.662, 16.243, 16.163, 16.491, 16.958, 16.977, 17.225, 17.637, 17.344, 17.684, 17.892, 18.036, 18.182, 17.803, 17.588, 17.101, 17.538, 17.124, 16.787, 17.167, 17.138, 16.955, 17.148, 17.135, 17.635, 17.718, 17.675, 17.622, 17.358, 17.754, 17.729, 17.576, 17.772, 18.239, 18.441, 18.729, 18.319, 18.608, 18.493, 18.069, 18.122, 18.314, 18.423, 18.709, 18.548, 18.384, 18.391, 17.988, 17.986, 17.653, 17.249, 17.298, 17.06, 17.36, 17.108, 17.348, 17.596, 17.46, 17.635, 17.275, 17.291, 16.933, 17.337, 17.231, 17.146, 17.148, 16.751, 16.891, 17.038, 16.735, 16.64, 16.231, 15.957, 15.977, 16.077, 16.054, 15.797, 15.67, 15.911, 16.077, 16.17, 15.722, 15.258, 14.877, 15.138, 15., 14.811, 14.698, 14.407, 14.583, 14.704, 15.153, 15.436, 15.634, 15.453, 15.877, 15.696, 15.563, 15.927, 16.255, 16.696, 16.266, 16.698, 16.365, 16.493, 16.973, 16.71, 16.327, 16.605, 16.486, 16.846, 16.935, 17.21, 17.389, 17.546, 17.773, 17.641, 17.485, 17.794, 17.354, 16.904, 16.675, 16.43, 16.898, 16.819, 16.921, 17.201, 17.617, 17.368, 17.864, 17.484], columns=['value']) self.long_bench = pd.DataFrame([9.7, 10.179, 10.321, 9.855, 9.936, 10.096, 10.331, 10.662, 10.59, 11.031, 11.154, 10.945, 10.625, 10.233, 10.284, 10.252, 10.221, 10.352, 10.444, 10.773, 10.904, 11.104, 10.797, 10.55, 10.943, 11.352, 11.641, 11.983, 11.696, 12.138, 12.365, 12.379, 11.969, 12.454, 12.947, 13.119, 13.013, 12.763, 12.632, 13.034, 12.681, 12.561, 12.938, 12.867, 13.202, 13.132, 13.539, 13.91, 13.456, 13.692, 13.771, 13.904, 14.069, 13.728, 13.97, 14.228, 13.84, 14.041, 13.963, 13.689, 13.543, 13.858, 14.118, 13.987, 13.611, 14.028, 14.229, 14.41, 14.74, 15.03, 14.915, 15.207, 15.354, 15.665, 15.877, 15.682, 15.625, 15.175, 15.105, 14.893, 14.86, 15.097, 15.178, 15.293, 15.238, 15., 15.283, 14.994, 14.907, 14.664, 14.888, 15.297, 15.313, 15.368, 14.956, 14.802, 14.506, 14.257, 14.619, 15.019, 15.049, 14.625, 14.894, 14.978, 15.434, 15.578, 16.038, 16.107, 16.277, 16.365, 16.204, 16.465, 16.401, 16.895, 17.057, 16.621, 16.225, 16.075, 15.863, 16.292, 16.551, 16.724, 16.817, 16.81, 17.192, 16.86, 16.745, 16.707, 16.552, 16.133, 16.301, 16.08, 15.81, 15.75, 15.909, 16.127, 16.457, 16.204, 16.329, 16.748, 16.624, 17.011, 16.548, 16.831, 16.653, 16.791, 16.57, 16.778, 16.928, 16.932, 17.22, 16.876, 17.301, 17.422, 17.689, 17.316, 17.547, 17.534, 17.409, 17.669, 17.416, 17.859, 17.477, 17.307, 17.245, 17.352, 17.851, 17.412, 17.144, 17.138, 17.085, 16.926, 16.674, 16.854, 17.064, 16.95, 16.609, 16.957, 16.498, 16.552, 16.175, 15.858, 15.697, 15.781, 15.583, 15.36, 15.558, 16.046, 15.968, 15.905, 16.358, 16.783, 17.048, 16.762, 17.224, 17.363, 17.246, 16.79, 16.608, 16.423, 15.991, 15.527, 15.147, 14.759, 14.792, 15.206, 15.148, 15.046, 15.429, 14.999, 15.407, 15.124, 14.72, 14.713, 15.022, 15.092, 14.982, 15.001, 14.734, 14.713, 14.841, 14.562, 15.005, 15.483, 15.472, 15.277, 15.503, 15.116, 15.12, 15.442, 15.476, 15.789, 15.36, 15.764, 16.218, 16.493, 16.642, 17.088, 16.816, 16.645, 16.336, 16.511, 16.2, 15.994, 15.86, 15.929, 16.316, 16.416, 16.746, 17.173, 17.531, 17.627, 17.407, 17.49, 17.768, 17.509, 17.795, 18.147, 18.63, 18.945, 19.021, 19.518, 19.6, 19.744, 19.63, 19.32, 18.933, 19.297, 19.598, 19.446, 19.236, 19.198, 19.144, 19.159, 19.065, 19.032, 18.586, 18.272, 18.119, 18.3, 17.894, 17.744, 17.5, 17.083, 17.092, 16.864, 16.453, 16.31, 16.681, 16.342, 16.447, 16.715, 17.068, 17.067, 16.822, 16.673, 16.675, 16.592, 16.686, 16.397, 15.902, 15.597, 15.357, 15.162, 15.348, 15.603, 15.283, 15.257, 15.082, 14.621, 14.366, 14.039, 13.957, 14.141, 13.854, 14.243, 14.414, 14.033, 13.93, 14.104, 14.461, 14.249, 14.053, 14.165, 14.035, 14.408, 14.501, 14.019, 14.265, 14.67, 14.797, 14.42, 14.681, 15.16, 14.715, 14.292, 14.411, 14.656, 15.094, 15.366, 15.055, 15.198, 14.762, 14.294, 13.854, 13.811, 13.549, 13.927, 13.897, 13.421, 13.037, 13.32, 13.721, 13.511, 13.999, 13.529, 13.418, 13.881, 14.326, 14.362, 13.987, 14.015, 13.599, 13.343, 13.307, 13.689, 13.851, 13.404, 13.577, 13.395, 13.619, 13.195, 12.904, 12.553, 12.294, 12.649, 12.425, 11.967, 12.062, 11.71, 11.645, 12.058, 12.136, 11.749, 11.953, 12.401, 12.044, 11.901, 11.631, 11.396, 11.036, 11.244, 10.864, 11.207, 11.135, 11.39, 11.723, 12.084, 11.8, 11.471, 11.33, 11.504, 11.295, 11.3, 10.901, 10.494, 10.825, 11.054, 10.866, 10.713, 10.875, 10.846, 10.947, 11.422, 11.158, 10.94, 10.521, 10.36, 10.411, 10.792, 10.472, 10.305, 10.525, 10.853, 10.556, 10.72, 10.54, 10.583, 10.299, 10.061, 10.004, 9.903, 9.796, 9.472, 9.246, 9.54, 9.456, 9.177, 9.484, 9.557, 9.493, 9.968, 9.536, 9.39, 8.922, 8.423, 8.518, 8.686, 8.771, 9.098, 9.281, 8.858, 9.027, 8.553, 8.784, 8.996, 9.379, 9.846, 9.855, 9.502, 9.608, 9.761, 9.409, 9.4, 9.332, 9.34, 9.284, 8.844, 8.722, 8.376, 8.775, 8.293, 8.144, 8.63, 8.831, 8.957, 9.18, 9.601, 9.695, 10.018, 9.841, 9.743, 9.292, 8.85, 9.316, 9.288, 9.519, 9.738, 9.289, 9.785, 9.804, 10.06, 10.188, 10.095, 9.739, 9.881, 9.7, 9.991, 10.391, 10.002], columns=['value']) def test_performance_stats(self): """test the function performance_statistics() """ pass def test_fv(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_fv(self.test_data1), 6.39245474) self.assertAlmostEqual(eval_fv(self.test_data2), 10.05126375) self.assertAlmostEqual(eval_fv(self.test_data3), 6.95068113) self.assertAlmostEqual(eval_fv(self.test_data4), 8.86508591) self.assertAlmostEqual(eval_fv(self.test_data5), 4.58627048) self.assertAlmostEqual(eval_fv(self.test_data6), 4.10346795) self.assertAlmostEqual(eval_fv(self.test_data7), 2.92532313) self.assertAlmostEqual(eval_fv(pd.DataFrame()), -np.inf) print(f'Error testing') self.assertRaises(AssertionError, eval_fv, 15) self.assertRaises(KeyError, eval_fv, pd.DataFrame([1, 2, 3], columns=['non_value'])) def test_max_drawdown(self): print(f'test with test data and empty DataFrame') self.assertAlmostEqual(eval_max_drawdown(self.test_data1)[0], 0.264274308) self.assertEqual(eval_max_drawdown(self.test_data1)[1], 53) self.assertEqual(eval_max_drawdown(self.test_data1)[2], 86) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data1)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data2)[0], 0.334690849) self.assertEqual(eval_max_drawdown(self.test_data2)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data2)[2], 10) self.assertEqual(eval_max_drawdown(self.test_data2)[3], 19) self.assertAlmostEqual(eval_max_drawdown(self.test_data3)[0], 0.244452899) self.assertEqual(eval_max_drawdown(self.test_data3)[1], 90) self.assertEqual(eval_max_drawdown(self.test_data3)[2], 99) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data3)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data4)[0], 0.201849684) self.assertEqual(eval_max_drawdown(self.test_data4)[1], 14) self.assertEqual(eval_max_drawdown(self.test_data4)[2], 50) self.assertEqual(eval_max_drawdown(self.test_data4)[3], 54) self.assertAlmostEqual(eval_max_drawdown(self.test_data5)[0], 0.534206456) self.assertEqual(eval_max_drawdown(self.test_data5)[1], 21) self.assertEqual(eval_max_drawdown(self.test_data5)[2], 60) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data5)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data6)[0], 0.670062689) self.assertEqual(eval_max_drawdown(self.test_data6)[1], 0) self.assertEqual(eval_max_drawdown(self.test_data6)[2], 70) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data6)[3])) self.assertAlmostEqual(eval_max_drawdown(self.test_data7)[0], 0.783577449) self.assertEqual(eval_max_drawdown(self.test_data7)[1], 17) self.assertEqual(eval_max_drawdown(self.test_data7)[2], 51) self.assertTrue(np.isnan(eval_max_drawdown(self.test_data7)[3])) self.assertEqual(eval_max_drawdown(
pd.DataFrame()
pandas.DataFrame
import os os.chdir('seqFISH_AllenVISp/') import pickle import numpy as np import pandas as pd from sklearn.neighbors import NearestNeighbors import time as tm with open ('data/SpaGE_pkl/seqFISH_Cortex.pkl', 'rb') as f: datadict = pickle.load(f) seqFISH_data = datadict['seqFISH_data'] seqFISH_data_scaled = datadict['seqFISH_data_scaled'] seqFISH_meta= datadict['seqFISH_meta'] del datadict with open ('data/SpaGE_pkl/Allen_VISp.pkl', 'rb') as f: datadict = pickle.load(f) RNA_data = datadict['RNA_data'] RNA_data_scaled = datadict['RNA_data_scaled'] del datadict #### Leave One Out Validation #### Common_data = RNA_data_scaled[np.intersect1d(seqFISH_data_scaled.columns,RNA_data_scaled.columns)] Imp_Genes = pd.DataFrame(columns=Common_data.columns) precise_time = [] knn_time = [] for i in Common_data.columns: print(i) start = tm.time() from principal_vectors import PVComputation n_factors = 50 n_pv = 50 dim_reduction = 'pca' dim_reduction_target = 'pca' pv_FISH_RNA = PVComputation( n_factors = n_factors, n_pv = n_pv, dim_reduction = dim_reduction, dim_reduction_target = dim_reduction_target ) pv_FISH_RNA.fit(Common_data.drop(i,axis=1),seqFISH_data_scaled[Common_data.columns].drop(i,axis=1)) S = pv_FISH_RNA.source_components_.T Effective_n_pv = sum(np.diag(pv_FISH_RNA.cosine_similarity_matrix_) > 0.3) S = S[:,0:Effective_n_pv] Common_data_t = Common_data.drop(i,axis=1).dot(S) FISH_exp_t = seqFISH_data_scaled[Common_data.columns].drop(i,axis=1).dot(S) precise_time.append(tm.time()-start) start = tm.time() nbrs = NearestNeighbors(n_neighbors=50, algorithm='auto',metric = 'cosine').fit(Common_data_t) distances, indices = nbrs.kneighbors(FISH_exp_t) Imp_Gene = np.zeros(seqFISH_data.shape[0]) for j in range(0,seqFISH_data.shape[0]): weights = 1-(distances[j,:][distances[j,:]<1])/(np.sum(distances[j,:][distances[j,:]<1])) weights = weights/(len(weights)-1) Imp_Gene[j] = np.sum(np.multiply(RNA_data[i][indices[j,:][distances[j,:] < 1]],weights)) Imp_Gene[np.isnan(Imp_Gene)] = 0 Imp_Genes[i] = Imp_Gene knn_time.append(tm.time()-start) Imp_Genes.to_csv('Results/SpaGE_LeaveOneOut.csv') precise_time =
pd.DataFrame(precise_time)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import division, print_function import numpy as np, pandas as pd from astropy.table import Table from astropy.coordinates import SkyCoord from astropy import units as u from glob import glob import os def make_prioritycut_ctl(datadir='/Users/luke/local/TIC/CTL71/', prioritycut=0.0015, subcols = ['RA', 'DEC', 'TESSMAG', 'TEFF', 'PRIORITY', 'RADIUS', 'MASS', 'CONTRATIO', 'ECLONG', 'ECLAT', 'DIST', 'TICID', 'SPEC_LIST'], savpath = '../data/TIC71_prioritycut.csv'): ''' I downloaded the 2018/07/07 CTL direct from http://astro.phy.vanderbilt.edu/~oelkerrj/tic7_ctl1_20182606.tar.gz. It's only 2Gb, but regardless I put in on a storage drive. From the docs at https://filtergraph.com/tess_ctl: This portal was updated to reflect the CTL of TIC-7.1 on July 7, 2018. This Candidate Target List (CTL-7.1) is a compilation of several catalogs, including 2MASS, Gaia DR1, UCAC-4 & 5, Tycho-2, APASS DR9 and others. The CTL is the current best effort to identify stars most suitable for transit detection with TESS. Stars are considered for the CTL if they are: 1) identified as RPMJ dwarfs with greater than 2-sigma confidence; and 2) meet one of the following temperature/magnitude criteria: (TESSmag < 12 and Teff >= 5500K) or (TESSmag < 13 and Teff < 5500K). Alternatively, a star is included in the CTL, regardless of the conditions above, if the star is a member of the bright star list (TESSmag < 6) or the specially curated cool dwarf, hot subdwarf, and known planet lists. Users who are interested only in the top 200K or 400K stars may use a filter on the priority of 0.0017 and 0.0011 respectively. The full TIC & CTL will be available for download at MAST. The full machine-readable version of this CTL filtergraph portal is available as a comma-separated file at (above link). Kwargs: datadir, extracted should start looking like: luke@brik:~/local/TIC/CTL71$ tree -L 1 . ├── 00-02.csv ├── 02-04.csv ├── 04-06.csv ├── 06-08.csv ├── 08-10.csv ├── 10-12.csv ├── 12-14.csv ├── 14-16.csv ├── 16-18.csv ├── 18-20.csv ├── 20-22.csv ├── 22-24.csv └── header.txt prioritycut: 0.0015 corresponds to top 300k or so. subcols: to write out in prioritycut csv ''' with open(datadir+'header.txt') as f: hdr = f.readlines()[0] columns = [l.strip('\n') for l in hdr.split(',')] subcats = np.sort(glob(datadir+'??-??.csv')) print('making priority cut catalog...') for ix, subcat in enumerate(subcats): print(ix) if os.path.exists(datadir+'temp_{:d}.csv'.format(ix)): continue sc = pd.read_csv(subcat, names=columns) sc = sc[subcols] sc = sc[sc['PRIORITY']>prioritycut] sc.to_csv(datadir+'temp_{:d}.csv'.format(ix), index=False) temps = np.sort(glob(datadir+'temp_*.csv')) for ix, temp in enumerate(temps): if ix == 0: df =
pd.read_csv(temp)
pandas.read_csv
''' script to join epsilon in the log file with the calculated metrics (for older version of the data) ''' import os import pandas as pd import argparse from pathlib import Path import re from tqdm import tqdm PATTERN = re.compile("ε = (.*), δ = (.*)\) for α = (.*)") def get_epsilon(logs, model_path): epsilons = [] for i, line in enumerate(logs): if model_path in line: if 'ε' in logs[i-2]: e, d, a = PATTERN.search(logs[i-2]).group(1), PATTERN.search(logs[i-2]).group(2), PATTERN.search(logs[i-2]).group(3) elif 'ε' in logs[i-1]: e, d, a = PATTERN.search(logs[i-1]).group(1), PATTERN.search(logs[i-1]).group(2), PATTERN.search(logs[i-1]).group(3) else: print("no privacy found, must be nodp") e, d, a = 0, 0, 0 # raise ValueError(f'{model_path}, {line}') epsilons.append([e,d,a]) assert len(epsilons) == 1, f'{model_path}' return epsilons[0] if __name__ == "__main__": parser = argparse.ArgumentParser(description='PyTorch Wikitext-2 Language Model') # Model parameters. parser.add_argument('--checkpoint', '-ckpt', type=str, help='model checkpoint to use') parser.add_argument('--log_file', '-log', type=str, help='log file') parser.add_argument('--csv_file', '-csv', type=str, help='csv file') args = parser.parse_args() with open(args.log_file, 'r') as fh: logs = fh.readlines() df = pd.read_csv(args.csv_file) records = [] paths = sorted(Path(args.checkpoint).iterdir(), key=os.path.getmtime) for model_path in tqdm(paths): model_path = str(model_path) model_ppl, model_acc, epoch_num = float(model_path.split('ppl-')[-1].split('_')[0]), float(model_path.split('acc-')[-1].split('_')[0]), int(model_path.split('epoch-')[-1]) e, d, a = get_epsilon(logs, model_path) record = [epoch_num, model_ppl, model_acc, e, d, a, model_path] records.append(record) records = pd.DataFrame(records, columns=['epoch', 'model_ppl', 'model_acc', 'epsilon', 'delta', 'alpha', 'model_path']) # import pdb; pdb.set_trace() df_new =
pd.merge(df, records, on=['epoch', 'model_ppl', 'model_acc'])
pandas.merge
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import numpy as np import pandas as pd import pytest try: import pyarrow as pa except ImportError: # pragma: no cover pa = None try: import fastparquet as fp except ImportError: # pragma: no cover fp = None from .... import dataframe as md from .... import tensor as mt from ...datasource.read_csv import DataFrameReadCSV from ...datasource.read_sql import DataFrameReadSQL from ...datasource.read_parquet import DataFrameReadParquet @pytest.mark.parametrize('chunk_size', [2, (2, 3)]) def test_set_index(setup, chunk_size): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=chunk_size) expected = df1.set_index('y', drop=True) df3 = df2.set_index('y', drop=True) pd.testing.assert_frame_equal( expected, df3.execute().fetch()) expected = df1.set_index('y', drop=False) df4 = df2.set_index('y', drop=False) pd.testing.assert_frame_equal( expected, df4.execute().fetch()) expected = df1.set_index('y') df2.set_index('y', inplace=True) pd.testing.assert_frame_equal( expected, df2.execute().fetch()) def test_iloc_getitem(setup): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1.iloc[1] df3 = df2.iloc[1] result = df3.execute(extra_config={'check_series_name': False}).fetch() pd.testing.assert_series_equal( expected, result) # plain index on axis 1 expected = df1.iloc[:2, 1] df4 = df2.iloc[:2, 1] pd.testing.assert_series_equal( expected, df4.execute().fetch()) # slice index expected = df1.iloc[:, 2:4] df5 = df2.iloc[:, 2:4] pd.testing.assert_frame_equal( expected, df5.execute().fetch()) # plain fancy index expected = df1.iloc[[0], [0, 1, 2]] df6 = df2.iloc[[0], [0, 1, 2]] pd.testing.assert_frame_equal( expected, df6.execute().fetch()) # plain fancy index with shuffled order expected = df1.iloc[[0], [1, 2, 0]] df7 = df2.iloc[[0], [1, 2, 0]] pd.testing.assert_frame_equal( expected, df7.execute().fetch()) # fancy index expected = df1.iloc[[1, 2], [0, 1, 2]] df8 = df2.iloc[[1, 2], [0, 1, 2]] pd.testing.assert_frame_equal( expected, df8.execute().fetch()) # fancy index with shuffled order expected = df1.iloc[[2, 1], [1, 2, 0]] df9 = df2.iloc[[2, 1], [1, 2, 0]] pd.testing.assert_frame_equal( expected, df9.execute().fetch()) # one fancy index expected = df1.iloc[[2, 1]] df10 = df2.iloc[[2, 1]] pd.testing.assert_frame_equal( expected, df10.execute().fetch()) # plain index expected = df1.iloc[1, 2] df11 = df2.iloc[1, 2] assert expected == df11.execute().fetch() # bool index array expected = df1.iloc[[True, False, True], [2, 1]] df12 = df2.iloc[[True, False, True], [2, 1]] pd.testing.assert_frame_equal( expected, df12.execute().fetch()) # bool index array on axis 1 expected = df1.iloc[[2, 1], [True, False, True]] df14 = df2.iloc[[2, 1], [True, False, True]] pd.testing.assert_frame_equal( expected, df14.execute().fetch()) # bool index expected = df1.iloc[[True, False, True], [2, 1]] df13 = df2.iloc[md.Series([True, False, True], chunk_size=1), [2, 1]] pd.testing.assert_frame_equal( expected, df13.execute().fetch()) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3).iloc[:3] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[:3]) series = md.Series(data, chunk_size=3).iloc[4] assert series.execute().fetch() == data.iloc[4] series = md.Series(data, chunk_size=3).iloc[[2, 3, 4, 9]] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[[2, 3, 4, 9]]) series = md.Series(data, chunk_size=3).iloc[[4, 3, 9, 2]] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[[4, 3, 9, 2]]) series = md.Series(data).iloc[5:] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[5:]) # bool index array selection = np.random.RandomState(0).randint(2, size=10, dtype=bool) series = md.Series(data).iloc[selection] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[selection]) # bool index series = md.Series(data).iloc[md.Series(selection, chunk_size=4)] pd.testing.assert_series_equal( series.execute().fetch(), data.iloc[selection]) # test index data = pd.Index(np.arange(10)) index = md.Index(data, chunk_size=3)[:3] pd.testing.assert_index_equal( index.execute().fetch(), data[:3]) index = md.Index(data, chunk_size=3)[4] assert index.execute().fetch() == data[4] index = md.Index(data, chunk_size=3)[[2, 3, 4, 9]] pd.testing.assert_index_equal( index.execute().fetch(), data[[2, 3, 4, 9]]) index = md.Index(data, chunk_size=3)[[4, 3, 9, 2]] pd.testing.assert_index_equal( index.execute().fetch(), data[[4, 3, 9, 2]]) index = md.Index(data)[5:] pd.testing.assert_index_equal( index.execute().fetch(), data[5:]) # bool index array selection = np.random.RandomState(0).randint(2, size=10, dtype=bool) index = md.Index(data)[selection] pd.testing.assert_index_equal( index.execute().fetch(), data[selection]) index = md.Index(data)[mt.tensor(selection, chunk_size=4)] pd.testing.assert_index_equal( index.execute().fetch(), data[selection]) def test_iloc_setitem(setup): df1 = pd.DataFrame([[1, 3, 3], [4, 2, 6], [7, 8, 9]], index=['a1', 'a2', 'a3'], columns=['x', 'y', 'z']) df2 = md.DataFrame(df1, chunk_size=2) # plain index expected = df1 expected.iloc[1] = 100 df2.iloc[1] = 100 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # slice index expected.iloc[:, 2:4] = 1111 df2.iloc[:, 2:4] = 1111 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # plain fancy index expected.iloc[[0], [0, 1, 2]] = 2222 df2.iloc[[0], [0, 1, 2]] = 2222 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # fancy index expected.iloc[[1, 2], [0, 1, 2]] = 3333 df2.iloc[[1, 2], [0, 1, 2]] = 3333 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # plain index expected.iloc[1, 2] = 4444 df2.iloc[1, 2] = 4444 pd.testing.assert_frame_equal( expected, df2.execute().fetch()) # test Series data = pd.Series(np.arange(10)) series = md.Series(data, chunk_size=3) series.iloc[:3] = 1 data.iloc[:3] = 1 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[4] = 2 data.iloc[4] = 2 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[[2, 3, 4, 9]] = 3 data.iloc[[2, 3, 4, 9]] = 3 pd.testing.assert_series_equal( series.execute().fetch(), data) series.iloc[5:] = 4 data.iloc[5:] = 4 pd.testing.assert_series_equal( series.execute().fetch(), data) # test Index data = pd.Index(np.arange(10)) index = md.Index(data, chunk_size=3) with pytest.raises(TypeError): index[5:] = 4 def test_loc_getitem(setup): rs = np.random.RandomState(0) # index and columns are labels raw1 = pd.DataFrame(rs.randint(10, size=(5, 4)), index=['a1', 'a2', 'a3', 'a4', 'a5'], columns=['a', 'b', 'c', 'd']) # columns are labels raw2 = raw1.copy() raw2.reset_index(inplace=True, drop=True) # columns are non unique and monotonic raw3 = raw1.copy() raw3.columns = ['a', 'b', 'b', 'd'] # columns are non unique and non monotonic raw4 = raw1.copy() raw4.columns = ['b', 'a', 'b', 'd'] # index that is timestamp raw5 = raw1.copy() raw5.index = pd.date_range('2020-1-1', periods=5) raw6 = raw1[:0] df1 = md.DataFrame(raw1, chunk_size=2) df2 = md.DataFrame(raw2, chunk_size=2) df3 = md.DataFrame(raw3, chunk_size=2) df4 = md.DataFrame(raw4, chunk_size=2) df5 = md.DataFrame(raw5, chunk_size=2) df6 = md.DataFrame(raw6) df = df2.loc[3, 'b'] result = df.execute().fetch() expected = raw2.loc[3, 'b'] assert result == expected df = df1.loc['a3', 'b'] result = df.execute(extra_config={'check_shape': False}).fetch() expected = raw1.loc['a3', 'b'] assert result == expected # test empty list df = df1.loc[[]] result = df.execute().fetch() expected = raw1.loc[[]] pd.testing.assert_frame_equal(result, expected) df = df2.loc[[]] result = df.execute().fetch() expected = raw2.loc[[]] pd.testing.assert_frame_equal(result, expected) df = df2.loc[1:4, 'b':'d'] result = df.execute().fetch() expected = raw2.loc[1:4, 'b': 'd'] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:4, 'b':] result = df.execute().fetch() expected = raw2.loc[:4, 'b':] pd.testing.assert_frame_equal(result, expected) # slice on axis index whose index_value does not have value df = df1.loc['a2':'a4', 'b':] result = df.execute().fetch() expected = raw1.loc['a2':'a4', 'b':] pd.testing.assert_frame_equal(result, expected) df = df2.loc[:, 'b'] result = df.execute().fetch() expected = raw2.loc[:, 'b'] pd.testing.assert_series_equal(result, expected) # 'b' is non-unique df = df3.loc[:, 'b'] result = df.execute().fetch() expected = raw3.loc[:, 'b']
pd.testing.assert_frame_equal(result, expected)
pandas.testing.assert_frame_equal
# -------------- import pandas as pd # Code Starts Here def load_data(path= path): df= pd.read_csv(path) df= df[['description', 'variety']] df= df.iloc[:80000] print(df.head()) return df df= load_data() # Code Ends here # -------------- from sklearn.preprocessing import LabelEncoder from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, TfidfTransformer from nltk.corpus import stopwords from nltk.tokenize import word_tokenize from string import punctuation from nltk.stem import LancasterStemmer import numpy as np custom = set(stopwords.words('english')+list(punctuation)) # Code Starts Here df= load_data() df= df.groupby('variety').filter(lambda x: len(x)>1000) def to_lower(x): return x.lower() df= df.apply(np.vectorize(to_lower)) df.variety= df.variety.str.replace(" ", "_") df= df.reset_index() all_text= pd.DataFrame(df.description) lancaster= LancasterStemmer() all_text_list= list(all_text.description) stemmed_text= list() for i in range(len(all_text_list)): stemmed_text.append(lancaster.stem(all_text_list[i])) all_text= pd.DataFrame({'description':stemmed_text}) # Stemming the data def remove_stopwords(x): clean= [word for word in x.split() if word not in custom] return " ".join(clean) all_text= all_text.apply(np.vectorize(remove_stopwords)) # Initialize Tfidf vectorizer and LabelEncoder tfidf= TfidfVectorizer(stop_words= 'english') le= LabelEncoder() tfidf.fit(all_text.description) X= tfidf.transform(all_text.description).toarray() y= pd.DataFrame(df.variety) y= le.fit_transform(y.variety) # print(type(y)) # Code Ends Here # -------------- from sklearn.metrics import accuracy_score, classification_report from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.svm import SVC # Code Starts here # Splitting the dataset X_train, X_test, y_train, y_test= train_test_split(X, y, test_size= .3, random_state= 42) # Initializing Navie bayes nb= MultinomialNB() nb.fit(X_train, y_train) y_pred_nb= nb.predict(X_test) nb_acc= accuracy_score(y_test, y_pred_nb) # Code Ends here # -------------- from collections import Counter from sklearn.model_selection import train_test_split import numpy as np # Code Starts Here #Load the dataset from path df=
pd.read_csv(path)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Wed Jun 12 13:48:34 2019 @author: vrrodovalho """ import os import sys import re import pathlib import pandas as pd import numpy as np import KEGG as kegg import matplotlib.pyplot as plt import seaborn as sns from adjustText import adjust_text from tabulate import tabulate ''' ''' def update_annotation(df, column, replace_dict): ''' Updates a dataframe column based on a dictionary. Parameters ---------- df : DataFrame DataFrame that will be modified. column : str Name of the column that will be modified. replace_dict : dict Dictionary whose keys will be replaced by its values in the selected column in df. Returns ------- df : DataFrame The updated DataFrame. ''' df = df.copy() df[column] = df[column].replace(replace_dict, regex=True) return df def export_gmt(df, cat_col='KEGG_Pathway', cat_sep=',', genes_col='gi', description_map={}, replace_dict={}, cat_fill_na='?', ref_org='', drop_unknowns=True, filter_by_size=False, size_limit=(2,150), forbidden_set_prefixes=['map'], output_dir='', file_name=''): ''' Converts a df mapping gene -> categories to a df mapping category -> genes And creates a GMT file for using with gProfiler Parameters ---------- df : DataFrame DESCRIPTION. cat_col : str, optional Name of the column with the categories annotation (KEGG, COG...). The default is 'KEGG_Pathway'. cat_sep : str, optional The delimiter that separates multiple categories in a row. The default is ','. genes_col : str, optional Name of the column with the genes. The default is 'gi'. description_map : dict, optional A dictionary that gives a description to each category. That could be COG letters as keys and their meaning as values. The default is {}. replace_dict : dict, optional A dictionary to replace row values, useful to take out obsolete annotation. The default is {}. cat_fill_na : str, optional A value to fill missing values. The default is '?'. ref_org : str, optional A kegg organism code to be used as a reference for orthologues filtering. The default is ''. drop_unknowns : bool, optional Whether to drop the functional category defined as unknown, that previously had na values. The default is False. filter_by_size : bool, optional Whether to filter functional categories by min/max size. The default is False. size_limit : tuple, optional A tuple containing 2 integers, a min and a max size for the sets of functional categories. The default is (2,150). forbidden_set_prefixes : list, optional If some gene sets are forbidden, they can be identified in a prefix list to be removed from the dataset. The default is ['map']. output_dir : str, optional Output directory. The default is ''. file_name : str, optional Output file name. The default is ''. Returns ------- sub_df : DataFrame A DataFrame close to the GMT file produced. ''' # simplify df sub_df = df.loc[:, [genes_col, cat_col]].copy() # make needed replacements if replace_dict: sub_df = update_annotation(sub_df, column=cat_col, replace_dict=replace_dict) # fill na as specified sub_df[cat_col].fillna(cat_fill_na, inplace=True) # devide rows with multiple annotation based on delimiter if cat_sep == '': sub_df = (sub_df.set_index([genes_col]) .stack() .apply(lambda x: pd.Series(list(x))) .stack() .unstack(-2) .reset_index(-1, drop=True) .reset_index() ) else: sub_df = (sub_df.set_index([genes_col]) .stack() .str.split(cat_sep, expand=True) .stack() .unstack(-2) .reset_index(-1, drop=True) .reset_index() ) sub_df = ( sub_df.groupby(by=cat_col)[genes_col] .apply(set) .reset_index() ) # # filter by set size, to eliminate sets too short or too long if filter_by_size: if size_limit: min_size = min(size_limit) max_size = max(size_limit) sub_df['size'] = sub_df[genes_col].apply(len) sub_df = sub_df.sort_values(by=['size'], ascending=False) sub_df = sub_df.loc[ ( ( sub_df['size'] > min_size ) & \ ( sub_df['size'] < max_size ) ), [cat_col, genes_col]] else: str1 = "If filter_by_size is True, size_limit should be defined " str2 = "as a tuple containing 2 int: a min and a max limit." print(str1 + str2) sub_df = sub_df.set_index(cat_col) # take out unknown category (privously na) if drop_unknowns: sub_df = sub_df.drop([cat_fill_na]) # take out forbidden gene sets if forbidden_set_prefixes: for i in forbidden_set_prefixes: sub_df = sub_df[~sub_df.index.str.startswith(i)] # Use a KEGG reference organism to drop unrelated pathways if ref_org: allowed_ids = search_allowed_pathways_ids(ref_org) sub_df = sub_df[sub_df.index.isin(allowed_ids)] # change 1-column set to several columns and name them accordingly f = lambda x: 'element_{}'.format(x + 1) sub_df = pd.DataFrame(sub_df[genes_col].values.tolist(), sub_df.index, dtype=object ).rename(columns=f) sub_df = sub_df.reset_index() # Add description to gene sets, if available if description_map: description_map[cat_fill_na] = 'Unknown' sub_df['description'] = sub_df[cat_col].map(description_map) else: sub_df['description'] = np.nan # reorder description column, to be in GMT style cols = list(sub_df.columns) cols.remove('description') cols.insert(1, 'description') sub_df = sub_df.loc[:,cols] # # save and return output_file = output_dir / file_name sub_df.to_csv(output_file, header=False, index=False, sep='\t') return sub_df def generate_gprofiler_list(df, id_column='', category_filter={}, ordered_by='', output_dir='', file_name=''): ''' Returns a list of genes to use in GProfiler. Parameters ---------- df : DataFrame The initial DataFrame. id_column : str The name of the column that contains gene IDs. category_filter : dict, optional A dictionary in which keys are column names (str) and values are allowed rows in that column (str). The default is {}. ordered_by : str, optional The name of the column that will be used to sort gene list. It could be a expression measure. The default is ''. output_dir : str Output directory. file_name : str Output file name. Returns ------- string : str A list of genes to be used in GProfiler. ''' df = df.copy() # Filter gene list by column values (such as a category) if category_filter: for col in category_filter: value = category_filter[col] df = df.loc[df[col] == value, :] # Sort gene list by column values (such as expression) if ordered_by: df[ordered_by] = df[ordered_by].abs() df = df.sort_values(by=ordered_by, ascending=False) min_value = df.iloc[0, df.columns.get_loc(ordered_by)] max_value = df.iloc[-1, df.columns.get_loc(ordered_by)] string = "Ordered in {}, from {} to {}. ".format(ordered_by, min_value, max_value) print(string) # Make final string and files proteins = df.loc[:, id_column].astype(str).to_list() string = '\n'.join(proteins) output_file = output_dir / file_name with open(output_file, 'w') as output: output.write(string) return string def merge_enrichment_sources(source_files={'name': 'dataframe'}, max_p_val=0.05, v_limit=6, replace_values={}, output_dir='', file_name=''): ''' Merge enrichment results from different sources (KEGG, COG) into the same dataframe, corresponding to the same set of proteins. Parameters ---------- source_files : dict A dictionary where the keys are string identifiers (KEGG, COG) and the values are the dataframes corresponding to the enrichment results corresponding to those strings. max_p_val : float, optional The p-value threshold of significance. The default is 0.05. v_limit : float, optional Vertical superior limit of log(p-value). Values exceeding that threshold are capped to it. The default is 6. replace_values : dict, optional A dictionary where the keys are column names and the values are replacement dictionaries, containing key-value pairs for replacing values in that column. The default is {}. output_dir : str, optional Output directory. The default is ''. file_name : str, optional Output file name. The default is ''. Returns ------- df : DataFrame A merged DataFrame. ''' df = pd.DataFrame() for item_name in source_files: item = source_files[item_name] item['source'] = item_name df = pd.concat([df, item]) df['log_p_value'] = np.log10(df['adjusted_p_value']) * -1 df['sig'] = np.where(df['adjusted_p_value'] <= max_p_val, 'sig.', 'not sig.') df = df.sort_values(by=['source', 'log_p_value'], ascending=False) df['log_p_value_capped'] = np.where(df['log_p_value'] >= v_limit, v_limit, df['log_p_value']) if replace_values: for col in replace_values: replace_dict = replace_values[col] df[col] = df[col].replace(replace_dict, regex=True) # save file df.to_excel(output_dir/file_name, index=False) return df def plot_enrichment(df, data = {'x':'source', 'y':'log_p_value_capped', 'label_col':'term_id', 'label_desc_col':'term_name'}, v_limit=6, max_p_val=0.05, significancy={'column':'sig','true':'sig.','false':'not sig.'}, jitter_val=0.3, s=4, reg_categories= {'column': 'sig', 'true':'up', 'false':'down', 'true_color':'blue', 'false_color':'red'}, title='Functional enrichment', save_fig=True,output_dir='',file_name='',file_format='tif', dpi=300): ''' Plot enrichment Parameters ---------- df : DataFrame A dataframe containing the data to be plotted. Ideally generated by merge_enrichment_sources function. data : dict, optional A dictionary specifying column names in df for x, y and label values. The default is {'x':'source', 'y':'log_p_value_capped', 'label_col':'term_id', 'label_desc_col':'term_name'}. max_p_val : float, optional The p-value threshold of significance. The default is 0.05. v_limit : float, optional Vertical superior limit of log(p-value). Values exceeding that threshold are capped to it. The default is 6. significancy : dict, optional A dictionary specifying which is the significancy column and what values should be considered True and False. The default is {'column':'sig','true':'sig.','false':'not sig.'}. jitter_val : float, optional Parameter for stripplot. Affects the points distribution. The default is 0.3. s : float, optional The size of the points in the graph. The default is 4. reg_categories : dict, optional A dictionary specifying regulation categories (up-regulated, down-regulated), the column, their values and colors. The default is {'column':'sig', 'true':'up', 'false':'down', 'true_color':'blue', 'false_color':'red'}. title : str, optional A title string to be plotted in the graph. The default is 'Functional enrichment'. save_fig : bool, optional Wether to save figure or not. The default is True. output_dir : str, optional Output directory. The default is ''. file_name : str, optional Output file name. The default is ''. file_format : str, optional File format. The default is 'tif'. dpi : int, optional Resolution. The default is 300. Returns ------- dict A dictionary containing the final DataFrame and a legend string. ''' df = df.copy() fig = plt.figure() ax = plt.axes() sub_df_sig = df.loc[ df[significancy['column']] == significancy['true'] ] sub_df_not = df.loc[ df[significancy['column']] == significancy['false'] ] x = data['x'] y = data['y'] commons = {'ax':ax,'x':x,'y':y,'size':s,'marker':'s','jitter':jitter_val} # plot not significtives sns.stripplot(data=sub_df_not, linewidth=0.1, alpha=0.5, color='grey', **commons) # plot significatives if reg_categories: palette = {reg_categories['true']:reg_categories['true_color'], reg_categories['false']:reg_categories['false_color']} sns.stripplot(data=sub_df_sig,linewidth=0.5,alpha=1.0,palette=palette, hue=reg_categories['column'],dodge=True, **commons) else: sns.stripplot(data=sub_df_sig,linewidth=0.5,alpha=1.0,color='blue', **commons) # title? if title != '': plt.title(title, loc='center') # plot lines ax.set(ylim=(-0.2, v_limit+1)) log_max_p_val = np.log10(max_p_val) * -1 plt.axhline(y=log_max_p_val , color='grey', linewidth=0.5, linestyle='--') plt.axhline(y=v_limit , color='grey', linewidth=0.5, linestyle='--') # plot labels plt.xlabel('', fontsize=12, fontname="sans-serif") plt.ylabel('Statistical significance [-log10(P-value)]', fontsize=12, fontname="sans-serif") # create a df with x-y coordinates only for significatives df_graph = pd.DataFrame({'x' : [], y : []}) for i in range(len(ax.collections)): coll = ax.collections[i] x_values, y_values = np.array(coll.get_offsets()).T # look for significative y annotate = False for i in y_values: if i >= log_max_p_val: annotate = True break # if found significative y, add to df that will be used to annotate if annotate: sub_df = pd.DataFrame({'x':x_values, y:y_values}) df_graph = pd.concat([df_graph, sub_df]) # transfer id col to df_graph in order to have unique identifiers # and avoid label confusion unique_id = data['label_col'] unique_id_desc = data['label_desc_col'] df_graph[unique_id] = sub_df_sig[unique_id] # anottate significative y merged = sub_df_sig.merge(df_graph, on=[y, unique_id], how='left') sig_x = merged['x'] sig_y = merged[y] labels = merged[unique_id] coordinates = [] for xi, yi, label in zip(sig_x, sig_y, labels): element = ax.annotate(label, xy=(xi,yi), xytext=(3,3), size=8, ha="center", va="top", textcoords="offset points") coordinates.append(element) # ajust labels to avoid superposition adjust_text(coordinates, autoalign='xy', arrowprops=dict(arrowstyle='<-, head_length=0.05, head_width=0.05', color='black', alpha=0.6, linewidth=0.5)) plt.show() # return a legend string and file legend_df = sub_df_sig.loc[:,[unique_id, unique_id_desc]] legend = tabulate(legend_df, showindex=False) legend_file_name = '.'.join(file_name.split('.')[:-1]) + '.txt' output_legend = output_dir / legend_file_name with open(output_legend, 'w') as output: output.write(legend) # save if save_fig: fig.savefig(output_dir/file_name, format=file_format, dpi=dpi, bbox_inches="tight") return {'sub_df_sig':sub_df_sig, 'df_graph':df_graph, 'df':merged, 'legend':legend} def search_allowed_pathways_ids(ref_org, unknown='?'): ''' Search in KEGG all the pathways ids for an organism Parameters ---------- ref_org : str KEGG organism code. Returns ------- allowed_ids : list List of allowed ids (with ko prefix). ''' kegg_data = kegg.get_KEGG_data(org=ref_org, get_pathway_list=True, get_genes_and_pathways=False, format_conversion=False, genes_names=False) org_pathways = kegg.parse_KEGG_pathways_description(kegg_data['pathways']) allowed_ref_ids = list(org_pathways.keys()) allowed_ids = [] p = '[a-z]+([0-9]+)' for ref_id in allowed_ref_ids: general_id = re.match(p,ref_id).groups()[0] general_id = 'ko' + general_id allowed_ids.append(general_id) allowed_ids.append(unknown) return allowed_ids def export_tables(proteomics_df=None, proteomics_id_col='', enrichment_df=None, enrichment_id_col='', enrichment_src_col='', merge_all=False, enrichment_desc_col='', split_ch=',', enrichment_filter={}, map_src2annot={}, output_dir='', file_name_prefix=''): ''' Function to export merge proteomics annotation and functional enrichment table and filter based on specific rules. Parameters ---------- proteomics_df : DataFrame A DataFrame containing proteomics annotation. proteomics_id_col : str The name of the column in proteomics_df where the protein ids are. enrichment_df : DataFrame A DataFrame containing enrichment results for proteins in proteomics_df. enrichment_id_col : str The name of the column where the functional category ids are specified. enrichment_src_col : str The name of the column where the source database is specified. enrichment_desc_col : str The name of the column where the description of id is specified. split_ch : str A character to split a string into a list of items in enrichment_id_set_col. The default is ','. merge_all : bool Whether to merge all enriched categories elements in one single dataframe. Otherwise, they will be returned separated by category in a dictionary. The default is 'False'. enrichment_filter : dict, optional A dictionary describing a filter for enrichment_df the format { col_name : [allowed_values] }. Only rows fulfilling these rules are accepted. map_src2annot : dict A dictionary with the relationship between { col_name : [allowed_values] }. Only rows fulfilling these rules are accepted. output_dir : str, The output directory. file_name_prefix : str A prefix for every output file name. The default is ''. Returns ------- None. ''' prot = proteomics_df.copy() enri = enrichment_df.copy() # get descritions desc = dict(zip( enri[enrichment_id_col], enri[enrichment_desc_col])) # filter enrichment data (significative) if enrichment_filter: for col in enrichment_filter: col_values = enrichment_filter[col] enri = enri.loc[enri[col].isin(col_values) ,:] # get dictionary of enriched categories by enrichment source enri_items = enri.loc[:,[enrichment_src_col, enrichment_id_col]] enri_items = ( enri_items.groupby(enrichment_src_col)[enrichment_id_col] .apply(set).to_dict() ) # search items in proteomics_df that correspond to enriched categories enriched_elements = {} appended_data = [] prot = prot.fillna('?') for src in enri_items: where2look = map_src2annot[src] cats = enri_items[src] for cat in cats: description = desc[cat] sub_prot = prot.loc[prot[where2look].str.contains(cat) ,:] n_prot = sub_prot.shape[0] appended_data.append(sub_prot) print("{} \t{} \t(n={}) \t{}".format(src, cat, n_prot, description)) enriched_elements[cat + ' : ' + description] = sub_prot file_name = '{}_{}_{}_{}.xlsx'.format(file_name_prefix, src, cat, description) sub_prot.astype(str).to_excel(output_dir / file_name, index=False) single_df = pd.concat(appended_data) single_df = single_df.drop_duplicates() file_name = '{}_merged.xlsx'.format(file_name_prefix) single_df.astype(str).to_excel(output_dir / file_name, index=False) # merge all enriched categories elements if merge_all: enriched_elements = single_df return enriched_elements ############################################################################## # DIRECTORY SYSTEM src_dir = os.path.dirname(os.path.realpath(sys.argv[0])) main_dir = os.path.dirname(src_dir) root_dir = os.path.dirname(main_dir) data_dir = pathlib.Path(main_dir) / 'data' input_dir = pathlib.Path(data_dir) / 'input' output_dir = pathlib.Path(data_dir) / 'output' sys.path.insert(0, root_dir) # FILE PATHS proteomics_SEC_and_UC_file = input_dir / 'proteomics_SEC_and_UC_curated.xlsx' proteomics_UC_file = input_dir / 'proteomics_UC.xlsx' proteomics_core_file = input_dir / 'proteome_core.xlsx' proteomics_accessory_file = input_dir / 'proteome_accessory.xlsx' proteomics_single_file = input_dir / 'proteome_single.xlsx' proteomics_not_EVs_file = input_dir / 'proteome_not_EVs.xlsx' cogs_file = input_dir / 'COGs.xlsx' kegg_ko_storage_file = input_dir / 'kegg_ko.data' gprofiler_core_kegg_file = input_dir / 'gProfiler_core_kegg.csv' gprofiler_core_cog_file = input_dir / 'gProfiler_core_cog.csv' gprofiler_accessory_kegg_file = input_dir / 'gProfiler_accessory_kegg.csv' gprofiler_accessory_cog_file = input_dir / 'gProfiler_accessory_cog.csv' gprofiler_single_kegg_file = input_dir / 'gProfiler_single_kegg.csv' gprofiler_single_cog_file = input_dir / 'gProfiler_single_cog.csv' # READ FILES proteomics_SEC_and_UC = pd.read_excel(proteomics_SEC_and_UC_file) proteomics_UC = pd.read_excel(proteomics_UC_file) proteomics_core = pd.read_excel(proteomics_core_file) proteomics_accessory = pd.read_excel(proteomics_accessory_file) proteomics_single =
pd.read_excel(proteomics_single_file)
pandas.read_excel
import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np import seaborn as sns from copy import deepcopy import random def dist(a, b, ax=1): return np.linalg.norm(a - b, axis=ax) class AllocationManager: def __init__(self, data, time_window=60, grid_res=40): self.time_window = time_window self.grid_res = grid_res self.data = data.copy() self.aps = None self.edcs = None df = data.copy() df['epoch'] = np.round(df['epoch'] / self.time_window) x_grid = (np.max(df['x']) + 1) / self.grid_res y_grid = (np.max(df['y']) + 1) / self.grid_res self.grid_step = np.minimum(x_grid, y_grid) self.grid = np.zeros( [int(np.floor(np.max(df['x']) / self.grid_step)), int(np.floor(np.max(df['y']) / self.grid_step))]) for e in df['epoch'].unique(): aux_x = (df[df['epoch'] == e]['x'] / self.grid_step).apply(np.floor).astype(np.int32) aux_y = (df[df['epoch'] == e]['y'] / self.grid_step).apply(np.floor).astype(np.int32) d =
pd.DataFrame(data={'aux_x': aux_x, 'aux_y': aux_y})
pandas.DataFrame
"""Test the DropTokensByList pipeline stage.""" import pandas as pd import pdpipe as pdp def test_drop_tokens_by_list_short(): data = [[4, ["a", "bad", "cat"]], [5, ["bad", "not", "good"]]] df = pd.DataFrame(data, [1, 2], ["age", "text"]) filter_tokens = pdp.DropTokensByList('text', ['bad']) res_df = filter_tokens(df) assert 'age' in res_df.columns assert 'text' in res_df.columns assert 'bad' not in res_df.loc[1]['text'] assert 'a' in res_df.loc[1]['text'] assert 'cat' in res_df.loc[1]['text'] assert 'bad' not in res_df.loc[2]['text'] assert 'not' in res_df.loc[2]['text'] assert 'good' in res_df.loc[2]['text'] def test_drop_tokens_by_list_short_no_drop(): data = [[4, ["a", "bad", "cat"]], [5, ["bad", "not", "good"]]] df = pd.DataFrame(data, [1, 2], ["age", "text"]) filter_tokens = pdp.DropTokensByList('text', ['bad'], drop=False) res_df = filter_tokens(df) assert 'age' in res_df.columns assert 'text' in res_df.columns assert 'text_filtered' in res_df.columns assert 'bad' not in res_df.loc[1]['text_filtered'] assert 'a' in res_df.loc[1]['text_filtered'] assert 'cat' in res_df.loc[1]['text_filtered'] assert 'bad' not in res_df.loc[2]['text_filtered'] assert 'not' in res_df.loc[2]['text_filtered'] assert 'good' in res_df.loc[2]['text_filtered'] def test_drop_tokens_by_long_short(): data = [[4, ["a", "bad", "cat"]], [5, ["bad", "not", "good"]]] df =
pd.DataFrame(data, [1, 2], ["age", "text"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Feb 2 09:14:34 2021 Combines all our current features into two big ol' csvs, one with all numeric data, one with all categorical data. Also generates a list of all column names, of all numerical columns then all categorical columns. runtime: a few seconds. @author: Kirby """ import numpy as np import pandas as pd from pathlib import Path from time import time from datetime import datetime start = time() now = str(datetime.now().strftime("%d-%m-%Y_%H-%M-%S")) file_path = Path(__file__) feature_path = file_path.parent.parent.joinpath('Features') cohort_path = file_path.parent.parent.joinpath('Cohort') #%% Load in data. ids = pd.read_csv(cohort_path.joinpath('ICU_readmissions_dataset.csv')) #Numeric data. static_num = pd.read_csv(feature_path.joinpath('Static','static_features.csv'), usecols=range(4,20)) labs = pd.read_csv(feature_path.joinpath('Labs','lab_feature_data.csv'), usecols=range(4,355)) gcs = pd.read_csv(feature_path.joinpath('NurseCharting','GCS_feature.csv'), usecols=range(1,5)) rass = pd.read_csv(feature_path.joinpath('NurseCharting','rass_feature.csv'), usecols=range(1,1)) temp = pd.read_csv(feature_path.joinpath('NurseCharting','temp_feature.csv'), usecols=range(1,1)) urine = pd.read_csv(feature_path.joinpath('IntakeOutput', 'urine_transfusions_features.csv'), usecols=['last_24hr_urine']) vent = pd.read_csv(feature_path.joinpath('Ventilation', 'MV_duration.csv'), usecols=[1]) #Categorical/binary data. static_cat = pd.read_csv(feature_path.joinpath('Static','static_features.csv'), usecols=range(20,76)) meds = pd.read_csv(feature_path.joinpath('Medications','AllDrugFeatures.csv'), usecols=range(4,55)) hist = pd.read_csv(feature_path.joinpath('History','HistoryFeatures.csv'), usecols=range(4,58)) transf = pd.read_csv(feature_path.joinpath('IntakeOutput', 'urine_transfusions_features.csv'), usecols=range(7,10)) dial = pd.read_csv(feature_path.joinpath('Dialysis','dialysis_feature.csv'), usecols=['dialysis']) elix = pd.read_csv(feature_path.joinpath('Comorbidity', 'Elixhauser_features.csv'), usecols=range(1,32)) seps = pd.read_csv(feature_path.joinpath('Sepsis','sepsis_and_infection.csv'), usecols=range(1,6)) #%% Put it all together num = pd.concat([static_num,labs,gcs,rass,temp,urine],axis=1) cat = pd.concat([static_cat,meds,hist,vent,transf,dial,elix],axis=1) num.to_csv('numeric_data.csv',index=False) cat.to_csv('categorical_data.csv',index=False) #Column names. cols1 = num.columns.to_frame(index=False) cols2 = cat.columns.to_frame(index=False) all_cols =
pd.concat([cols1,cols2],axis=0)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import csv from collections import defaultdict import numpy as np import re from nltk.stem.wordnet import WordNetLemmatizer from nltk.tokenize import word_tokenize from nltk.tokenize.regexp import RegexpTokenizer import pandas as pd def clean_tokens(tokens, to_replace='[^\w\-\+\&\.\'\"]+'): lemma = WordNetLemmatizer() tokens = [re.sub(to_replace, ' ', token) for token in tokens] tokens = [lemma.lemmatize(token) for token in tokens] return tokens def tokenize(mystr): tokenizer = RegexpTokenizer('[^ ]+') return tokenizer.tokenize(mystr) def make_causal_input(lod, map_, silent=True): """ :param lod: list of dictionaries :param map_: mapping of tags and values of interest, i.e. [('cause', 'C'), ('effect', 'E')]. The silent tags are by default taggerd as 'O' :return: dict of list of tuples for each sentence """ dd = defaultdict(list) dd_ = [] rx = re.compile(r"(\b[-']\b)|[\W_]") rxlist = [r'("\\)', r'(\\")'] rx = re.compile('|'.join(rxlist)) for i in range(len(lod)): line_ = lod[i]['sentence'] line = re.sub(rx, '', line_) caus = lod[i]['cause'] caus = re.sub(rx, '', caus) effe = lod[i]['effect'] effe = re.sub(rx, '', effe) d = defaultdict(list) index = 0 for idx, w in enumerate(word_tokenize(line)): index = line.find(w, index) if not index == -1: d[idx].append([w, index]) index += len(w) d_ = defaultdict(list) for idx in d: d_[idx].append([tuple([d[idx][0][0], 'O']), d[idx][0][1]]) init_e = line.find(effe) init_e = 0 if init_e == -1 else init_e init_c = line.find(caus) init_c = 0 if init_c == -1 else init_c for c, cl in enumerate(word_tokenize(caus)): init_c = line.find(cl, init_c) stop = line.find(cl, init_c) + len(cl) word = line[init_c:stop] for idx in d_: if int(init_c) == int(d_[idx][0][1]): und_ = defaultdict(list) und_[idx].append([tuple([word, 'C']), line.find(word, init_c)]) d_[idx] = und_[idx] init_c += len(cl) for e, el in enumerate(word_tokenize(effe)): init_e = line.find(el, init_e) stop = line.find(el, init_e) + len(el) word = line[init_e:stop] for idx in d_: if int(init_e) == int(d_[idx][0][1]): und_ = defaultdict(list) und_[idx].append([tuple([word, 'E']), line.find(word, init_e)]) d_[idx] = und_[idx] init_e += len(word) dd[i].append(d_) for dict_ in dd: dd_.append([item[0][0] for sub in [[j for j in i.values()] for i in lflatten(dd[dict_])] for item in sub]) return dd_ def s2dict(lines, lot): d = defaultdict(list) for line_, tag_ in zip(lines, lot): d[tag_] = line_ return d def make_data(df): lodict_ = [] for rows in df.itertuples(): list_ = [rows[2], rows[3], rows[4]] map1 = ['sentence', 'cause', 'effect'] dict_ = s2dict(list_, map1) lodict_.append(dict_) map_ = [('cause', 'C'), ('effect', 'E')] return zip(*[tuple(zip(*x)) for x in make_causal_input(lodict_, map_)]) def make_data2(df): lodict_ = [] for rows in df.itertuples(): list_ = [rows[2], rows[3], rows[4]] map1 = ['sentence', 'cause', 'effect'] dict_ = s2dict(list_, map1) lodict_.append(dict_) map_ = [('cause', 'C'), ('effect', 'E')] import itertools return list(itertools.chain(*make_causal_input(lodict_, map_))) def create_data_files(input_file_path, validation=False): df = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) # Make train and test sets keeping multiple cause / effects blocks together. df['IdxSplit'] = df.Index.apply(lambda x: ''.join(x.split(".")[0:2])) df.set_index('IdxSplit', inplace=True) np.random.seed(0) testrows = np.random.choice(df.index.values, int(len(df) / 4)) test_sents = df.loc[testrows].drop_duplicates(subset='Index') train_sents = df.drop(test_sents.index) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = df.drop(valid_sents.index) pairs = make_data2(valid_sents) pd.DataFrame(pairs).to_csv('valid_data.csv', sep=' ', index=None, header=False) pairs = make_data2(train_sents) pd.DataFrame(pairs).to_csv('train_data.csv', sep=' ', index=None, header=False) pairs = make_data2(test_sents) pd.DataFrame(pairs).to_csv('test_data.csv', sep=' ', index=None, header=False) def create_data_files2(input_file_path, validation=False): def write_list(lst, outfile): with open(outfile, 'w') as f: for item in lst: f.write("%s\n" % item) df = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) # Make train and test sets keeping multiple cause / effects blocks together. df['IdxSplit'] = df.Index.apply(lambda x: ''.join(x.split(".")[0:2])) df.set_index('IdxSplit', inplace=True) np.random.seed(0) testrows = np.random.choice(df.index.values, int(len(df) / 4)) test_sents = df.loc[testrows].drop_duplicates(subset='Index') train_sents = df.drop(test_sents.index) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = train_sents.drop(valid_sents.index) sentences, tags = make_data(valid_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testa.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testa.tags.txt') sentences, tags = make_data(train_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'train.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'train.tags.txt') sentences, tags = make_data(test_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testb.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testb.tags.txt') def create_data_files3(input_file_path, test_file_path, validation=False): def write_list(lst, outfile): with open(outfile, 'w') as f: for item in lst: f.write("%s\n" % item) train_sents = pd.read_csv(input_file_path, delimiter='; ', engine='python', header=0) train_sents['IdxSplit'] = train_sents.Index.apply(lambda x: ''.join(x.split(".")[0:2])) train_sents.set_index('IdxSplit', inplace=True) test_sents = pd.read_csv(test_file_path, delimiter='; ', engine='python', header=0) test_sents['IdxSplit'] = test_sents.Index.apply(lambda x: ''.join(x.split(".")[0:2])) test_sents.set_index('IdxSplit', inplace=True) np.random.seed(0) if validation is True: validrows = np.random.choice(train_sents.index.values, int(len(train_sents) / 4)) valid_sents = train_sents.loc[validrows] train_sents = train_sents.drop(valid_sents.index) sentences, tags = make_data(valid_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'testa.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'testa.tags.txt') sentences, tags = make_data(train_sents) write_list(list(map(lambda x: ' '.join(x), sentences)), 'train.words.txt') write_list(list(map(lambda x: ' '.join(x), tags)), 'train.tags.txt') sentences = [' '.join([ word for idx, word in enumerate(word_tokenize(row[2]))]) for row in test_sents.itertuples()] write_list(sentences, 'testb.words.txt') # Just temp tags tags = [' '.join('O' for _ in word_tokenize(row[2])) for row in test_sents.itertuples()] write_list(tags, 'testb.tags.txt') def evaluate(test_file_path, modelpath='', args_idx = 1): pred_file = '/mnt/DATA/python/tf_ner/models/chars_lstm_lstm_crf/results/score/testb.preds.txt' with open(pred_file, 'r') as f: predicted = [] sent_data = [] for line in f: line = line.strip() if len(line) > 0: items = line.split(' ') sent_data.append((items[0], items[1], items[2])) else: predicted.append(sent_data) sent_data = [] if len(sent_data) > 0: predicted.append(sent_data) labels = {"C": 1, "E": 2, "O": 0} predictions = np.array([labels[pred] for sent in predicted for _, _, pred in sent]) truths = np.array([labels[t] for sent in predicted for _, t, _ in sent]) print(np.sum(truths == predictions) / len(truths)) y_test = [[t for _, t, _ in sent] for sent in predicted] y_pred = [[pred for __, _, pred in sent] for sent in predicted] tokens_test = [[token for token, _, _ in sent] for sent in predicted] ll = [] for i, (pred, token) in enumerate(zip(y_pred, tokens_test)): l = defaultdict(list) for j, (y, word) in enumerate(zip(pred, token)): print(y, word) l[j] = (word, y) ll.append(l) nl = [] for line, yt, yp in zip(ll, y_test, y_pred): d_ = defaultdict(list) d_["truth"] = yt d_["pred"] = yp d_["diverge"] = 0 for k, v in line.items(): d_[v[1]].append(''.join(v[0])) if d_["truth"] != d_["pred"]: d_["diverge"] = 1 d_['Cause'] = ' '.join(el for el in d_['C']) cause_extend = len(d_['Cause']) + 1 # add 1 extra space at start d_[' Cause'] = d_['Cause'].rjust(cause_extend) d_['_'] = ' '.join(el for el in d_['_']) d_['Effect'] = ' '.join(el for el in d_['E']) effect_extend = len(d_['Effect']) + 1 d_[' Effect'] = d_['Effect'].rjust(effect_extend) nl.append(d_) fieldn = sorted(list(set(k for d in nl for k in d))) with open(os.path.join(modelpath, ("controls_" + str(args_idx)) + ".csv"), "w+", encoding='utf-8') as f: writer = csv.DictWriter(f, fieldnames=fieldn, delimiter="~") writer.writeheader() for line in nl: writer.writerow(line) test = pd.read_csv(test_file_path, delimiter='; ', engine='python', header=0) test['IdxSplit'] = test.Index.apply(lambda x: ''.join(x.split(".")[0:2])) test.set_index('IdxSplit', inplace=True) tmp =
pd.DataFrame.from_records(nl)
pandas.DataFrame.from_records
import unittest import pandas as pd from mavedbconvert import validators, constants, exceptions class TestHGVSPatternsBackend(unittest.TestCase): def setUp(self): self.backend = validators.HGVSPatternsBackend() def test_validate_hgvs_raise_HGVSValidationError(self): with self.assertRaises(exceptions.HGVSValidationError): self.backend.validate("p.1102A>G") with self.assertRaises(exceptions.HGVSValidationError): self.backend.validate("x.102A>G") def test_validate_passes_on_special(self): self.backend.validate(constants.enrich2_wildtype) self.backend.validate(constants.enrich2_synonymous) def test_returns_str_variant(self): self.assertIsInstance(self.backend.validate("c.1A>G"), str) class TestValidateHGVS(unittest.TestCase): def test_uses_patterns_backend_as_default(self): result = validators.validate_variants(["c.[1A>G;2A>G]"], n_jobs=2, verbose=0) self.assertIsInstance(result[0], str) def test_can_specify_backend(self): backend = validators.HGVSPatternsBackend() result = validators.validate_variants( ["c.[1A>G;2A>G]"], n_jobs=2, verbose=0, validation_backend=backend ) self.assertIsInstance(result[0], str) class TestDfValidators(unittest.TestCase): def test_validate_column_raise_keyerror_column_not_exist(self): df = pd.DataFrame({"a": [1]}) with self.assertRaises(KeyError): validators.validate_has_column(df, "b") def test_validate_column_passes_when_column_exists(self): df = pd.DataFrame({"a": [1]}) validators.validate_has_column(df, "a") def test_error_some_values_non_numeric(self): df = pd.DataFrame({"A": ["a", 1, 2]}) with self.assertRaises(TypeError): validators.validate_columns_are_numeric(df) def test_pass_all_numeric(self): df = pd.DataFrame({"A": [1, 2, 1.0]}) validators.validate_columns_are_numeric(df) class TestHGVSValidators(unittest.TestCase): def test_validate_hgvs_uniqueness(self): df = pd.DataFrame({constants.nt_variant_col: ["a", "b"]}) validators.validate_hgvs_uniqueness(df, constants.nt_variant_col) # Should pass df = pd.DataFrame({constants.nt_variant_col: ["a", "b", "a"]}) with self.assertRaises(ValueError): validators.validate_hgvs_uniqueness(df, constants.nt_variant_col) # test multi-variant formatting df = pd.DataFrame({constants.nt_variant_col: list("abcdefg" * 2)}) with self.assertRaises(ValueError) as cm: validators.validate_hgvs_uniqueness(df, constants.nt_variant_col) self.assertTrue(str(cm.exception).endswith(", ...")) def test_validate_hgvs_uniqueness_bad_column(self): df = pd.DataFrame({constants.nt_variant_col: ["a", "b", "a"]}) with self.assertRaises(KeyError): validators.validate_hgvs_uniqueness(df, constants.pro_variant_col) def test_validate_hgvs_uniqueness_ignores_none(self): df = pd.DataFrame({constants.nt_variant_col: ["a", "b", None, None]}) validators.validate_hgvs_uniqueness(df, constants.nt_variant_col) # Should pass class TestMaveDBCompliance(unittest.TestCase): def test_error_primary_column_contains_null(self): df = pd.DataFrame( { constants.nt_variant_col: ["c.100A>G", None], constants.pro_variant_col: ["p.G4L", "p.G5L"], } ) with self.assertRaises(ValueError): validators.validate_mavedb_compliance(df, df_type=None) def test_error_primary_column_as_pro_contains_null(self): df = pd.DataFrame( { constants.nt_variant_col: [None, None], constants.pro_variant_col: ["p.G4L", None], } ) with self.assertRaises(ValueError): validators.validate_mavedb_compliance(df, df_type=None) def test_pass_coding_(self): df = pd.DataFrame( { constants.nt_variant_col: ["c.100A>G", "c.101A>G"], constants.pro_variant_col: ["p.G4L", "p.G5L"], } ) validators.validate_mavedb_compliance(df, df_type=None) df = pd.DataFrame( { constants.nt_variant_col: ["n.100A>G", "n.101A>G"], constants.pro_variant_col: [None, None], } ) validators.validate_mavedb_compliance(df, df_type=None) def test_error_missing_nt_pro_columns(self): df = pd.DataFrame({"A": ["c.100A>G", "c.101A>G"], "B": [None, None]}) with self.assertRaises(ValueError): validators.validate_mavedb_compliance(df, df_type=None) def test_error_neither_column_defines_variants(self): df = pd.DataFrame( { constants.nt_variant_col: [None, None], constants.pro_variant_col: [None, None], } ) with self.assertRaises(ValueError): validators.validate_mavedb_compliance(df, df_type=None) def test_allows_duplicates_in_pro_col(self): df = pd.DataFrame( { constants.nt_variant_col: [None, None], constants.pro_variant_col: ["p.G4L", "p.G4L"], } ) validators.validate_mavedb_compliance(df, df_type=None) # passes def test_error_duplicates_in_nt_col(self): df = pd.DataFrame( { constants.nt_variant_col: ["c.100A>G", "c.100A>G"], constants.pro_variant_col: ["p.G4L", "p.G4L"], } ) with self.assertRaises(ValueError): validators.validate_mavedb_compliance(df, df_type=None) def test_keyerror_missing_score_column_df_type_is_scores(self): df = pd.DataFrame( { constants.pro_variant_col: [None, "pG4L"], constants.nt_variant_col: ["c.100A>G", "c.101A>G"], } ) with self.assertRaises(KeyError): validators.validate_mavedb_compliance(df, df_type=constants.score_type) class TestValidateSameVariants(unittest.TestCase): def test_ve_counts_defines_different_nt_variants(self): scores = pd.DataFrame( { constants.nt_variant_col: ["c.1A>G"], constants.pro_variant_col: ["p.Leu5Glu"], } ) counts = pd.DataFrame( { constants.nt_variant_col: ["c.2A>G"], constants.pro_variant_col: ["p.Leu5Glu"], } ) with self.assertRaises(AssertionError): validators.validate_datasets_define_same_variants(scores, counts) scores = pd.DataFrame({constants.nt_variant_col: ["n.1A>G"]}) counts = pd.DataFrame({constants.nt_variant_col: ["n.2A>G"]}) with self.assertRaises(AssertionError): validators.validate_datasets_define_same_variants(scores, counts) def test_ve_counts_defines_different_pro_variants(self): scores = pd.DataFrame( { constants.nt_variant_col: ["c.1A>G"], constants.pro_variant_col: ["p.Leu5Glu"], } ) counts = pd.DataFrame( { constants.nt_variant_col: ["c.1A>G"], constants.pro_variant_col: ["p.Leu75Glu"], } ) with self.assertRaises(AssertionError): validators.validate_datasets_define_same_variants(scores, counts) scores = pd.DataFrame({constants.pro_variant_col: ["p.Leu5Glu"]}) counts = pd.DataFrame({constants.pro_variant_col: ["p.Leu75Glu"]}) with self.assertRaises(AssertionError): validators.validate_datasets_define_same_variants(scores, counts) def test_passes_when_same_variants_defined(self): scores = pd.DataFrame( { constants.nt_variant_col: ["c.1A>G"], constants.pro_variant_col: ["p.Leu5Glu"], } ) counts = pd.DataFrame( { constants.nt_variant_col: ["c.1A>G"], constants.pro_variant_col: ["p.Leu5Glu"], } ) validators.validate_datasets_define_same_variants(scores, counts) scores = pd.DataFrame({constants.nt_variant_col: ["n.1A>G"]}) counts = pd.DataFrame({constants.nt_variant_col: ["n.1A>G"]}) validators.validate_datasets_define_same_variants(scores, counts) scores = pd.DataFrame({constants.pro_variant_col: ["p.Leu5Glu"]}) counts = pd.DataFrame({constants.pro_variant_col: ["p.Leu5Glu"]}) validators.validate_datasets_define_same_variants(scores, counts) def test_error_dfs_define_different_hgvs_columns(self): scores = pd.DataFrame({constants.nt_variant_col: ["c.1A>G"]}) counts =
pd.DataFrame({constants.pro_variant_col: ["p.Leu75Glu"]})
pandas.DataFrame
import glob import subprocess import csv import pandas as pd import os if __name__ == '__main__': # test1.py executed as script # do something paths = []#["../data/burma14.tsp", "../data/berlin52.tsp", "../data/eil51.tsp", "../data/att48.tsp", "../data/st70.tsp", "../data/pr76.tsp"] for name in glob.glob('../data/heuristics/*'): paths.append(name) #methods = ["GREEDY", "GREEDY_ITER", "EXTR_MILE", "GRASP", "GRASP_ITER"] methods = ["2OPT_GREEDY", "2OPT_GREEDY_ITER", "2OPT_EXTR_MIL","2OPT_GRASP", "2OPT_GRASP_ITER"] time_limit = "600" csv_filename="constructive_heuristics_2opt_new.csv" #if file csv do not exist, create it. if not os.path.exists('../results/'+csv_filename): df=pd.DataFrame(index=paths,columns=methods) df.to_csv('../results/'+csv_filename,index=True) else: df=
pd.read_csv('../results/'+csv_filename,index_col=0)
pandas.read_csv
# Copyright 2021 Lawrence Livermore National Security, LLC and other # Hatchet Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: MIT import pandas as pd import os import caliperreader as cr import hatchet.graphframe from hatchet.node import Node from hatchet.graph import Graph from hatchet.frame import Frame from hatchet.util.timer import Timer class CaliperNativeReader: """Read in a native `.cali` file using Caliper's python reader.""" def __init__(self, filename_or_caliperreader): """Read in a native cali using Caliper's python reader. Args: filename_or_caliperreader (str or CaliperReader): name of a `cali` file OR a CaliperReader object """ self.filename_or_caliperreader = filename_or_caliperreader self.filename_ext = "" self.df_nodes = {} self.metric_cols = [] self.record_data_cols = [] self.node_dicts = [] self.callpath_to_node = {} self.idx_to_node = {} self.callpath_to_idx = {} self.global_nid = 0 self.default_metric = None self.timer = Timer() if isinstance(self.filename_or_caliperreader, str): _, self.filename_ext = os.path.splitext(filename_or_caliperreader) def read_metrics(self, ctx="path"): all_metrics = [] records = self.filename_or_caliperreader.records # read metadata from the caliper reader for record in records: node_dict = {} if ctx in record: # get the node label and callpath for the record if isinstance(record[ctx], list): # specify how to parse cupti records if "cupti.activity.kind" in record: if record["cupti.activity.kind"] == "kernel": node_label = record["cupti.kernel.name"] node_callpath = tuple(record[ctx] + [node_label]) elif record["cupti.activity.kind"] == "memcpy": node_label = record["cupti.activity.kind"] node_callpath = tuple(record[ctx] + [node_label]) else: node_label = record[ctx][-1] node_callpath = tuple(record[ctx]) else: node_label = record[ctx][-1] node_callpath = tuple([record[ctx]]) # get node nid based on callpath node_dict["nid"] = self.callpath_to_idx.get(node_callpath) for item in record.keys(): if item != ctx: if item not in self.record_data_cols: self.record_data_cols.append(item) if ( self.filename_or_caliperreader.attribute( item ).attribute_type() == "double" ): node_dict[item] = float(record[item]) elif ( self.filename_or_caliperreader.attribute( item ).attribute_type() == "int" ): node_dict[item] = int(record[item]) elif item == "function": if isinstance(record[item], list): node_dict[item] = record[item][-1] else: node_dict[item] = record[item] else: node_dict[item] = record[item] all_metrics.append(node_dict) # make list of metric columns for col in self.record_data_cols: if self.filename_or_caliperreader.attribute(col).is_value(): self.metric_cols.append(col) df_metrics = pd.DataFrame.from_dict(data=all_metrics) return df_metrics def create_graph(self, ctx="path"): def _create_parent(child_node, parent_callpath): """We may encounter a parent node in the callpath before we see it as a child node. In this case, we need to create a hatchet node for the parent. This function recursively creates parent nodes in a callpath until it reaches the already existing parent in that callpath. """ parent_node = self.callpath_to_node.get(parent_callpath) if parent_node: # return if arrives at the parent parent_node.add_child(child_node) child_node.add_parent(parent_node) return else: # else create the parent and add parent/child grandparent_callpath = parent_callpath[:-1] parent_name = parent_callpath[-1] parent_node = Node( Frame({"type": "function", "name": parent_name}), None ) self.callpath_to_node[parent_callpath] = parent_node self.callpath_to_idx[parent_callpath] = self.global_nid node_dict = dict( {"name": parent_name, "node": parent_node, "nid": self.global_nid}, ) self.idx_to_node[self.global_nid] = node_dict self.global_nid += 1 parent_node.add_child(child_node) child_node.add_parent(parent_node) _create_parent(parent_node, grandparent_callpath) list_roots = [] parent_hnode = None records = self.filename_or_caliperreader.records for record in records: node_label = "" if ctx in record: # if it's a list, then it's a callpath if isinstance(record[ctx], list): # specify how to parse cupti records if "cupti.activity.kind" in record: if record["cupti.activity.kind"] == "kernel": node_label = record["cupti.kernel.name"] node_callpath = tuple(record[ctx] + [node_label]) parent_callpath = node_callpath[:-1] node_type = "kernel" elif record["cupti.activity.kind"] == "memcpy": node_label = record["cupti.activity.kind"] node_callpath = tuple(record[ctx] + [node_label]) parent_callpath = node_callpath[:-1] node_type = "memcpy" else: Exception("Haven't seen this activity kind yet") else: node_label = record[ctx][-1] node_callpath = tuple(record[ctx]) parent_callpath = node_callpath[:-1] node_type = "function" hnode = self.callpath_to_node.get(node_callpath) if not hnode: frame = Frame({"type": node_type, "name": node_label}) hnode = Node(frame, None) self.callpath_to_node[node_callpath] = hnode # get parent from node callpath parent_hnode = self.callpath_to_node.get(parent_callpath) # create parent if it doesn't exist # else if parent already exists, add child-parent if not parent_hnode: _create_parent(hnode, parent_callpath) else: parent_hnode.add_child(hnode) hnode.add_parent(parent_hnode) self.callpath_to_idx[node_callpath] = self.global_nid node_dict = dict( {"name": node_label, "node": hnode, "nid": self.global_nid}, ) self.idx_to_node[self.global_nid] = node_dict self.global_nid += 1 # if it's a string, then it's a root else: root_label = record[ctx] root_callpath = tuple([root_label]) if root_callpath not in self.callpath_to_node: # create the root since it doesn't exist frame = Frame({"type": "function", "name": root_label}) graph_root = Node(frame, None) # store callpaths to identify the root self.callpath_to_node[root_callpath] = graph_root self.callpath_to_idx[root_callpath] = self.global_nid list_roots.append(graph_root) node_dict = dict( { "name": root_label, "node": graph_root, "nid": self.global_nid, } ) self.idx_to_node[self.global_nid] = node_dict self.global_nid += 1 return list_roots def read(self): """Read the caliper records to extract the calling context tree.""" if isinstance(self.filename_or_caliperreader, str): if self.filename_ext != ".cali": raise ValueError("from_caliperreader() needs a .cali file") else: cali_file = self.filename_or_caliperreader self.filename_or_caliperreader = cr.CaliperReader() self.filename_or_caliperreader.read(cali_file) with self.timer.phase("graph construction"): list_roots = self.create_graph() self.df_nodes = pd.DataFrame(data=list(self.idx_to_node.values())) # create a graph object once all the nodes have been added graph = Graph(list_roots) graph.enumerate_traverse() with self.timer.phase("read metrics"): df_fixed_data = self.read_metrics() metrics =
pd.DataFrame.from_dict(data=df_fixed_data)
pandas.DataFrame.from_dict
# coding=utf-8 from collections import defaultdict import numpy as np import pandas as pd import param import util from gensim.models import Word2Vec ############################ 加载数据 & 模型 ############################ df_all =
pd.read_csv(param.data_path + '/output/corpus/all_data.csv', encoding='utf8', nrows=param.train_num)
pandas.read_csv
import unittest import pandas as pd from featurefilter import TargetCorrelationFilter def test_low_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 0, 1, 1], 'Y': [0, 1, 0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit(train_df) assert target_correlation_filter.columns_to_drop == ['A'] def test_high_negative_continuous_correlation(): train_df = pd.DataFrame({'A': [0, 0], 'B': [1, 0], 'Y': [0, 1]}) test_df = pd.DataFrame({'A': [0, 1], 'B': [1, 1], 'Y': [0, 1]}) target_correlation_filter = TargetCorrelationFilter(target_column='Y') train_df = target_correlation_filter.fit_transform(train_df) test_df = target_correlation_filter.transform(test_df) # Make sure column 'B' is dropped for both train and test set # Also, column 'A' must not be dropped for the test set even though its # correlation in the test set is above the threshold assert train_df.equals(pd.DataFrame({'A': [0, 0], 'Y': [0, 1]})) assert test_df.equals(pd.DataFrame({'A': [0, 1], 'Y': [0, 1]})) def test_high_positive_continuous_correlation(): train_df =
pd.DataFrame({'A': [0, 0], 'B': [0, 1], 'Y': [0, 1]})
pandas.DataFrame
import boto3 import glob import gzip import io import json import logging import os import sys import argparse import pandas as pd import numpy as np from progress.bar import IncrementalBar """ Parses CloudTrail log files, combines them, and writes them to an XLSX file Sync the relevant files to your local filesystem Pass in the path to the .json.gz files as a "globular" express in quotes Provide a results file name """ parser = argparse.ArgumentParser(description='Parse CloudTrail JSON files.') parser.add_argument('-r', '--resultfile', type=str, help=('Result File. A ".csv" extension will create' 'a CSV file. An ".xlsx" or no extension will' ' generate an .xlsx file.')) parser.add_argument('jsfile', metavar="path", type=str, help='JSON file(s) to be analyzed. Expects a glob: "AWSLogs/*/CloudTrail/*/*/*/*/*gz"') parser.add_argument('--verbose', '-v', action='count') args = parser.parse_args() if args.verbose is not None: logging.basicConfig(level=logging.DEBUG) if args.resultfile is not None: resFileExt = os.path.splitext(args.resultfile)[1] if resFileExt != ".xlsx" and resFileExt != ".csv": resultfile = args.resultfile + ".xlsx" else: resultfile = args.resultfile else: resultfile = 'results.xlsx' logging.debug('args.jsfile: ' + args.jsfile) logging.debug('resultfile: ' + resultfile) files = glob.glob(args.jsfile) global myDf myDf = [] if not files: print('File does not exist: ' + args.jsfile, file=sys.stderr) print(files) exit() bar = IncrementalBar('Processing CloudTrail Files', max=len(files)) for file in files: bar.next() if args.verbose is not None: print('File exists: ' + file) extension = os.path.splitext(file)[1] if extension == ".gz": with gzip.open(file, 'rt', encoding='utf-8') as f: myLogsJson = json.load(f) else: with open(file, 'rt', encoding='utf8') as jsfile: myLogsJson = json.loads(jsfile.read()) myDf.append(pd.io.json.json_normalize(myLogsJson['Records'])) bar.finish() logging.debug("myDf List Size: " + str(len(myDf))) print("Combining records. This may take a minute. {:.1f} KB".format(sys.getsizeof(myDf)/1024)) unsortedDf =
pd.concat(myDf, sort=False)
pandas.concat
import pandas as pd import numpy as np import requests from fake_useragent import UserAgent import io import os import time import json import demjson from datetime import datetime import ssl ssl._create_default_https_context = ssl._create_unverified_context # Main Economic Indicators: https://alfred.stlouisfed.org/release?rid=205 url = { "fred_econ": "https://fred.stlouisfed.org/graph/fredgraph.csv?", "philfed": "https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/", "chicagofed": "https://www.chicagofed.org/~/media/publications/", "OECD": "https://stats.oecd.org/sdmx-json/data/DP_LIVE/" } def date_transform(df, format_origin, format_after): return_list = [] for i in range(0, len(df)): return_list.append(datetime.strptime(df[i], format_origin).strftime(format_after)) return return_list def gdp_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: <NAME>omestic Product Description: Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDP", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "GDP"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["GDP"] = df["GDP"].astype(float) return df def gdpc1_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDPC1", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def oecd_gdp_monthly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USALORSGPNOSTSAM", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def payems_monthly(startdate="1939-01-01", enddate="2021-01-01"): """ Full Name: All Employees, Total Nonfarm Description: Thousands of Persons,Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "PAYEMS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "Payems"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["Payems"] = df["Payems"].astype(float) return df def ppi(): tmp_url = url["fred_econ"] + "bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=968&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=PPIACO,PCUOMFGOMFG&scale=left,left&cosd=1913-01-01,1984-12-01&coed=2021-04-01,2021-04-01&line_color=%234572a7,%23aa4643&link_values=false,false&line_style=solid,solid&mark_type=none,none&mw=3,3&lw=2,2&ost=-99999,-99999&oet=99999,99999&mma=0,0&fml=a,a&fq=Monthly,Monthly&fam=avg,avg&fgst=lin,lin&fgsnd=2020-02-01,2020-02-01&line_index=1,2&transformation=lin,lin&vintage_date=2021-06-10,2021-06-10&revision_date=2021-06-10,2021-06-10&nd=1913-01-01,1984-12-01" ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} r = requests.get(tmp_url, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df["DATE"] = pd.to_datetime(df["DATE"], format="%Y-%m-%d") #df = df[list(df.columns[1:])].replace(".", np.nan).astype(float) name_list = { "PPIACO": "Producer Price Index by Commodity: All Commodities", "PCUOMFGOMFG": "Producer Price Index by Industry: Total Manufacturing Industries" } df.replace(".", np.nan, inplace = True) df.columns = ["Date", "PPI_C", "PPI_I"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df[["PPI_C", "PPI_I"]] = df[["PPI_C", "PPI_I"]].astype(float) return df def pmi(): t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "28", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_pmi" temp_df = temp_df.astype("float") PMI_I = pd.DataFrame() PMI_I["Date"] = pd.to_datetime(temp_df.index, format = "%Y-%m-%d") PMI_I["ISM_PMI_I"] = np.array(temp_df).astype(float) t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_ism_non_pmi_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{"): res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国ISM非制造业PMI报告"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "29", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_ism_non_pmi" temp_df = temp_df.astype("float") PMI_NI = pd.DataFrame() PMI_NI["Date"] = pd.to_datetime(temp_df.index, format = "%Y-%m-%d") PMI_NI["ISM_PMI_NI"] = np.array(temp_df).astype(float) PMI = pd.merge_asof(PMI_I, PMI_NI, on = "Date") return PMI def unrate(startdate="1948-01-01", enddate="2021-01-01"): """ Full Name: Unemployment Rate: Aged 15-64: All Persons for the United States Description: Percent, Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSM156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSQ156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LRUN64TTUSA156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "UR_Monthly", "UR_Quarterly", "UR_Annually"] return df def erate(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Employment Rate: Aged 25-54: All Persons for the United States Description: Percent,Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSM156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSQ156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "LREM25TTUSA156S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "ER_Monthly", "ER_Quarterly", "ER_Annually"] def pce_monthly(startdate="1959-01-01", enddate="2021-01-01"): """ Full Name: PCE Description: Percent, Monthly, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "PCE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def cpi(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: Total All Items for the United States Description: Percent, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USM661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USQ661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CPALTT01USA661S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "CPI_Monthly", "CPI_Quarterly", "CPI_Annually"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df[["CPI_Monthly", "CPI_Quarterly", "CPI_Annually"]] = df[["CPI_Monthly", "CPI_Quarterly", "CPI_Annually"]].astype(float) return df def m1(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: M3 for the United States Description: Growth Rate Previous Period, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "WM1NS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_weekly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_weekly["DATE"] = pd.to_datetime(df_weekly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USM657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MANMM101USA657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_weekly, df_monthly, on="DATE", direction="backward") df = pd.merge_asof(df, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = [ "Date", "M1_Weekly", "M1_Monthly", "M1_Quarterly", "M1_Annually"] return df def m2(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: <NAME> Description: Seasonally Adjusted, Weekly, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "WM2NS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_weekly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_weekly["DATE"] = pd.to_datetime(df_weekly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "M2SL", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_weekly, df_monthly, on="DATE", direction="backward") df.columns = ["Date", "M2_Weekly", "M2_Monthly"] return df def m3(startdate="1960-01-01", enddate="2021-01-01"): """ Full Name: Consumer Price Index: M3 for the United States Description: Growth Rate Previous Period, Monthly, Quarterly and Annually, Seasonally Adjusted Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USM657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "MABMM301USA657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "M3_Monthly", "M3_Quarterly", "M3_Annually"] return df def ltgby_10(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Long-Term Government Bond Yields: 10-year: Main (Including Benchmark) for the United States Description: Percent,Not Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USM156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USQ156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IRLTLT01USA156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_quarterly, on="DATE", direction="backward") df = pd.merge_asof(df, df_annually, on="DATE", direction="backward") df.columns = ["Date", "ltgby_Monthly", "ltgby_Quarterly", "ltgby_Annually"] return df def gdp_ipd(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Long-<NAME>: 10-year: Main (Including Benchmark) for the United States Description: Percent,Not Seasonally Adjusted, Monthly, Quarterly and Annually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGDPDEFQISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGDPDEFAISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "gdp_ipd_Quarterly", "gdp_ipd_Annually"] return df def cci(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Consumer Opinion Surveys: Confidence Indicators: Composite Indicators: OECD Indicator for the United States Description: Normalised (Normal=100), Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "CSCICP03USM665S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "CCI_Monthly"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") return df def bci(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Business confidence index OECD Indicator for the United States Description: Normalised (Normal=100), Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "BSCICP03USM665S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "BCI_Annually"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") return df def ibr_3(startdate="1965-01-01", enddate="2021-01-01"): """ Full Name: 3-Month or 90-day Rates and Yields: Interbank Rates for the United States Description: Percent, Not Seasonally Adjusted, Monthly and Quarterly """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IR3TIB01USM156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "IR3TIB01USQ156N", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_quarterly, on="DATE", direction="backward") df.columns = ["Date", "ibr3_Monthly", "ibr3_Quarterly"] def gfcf_3(startdate="1965-01-01", enddate="2021-01-01"): """ Full Name: Gross Fixed Capital Formation in United States Description: United States Dollars,Not Seasonally Adjusted, Quarterly and Annually """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGFCFQDSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAGFCFADSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_quarterly, on="DATE", direction="backward") df.columns = ["Date", "ibr3_Monthly", "ibr3_Annually"] return df def pfce(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Private Final Consumption Expenditure in United States """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAPFCEQDSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USAPFCEADSMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "PFCE_Quarterly", "PFCE_Annually"] return df def tlp(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name: Early Estimate of Quarterly ULC Indicators: Total Labor Productivity for the United States Description: Growth Rate Previous Period,Seasonally Adjusted, Quarterly and YoY Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "ULQELP01USQ657S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_quarterly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_quarterly["DATE"] = pd.to_datetime( df_quarterly["DATE"], format="%Y-%m-%d") ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "ULQELP01USQ659S", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_quarterly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "PFCE_Quarterly", "PFCE_Quarterly_YoY"] return df def rt(startdate="1955-01-01", enddate="2021-01-01"): """ Full Name:Total Retail Trade in United States Description: Monthly and Anually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USASARTMISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_monthly = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_monthly["DATE"] = pd.to_datetime(df_monthly["DATE"], format="%Y-%m-%d") request_header = {"User-Agent": ua.random} request_params = { "id": "USASARTAISMEI", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_annually = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_annually["DATE"] = pd.to_datetime( df_annually["DATE"], format="%Y-%m-%d") df = pd.merge_asof( df_monthly, df_annually, on="DATE", direction="backward") df.columns = ["Date", "RT_Quarterly", "RT_Annually"] return df def bir(startdate="2003-01-01", enddate="2021-01-01"): """ Full Name:Total Retail Trade in United States Description: Monthly and Anually Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "T5YIE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_5y = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_5y["DATE"] = pd.to_datetime(df_5y["DATE"], format="%Y-%m-%d") request_header = {"User-Agent": ua.random} request_params = { "id": "T10YIE", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df_10y = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df_10y["DATE"] = pd.to_datetime(df_10y["DATE"], format="%Y-%m-%d") df = pd.merge_asof(df_5y, df_10y, on="DATE", direction="backward") df.columns = ["Date", "BIR_5y", "BIR_10y"] return df def adsbci(): """ An index designed to track real business conditions at high observation frequency """ ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} tmp_url = url["philfed"] + "ads" r = requests.get(tmp_url, headers=request_header) file = open("ads_temp.xls", "wb") file.write(r.content) file.close() df =
pd.read_excel("ads_temp.xls")
pandas.read_excel
# -*- coding: utf-8 -*- import pandas as pd import io import requests import json import webbrowser from Macroeconomia.Argentina.ProductoInternoBruto import ProductoInternoBruto class IndicadoresDePrecios: def __init__(self): """ Inicializa """ self.__PIB = ProductoInternoBruto() def getPIB(self): return self.__PIB def getDeflactorBase2004(self, periodo = "Anual"): """ Se puede utilizar como un indicador de precio, tiene mayor cobertura que el IPC pero no incluye bienes intermedios. Parameters ---------- periodo : str, optional (puede ser "Anual" o "Trimestral") DESCRIPTION. The default is "Anual". Returns ------- pd.DataFrame() """ return self.__PIB.getIndicePreciosImplicitosBase2004(periodo) def getIndicePreciosAlConsumidorCordobaBaseJulio2012(self): """ Se elabora en la mayoria de los paises mensualmente, mide las variaciones de los precios de un conjunto de bienes y servicios para un tiempo determinado con una base determinada (en este caso el año 2016) El IPC Cordoba solo tiene en cuenta la provincia de cordoba. Esta solo disponible como serie mensual. Returns ------- pd.DataFrame() """ #Obtener la url de descarga del cvs urlPackage="https://datos.gob.ar/api/3/action/package_show?id=sspm-indice-precios-al-consumidor-provincia-cordoba-base-2014-100" s=requests.get(urlPackage).content objJson = json.loads(s) resultado = objJson['result']['resources'] selector = 0 ultimoResultado = resultado[selector] urlDescarga = ultimoResultado['url'] descripcion = ultimoResultado['description'] print("Descargando: {}".format(descripcion)) print("Archivo: {}".format(urlDescarga)) #Descargar la url con cvs y generar pandas dataframe contenidoCVS = requests.get(urlDescarga).content flujoCVS = io.StringIO(contenidoCVS.decode('utf-8')) df_temp =
pd.read_csv(flujoCVS)
pandas.read_csv
# %% ''' ''' ## Se importan las librerias necesarias import pandas as pd import numpy as np import datetime as dt from datetime import timedelta pd.options.display.max_columns = None pd.options.display.max_rows = None import glob as glob import datetime import re import jenkspy import tkinter as tk root= tk.Tk() canvas1 = tk.Canvas(root, width = 300, height = 300) canvas1.pack() # %% def profiling(): #### Read Databases datas=pd.read_csv('C:/Users/scadacat/Desktop/TIGO (Cliente)/Cobranzas/Notebooks/Bds/data_con_drop.csv',sep=';',encoding='utf-8',dtype='str') salida=pd.read_csv('C:/Users/scadacat/Desktop/TIGO (Cliente)/Cobranzas/Notebooks/Bds/salida_limpia.csv',sep=';',encoding='utf-8',dtype='str') seguimiento=pd.read_csv('C:/Users/scadacat/Desktop/TIGO (Cliente)/Cobranzas/Notebooks/Bds/seguimiento.csv',sep=';',encoding='utf-8',dtype='str') virtuales=pd.read_csv('C:/Users/scadacat/Desktop/TIGO (Cliente)/Cobranzas/Notebooks/Bds/virtuales.csv',encoding='utf-8',sep=';') df=datas.copy() out=salida.copy() seg=seguimiento.copy() vir=virtuales.copy() out.sort_values(['Identificacion Del Cliente','Fecha_Gestion'],inplace=True) out=out[out['Repetido CC']=='0'] out=out[~out.duplicated(keep='last')] ## Cleaning df['Marca Score']=df['Marca Score'].str.strip().fillna('NO REGISTRA') df['Marca Score'][df['Marca Score']==''] ='NO REGISTRA' df['Analisis De Habito']=df['Analisis De Habito'].fillna('NO DEFINE') df['Analisis De Habito'][df['Analisis De Habito']==' '] ='NO DEFINE' df['Tipo de Cliente'][df['Tipo de Cliente']==' '] ='NO DEFINE' df['Marca Funcional']=df['Marca Funcional'].str.replace(' ','0') df['Marca']=df['Marca'].str.replace(' ','0') df['Antiguedad Cliente'][df['Antiguedad Cliente']==' '] ='NO REGISTRA' df['Perfil Digital']=df['Perfil Digital'].fillna('Sin perfil') df['Nivel de riesgo experian']=df['Nivel de riesgo experian'].str.replace(' ','NO REGISTRA') df['Nivel de Riesgo']=df['Nivel de Riesgo'].str.replace(' ','NO REGISTRA') df['Nivel Estrategia Cobro']=df['Nivel Estrategia Cobro'].str.replace(' ','NO REGISTRA') df['Real reportado en central de riesgos']=df['Real reportado en central de riesgos'].str.replace(' ','0') df['Nivel de Riesgo'][df['Nivel de Riesgo']==' '] ='NO REGISTRA' df['Estado del Cliente'][df['Estado del Cliente']==' '] ='SIN IDENTIFICAR' df['Tipificación Cliente'][df['Tipificación Cliente']==' '] ='SIN IDENTIFICAR' df['Estrategia'][df['Estrategia']==' '] ='SIN ESTRATEGIA' df['Autopago'][df['Autopago']==' '] ='NO APLICA' df['Tipo de Cliente']=df['Tipo de Cliente'].fillna('NO DEFINE') df['Tipo de Reporte a Central de Riesgos'][df['Tipo de Reporte a Central de Riesgos']==' '] ='NO REGISTRA' df['Codigo edad de mora(para central de riesgos)']=df['Codigo edad de mora(para central de riesgos)'].str.replace(' ','NO REGISTRA') df['Análisis Vector'][df['Análisis Vector']==' '] ='SIN IDENTIFICAR' df['Análisis Vector_PAGOS_PARCIAL'] = np.where(df['Análisis Vector'].str.contains("PAGO PARCIAL|PAGOS PARCIAL"),"1",'0') df['Análisis Vector_PAGO OPORTUNO'] = np.where(df['Análisis Vector'].str.contains("SIN PAGO|FINANCIAR"),"1",'0') df['Análisis Vector_SIN_IDENTIFICAR'] = np.where(df['Análisis Vector'].str.contains("SIN IDENTIFICAR"),"1",'0') df['Análisis Vector_SIN_PAGO'] = np.where(df['Análisis Vector'].str.contains("SIN PAGO|FINANCIAR"),"1",'0') df['Análisis Vector_suspension'] = np.where(df['Análisis Vector'].str.contains("SUSPENSIO"),"1",'0') df['Análisis Vector_indeterminado'] = np.where(df['Análisis Vector'].str.contains("PAGO OPORTUNO Y NO OPORTUNO"),"1",'0') df['Análisis Vector_pago_no_oport'] = np.where(df['Análisis Vector'].str.contains("PAGO NO OPORTUNO"),"1",'0') df['Análisis Vector_otro_caso'] = np.where(df['Análisis Vector'].str.contains("NUEVO|FACTURAS AJUSTADAS|PROBLEMAS RECLAMACION"),"1",'0') df['Vector Cualitativo # Suscripción'][df['Vector Cualitativo # Suscripción']==' '] = df["Vector Cualitativo # Suscripción"].mode()[0] df['Fecha Ult Gestion']=pd.to_datetime(df['Fecha Ult Gestion'],format='%Y-%m-%d') ###PARSE DATES AND CREATE NEW FEATURES df['Fecha de Asignacion']=pd.to_datetime(df['Fecha de Asignacion'],format='%Y-%m-%d %H:%M:%S') df['Fecha Ult pago']=pd.to_datetime(df['Fecha Ult pago'],format ='%Y-%m-%d %H:%M:%S',errors = "coerce") df['Fecha de cuenta de cobro mas antigua']=pd.to_datetime(df['Fecha de cuenta de cobro mas antigua'],format ='%Y-%m-%d %H:%M:%S',errors = "coerce") df["Dias_ult_pago"] = (df['Fecha Ult pago']).dt.day df["dia_semana_ult_pago"] = (df['Fecha Ult pago']).dt.weekday df["mes_ult_pago"]=df["Fecha Ult pago"].dt.month df["semana_ult_pago"]=df["Fecha Ult pago"].dt.week df["trimestre_ult_pago"] = df["Fecha Ult pago"].dt.quarter df["año_ult_pago"] = df["Fecha Ult pago"].dt.year df["DIAS_desde_ult_pago"] = (df["Fecha Ult Gestion"] - df["Fecha Ult pago"]).dt.days df["Fecha estado corte"]=pd.to_datetime(df["Fecha estado corte"],format ='%Y-%m-%d %H:%M:%S',errors = "coerce") df["dias_ult_pago_cobro"] = (df["Fecha Ult pago"]-df["Fecha estado corte"]).dt.days df["dias_ult_pago_fac_ant"] = (df["Fecha Ult pago"]-df["Fecha de cuenta de cobro mas antigua"]).dt.days df['Fecha de Asignacion_mes']=df["Fecha de Asignacion"].dt.month df['Fecha de Instalacion']=pd.to_datetime(df['Fecha de Instalacion'],format ='%Y-%m-%d %H:%M:%S',errors = "coerce") df['antiguedad_mes']=(dt.datetime.now()-df['Fecha de Instalacion']).dt.days/365 df['Fecha Retiro']=pd.to_datetime(df['Fecha Retiro'].str.replace('4732','2020'),format='%Y-%m-%d',errors = "coerce") df['Fecha Vencimiento Sin Recargo']=pd.to_datetime(df['Fecha Vencimiento Sin Recargo'],format='%Y-%m-%d') df['dias_desde_ult_gestion']=(dt.datetime.now()-df['Fecha Ult Gestion']).dt.days ## Group labels df['Descripcion subcategoria']=df['Descripcion subcategoria']\ .str.replace('Consumos EPM Telco|INALAMBRICOS NO JAC|unica|COMERCIAL|ENTERPRISE|MONOPRODUCTO|PYME|------------------------------|LINEA BUZON','NO REGISTRA')\ .str.replace('ESTRATO MEDIO ALTO|MEDIO ALTO','ESTRATO 4')\ .str.replace('ESTRATO ALTO|ALTO','ESTRATO 6')\ .str.replace('ESTRATO MEDIO-BAJO|MEDIO BAJO','ESTRATO 2')\ .str.replace('ESTRATO MEDIO|MEDIO','ESTRATO 3')\ .str.replace('ESTRATO MEDIO-BAJO|MEDIO BAJO','ESTRATO 2')\ .str.replace('BAJO BAJO|ESTRATO BAJO-BAJO|ESTRATO BAJO|BAJO','ESTRATO 1') df['Descripcion subcategoria'][df['Descripcion subcategoria']=='-'] ='NO REGISTRA' ## No registra df['Tipificación Cliente'][df['Tipificación Cliente']==' '] = df["Tipificación Cliente"].mode()[0] ## Reemplazo con la moda df['Dias Suspension'][df['Dias Suspension']==' ']=0 df['Dias Suspension']=df['Dias Suspension'].astype('int') ## Group labels df['Descripcion producto']=df['Descripcion producto'].str.replace('-','').str.strip().str.upper()\ .str.replace('TELEVISION UNE|TELEVISION INTERACTIVA|TV CABLE|TV INTERACTIVA|UNE TV|TELEVISION SIN SEÃƑ‘AL|TELEVISION SIN SEÃƑ‘AL|TV CABLE SIN SEÑAL','TELEVISION')\ .str.replace('INTERNET BANDA ANCHA|SEGUNDA CONEXION INTERNET|BANDA ANCHA|INTERNET EDATEL|INTERNET INSTANTANEO|CABLE MODEM|INTERNET DEDICADO 11|ADSL BASICO','INTERNET')\ .str.replace('UNE MOVIL|COLOMBIAMOVIL BOGOTA|TIGO|ETB','UNEMOVIL')\ .str.replace('TOIP|TELEFONICA TELECOM|TELECOM|TO_SINVOZ','TELEFONIA')\ .str.replace('LÃƑ­NEA BÃƑ¡SICA','LINEA BASICA') df['Descripcion categoria']=df['Descripcion categoria'].str.replace("[^a-zA-Z ]+", "NO REGISTRA") df['Descripcion producto']=df['Descripcion producto'].str.replace('-','').str.strip()\ .str.replace('TELEVISION UNE|Television Interactiva|TV CABLE |TV INTERACTIVA|UNE TV|TELEVISIONSIN SEÑAL','TELEVISION')\ .str.replace('Internet Banda Ancha|Internet EDATEL|CABLE MODEM','INTERNET').str.replace('UNE MOVIL','UNEMOVIL')\ .str.replace('UNE MOVIL|COLOMBIAMOVIL BOGOTA','UNEMOVIL')\ .str.replace('TOIP','TELEFONIA') df['Descripcion producto']=df['Descripcion producto'].str.strip().str.replace('-','')\ .str.replace('TELEVISION UNE|Television Interactiva|TV CABLE |TV INTERACTIVA|UNE TV','TELEVISION')\ .str.replace('Internet Banda Ancha','INTERNET').str.replace('UNE MOVIL','UNEMOVIL') conteo3=df['Descripcion producto'].value_counts().iloc[:7].index.tolist() df['Descripcion producto_resumen']=df.apply( lambda row: row['Descripcion producto'] if (row['Descripcion producto'] in conteo3) else 'OTRO PRODUCTO',axis=1) df['Descripcion producto_resumen']=df['Descripcion producto_resumen'].str.strip() df['Tipo Contactabilidad'][df['Tipo Contactabilidad']==' '] ='NO REGISTRA' df['Indicador BI'][df['Indicador BI']==' '] ='NO REGISTRA' ## Create variable df['antiguedad_mes']=df['antiguedad_mes'].astype(int) col = 'antiguedad_mes' condi = [ df[col] < 12, df[col].between(12, 24, inclusive = True),df[col]>24 ] seg_ = [ "SEGMENTO YOUNG", 'SEGMENTO MASTER','SEGMENTO LEGEND'] df["Hogar"] = np.select(condi, seg_, default=np.nan) df['Calificación A Nivel De Suscripción'][df['Calificación A Nivel De Suscripción']==' ']=df['Calificación A Nivel De Suscripción'].mode()[0] df['Calificación A Nivel De Suscripción']=df['Calificación A Nivel De Suscripción'].astype('int') df['Califica_suscr_class']=pd.cut(df['Calificación A Nivel De Suscripción'],bins=5,labels=["A","B","C","D","E"]).astype(str) df['Tipo De Documento'][df['Tipo De Documento']=='13'] ='NO REGISTRA' df['Tipo De Documento']=df['Tipo De Documento'].fillna('NO REGISTRA') df['Tipo De Documento'][df['Tipo De Documento']=='1'] ='CC' df['Tipo De Documento'][df['Tipo De Documento']==' '] ='NO REGISTRA' df['Tipo De Documento'][df['Tipo De Documento']=='C'] ='NO REGISTRA' df['Tipo De Documento']=df['Tipo De Documento'].str.replace('3 Cedula Extranjeria|3|1CE','CE')\ .str.replace('1 Cedula','CC')\ .str.replace('2 Nit|2',' Nit')\ .str.replace('4 Tarjeta de Identidad|4',' TI') #### Create, clean & group variables df['Banco 1'][df['Banco 1']==' '] ='NO REGISTRA' df['Banco 2'][df['Banco 2']==' '] ='NO REGISTRA' df['Banco 1'].fillna('NO REGISTRA',inplace=True) df['Banco 2'].fillna('NO REGISTRA',inplace=True) df['Banco 1']=df['Banco 1'].str.upper().str.strip() df['Banco 2']=df['Banco 2'].str.upper().str.strip() df['Banco 1']=df['Banco 1'].str.replace('BANCO COLPATRIA','COLPATRIA')\ .str.replace('COLPATRIA ENLINEA','COLPATRIA EN LINEA')\ .str.replace('GANA GANA','GANA')\ .str.replace('GANA GANA','GANA') df["Banco 1_virtual"] =\ np.where(df["Banco 1"].str.contains("LINEA|PSE|BOTON",regex = True,na = False),"1","0") df["Banco 2_Virtual"] =\ np.where(df["Banco 2"].str.contains("LINEA|PSE|BOTON",regex = True,na = False),"1","0") conteo_banco=df['Banco 1'].value_counts().iloc[:10].index.tolist() df['Banco 1_Cl']=df.apply( lambda row: row['Banco 1'] if (row['Banco 1'] in conteo_banco) else 'OTRO BANCO',axis=1) conteo_banco2=df['Banco 2'].value_counts().iloc[:10].index.tolist() df['Banco 2_Cl']=df.apply( lambda row: row['Banco 2'] if (row['Banco 2'] in conteo_banco2) else 'OTRO BANCO',axis=1) df['Causal'][df['Causal']==' '] ='NO REGISTRA' df['Causal_Cl']=df['Causal']\ .str.replace('FACTURA MAYOR A LA CAPACIDAD DE PAGO|CLIENTE SE ACOGE PRODUCTO MINIMO VITAL|PRIORIDAD INGRESOS A LA CANASTA BASICA|INDISPONIBILIDAD DE MEDIOS DE PAGO POR EMERGENCIA SANITARIA|NO TIENE DINERO|INCONVENIENTES ECONOMICOS|INCONVENIENTES ECONOMICOS|CONTINGENCIA COVID-19|DESEMPLEADO|INDEPENDIENTE SIN INGRESOS DURANTE CUARENTENA|DISMINUCIÓN INGRESOS / INCONVENIENTES CON NÓMINA', 'DISMINUCIÓN DE INGRESOS')\ .str.replace('OLVIDO DE PAGO|FUERA DE LA CIUDAD|DEUDOR SE OLVIDO DEL PAGO|OLVIDO DEL PAGO / ESTA DE VIAJE', 'OLVIDO')\ .str.replace('PAGA CADA DOS MESES|PAGO BIMESTRAL','PAGO BIMESTRAL')\ .str.replace('INCONFORMIDAD EN EL VALOR FACTURADO|INCONFORMIDAD POR CAMBIO DE DOMICILIO|INCOMFORMIDAD POR CAMBIO DE DOMICILIO|PQR PENDIENTE|TIENE RECLAMO PENDIENTE','INCONFORMIDAD')\ .str.replace('OTRA PERSONA ES LA ENCARGADA DEL PAGO','OTRA PERSONA ES LA ENCARGADA DEL PAGO').str.strip()\ .str.replace('PROBLEMAS FACTURACIÓN|INCONSISTENCIAS EN CARGOS FACTURADOS|RECLAMACIÓN EN TRÁMITE|NO LE LLEGA LA FACTURA / LLEGO DESPUES DE LA FECHA DE VENCIMIENTO|LLEGO LA FACTURA DESPUES DE LA FECHA DE VENCIMIENTO|NO LLEGO FACTURA', 'FACTURA')\ .str.replace('SE NIEGA A RECIBIR INFORMACION', 'RENUENTE')\ .str.replace('INCONVENIENTES CON CANALES DE PAGO|NO HAY PROGRAMACION DEL PAGO|INCONVENIENTES CON EL CANAL DE RECAUDO|NO HAY PROGRAMACION DEL PAGO|INCONVENIENTES CON LA ENTIDAD BANCARIA', 'INCONVENIENTES CON PAGO')\ .str.replace('REALIZARA RETIRO DEL SERVICIO|REALIZARA RETIRO / CANCELACION SERVICIO', 'REALIZARA RETIRO') conteo_Causa=df['Causal_Cl'].value_counts().iloc[:12].index.tolist() df['Causal_Cl']=df.apply( lambda row: row['Causal_Cl'] if (row['Causal_Cl'] in conteo_Causa) else 'OTRA CAUSA',axis=1) conteo_Corte=df['Descripcion estado de corte'].value_counts().iloc[:12].index.tolist() df['Descripcion estado de corte_Cl']=df.apply( lambda row: row['Descripcion estado de corte'] if (row['Descripcion estado de corte'] in conteo_Corte) else 'OTRA MOTIVO',axis=1) df['Descripcion estado de corte_conexión'] = np.where(df['Descripcion estado de corte'].str.contains("CONEXION"),"1",'0') df['Descripcion estado de corte_suspención'] = np.where(df['Descripcion estado de corte'].str.contains("SUSPENSION"),"1",'0') df['Descripcion estado de corte_retiro'] = np.where(df['Descripcion estado de corte'].str.contains("RETIRO"),"1",'0') df['Valor Total Cobrar']=df['Valor Total Cobrar'].astype('float64') df['Valor Vencido']=df['Valor Vencido'].astype('float64') df['Valor Factura']=df['Valor Factura'].astype('float64') df['Valor Intereses de Mora']=df['Valor Intereses de Mora'].astype('float64') df['Valor financiado']=df['Valor financiado'].astype('float64') ## DROPING VARIABLES df.drop(['Causal','Codigo edad de mora(para central de riesgos)','Codigo edad de mora(para central de riesgos)', 'Estado Adminfo','Celular con mejor Contactabilidad','Archivo Convergente','Usuario','Vector de Pago'],axis=1,inplace=True) anis=['Teléfono última gestión','Email','Telefono con mejor Contactabilidad','Email', 'Ultimo Celular Grabado','Ultimo Telefono Grabado','Ultimo Email Grabado','Celular con mejor Contactabilidad'] df.dropna(subset = ["Direccion de instalacion"], inplace=True) df['llave']=df['Identificacion']+"_"+df['Direccion de instalacion'] df=df.sort_values('Fecha de Asignacion',ascending=True) ## Elimino los duplicados presnetados en la combinación de dichas variables df=df[~df[['llave','# servicio suscrito/abonado','Fecha de Asignacion','Valor Total Cobrar','Valor Vencido','Descripcion localidad']].duplicated()] df.sort_values(by=['Identificacion','# servicio suscrito/abonado','Fecha de Asignacion'],ascending=[True,True,True]).drop_duplicates('# servicio suscrito/abonado',keep='last',inplace=True) ### Cuidado con esos pendientes por gestionar ## Cantidad de servicios cant_serv=df.groupby(['Identificacion']).agg({'Descripcion producto':'nunique','Direccion de instalacion':'nunique'})\ .reset_index().sort_values('Descripcion producto',ascending=False)\ .rename(columns={'Descripcion producto':'cantidad_ser_dir','Direccion de instalacion':'serv_dir'}) df=pd.merge(df,cant_serv,on='Identificacion') df=df[~df.duplicated()] # Creo dicha variabel para evitar que hayan duplicados el mismo día df['llave_2']=df['Identificacion']+"_"+(df['Fecha de Asignacion'].astype('str')) # conteo=df.groupby(['Identificacion','Fecha de Asignacion','Fecha de Asignacion_mes']).agg({'Identificacion':'nunique'}).rename(columns={'Identificacion':'cantidad_mes'}).reset_index() conteo.sort_values('Fecha de Asignacion',ascending=True,inplace=True) conteo=conteo[~conteo['Identificacion'].duplicated(keep='last')] conteo['llave_2']=conteo['Identificacion']+"_"+(conteo['Fecha de Asignacion'].astype('str')) #Se crea con el fin de identificar y quedarme con las claves de cada uno consolidar=pd.merge(df,conteo['llave_2'],on='llave_2') #Creo variables dummies para identificar en una misma cantidad de servicios cer1=pd.concat([pd.get_dummies(consolidar['Descripcion producto_resumen']),consolidar],axis=1) # concateno cer1['llave_2']=cer1['Identificacion']+"_"+(cer1['Fecha de Asignacion'].astype('str')) cer=cer1.groupby(['Identificacion']).agg({ 'Descripcion producto_resumen':np.array,'Descripcion producto_resumen':'sum', 'TELEFONIA':'sum','INTERNET':'sum','TELEVISION':'sum','UNEMOVIL':'sum', 'LARGA DISTANCIA UNE':'sum','PAQUETE':'sum','OTRO PRODUCTO':'sum','LINEA BASICA':'sum', "Valor Vencido":"sum","Valor Total Cobrar":"sum", "Valor financiado":"sum", "Valor Intereses de Mora":"sum"}).reset_index().\ rename(columns={'Valor Vencido':'valor vencido_sum', 'Valor Factura':'Valor Factura_sum', 'Valor financiado':'Valor financiado_sum', 'Valor Total Cobrar':'Valor Total Cobrar_sum', 'Descripcion producto_resumen':'Total servicio', 'Valor Intereses de Mora':'Valor Intereses de Mora_sum'}) cer.drop(['Total servicio'],axis=1,inplace=True) data=pd.merge(consolidar,cer,on='Identificacion') data=data.sort_values(['Fecha de Asignacion','Identificacion'],ascending=[True,True]).drop_duplicates('Identificacion',keep='last') ### Base de datos de la salida out.sort_values(['Identificacion Del Cliente','Fecha_Gestion'],ascending=[True,True]).drop_duplicates(keep='last',inplace=True) out.drop(['Unnamed: 19'],axis=1,inplace=True) ## Cruce de bases de datos de salida full=pd.merge(data,out[['Identificacion Del Cliente','Efectivo Pago','Fecha_Pago']], left_on='Identificacion',right_on='Identificacion Del Cliente') full=full[~full.duplicated()] full=full.sort_values(['Identificacion','Efectivo Pago'],ascending=[True,True]).drop_duplicates(['Identificacion'],keep='first') full['llave_exp']=full['Identificacion']+full['# servicio suscrito/abonado'] full['valor vencido_sum'][full['valor vencido_sum'] < 0] = 0 full['ratio_vlr_vencido_cobro']=full['valor vencido_sum']/full['Valor Total Cobrar_sum'] full.drop(['llave_2','Direccion de instalacion','Banco 1','Banco 2'],axis=1,inplace=True) ### Exporto y envio a la carpeta para trabajarlo seg['FECHA DE GESTION']=pd.to_datetime(seg['FECHA DE GESTION'],format='%Y-%m-%d %H:%M:%S') seg=seg.sort_values(['IDENTIFICACIóN','FECHA DE GESTION']).drop_duplicates('IDENTIFICACIóN',keep='last') vir['Identificación']=vir['Identificación'].astype('str') fulll=pd.merge(full,seg[['IDENTIFICACIóN','FECHA DE GESTION','CLASE DE GESTION', 'LINEA/AGENCIA/ABOGADO','CAUSAL','CICLO','OTRA GESTION', 'SE DEJO MENSAJE EN BUZON', 'DEUDOR REALIZA PROMESA DE PAGO TOTAL', 'NO CONTESTAN / OCUPADO', 'DEUDOR REALIZA PROMESA DE PAGO PARCIAL', 'NO HUBO ACUERDO', 'SE ENVIA CUPON DE PAGO','SE DEJO MENSAJE CON TERCERO', 'OTRA GESTION_sum', 'Total_segui','Cantidad_de_cobros_diff_mes', 'Cantidad_recontactos_mes', 'class_Cantidad_de_cobros_diff_mes','class_Cantidad_recontactos_mes']], left_on='Identificacion',right_on='IDENTIFICACIóN',how='left').\ merge(vir,left_on='Identificacion',right_on='Identificación',how='left') #libero memoria del cer del cer1 fulll["Efectivo Pago"] = (fulll["Efectivo Pago"]=="Efectivo").astype(int) fulll.drop(['Valor financiado_sum','Fecha_Pago','Valor Intereses de Mora_sum','Valor Total Cobrar','Valor Total Cobrar_sum','Valor Intereses de Mora','Agencia B2B Convergente','Codigo Fraude','CAUSAL','LINEA/AGENCIA/ABOGADO', 'Celular','Valor financiado','# servicio suscrito/abonado','Fecha Ult pago','Fecha estado corte','Codigo Departamento','Centrales de riesgos','dias_desde_ult_gestion', 'Valor Honorarios','Dias_ult_pago','dia_semana_ult_pago','mes_ult_pago','semana_ult_pago','Marca','Marca Funcional','Reportado a central de riesgos','Marca Score','Autopago', 'trimestre_ult_pago','año_ult_pago','DIAS_desde_ult_pago','dias_ult_pago_cobro','Primera Mora','CICLO','Codigo Categoria','Subsegmento', 'dias_ult_pago_fac_ant','Fecha de cuenta de cobro mas antigua','Fecha estado corte','Fecha estado corte','Descripcion Gestion Resultado'],axis=1,inplace=True) dd=fulll.copy() dd['class_Cantidad_recontactos_mes']=dd['class_Cantidad_recontactos_mes'].fillna('0') dd['class_Cantidad_de_cobros_diff_mes'].fillna('0',inplace=True) # dd['Calificación Servicio Suscrito'][dd['Calificación Servicio Suscrito']==' '] = np.nan # dd['Calificación Servicio Suscrito']=dd['Calificación Servicio Suscrito'].astype(float) dd['Fecha de Asignacion']=pd.to_datetime(dd['Fecha de Asignacion'],format='%Y-%m-%d') dd['Fecha Ult Gestion']=pd.to_datetime(dd['Fecha Ult Gestion'],format='%Y-%m-%d') dd['Fecha Actualizacion']=pd.to_datetime(dd['Fecha Actualizacion'],format='%Y-%m-%d') dd['Fecha Vencimiento Sin Recargo']=pd.to_datetime(dd['Fecha Vencimiento Sin Recargo'],format='%Y-%m-%d') # dd['Fecha de cuenta de cobro mas antigua']=pd.to_datetime(dd['Fecha de cuenta de cobro mas antigua'],format='%Y-%m-%d') dd['FECHA DE GESTION']=pd.to_datetime(dd['FECHA DE GESTION'],format='%Y-%m-%d %H:%M:%S') dd['Fecha Debido Cobrar']=pd.to_datetime(dd['Fecha Debido Cobrar'],format='%Y-%m-%d %H:%M:%S', errors='coerce') dd['Score Contactabilidad'][dd['Score Contactabilidad']==' '] =np.nan dd['Score Contactabilidad']=dd['Score Contactabilidad'].fillna(dd['Score Contactabilidad'].median()) dd['Score Contactabilidad']=dd['Score Contactabilidad'].astype('float') dd['Tiene Compromiso'] = (dd['Tiene Compromiso']=="S").astype(int) # dd['Calificación Servicio Suscrito'][dd['Calificación Servicio Suscrito']==' '] =0 # dd['Calificación Servicio Suscrito']=dd['Calificación Servicio Suscrito'].astype(float) dd['Financiado'] = (dd["Financiado"]=="SI").astype(int) dd['Obligaciones con celular']= (dd['Obligaciones con celular']=="S").astype(int) dd['Inscrito Factura Web']= (dd['Inscrito Factura Web']=="S").astype(int) dd['Real reportado en central de riesgos']= (dd['Real reportado en central de riesgos']=="S").astype(int) dd['Tipo Habito de Pago'][dd['Tipo Habito de Pago']==' '] ='NO REGISTRA' dd['Calificación Identificación'][dd['Calificación Identificación']==' '] =dd["Calificación Identificación"].mode()[0] dd["Calificación Identificación"]=dd["Calificación Identificación"].astype(float) dd['CLASE DE GESTION'][dd['CLASE DE GESTION']==' ']='NO REGISTRA' ### Clasificaciones dd['Class_Total valor pendiente suscripcion']=pd.qcut(dd['Total valor pendiente suscripcion'].astype(float), 5, labels=["A", "B", "C","D","E"]).astype('str') dd['Total valor pendiente suscripcion']=dd['Total valor pendiente suscripcion'].astype(float) dd['Valor Pendiente']=dd['Valor Pendiente'].astype(float) dd['# de Dias De Mora']=dd['# de Dias De Mora'].astype(float) dd['Dias sin Gestion']=dd['Dias sin Gestion'].astype(float) dd['antiguedad_mes']=dd['antiguedad_mes'].astype(float) dd['Minimo Cuentas con Saldo Suscripción']=dd['Minimo Cuentas con Saldo Suscripción'].astype(float) dd['Maximo Cuentas con Saldo Suscripción']=dd['Maximo Cuentas con Saldo Suscripción'].astype(float) dd['Total_segui']=dd['Total_segui'].astype(float) ### OULIERS qtil9_vlrvencido=dd['valor vencido_sum'].quantile(0.95) qtil9_vlfac=dd['Valor Factura'].quantile(0.90) qtil9_total=dd['Total valor pendiente suscripcion'].quantile(0.90) qtil9_total_ven=dd['Valor Vencido'].quantile(0.90) qtil_75_dia=dd['# de Dias De Mora'].quantile(0.75) qtil_75_dia_ges=dd['Dias sin Gestion'].quantile(0.80) qtil_mes=dd['antiguedad_mes'].quantile(0.95) qtil_min_cuentas=dd['Minimo Cuentas con Saldo Suscripción'].quantile(0.99) qtil_max_cuentas=dd['Maximo Cuentas con Saldo Suscripción'].quantile(0.99) qtil_sus=dd['Dias Suspension'].quantile(0.85) qtil_segui=dd['Total_segui'].quantile(0.95) dd['valor vencido_sum']= np.where(dd["valor vencido_sum"] > qtil9_vlrvencido, qtil9_vlrvencido ,dd["valor vencido_sum"]) dd['Valor Factura'] = np.where(dd['Valor Factura'] > qtil9_vlfac, qtil9_vlfac,dd["Valor Factura"]) dd['Valor Factura'] = np.where(dd['Valor Factura'] < 0, dd["Valor Factura"].quantile(0.5),dd["Valor Factura"]) dd['Total valor pendiente suscripcion']=np.where(dd['Total valor pendiente suscripcion'] > qtil9_total, qtil9_total,dd["Total valor pendiente suscripcion"]) dd['Valor Vencido']=np.where(dd['Valor Vencido'] > qtil9_total_ven, qtil9_total_ven,dd["Valor Vencido"]) dd['Valor Vencido']=np.where(dd['Valor Vencido'] < dd['Valor Vencido'].quantile(0.1), dd['Valor Vencido'].quantile(0.3),dd["Valor Vencido"]) dd['# de Dias De Mora']=np.where(dd['# de Dias De Mora'] > qtil_75_dia, qtil_75_dia,dd['# de Dias De Mora']) dd['Dias sin Gestion']=np.where(dd['Dias sin Gestion'] > qtil_75_dia_ges, qtil_75_dia_ges,dd['Dias sin Gestion']) dd['ratio_vlr_vencido_cobro'].fillna(dd['ratio_vlr_vencido_cobro'].median(),inplace=True) dd['Calificación Servicio Suscrito'][dd['Calificación Servicio Suscrito']==' '] = np.nan dd['Calificación Servicio Suscrito']=dd['Calificación Servicio Suscrito'].fillna(dd['Calificación Servicio Suscrito'].median()) dd['antiguedad_mes']=np.where(dd['antiguedad_mes'] > qtil_mes, qtil_mes,dd['antiguedad_mes']) dd['Minimo Cuentas con Saldo Suscripción']=np.where(dd['Minimo Cuentas con Saldo Suscripción'] > qtil_min_cuentas, qtil_min_cuentas,dd['Minimo Cuentas con Saldo Suscripción']) dd['Maximo Cuentas con Saldo Suscripción']=np.where(dd['Maximo Cuentas con Saldo Suscripción'] > qtil_max_cuentas, qtil_max_cuentas,dd['Maximo Cuentas con Saldo Suscripción']) dd['Dias Suspension']=np.where(dd['Dias Suspension'] > qtil_sus, qtil_sus,dd['Dias Suspension']) ### Drop dd.drop(['Descripcion Mejor Codigo Gestion Mes','Codigo de Gestion Resultado Visita','Análisis Vector', 'Fecha de Instalacion','Día Pago 3','Descripcion localidad', 'Fecha Ingreso Fraude','Maxima fecha Ult Gestion','Usuario Grabador', 'Día Pago 1','Día Pago 2','Ultimo Codigo de Gestion Agrupado','# de Suscripción', 'fecha de importacion', 'Fecha de Asignacion_mes','Descripcion producto','Fecha Financiacion','Codigo estado de corte','Descripcion estado de corte'],axis=1,inplace=True) dd.ratio_vlr_vencido_cobro.fillna(dd.ratio_vlr_vencido_cobro.median(),inplace=True) dd['retiro']=np.where(dd['Fecha Retiro'].isna(),0,1) dd.drop(['Nivel de riesgo experian','Fecha Retiro','Nivel de Riesgo','Indicador BI','Tipo Contactabilidad', 'Gestion comercial','Estrategia','Usuario Fraudulento','Tipo de Reporte a Central de Riesgos','Banco 2_Cl'],axis=1,inplace=True) dd.ratio_vlr_vencido_cobro.fillna(dd.ratio_vlr_vencido_cobro.median(),inplace=True) dd['Efectivo Pago']=dd['Efectivo Pago'].astype(str) dd['Class_Total valor pendiente suscripcion']=dd['Class_Total valor pendiente suscripcion'].astype('str') dd['Califica_suscr_class']=dd['Califica_suscr_class'].astype('str') dd['# de Dias De Mora'].fillna(0,inplace=True) breaks3 = jenkspy.jenks_breaks(dd['# de Dias De Mora'], nb_class=8) dd['class_# de Dias De Mora'] = pd.cut(dd['# de Dias De Mora'] , bins=breaks3, include_lowest=True).astype(str) breaks2 = jenkspy.jenks_breaks(dd['ratio_vlr_vencido_cobro'], nb_class=5) dd['class_ratio_vlr_vencido_cobro_class'] = pd.cut(dd['ratio_vlr_vencido_cobro'] , bins=breaks2, include_lowest=True).astype(str) dd['Total'].fillna(0,inplace=True) dd['Total_clasificacion_cant_virtuales'] = pd.cut(x=dd['Total'], bins=[-1,0,1,2,3,6,10,17,30,1000], labels=["0","1","2","3","4-6","7-10", "11-17","18-30", ">30"]).astype(str).fillna('0') ### Divido sin_seg=dd[dd['IDENTIFICACIóN'].isna()] sin_seg.drop(sin_seg[sin_seg.columns[79:139]].columns,axis=1,inplace=True) # con seguimiento dd=dd[~dd['IDENTIFICACIóN'].isna()] grupo=dd.groupby(['Efectivo Pago','Descripcion departamento', 'sistema origen', 'Vector Cualitativo # Suscripción', 'Tipificación Cliente', 'Perfil Digital', 'Descripcion subcategoria', 'Descripcion categoria', 'Estado del Cliente', 'Tipo Habito de Pago', 'Tipo Producto Servicio Suscrito', 'Analisis De Habito','Hogar', 'Califica_suscr_class', 'Banco 1_Cl','Descripcion estado de corte_Cl','class_Cantidad_de_cobros_diff_mes', 'class_Cantidad_recontactos_mes', 'Class_IVR', 'Class_sms','Class_Total valor pendiente suscripcion','Total_clasificacion_cant_virtuales', 'class_ratio_vlr_vencido_cobro_class','class_# de Dias De Mora']).size().reset_index(name='frecuency') # dic_reg=pd.crosstab(grupo['Descripcion Regional'],grupo['Efectivo Pago']).apply(lambda r: r/r.sum(), axis=1)['1'].to_dict() dic_des_dep=pd.crosstab(grupo['Descripcion departamento'],grupo['Efectivo Pago']).apply(lambda r: r/r.sum(), axis=1)['1'].to_dict() dic_vec_cua=
pd.crosstab(grupo['Vector Cualitativo # Suscripción'],grupo['Efectivo Pago'])
pandas.crosstab
# -*- coding: utf-8 -*- """ Created on Thu Jun 7 11:41:44 2018 @author: MichaelEK """ import os import argparse import types import pandas as pd import numpy as np from pdsql import mssql from datetime import datetime import yaml import itertools import lowflows as lf import util pd.options.display.max_columns = 10 run_time_start = datetime.today().strftime('%Y-%m-%d %H:%M:%S') print(run_time_start) try: ##################################### ### Read parameters file base_dir = os.path.realpath(os.path.dirname(__file__)) with open(os.path.join(base_dir, 'parameters-test.yml')) as param: param = yaml.safe_load(param) # parser = argparse.ArgumentParser() # parser.add_argument('yaml_path') # args = parser.parse_args() # # with open(args.yaml_path) as param: # param = yaml.safe_load(param) ## Integrety checks use_types_check = np.in1d(list(param['misc']['use_types_codes'].keys()), param['misc']['use_types_priorities']).all() if not use_types_check: raise ValueError('use_type_priorities parameter does not encompass all of the use type categories. Please fix the parameters file.') ##################################### ### Read the hydro log # max_date_stmt = "select max(RunTimeStart) from " + param.log_table + " where HydroTable='" + param.process_name + "' and RunResult='pass' and ExtSystem='" + param.ext_system + "'" # # last_date1 = mssql.rd_sql(server=param.hydro_server, database=param.hydro_database, stmt=max_date_stmt).loc[0][0] # # if last_date1 is None: # last_date1 = '1900-01-01' # else: # last_date1 = str(last_date1.date()) # # print('Last sucessful date is ' + last_date1) ####################################### ### Read in source data and update accela tables in ConsentsReporting db print('--Reading in source data...') ## Make object to contain the source data db = types.SimpleNamespace() for i, p in param['source data'].items(): setattr(db, i, mssql.rd_sql(p['server'], p['database'], p['table'], p['col_names'], rename_cols=p['rename_cols'], username=p['username'], password=p['password'])) if (p['database'] == 'Accela') & (not (p['table'] in ['Ecan.vAct_Water_AssociatedPermits', 'Ecan.vQA_Relationship_Actuals'])): table1 = 'Accela.' + p['table'].split('Ecan.')[1] print(table1) t1 = getattr(db, i).copy().dropna(subset=p['pk']) t1.drop_duplicates(p['pk'], inplace=True) print('update in db') new_ones, _ = mssql.update_from_difference(t1, param['output']['server'], param['output']['database'], table1, on=p['pk'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) ###################################### ### Populate base tables print('--Update base tables') ## HydroGroup hf1 = pd.DataFrame(param['misc']['HydroGroup']) hf1['ModifiedDate'] = run_time_start hf0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) hf_diff1 = hf1[~hf1.HydroGroup.isin(hf0.HydroGroup)] if not hf_diff1.empty: mssql.to_mssql(hf_diff1, param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) hf0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'HydroGroup', username=param['output']['username'], password=param['output']['password']) ## Activity act1 = param['misc']['Activities']['ActivityType'] act2 = pd.DataFrame(list(itertools.product(act1, hf0.HydroGroupID.tolist())), columns=['ActivityType', 'HydroGroupID']) act2['ModifiedDate'] = run_time_start act0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) act_diff1 = act2[~act2[['ActivityType', 'HydroGroupID']].isin(act0[['ActivityType', 'HydroGroupID']]).any(axis=1)] if not act_diff1.empty: mssql.to_mssql(act_diff1, param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) act0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Activity', username=param['output']['username'], password=param['output']['password']) # Combine activity and hydro features act_types1 = pd.merge(act0[['ActivityID', 'ActivityType', 'HydroGroupID']], hf0[['HydroGroupID', 'HydroGroup']], on='HydroGroupID') act_types1['ActivityName'] = act_types1['ActivityType'] + ' ' + act_types1['HydroGroup'] ## AlloBlock ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) sw_blocks1 = pd.Series(db.wap_allo['sw_allo_block'].unique()) gw_blocks1 = pd.Series(db.allocated_volume['allo_block'].unique()) # Fixes wap_allo1 = db.wap_allo.copy() wap_allo1['sw_allo_block'] = wap_allo1['sw_allo_block'].str.strip() wap_allo1.loc[wap_allo1.sw_allo_block == 'Migration: Not Classified', 'sw_allo_block'] = 'A' allo_vol1 = db.allocated_volume.copy() allo_vol1['allo_block'] = allo_vol1['allo_block'].str.strip() allo_vol1.loc[allo_vol1.allo_block == 'Migration: Not Classified', 'allo_block'] = 'A' # Determine blocks and what needs to be added sw_blocks1 = set(wap_allo1['sw_allo_block'].unique()) gw_blocks1 = set(allo_vol1['allo_block'].unique()) blocks1 = sw_blocks1.union(gw_blocks1) ab1 = pd.DataFrame(list(itertools.product(blocks1, hf0.HydroGroupID.tolist())), columns=['AllocationBlock', 'HydroGroupID']) ab1['ModifiedDate'] = run_time_start ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) ab_diff1 = ab1[~ab1[['AllocationBlock', 'HydroGroupID']].isin(ab0[['AllocationBlock', 'HydroGroupID']]).any(axis=1)] if not ab_diff1.empty: mssql.to_mssql(ab_diff1, param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) ab0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'AlloBlock', username=param['output']['username'], password=param['output']['password']) # Combine alloblock and hydro features ab_types1 = pd.merge(ab0[['AlloBlockID', 'AllocationBlock', 'HydroGroupID']], hf0[['HydroGroupID', 'HydroGroup']], on='HydroGroupID').drop('HydroGroupID', axis=1) ## Attributes att1 = pd.DataFrame(param['misc']['Attributes']) att1['ModifiedDate'] = run_time_start att0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) att_diff1 = att1[~att1.Attribute.isin(att0.Attribute)] if not att_diff1.empty: mssql.to_mssql(att_diff1, param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) att0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', username=param['output']['username'], password=param['output']['password']) ################################################## ### Sites and streamdepletion print('--Update sites tables') ## takes wap_allo1['WAP'] = wap_allo1['WAP'].str.strip().str.upper() wap_allo1.loc[~wap_allo1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan wap1 = wap_allo1['WAP'].unique() wap1 = wap1[~pd.isnull(wap1)] ## Diverts div1 = db.divert.copy() div1['WAP'] = div1['WAP'].str.strip().str.upper() div1.loc[~div1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan wap2 = div1['WAP'].unique() wap2 = wap2[~pd.isnull(wap2)] ## Combo waps = np.concatenate((wap1, wap2), axis=None) ## Check that all WAPs exist in the USM sites table usm_waps1 = db.sites[db.sites.ExtSiteID.isin(waps)].copy() usm_waps1[['NZTMX', 'NZTMY']] = usm_waps1[['NZTMX', 'NZTMY']].astype(int) if len(wap1) != len(usm_waps1): miss_waps = set(wap1).difference(set(usm_waps1.ExtSiteID)) print('Missing {} WAPs in USM'.format(len(miss_waps))) wap_allo1 = wap_allo1[~wap_allo1.WAP.isin(miss_waps)].copy() ## Update ConsentsSites table cs1 = usm_waps1[['ExtSiteID', 'SiteName']].copy() # cs1['SiteType'] = 'WAP' new_sites, _ = mssql.update_from_difference(cs1, param['output']['server'], param['output']['database'], 'ConsentsSites', on='ExtSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentsSites', 'pass', '{} sites updated'.format(len(new_sites)), username=param['output']['username'], password=param['output']['password']) cs0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'ConsentsSites', ['SiteID', 'ExtSiteID'], username=param['output']['username'], password=param['output']['password']) cs_waps2 = pd.merge(cs0, usm_waps1.drop('SiteName', axis=1), on='ExtSiteID') cs_waps3 = pd.merge(cs_waps2, db.wap_sd, on='ExtSiteID').drop('ExtSiteID', axis=1).round() new_waps, _ = mssql.update_from_difference(cs_waps3, param['output']['server'], param['output']['database'], 'SiteStreamDepletion', on='SiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'WAP', 'pass', '{} sites updated'.format(len(new_waps)), username=param['output']['username'], password=param['output']['password']) ## Read db table # wap0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'SiteStreamDepletion') ## Make linked WAP-SiteID table wap_site = cs0.rename(columns={'ExtSiteID': 'WAP'}) ################################################## ### Permit table print('--Update Permit table') ## Clean data permits1 = db.permit.copy() permits1['RecordNumber'] = permits1['RecordNumber'].str.strip().str.upper() permits1['ConsentStatus'] = permits1['ConsentStatus'].str.strip() permits1['EcanID'] = permits1['EcanID'].str.strip().str.upper() permits1['FromDate'] = pd.to_datetime(permits1['FromDate'], infer_datetime_format=True, errors='coerce') permits1['ToDate'] = pd.to_datetime(permits1['ToDate'], infer_datetime_format=True, errors='coerce') permits1.loc[permits1['ConsentStatus'] == 'Issued - s124 Continuance', 'ToDate'] = permits1.loc[permits1['ConsentStatus'] == 'Issued - s124 Continuance', 'FromDate'] + pd.DateOffset(years=30) permits1[['NZTMX', 'NZTMY']] = permits1[['NZTMX', 'NZTMY']].round() permits1.loc[(permits1['FromDate'] < '1950-01-01'), 'FromDate'] = np.nan permits1.loc[(permits1['ToDate'] < '1950-01-01'), 'ToDate'] = np.nan ## Filter data permits2 = permits1.drop_duplicates('RecordNumber') permits2 = permits2[permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull() & permits2['EcanID'].notnull()].copy() # permits2 = permits2[(permits2['FromDate'] > '1950-01-01') & (permits2['ToDate'] > '1950-01-01') & (permits2['ToDate'] > permits2['FromDate']) & permits2.NZTMX.notnull() & permits2.NZTMY.notnull() & permits2.ConsentStatus.notnull() & permits2.RecordNumber.notnull() & permits2['EcanID'].notnull()].copy() ## Convert datetimes to date permits2['FromDate'] = permits2['FromDate'].dt.date permits2['ToDate'] = permits2['ToDate'].dt.date permits2.loc[permits2['FromDate'].isnull(), 'FromDate'] = '1900-01-01' permits2.loc[permits2['ToDate'].isnull(), 'ToDate'] = '1900-01-01' ## Save results new_permits, _ = mssql.update_from_difference(permits2, param['output']['server'], param['output']['database'], 'Permit', on='RecordNumber', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'Permit', 'pass', '{} rows updated'.format(len(new_permits)), username=param['output']['username'], password=param['output']['password']) ## Read db table permits0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Permit', username=param['output']['username'], password=param['output']['password']) ################################################## ### Parent-Child print('--Update Parent-child table') ## Clean data pc1 = db.parent_child.copy() pc1['ParentRecordNumber'] = pc1['ParentRecordNumber'].str.strip().str.upper() pc1['ChildRecordNumber'] = pc1['ChildRecordNumber'].str.strip().str.upper() pc1['ParentCategory'] = pc1['ParentCategory'].str.strip() pc1['ChildCategory'] = pc1['ChildCategory'].str.strip() ## Filter data pc1 = pc1.drop_duplicates() pc1 = pc1[pc1['ParentRecordNumber'].notnull() & pc1['ChildRecordNumber'].notnull()] ## Check foreign keys crc1 = permits0.RecordNumber.unique() pc2 = pc1[pc1.ParentRecordNumber.isin(crc1) & pc1.ChildRecordNumber.isin(crc1)].copy() ## Save results new_pc, _ = mssql.update_from_difference(pc2, param['output']['server'], param['output']['database'], 'ParentChild', on=['ParentRecordNumber', 'ChildRecordNumber'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ParentChild', 'pass', '{} rows updated'.format(len(new_pc)), username=param['output']['username'], password=param['output']['password']) ## Read db table pc0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'ParentChild', username=param['output']['username'], password=param['output']['password']) ################################################# ### AllocatedRatesVolumes print('--Update Allocation tables') attr1 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'Attributes', ['AttributeID', 'Attribute'], username=param['output']['username'], password=param['output']['password']) ## Rates # Clean data wa1 = wap_allo1.copy() wa1['RecordNumber'] = wa1['RecordNumber'].str.strip().str.upper() wa1['take_type'] = wa1['take_type'].str.strip().str.title() wa1['FromMonth'] = wa1['FromMonth'].str.strip().str.title() wa1['ToMonth'] = wa1['ToMonth'].str.strip().str.title() wa1['IncludeInSwAllocation'] = wa1['IncludeInSwAllocation'].str.strip().str.title() wa1['AllocatedRate'] = pd.to_numeric(wa1['AllocatedRate'], errors='coerce').round(2) wa1['WapRate'] = pd.to_numeric(wa1['WapRate'], errors='coerce').round(2) wa1['VolumeDaily'] = pd.to_numeric(wa1['VolumeDaily'], errors='coerce').astype(int) wa1['VolumeWeekly'] = pd.to_numeric(wa1['VolumeWeekly'], errors='coerce').astype(int) wa1['Volume150Day'] = pd.to_numeric(wa1['Volume150Day'], errors='coerce').astype(int) wa1.loc[wa1['FromMonth'] == 'Migration: Not Classified', 'FromMonth'] = 'Jul' wa1.loc[wa1['ToMonth'] == 'Migration: Not Classified', 'ToMonth'] = 'Jun' mon_mapping = {'Jan': 7, 'Feb': 8, 'Mar': 9, 'Apr': 10, 'May': 11, 'Jun': 12, 'Jul': 1, 'Aug': 2, 'Sep': 3, 'Oct': 4, 'Nov': 5, 'Dec': 6} wa1.replace({'FromMonth': mon_mapping, 'ToMonth': mon_mapping}, inplace=True) wa1.loc[wa1['IncludeInSwAllocation'] == 'No', 'IncludeInSwAllocation'] = False wa1.loc[wa1['IncludeInSwAllocation'] == 'Yes', 'IncludeInSwAllocation'] = True wa1.replace({'sw_allo_block': {'In Waitaki': 'A'}}, inplace=True) # Check foreign keys wa4 = wa1[wa1.RecordNumber.isin(crc1)].copy() # Filters # wa4 = wa2[(wa2.AllocatedRate > 0)].copy() # wa3.loc[~wa3['IncludeInSwAllocation'], ['AllocatedRate', 'SD1', 'SD2']] = 0 # wa4 = wa3.drop('IncludeInSwAllocation', axis=1).copy() # Find the missing WAPs per consent crc_wap_mis1 = wa4.loc[wa4.WAP.isnull(), 'RecordNumber'].unique() crc_wap4 = wa4[['RecordNumber', 'WAP']].drop_duplicates() for i in crc_wap_mis1: crc2 = pc0[np.in1d(pc0.ParentRecordNumber, i)].ChildRecordNumber.values wap1 = [] while (len(crc2) > 0) & (len(wap1) == 0): wap1 = crc_wap4.loc[np.in1d(crc_wap4.RecordNumber, crc2), 'WAP'].values crc2 = pc0[np.in1d(pc0.ParentRecordNumber, crc2)].ChildRecordNumber.values if len(wap1) > 0: wa4.loc[wa4.RecordNumber == i, 'WAP'] = wap1[0] wa4 = wa4[wa4.WAP.notnull()].copy() wa4.rename(columns={'sw_allo_block': 'AllocationBlock'}, inplace=True) # Distribute the months cols1 = wa4.columns.tolist() from_mon_pos = cols1.index('FromMonth') to_mon_pos = cols1.index('ToMonth') allo_rates_list = [] # c1 = 0 for val in wa4.itertuples(False, None): from_month = int(val[from_mon_pos]) to_month = int(val[to_mon_pos]) if from_month > to_month: mons = list(range(1, to_month + 1)) # c1 = c1 + 1 else: mons = range(from_month, to_month + 1) d1 = [val + (i,) for i in mons] allo_rates_list.extend(d1) col_names1 = wa4.columns.tolist() col_names1.extend(['Month']) wa5 = pd.DataFrame(allo_rates_list, columns=col_names1).drop(['FromMonth', 'ToMonth'], axis=1) # Mean of all months grp1 = wa5.groupby(['RecordNumber', 'take_type', 'AllocationBlock', 'WAP']) mean1 = grp1[['WapRate', 'AllocatedRate', 'VolumeDaily', 'VolumeWeekly', 'Volume30Day', 'Volume150Day', 'SD1', 'SD2']].mean().round(2) include1 = grp1['IncludeInSwAllocation'].first() mon_min = grp1['Month'].min() mon_min.name = 'FromMonth' mon_max = grp1['Month'].max() mon_max.name = 'ToMonth' wa6 = pd.concat([mean1, mon_min, mon_max, include1], axis=1).reset_index() # wa6['HydroGroup'] = 'Surface Water' ## Allocated Volume av1 = allo_vol1.copy() # clean data av1['RecordNumber'] = av1['RecordNumber'].str.strip().str.upper() av1['take_type'] = av1['take_type'].str.strip().str.title() av1['IncludeInGwAllocation'] = av1['IncludeInGwAllocation'].str.strip().str.title() av1.loc[av1['IncludeInGwAllocation'] == 'No', 'IncludeInGwAllocation'] = False av1.loc[av1['IncludeInGwAllocation'] == 'Yes', 'IncludeInGwAllocation'] = True av1['IncludeInGwAllocation'] = av1['IncludeInGwAllocation'].astype(bool) # av1['AllocatedAnnualVolume'] = pd.to_numeric(av1['AllocatedAnnualVolume'], errors='coerce').astype(int) av1['FullAnnualVolume'] = pd.to_numeric(av1['FullAnnualVolume'], errors='coerce').astype(int) # av1.loc[av1['AllocatedAnnualVolume'] <= 0, 'AllocatedAnnualVolume'] = 0 # av1 = av1.loc[av1['AllocatedAnnualVolume'] > 0] av1.rename(columns={'allo_block': 'AllocationBlock'}, inplace=True) av1.drop('AllocatedAnnualVolume', axis=1, inplace=True) av1.replace({'AllocationBlock': {'In Waitaki': 'A'}}, inplace=True) av1.drop_duplicates(subset=['RecordNumber', 'take_type', 'AllocationBlock'], inplace=True) ## Combine volumes with rates wa7 = pd.merge(av1, wa6, on=['RecordNumber', 'take_type', 'AllocationBlock']) ## Distribute the volumes by WapRate wa8 = wa7.copy() grp3 = wa8.groupby(['RecordNumber', 'take_type', 'AllocationBlock']) wa8['WapRateAgg'] = grp3['WapRate'].transform('sum') wa8['ratio'] = wa8['WapRate'] / wa8['WapRateAgg'] wa8.loc[wa8['ratio'].isnull(), 'ratio'] = 1 wa8['FullAnnualVolume'] = (wa8['FullAnnualVolume'] * wa8['ratio']).round() wa8.drop(['WapRateAgg', 'ratio', 'VolumeDaily', 'VolumeWeekly', 'Volume30Day', 'Volume150Day', 'SD2', 'WapRate'], axis=1, inplace=True) wa8 = wa8[wa8.FullAnnualVolume >= 0].copy() ## Add in stream depletion # wa9 = pd.merge(wa8, db.wap_sd.rename(columns={'ExtSiteID': 'WAP'}), on='WAP').drop(['SD1_NZTMX', 'SD1_NZTMY', 'SD1_30Day', 'SD2_NZTMX', 'SD2_NZTMY', 'SD2_7Day', 'SD2_30Day', 'SD2_150Day', 'SD1', 'SD2'], axis=1) # # wa9['SD1_7Day'] = pd.to_numeric(wa9['SD1_7Day'], errors='coerce').round(0) # wa9['SD1_150Day'] = pd.to_numeric(wa9['SD1_150Day'], errors='coerce').round(0) ## Combine with aquifer test storativity # aq1 = db.wap_aquifer_test.dropna(subset=['storativity']).copy() # aq1.rename(columns={'ExtSiteID': 'WAP'}, inplace=True) # aq2 = aq1.groupby('WAP')['storativity'].mean().dropna().reset_index() # aq2.storativity = True # # wa9 = pd.merge(wa9, aq2, on='WAP', how='left') # wa9.loc[wa9.storativity.isnull(), 'storativity'] = False ## Distribute the rates and volumes by allocation hydro group wa8['sw_rate'] = 0 wa8['gw_rate'] = 0 wa8['sw_vol'] = 0 wa8['gw_vol'] = 0 wa8.loc[wa8.take_type == 'Take Surface Water', 'sw_rate'] = wa8.loc[wa8.take_type == 'Take Surface Water', 'AllocatedRate'] wa8.loc[wa8.take_type == 'Take Groundwater', 'sw_rate'] = wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1'] wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_rate'] = wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate'] - wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1'] wa8.loc[wa8.take_type == 'Take Surface Water', 'sw_vol'] = wa8.loc[wa8.take_type == 'Take Surface Water', 'FullAnnualVolume'] wa8.loc[wa8.take_type == 'Take Groundwater', 'sw_vol'] = (wa8.loc[wa8.take_type == 'Take Groundwater', 'SD1']/wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate']) * wa8.loc[wa8.take_type == 'Take Groundwater', 'FullAnnualVolume'] wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_vol'] = (wa8.loc[wa8.take_type == 'Take Groundwater', 'gw_rate']/wa8.loc[wa8.take_type == 'Take Groundwater', 'AllocatedRate']) * wa8.loc[wa8.take_type == 'Take Groundwater', 'FullAnnualVolume'] allo_list = [] for k, row in wa8.iterrows(): # print(k) if row['IncludeInSwAllocation']: sw1 = row[['RecordNumber', 'AllocationBlock', 'WAP', 'FromMonth', 'ToMonth', 'sw_rate', 'sw_vol']].rename({'sw_rate': 'AllocatedRate', 'sw_vol': 'AllocatedAnnualVolume'}) sw1['HydroGroup'] = 'Surface Water' allo_list.append(sw1.to_frame().T) if row['IncludeInGwAllocation']: gw1 = row[['RecordNumber', 'AllocationBlock', 'WAP', 'FromMonth', 'ToMonth', 'gw_rate', 'gw_vol']].rename({'gw_rate': 'AllocatedRate', 'gw_vol': 'AllocatedAnnualVolume'}) gw1['HydroGroup'] = 'Groundwater' allo_list.append(gw1.to_frame().T) rv1 = pd.concat(allo_list) rv1['AllocatedAnnualVolume'] = pd.to_numeric(rv1['AllocatedAnnualVolume']) rv1['AllocatedRate'] = pd.to_numeric(rv1['AllocatedRate']) rv1['FromMonth'] = pd.to_numeric(rv1['FromMonth'], downcast='integer') rv1['ToMonth'] = pd.to_numeric(rv1['ToMonth'], downcast='integer') rv1.loc[rv1['AllocatedAnnualVolume'].isnull(), 'AllocatedAnnualVolume'] = 0 rv1.loc[rv1['AllocatedAnnualVolume'] == np.inf, 'AllocatedAnnualVolume'] = 0 rv1.loc[rv1['AllocatedRate'].isnull(), 'AllocatedRate'] = 0 rv1.loc[rv1['AllocatedRate'] == np.inf, 'AllocatedRate'] = 0 # Cut out the fat rv4 = rv1[(rv1['AllocatedAnnualVolume'] > 0) | (rv1['AllocatedRate'] > 0)].copy() ## Calculate missing volumes and rates ann_bool = rv4.AllocatedAnnualVolume == 0 rv4.loc[ann_bool, 'AllocatedAnnualVolume'] = (rv4.loc[ann_bool, 'AllocatedRate'] * 0.001*60*60*24*30.42* (rv4.loc[ann_bool, 'ToMonth'] - rv4.loc[ann_bool, 'FromMonth'] + 1)) rate_bool = rv4.AllocatedRate == 0 rv4.loc[rate_bool, 'AllocatedRate'] = (rv4.loc[rate_bool, 'AllocatedAnnualVolume'] / 60/60/24/30.42/ (rv4.loc[rate_bool, 'ToMonth'] - rv4.loc[rate_bool, 'FromMonth'] + 1) * 1000) ## Convert the rates and volumes to integers rv4['AllocatedAnnualVolume'] = rv4['AllocatedAnnualVolume'].round().astype(int) rv4['AllocatedRate'] = rv4['AllocatedRate'].round().astype(int) ## Merge tables for IDs avr5 = pd.merge(rv4, ab_types1, on=['AllocationBlock', 'HydroGroup']).drop(['AllocationBlock', 'HydroGroup'], axis=1).copy() avr6 = pd.merge(avr5, wap_site, on='WAP').drop('WAP', axis=1) ## Update CrcAlloSite table crc_allo = avr6[['RecordNumber', 'AlloBlockID', 'SiteID']].copy() crc_allo['SiteAllo'] = True crc_allo['SiteType'] = 'WAP' ## Determine which rows should be updated # old_crc_allo = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', where_in={'SiteAllo': [1], 'SiteType': ['WAP']}) # # diff_dict = mssql.compare_dfs(old_crc_allo.drop(['CrcAlloSiteID', 'ModifiedDate'], axis=1), crc_allo, on=['RecordNumber', 'AlloBlockID', 'SiteID']) # # both1 = pd.concat([diff_dict['new'], diff_dict['diff']]) # # rem1 = diff_dict['remove'] # Save results new_crc_allo, rem_crc_allo = mssql.update_from_difference(crc_allo, param['output']['server'], param['output']['database'], 'CrcAlloSite', on=['RecordNumber', 'AlloBlockID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcAlloSite', 'pass', '{} rows updated'.format(len(new_crc_allo)), username=param['output']['username'], password=param['output']['password']) # Read db table allo_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', ['CrcAlloSiteID', 'RecordNumber', 'AlloBlockID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) # Remove old data if needed if not rem_crc_allo.empty: rem_crc_allo1 = pd.merge(allo_site0, rem_crc_allo, on=['RecordNumber', 'AlloBlockID', 'SiteID']).drop(['RecordNumber', 'AlloBlockID', 'SiteID'], axis=1) mssql.del_table_rows(param['output']['server'], param['output']['database'], 'AllocatedRateVolume', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'TSLowFlowRestr', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'LowFlowConditions', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) # mssql.del_table_rows(param['output']['server'], param['output']['database'], 'CrcAlloSite', rem_crc_allo1, username=param['output']['username'], password=param['output']['password']) allo_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcAlloSite', ['CrcAlloSiteID', 'RecordNumber', 'AlloBlockID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## Update AllocatedRateVolume table avr7 = pd.merge(allo_site0, avr6, on=['RecordNumber', 'AlloBlockID', 'SiteID']).drop(['RecordNumber', 'AlloBlockID', 'SiteID'], axis=1).drop_duplicates('CrcAlloSiteID') # Save results new_avr, _ = mssql.update_from_difference(avr7, param['output']['server'], param['output']['database'], 'AllocatedRateVolume', on='CrcAlloSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'AllocatedRateVolume', 'pass', '{} rows updated'.format(len(new_avr)), username=param['output']['username'], password=param['output']['password']) ################################################# ### ConsentedRateVolume print('--Update Consent tables') ## Clean data crv1 = db.consented_takes.copy() crv1['RecordNumber'] = crv1['RecordNumber'].str.strip().str.upper() crv1['take_type'] = crv1['take_type'].str.strip().str.title() crv1['LowflowCondition'] = crv1['LowflowCondition'].str.strip().str.upper() crv1['ConsentedAnnualVolume'] = pd.to_numeric(crv1['ConsentedAnnualVolume'], errors='coerce').round() crv1['ConsentedMultiDayVolume'] = pd.to_numeric(crv1['ConsentedMultiDayVolume'], errors='coerce').round() crv1['ConsentedMultiDayPeriod'] = pd.to_numeric(crv1['ConsentedMultiDayPeriod'], errors='coerce').round() crv1['ConsentedRate'] = pd.to_numeric(crv1['ConsentedRate'], errors='coerce') crv1.loc[crv1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan crv1.loc[crv1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan crv1.loc[crv1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan crv1.loc[crv1['ConsentedAnnualVolume'] <= 0, 'ConsentedAnnualVolume'] = np.nan crv1.loc[crv1['LowflowCondition'].isnull(), 'LowflowCondition'] = 'NO' crv1.loc[(crv1['LowflowCondition'] == 'COMPLEX'), 'LowflowCondition'] = 'YES' crv1.loc[crv1['LowflowCondition'] == 'NO', 'LowflowCondition'] = False crv1.loc[crv1['LowflowCondition'] == 'YES', 'LowflowCondition'] = True ## Filter data crv2 = crv1[crv1.ConsentedRate.notnull()] ## Check foreign keys crv2 = crv2[crv2.RecordNumber.isin(crc1)].copy() ## Aggregate take types for counts and min/max month grp4 = wa4.groupby(['RecordNumber', 'take_type', 'WAP']) mon_min = grp4['FromMonth'].min() mon_min.name = 'FromMonth' mon_max = grp4['ToMonth'].max() mon_max.name = 'ToMonth' mon_min_max = pd.concat([mon_min, mon_max], axis=1) mon_min_max1 = mon_min_max.reset_index() grp5 = mon_min_max1.groupby(['RecordNumber', 'take_type']) mon_min_max1['wap_count'] = grp5['WAP'].transform('count') ## Distribute WAPs to consents crv3 = pd.merge(crv2, mon_min_max1, on=['RecordNumber', 'take_type']) crv3[['ConsentedAnnualVolume', 'ConsentedMultiDayVolume']] = crv3[['ConsentedAnnualVolume', 'ConsentedMultiDayVolume']].divide(crv3['wap_count'], 0).round() crv3['ConsentedRate'] = crv3['ConsentedRate'].divide(crv3['wap_count'], 0).round(2) ## Convert take types to ActivityID take_types1 = act_types1[act_types1.ActivityType == 'Take'].copy() crv4 = pd.merge(crv3.drop('wap_count', axis=1), take_types1[['ActivityID', 'ActivityName']], left_on='take_type', right_on='ActivityName').drop(['take_type', 'ActivityName'], axis=1) ## Convert WAPs to SiteIDs crv5 = pd.merge(crv4, wap_site, on='WAP').drop('WAP', axis=1) ## Create CrcActSite table crc_act = crv5[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act['SiteActivity'] = True crc_act['SiteType'] = 'WAP' # Save results new_crc_act, rem_crc_act = mssql.update_from_difference(crc_act, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['RecordNumber', 'ActivityID', 'SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crc_act)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) # Remove old data if needed if not rem_crc_act.empty: rem_crc_act1 = pd.merge(act_site0, rem_crc_act, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID'], axis=1) del_stmt = "delete from {table} where {col} in ({val})" # del_stmt1 = del_stmt.format(table='ConsentedAttributes', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt1, username=param['output']['username'], password=param['output']['password']) # # del_stmt2a = del_stmt.format(table='LinkedPermits', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt2a, username=param['output']['username'], password=param['output']['password']) # # del_stmt2b = del_stmt.format(table='LinkedPermits', col='OtherCrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt2b, username=param['output']['username'], password=param['output']['password']) del_stmt3 = del_stmt.format(table='ConsentedRateVolume', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt3, username=param['output']['username'], password=param['output']['password']) # del_stmt4 = del_stmt.format(table='CrcActSite', col='CrcActSiteID', val=', '.join(rem_crc_act1.CrcActSiteID.astype(str).tolist())) # mssql.del_table_rows(param['output']['server'], param['output']['database'], stmt=del_stmt4, username=param['output']['username'], password=param['output']['password']) act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## Create ConsentedRateVolume table crv6 = pd.merge(crv5, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID', 'LowflowCondition'], axis=1) # Save results new_crv, _ = mssql.update_from_difference(crv6, param['output']['server'], param['output']['database'], 'ConsentedRateVolume', on='CrcActSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedRateVolume', 'pass', '{} rows updated'.format(len(new_crv)), username=param['output']['username'], password=param['output']['password']) ########################################### ### Diverts ## Clean div1 = db.divert.copy() div1['RecordNumber'] = div1['RecordNumber'].str.strip().str.upper() div1['DivertType'] = div1['DivertType'].str.strip().str.title() div1['LowflowCondition'] = div1['LowflowCondition'].str.strip().str.upper() div1['ConsentedMultiDayVolume'] = pd.to_numeric(div1['ConsentedMultiDayVolume'], errors='coerce').round() div1['ConsentedMultiDayPeriod'] = pd.to_numeric(div1['ConsentedMultiDayPeriod'], errors='coerce').round() div1['ConsentedRate'] = pd.to_numeric(div1['ConsentedRate'], errors='coerce').round(2) div1.loc[div1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan div1.loc[div1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan div1.loc[div1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan div1.loc[div1['LowflowCondition'].isnull(), 'LowflowCondition'] = 'NO' div1.loc[(~div1['LowflowCondition'].isin(['NO', 'YES'])), 'LowflowCondition'] = 'YES' div1.loc[div1['LowflowCondition'] == 'NO', 'LowflowCondition'] = False div1.loc[div1['LowflowCondition'] == 'YES', 'LowflowCondition'] = True div1['WAP'] = div1['WAP'].str.strip().str.upper() div1.loc[~div1.WAP.str.contains('[A-Z]+\d\d/\d\d\d\d'), 'WAP'] = np.nan ## Filter div2 = div1[div1.WAP.notnull()] ## Check foreign keys div2 = div2[div2.RecordNumber.isin(crc1)].copy() ## Check primary keys div2 = div2.drop_duplicates(['RecordNumber', 'WAP']) ## Join to get the IDs and filter WAPs div3 = pd.merge(div2, act_types1[['ActivityID', 'ActivityName']], left_on='DivertType', right_on='ActivityName').drop(['DivertType', 'ActivityName'], axis=1) div3 = pd.merge(div3, wap_site, on='WAP').drop('WAP', axis=1) ## CrcActSite crc_act_div = div3[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act_div['SiteActivity'] = True crc_act_div['SiteType'] = 'WAP' # Save results new_crc_div, rem_crc_div = mssql.update_from_difference(crc_act_div, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', where_cols=['RecordNumber', 'ActivityID', 'SiteID', 'SiteType'], username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crc_div)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## ConsentedRateVolume crc_div = pd.merge(div3, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID']).drop(['RecordNumber', 'ActivityID', 'SiteID', 'LowflowCondition'], axis=1).dropna(subset=['ConsentedRate', 'ConsentedMultiDayVolume'], how='all') crc_div['FromMonth'] = 1 crc_div['ToMonth'] = 12 # Save results new_crc_div, _ = mssql.update_from_difference(crc_div, param['output']['server'], param['output']['database'], 'ConsentedRateVolume', on='CrcActSiteID', mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'ConsentedRateVolume', 'pass', '{} rows updated'.format(len(new_crc_div)), username=param['output']['username'], password=param['output']['password']) ########################################### ### Water use types wu1 = db.water_use.copy() ## Clean wu1['RecordNumber'] = wu1['RecordNumber'].str.strip().str.upper() wu1['UseType'] = wu1['UseType'].str.strip().str.title() wu1['ConsentedMultiDayVolume'] = pd.to_numeric(wu1['ConsentedMultiDayVolume'], errors='coerce').round() wu1['ConsentedMultiDayPeriod'] = pd.to_numeric(wu1['ConsentedMultiDayPeriod'], errors='coerce').round() wu1['ConsentedRate'] = pd.to_numeric(wu1['ConsentedRate'], errors='coerce').round(2) wu1.loc[wu1['ConsentedMultiDayVolume'] <= 0, 'ConsentedMultiDayVolume'] = np.nan wu1.loc[wu1['ConsentedMultiDayPeriod'] <= 0, 'ConsentedMultiDayPeriod'] = np.nan wu1.loc[wu1['ConsentedRate'] <= 0, 'ConsentedRate'] = np.nan spaces_bool = wu1['UseType'].str[3:5] == ' ' wu1.loc[spaces_bool, 'UseType'] = wu1.loc[spaces_bool, 'UseType'].str[:3] + wu1.loc[spaces_bool, 'UseType'].str[4:] ## Check foreign keys wu2 = wu1[wu1.RecordNumber.isin(crc1)].copy() ## Split into WAPs by take type equivelant wu3 = wu2.copy() wu3['take_type'] = wu3['UseType'].str.replace('Use', 'Take') wu4 = pd.merge(wu3, mon_min_max1, on=['RecordNumber', 'take_type']) wu4['ConsentedMultiDayVolume'] = wu4['ConsentedMultiDayVolume'].divide(wu4['wap_count'], 0).round() wu4['ConsentedRate'] = wu4['ConsentedRate'].divide(wu4['wap_count'], 0).round(2) wu4.drop(['wap_count', 'take_type'], axis=1, inplace=True) ## Convert Use types to broader categories types_cat = {} for key, value in param['misc']['use_types_codes'].items(): for string in value: types_cat[string] = key types_check = np.in1d(wu4.WaterUse.unique(), list(types_cat.keys())).all() if not types_check: raise ValueError('Some use types are missing in the parameters file. Check the use type table and the parameters file.') wu4.WaterUse.replace(types_cat, inplace=True) wu4['WaterUse'] = wu4['WaterUse'].astype('category') ## Join to get the IDs and filter WAPs wu5 = pd.merge(wu4, act_types1[['ActivityID', 'ActivityName']], left_on='UseType', right_on='ActivityName').drop(['UseType', 'ActivityName'], axis=1) wu5 = pd.merge(wu5, wap_site, on='WAP').drop('WAP', axis=1) ## Drop duplicate uses wu5.WaterUse.cat.set_categories(param['misc']['use_types_priorities'], True, inplace=True) wu5 = wu5.sort_values('WaterUse') wu6 = wu5.drop_duplicates(['RecordNumber', 'ActivityID', 'SiteID']).copy() ## CrcActSite crc_act_wu = wu6[['RecordNumber', 'ActivityID', 'SiteID']].copy() crc_act_wu['SiteActivity'] = True crc_act_wu['SiteType'] = 'WAP' # Save results new_crv_wu, _ = mssql.update_from_difference(crc_act_wu, param['output']['server'], param['output']['database'], 'CrcActSite', on=['RecordNumber', 'ActivityID', 'SiteID'], mod_date_col='ModifiedDate', username=param['output']['username'], password=param['output']['password']) # Log log1 = util.log(param['output']['server'], param['output']['database'], 'log', run_time_start, '1900-01-01', 'CrcActSite', 'pass', '{} rows updated'.format(len(new_crv_wu)), username=param['output']['username'], password=param['output']['password']) # Read db table act_site0 = mssql.rd_sql(param['output']['server'], param['output']['database'], 'CrcActSite', ['CrcActSiteID', 'RecordNumber', 'ActivityID', 'SiteID'], username=param['output']['username'], password=param['output']['password']) ## ConsentedRateVolume crv_wu =
pd.merge(wu6, act_site0, on=['RecordNumber', 'ActivityID', 'SiteID'])
pandas.merge
# @Author: <NAME> <gio> # @Date: 10-Aug-2021 # @Email: <EMAIL> # @Project: FeARLesS # @Filename: 00_xml2csv.py # @Last modified by: gio # @Last modified time: 15-Oct-2021 # @License: MIT import pandas as pd import xml.etree.ElementTree as et import tqdm import os ##################### ### mac gio # path = "/Volumes/sharpe/data/Vascular_micromass/Opera/TIMELAPSE/" "Timelapse4_041021/" # folder_raw = os.path.join(path) ### windows nicola path = os.path.join('data','Vascular_micromass','Opera','TIMELAPSE','Timelapse4_041021') folder_raw = os.path.join("X:", os.sep, path) exp_folder = os.path.join( "gio_Pecam-Sox9_20x-24h_041021__2021-10-04T16_06_44-Measurement_1" ) # print(folder_raw) # print(exp_folder) ##################### xtree = et.parse(os.path.join(folder_raw, exp_folder, "Images", "Index.idx.xml")) xroot = xtree.getroot() images = xroot.findall("{http://www.perkinelmer.com/PEHH/HarmonyV5}Images")[0] print("images --> ", len(images)) df = pd.DataFrame( { "filename": [], "Xpos": [], "Ypos": [], "Zpos": [], "row": [], "col": [], "field": [], "plane": [], "channel": [], "chName": [], "expTime": [], } ) for i, image in tqdm.tqdm(enumerate(images.iter("{http://www.perkinelmer.com/PEHH/HarmonyV5}Image"))): # print(image.tag, image.attrib) row = {} x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}URL") row["filename"] = x.text x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}PositionX") row["Xpos"] = float(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}PositionY") row["Ypos"] = float(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}PositionZ") row["Zpos"] = float(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}Row") row["row"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}Col") row["col"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}FieldID") row["field"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}PlaneID") row["plane"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}ChannelID") row["channel"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}TimepointID") row["timepoint"] = int(x.text) x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}ChannelName") row["chName"] = x.text x = image.find("{http://www.perkinelmer.com/PEHH/HarmonyV5}ExposureTime") row["expTime"] = float(x.text) df = df.append(
pd.Series(row)
pandas.Series
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging from typing import Any, Dict, List, Optional import pandas as pd try: from fbprophet import Prophet _no_prophet = False except ImportError: _no_prophet = True Prophet = Dict[str, Any] # for Pyre from kats.consts import Params, TimeSeriesData from kats.models.model import Model from kats.utils.parameter_tuning_utils import ( get_default_prophet_parameter_search_space, ) class ProphetParams(Params): """Parameter class for Prophet model This is the parameter class for prophet model, it contains all necessary parameters as definied in Prophet implementation: https://github.com/facebook/prophet/blob/master/python/prophet/forecaster.py Attributes: growth: String 'linear' or 'logistic' to specify a linear or logistic trend. changepoints: List of dates at which to include potential changepoints. If not specified, potential changepoints are selected automatically. n_changepoints: Number of potential changepoints to include. Not used if input `changepoints` is supplied. If `changepoints` is not supplied, then n_changepoints potential changepoints are selected uniformly from the first `changepoint_range` proportion of the history. changepoint_range: Proportion of history in which trend changepoints will be estimated. Defaults to 0.8 for the first 80%. Not used if `changepoints` is specified. yearly_seasonality: Fit yearly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. weekly_seasonality: Fit weekly seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. daily_seasonality: Fit daily seasonality. Can be 'auto', True, False, or a number of Fourier terms to generate. holidays: pd.DataFrame with columns holiday (string) and ds (date type) and optionally columns lower_window and upper_window which specify a range of days around the date to be included as holidays. lower_window=-2 will include 2 days prior to the date as holidays. Also optionally can have a column prior_scale specifying the prior scale for that holiday. seasonality_mode: 'additive' (default) or 'multiplicative'. seasonality_prior_scale: Parameter modulating the strength of the seasonality model. Larger values allow the model to fit larger seasonal fluctuations, smaller values dampen the seasonality. Can be specified for individual seasonalities using add_seasonality. holidays_prior_scale: Parameter modulating the strength of the holiday components model, unless overridden in the holidays input. changepoint_prior_scale: Parameter modulating the flexibility of the automatic changepoint selection. Large values will allow many changepoints, small values will allow few changepoints. mcmc_samples: Integer, if greater than 0, will do full Bayesian inference with the specified number of MCMC samples. If 0, will do MAP estimation. interval_width: Float, width of the uncertainty intervals provided for the forecast. If mcmc_samples=0, this will be only the uncertainty in the trend using the MAP estimate of the extrapolated generative model. If mcmc.samples>0, this will be integrated over all model parameters, which will include uncertainty in seasonality. uncertainty_samples: Number of simulated draws used to estimate uncertainty intervals. Settings this value to 0 or False will disable uncertainty estimation and speed up the calculation. cap: capacity, provided for logistic growth floor: floor, the fcst value must be greater than the specified floor custom_seasonlities: customized seasonalities, dict with keys "name", "period", "fourier_order" extra_regressors: additional regressors used for fitting, each regressor is a dict with keys "name" and "value" """ growth: str changepoints: Optional[List[float]] n_changepoints: int changepoint_range: float yearly_seasonality: str weekly_seasonality: str daily_seasonality: str holidays: Optional[pd.DataFrame] seasonality_mode: str seasonality_prior_scale: float holidays_prior_scale: float changepoint_prior_scale: float mcmc_samples: int interval_width: float uncertainty_samples: int cap: Optional[float] floor: Optional[float] custom_seasonalities: List[Dict[str, Any]] extra_regressors: List[Dict[str, Any]] def __init__( self, growth: str = "linear", changepoints: Optional[List[float]] = None, n_changepoints: int = 25, changepoint_range: float = 0.8, yearly_seasonality: str = "auto", weekly_seasonality: str = "auto", daily_seasonality: str = "auto", holidays: Optional[pd.DataFrame] = None, seasonality_mode: str = "additive", seasonality_prior_scale: float = 10.0, holidays_prior_scale: float = 10.0, changepoint_prior_scale: float = 0.05, mcmc_samples: int = 0, interval_width: float = 0.80, uncertainty_samples: int = 1000, cap: Optional[float] = None, floor: Optional[float] = None, custom_seasonalities: Optional[List[Dict[str, Any]]] = None, extra_regressors: Optional[List[Dict[str, Any]]] = None, ) -> None: if _no_prophet: raise RuntimeError("requires fbprophet to be installed") super().__init__() self.growth = growth self.changepoints = changepoints self.n_changepoints = n_changepoints self.changepoint_range = changepoint_range self.yearly_seasonality = yearly_seasonality self.weekly_seasonality = weekly_seasonality self.daily_seasonality = daily_seasonality self.holidays = holidays self.seasonality_mode = seasonality_mode self.seasonality_prior_scale = seasonality_prior_scale self.holidays_prior_scale = holidays_prior_scale self.changepoint_prior_scale = changepoint_prior_scale self.mcmc_samples = mcmc_samples self.interval_width = interval_width self.uncertainty_samples = uncertainty_samples self.cap = cap self.floor = floor self.custom_seasonalities = ( [] if custom_seasonalities is None else custom_seasonalities ) self.extra_regressors = [] if extra_regressors is None else extra_regressors logging.debug( "Initialized Prophet with parameters. " "growth:{growth}," "changepoints:{changepoints}," "n_changepoints:{n_changepoints}," "changepoint_range:{changepoint_range}," "yearly_seasonality:{yearly_seasonality}," "weekly_seasonality:{weekly_seasonality}," "daily_seasonality:{daily_seasonality}," "holidays:{holidays}," "seasonality_mode:{seasonality_mode}," "seasonality_prior_scale:{seasonality_prior_scale}," "holidays_prior_scale:{holidays_prior_scale}," "changepoint_prior_scale:{changepoint_prior_scale}," "mcmc_samples:{mcmc_samples}," "interval_width:{interval_width}," "uncertainty_samples:{uncertainty_samples}," "cap:{cap}," "floor:{floor}," "custom_seasonalities:{custom_seasonalities}," "extra_regressors:{extra_regressors}".format( growth=growth, changepoints=changepoints, n_changepoints=n_changepoints, changepoint_range=changepoint_range, yearly_seasonality=yearly_seasonality, weekly_seasonality=weekly_seasonality, daily_seasonality=daily_seasonality, holidays=holidays, seasonality_mode=seasonality_mode, seasonality_prior_scale=seasonality_prior_scale, holidays_prior_scale=holidays_prior_scale, changepoint_prior_scale=changepoint_prior_scale, mcmc_samples=mcmc_samples, interval_width=interval_width, uncertainty_samples=uncertainty_samples, cap=cap, floor=floor, custom_seasonalities=custom_seasonalities, extra_regressors=None if extra_regressors is None else [x["name"] for x in extra_regressors], ) ) def validate_params(self) -> None: """validate Prophet parameters This method validates some key parameters including growth rate and custom_seasonalities. """ # cap must be given when using logistic growth if (self.growth == "logistic") and (self.cap is None): msg = "Capacity must be provided for logistic growth" logging.error(msg) raise ValueError(msg) # If custom_seasonalities passed, ensure they contain the required keys. reqd_seasonality_keys = ["name", "period", "fourier_order"] if not all( req_key in seasonality for req_key in reqd_seasonality_keys for seasonality in self.custom_seasonalities ): msg = f"Custom seasonality dicts must contain the following keys:\n{reqd_seasonality_keys}" logging.error(msg) raise ValueError(msg) # If extra_regressors passed, ensure they contain the required keys. reqd_regressor_keys = ["name", "value"] if not all( req_key in regressor for req_key in reqd_regressor_keys for regressor in self.extra_regressors ): msg = f"Extra regressor dicts must contain the following keys:\n{reqd_regressor_keys}" logging.error(msg) raise ValueError(msg) logging.info("Method validate_params() is not fully implemented.") pass class ProphetModel(Model[ProphetParams]): """Model class for Prophet This class provides fit, predict, and plot methods for Prophet model Attributes: data: the input time series data as in :class:`kats.consts.TimeSeriesData` params: the parameter class definied with `ProphetParams` """ model: Optional[Prophet] = None freq: Optional[str] = None def __init__(self, data: TimeSeriesData, params: ProphetParams) -> None: super().__init__(data, params) if _no_prophet: raise RuntimeError("requires fbprophet to be installed") if not isinstance(self.data.value, pd.Series): msg = "Only support univariate time series, but get {type}.".format( type=type(self.data.value) ) logging.error(msg) raise ValueError(msg) def fit(self, **kwargs: Any) -> None: """fit Prophet model Args: None. Returns: The fitted prophet model object """ # prepare dataframe for Prophet.fit() df = pd.DataFrame({"ds": self.data.time, "y": self.data.value}) logging.debug( "Call fit() with parameters: " "growth:{growth}," "changepoints:{changepoints}," "n_changepoints:{n_changepoints}," "changepoint_range:{changepoint_range}," "yearly_seasonality:{yearly_seasonality}," "weekly_seasonality:{weekly_seasonality}," "daily_seasonality:{daily_seasonality}," "holidays:{holidays}," "seasonality_mode:{seasonality_mode}," "seasonality_prior_scale:{seasonality_prior_scale}," "holidays_prior_scale:{holidays_prior_scale}," "changepoint_prior_scale:{changepoint_prior_scale}," "mcmc_samples:{mcmc_samples}," "interval_width:{interval_width}," "uncertainty_samples:{uncertainty_samples}," "cap:{cap}," "floor:{floor}," "custom_seasonalities:{custom_seasonalities}," "extra_regressors:{extra_regressors}".format( growth=self.params.growth, changepoints=self.params.changepoints, n_changepoints=self.params.n_changepoints, changepoint_range=self.params.changepoint_range, yearly_seasonality=self.params.yearly_seasonality, weekly_seasonality=self.params.weekly_seasonality, daily_seasonality=self.params.daily_seasonality, holidays=self.params.holidays, seasonality_mode=self.params.seasonality_mode, seasonality_prior_scale=self.params.seasonality_prior_scale, holidays_prior_scale=self.params.holidays_prior_scale, changepoint_prior_scale=self.params.changepoint_prior_scale, mcmc_samples=self.params.mcmc_samples, interval_width=self.params.interval_width, uncertainty_samples=self.params.uncertainty_samples, cap=self.params.cap, floor=self.params.floor, custom_seasonalities=self.params.custom_seasonalities, extra_regressors=None if self.params.extra_regressors is None else [x["name"] for x in self.params.extra_regressors], ), ) prophet = Prophet( growth=self.params.growth, changepoints=self.params.changepoints, n_changepoints=self.params.n_changepoints, changepoint_range=self.params.changepoint_range, yearly_seasonality=self.params.yearly_seasonality, weekly_seasonality=self.params.weekly_seasonality, daily_seasonality=self.params.daily_seasonality, holidays=self.params.holidays, seasonality_mode=self.params.seasonality_mode, seasonality_prior_scale=self.params.seasonality_prior_scale, holidays_prior_scale=self.params.holidays_prior_scale, changepoint_prior_scale=self.params.changepoint_prior_scale, mcmc_samples=self.params.mcmc_samples, interval_width=self.params.interval_width, uncertainty_samples=self.params.uncertainty_samples, ) if self.params.growth == "logistic": # assign cap to a new col as Prophet required df["cap"] = self.params.cap # Adding floor if available if self.params.floor is not None: df["floor"] = self.params.floor # Add any specified custom seasonalities. for custom_seasonality in self.params.custom_seasonalities: prophet.add_seasonality(**custom_seasonality) # Add any extra regressors if self.params.extra_regressors is not None: for regressor in self.params.extra_regressors: prophet.add_regressor( **{k: v for k, v in regressor.items() if k not in ["value"]} ) df[regressor["name"]] = pd.Series(regressor["value"], index=df.index) self.model = prophet.fit(df=df) logging.info("Fitted Prophet model. ") def predict( self, steps: int, *args: Any, include_history: bool = False, **kwargs: Any ) -> pd.DataFrame: """predict with fitted Prophet model Args: steps: the steps or length of prediction horizon include_history: if include the historical data, default as False Returns: The predicted dataframe with following columns: `time`, `fcst`, `fcst_lower`, and `fcst_upper` """ model = self.model if model is None: raise ValueError("Call fit() before predict().") logging.debug( "Call predict() with parameters. " "steps:{steps}, kwargs:{kwargs}".format(steps=steps, kwargs=kwargs) ) self.freq = kwargs.get("freq",
pd.infer_freq(self.data.time)
pandas.infer_freq
import torch import argparse import pandas as pd import numpy as np from vel.rl.env.classic_atari import ClassicAtariEnv from vel.rl.models.policy_gradient_model import PolicyGradientModelFactory from vel.rl.models.backbone.nature_cnn import NatureCnnFactory from vel.openai.baselines.common.atari_wrappers import FrameStack def evaluate_a2c(checkpoint_file_path, environment, optimization, takes=10): model_checkpoint = torch.load(checkpoint_file_path) device = torch.device('cuda:0') env = FrameStack( ClassicAtariEnv(environment).instantiate(preset='raw'), k=4 ) model = PolicyGradientModelFactory( backbone=NatureCnnFactory(input_width=84, input_height=84, input_channels=4) ).instantiate(action_space=env.action_space) model.load_state_dict(model_checkpoint) model = model.to(device) model.eval() rewards = [] lengths = [] all_rewards = [] for i in range(takes): result, eval_rewards = record_take(model, env, device) rewards.append(result['r']) lengths.append(result['l']) print(f'Num rewards in evaluation: {len(eval_rewards)}') all_rewards.append(eval_rewards) eval_results = pd.concat([pd.Series(x) for x in all_rewards], axis=1) filename = create_filename(optimization, environment) eval_results.to_csv(filename, index=False) print(
pd.DataFrame({'lengths': lengths, 'rewards': rewards})
pandas.DataFrame
# diffexp.py # This script is for identifying super-enhancer associated genes that are differentially expressed between two stages from DYSE_main import formatFolder import pandas as pd import subprocess import argparse def diffexp(deFile, SEgenes): de_list = [x.rstrip().split('\t') for x in deFile] col = [] for elem in de_list[0]: if elem != '': col.append(elem) diffexp_df = pd.DataFrame(de_list[1:], columns=col) geneList = set(diffexp_df['gene_id'].tolist()) st_diffexp_genes = list(geneList & set(SEgenes)) wanted = diffexp_df.loc[diffexp_df['gene'].isin(st_diffexp_genes)] return wanted def main(): ''' main run call ''' usage = '%(prog)s [options] -i [INPUT_FILES] -d [RNA-SEQ_DIFF_EXP_FILE] -o [OUTPUT_FOLDER]' parser = argparse.ArgumentParser(prog='DYSE_diffexp.py', usage=usage) # Required flags parser.add_argument("-i", "--i", dest="input", default=None, help="Comma separated list of SEgene files") parser.add_argument("-d", "--diffexp", dest="deFile", default=None, help="RNA-seq differential expression file that includes stages of interest") parser.add_argument("-o", "--out", dest="out", default=None, help="Output folder") # RETRIEVING FLAGS options = parser.parse_args() if not options.input or not options.deFile or not options.out: print("Hi there\nYour code seems to be missing some arguments") parser.print_help() exit() out_dir = formatFolder(options.out, True) inputFiles = options.input.split(',') deFile = open(options.deFile).read().rstrip('\n').split('\n') for stage in inputFiles: SEgenes = [item.split('\t')[0] for item in open(stage).read().rstrip('\n').split('\n')] diffexpSE = diffexp(deFile, SEgenes) temp = pd.DataFrame(columns=list(diffexpSE)) last_col = [] for index,row in diffexpSE.iterrows(): if row['significant'] == 'yes' and float(row['log2(fold_change)']) > 0: last_col.append('upreg in ' + row['sample_2']) temp = temp.append(row, ignore_index=True) elif row['significant'] == 'yes' and float(row['log2(fold_change)']) < 0: last_col.append('downreg in ' + row['sample_2']) temp = temp.append(row, ignore_index=True) last_col_df = pd.DataFrame({'description': last_col}) tofile = pd.concat([temp, last_col_df], axis=1, ignore_index=True) tofile.columns = list(temp)+list(last_col_df) fname = out_dir+stage.split('/')[-1].split('.')[0]+'_SEgenes_diffexp.xls' subprocess.call(['touch', fname])
pd.DataFrame.to_csv(tofile, path_or_buf=fname, sep='\t', header=True, index=False, line_terminator='\n')
pandas.DataFrame.to_csv
import pandas as pd import numpy as np import pickle import shap from lightgbm import LGBMClassifier def get_new_prediction(bus_line, hour, month, day, bus_carrying_cap, city, temp, pressure, bus_age, total_rain): ''' This function calculates new predictions for a given bus line, hour, month, day, bus carrying capacity, bus age (years), city, temperature (degrees celcius), pressure (kPA) and rain (mm). Assumes that a file named final_fitted.pickle is in the results/ml_model directory. This is solely for use in the interactive report so the user can dynamically generate a graph as needed by querying results from the model. Arguments are fed to this function via. user selected input in the report. Parameters: bus_line: A str that represents one of the bus lines in the Greater Vancouver area. hour: An integer 0-23 representing a particular hour of the day. month: An integer 1-12 representing a particular month of the year. day: A str (Mon, Tue, Wed, Thu, Fri, Sat, Sun) that represents a particular day of the week. bus_carrying_cap: An integer representing the carrying capacity of a bus. city: A str representing the city of interest. temp: A float representing the temperature in degrees celsius. pressure: A float representing the atmospheric pressure in kPa bus_age: An integer representing the bus age in years. total_rain: A float representing the total rain in mm. Returns: dict A dictionary with keys shap, predicted, and column_names containing the SHAP scores (numpy array), predicted 0/1 scores (numpy array), and column names used in the model fit (list). ''' shuttles = ["23", "31", "42", "68", "103", "105", "109", "131", "132", "146", "147", "148", "157", "169", "170", "171", "172", "173", "174", "175", "180", "181", "182", "184", "185", "186", "187", "189", "215", "227", "251", "252", "256", "262", "280", "281", "282", "310", "322", "360", "361", "362", "363", "370", "371", "372", "373", "412", "413", "414", "416", "560", "561", "562", "563", "564", "609", "614", "616", "617", "618", "619", "719", "722", "733", "741", "743", "744", "745", "746", "748", "749"] # The values that are held constant: just use the means/modes new_data = pd.DataFrame({ 'hour': pd.Series(hour, dtype='int'), 'day_of_week': pd.Series(day, dtype='str'), 'bus_age': pd.Series(bus_age, dtype='float'), 'bus_carry_capacity': pd.Series(bus_carrying_cap if bus_carrying_cap != "NA" else np.nan, dtype='float'), 'line_no': pd.Series(bus_line, dtype='str'), 'city': pd.Series(city, dtype='str'), 'pressure': pd.Series(pressure, dtype='float'), 'rel_hum': pd.Series(93, dtype='float'), 'elev': pd.Series(2.5, dtype='float'), 'temp': pd.Series(temp, dtype='float'), 'visib': pd.Series(48.3, dtype='float'), 'wind_dir': pd.Series(0, dtype='float'), 'wind_spd': pd.Series(2, dtype='float'), 'total_precip':
pd.Series(total_rain, dtype='float')
pandas.Series
import pandas as pd import numpy as np from pathlib import Path from datetime import datetime as dt def mergeManagers(managers, gameLogs): #Sum up doubled data managers = managers.groupby(['yearID','playerID'], as_index=False)['Games','Wins','Losses'].sum() #Get visiting managers visitingManagers = gameLogs[['row','Date','Visiting team manager ID']] visitingManagers['yearID'] = pd.DatetimeIndex(pd.to_datetime(visitingManagers['Date'])).year-1 visitingManagers = pd.merge(visitingManagers, managers, left_on=['yearID','Visiting team manager ID'], right_on=['yearID','playerID'], how="left") #Get home managers homeManagers = gameLogs[['row','Date','Home team manager ID']] homeManagers['yearID'] = pd.DatetimeIndex(pd.to_datetime(homeManagers['Date'])).year-1 homeManagers = pd.merge(homeManagers, managers, left_on=['yearID','Home team manager ID'], right_on=['yearID','playerID'], how="left") #Merge managers homes = homeManagers[['row','Games','Wins','Losses']] visitings = visitingManagers[['row','Games','Wins','Losses']] return pd.merge(homes, visitings, on='row', suffixes=(' home manager',' visiting manager')) def mergePitchings(pitchers, gameLogs): #Get aggregators for doubled data aggregators = {} for column in pitchers.drop(columns=['yearID','playerID']).columns: if column.find("average")>-1: aggregators[column] = 'mean' else: aggregators[column] = 'sum' #Aggregate doubled data pitchers = pitchers.groupby(['yearID','playerID'], as_index=False).agg(aggregators) #Get visiting pitchers visitingPitchers = gameLogs[['row','Date','Visiting starting pitcher ID']] visitingPitchers['yearID'] = pd.DatetimeIndex(pd.to_datetime(visitingPitchers['Date'])).year-1 visitingPitchers = pd.merge(visitingPitchers, pitchers, left_on=['yearID','Visiting starting pitcher ID'], right_on=['yearID','playerID'], how="left") #Get home pitchers homePitchers = gameLogs[['row','Date','Home starting pitcher ID']] homePitchers['yearID'] = pd.DatetimeIndex(pd.to_datetime(homePitchers['Date'])).year-1 homePitchers = pd.merge(homePitchers, pitchers, left_on=['yearID','Home starting pitcher ID'], right_on=['yearID','playerID'], how="left") #Merge pitchers homes = homePitchers.drop(columns=['yearID','Home starting pitcher ID','playerID','Date']) visitings = visitingPitchers.drop(columns=['yearID','Visiting starting pitcher ID','playerID','Date']) return pd.merge(homes, visitings, on='row', suffixes=(' home pitcher',' visiting pitcher')) def mergePeople(people, gameLogs): #Encode people people['bats right'] = (people['bats']=="R") | (people['bats']=="B") people['bats left'] = (people['bats']=="L") | (people['bats']=="B") people['throws right'] = people['throws']=="R" people = people.drop(columns=['bats','throws']) #Merge people allPeople = [] for IDColumn in gameLogs.columns: if IDColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','Date',IDColumn]], people, how="left", left_on=[IDColumn], right_on=['playerID']) merged['age'] = (pd.to_datetime(merged['Date']) - pd.to_datetime(merged['birthdate'])) / np.timedelta64(1, 'Y') newColumns = {"age":IDColumn.replace(" ID"," "+" age")} for column in people.drop(columns=['playerID','birthdate']).columns: newColumns[column] = IDColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPeople.append(merged[['row']+list(newColumns.values())]) mergedPeople = gameLogs['row'] for merSal in allPeople: mergedPeople = pd.merge(mergedPeople, merSal, how="left", on='row') return mergedPeople def mergeTeams(teams, gameLogs): #Encode team data teams.loc[(teams['Division winner'] == 'N'), 'Division winner'] = 0 teams.loc[(teams['Division winner'] == 'Y'), 'Division winner'] = 1 teams.loc[(teams['League winner'] == 'N'), 'League winner'] = 0 teams.loc[(teams['League winner'] == 'Y'), 'League winner'] = 1 teams.loc[(teams['World series winner'] == 'N'), 'World series winner'] = 0 teams.loc[(teams['World series winner'] == 'Y'), 'World series winner'] = 1 teams.loc[(teams['Division'] == 'W'), 'Division'] = 0 teams.loc[(teams['Division'] == 'E'), 'Division'] = 1 teams.loc[(teams['Division'] == 'C'), 'Division'] = 2 teams['Pythagorean_expectation'] = (teams['Runs scored'] ** 1.83) / (teams['Runs scored'] ** 1.83 + teams['Opponents runs scored'] ** 1.83) #Merge teams mergedTeams = gameLogs[['row','Date','Visiting team','Home team']] mergedTeams['Date'] = pd.to_datetime(mergedTeams['Date']).dt.year-1 mergedTeams = pd.merge(mergedTeams, teams, left_on=['Date', 'Visiting team'], right_on=['yearID', 'teamID'], how='left') mergedTeams = pd.merge(mergedTeams, teams, left_on=['Date', 'Home team'], right_on=['yearID', 'teamID'], how='left', suffixes=[' visiting', ' home']) return mergedTeams[['row', 'Division visiting', 'Rank visiting', 'Games visiting', 'Wins visiting', 'Losses visiting', 'Division winner visiting', 'League winner visiting', 'World series winner visiting', 'Runs scored visiting', 'At bats visiting', 'Hits by batters visiting', 'Doubles visiting', 'Triples visiting', 'Homeruns visiting', 'Walks visiting', 'Strikeouts visiting', 'Stolen bases visiting', 'Cought stealing visiting', 'Batters hit by pitch visiting', 'Sacrifice flies visiting', 'Opponents runs scored visiting', 'Earned runs allowed visiting', 'Earned runs average visiting', 'Shutouts visiting', 'Saves visiting', 'Hits allowed visiting', 'Homeruns allowed visiting', 'Walks allowed visiting', 'Strikeouts allowed visiting', 'Errors visiting', 'Double plays visiting', 'Fielding percentage visiting', 'Pythagorean_expectation visiting', 'Division home', 'Rank home', 'Games home', 'Wins home', 'Losses home', 'Division winner home', 'League winner home', 'World series winner home', 'Runs scored home', 'At bats home', 'Hits by batters home', 'Doubles home', 'Triples home', 'Homeruns home', 'Walks home', 'Strikeouts home', 'Stolen bases home', 'Cought stealing home', 'Batters hit by pitch home', 'Sacrifice flies home', 'Opponents runs scored home', 'Earned runs allowed home', 'Earned runs average home', 'Shutouts home', 'Saves home', 'Hits allowed home', 'Homeruns allowed home', 'Walks allowed home', 'Strikeouts allowed home', 'Errors home', 'Double plays home', 'Fielding percentage home', 'Pythagorean_expectation home']] def createScorings(gameLogs): scoreLogs = gameLogs[['row','Visiting team','Home team','Visiting score','Home score']] scoreLogs['Home team win'] = scoreLogs['Home score']>scoreLogs['Visiting score'] scoreLogs['Home team odd'] = (scoreLogs['Home score'].replace(0,1))/(scoreLogs['Visiting score'].replace(0,1)) homeTeams = {} for team in scoreLogs['Home team'].unique(): homeTeams[team] = scoreLogs[scoreLogs['Home team']==team] vistTeams = {} for team in scoreLogs['Visiting team'].unique(): vistTeams[team] = scoreLogs[scoreLogs['Visiting team']==team] homeTVers = {} for hTeam in homeTeams: homeTeams[hTeam]['Home win ratio'] = homeTeams[hTeam].loc[:,'Home team win'].rolling(10).mean().shift(1) homeTeams[hTeam]['Home score ratio'] = homeTeams[hTeam].loc[:,'Home score'].rolling(10).mean().shift(1) homeTeams[hTeam]['Home odd ratio'] = homeTeams[hTeam].loc[:,'Home team odd'].rolling(10).mean().shift(1) temp = homeTeams[hTeam] versus = {} for team in temp['Visiting team'].unique(): versus[team] = temp[temp['Visiting team']==team] for vTeam in versus: versus[vTeam]['Home versus win ratio'] = versus[vTeam].loc[:,'Home team win'].rolling(5).mean().shift(1) versus[vTeam]['Home versus score ratio'] = versus[vTeam].loc[:,'Home score'].rolling(5).mean().shift(1) versus[vTeam]['Home versus odd ratio'] = versus[vTeam].loc[:,'Home team odd'].rolling(5).mean().shift(1) homeTVers[hTeam] = pd.concat(versus) vistTVers = {} for vTeam in vistTeams: vistTeams[vTeam]['Visiting win ratio'] = (1-vistTeams[vTeam].loc[:,'Home team win']).rolling(10).mean().shift(1) vistTeams[vTeam]['Visiting score ratio'] = vistTeams[vTeam].loc[:,'Visiting score'].rolling(10).mean().shift(1) vistTeams[vTeam]['Visiting odd ratio'] = (1/vistTeams[vTeam].loc[:,'Home team odd']).rolling(10).mean().shift(1) temp = vistTeams[vTeam] versus = {} for team in temp['Home team'].unique(): versus[team] = temp[temp['Home team']==team] for hTeam in versus: versus[hTeam]['Visiting versus win ratio'] = (1-versus[hTeam].loc[:,'Home team win']).rolling(5).mean().shift(1) versus[hTeam]['Visiting versus score ratio'] = versus[hTeam].loc[:,'Visiting score'].rolling(5).mean().shift(1) versus[hTeam]['Visiting versus odd ratio'] = (1/versus[hTeam].loc[:,'Home team odd']).rolling(5).mean().shift(1) vistTVers[vTeam] = pd.concat(versus) merged = pd.merge(pd.concat(vistTeams)[['row' ,'Visiting win ratio' ,'Visiting score ratio' ,'Visiting odd ratio']] ,pd.concat(homeTVers)[['row' ,'Home versus win ratio' ,'Home versus score ratio' ,'Home versus odd ratio']] , on='row') merged = pd.merge(pd.concat(vistTVers)[['row' ,'Visiting versus win ratio' ,'Visiting versus score ratio' ,'Visiting versus odd ratio']] ,merged, on='row') merged = pd.merge(pd.concat(homeTeams)[['row' ,'Home win ratio' ,'Home score ratio' ,'Home odd ratio']] ,merged, on='row') return pd.merge(scoreLogs[['row','Visiting score','Home score','Home team win','Home team odd']],merged, on='row').fillna(0) def mergeFieldings(fieldings, gameLogs): fieldings = fieldings.groupby(['yearID','playerID'], as_index=False).sum() gameLogs['yearID'] = pd.DatetimeIndex(pd.to_datetime(gameLogs['Date'])).year-1 allPlayers = [] for playerColumn in gameLogs.columns: if playerColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','yearID',playerColumn]], fieldings, how="left", left_on=[playerColumn,'yearID'], right_on=['playerID','yearID']) newColumns = {} for column in fieldings.drop(columns=['playerID','yearID']).columns: newColumns[column] = playerColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPlayers.append(merged[['row']+list(newColumns.values())]) mergedFieldings = gameLogs['row'] for playerData in allPlayers: mergedFieldings = pd.merge(mergedFieldings, playerData, how="left", on='row') return mergedFieldings def mergeBattings(battings, gameLogs): battings = battings.groupby(['yearID','playerID'], as_index=False).sum() gameLogs['yearID'] = pd.DatetimeIndex(pd.to_datetime(gameLogs['Date'])).year-1 allPlayers = [] for playerColumn in gameLogs.columns: if playerColumn.find("starting")>-1: merged = pd.merge(gameLogs[['row','yearID',playerColumn]], battings, how="left", left_on=[playerColumn,'yearID'], right_on=['playerID','yearID']) newColumns = {} for column in battings.drop(columns=['playerID','yearID']).columns: newColumns[column] = playerColumn.replace(" ID"," "+str(column)) merged = merged.rename(columns=newColumns) allPlayers.append(merged[['row']+list(newColumns.values())]) mergedBattings = gameLogs['row'] for playerData in allPlayers: mergedBattings = pd.merge(mergedBattings, playerData, how="left", on='row') return mergedBattings path = Path gameLogs = pd.read_csv(path+r'\Filtered\_mlb_filtered_GameLogs.csv', index_col=False) people = pd.read_csv(path+r'\Filtered\_mlb_filtered_People.csv', index_col=False) teams = pd.read_csv(path+r'\Filtered\_mlb_filtered_Teams.csv', index_col=False) managers = pd.read_csv(path+r'\Filtered\_mlb_filtered_Managers.csv', index_col=False) pitchings = pd.read_csv(path+r'\Filtered\_mlb_filtered_Pitching.csv', index_col=False) battings = pd.read_csv(path+r'\Filtered\_mlb_filtered_Batting.csv', index_col=False) fieldings =
pd.read_csv(path+r'\Filtered\_mlb_filtered_Fielding.csv', index_col=False)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[14]: # Load libraries get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt import seaborn as sns import pandas as pd # In[2]: # Work on 'members' dataset MEMBERS_FILEPATH = 'data/members_v3.csv' members = pd.read_csv(MEMBERS_FILEPATH, header=0) # In[3]: members.info() display(members.head()) display(members.isnull().sum()) # In[4]: # Cast registration_init_time to datetime members['registration_init_time'] = pd.to_datetime( members['registration_init_time'], format='%Y%m%d' ) # Day should be 'relative' to some 0-coordinate min_date = members['registration_init_time'].min() members['registration_init_time'] -= min_date members['registration_init_time'] = members['registration_init_time'].dt.days # In[5]: # Fix 'gender' feature members['gender'] = members['gender'].fillna('NoGender') # Encode the genders members['gender'] = members['gender'].map({ 'NoGender': 1, 'male': 2, 'female':3 }) # In[6]: # Bin "registered_via" feature values members['registered_via'].replace( [1, 2, 5, 6, 8, 10, 11, 13, 14, 16, 17, 18, 19, -1], 1, inplace = True ) # In[7]: # Drop redundant features members = members.drop( ['city', 'bd'], axis=1 ) # In[9]: display(members.head()) # In[10]: # Work on 'transactions' dataset TRANSACTIONS_FILEPATH = 'data/transactions_v2.csv' transactions =
pd.read_csv(TRANSACTIONS_FILEPATH, header=0)
pandas.read_csv
############################################################################################ # FileName [ mutational_sig.py ] # PackageName [ lib/analysis ] # Synopsis [ Implement mutational signature analysis. ] # Author [ <NAME> ] # Copyright [ 2021 9 ] ############################################################################################ from numpy.core.numeric import outer from ..maf_filter import fast_read_maf from termcolor import colored import pandas as pd import numpy as np import math import os import seaborn as sns import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.ticker as mtick import matplotlib.style import matplotlib import sys from scipy import linalg COLOR_MAP = ['#266199','#b7d5ea','#acc6aa','#E0CADB','#695D73','#B88655','#DDDDDD','#71a0a5','#841D22','#E08B69'] LABEL_SIZE, TITLE_SIZE = 24,30 ######################################################### # # # python3 mafAnalysis.py \ # # -f examples/test_data/maf/ms.maf \ # # -ms 0 "[SBS1, SBS5, SBS40, SBS87]" \ # # -o examples/output \ # # -p examples/pic/ # # # # # # python3 mafAnalysis.py \ # # -f examples/test_data/maf/ms.maf \ # # -ms 1 "[2,9,10]" \ # # -o examples/output \ # # -p examples/pic/ # # # # # # python3 mafAnalysis.py \ # # -f examples/test_data/maf/ms.maf \ # # -ms 2 "[3]" \ # # -o examples/output \ # # -p examples/pic/ # # # ######################################################### class MutationalSignature: '''Mutational signature Arguments: maf_file {string} -- The input MAF file for all data. output_folder {string} -- The path for output files. pic {string} -- The path especially for output figures(.pdf) rank1, rank2 {int} -- The range for estimate # signature. epoch {int} -- # estimation running. sig {int} -- The final factorization rank(# signature) Parameters: self.head {string} -- The column names of MAF file. self.df {pd.DataFrame} -- The data for the MAF file. self.cosmic {pd.DataFrame} -- The data for 'lib/auxiliary/COSMIC_72.tsv'. self.contribution {pd.DataFrame} -- The data for signature refitting. self.reconstructed {pd.DataFrame} -- The data for signature refitting. self.input {string} -- The input file for plotting. self.params {list} -- The list for input parameters. Output files ms_input.tsv 96_sig.csv sig_sample.csv SBS.tsv Pictures: Estimation.pdf SBS_96_plots.pdf S2S.pdf SigContribution.pdf SigSamHeatmap.pdf Donut_plot.pdf ''' def __init__(self, maf_file): print(colored(('\nStart Mutational_Signature....'), 'yellow')) self.head, self.df = fast_read_maf(maf_file) self.cosmic = pd.read_csv('lib/auxiliary/COSMIC_72.tsv', sep = '\t', index_col = 0) self.contribution, self.reconstructed = pd.DataFrame(), pd.DataFrame() self.input = "" self.params = list() def get_input_file(self, output_folder): output_file = output_folder+'ms_input.tsv' self.input = output_file selected_col = self.df[['Tumor_Sample_Barcode','flanking_bps', 'Reference_Allele', 'Tumor_Seq_Allele2']] selected_col.columns = ['SampleID', 'Three_Allele', 'Ref', 'Mut'] sample_list = selected_col.SampleID.unique() grouped = selected_col.groupby(selected_col['SampleID']) df_list = [grouped.get_group(sample).reset_index(drop=True) for sample in sample_list] final_dict = {} for d, df in enumerate(df_list): # order: 'C>A','C>G','C>T','T>A','T>C','T>G' cata_list = [[],[],[],[],[],[]] for i in range(len(df)): item = df.loc[i] if (item['Ref'] == 'C' and item['Mut'] == 'A') or (item['Ref'] == 'G' and item['Mut'] == 'T'): cata_list[0].append(item) elif (item['Ref'] == 'C' and item['Mut'] == 'G') or (item['Ref'] == 'G' and item['Mut'] == 'C'): cata_list[1].append(item) elif (item['Ref'] == 'C' and item['Mut'] == 'T') or (item['Ref'] == 'G' and item['Mut'] == 'A'): cata_list[2].append(item) elif (item['Ref'] == 'T' and item['Mut'] == 'A') or (item['Ref'] == 'A' and item['Mut'] == 'T'): cata_list[3].append(item) elif (item['Ref'] == 'T' and item['Mut'] == 'C') or (item['Ref'] == 'A' and item['Mut'] == 'G'): cata_list[4].append(item) elif (item['Ref'] == 'T' and item['Mut'] == 'G') or (item['Ref'] == 'A' and item['Mut'] == 'C'): cata_list[5].append(item) list_96 = [] for cata in range(len(cata_list)): cata_sum_list = [int(0)]*16 if cata in [0,1,2]: three_allele_dict={'ACA':0, 'TGT':0, 'ACC':1, 'GGT':1, 'ACG':2, 'CGT':2, 'ACT':3, 'AGT':3, \ 'CCA':4, 'TGG':4, 'CCC':5, 'GGG':5, 'CCG':6, 'CGG':6, 'CCT':7, 'AGG':7, \ 'GCA':8, 'TGC':8, 'GCC':9, 'GGC':9, 'GCG':10, 'CGC':10, 'GCT':11, 'AGC':11,\ 'TCA':12, 'TGA':12, 'TCC':13, 'GGA':13, 'TCG':14, 'CGA':14, 'TCT':15, 'AGA':15 } elif cata in [3,4,5]: three_allele_dict={'ATA':0, 'TAT':0, 'ATC':1, 'GAT':1, 'ATG':2, 'CAT':2, 'ATT':3, 'AAT':3, \ 'CTA':4, 'TAG':4, 'CTC':5, 'GAG':5, 'CTG':6, 'CAG':6, 'CTT':7, 'AAG':7, \ 'GTA':8, 'TAC':8, 'GTC':9, 'GAC':9, 'GTG':10, 'CAC':10, 'GTT':11, 'AAC':11,\ 'TTA':12, 'TAA':12, 'TTC':13, 'GAA':13, 'TTG':14, 'CAA':14, 'TTT':15, 'AAA':15 } for j in range(len(cata_list[cata])): if (cata_list[cata][j])['Three_Allele'] in three_allele_dict: cata_sum_list[three_allele_dict[(cata_list[cata][j])['Three_Allele']]] += 1; list_96 += cata_sum_list final_dict[sample_list[d]] = list_96 new_df = pd.DataFrame.from_dict(final_dict) list_a = ['A.A', 'A.C', 'A.G', 'A.T', 'C.A', 'C.C', 'C.G', 'C.T',\ 'G.A', 'G.C', 'G.G', 'G.T', 'T.A', 'T.C', 'T.G', 'T.T'] list_b = ['C>A', 'C>G', 'C>T', 'T>A', 'T>C', 'T>G'] new_row_name = [] for item in list_b: for allele in list_a: new_str = allele[0]+'['+item+']'+allele[2] new_row_name.append(new_str) new_df.index = new_row_name new_df.to_csv(output_file, sep = '\t', index = True) print(colored('=> Generate input file: ', 'green')) print(colored((' '+output_file), 'green')) # def SBSPlot(): # df = (pd.read_csv(output_folder+'96_sig.csv')) # df = df.set_index(list(df.columns[[0]])) # fig_x = tuple([ ' '+i[0]+' '+i[6] for i in list(df.index)]) # y_pos = np.arange(len(fig_x)) # fig_name = list(df.columns) # fig, axes = plt.subplots(df.shape[1], 1, figsize=(12,2*df.shape[1]))# # if df.shape[1] == 1: # return # for r in range(df.shape[1]): # color_set = ['#02bdee', '#010101','#e32925','#cac9c9', '#a1cf63', '#ecc7c4'] # color_96 = [ c for c in color_set for i in range(16)] # all_data = df.iloc[:, r] # all_data /= (all_data.sum()) # maximum = max(all_data)*1.25 # data_list = all_data.tolist() # axes[r].text(0.01, 0.86, fig_name[r], horizontalalignment='left',verticalalignment='center', transform=axes[r].transAxes, fontweight='bold') # axes[r].bar(y_pos, data_list, color=color_96, width=0.4) # axes[r].spines['bottom'].set_color('#cac9c9') # axes[r].spines['top'].set_color('#cac9c9') # axes[r].spines['right'].set_color('#cac9c9') # axes[r].spines['left'].set_color('#cac9c9') # if r != df.shape[1]-1: # axes[r].xaxis.set_visible(False) # axes[r].set_xticklabels([]) # axes[r].tick_params(axis='x',length=0) # axes[r].set_xlim([-0.8,len(data_list)-.8]) # axes[r].tick_params(axis='y',direction='in', color='#cac9c9', labelsize=10) # axes[r].set_ylabel('Percentage', fontweight='bold') # axes[r].tick_params(axis='y', labelsize=10) # axes[r].set_ylim(top = max(all_data)*1.25) # axes[r].yaxis.set_major_locator(ticker.LinearLocator(5)) # axes[r].yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1, decimals=1)) # for i in range(6): # axes[r].add_patch(matplotlib.patches.Rectangle((0+16*i ,maximum*0.95), 15.6 , 0.01, color=color_set[i],transform=axes[r].transData)) # mut_list = ['C>A','C>G','C>T','T>A','T>C','T>G'] # for i in range(6): # plt.text(0.19+0.13*i,0.916-df.shape[1]*0.0029, mut_list[i], horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, fontweight='bold', fontsize=14) # plt.xticks(y_pos, fig_x, color='#999999',rotation=90, fontsize=9,horizontalalignment='center',verticalalignment='top',fontname='monospace')#verticalalignment='bottom', # space = 0.008075 # y_scale = [0.072, 0.084, 0.09, 0.094, 0.097, 0.0987, 0.1, 0.1013, 0.1023] # for i in range(6): # for j in range(16): # if i < 3: # plt.text((0.131+space*16*i)+space*j, y_scale[df.shape[1]-2], 'C',horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, color=color_set[i], fontsize=9, rotation=90,fontname='monospace', fontweight='bold') # else: # plt.text((0.131+space*16*i)+space*j, y_scale[df.shape[1]-2], 'T',horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, color=color_set[i], fontsize=9, rotation=90,fontname='monospace', fontweight='bold') # plt.savefig(pic+'SBS_96_plots.pdf',dpi=300, bbox_inches='tight') # print(colored(('=> Generate SBS Plot: '+pic+'SBS_96_plots.pdf'), 'green')) # def CosineSimilarity(): # from sklearn.metrics.pairwise import cosine_similarity # my_file, aux_file = output_folder+'96_sig.csv', 'lib/auxiliary/COSMIC_72.tsv' # my_df, aux_df = pd.read_csv(my_file, index_col=0), pd.read_csv(aux_file, sep='\t',index_col=0) # my_list, aux_list = my_df.columns, aux_df.columns # X = np.array(my_df.T.to_numpy()) # Y = np.array(aux_df.T.to_numpy()) # M = cosine_similarity(X, Y, dense_output=True) # Mdf= pd.DataFrame(M) # Mdf.index, Mdf.columns = my_list, aux_list # Mdf.to_csv(output_folder+'SBS.tsv', sep='\t') # print(colored('=> Generate file: ', 'green')) # print(colored((' '+output_folder+'SBS.tsv'), 'green')) # height, length = len(my_list), len(aux_list) # sns.set(font_scale=2) # sns.set_style('white') # grid_kws = {'height_ratios': (.9, .2),'hspace': 0.3} # f, (ax, cbar_ax) = plt.subplots(2,figsize=(20,6), gridspec_kw=grid_kws) # ax = sns.heatmap(M, vmin=0, vmax=1, xticklabels =aux_list, yticklabels = my_list, square=False, linewidth=1, cbar_ax=cbar_ax,ax=ax, # cmap='Blues',cbar_kws={'orientation': 'horizontal','shrink':1, 'aspect':70}) # # ax.set_title('Cosine Similarity',fontsize=TITLE_SIZE,weight='bold',pad=0,verticalalignment='bottom') # ax.set_xticklabels(ax.get_xticklabels(),rotation=90, horizontalalignment='center', fontsize=LABEL_SIZE-6, color='#222222') # ax.tick_params(axis='both',length=0) # ax.set_yticklabels(ax.get_yticklabels(), fontsize=LABEL_SIZE-6,color='#222222',verticalalignment='center') # plt.ylim(bottom=0, top=height+0.5) # plt.savefig(pic+'S2S.pdf',dpi=300,bbox_inches='tight') # plt.clf() # print(colored(('=> Generate Cosine Similarity Plot: '+pic+'S2S.pdf'), 'green')) # def SigDistribution(): # df = pd.read_csv(output_folder+'sig_sample.csv', index_col=0) # sample_list, sig_list = list(df.columns),list(df.index) # SUM = (df.sum(axis = 0, skipna = True)).tolist() # df = df/SUM # dft = df.T # # dft.columns = ['sample']+dft.columns # dft.to_csv(output_folder+'SigContribution.tsv',index_label='sample', sep='\t') # print(colored((' '+output_folder+'SigContribution.tsv'), 'green')) # ind = np.arange(df.shape[1]) # data = [] # for i in range(df.shape[0]): # d = tuple(df.iloc[i].tolist()) # data.append(d) # fig = plt.figure(figsize=(10, 5)) # ax = fig.add_axes([0,0,1,1]) # for i in range(len(data)): # if i == 0: # ax.bar(ind, data[i], 0.8, color = COLOR_MAP[i]) # else: # b = np.array(data[0]) # for k in range(1,i): # b = b+np.array(data[k]) # ax.bar(ind, data[i], 0.8, bottom=b,color = COLOR_MAP[i]) # # ax.set_title('Relative Contribution',fontsize=TITLE_SIZE, fontweight='bold') # ax.spines['bottom'].set_color('#cac9c9') # ax.spines['top'].set_color('#FFFFFF') # ax.spines['right'].set_color('#FFFFFF') # ax.spines['left'].set_color('#cac9c9') # ax.set_xlim([-1,len(ind)]) # ax.tick_params(axis='y',direction='in', color='#cac9c9', labelsize=LABEL_SIZE-4) # ax.tick_params(axis='x',direction='in', length=0) # ax.xaxis.set_visible(False) # ax.set_yticks(np.arange(0, 1+0.1, 0.25)) # ax.legend(title='',labels=sig_list,loc='lower center',ncol=3, fontsize=LABEL_SIZE-4, edgecolor='white', # labelspacing=0.5, bbox_to_anchor=(0.5, (-0.1-(math.ceil(len(sig_list)/3)*0.065)))) # plt.savefig(pic+'SigContribution.pdf', dpi=300,bbox_inches='tight') # print(colored(('=> Generate Bar Plot: ' + pic+'SigContribution.pdf'), 'green')) # height, length = len(sig_list), len(sample_list) # h_data = np.array(df.to_numpy()) # sns.set(font_scale=2) # f,ax = plt.subplots(figsize=(9+length/20,2+height*0.3)) # ax = sns.heatmap(data, vmin=0, vmax=1, yticklabels = sig_list, linewidths=1, # square=False, cmap='Blues',cbar_kws={'orientation': 'horizontal','shrink':1, 'aspect':50}) # # ax.set_title('Signature Sample Heatmap', fontsize=TITLE_SIZE,weight='bold',va='bottom') # ax.xaxis.set_visible(False) # ax.set_xticklabels([]) # ax.tick_params(axis='both',length=0) # ax.set_yticklabels(ax.get_yticklabels(), fontsize=LABEL_SIZE-4,color='#222222') # plt.savefig(pic+'SigSamHeatmap.pdf',dpi=300,bbox_inches='tight') # print(colored(('=> Generate Heatmap: '+pic+'SigSamHeatmap.pdf\n'), 'green')) # def DonutPlot(): # df = pd.read_csv(output_folder+'sig_sample.csv', index_col=0) # raw_data = df.sum(axis=1)/df.shape[1] # SUM = raw_data.sum(axis=0) # raw_data = raw_data/SUM # names, sizes = list(raw_data.index), list(raw_data.iloc[:]) # names = [names[i]+': '+'{:.1%}'.format(sizes[i]) for i in range(len(sizes))] # fig, ax = plt.subplots(figsize=(6, 8), subplot_kw=dict(aspect='equal')) # wedges, texts = ax.pie(sizes, colors=COLOR_MAP[:len(names)],wedgeprops=dict(width=0.6,edgecolor='w',linewidth=2), startangle=-40) #,normalize=False # bbox_props = dict(boxstyle='square,pad=0.3', fc='w', ec='k', lw=0) # kw = dict(arrowprops=dict(arrowstyle='-'),bbox=bbox_props, zorder=0, va='center') # for i, p in enumerate(wedges): # ang = (p.theta2 - p.theta1)/2. + p.theta1 # y = np.sin(np.deg2rad(ang)) # x = np.cos(np.deg2rad(ang)) # horizontalalignment = {-1: 'right', 1: 'left'}[int(np.sign(x))] # connectionstyle = 'angle,angleA=0,angleB={}'.format(ang) # kw['arrowprops'].update({'connectionstyle': connectionstyle}) # ax.annotate(names[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),horizontalalignment=horizontalalignment, **kw, fontsize=LABEL_SIZE) # plt.savefig(pic+'Donut_plot.pdf', dpi=300, bbox_inches='tight') # print(colored(('=> Generate Donut Plot: '+pic+'Donut_plot.pdf'), 'green')) # nmf() # SBSPlot() # DonutPlot() # CosineSimilarity() # SigDistribution() # 0 def sig_refitting(self): print(colored('# Signature refitting...', 'yellow')) def lsqnonneg(y, signatures): def msize(x, dim): s = x.shape if dim >= len(s): return 1 else: return s[dim] d, C = y, signatures (m, n) = C.shape tol = 10 * sys.float_info.epsilon * linalg.norm(C, ord=2) * (max(n, m)+1) P, Z, x = np.zeros(n), np.arange(1, n+1), np.zeros(n) ZZ = Z resid = d - np.dot(C, x) w = np.dot(C.T, resid) outeriter, it = 0, 0 itmax = 3*n while np.any(Z) and np.any(w[ZZ-1] > tol): outeriter += 1 t = w[ZZ-1].argmax() t = ZZ[t] P[t-1], Z[t-1] = t, 0 PP, ZZ = np.where(P != 0)[0]+1, np.where(Z != 0)[0]+1 CP = np.zeros(C.shape) CP[:, PP-1] = C.iloc[:, PP-1] CP[:, ZZ-1] = np.zeros((m, msize(ZZ, 1))) z = np.dot(np.linalg.pinv(CP), d) z[ZZ-1] = np.zeros((msize(ZZ,1), msize(ZZ,0))) while np.any(z[PP-1] <= tol): it += 1 if it >= itmax: max_error = z[PP-1].max() raise Exception('Exiting: Iteration count (=%d) exceeded\n Try raising the tolerance tol. (max_error=%d)' % (it, max_error)) QQ = np.where((z <= tol) & (P != 0))[0] alpha = min(x[QQ]/(x[QQ] - z[QQ])) x = x + alpha*(z-x) ij = np.where((abs(x) < tol) & (P != 0))[0]+1 Z[ij-1] = ij P[ij-1] = np.zeros(max(ij.shape)) PP, ZZ= np.where(P != 0)[0]+1, np.where(Z != 0)[0]+1 CP[:, PP-1] = C.iloc[:, PP-1] CP[:, ZZ-1] = np.zeros((m, msize(ZZ, 1))) z = np.dot(np.linalg.pinv(CP), d) z[ZZ-1] = np.zeros((msize(ZZ,1), msize(ZZ,0))) x = z resid = d - np.dot(C, x) w = np.dot(C.T, resid) return(x, sum(resid * resid), resid) mut_matrix = pd.read_csv(self.input, sep = '\t', index_col = 0) n_feature, n_samples = mut_matrix.shape[0], mut_matrix.shape[1] n_signatures = (self.cosmic).shape[1] lsq_contribution = pd.DataFrame(index=range(n_signatures),columns=range(n_samples)) lsq_reconstructed = pd.DataFrame(index=range(n_feature),columns=range(n_samples)) for i in range(n_samples): y = mut_matrix.iloc[:,i] lsq = lsqnonneg(y, self.cosmic) lsq_contribution.iloc[:, i] = lsq[0] lsq_reconstructed.iloc[:, i] = np.dot(self.cosmic, lsq[0]) lsq_contribution.columns = mut_matrix.columns lsq_contribution.index = (self.cosmic).columns lsq_reconstructed.columns = mut_matrix.columns lsq_reconstructed.index = (self.cosmic).index self.contribution = lsq_contribution self.reconstructed = lsq_reconstructed # 1 def estimation(self, output_folder, pic, rank1, rank2, epoch): os.system('git clone https://github.com/mims-harvard/nimfa.git\n') os.chdir('nimfa') os.system('python3 setup.py install --user') code = open('nimfa.py', 'w') code.write("import nimfa\nfrom collections import defaultdict, Counter\nimport urllib\nimport numpy as np\nfrom matplotlib import pyplot as plt\nimport matplotlib.gridspec as gridspec\nfrom sklearn import preprocessing\nimport scipy.cluster.hierarchy as sch\nimport pandas as pd\n") code.write("df = (pd.read_csv(\"../" + output_folder + "ms_input.tsv\", sep=\"\t\")).T\n") code.write("data = (df.to_numpy())[1:]\n") code.write("rank_cands = range("+str(rank1)+","+ str(rank2)+", 1)\n") code.write("snmf = nimfa.Snmf(data, seed='random_vcol', max_iter=100)\n") code.write("summary = snmf.estimate_rank(rank_range=rank_cands, n_run="+str(epoch)+", what='all')\n") code.write("rss = [summary[rank]['rss'] for rank in rank_cands]\n") code.write("coph = [summary[rank]['cophenetic'] for rank in rank_cands]\n") code.write("disp = [summary[rank]['dispersion'] for rank in rank_cands]\n") code.write("spar = [summary[rank]['sparseness'] for rank in rank_cands]\n") code.write("spar_w, spar_h = zip(*spar)\n") code.write("evar = [summary[rank]['evar'] for rank in rank_cands]\n") code.write("fig, axs = plt.subplots(2, 3, figsize=(12,8))\n") code.write("axs[0,0].plot(rank_cands, rss, 'o-', color='#266199', label='RSS', linewidth=3)\n") code.write("axs[0,0].set_title('RSS', fontsize=16,fontweight='bold')\n") code.write("axs[0,0].tick_params(axis='both', labelsize=12)\n") code.write("axs[0,0].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("axs[0,1].plot(rank_cands, coph, 'o-', color='#695D73', label='Cophenetic correlation', linewidth=3)\n") code.write("axs[0,1].set_title('Cophenetic', fontsize=16,fontweight='bold')\n") code.write("axs[0,1].tick_params(axis='both', labelsize=12)\n") code.write("axs[0,1].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("axs[0,2].plot(rank_cands, disp,'o-', color='#71a0a5', label='Dispersion', linewidth=3)\n") code.write("axs[0,2].set_title('Dispersion', fontsize=16,fontweight='bold')\n") code.write("axs[0,2].tick_params(axis='both', labelsize=12)\n") code.write("axs[0,2].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("axs[1,0].plot(rank_cands, spar_w, 'o-', color='#B88655', label='Sparsity (Basis)', linewidth=3)\n") code.write("axs[1,0].set_title('Sparsity (Basis)', fontsize=16,fontweight='bold')\n") code.write("axs[1,0].tick_params(axis='both', labelsize=12)\n") code.write("axs[1,0].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("axs[1,1].plot(rank_cands, spar_h, 'o-', color='#E08B69', label='Sparsity (Mixture)', linewidth=3)\n") code.write("axs[1,1].set_title('Sparsity (Mixture)', fontsize=16,fontweight='bold')\n") code.write("axs[1,1].tick_params(axis='both', labelsize=12)\n") code.write("axs[1,1].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("axs[1,2].plot(rank_cands, evar, 'o-', color='#841D22', label='Explained variance', linewidth=3)\n") code.write("axs[1,2].set_title('Explained variance', fontsize=16,fontweight='bold')\n") code.write("axs[1,2].tick_params(axis='both', labelsize=12)\n") code.write("axs[1,2].set_xticks(np.arange("+str(rank1)+", "+str(rank2)+", 1))\n") code.write("fig.tight_layout(pad=1.0)\n") code.write("plt.savefig(\"../"+pic+"Estimation.pdf\",dpi=300,bbox_inches = 'tight')\n") code.close() print(colored(('\nStart Estimation (may need a few minutes)....'), 'yellow')) p = os.popen('python3 nimfa.py\n') x = p.read() print(x) p.close() print(colored('=> Generate estimation figure: ', 'green')) print(colored((' '+pic+'Estimation.pdf\n'), 'green')) os.chdir('..') os.system('rm -rf nimfa\n') def getParams(self, params): self.params = params = params.replace('[', '').replace(']', '').replace(' ', '').split(',') def SBSplot(self, input, pic): df = input if len(self.params) != 0: df = df[self.params] fig_x = tuple([ ' '+i[0]+' '+i[6] for i in list(df.index)]) y_pos = np.arange(len(fig_x)) fig_name = list(df.columns) fig, axes = plt.subplots(df.shape[1], 1, figsize=(12,2*df.shape[1]))# if df.shape[1] == 1: return for r in range(df.shape[1]): color_set = ['#02bdee', '#010101','#e32925','#cac9c9', '#a1cf63', '#ecc7c4'] color_96 = [ c for c in color_set for i in range(16)] all_data = df.iloc[:, r] all_data /= (all_data.sum()) maximum = max(all_data)*1.25 data_list = all_data.tolist() axes[r].text(0.01, 0.86, fig_name[r], horizontalalignment='left',verticalalignment='center', transform=axes[r].transAxes, fontweight='bold') axes[r].bar(y_pos, data_list, color=color_96, width=0.4) axes[r].spines['bottom'].set_color('#cac9c9') axes[r].spines['top'].set_color('#cac9c9') axes[r].spines['right'].set_color('#cac9c9') axes[r].spines['left'].set_color('#cac9c9') if r != df.shape[1]-1: axes[r].xaxis.set_visible(False) axes[r].set_xticklabels([]) axes[r].tick_params(axis='x',length=0) axes[r].set_xlim([-0.8,len(data_list)-.8]) axes[r].tick_params(axis='y',direction='in', color='#cac9c9', labelsize=10) axes[r].set_ylabel('Percentage', fontweight='bold') axes[r].tick_params(axis='y', labelsize=10) axes[r].set_ylim(top = max(all_data)*1.25) axes[r].yaxis.set_major_locator(ticker.LinearLocator(5)) axes[r].yaxis.set_major_formatter(mtick.PercentFormatter(xmax=1, decimals=1)) for i in range(6): axes[r].add_patch(matplotlib.patches.Rectangle((0+16*i ,maximum*0.95), 15.6 , 0.01, color=color_set[i],transform=axes[r].transData)) mut_list = ['C>A','C>G','C>T','T>A','T>C','T>G'] for i in range(6): plt.text(0.19+0.13*i,0.916-df.shape[1]*0.0029, mut_list[i], horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, fontweight='bold', fontsize=14) plt.xticks(y_pos, fig_x, color='#999999',rotation=90, fontsize=9,horizontalalignment='center',verticalalignment='top',fontname='monospace')#verticalalignment='bottom', space = 0.008075 y_scale = [0.072, 0.084, 0.09, 0.094, 0.097, 0.0987, 0.1, 0.1013, 0.1023] for i in range(6): for j in range(16): if i < 3: plt.text((0.131+space*16*i)+space*j, y_scale[df.shape[1]-2], 'C',horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, color=color_set[i], fontsize=9, rotation=90,fontname='monospace', fontweight='bold') else: plt.text((0.131+space*16*i)+space*j, y_scale[df.shape[1]-2], 'T',horizontalalignment='center',verticalalignment='center',transform=plt.gcf().transFigure, color=color_set[i], fontsize=9, rotation=90,fontname='monospace', fontweight='bold') plt.savefig(pic+'SBS_96_plots.pdf',dpi=300, bbox_inches='tight') print(colored(('=> Generate SBS Plot: '+pic+'SBS_96_plots.pdf'), 'green')) def CosineSimilarity(self, input, output_folder, pic): from sklearn.metrics.pairwise import cosine_similarity # my_file, aux_file = output_folder+'96_sig.csv', 'lib/auxiliary/COSMIC_72.tsv' my_df, aux_df = input, self.cosmic my_list, aux_list = my_df.columns, aux_df.columns X = np.array(my_df.T.to_numpy()) Y = np.array(aux_df.T.to_numpy()) M = cosine_similarity(X, Y, dense_output=True) Mdf= pd.DataFrame(M) Mdf.index, Mdf.columns = my_list, aux_list Mdf.to_csv(output_folder+'SBS.tsv', sep='\t') print(colored('=> Generate file: ', 'green')) print(colored((' '+output_folder+'SBS.tsv'), 'green')) height, length = len(my_list), len(aux_list) sns.set(font_scale=2) sns.set_style('white') grid_kws = {'height_ratios': (.9, .2),'hspace': 0.3} f, (ax, cbar_ax) = plt.subplots(2,figsize=(20,6), gridspec_kw=grid_kws) ax = sns.heatmap(M, vmin=0, vmax=1, xticklabels =aux_list, yticklabels = my_list, square=False, linewidth=1, cbar_ax=cbar_ax,ax=ax, cmap='Blues',cbar_kws={'orientation': 'horizontal','shrink':1, 'aspect':70}) # ax.set_title('Cosine Similarity',fontsize=TITLE_SIZE,weight='bold',pad=0,verticalalignment='bottom') ax.set_xticklabels(ax.get_xticklabels(),rotation=90, horizontalalignment='center', fontsize=LABEL_SIZE-6, color='#222222') ax.tick_params(axis='both',length=0) ax.set_yticklabels(ax.get_yticklabels(), fontsize=LABEL_SIZE-6,color='#222222',verticalalignment='center') plt.ylim(bottom=0, top=height+0.5) plt.savefig(pic+'S2S.pdf',dpi=300,bbox_inches='tight') plt.clf() print(colored(('=> Generate Cosine Similarity Plot: '+pic+'S2S.pdf'), 'green')) def SigDistribution(self, input, output_folder, pic): df = input.loc[self.params,:] if len(self.params) != 0 else input sample_list, sig_list = list(df.columns),list(df.index) SUM = (df.sum(axis = 0, skipna = True)).tolist() df = df/SUM dft = df.T # dft.columns = ['sample']+dft.columns dft.to_csv(output_folder+'SigContribution.tsv',index_label='sample', sep='\t') print(colored((' '+output_folder+'SigContribution.tsv'), 'green')) ind = np.arange(df.shape[1]) data = [] for i in range(df.shape[0]): d = tuple(df.iloc[i].tolist()) data.append(d) fig = plt.figure(figsize=(10, 5)) ax = fig.add_axes([0,0,1,1]) for i in range(len(data)): if i == 0: ax.bar(ind, data[i], 0.8, color = COLOR_MAP[i]) else: b = np.array(data[0]) for k in range(1,i): b = b+np.array(data[k]) ax.bar(ind, data[i], 0.8, bottom=b,color = COLOR_MAP[i]) # ax.set_title('Relative Contribution',fontsize=TITLE_SIZE, fontweight='bold') ax.spines['bottom'].set_color('#cac9c9') ax.spines['top'].set_color('#FFFFFF') ax.spines['right'].set_color('#FFFFFF') ax.spines['left'].set_color('#cac9c9') ax.set_xlim([-1,len(ind)]) ax.tick_params(axis='y',direction='in', color='#cac9c9', labelsize=LABEL_SIZE-4) ax.tick_params(axis='x',direction='in', length=0) ax.xaxis.set_visible(False) ax.set_yticks(np.arange(0, 1+0.1, 0.25)) ax.legend(title='',labels=sig_list,loc='lower center',ncol=3, fontsize=LABEL_SIZE-4, edgecolor='white', labelspacing=0.5, bbox_to_anchor=(0.5, (-0.1-(math.ceil(len(sig_list)/3)*0.065)))) plt.savefig(pic+'SigContribution.pdf', dpi=300,bbox_inches='tight') print(colored(('=> Generate Bar Plot: ' + pic+'SigContribution.pdf'), 'green')) height, length = len(sig_list), len(sample_list) h_data = np.array(df.to_numpy()) sns.set(font_scale=2) f,ax = plt.subplots(figsize=(9+length/20,2+height*0.3)) ax = sns.heatmap(data, vmin=0, vmax=1, yticklabels = sig_list, linewidths=1, square=False, cmap='Blues',cbar_kws={'orientation': 'horizontal','shrink':1, 'aspect':50}) # ax.set_title('Signature Sample Heatmap', fontsize=TITLE_SIZE,weight='bold',va='bottom') ax.xaxis.set_visible(False) ax.set_xticklabels([]) ax.tick_params(axis='both',length=0) ax.set_yticklabels(ax.get_yticklabels(), fontsize=LABEL_SIZE-4,color='#222222') plt.savefig(pic+'SigSamHeatmap.pdf',dpi=300,bbox_inches='tight') print(colored(('=> Generate Heatmap: '+pic+'SigSamHeatmap.pdf'), 'green')) def DonutPlot(self, input, pic): df = input.loc[self.params,:] if len(self.params) != 0 else input raw_data = df.sum(axis=1)/df.shape[1] SUM = raw_data.sum(axis=0) raw_data = raw_data/SUM names, sizes = list(raw_data.index), list(raw_data.iloc[:]) names = [names[i]+': '+'{:.1%}'.format(sizes[i]) for i in range(len(sizes))] fig, ax = plt.subplots(figsize=(6, 8), subplot_kw=dict(aspect='equal')) wedges, texts = ax.pie(sizes, colors=COLOR_MAP[:len(names)],wedgeprops=dict(width=0.6,edgecolor='w',linewidth=2), startangle=-40) #,normalize=False bbox_props = dict(boxstyle='square,pad=0.3', fc='w', ec='k', lw=0) kw = dict(arrowprops=dict(arrowstyle='-'),bbox=bbox_props, zorder=0, va='center') for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: 'right', 1: 'left'}[int(np.sign(x))] connectionstyle = 'angle,angleA=0,angleB={}'.format(ang) kw['arrowprops'].update({'connectionstyle': connectionstyle}) ax.annotate(names[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y),horizontalalignment=horizontalalignment, **kw, fontsize=LABEL_SIZE) plt.savefig(pic+'Donut_plot.pdf', dpi=300, bbox_inches='tight') print(colored(('=> Generate Donut Plot: '+pic+'Donut_plot.pdf'), 'green')) def nmf(self, output_folder, sig): print(colored(('\nStart NMF....'), 'yellow')) from sklearn.decomposition import NMF if not os.path.isfile(output_folder+'ms_input.tsv'): raise ValueError('[MutScape] Mutational Signature: Step 1 must be done before step 2.') df = (pd.read_csv(output_folder+'ms_input.tsv', sep='\t')).T sample_list = df.index[1:] index_96 = df.to_numpy()[0] data = (df.to_numpy())[1:] model = NMF(n_components=int(sig),init='random', random_state=0) W = model.fit_transform(data) H = model.components_ Hdf, Wdf = pd.DataFrame(H.T), pd.DataFrame(W.T) Hdf.columns = ['Signature '+str(i+1) for i in range(int(sig))] Wdf.columns = sample_list Hdf.index = index_96 Wdf.index = ['Signature '+str(i+1) for i in range(int(sig))] Hdf.to_csv(output_folder+'96_sig.csv') Wdf.to_csv(output_folder+'sig_sample.csv') print(colored('=> Generate file: ', 'green')) print(colored((' '+output_folder+'96_sig.csv'), 'green')) print(colored((' '+output_folder+'sig_sample.csv'), 'green')) def plotting(self, output_folder, pic, sig): LABEL_SIZE, TITLE_SIZE = 24,30 print(colored(('\nStart Mutational_Signature Plotting(signature number must be in the range of 2 to 9)....'), 'yellow')) self.nmf(output_folder, sig) df = (pd.read_csv(output_folder+'96_sig.csv')) df = df.set_index(list(df.columns[[0]])) df1 =
pd.read_csv(output_folder+'sig_sample.csv', index_col=0)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Oct 23 10:40:57 2021 @author: lschiesser """ import unittest import pandas as pd from code.feature_extraction.binary_features import BinaryFeatureExtractor class TestBinaryExtractor(unittest.TestCase): def setUp(self): self.INPUT_COLUMN = "tweet" self.OUTPUT_COLUMN = "output" self.INPUT_COLUMNS = ["photo", "video"] self.multiple_input_extractor = BinaryFeatureExtractor(self.INPUT_COLUMNS, self.OUTPUT_COLUMN) self.one_input_extractor = BinaryFeatureExtractor(self.INPUT_COLUMN, self.OUTPUT_COLUMN) def test_one_binary_feature(self): url_input = ["https://google.com", "https://ikw.uos.de"] output = 1 df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Monday June 7th @author: enprietop """ from DJSFunctions import extract_preprocess_data, ankle_DJS from plot_dynamics import plot_ankle_DJS import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from scipy import stats from utilities_QS import multi_idx, create_df, best_hyper, change_labels import itertools as it #stats import researchpy as rp import statsmodels.api as sm from statsmodels.formula.api import ols from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison import seaborn as sns from scipy.stats.mstats import kruskal import scikit_posthocs as sp # ============================================================================= # Helper functions # ============================================================================= def ttest_(ds1, ds2, dep_vars): """ Parameters ---------- ds1 : Dataset 1 ds2 : Dataset 2 items : items in a dict format Returns ------- None. """ # Assumptions: # 1. Independent samples # 2. Large enough sample size or observations come from a normally-distributed # population # 3. Variances are equal, if not apply weltch test # Does the samples come from a normally distributed population #Let's perform the Bartetts's test whose Null Hypothesis is that the #variances are equal. We will use a significance level of 5.0%, for lower values the null hypothesis is rejected #and the variances are not equal # Measuring and storing if the samples has the same variance var = {item: stats.bartlett(ds1[item], ds2[item]).pvalue for item in dep_vars} # Performing the ttest, if not equal it will perform ttest_ = {item: stats.ttest_ind(ds1[item], ds2[item], equal_var=var[item] > 0.05).pvalue for item in dep_vars} return var, ttest_ #Testing normal distributions #For values below 5% the hipothesis is rejected and is non-normal distribution def shapiro_test(ds, dep_vars, name='No name', df=True): if df == True: shapiro_ = {item: stats.shapiro(ds[item]).pvalue > 0.05 for item in dep_vars} shapiro_df = pd.Series(shapiro_, name=name) return shapiro_df else: shapiro_ = {item: stats.shapiro(ds[item]).pvalue for item in dep_vars} return shapiro_ # ============================================================================= # Kruskal Wallis test on ranks # ============================================================================= def kruskal_groups(ds1, ds2, dep_vars, name): kruskal_deps = pd.Series({item: kruskal(ds1[item].values, ds2[item].values).pvalue < 0.05 for item in dep_vars}) kruskal_deps.name = name return kruskal_deps os.chdir('ConcatDatasets/') concat_QS =
pd.read_csv('DatasetPaper.csv', index_col=[0])
pandas.read_csv
import os from solaris.eval.base import Evaluator import solaris import geopandas as gpd import pandas as pd class TestEvaluator(object): def test_init_from_file(self): """Test instantiation of an Evaluator instance from a file.""" base_instance = Evaluator(os.path.join(solaris.data.data_dir, 'gt.geojson')) gdf = solaris.data.gt_gdf() assert base_instance.ground_truth_sindex.bounds == gdf.sindex.bounds assert base_instance.proposal_GDF.equals(gpd.GeoDataFrame([])) assert base_instance.ground_truth_GDF.equals( base_instance.ground_truth_GDF_Edit) def test_init_from_gdf(self): """Test instantiation of an Evaluator from a pre-loaded GeoDataFrame.""" gdf = solaris.data.gt_gdf() base_instance = Evaluator(gdf) assert base_instance.ground_truth_sindex.bounds == gdf.sindex.bounds assert base_instance.proposal_GDF.equals(gpd.GeoDataFrame([])) assert base_instance.ground_truth_GDF.equals( base_instance.ground_truth_GDF_Edit) def test_init_empty_geojson(self): """Test instantiation of Evaluator with an empty geojson file.""" base_instance = Evaluator(os.path.join(solaris.data.data_dir, 'empty.geojson')) expected_gdf = gpd.GeoDataFrame({'sindex': [], 'condition': [], 'geometry': []}) assert base_instance.ground_truth_GDF.equals(expected_gdf) def test_score_proposals(self): """Test reading in a proposal GDF from a geojson and scoring it.""" eb = Evaluator(os.path.join(solaris.data.data_dir, 'gt.geojson')) eb.load_proposal(os.path.join(solaris.data.data_dir, 'pred.geojson')) pred_gdf = solaris.data.pred_gdf() assert eb.proposal_GDF.iloc[:, 0:3].sort_index().equals(pred_gdf) expected_score = [{'class_id': 'all', 'iou_field': 'iou_score_all', 'TruePos': 8, 'FalsePos': 20, 'FalseNeg': 20, 'Precision': 0.2857142857142857, 'Recall': 0.2857142857142857, 'F1Score': 0.2857142857142857}] scores = eb.eval_iou(calculate_class_scores=False) assert scores == expected_score def test_iou_by_building(self): """Test output of ground truth table with per-building IoU scores""" data_folder = solaris.data.data_dir path_truth = os.path.join(data_folder, 'SN2_sample_truth.csv') path_pred = os.path.join(data_folder, 'SN2_sample_preds.csv') path_ious = os.path.join(data_folder, 'SN2_sample_iou_by_building.csv') path_temp = './temp.pd' eb = Evaluator(path_truth) eb.load_proposal(path_pred, conf_field_list=['Confidence'], proposalCSV=True) eb.eval_iou_spacenet_csv(miniou=0.5, imageIDField='ImageId', min_area=20) output = eb.get_iou_by_building() result_actual =
pd.DataFrame(output)
pandas.DataFrame
import numpy as np import pandas as pd from scipy.spatial.distance import cosine import evaluation_utils class CosineBaseline: def __init__(self, user_item: pd.DataFrame, test_set: pd.DataFrame, movies_set: pd.DataFrame, k: int, n: int, sim_matrix_flag=0, sim_matrix_path="./generated_files/item_knn_sim.csv"): """ Constructor of the class :param user_item: user item matrix data frame :param test_set: test set :param movies_set: movies set :param k: number of neighbours :param n: number of recommendation items to return :param sim_matrix_flag: 1 to generate the similarity matrix from scratch, 0 to read from file path :param sim_matrix_path: path to file of the similarity matrix """ self.user_item = user_item self.test_set = test_set self.movies_set = movies_set self.sim_matrix_flag = sim_matrix_flag self.sim_matrix_path = sim_matrix_path self.k = k self.n = n def set_k(self, new_k: int): """ setter of neighbours of class :param new_k: new value of k :return:k of class changed """ self.k = new_k def set_n(self, new_n: int): """ setter of top n of class :param new_n: new value of n :return: n of class changed """ self.n = new_n def __get_similarity_matrix(self): """ Function that gets or generates the similarity matrix :return: the similarity matrix with index and column """ movies_id = self.movies_set['movie_id'].to_list() movies_id.sort() if self.sim_matrix_flag == 1: np.seterr(all='raise') item_sim =
pd.DataFrame(0, index=movies_id, columns=movies_id)
pandas.DataFrame
import numpy as np import pandas as pd import geopandas as gpd import warnings import osmnx as ox import requests import json from shapely.geometry import Point def geom_ceil(coordinate, precision=4): return np.true_divide(np.ceil(coordinate * 10 ** precision), 10 ** precision) def geom_floor(coordinate, precision=4): return np.true_divide(np.floor(coordinate * 10 ** precision), 10 ** precision) class POIdata: """ This class creates a query for the investigated area and POI categories. The query is sent to osm using overpass API and the data is retrieved. Parameters ---------- area : GeoDataFrame or str GeoDataFrame must have a single shapely Polygon or MultiPolygon in geometry column and its CRS must be defined. str must be a name of a city, or an address of a region poi_categories : A list of OSM primary map features or 'all' timeout : int The TCP connection timeout for the overpass request verbose : bool If True, print information while computing """ def __init__(self, area, poi_categories, timeout, verbose): self.area_buffered = None self.area = area self.poi_categories = poi_categories self.timeout = timeout self.verbose = verbose @staticmethod def osm_primary_features(): """ list of primary OSM features available at https://wiki.openstreetmap.org/wiki/Map_features Returns -------- osm_primary_features_lst : list """ osm_primary_features_lst = ['aerialway', 'aeroway', 'amenity', 'barrier', 'boundary', 'building', 'craft', 'emergency', 'geological', 'healthcare', 'highway', 'historic', 'landuse', 'leisure', 'man_made', 'military', 'natural', 'office', 'place', 'power', 'public_transport', 'railway', 'route', 'shop', 'sport', 'telecom', 'tourism', 'water', 'waterway'] return osm_primary_features_lst def create_overpass_query_string(self): """ creates the query string to be passed to overpass Returns -------- query_string : str """ # make the query area a bit larger with warnings.catch_warnings(): warnings.simplefilter('ignore') self.area_buffered = self.area.buffer(0.008).simplify(0.005) xy = np.array(self.area_buffered.iloc[0].exterior.coords) # make polygon string for OSM overpass query # Using the polygon, fewer data are retrieved, and it's faster but request is long can can lead to 414 # poly_str = '' # for lat, lon in zip(xy[:, 1], xy[:, 0]): # poly_str = poly_str + str(lat) + ' ' + str(lon) + ' ' # poly_str = poly_str.strip() # make bounding box for OSM overpass query lat_min = geom_floor(np.min(xy[:, 0])) lon_min = geom_floor(np.min(xy[:, 1])) lat_max = geom_ceil(np.max(xy[:, 0])) lon_max = geom_ceil(np.max(xy[:, 1])) # if poi not in primary --> error # todo: is this necessary? for poi_category in self.poi_categories: if poi_category not in self.osm_primary_features(): raise ValueError(f'{poi_category} is not a valid POI primary category. See a list of OSM primary ' f'features with Tessellation.osm_primary_features()') # create query string for overpass query_string = '' for element in ['node', 'way']: for poi_category in self.poi_categories: # query with polygon # query_string = query_string + f'{element}[{poi_category}](poly:"{poly_str}");' # query with bounding box query_string = query_string + f'{element}[{poi_category}];' # query_string = f"[out:json][timeout:{self.timeout}];(" + query_string + ');out geom;' query_string = f"[bbox][out:json][timeout:{self.timeout}];(" \ + query_string \ + ');out geom;' \ + f'&bbox={lat_min},{lon_min},{lat_max},{lon_max}' return query_string def get_poi_data(self): """ sends the query to osm using the overpass API and gets the data Returns -------- poi_df : pandas.DataFrame A dataframe containing the POI, POI type, and coordinates """ query_string = self.create_overpass_query_string() request_header = "https://overpass-api.de/api/interpreter?data=" if self.verbose: print('Getting data from OSM...') # sending the request resp = requests.get(url=request_header + query_string) if resp.status_code == 429: raise RuntimeError("429 Too Many Requests:\n" "You have sent multiple requests from the same " "IP and passed the passed the fair use policy. " "Please wait a couple of minutes and then try again.") elif resp.status_code == 504: raise RuntimeError("504 Gateway Timeout:\n" "the server has already so much load that the request cannot be executed." "Please try again later") elif resp.status_code != 200: raise RuntimeError("Bad Request!") else: resp = json.loads(resp.text) if self.verbose: print('Creating POI DataFrame...') lst_nodes = [] lst_ways = [] generator = resp['elements'] for item in generator: for cat in self.poi_categories: if cat in item['tags'].keys(): item[cat] = True if item['type'] == 'node': lst_nodes.append(item) elif item['type'] == 'way': item['center_latitude'] = np.mean([point['lat'] for point in item['geometry']]) item['center_longitude'] = np.mean([point['lon'] for point in item['geometry']]) lst_ways.append(item) else: continue if self.verbose: print('Cleaning POI DataFrame...') nodes_df = pd.DataFrame(lst_nodes) ways_df = pd.DataFrame(lst_ways) nodes_df['geometry'] = nodes_df[['lon', 'lat']].apply(lambda p: [{'lat': p['lat'], 'lon': p['lon']}], axis=1) nodes_df = nodes_df.rename(columns={'lat': 'center_latitude', 'lon': 'center_longitude'}) nodes_df = nodes_df.drop(columns=['id']) ways_df = ways_df.drop(columns=['id', 'bounds', 'nodes']) poi_df =
pd.concat([ways_df, nodes_df])
pandas.concat
import pandas as pd import numpy as np from statsmodels.formula.api import ols from swstats import * from scipy.stats import ttest_ind import xlsxwriter from statsmodels.stats.multitest import multipletests from statsmodels.stats.proportion import proportions_ztest debugging = False def pToSign(pval): if pval < .001: return "***" elif pval < .01: return "**" elif pval < .05: return "*" elif pval < .1: return "+" else: return "" def analyzeExperiment_ContinuousVar(dta, varName): order_value_control_group = dta.loc[dta.surveyArm == "arm1_control", varName] order_value_arm2_group = dta.loc[dta.surveyArm == "arm2_written_techniques", varName] order_value_arm3_group = dta.loc[dta.surveyArm == "arm3_existingssa", varName] order_value_arm4_group = dta.loc[dta.surveyArm == "arm4_interactive_training", varName] # Arm 1 arm1mean = np.mean(order_value_control_group) arm1sd = np.std(order_value_control_group) arm1text = "" + "{:.2f}".format(arm1mean) + " (" + "{:.2f}".format(arm1sd) + ")" # Effect of Arm 2 arm2mean = np.mean(order_value_arm2_group) arm2sd = np.std(order_value_arm2_group) tscore, pval2 = ttest_ind(order_value_control_group, order_value_arm2_group) arm2sign = pToSign(pval2) arm2text = "" + "{:.2f}".format(arm2mean) + " (" + "{:.2f}".format(arm2sd) + ")" + arm2sign + " p:" + "{:.3f}".format(pval2) # Effect of Arm 3 arm3mean = np.mean(order_value_arm3_group) arm3sd = np.std(order_value_arm3_group) tscore, pval3 = ttest_ind(order_value_control_group, order_value_arm3_group) arm3sign = pToSign(pval3) arm3text = "" + "{:.2f}".format(arm3mean) + " (" + "{:.2f}".format(arm3sd) + ")" + arm3sign + " p:" + "{:.3f}".format(pval3) # Effect of Arm 4 arm4mean = np.mean(order_value_arm4_group) arm4sd = np.std(order_value_arm4_group) tscore, pval4 = ttest_ind(order_value_control_group, order_value_arm4_group) arm4sign = pToSign(pval4) arm4text = "" + "{:.2f}".format(arm4mean) + " (" + "{:.2f}".format(arm4sd) + ")" + arm4sign + " p:" + "{:.3f}".format(pval4) # Correct P-values y = multipletests(pvals=[pval2, pval3, pval4], alpha=0.05, method="holm") # print(len(y[1][np.where(y[1] < 0.05)])) # y[1] returns corrected P-vals (array) sigWithCorrection = y[1] < 0.05 if sigWithCorrection[0]: arm2text = arm2text + ",#" if sigWithCorrection[1]: arm3text = arm3text + ",#" if sigWithCorrection[2]: arm4text = arm4text + ",#" # Additional checks tscore, pval2to4 = ttest_ind(order_value_arm2_group, order_value_arm4_group) arm2to4sign = pToSign(pval2to4) arm2to4text = "" + "{:.2f}".format(arm4mean - arm2mean) + " " + arm2to4sign + " p:" + "{:.3f}".format(pval2to4) tscore, pval3to4 = ttest_ind(order_value_arm3_group, order_value_arm4_group) arm3to4sign = pToSign(pval3to4) arm3to4text = "" + "{:.2f}".format(arm4mean - arm3mean) + " " + arm3to4sign + " p:" + "{:.3f}".format(pval3to4) results = {"Outcome": varName, "Arm1": arm1text, "Arm2": arm2text, "Arm3": arm3text, "Arm4": arm4text, "Arm2To4": arm2to4text, "Arm3To4": arm3to4text, } return results def analyzeExperiment_BinaryVar(dta, varName): order_value_control_group = dta.loc[dta.surveyArm == "arm1_control", varName] order_value_arm2_group = dta.loc[dta.surveyArm == "arm2_written_techniques", varName] order_value_arm3_group = dta.loc[dta.surveyArm == "arm3_existingssa", varName] order_value_arm4_group = dta.loc[dta.surveyArm == "arm4_interactive_training", varName] # Arm 1 arm1Successes = sum(order_value_control_group.isin([True, 1])) arm1Count = sum(order_value_control_group.isin([True, False, 1, 0])) arm1PercentSuccess = arm1Successes/arm1Count arm1text = "" + "{:.2f}".format(arm1PercentSuccess) + " (" + "{:.0f}".format(arm1Successes) + ")" # Effect of Arm 2 arm2Successes = sum(order_value_arm2_group.isin([True, 1])) arm2Count = sum(order_value_arm2_group.isin([True, False, 1, 0])) arm2PercentSuccess = arm2Successes/arm2Count zstat, pval2 = proportions_ztest(count=[arm1Successes,arm2Successes], nobs=[arm1Count,arm2Count], alternative='two-sided') arm2sign = pToSign(pval2) arm2text = "" + "{:.2f}".format(arm2PercentSuccess) + " (" + "{:.0f}".format(arm2Successes) + ")" + arm2sign + " p:" + "{:.3f}".format(pval2) # Effect of Arm 3 arm3Successes = sum(order_value_arm3_group.isin([True, 1])) arm3Count = sum(order_value_arm3_group.isin([True, False, 1, 0])) arm3PercentSuccess = arm3Successes/arm3Count zstat, pval3 = proportions_ztest(count=[arm1Successes,arm3Successes], nobs=[arm1Count,arm3Count], alternative='two-sided') arm3sign = pToSign(pval3) arm3text = "" + "{:.2f}".format(arm3PercentSuccess) + " (" + "{:.0f}".format(arm3Successes) + ")" + arm3sign + " p:" + "{:.3f}".format(pval3) # Effect of Arm 4 arm4Successes = sum(order_value_arm4_group.isin([True, 1])) arm4Count = sum(order_value_arm4_group.isin([True, False, 1, 0])) arm4PercentSuccess = arm4Successes/arm4Count zstat, pval4 = proportions_ztest(count=[arm1Successes,arm4Successes], nobs=[arm1Count,arm4Count], alternative='two-sided') arm4sign = pToSign(pval4) arm4text = "" + "{:.2f}".format(arm4PercentSuccess) + " (" + "{:.0f}".format(arm4Successes) + ")" + arm4sign + " p:" + "{:.3f}".format(pval4) # Correct P-values y = multipletests(pvals=[pval2, pval3, pval4], alpha=0.05, method="holm") # print(len(y[1][np.where(y[1] < 0.05)])) # y[1] returns corrected P-vals (array) sigWithCorrection = y[1] < 0.05 if sigWithCorrection[0]: arm2text = arm2text + ",#" if sigWithCorrection[1]: arm3text = arm3text + ",#" if sigWithCorrection[2]: arm4text = arm4text + ",#" # Additional checks zstat, pval2to4 = proportions_ztest(count=[arm2Successes,arm4Successes], nobs=[arm2Count,arm4Count], alternative='two-sided') arm2to4sign = pToSign(pval2to4) arm2to4text = "" + "{:.2f}".format(arm4PercentSuccess - arm2PercentSuccess) + " " + arm2to4sign + " p:" + "{:.3f}".format(pval2to4) zstat, pval3to4 = proportions_ztest(count=[arm3Successes,arm4Successes], nobs=[arm3Count,arm4Count], alternative='two-sided') arm3to4sign = pToSign(pval3to4) arm3to4text = "" + "{:.2f}".format(arm4PercentSuccess - arm3PercentSuccess) + " " + arm3to4sign + " p:" + "{:.3f}".format(pval3to4) results = {"Outcome": varName, "Arm1": arm1text, "Arm2": arm2text, "Arm3": arm3text, "Arm4": arm4text, "Arm2To4": arm2to4text, "Arm3To4": arm3to4text, } return results def analyzeResults(dta, outputFileName, scoringVars, surveyVersion, primaryOnly=True): if primaryOnly: dta = dta[dta.IsPrimaryWave].copy() dataDir = "C:/Dev/src/ssascams/data/" ''' Analyze the answers''' writer = pd.ExcelWriter(dataDir + 'RESULTS_' + outputFileName + '.xlsx', engine='xlsxwriter') # ############### # Export summary stats # ############### demographicVars = ['trustScore', 'TotalIncome', 'incomeAmount', 'Race', 'race5', 'employment3', 'educYears', 'Married', 'marriedI', 'Age', 'ageYears', 'Gender', 'genderI'] allSummaryVars = ["percentCorrect", "surveyArm", "Wave", "daysFromTrainingToTest"] + scoringVars + demographicVars summaryStats = dta[allSummaryVars].describe() summaryStats.to_excel(writer, sheet_name="summary_FullPop", startrow=0, header=True, index=True) grouped = dta[allSummaryVars].groupby(["surveyArm"]) summaryStats = grouped.describe().unstack().transpose().reset_index() summaryStats.rename(columns={'level_0' :'VarName', 'level_1' :'Metric'}, inplace=True) summaryStats.sort_values(['VarName', 'Metric'], inplace=True) summaryStats.to_excel(writer, sheet_name="summary_ByArm", startrow=0, header=True, index=False) if ~primaryOnly: grouped = dta[allSummaryVars].groupby(["surveyArm", "Wave"]) summaryStats = grouped.describe().unstack().transpose().reset_index() summaryStats.rename(columns={'level_0' :'VarName', 'level_1' :'Metric'}, inplace=True) summaryStats.sort_values(['Wave','VarName', 'Metric'], inplace=True) # grouped.describe().reset_index().pivot(index='name', values='score', columns='level_1') summaryStats.to_excel(writer, sheet_name="summary_ByArmAndWave", startrow=0, header=True, index=False) # summaryStats.to_csv(dataDir + "RESULTS_" + outputFileName + '.csv') # ############### # RQ1: What is the effect? # ############### row1 = analyzeExperiment_ContinuousVar(dta, "numCorrect") row2 = analyzeExperiment_ContinuousVar(dta, "numFakeLabeledReal") row3 = analyzeExperiment_ContinuousVar(dta, "numRealLabeledFake") row4 = analyzeExperiment_ContinuousVar(dta, "percentCorrect") pd.DataFrame([row1, row2, row3, row4]).to_excel(writer, sheet_name="r1", startrow=1, header=True, index=True) ############## # RQ1* Robustness check on result: is the experiment randomized correctly? ############## # NumCorrect Regression resultTables = ols('numCorrect ~ C(surveyArm) + daysFromTrainingToTest + trustScore + lIncomeAmount + ' 'C(employment3) + educYears + marriedI + ageYears + ageYearsSq + genderI + lose_moneyYN + duration_p2_Quantile ', data=dta).fit().summary().tables pd.DataFrame(resultTables[0]).to_excel(writer, sheet_name="r1_reg", startrow=1, header=False, index=False) pd.DataFrame(resultTables[1]).to_excel(writer, sheet_name="r1_reg", startrow=1 + len(resultTables[0]) + 2, header=False, index=False) # ############### # RQ2: Communication Type # ############### row1 = analyzeExperiment_ContinuousVar(dta, "numEmailsCorrect") row2 = analyzeExperiment_ContinuousVar(dta, "numSMSesCorrect") row3 = analyzeExperiment_ContinuousVar(dta, "numLettersCorrect") pd.DataFrame([row1, row2, row3]).to_excel(writer, sheet_name="r2", startrow=1, header=True, index=True) ############## # RQ2* Robustness check on Emails result: is the experiment randomized correctly? ############## # NumEmailsCorrect Regression resultTables = ols('numEmailsCorrect ~ C(surveyArm) + daysFromTrainingToTest + trustScore + lIncomeAmount + ' 'C(employment3) + educYears + marriedI + ageYears + ageYearsSq + genderI + lose_moneyYN + duration_p2_Quantile ', data=dta).fit().summary().tables pd.DataFrame(resultTables[0]).to_excel(writer, sheet_name="r2_reg", startrow=1, header=False, index=False) pd.DataFrame(resultTables[1]).to_excel(writer, sheet_name="r2_reg", startrow=1 + len(resultTables[0]) + 2, header=False, index=False) # ############### # RQ3: Time Delay # ############### resultTables = ols('numCorrect ~ C(surveyArm)*Wave + daysFromTrainingToTest', data=dta).fit().summary().tables pd.DataFrame(resultTables[0]).to_excel(writer, sheet_name="r3a_CorrectWaveAndDay_Simple", startrow=1, header=False, index=False) pd.DataFrame(resultTables[1]).to_excel(writer, sheet_name="r3a_CorrectWaveAndDay_Simple", startrow=1 + len(resultTables[0]) + 2, header=False, index=False) resultTables = ols('numEmailsCorrect ~ C(surveyArm)*Wave + daysFromTrainingToTest', data=dta).fit().summary().tables
pd.DataFrame(resultTables[0])
pandas.DataFrame
import wf_core_data.utils import requests import pandas as pd from collections import OrderedDict # import pickle # import json import datetime import time import logging import os logger = logging.getLogger(__name__) DEFAULT_DELAY = 0.25 DEFAULT_MAX_REQUESTS = 50 DEFAULT_WRITE_CHUNK_SIZE = 10 SCHOOLS_BASE_ID = 'appJBT9a4f3b7hWQ2' DATA_DICT_BASE_ID = 'appJBT9a4f3b7hWQ2' # DATA_DICT_BASE_ID = 'appHMyIWgnHqVJymL' class AirtableClient: def __init__( self, api_key=None, url_base='https://api.airtable.com/v0/' ): self.api_key = api_key self.url_base = url_base if self.api_key is None: self.api_key = os.getenv('AIRTABLE_API_KEY') def fetch_tl_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching TL data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='TLs', params=params ) tl_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('teacher_id_at', record.get('id')), ('teacher_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('teacher_full_name_at', fields.get('Full Name')), ('teacher_first_name_at', fields.get('First Name')), ('teacher_middle_name_at', fields.get('Middle Name')), ('teacher_last_name_at', fields.get('Last Name')), ('teacher_title_at', fields.get('Title')), ('teacher_ethnicity_at', fields.get('Race & Ethnicity')), ('teacher_ethnicity_other_at', fields.get('Race & Ethnicity - Other')), ('teacher_income_background_at', fields.get('Income Background')), ('teacher_email_at', fields.get('Email')), ('teacher_email_2_at', fields.get('Email 2')), ('teacher_email_3_at', fields.get('Email 3')), ('teacher_phone_at', fields.get('Phone Number')), ('teacher_phone_2_at', fields.get('Phone Number 2')), ('teacher_employer_at', fields.get('Employer')), ('hub_at', fields.get('Hub')), ('pod_at', fields.get('Pod')), ('user_id_tc', fields.get('TC User ID')) ]) tl_data.append(datum) if format == 'dataframe': tl_data = convert_tl_data_to_df(tl_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return tl_data def fetch_location_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching location data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Locations', params=params ) location_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('location_id_at', record.get('id')), ('location_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('location_address_at', fields.get('Address')), ('school_id_at', wf_core_data.utils.to_singleton(fields.get('School Name'))), ('school_location_start_at', wf_core_data.utils.to_date(fields.get('Start of time at location'))), ('school_location_end_at', wf_core_data.utils.to_date(fields.get('End of time at location'))) ]) location_data.append(datum) if format == 'dataframe': location_data = convert_location_data_to_df(location_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return location_data def fetch_teacher_school_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching teacher school association data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Teachers x Schools', params=params ) teacher_school_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('teacher_school_id_at', record.get('id')), ('teacher_school_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('teacher_id_at', fields.get('TL')), ('school_id_at', fields.get('School')), ('teacher_school_start_at', wf_core_data.utils.to_date(fields.get('Start Date'))), ('teacher_school_end_at', wf_core_data.utils.to_date(fields.get('End Date'))), ('teacher_school_active_at', wf_core_data.utils.to_boolean(fields.get('Currently Active'))) ]) teacher_school_data.append(datum) if format == 'dataframe': teacher_school_data = convert_teacher_school_data_to_df(teacher_school_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return teacher_school_data def fetch_school_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching school data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Schools', params=params ) school_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('school_id_at', record.get('id')), ('school_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('hub_id_at', fields.get('Hub')), ('pod_id_at', fields.get('Pod')), ('school_name_at', fields.get('Name')), ('school_short_name_at', fields.get('Short Name')), ('school_status_at', fields.get('School Status')), ('school_ssj_stage_at', fields.get('School Startup Stage')), ('school_governance_model_at', fields.get('Governance Model')), ('school_ages_served_at', fields.get('Ages served')), ('school_location_ids_at', fields.get('Locations')), ('school_id_tc', fields.get('TC school ID')) ]) school_data.append(datum) if format == 'dataframe': school_data = convert_school_data_to_df(school_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return school_data def fetch_hub_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching hub data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Hubs', params=params ) hub_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('hub_id_at', record.get('id')), ('hub_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('hub_name_at', fields.get('Name')) ]) hub_data.append(datum) if format == 'dataframe': hub_data = convert_hub_data_to_df(hub_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return hub_data def fetch_pod_data( self, pull_datetime=None, params=None, base_id=SCHOOLS_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching pod data from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Pods', params=params ) pod_data=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('pod_id_at', record.get('id')), ('pod_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('pod_name_at', fields.get('Name')) ]) pod_data.append(datum) if format == 'dataframe': pod_data = convert_pod_data_to_df(pod_data) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return pod_data def fetch_ethnicity_lookup(self): ethnicity_categories = self.fetch_ethnicity_categories() ethnicity_mapping = self.fetch_ethnicity_mapping() ethnicity_lookup = ( ethnicity_mapping .join( ethnicity_categories['ethnicity_category'], how='left', on='ethnicity_category_id_at' ) .reindex(columns=[ 'ethnicity_category' ]) .sort_index() ) return ethnicity_lookup def fetch_gender_lookup(self): gender_categories = self.fetch_gender_categories() gender_mapping = self.fetch_gender_mapping() gender_lookup = ( gender_mapping .join( gender_categories['gender_category'], how='left', on='gender_category_id_at' ) .reindex(columns=[ 'gender_category' ]) .sort_index() .sort_values('gender_category') ) return gender_lookup def fetch_household_income_lookup(self): household_income_categories = self.fetch_household_income_categories() household_income_mapping = self.fetch_household_income_mapping() household_income_lookup = ( household_income_mapping .join( household_income_categories['household_income_category'], how='left', on='household_income_category_id_at' ) .reindex(columns=[ 'household_income_category' ]) .sort_index() .sort_values('household_income_category') ) return household_income_lookup def fetch_nps_lookup(self): nps_categories = self.fetch_nps_categories() nps_mapping = self.fetch_nps_mapping() nps_lookup = ( nps_mapping .join( nps_categories['nps_category'], how='left', on='nps_category_id_at' ) .reindex(columns=[ 'nps_category' ]) .sort_index() ) return nps_lookup def fetch_boolean_lookup(self): boolean_categories = self.fetch_boolean_categories() boolean_mapping = self.fetch_boolean_mapping() boolean_lookup = ( boolean_mapping .join( boolean_categories['boolean_category'], how='left', on='boolean_category_id_at' ) .reindex(columns=[ 'boolean_category' ]) .sort_index() .sort_values('boolean_category') ) return boolean_lookup def fetch_ethnicity_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching ethnicity categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Ethnicity categories', params=params ) ethnicity_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('ethnicity_category_id_at', record.get('id')), ('ethnicity_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('ethnicity_category', fields.get('ethnicity_category')), ('ethnicity_display_name_english', fields.get('ethnicity_display_name_english')), ('ethnicity_display_name_spanish', fields.get('ethnicity_display_name_spanish')) ]) ethnicity_categories.append(datum) if format == 'dataframe': ethnicity_categories = convert_ethnicity_categories_to_df(ethnicity_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return ethnicity_categories def fetch_gender_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching gender categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Gender categories', params=params ) gender_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('gender_category_id_at', record.get('id')), ('gender_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('gender_category', fields.get('gender_category')), ('gender_display_name_english', fields.get('gender_display_name_english')), ('gender_display_name_spanish', fields.get('gender_display_name_spanish')) ]) gender_categories.append(datum) if format == 'dataframe': gender_categories = convert_gender_categories_to_df(gender_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return gender_categories def fetch_household_income_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching household income categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Household income categories', params=params ) household_income_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('household_income_category_id_at', record.get('id')), ('household_income_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('household_income_category', fields.get('household_income_category')), ('household_income_display_name_english', fields.get('household_income_display_name_english')), ('household_income_display_name_spanish', fields.get('household_income_display_name_spanish')) ]) household_income_categories.append(datum) if format == 'dataframe': household_income_categories = convert_household_income_categories_to_df(household_income_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return household_income_categories def fetch_nps_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching NPS categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='NPS categories', params=params ) nps_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('nps_category_id_at', record.get('id')), ('nps_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('nps_category', fields.get('nps_category')), ('nps_display_name_english', fields.get('nps_display_name_english')), ('nps_display_name_spanish', fields.get('nps_display_name_spanish')) ]) nps_categories.append(datum) if format == 'dataframe': nps_categories = convert_nps_categories_to_df(nps_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return nps_categories def fetch_boolean_categories( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching boolean categories from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Boolean categories', params=params ) boolean_categories=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('boolean_category_id_at', record.get('id')), ('boolean_category_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('boolean_category', wf_core_data.utils.to_boolean(fields.get('boolean_category'))), ('boolean_display_name_english', fields.get('boolean_display_name_english')), ('boolean_display_name_spanish', fields.get('boolean_display_name_spanish')) ]) boolean_categories.append(datum) if format == 'dataframe': boolean_categories = convert_boolean_categories_to_df(boolean_categories) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return boolean_categories def fetch_ethnicity_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching ethnicity mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Ethnicity mapping', params=params ) ethnicity_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('ethnicity_mapping_id_at', record.get('id')), ('ethnicity_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('ethnicity_response', fields.get('ethnicity_response')), ('ethnicity_category_id_at', fields.get('ethnicity_category')) ]) ethnicity_mapping.append(datum) if format == 'dataframe': ethnicity_mapping = convert_ethnicity_mapping_to_df(ethnicity_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return ethnicity_mapping def fetch_gender_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching gender mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Gender mapping', params=params ) gender_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('gender_mapping_id_at', record.get('id')), ('gender_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('gender_response', fields.get('gender_response')), ('gender_category_id_at', fields.get('gender_category')) ]) gender_mapping.append(datum) if format == 'dataframe': gender_mapping = convert_gender_mapping_to_df(gender_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return gender_mapping def fetch_household_income_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching household income mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Household income mapping', params=params ) household_income_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('household_income_mapping_id_at', record.get('id')), ('household_income_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('household_income_response', fields.get('household_income_response')), ('household_income_category_id_at', fields.get('household_income_category')) ]) household_income_mapping.append(datum) if format == 'dataframe': household_income_mapping = convert_household_income_mapping_to_df(household_income_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return household_income_mapping def fetch_nps_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching NPS mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='NPS mapping', params=params ) nps_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('nps_mapping_id_at', record.get('id')), ('nps_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('nps_response', fields.get('nps_response')), ('nps_category_id_at', fields.get('nps_category')) ]) nps_mapping.append(datum) if format == 'dataframe': nps_mapping = convert_nps_mapping_to_df(nps_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return nps_mapping def fetch_boolean_mapping( self, pull_datetime=None, params=None, base_id=DATA_DICT_BASE_ID, format='dataframe', delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): pull_datetime = wf_core_data.utils.to_datetime(pull_datetime) if pull_datetime is None: pull_datetime = datetime.datetime.now(tz=datetime.timezone.utc) logger.info('Fetching boolean mapping from Airtable') records = self.bulk_get( base_id=base_id, endpoint='Boolean mapping', params=params ) boolean_mapping=list() for record in records: fields = record.get('fields', {}) datum = OrderedDict([ ('boolean_mapping_id_at', record.get('id')), ('boolean_mapping_created_datetime_at', wf_core_data.utils.to_datetime(record.get('createdTime'))), ('pull_datetime', pull_datetime), ('boolean_response', fields.get('boolean_response')), ('boolean_category_id_at', fields.get('boolean_category')) ]) boolean_mapping.append(datum) if format == 'dataframe': boolean_mapping = convert_boolean_mapping_to_df(boolean_mapping) elif format == 'list': pass else: raise ValueError('Data format \'{}\' not recognized'.format(format)) return boolean_mapping def write_dataframe( self, df, base_id, endpoint, params=None, delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS, write_chunk_size=DEFAULT_WRITE_CHUNK_SIZE ): num_records = len(df) num_chunks = (num_records // write_chunk_size) + 1 logger.info('Writing {} records in {} chunks'.format( num_records, num_chunks )) for chunk_index in range(num_chunks): start_row_index = chunk_index*write_chunk_size end_row_index = min( (chunk_index + 1)*write_chunk_size, num_records ) chunk_df = df.iloc[start_row_index:end_row_index] chunk_list = chunk_df.to_dict(orient='records') chunk_dict = {'records': [{'fields': row_dict} for row_dict in chunk_list]} logger.info('Writing chunk {}: rows {} to {}'.format( chunk_index, start_row_index, end_row_index )) self.post( base_id=base_id, endpoint=endpoint, data=chunk_dict ) time.sleep(delay) def bulk_get( self, base_id, endpoint, params=None, delay=DEFAULT_DELAY, max_requests=DEFAULT_MAX_REQUESTS ): if params is None: params = dict() num_requests = 0 records = list() while True: data = self.get( base_id=base_id, endpoint=endpoint, params=params ) if 'records' in data.keys(): logging.info('Returned {} records'.format(len(data.get('records')))) records.extend(data.get('records')) num_requests += 1 if num_requests >= max_requests: logger.warning('Reached maximum number of requests ({}). Terminating.'.format( max_requests )) break offset = data.get('offset') if offset is None: break params['offset'] = offset time.sleep(delay) return records def post( self, base_id, endpoint, data ): headers = dict() if self.api_key is not None: headers['Authorization'] = 'Bearer {}'.format(self.api_key) r = requests.post( '{}{}/{}'.format( self.url_base, base_id, endpoint ), headers=headers, json=data ) if r.status_code != 200: error_message = 'Airtable POST request returned status code {}'.format(r.status_code) r.raise_for_status() return r.json() def get( self, base_id, endpoint, params=None ): headers = dict() if self.api_key is not None: headers['Authorization'] = 'Bearer {}'.format(self.api_key) r = requests.get( '{}{}/{}'.format( self.url_base, base_id, endpoint ), params=params, headers=headers ) if r.status_code != 200: error_message = 'Airtable GET request returned status code {}'.format(r.status_code) r.raise_for_status() return r.json() def convert_tl_data_to_df(tl_data): if len(tl_data) == 0: return pd.DataFrame() tl_data_df = pd.DataFrame( tl_data, dtype='object' ) tl_data_df['pull_datetime'] = pd.to_datetime(tl_data_df['pull_datetime']) tl_data_df['teacher_created_datetime_at'] = pd.to_datetime(tl_data_df['teacher_created_datetime_at']) # school_data_df['user_id_tc'] = pd.to_numeric(tl_data_df['user_id_tc']).astype('Int64') tl_data_df = tl_data_df.astype({ 'teacher_full_name_at': 'string', 'teacher_middle_name_at': 'string', 'teacher_last_name_at': 'string', 'teacher_title_at': 'string', 'teacher_ethnicity_at': 'string', 'teacher_ethnicity_other_at': 'string', 'teacher_income_background_at': 'string', 'teacher_email_at': 'string', 'teacher_email_2_at': 'string', 'teacher_email_3_at': 'string', 'teacher_phone_at': 'string', 'teacher_phone_2_at': 'string', 'teacher_employer_at': 'string', 'hub_at': 'string', 'pod_at': 'string', 'user_id_tc': 'string' }) tl_data_df.set_index('teacher_id_at', inplace=True) return tl_data_df def convert_location_data_to_df(location_data): if len(location_data) == 0: return pd.DataFrame() location_data_df = pd.DataFrame( location_data, dtype='object' ) location_data_df['pull_datetime'] = pd.to_datetime(location_data_df['pull_datetime']) location_data_df['location_created_datetime_at'] = pd.to_datetime(location_data_df['location_created_datetime_at']) location_data_df = location_data_df.astype({ 'location_id_at': 'string', 'location_address_at': 'string', 'school_id_at': 'string' }) location_data_df.set_index('location_id_at', inplace=True) return location_data_df def convert_teacher_school_data_to_df(teacher_school_data): if len(teacher_school_data) == 0: return pd.DataFrame() teacher_school_data_df = pd.DataFrame( teacher_school_data, dtype='object' ) teacher_school_data_df['pull_datetime'] = pd.to_datetime(teacher_school_data_df['pull_datetime']) teacher_school_data_df['teacher_school_created_datetime_at'] = pd.to_datetime(teacher_school_data_df['teacher_school_created_datetime_at']) teacher_school_data_df = teacher_school_data_df.astype({ 'teacher_school_active_at': 'bool' }) teacher_school_data_df.set_index('teacher_school_id_at', inplace=True) return teacher_school_data_df def convert_school_data_to_df(school_data): if len(school_data) == 0: return pd.DataFrame() school_data_df = pd.DataFrame( school_data, dtype='object' ) school_data_df['pull_datetime'] = pd.to_datetime(school_data_df['pull_datetime']) school_data_df['school_created_datetime_at'] = pd.to_datetime(school_data_df['school_created_datetime_at']) school_data_df['hub_id_at'] = school_data_df['hub_id_at'].apply(wf_core_data.utils.to_singleton) school_data_df['pod_id_at'] = school_data_df['pod_id_at'].apply(wf_core_data.utils.to_singleton) school_data_df['school_id_tc'] = pd.to_numeric(school_data_df['school_id_tc']).astype('Int64') school_data_df = school_data_df.astype({ 'school_id_at': 'string', 'hub_id_at': 'string', 'pod_id_at': 'string', 'school_name_at': 'string', 'school_short_name_at': 'string', 'school_status_at': 'string', 'school_ssj_stage_at': 'string', 'school_governance_model_at': 'string', }) school_data_df.set_index('school_id_at', inplace=True) return school_data_df def convert_hub_data_to_df(hub_data): if len(hub_data) == 0: return pd.DataFrame() hub_data_df = pd.DataFrame( hub_data, dtype='object' ) hub_data_df['pull_datetime'] = pd.to_datetime(hub_data_df['pull_datetime']) hub_data_df['hub_created_datetime_at'] = pd.to_datetime(hub_data_df['hub_created_datetime_at']) hub_data_df = hub_data_df.astype({ 'hub_id_at': 'string', 'hub_name_at': 'string' }) hub_data_df.set_index('hub_id_at', inplace=True) return hub_data_df def convert_pod_data_to_df(pod_data): if len(pod_data) == 0: return pd.DataFrame() pod_data_df = pd.DataFrame( pod_data, dtype='object' ) pod_data_df['pull_datetime'] = pd.to_datetime(pod_data_df['pull_datetime']) pod_data_df['pod_created_datetime_at'] = pd.to_datetime(pod_data_df['pod_created_datetime_at']) pod_data_df = pod_data_df.astype({ 'pod_id_at': 'string', 'pod_name_at': 'string' }) pod_data_df.set_index('pod_id_at', inplace=True) return pod_data_df def convert_ethnicity_categories_to_df(ethnicity_categories): if len(ethnicity_categories) == 0: return pd.DataFrame() ethnicity_categories_df = pd.DataFrame( ethnicity_categories, dtype='object' ) ethnicity_categories_df['pull_datetime'] = pd.to_datetime(ethnicity_categories_df['pull_datetime']) ethnicity_categories_df['ethnicity_category_created_datetime_at'] = pd.to_datetime(ethnicity_categories_df['ethnicity_category_created_datetime_at']) ethnicity_categories_df = ethnicity_categories_df.astype({ 'ethnicity_category_id_at': 'string', 'ethnicity_category': 'string', 'ethnicity_display_name_english': 'string', 'ethnicity_display_name_spanish': 'string' }) ethnicity_categories_df.set_index('ethnicity_category_id_at', inplace=True) return ethnicity_categories_df def convert_gender_categories_to_df(gender_categories): if len(gender_categories) == 0: return pd.DataFrame() gender_categories_df = pd.DataFrame( gender_categories, dtype='object' ) gender_categories_df['pull_datetime'] = pd.to_datetime(gender_categories_df['pull_datetime']) gender_categories_df['gender_category_created_datetime_at'] = pd.to_datetime(gender_categories_df['gender_category_created_datetime_at']) gender_categories_df = gender_categories_df.astype({ 'gender_category_id_at': 'string', 'gender_category': 'string', 'gender_display_name_english': 'string', 'gender_display_name_spanish': 'string' }) gender_categories_df.set_index('gender_category_id_at', inplace=True) return gender_categories_df def convert_household_income_categories_to_df(household_income_categories): if len(household_income_categories) == 0: return pd.DataFrame() household_income_categories_df = pd.DataFrame( household_income_categories, dtype='object' ) household_income_categories_df['pull_datetime'] = pd.to_datetime(household_income_categories_df['pull_datetime']) household_income_categories_df['household_income_category_created_datetime_at'] = pd.to_datetime(household_income_categories_df['household_income_category_created_datetime_at']) household_income_categories_df = household_income_categories_df.astype({ 'household_income_category_id_at': 'string', 'household_income_category': 'string', 'household_income_display_name_english': 'string', 'household_income_display_name_spanish': 'string' }) household_income_categories_df.set_index('household_income_category_id_at', inplace=True) return household_income_categories_df def convert_nps_categories_to_df(nps_categories): if len(nps_categories) == 0: return pd.DataFrame() nps_categories_df = pd.DataFrame( nps_categories, dtype='object' ) nps_categories_df['pull_datetime'] = pd.to_datetime(nps_categories_df['pull_datetime']) nps_categories_df['nps_category_created_datetime_at'] = pd.to_datetime(nps_categories_df['nps_category_created_datetime_at']) nps_categories_df = nps_categories_df.astype({ 'nps_category_id_at': 'string', 'nps_category': 'string', 'nps_display_name_english': 'string', 'nps_display_name_spanish': 'string' }) nps_categories_df.set_index('nps_category_id_at', inplace=True) return nps_categories_df def convert_boolean_categories_to_df(boolean_categories): if len(boolean_categories) == 0: return pd.DataFrame() boolean_categories_df = pd.DataFrame( boolean_categories, dtype='object' ) boolean_categories_df['pull_datetime'] = pd.to_datetime(boolean_categories_df['pull_datetime']) boolean_categories_df['boolean_category_created_datetime_at'] = pd.to_datetime(boolean_categories_df['boolean_category_created_datetime_at']) boolean_categories_df = boolean_categories_df.astype({ 'boolean_category_id_at': 'string', 'boolean_category': 'bool', 'boolean_display_name_english': 'string', 'boolean_display_name_spanish': 'string' }) boolean_categories_df.set_index('boolean_category_id_at', inplace=True) return boolean_categories_df def convert_ethnicity_mapping_to_df(ethnicity_mapping): if len(ethnicity_mapping) == 0: return pd.DataFrame() ethnicity_mapping_df = pd.DataFrame( ethnicity_mapping, dtype='object' ) ethnicity_mapping_df['pull_datetime'] = pd.to_datetime(ethnicity_mapping_df['pull_datetime']) ethnicity_mapping_df['ethnicity_mapping_created_datetime_at'] = pd.to_datetime(ethnicity_mapping_df['ethnicity_mapping_created_datetime_at']) ethnicity_mapping_df['ethnicity_category_id_at'] = ethnicity_mapping_df['ethnicity_category_id_at'].apply(wf_core_data.utils.to_singleton) ethnicity_mapping_df = ethnicity_mapping_df.astype({ 'ethnicity_mapping_id_at': 'string', 'ethnicity_response': 'string', 'ethnicity_category_id_at': 'string' }) ethnicity_mapping_df.set_index('ethnicity_response', inplace=True) return ethnicity_mapping_df def convert_gender_mapping_to_df(gender_mapping): if len(gender_mapping) == 0: return pd.DataFrame() gender_mapping_df = pd.DataFrame( gender_mapping, dtype='object' ) gender_mapping_df['pull_datetime'] = pd.to_datetime(gender_mapping_df['pull_datetime']) gender_mapping_df['gender_mapping_created_datetime_at'] = pd.to_datetime(gender_mapping_df['gender_mapping_created_datetime_at']) gender_mapping_df['gender_category_id_at'] = gender_mapping_df['gender_category_id_at'].apply(wf_core_data.utils.to_singleton) gender_mapping_df = gender_mapping_df.astype({ 'gender_mapping_id_at': 'string', 'gender_response': 'string', 'gender_category_id_at': 'string' }) gender_mapping_df.set_index('gender_response', inplace=True) return gender_mapping_df def convert_household_income_mapping_to_df(household_income_mapping): if len(household_income_mapping) == 0: return pd.DataFrame() household_income_mapping_df = pd.DataFrame( household_income_mapping, dtype='object' ) household_income_mapping_df['pull_datetime'] = pd.to_datetime(household_income_mapping_df['pull_datetime']) household_income_mapping_df['household_income_mapping_created_datetime_at'] = pd.to_datetime(household_income_mapping_df['household_income_mapping_created_datetime_at']) household_income_mapping_df['household_income_category_id_at'] = household_income_mapping_df['household_income_category_id_at'].apply(wf_core_data.utils.to_singleton) household_income_mapping_df = household_income_mapping_df.astype({ 'household_income_mapping_id_at': 'string', 'household_income_response': 'string', 'household_income_category_id_at': 'string' }) household_income_mapping_df.set_index('household_income_response', inplace=True) return household_income_mapping_df def convert_nps_mapping_to_df(nps_mapping): if len(nps_mapping) == 0: return pd.DataFrame() nps_mapping_df = pd.DataFrame( nps_mapping, dtype='object' ) nps_mapping_df['pull_datetime'] = pd.to_datetime(nps_mapping_df['pull_datetime']) nps_mapping_df['nps_mapping_created_datetime_at'] = pd.to_datetime(nps_mapping_df['nps_mapping_created_datetime_at']) nps_mapping_df['nps_category_id_at'] = nps_mapping_df['nps_category_id_at'].apply(wf_core_data.utils.to_singleton) nps_mapping_df = nps_mapping_df.astype({ 'nps_mapping_id_at': 'string', 'nps_response': 'int', 'nps_category_id_at': 'string' }) nps_mapping_df.set_index('nps_response', inplace=True) return nps_mapping_df def convert_boolean_mapping_to_df(boolean_mapping): if len(boolean_mapping) == 0: return pd.DataFrame() boolean_mapping_df = pd.DataFrame( boolean_mapping, dtype='object' ) boolean_mapping_df['pull_datetime'] = pd.to_datetime(boolean_mapping_df['pull_datetime']) boolean_mapping_df['boolean_mapping_created_datetime_at'] =
pd.to_datetime(boolean_mapping_df['boolean_mapping_created_datetime_at'])
pandas.to_datetime
######################### ## ## ## <NAME> ## ## May 10, 2021 ## ## ## ######################### import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm from statsmodels.tools.tools import add_constant from scipy.optimize import least_squares from scipy.stats import norm, t alpha = 0.05 dat = pd.read_csv('ChickWeight.csv') dat = dat.drop(dat.columns[0], axis=1) dat = dat.drop('Chick', axis=1) dat['Diet'] = dat['Diet'].astype('category') dat_dummies = pd.get_dummies(dat['Diet']) dat_dummies = dat_dummies.rename(columns={1:'Diet1', 2:'Diet2', 3:'Diet3', 4:'Diet4'}) dat = pd.concat([dat, dat_dummies], axis=1) dat y = dat['weight'] X = dat[['Time', 'Diet1', 'Diet2', 'Diet3', 'Diet4']] n = len(y) p = 12 # Let's stabilize the variance dat_var = dat[['weight','Diet','Time']].groupby(['Diet','Time']).var().reset_index() dat_var = dat_var.rename(columns={'weight':'var'}) dat_var['log_var'] = np.log(dat_var['var']) dat_var dat_var =
pd.merge(dat, dat_var, how='left', on=['Diet','Time'])
pandas.merge
from keras.models import Sequential from keras.optimizers import SGD,adam from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, merge, Reshape, Activation from sklearn.metrics import log_loss import numpy as np import json import matplotlib.pyplot as plt import pandas as pd from natsort import natsorted import glob import pathlib from keras.callbacks import EarlyStopping,ModelCheckpoint, ReduceLROnPlateau, TensorBoard from keras import regularizers import tensorflow as tf import configparser def vgg16_model(img_rows, img_cols, channel=1, num_classes=None): ratio = 0.5 model = Sequential() model.add(ZeroPadding2D((1, 1), input_shape=(img_rows, img_cols, channel))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(4096, activation='relu', kernel_initializer='he_normal', bias_initializer='zeros')) model.add(Dropout(ratio)) model.add(Dense(4096, activation='relu', kernel_initializer='he_normal', bias_initializer='zeros')) model.add(Dropout(ratio)) model.add(Dense(1000, activation='relu', kernel_initializer='he_normal', bias_initializer='zeros')) model.add(Dropout(ratio)) model.add(Dense(1, activation='sigmoid', kernel_initializer='he_normal', bias_initializer='zeros')) # sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True) # model.compile(optimizer=sgd, loss=custom_loss) model.compile(optimizer='adam', loss=custom_loss) return model def custom_loss(y_true, y_pred): normalize_num = 80000000 y_true = y_true * normalize_num y_pred = y_pred * normalize_num out = tf.square(tf.log(y_true + 1) - tf.log(y_pred + 1)) return out def plot_history_loss(history,axL): axL.plot(history['loss'],label="loss for training") axL.plot(history['val_loss'],label="loss for validation") axL.set_title('model loss') axL.set_xlabel('epoch') axL.set_ylabel('loss') axL.legend(loc='upper right') def calc_RMSLE(Y_train, Y_pred): RMSLE = np.square(np.log(Y_train + 1) - np.log(Y_pred + 1)) return RMSLE def batch_iter(data, labels, batch_size, shuffle=True): num_batches_per_epoch = int((len(data) - 1) / batch_size) + 1 def data_generator(): data_size = len(data) while True: if shuffle: shuffle_indices = np.random.permutation(np.arange(data_size)) shuffled_data = data[shuffle_indices] shuffled_labels = labels[shuffle_indices] else: shuffled_data = data shuffled_labels = labels for batch_num in range(num_batches_per_epoch): start_index = batch_num * batch_size end_index = min((batch_num + 1) * batch_size, data_size) X = shuffled_data[start_index: end_index] y = shuffled_labels[start_index: end_index] yield X, y return num_batches_per_epoch, data_generator() class MyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(MyEncoder, self).default(obj) if __name__ == '__main__': channel = 3 num_classes = 1 # SETTING ini = configparser.ConfigParser() ini.read('./config.ini', 'UTF-8') image_size = int(ini['common']['image_size']) img_rows, img_cols = image_size, image_size batch_size = int(ini['Train']['batch_size']) nb_epoch = int(ini['Train']['nb_epoch']) normalize_num = int(ini['Train']['normalize_num']) dir_prep = str(ini['Train']['dir_prep']) dir_result = str(ini['Train']['dir_result_VGG-like']) dir_data = str(ini['Train']['dir_data']) dir_tflog = str(ini['Train']['dir_tflog']) dir_eval_image = str(ini['common']['dir_ori_data']) + str(ini['common']['dir_eval_image']) # データのロード X_train_temp = np.load(dir_prep + 'train_images.npy', allow_pickle=True)/255 Y_train_temp = np.load(dir_prep + 'train_anno.npy', allow_pickle=True)/normalize_num X_valid_temp = np.load(dir_prep + 'test_images.npy', allow_pickle=True)/255 Y_valid_temp = np.load(dir_prep + 'test_anno.npy', allow_pickle=True)/normalize_num # データのシャッフル all_data = np.concatenate([X_train_temp, X_valid_temp], axis=0) all_label = np.concatenate([Y_train_temp,Y_valid_temp], axis=0) num_train = X_train_temp.shape[0] num_valid = X_valid_temp.shape[0] num_all = num_train + num_valid print(num_train, num_valid, num_all, all_data.shape, all_label.shape) print(Y_train_temp.shape, Y_valid_temp.shape) del X_train_temp,Y_train_temp,X_valid_temp,Y_valid_temp id_all = np.random.choice(num_all, num_all, replace=False) id_train = id_all[:num_train] id_valid = id_all[num_train:] X_train = all_data[id_train] Y_train = all_label[id_train] X_valid = all_data[id_valid] Y_valid = all_label[id_valid] X_eval = np.load(dir_prep + 'eval_images.npy', allow_pickle=True)/255 print("!!!!",X_train.shape,Y_train.shape,X_valid.shape,Y_valid.shape,X_eval.shape) print("!!!!",all_data[id_train].shape) # モデルのロード model = vgg16_model(img_rows, img_cols, channel, num_classes) # モデルの学習 es_cb = EarlyStopping(monitor='val_loss', patience=30, verbose=1, mode='min') cp = ModelCheckpoint(dir_result + "best.hdf5", monitor="val_loss", verbose=1, save_best_only=True, save_weights_only=True) tb_cb = TensorBoard(log_dir=dir_tflog, histogram_freq=0) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5) history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), callbacks=[cp, es_cb, reduce_lr, tb_cb] ) train_steps, train_batches = batch_iter(X_train, Y_train, batch_size) valid_steps, valid_batches = batch_iter(X_valid, Y_valid, batch_size) model.fit_generator(train_batches, train_steps, epochs=nb_epoch, validation_data=valid_batches, validation_steps=valid_steps, callbacks=[cp, es_cb, reduce_lr, tb_cb] ) model.save_weights(dir_result + 'param.hdf5') with open(dir_result + 'history.json', 'w') as f: json.dump(history.history, f, cls = MyEncoder) #ログの書き出し f = open(dir_result + 'history.json', 'r') history = json.load(f) f.close() fig, (axL) = plt.subplots(ncols=1, figsize=(10,4)) plot_history_loss(history, axL) fig.savefig(dir_result + 'loss.png') plt.close() # 学習結果のロード model.load_weights(dir_result + "best.hdf5") # trainデータの出力 Y_train = Y_train * normalize_num train_pred = model.predict(X_train, batch_size=batch_size, verbose=1).reshape(-1) * normalize_num RMSLE_train_cal = calc_RMSLE(Y_train, train_pred) train = np.stack([Y_train, train_pred, RMSLE_train_cal]) df_train = pd.DataFrame(train.T, columns=['TRUE', 'MODEL', 'RMSLE_cal']) df_train.to_csv(dir_result + 'train.csv') # valデータの出力 Y_valid = Y_valid * normalize_num valids_pred = model.predict(X_valid, batch_size=batch_size, verbose=1).reshape(-1) * normalize_num RMSLE_cal = calc_RMSLE(Y_valid, valids_pred) valids = np.stack([Y_valid, valids_pred, RMSLE_cal]) df_valids = pd.DataFrame(valids.T, columns=['TRUE', 'MODEL', 'RMSLE_cal']) df_valids.to_csv(dir_result + 'valids.csv') RMSLE = np.sum(df_valids['RMSLE_cal'].values)/len(df_valids) np.savetxt(dir_result + 'RMSLE.txt', RMSLE.reshape(-1)) print("Val RMSLE : ", RMSLE) # evalデータの出力 files_eval_images = natsorted(glob.glob(dir_eval_image + "*.jpg")) file_name=[] i=0 for file in files_eval_images: file_name.append(file.replace(dir_eval_image, "")) i=i+1 predictions = model.predict(X_eval, batch_size=batch_size, verbose=1).reshape(-1) * normalize_num predictions = (predictions).astype(np.int32) predictions_arr = np.stack([np.array(file_name), predictions], 1) df_predictions =
pd.DataFrame(predictions_arr)
pandas.DataFrame
import numpy as np import pandas as pd from queue import Queue from event import EventHandler from abc import ABCMeta, abstractmethod from math import floor from event import FillEvent, OrderEvent, MarketEvent, SignalEvent from threading import Thread from datetime import datetime class NaivePortfolio(EventHandler): """ Simplest strategy, for benchmarking and testing event - Market event """ def __init__(self, symbols, initial_capital=1000): super(NaivePortfolio,self).__init__() self.portfolio_queue = Queue() self.central_queue = None self.symbol_list = symbols self.prices = {} self.start_date = datetime.now().strftime("%m/%d/%Y, %H:%M:%S") self.initial_capital = initial_capital self.all_positions = self.construct_all_positions() self.current_positions = dict( (k,v) for k, v in [(s, 0) for s in self.symbol_list] ) self.all_holdings = self.construct_all_holdings() self.current_holdings = self.construct_current_holdings() def eventhandler(self, event): if event.type == "signal": self.generate_naive_order(event) elif event.type == "fill": self.update_fill(event) elif event.type == "market": self.update_prices(event) self.update_timeindex(event) # self.create_equity_curve_dataframe() def update_prices(self, event): prices = {} for s in event.symbols: self.prices[s] = (event.orderbook[s]['bid']+event.orderbook[s]['ask']) / 2 def construct_all_positions(self): """ Constructs the positions list using the start_date to determine when the time index will begin. """ d = dict( (k,v) for k, v in [(s, 0) for s in self.symbol_list] ) d['datetime'] = self.start_date return [d] def construct_all_holdings(self): """ Constructs the holdings list using the start_date to determine when the time index will begin. """ d = dict( (k,v) for k, v in [(s, 0.0) for s in self.symbol_list] ) d['datetime'] = self.start_date d['cash'] = self.initial_capital d['commission'] = 0.0 d['total'] = self.initial_capital return [d] def construct_current_holdings(self): """ This constructs the dictionary which will hold the instantaneous value of the portfolio across all symbols. """ d = dict( (k,v) for k, v in [(s, 0.0) for s in self.symbol_list] ) d['cash'] = self.initial_capital d['commission'] = 0.0 d['total'] = self.initial_capital return d def update_timeindex(self, event): """ Adds a new record to the positions matrix for the current market data bar. This reflects the PREVIOUS bar, i.e. all current market data at this stage is known (OLHCVI). Makes use of a MarketEvent from the events queue. """ # Update positions dp = dict( (k,v) for k, v in [(s, 0) for s in self.symbol_list] ) dp['datetime'] = event.timestamp for s in self.symbol_list: dp[s] = self.current_positions[s] # Append the current positions self.all_positions.append(dp) # Update holdings dh = dict( (k,v) for k, v in [(s, 0) for s in self.symbol_list] ) dh['datetime'] = event.timestamp dh['cash'] = self.current_holdings['cash'] dh['commission'] = self.current_holdings['commission'] dh['total'] = self.current_holdings['cash'] for s in self.symbol_list: # Approximation to the real value market_value = self.current_positions[s] * self.prices[s] dh[s] = market_value dh['total'] += market_value # Append the current holdings self.all_holdings.append(dh) def update_positions_from_fill(self, fill): """ Takes a FilltEvent object and updates the position matrix to reflect the new position. Parameters: fill - The FillEvent object to update the positions with. """ # Check whether the fill is a buy or sell fill_dir = 0 if fill.direction == 'BUY': fill_dir = 1 if fill.direction == 'SELL': fill_dir = -1 # Update positions list with new quantities self.current_positions[fill.symbol] += fill_dir*fill.quantity def update_holdings_from_fill(self, fill): """ Takes a FillEvent object and updates the holdings matrix to reflect the holdings value. Parameters: fill - The FillEvent object to update the holdings with. """ # Check whether the fill is a buy or sell fill_dir = 0 if fill.direction == 'BUY': fill_dir = 1 if fill.direction == 'SELL': fill_dir = -1 # Update holdings list with new quantities fill_cost = self.prices[fill.symbol] # Close price cost = fill_dir * fill_cost * fill.quantity self.current_holdings[fill.symbol] += cost self.current_holdings['commission'] += fill.commission self.current_holdings['cash'] -= (cost + fill.commission) self.current_holdings['total'] -= (cost + fill.commission) def update_fill(self, event): """ Updates the portfolio current positions and holdings from a FillEvent. """ self.update_positions_from_fill(event) self.update_holdings_from_fill(event) def generate_naive_order(self, signal): """ Simply transacts an OrderEvent object as a constant quantity sizing of the signal object, without risk management or position sizing considerations. Parameters: signal - The SignalEvent signal information. """ order = None symbol = signal.symbol direction = signal.signal mkt_quantity = 100 cur_quantity = self.current_positions[symbol] order_type = 'MKT' if direction == 'LONG' and cur_quantity == 0: order = OrderEvent(symbol, order_type, mkt_quantity, 'BUY') if direction == 'SHORT' and cur_quantity == 0: order = OrderEvent(symbol, order_type, mkt_quantity, 'SELL') if direction == 'EXIT' and cur_quantity > 0: order = OrderEvent(symbol, order_type, abs(cur_quantity), 'SELL') if direction == 'EXIT' and cur_quantity < 0: order = OrderEvent(symbol, order_type, abs(cur_quantity), 'BUY') self.central_queue.put(order) def create_equity_curve_dataframe(self): """ Creates a pandas DataFrame from the all_holdings list of dictionaries. """ curve =
pd.DataFrame(self.all_holdings)
pandas.DataFrame
import operator import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays import FloatingArray import pandas.core.ops as ops # Basic test for the arithmetic array ops # ----------------------------------------------------------------------------- @pytest.mark.parametrize( "opname, exp", [("add", [1, 3, None, None, 9]), ("mul", [0, 2, None, None, 20])], ids=["add", "mul"], ) def test_add_mul(dtype, opname, exp): a = pd.array([0, 1, None, 3, 4], dtype=dtype) b = pd.array([1, 2, 3, None, 5], dtype=dtype) # array / array expected = pd.array(exp, dtype=dtype) op = getattr(operator, opname) result = op(a, b) tm.assert_extension_array_equal(result, expected) op = getattr(ops, "r" + opname) result = op(a, b) tm.assert_extension_array_equal(result, expected) def test_sub(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a - b expected = pd.array([1, 1, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_div(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a / b expected = pd.array([np.inf, 2, None, None, 1.25], dtype="Float64") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize("zero, negative", [(0, False), (0.0, False), (-0.0, True)]) def test_divide_by_zero(zero, negative): # https://github.com/pandas-dev/pandas/issues/27398, GH#22793 a = pd.array([0, 1, -1, None], dtype="Int64") result = a / zero expected = FloatingArray( np.array([np.nan, np.inf, -np.inf, 1], dtype="float64"), np.array([False, False, False, True]), ) if negative: expected *= -1 tm.assert_extension_array_equal(result, expected) def test_floordiv(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a // b # Series op sets 1//0 to np.inf, which IntegerArray does not do (yet) expected = pd.array([0, 2, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_mod(dtype): a = pd.array([1, 2, 3, None, 5], dtype=dtype) b = pd.array([0, 1, None, 3, 4], dtype=dtype) result = a % b expected = pd.array([0, 0, None, None, 1], dtype=dtype) tm.assert_extension_array_equal(result, expected) def test_pow_scalar(): a = pd.array([-1, 0, 1, None, 2], dtype="Int64") result = a**0 expected = pd.array([1, 1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**1 expected = pd.array([-1, 0, 1, None, 2], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**pd.NA expected = pd.array([None, None, 1, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = a**np.nan expected = FloatingArray( np.array([np.nan, np.nan, 1, np.nan, np.nan], dtype="float64"), np.array([False, False, False, True, False]), ) tm.assert_extension_array_equal(result, expected) # reversed a = a[1:] # Can't raise integers to negative powers. result = 0**a expected = pd.array([1, 0, None, 0], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = 1**a expected = pd.array([1, 1, 1, 1], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = pd.NA**a expected = pd.array([1, None, None, None], dtype="Int64") tm.assert_extension_array_equal(result, expected) result = np.nan**a expected = FloatingArray( np.array([1, np.nan, np.nan, np.nan], dtype="float64"), np.array([False, False, True, False]), ) tm.assert_extension_array_equal(result, expected) def test_pow_array(): a =
pd.array([0, 0, 0, 1, 1, 1, None, None, None])
pandas.array
# ***************************************************************************** # Copyright (c) 2019-2020, Intel Corporation All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, # EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ***************************************************************************** import itertools import os import platform import string import unittest from copy import deepcopy from itertools import product import numpy as np import pandas as pd from numba.core.errors import TypingError from sdc.hiframes.rolling import supported_rolling_funcs from sdc.tests.test_base import TestCase from sdc.tests.test_series import gen_frand_array from sdc.tests.test_utils import (count_array_REPs, count_parfor_REPs, skip_numba_jit, skip_sdc_jit, test_global_input_data_float64) LONG_TEST = (int(os.environ['SDC_LONG_ROLLING_TEST']) != 0 if 'SDC_LONG_ROLLING_TEST' in os.environ else False) test_funcs = ('mean', 'max',) if LONG_TEST: # all functions except apply, cov, corr test_funcs = supported_rolling_funcs[:-3] def rolling_std_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).std(ddof) def rolling_var_usecase(obj, window, min_periods, ddof): return obj.rolling(window, min_periods).var(ddof) class TestRolling(TestCase): @skip_numba_jit def test_series_rolling1(self): def test_impl(S): return S.rolling(3).sum() hpat_func = self.jit(test_impl) S = pd.Series([1.0, 2., 3., 4., 5.]) pd.testing.assert_series_equal(hpat_func(S), test_impl(S)) @skip_numba_jit def test_fixed1(self): # test sequentially with manually created dfs wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed2(self): # test sequentially with generated dfs sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = self.jit(test_impl) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_apply1(self): # test sequentially with manually created dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) @skip_numba_jit def test_fixed_apply2(self): # test sequentially with generated dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = self.jit(test_impl) sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) @skip_numba_jit def test_fixed_parallel1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).sum() return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_fixed_parallel_apply1(self): def test_impl(n, w, center): df = pd.DataFrame({'B': np.arange(n)}) R = df.rolling(w, center=center).apply(lambda a: a.sum()) return R.B.sum() hpat_func = self.jit(test_impl) sizes = (121,) wins = (5,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 4, 5, 10, 11) centers = (False, True) for args in itertools.product(sizes, wins, centers): self.assertEqual(hpat_func(*args), test_impl(*args), "rolling fixed window with {}".format(args)) self.assertEqual(count_array_REPs(), 0) self.assertEqual(count_parfor_REPs(), 0) @skip_numba_jit def test_variable1(self): # test sequentially with manually created dfs df1 = pd.DataFrame({'B': [0, 1, 2, np.nan, 4], 'time': [pd.Timestamp('20130101 09:00:00'), pd.Timestamp('20130101 09:00:02'), pd.Timestamp('20130101 09:00:03'), pd.Timestamp('20130101 09:00:05'),
pd.Timestamp('20130101 09:00:06')
pandas.Timestamp
import sys from multiprocessing import Pool import os import pandas as pd import pyNetLogo from SALib.sample import saltelli def initializer(modelfile): global netlogo netlogo = pyNetLogo.NetLogoLink(netlogo_home='NetLogo', netlogo_version='6.2', gui=False) netlogo.load_model(modelfile) def run_simulation(experiment): for key, value in experiment.items(): netlogo.command(f'set {key} {value}') netlogo.command('setup') # fixed parameters: netlogo.command('set max-timesteps 50') netlogo.command('set number-of-startind 40') netlogo.command('set cropland-movement-cost 5') netlogo.command('set woodland-movement-cost 1') netlogo.command('set angle-for-viewing-ponds-and-woodland 140') # reporter: step_reporter = ['count newts', 'occupied-ponds'] # start with corridors: netlogo.command('set current-scenario "corridors"') netlogo.repeat_command('go', 40) out_corridor = netlogo.repeat_report(step_reporter, 10, go='go') # then buffer: netlogo.repeat_command('go', 40) out_buffer = netlogo.repeat_report(step_reporter, 10, go='go') out = [netlogo.report('newts-buffer'), netlogo.report('newts-corridor'), netlogo.report('occupied-ponds-buffer'), netlogo.report('occupied-ponds-corridor'), out_buffer['count newts'].values.mean(), out_buffer['occupied-ponds'].values.mean(), out_corridor['count newts'].values.mean(), out_corridor['occupied-ponds'].values.mean()] results = pd.Series(out, index=['newts_buffer', 'newts_corridor', 'ponds_buffer', 'ponds_corridor', 'mean_newts_buffer', 'mean_ponds_buffer', 'mean_newts_corridor', 'mean_ponds_corridor']) #print(results) return results def generate_samples(n): problem = { 'num_vars': 7, 'names': [ #'number-of-startind', # 15 'capacity', # 20 'mean-juvenile-mortality-prob', # 0.5 'mean-adult-mortality-prob', #0.2 #'cropland-movement-cost', #5 #'woodland-movement-cost', #1 #'angle-for-viewing-ponds-and-woodland', #140 'mortality-decrease-with-buffer', #0.1 'distance-for-viewing-ponds-and-woodland', #2 'movement-energy', #700 'mean-number-of-female-offspring' #5 ], 'bounds': [ #[5, 80], [10, 40], [0.4, 0.7], [0.1, 0.3], #[4, 6], #[0.5, 2], #[70, 180], [0.01, 0.2], [0.5, 3], [200, 1000], [4, 6] ] } param_values = saltelli.sample(problem, n, calc_second_order=True) df = pd.DataFrame(param_values, columns=problem['names']) return df if __name__ == '__main__': modelfile = 'model/crested_newt.nlogo' #experiments = generate_samples(1024) #experiments.to_csv('parameter_new.csv') ind = [i * 256 for i in range(0, 64 + 1)] parameter_df = pd.read_csv('parameter_new.csv', index_col=0) #print(len(parameter_df)) #print(ind) #print(len(ind)) #sys.exit(0) for i in range(29, 64): print(ind[i], ind[i+1]) experiments = parameter_df.iloc[ind[i]:ind[i+1]] results = [] with Pool(initializer=initializer, initargs=(modelfile,), processes=50) as executor: for entry in executor.map(run_simulation, experiments.to_dict('records')): results.append(entry) print('yap!') results =
pd.DataFrame(results)
pandas.DataFrame
import mysql.connector, pandas, re from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import train_test_split from keras.utils import to_categorical import malaya class DataPreparation(): def __init__(self): pass def load_data_from_database(self, sql): mydb = mysql.connector.connect(host='localhost', database='news_dataset', user='root', password='') data_db = pandas.read_sql(sql, con=mydb) return data_db def clean_data(self, data, loop): for i in range(loop): data.loc[i] = ' '.join(data.loc[i].split('-')) data.loc[i] = re.sub(r'[^\w\s]', ' ', data.loc[i].lower()) data.loc[i] = malaya.stem.sastrawi(data.loc[i]) for word in data.loc[i]: if word.isdigit(): data.loc[i].replace(word, malaya.num2word.to_cardinal(int(word))) def create_data_label(self, size): labels = [] for i in range(size): labels.append('Fake') labels.append('Real') return labels def encode_label(self, label, num_class): # label encode the target variable encoder = LabelEncoder() label = encoder.fit_transform(label) encoded_label = to_categorical(label, num_classes=num_class) return encoded_label def prepare_data_frame(self): # load data from database data = self.load_data_from_database('SELECT fake_news, real_news from news_table2') # merge fake_news and real_news into single dataframe alternately data = pandas.concat([data.fake_news, data.real_news]).sort_index(kind='merge') # reset index bcoz of alternate merging process before data = data.reset_index(drop=True) # generate label for data in dataDF label = self.create_data_label(size=1820) # prepare dataframe with news and label dataDF =
pandas.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import sys import pickle import matplotlib.pyplot as plt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas import pyqtgraph from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from PyQt5.QtTest import * from Model_module import Model_module from Data_module import Data_module # from Sub_widget import another_result_explain class Worker(QObject): # Signal을 보낼 그릇을 생성# ############# train_value = pyqtSignal(object) # nor_ab_value = pyqtSignal(object) procedure_value = pyqtSignal(object) verif_value = pyqtSignal(object) timer = pyqtSignal(object) symptom_db = pyqtSignal(object) shap = pyqtSignal(object) plot_db = pyqtSignal(object) display_ex = pyqtSignal(object, object, object) another_shap = pyqtSignal(object, object, object) another_shap_table = pyqtSignal(object) ########################################## @pyqtSlot(object) def generate_db(self): test_db = input('구현할 시나리오를 입력해주세요 : ') print(f'입력된 시나리오 : {test_db}를 실행합니다.') Model_module() # model module 내의 빈행렬 초기화 data_module = Data_module() db, check_db = data_module.load_data(file_name=test_db) # test_db 불러오기 data_module.data_processing() # Min-Max o, 2 Dimension liner = [] plot_data = [] normal_data = [] compare_data = {'Normal':[], 'Ab21-01':[], 'Ab21-02':[], 'Ab20-04':[], 'Ab15-07':[], 'Ab15-08':[], 'Ab63-04':[], 'Ab63-02':[], 'Ab21-12':[], 'Ab19-02':[], 'Ab21-11':[], 'Ab23-03':[], 'Ab60-02':[], 'Ab59-02':[], 'Ab23-01':[], 'Ab23-06':[]} for line in range(np.shape(db)[0]): QTest.qWait(0.01) print(np.shape(db)[0], line) data = np.array([data_module.load_real_data(row=line)]) liner.append(line) check_data, check_parameter = data_module.load_real_check_data(row=line) plot_data.append(check_data[0]) try: normal_data.append(normal_db.iloc[line]) except: pass try: compare_data['Normal'].append(normal_db.iloc[line]) except: pass try: compare_data['Ab21-01'].append(ab21_01.iloc[line]) except: pass try: compare_data['Ab21-02'].append(ab21_02.iloc[line]) except: pass try: compare_data['Ab20-04'].append(ab20_04.iloc[line]) except: pass try: compare_data['Ab15-07'].append(ab15_07.iloc[line]) except: pass try: compare_data['Ab15-08'].append(ab15_08.iloc[line]) except: pass try: compare_data['Ab63-04'].append(ab63_04.iloc[line]) except: pass try: compare_data['Ab63-02'].append(ab63_02.iloc[line]) except: pass try: compare_data['Ab21-12'].append(ab21_12.iloc[line]) except: pass try: compare_data['Ab19-02'].append(ab19_02.iloc[line]) except: pass try: compare_data['Ab21-11'].append(ab21_11.iloc[line]) except: pass try: compare_data['Ab23-03'].append(ab23_03.iloc[line]) except: pass try: compare_data['Ab60-02'].append(ab60_02.iloc[line]) except: pass try: compare_data['Ab59-02'].append(ab59_02.iloc[line]) except: pass try: compare_data['Ab23-01'].append(ab23_01.iloc[line]) except: pass try: compare_data['Ab23-06'].append(ab23_06.iloc[line]) except: pass if np.shape(data) == (1, 10, 46): dim2 = np.array(data_module.load_scaled_data(row=line - 9)) # 2차원 scale # check_data, check_parameter = data_module.load_real_check_data(row=line - 8) # plot_data.append(check_data[0]) train_untrain_reconstruction_error, train_untrain_error = model_module.train_untrain_classifier(data=data) # normal_abnormal_reconstruction_error = model_module.normal_abnormal_classifier(data=data) abnormal_procedure_result, abnormal_procedure_prediction, shap_add_des, shap_value = model_module.abnormal_procedure_classifier(data=dim2) abnormal_verif_reconstruction_error, verif_threshold, abnormal_verif_error = model_module.abnormal_procedure_verification(data=data) self.train_value.emit(train_untrain_error) # self.nor_ab_value.emit(np.argmax(abnormal_procedure_result[line-9], axis=1)[0]) self.procedure_value.emit(np.argmax(abnormal_procedure_prediction, axis=1)[0]) self.verif_value.emit([abnormal_verif_error, verif_threshold]) self.timer.emit([line, check_parameter]) self.symptom_db.emit([np.argmax(abnormal_procedure_prediction, axis=1)[0], check_parameter]) self.shap.emit(shap_add_des) self.plot_db.emit([liner, plot_data]) self.display_ex.emit(shap_add_des, [liner, plot_data], normal_data) self.another_shap.emit(shap_value, [liner, plot_data], compare_data) self.another_shap_table.emit(shap_value) class AlignDelegate(QStyledItemDelegate): def initStyleOption(self, option, index): super(AlignDelegate, self).initStyleOption(option, index) option.displayAlignment = Qt.AlignCenter class Mainwindow(QWidget): def __init__(self): super().__init__() self.setWindowTitle("Real-Time Abnormal Diagnosis for NPP") self.setGeometry(150, 50, 1700, 800) # 그래프 초기조건 pyqtgraph.setConfigOption("background", "w") pyqtgraph.setConfigOption("foreground", "k") ############################################# self.selected_para = pd.read_csv('./DataBase/Final_parameter.csv') # GUI part 1 Layout (진단 부분 통합) layout_left = QVBoxLayout() # 영 번째 그룹 설정 (Time and Power) gb_0 = QGroupBox("Training Status") # 영 번째 그룹 이름 설정 layout_left.addWidget(gb_0) # 전체 틀에 영 번째 그룹 넣기 gb_0_layout = QBoxLayout(QBoxLayout.LeftToRight) # 영 번째 그룹 내용을 넣을 레이아웃 설정 # 첫 번째 그룹 설정 gb_1 = QGroupBox("Training Status") # 첫 번째 그룹 이름 설정 layout_left.addWidget(gb_1) # 전체 틀에 첫 번째 그룹 넣기 gb_1_layout = QBoxLayout(QBoxLayout.LeftToRight) # 첫 번째 그룹 내용을 넣을 레이아웃 설정 # 두 번째 그룹 설정 gb_2 = QGroupBox('NPP Status') layout_left.addWidget(gb_2) gb_2_layout = QBoxLayout(QBoxLayout.LeftToRight) # 세 번째 그룹 설정 gb_3 = QGroupBox(self) layout_left.addWidget(gb_3) gb_3_layout = QBoxLayout(QBoxLayout.LeftToRight) # 네 번째 그룹 설정 gb_4 = QGroupBox('Predicted Result Verification') layout_left.addWidget(gb_4) gb_4_layout = QBoxLayout(QBoxLayout.LeftToRight) # 다섯 번째 그룹 설정 gb_5 = QGroupBox('Symptom check in scenario') layout_left.addWidget(gb_5) gb_5_layout = QBoxLayout(QBoxLayout.TopToBottom) # Spacer 추가 # layout_part1.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # 영 번째 그룹 내용 self.time_label = QLabel(self) self.power_label = QPushButton(self) # 첫 번째 그룹 내용 # Trained / Untrained condition label self.trained_label = QPushButton('Trained') self.Untrained_label = QPushButton('Untrained') # 두 번째 그룹 내용 self.normal_label = QPushButton('Normal') self.abnormal_label = QPushButton('Abnormal') # 세 번째 그룹 내용 self.name_procedure = QLabel('Number of Procedure: ') self.num_procedure = QLineEdit(self) self.num_procedure.setAlignment(Qt.AlignCenter) self.name_scnario = QLabel('Name of Procedure: ') self.num_scnario = QLineEdit(self) self.num_scnario.setAlignment(Qt.AlignCenter) # 네 번째 그룹 내용 self.success_label = QPushButton('Diagnosis Success') self.failure_label = QPushButton('Diagnosis Failure') # 다섯 번째 그룹 내용 self.symptom_name = QLabel(self) self.symptom1 = QCheckBox(self) self.symptom2 = QCheckBox(self) self.symptom3 = QCheckBox(self) self.symptom4 = QCheckBox(self) self.symptom5 = QCheckBox(self) self.symptom6 = QCheckBox(self) # 영 번째 그룹 내용 입력 gb_0_layout.addWidget(self.time_label) gb_0_layout.addWidget(self.power_label) gb_0.setLayout(gb_0_layout) # 첫 번째 그룹 내용 입력 gb_1_layout.addWidget(self.trained_label) gb_1_layout.addWidget(self.Untrained_label) gb_1.setLayout(gb_1_layout) # 첫 번째 레이아웃 내용을 첫 번째 그룹 틀로 넣기 # 두 번째 그룹 내용 입력 gb_2_layout.addWidget(self.normal_label) gb_2_layout.addWidget(self.abnormal_label) gb_2.setLayout(gb_2_layout) # 세 번째 그룹 내용 입력 gb_3_layout.addWidget(self.name_procedure) gb_3_layout.addWidget(self.num_procedure) gb_3_layout.addWidget(self.name_scnario) gb_3_layout.addWidget(self.num_scnario) gb_3.setLayout(gb_3_layout) # 네 번째 그룹 내용 입력 gb_4_layout.addWidget(self.success_label) gb_4_layout.addWidget(self.failure_label) gb_4.setLayout(gb_4_layout) # 다섯 번째 그룹 내용 입력 gb_5_layout.addWidget(self.symptom_name) gb_5_layout.addWidget(self.symptom1) gb_5_layout.addWidget(self.symptom2) gb_5_layout.addWidget(self.symptom3) gb_5_layout.addWidget(self.symptom4) gb_5_layout.addWidget(self.symptom5) gb_5_layout.addWidget(self.symptom6) gb_5.setLayout(gb_5_layout) # Start 버튼 맨 아래에 위치 self.start_btn = QPushButton('Start') # layout_part1.addWidget(self.start_btn) self.tableWidget = QTableWidget(0, 0) self.tableWidget.setFixedHeight(500) self.tableWidget.setFixedWidth(800) # Plot 구현 self.plot_1 = pyqtgraph.PlotWidget(title=self) self.plot_2 = pyqtgraph.PlotWidget(title=self) self.plot_3 = pyqtgraph.PlotWidget(title=self) self.plot_4 = pyqtgraph.PlotWidget(title=self) # Explanation Alarm 구현 red_alarm = QGroupBox('Main basis for diagnosis') red_alarm_layout = QGridLayout() orange_alarm = QGroupBox('Sub basis for diagnosis') orange_alarm_layout = QGridLayout() # Display Button 생성 self.red1 = QPushButton(self) self.red2 = QPushButton(self) self.red3 = QPushButton(self) self.red4 = QPushButton(self) self.orange1 = QPushButton(self) self.orange2 = QPushButton(self) self.orange3 = QPushButton(self) self.orange4 = QPushButton(self) self.orange5 = QPushButton(self) self.orange6 = QPushButton(self) self.orange7 = QPushButton(self) self.orange8 = QPushButton(self) self.orange9 = QPushButton(self) self.orange10 = QPushButton(self) self.orange11 = QPushButton(self) self.orange12 = QPushButton(self) # Layout에 widget 삽입 red_alarm_layout.addWidget(self.red1, 0, 0) red_alarm_layout.addWidget(self.red2, 0, 1) red_alarm_layout.addWidget(self.red3, 1, 0) red_alarm_layout.addWidget(self.red4, 1, 1) orange_alarm_layout.addWidget(self.orange1, 0, 0) orange_alarm_layout.addWidget(self.orange2, 0, 1) orange_alarm_layout.addWidget(self.orange3, 1, 0) orange_alarm_layout.addWidget(self.orange4, 1, 1) orange_alarm_layout.addWidget(self.orange5, 2, 0) orange_alarm_layout.addWidget(self.orange6, 2, 1) orange_alarm_layout.addWidget(self.orange7, 3, 0) orange_alarm_layout.addWidget(self.orange8, 3, 1) orange_alarm_layout.addWidget(self.orange9, 4, 0) orange_alarm_layout.addWidget(self.orange10, 4, 1) orange_alarm_layout.addWidget(self.orange11, 5, 0) orange_alarm_layout.addWidget(self.orange12, 5, 1) # Group Box에 Layout 삽입 red_alarm.setLayout(red_alarm_layout) orange_alarm.setLayout(orange_alarm_layout) # 각 Group Box를 상위 Layout에 삽입 layout_part1 = QVBoxLayout() detail_part = QHBoxLayout() detailed_table = QPushButton('Detail Explanation [Table]') self.another_classification = QPushButton('Why other scenarios were not chosen') detail_part.addWidget(detailed_table) detail_part.addWidget(self.another_classification) alarm_main = QVBoxLayout() alarm_main.addWidget(red_alarm) alarm_main.addWidget(orange_alarm) layout_part1.addLayout(layout_left) layout_part1.addLayout(alarm_main) layout_part1.addLayout(detail_part) layout_part1.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # GUI part2 Layout (XAI 구현) layout_part2 = QVBoxLayout() layout_part2.addWidget(self.plot_1) layout_part2.addWidget(self.plot_2) layout_part2.addWidget(self.plot_3) layout_part2.addWidget(self.plot_4) # layout_part2.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) # layout_part2.addWidget(self.tableWidget) # GUI part1 and part2 통합 layout_base = QHBoxLayout() layout_base.addLayout(layout_part1) layout_base.addLayout(layout_part2) # GUI 최종 통합 (start button을 하단에 배치시키기 위함) total_layout = QVBoxLayout() total_layout.addLayout(layout_base) total_layout.addWidget(self.start_btn) self.setLayout(total_layout) # setLayout : 최종 출력될 GUI 화면을 결정 # Threading Part############################################################################################################## # 데이터 연산 부분 Thread화 self.worker = Worker() self.worker_thread = QThread() # Signal을 Main Thread 내의 함수와 연결 self.worker.train_value.connect(self.Determine_train) self.worker.procedure_value.connect(self.Determine_abnormal) self.worker.procedure_value.connect(self.Determine_procedure) self.worker.verif_value.connect(self.verifit_result) self.worker.timer.connect(self.time_display) self.worker.symptom_db.connect(self.procedure_satisfaction) # self.worker.shap.connect(self.explain_result) self.worker.plot_db.connect(self.plotting) self.worker.display_ex.connect(self.display_explain) self.worker.moveToThread(self.worker_thread) # Worker class를 Thread로 이동 # self.worker_thread.started.connect(lambda: self.worker.generate_db()) self.start_btn.clicked.connect(lambda: self.worker.generate_db()) # 누르면 For문 실행 self.worker_thread.start() # Threading Part############################################################################################################## # 이벤트 처리 ---------------------------------------------------------------------------------------------------- detailed_table.clicked.connect(self.show_table) self.another_classification.clicked.connect(self.show_another_result) # Button 클릭 연동 이벤트 처리 convert_red_btn = {0: self.red1, 1: self.red2, 2: self.red3, 3: self.red4} # Red Button convert_red_plot = {0: self.red1_plot, 1: self.red2_plot, 2: self.red3_plot, 3: self.red4_plot} # convert_orange_btn = {0: self.orange1, 1: self.orange2, 2: self.orange3, 3: self.orange4, 4: self.orange5, 5: self.orange6, 6: self.orange7, 7: self.orange8, 8: self.orange9, 9: self.orange10, 10: self.orange11, 11: self.orange12} # Orange Button convert_orange_plot = {0: self.orange1_plot, 1: self.orange2_plot, 2: self.orange3_plot, 3: self.orange4_plot, 4: self.orange5_plot, 5: self.orange6_plot, 6: self.orange7_plot, 7: self.orange8_plot, 8: self.orange9_plot, 9: self.orange10_plot, 10: self.orange11_plot, 11: self.orange12_plot} # 초기 Button 위젯 선언 -> 초기에 선언해야 끊기지않고 유지됨. # Red Button [convert_red_btn[i].clicked.connect(convert_red_plot[i]) for i in range(4)] self.red_plot_1 = pyqtgraph.PlotWidget(title=self) self.red_plot_2 = pyqtgraph.PlotWidget(title=self) self.red_plot_3 = pyqtgraph.PlotWidget(title=self) self.red_plot_4 = pyqtgraph.PlotWidget(title=self) # Grid setting self.red_plot_1.showGrid(x=True, y=True, alpha=0.3) self.red_plot_2.showGrid(x=True, y=True, alpha=0.3) self.red_plot_3.showGrid(x=True, y=True, alpha=0.3) self.red_plot_4.showGrid(x=True, y=True, alpha=0.3) # Orange Button [convert_orange_btn[i].clicked.connect(convert_orange_plot[i]) for i in range(12)] self.orange_plot_1 = pyqtgraph.PlotWidget(title=self) self.orange_plot_2 = pyqtgraph.PlotWidget(title=self) self.orange_plot_3 = pyqtgraph.PlotWidget(title=self) self.orange_plot_4 = pyqtgraph.PlotWidget(title=self) self.orange_plot_5 = pyqtgraph.PlotWidget(title=self) self.orange_plot_6 = pyqtgraph.PlotWidget(title=self) self.orange_plot_7 = pyqtgraph.PlotWidget(title=self) self.orange_plot_8 = pyqtgraph.PlotWidget(title=self) self.orange_plot_9 = pyqtgraph.PlotWidget(title=self) self.orange_plot_10 = pyqtgraph.PlotWidget(title=self) self.orange_plot_11 = pyqtgraph.PlotWidget(title=self) self.orange_plot_12 = pyqtgraph.PlotWidget(title=self) # Grid setting self.orange_plot_1.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_2.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_3.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_4.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_5.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_6.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_7.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_8.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_9.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_10.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_11.showGrid(x=True, y=True, alpha=0.3) self.orange_plot_12.showGrid(x=True, y=True, alpha=0.3) self.show() # UI show command def time_display(self, display_variable): # display_variable[0] : time, display_variable[1].iloc[1] self.time_label.setText(f'<b>Time :<b/> {display_variable[0]} sec') self.time_label.setFont(QFont('Times new roman', 15)) self.time_label.setAlignment(Qt.AlignCenter) self.power_label.setText(f'Power : {round(display_variable[1].iloc[1]["QPROREL"]*100, 2)}%') if round(display_variable[1].iloc[1]["QPROREL"]*100, 2) < 95: self.power_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') else: self.power_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_train(self, train_untrain_reconstruction_error): if train_untrain_reconstruction_error[0] <= 0.00225299: # Trained Data self.trained_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.Untrained_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # Untrianed Data self.Untrained_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.trained_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_abnormal(self, abnormal_diagnosis): if abnormal_diagnosis == 0: # 정상상태 self.normal_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.abnormal_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # 비정상상태 self.abnormal_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.normal_label.setStyleSheet('color : black;' 'background-color: light gray;') def Determine_procedure(self, abnormal_procedure_result): if abnormal_procedure_result == 0: self.num_procedure.setText('Normal') self.num_scnario.setText('Normal') elif abnormal_procedure_result == 1: self.num_procedure.setText('Ab21-01') self.num_scnario.setText('가압기 압력 채널 고장 "고"') elif abnormal_procedure_result == 2: self.num_procedure.setText('Ab21-02') self.num_scnario.setText('가압기 압력 채널 고장 "저"') elif abnormal_procedure_result == 3: self.num_procedure.setText('Ab20-04') self.num_scnario.setText('가압기 수위 채널 고장 "저"') elif abnormal_procedure_result == 4: self.num_procedure.setText('Ab15-07') self.num_scnario.setText('증기발생기 수위 채널 고장 "저"') elif abnormal_procedure_result == 5: self.num_procedure.setText('Ab15-08') self.num_scnario.setText('증기발생기 수위 채널 고장 "고"') elif abnormal_procedure_result == 6: self.num_procedure.setText('Ab63-04') self.num_scnario.setText('제어봉 낙하') elif abnormal_procedure_result == 7: self.num_procedure.setText('Ab63-02') self.num_scnario.setText('제어봉의 계속적인 삽입') elif abnormal_procedure_result == 8: self.num_procedure.setText('Ab21-12') # self.num_scnario.setText('가압기 PORV 열림') self.num_scnario.setText('Pressurizer PORV opening') elif abnormal_procedure_result == 9: self.num_procedure.setText('Ab19-02') self.num_scnario.setText('가압기 안전밸브 고장') elif abnormal_procedure_result == 10: self.num_procedure.setText('Ab21-11') self.num_scnario.setText('가압기 살수밸브 고장 "열림"') elif abnormal_procedure_result == 11: self.num_procedure.setText('Ab23-03') self.num_scnario.setText('1차기기 냉각수 계통으로 누설 "CVCS->CCW"') elif abnormal_procedure_result == 12: self.num_procedure.setText('Ab60-02') self.num_scnario.setText('재생열교환기 전단부위 파열') elif abnormal_procedure_result == 13: self.num_procedure.setText('Ab59-02') self.num_scnario.setText('충전수 유량조절밸브 후단 누설') elif abnormal_procedure_result == 14: self.num_procedure.setText('Ab23-01') self.num_scnario.setText('1차기기 냉각수 계통으로 누설 "RCS->CCW"') elif abnormal_procedure_result == 15: self.num_procedure.setText('Ab23-06') self.num_scnario.setText('증기발생기 전열관 누설') def verifit_result(self, verif_value): if verif_value[0] <= verif_value[1]: # 진단 성공 self.success_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: green;') self.failure_label.setStyleSheet('color : black;' 'background-color: light gray;') else: # 진단 실패 self.failure_label.setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: red;') self.success_label.setStyleSheet('color : black;' 'background-color: light gray;') def procedure_satisfaction(self, symptom_db): # symptom_db[0] : classification result [0~15] # symptom_db[1] : check_db [2,2222] -> 현시점과 이전시점 비교를 위함. # symptom_db[1].iloc[0] : 이전 시점 # symptom_db[1].iloc[1] : 현재 시점 if symptom_db[0] == 0: # 정상 상태 self.symptom_name.setText('Diagnosis Result : Normal → Symptoms : 0') self.symptom1.setText('') self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('') self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText('') self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('') self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('') self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText('') self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 1: self.symptom_name.setText('Diagnosis Result : Ab21-01 Pressurizer pressure channel failure "High" → Symptoms : 6') self.symptom1.setText("채널 고장으로 인한 가압기 '고' 압력 지시") if symptom_db[1].iloc[1]['PPRZN'] > symptom_db[1].iloc[1]['CPPRZH']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText("가압기 살수밸브 '열림' 지시") if symptom_db[1].iloc[1]['BPRZSP'] > 0: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("가압기 비례전열기 꺼짐") if symptom_db[1].iloc[1]['QPRZP'] == 0: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText("가압기 보조전열기 꺼짐") if symptom_db[1].iloc[1]['QPRZB'] == 0: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText("실제 가압기 '저' 압력 지시") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText("가압기 PORV 차단밸브 닫힘") if symptom_db[1].iloc[1]['BHV6'] == 0: self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 2: self.symptom_name.setText('진단 : Ab21-02 가압기 압력 채널 고장 "저" → 증상 : 5') self.symptom1.setText("채널 고장으로 인한 가압기 '저' 압력 지시") if symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('가압기 저압력으로 인한 보조 전열기 켜짐 지시 및 경보 발생') if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("실제 가압기 '고' 압력 지시") if symptom_db[1].iloc[1]['PPRZ'] > symptom_db[1].iloc[1]['CPPRZH']: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('가압기 PORV 열림 지시 및 경보 발생') if symptom_db[1].iloc[1]['BPORV'] > 0: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('실제 가압기 압력 감소로 가압기 PORV 닫힘') # 가압기 압력 감소에 대해 해결해야함. if symptom_db[1].iloc[1]['BPORV'] == 0 and (symptom_db[1].iloc[0]['PPRZ'] > symptom_db[1].iloc[1]['PPRZ']): self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 3: self.symptom_name.setText('진단 : Ab20-04 가압기 수위 채널 고장 "저" → 증상 : 5') self.symptom1.setText("채널 고장으로 인한 가압기 '저' 수위 지시") if symptom_db[1].iloc[1]['ZINST63'] < 17: # 나중에 다시 확인해야함. self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('"LETDN HX OUTLET FLOW LOW" 경보 발생') if symptom_db[1].iloc[1]['UNRHXUT'] > symptom_db[1].iloc[1]['CULDHX']: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText('"CHARGING LINE FLOW HI/LO" 경보 발생') if (symptom_db[1].iloc[1]['WCHGNO'] < symptom_db[1].iloc[1]['CWCHGL']) or (symptom_db[1].iloc[1]['WCHGNO'] > symptom_db[1].iloc[1]['CWCHGH']): self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText('충전 유량 증가') if symptom_db[1].iloc[0]['WCHGNO'] < symptom_db[1].iloc[1]['WCHGNO']: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom5.setText('건전한 수위지시계의 수위 지시치 증가') if symptom_db[1].iloc[0]['ZPRZNO'] < symptom_db[1].iloc[1]['ZPRZNO']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") # else: # self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 4: self.symptom_name.setText('진단 : Ab15-07 증기발생기 수위 채널 고장 "저" → 증상 : ') self.symptom1.setText('증기발생기 수위 "저" 경보 발생') if symptom_db[1].iloc[1]['ZINST78']*0.01 < symptom_db[1].iloc[1]['CZSGW'] or symptom_db[1].iloc[1]['ZINST77']*0.01 < symptom_db[1].iloc[1]['CZSGW'] or symptom_db[1].iloc[1]['ZINST76']*0.01 < symptom_db[1].iloc[1]['CZSGW']: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText('해당 SG MFCV 열림 방향으로 진행 및 해당 SG 실제 급수유량 증가') elif symptom_db[0] == 8: # self.symptom_name.setText('진단 : Ab21-12 가압기 PORV 열림 → 증상 : 5') self.symptom_name.setText('Diagnosis result : Ab21-12 Pressurizer PORV opening → Symptoms : 5') # self.symptom1.setText('가압기 PORV 열림 지시 및 경보 발생') self.symptom1.setText('Pressurizer PORV open indication and alarm') if symptom_db[1].iloc[1]['BPORV'] > 0: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom2.setText('가압기 저압력으로 인한 보조 전열기 켜짐 지시 및 경보 발생') self.symptom2.setText('Aux. heater turn on instruction and alarm due to pressurizer low pressure') if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom3.setText("가압기 '저' 압력 지시 및 경보 발생") self.symptom3.setText("pressurizer 'low' pressure indication and alarm") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL'] : self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom4.setText("PRT 고온 지시 및 경보 발생") self.symptom4.setText("PRT high temperature indication and alarm") if symptom_db[1].iloc[1]['UPRT'] > symptom_db[1].iloc[1]['CUPRT'] : self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") # self.symptom5.setText("PRT 고압 지시 및 경보 발생") self.symptom5.setText("PRT high pressure indication and alarm") if (symptom_db[1].iloc[1]['PPRT'] - 0.98E5) > symptom_db[1].iloc[1]['CPPRT']: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom5.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom6.setText("Blank") self.symptom6.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") elif symptom_db[0] == 10: self.symptom_name.setText("진단 : Ab21-11 가압기 살수밸브 고장 '열림' → 증상 : 4") self.symptom1.setText("가압기 살수밸브 '열림' 지시 및 상태 표시등 점등") if symptom_db[1].iloc[1]['BPRZSP'] > 0: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom1.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom2.setText("가압기 보조전열기 켜짐 지시 및 경보 발생") if (symptom_db[1].iloc[1]['PPRZN'] < symptom_db[1].iloc[1]['CQPRZB']) and (symptom_db[1].iloc[1]['KBHON'] == 1): self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom2.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom3.setText("가압기 '저' 압력 지시 및 경보 발생") if symptom_db[1].iloc[1]['PPRZ'] < symptom_db[1].iloc[1]['CPPRZL']: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom3.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") self.symptom4.setText("가압기 수위 급격한 증가") # 급격한 증가에 대한 수정은 필요함 -> 추후 수정 if symptom_db[1].iloc[0]['ZINST63'] < symptom_db[1].iloc[1]['ZINST63']: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : red;""}") else: self.symptom4.setStyleSheet("QCheckBo" "x::indicator" "{""background-color : white;""}") def explain_result(self, shap_add_des): ''' # shap_add_des['index'] : 변수 이름 / shap_add_des[0] : shap value # shap_add_des['describe'] : 변수에 대한 설명 / shap_add_des['probability'] : shap value를 확률로 환산한 값 ''' self.tableWidget.setRowCount(len(shap_add_des)) self.tableWidget.setColumnCount(4) self.tableWidget.setHorizontalHeaderLabels(["value_name", 'probability', 'describe', 'system']) header = self.tableWidget.horizontalHeader() header.setSectionResizeMode(QHeaderView.ResizeToContents) header.setSectionResizeMode(0, QHeaderView.Stretch) header.setSectionResizeMode(1, QHeaderView.Stretch) header.setSectionResizeMode(2, QHeaderView.ResizeToContents) header.setSectionResizeMode(3, QHeaderView.Stretch) [self.tableWidget.setItem(i, 0, QTableWidgetItem(f"{shap_add_des['index'][i]}")) for i in range(len(shap_add_des['index']))] [self.tableWidget.setItem(i, 1, QTableWidgetItem(f"{round(shap_add_des['probability'][i],2)}%")) for i in range(len(shap_add_des['probability']))] [self.tableWidget.setItem(i, 2, QTableWidgetItem(f"{shap_add_des['describe'][i]}")) for i in range(len(shap_add_des['describe']))] [self.tableWidget.setItem(i, 3, QTableWidgetItem(f"{shap_add_des['system'][i]}")) for i in range(len(shap_add_des['system']))] delegate = AlignDelegate(self.tableWidget) self.tableWidget.setItemDelegate(delegate) def show_table(self): self.worker.shap.connect(self.explain_result) # 클릭시 Thread를 통해 신호를 전달하기 때문에 버퍼링이 발생함. 2초 정도? 이 부분은 나중에 생각해서 초기에 불러올지 고민해봐야할듯. self.tableWidget.show() def plotting(self, symptom_db): # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] # -- scatter -- # time = [] # value1, value2, value3 = [], [], [] # time.append(symptom_db[0]) # value1.append(round(symptom_db[1].iloc[1]['ZVCT'],2)) # value2.append(round(symptom_db[1].iloc[1]['BPORV'],2)) # value3.append(round(symptom_db[1].iloc[1]['UPRZ'],2)) # self.plotting_1 = self.plot_1.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # self.plotting_2 = self.plot_2.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # self.plotting_3 = self.plot_3.plot(pen=None, symbol='o', symbolBrush='w', symbolPen='w', symbolSize=5) # -- Line plotting -- # self.plotting_1 = self.plot_1.plot(pen='w') # self.plotting_2 = self.plot_2.plot(pen='w') # self.plotting_3 = self.plot_3.plot(pen='w') # self.plotting_4 = self.plot_4.plot(pen='w') self.plot_1.showGrid(x=True, y=True, alpha=0.3) self.plot_2.showGrid(x=True, y=True, alpha=0.3) self.plot_3.showGrid(x=True, y=True, alpha=0.3) self.plot_4.showGrid(x=True, y=True, alpha=0.3) self.plotting_1 = self.plot_1.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_2 = self.plot_2.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_3 = self.plot_3.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_4 = self.plot_4.plot(pen=pyqtgraph.mkPen('k',width=3)) self.plotting_1.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['BPORV']) self.plot_1.setTitle('PORV open state') self.plotting_2.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['PPRZN']) self.plot_2.setTitle('Pressurizer pressure') self.plotting_3.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['UPRT']) self.plot_3.setTitle('PRT temperature') self.plotting_4.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])['PPRT']) self.plot_4.setTitle('PRT pressure') # red_range = display_db[display_db['probability'] >= 10] # 10% 이상의 확률을 가진 변수 # # print(bool(red_range["describe"].iloc[3])) # try : # self.plotting_1.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]]) # if red_range["describe"].iloc[0] == None: # self.plot_1.setTitle(self) # else: # self.plot_1.setTitle(f'{red_range["describe"].iloc[0]}') # # self.plot_1.clear() # except: # print('plot1 fail') # try: # self.plotting_2.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]]) # if red_range["describe"].iloc[1] == None: # self.plot_2.setTitle(self) # else: # self.plot_2.setTitle(f'{red_range["describe"].iloc[1]}') # # self.plot_2.clear() # except: # print('plot2 fail') # try: # self.plotting_3.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]]) # if red_range["describe"].iloc[2] == None: # self.plot_3.setTitle(self) # else: # self.plot_3.setTitle(f'{red_range["describe"].iloc[2]}') # # self.plot_3.clear() # except: # print('plot3 fail') # try: # self.plotting_4.setData(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]]) # if red_range["describe"].iloc[3] == None: # self.plot_4.setTitle(self) # else: # self.plot_4.setTitle(f'{red_range["describe"].iloc[3]}') # # self.plot_4.clear() # except: # print('plot4 fail') def display_explain(self, display_db, symptom_db, normal_db): ''' # display_db['index'] : 변수 이름 / display_db[0] : shap value # display_db['describe'] : 변수에 대한 설명 / display_db['probability'] : shap value를 확률로 환산한 값 # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] ''' red_range = display_db[display_db['probability'] >=10] orange_range = display_db[[display_db['probability'].iloc[i]<10 and display_db['probability'].iloc[i]>1 for i in range(len(display_db['probability']))]] convert_red = {0: self.red1, 1: self.red2, 2: self.red3, 3: self.red4} convert_orange = {0: self.orange1, 1: self.orange2, 2: self.orange3, 3: self.orange4, 4: self.orange5, 5: self.orange6, 6: self.orange7, 7: self.orange8, 8: self.orange9, 9: self.orange10, 10: self.orange11, 11: self.orange12} if 4-len(red_range) == 0: red_del = [] elif 4-len(red_range) == 1: red_del = [3] elif 4-len(red_range) == 2: red_del = [2,3] elif 4-len(red_range) == 3: red_del = [1,2,3] elif 4-len(red_range) == 4: red_del = [0,1,2,3] if 12-len(orange_range) == 0: orange_del = [] elif 12-len(orange_range) == 1: orange_del = [11] elif 12-len(orange_range) == 2: orange_del = [10,11] elif 12-len(orange_range) == 3: orange_del = [9,10,11] elif 12-len(orange_range) == 4: orange_del = [8,9,10,11] elif 12-len(orange_range) == 5: orange_del = [7,8,9,10,11] elif 12-len(orange_range) == 6: orange_del = [6,7,8,9,10,11] elif 12-len(orange_range) == 7: orange_del = [5,6,7,8,9,10,11] elif 12-len(orange_range) == 8: orange_del = [4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 9: orange_del = [3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 10: orange_del = [2,3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 11: orange_del = [1,2,3,4,5,6,7,8,9,10,11] elif 12-len(orange_range) == 12: orange_del = [0,1,2,3,4,5,6,7,8,9,10,11] [convert_red[i].setText(f'{red_range["describe"].iloc[i]} \n[{round(red_range["probability"].iloc[i],2)}%]') for i in range(len(red_range))] [convert_red[i].setText('None\nParameter') for i in red_del] [convert_red[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: blue;') for i in range(len(red_range))] [convert_red[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in red_del] [convert_orange[i].setText(f'{orange_range["describe"].iloc[i]} \n[{round(orange_range["probability"].iloc[i],2)}%]') for i in range(len(orange_range))] [convert_orange[i].setText('None\nParameter') for i in orange_del] # [convert_orange[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: orange;') for i in range(len(orange_range))] # [convert_orange[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in orange_del] # 각 Button에 호환되는 Plotting 데이터 구축 # Red1 Button if self.red1.text().split()[0] != 'None': self.red_plot_1.clear() self.red_plot_1.setTitle(red_range['describe'].iloc[0]) self.red_plot_1.addLegend(offset=(-30,20)) self.red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name = 'Real Data') self.red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name = 'Normal Data') # Red2 Button if self.red2.text().split()[0] != 'None': self.red_plot_2.clear() self.red_plot_2.setTitle(red_range['describe'].iloc[1]) self.red_plot_2.addLegend(offset=(-30, 20)) self.red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Red3 Button if self.red3.text().split()[0] != 'None': self.red_plot_3.clear() self.red_plot_3.setTitle(red_range['describe'].iloc[2]) self.red_plot_3.addLegend(offset=(-30, 20)) self.red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Red4 Button if self.red4.text().split()[0] != 'None': self.red_plot_4.clear() self.red_plot_4.setTitle(red_range['describe'].iloc[3]) self.red_plot_4.addLegend(offset=(-30, 20)) self.red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange1 Button if self.orange1.text().split()[0] != 'None': self.orange_plot_1.clear() self.orange_plot_1.setTitle(orange_range['describe'].iloc[0]) self.orange_plot_1.addLegend(offset=(-30, 20)) self.orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange2 Button if self.orange2.text().split()[0] != 'None': self.orange_plot_2.clear() self.orange_plot_2.setTitle(orange_range['describe'].iloc[1]) self.orange_plot_2.addLegend(offset=(-30, 20)) self.orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange3 Button if self.orange3.text().split()[0] != 'None': self.orange_plot_3.clear() self.orange_plot_3.setTitle(orange_range['describe'].iloc[2]) self.orange_plot_3.addLegend(offset=(-30, 20)) self.orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange4 Button if self.orange4.text().split()[0] != 'None': self.orange_plot_4.clear() self.orange_plot_4.setTitle(orange_range['describe'].iloc[3]) self.orange_plot_4.addLegend(offset=(-30, 20)) self.orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange5 Button if self.orange5.text().split()[0] != 'None': self.orange_plot_5.clear() self.orange_plot_5.setTitle(orange_range['describe'].iloc[4]) self.orange_plot_5.addLegend(offset=(-30, 20)) self.orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_5.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[4]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange6 Button if self.orange6.text().split()[0] != 'None': self.orange_plot_6.clear() self.orange_plot_6.setTitle(orange_range['describe'].iloc[5]) self.orange_plot_6.addLegend(offset=(-30, 20)) self.orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_6.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[5]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange7 Button if self.orange7.text().split()[0] != 'None': self.orange_plot_7.clear() self.orange_plot_7.setTitle(orange_range['describe'].iloc[6]) self.orange_plot_7.addLegend(offset=(-30, 20)) self.orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_7.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[6]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange8 Button if self.orange8.text().split()[0] != 'None': self.orange_plot_8.clear() self.orange_plot_8.setTitle(orange_range['describe'].iloc[7]) self.orange_plot_8.addLegend(offset=(-30, 20)) self.orange_plot_8.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[7]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_8.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[7]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange9 Button if self.orange9.text().split()[0] != 'None': self.orange_plot_9.clear() self.orange_plot_9.setTitle(orange_range['describe'].iloc[8]) self.orange_plot_9.addLegend(offset=(-30, 20)) self.orange_plot_9.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[8]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_9.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[8]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange10 Button if self.orange10.text().split()[0] != 'None': self.orange_plot_10.clear() self.orange_plot_10.setTitle(orange_range['describe'].iloc[9]) self.orange_plot_10.addLegend(offset=(-30, 20)) self.orange_plot_10.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[9]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_10.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[9]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange11 Button if self.orange11.text().split()[0] != 'None': self.orange_plot_11.clear() self.orange_plot_11.setTitle(orange_range['describe'].iloc[10]) self.orange_plot_11.addLegend(offset=(-30, 20)) self.orange_plot_11.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[10]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_11.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[10]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') # Orange12 Button if self.orange12.text().split()[0] != 'None': self.orange_plot_12.clear() self.orange_plot_12.setTitle(orange_range['describe'].iloc[11]) self.orange_plot_12.addLegend(offset=(-30, 20)) self.orange_plot_12.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[11]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.orange_plot_12.plot(x=symptom_db[0], y=pd.DataFrame(normal_db)[orange_range['index'].iloc[11]], pen=pyqtgraph.mkPen('k', width=3), name='Normal Data') [convert_red[i].setCheckable(True) for i in range(4)] [convert_orange[i].setCheckable(True) for i in range(12)] def red1_plot(self): if self.red1.isChecked(): if self.red1.text().split()[0] != 'None': self.red_plot_1.show() self.red1.setCheckable(False) def red2_plot(self): if self.red2.isChecked(): if self.red2.text().split()[0] != 'None': self.red_plot_2.show() self.red2.setCheckable(False) def red3_plot(self): if self.red3.isChecked(): if self.red3.text().split()[0] != 'None': self.red_plot_3.show() self.red3.setCheckable(False) def red4_plot(self): if self.red4.isChecked(): if self.red4.text().split()[0] != 'None': self.red_plot_4.show() self.red4.setCheckable(False) def orange1_plot(self): if self.orange1.isChecked(): if self.orange1.text().split()[0] != 'None': self.orange_plot_1.show() self.orange1.setCheckable(False) def orange2_plot(self): if self.orange2.isChecked(): if self.orange2.text().split()[0] != 'None': self.orange_plot_2.show() self.orange2.setCheckable(False) def orange3_plot(self): if self.orange3.isChecked(): if self.orange3.text().split()[0] != 'None': self.orange_plot_3.show() self.orange3.setCheckable(False) def orange4_plot(self): if self.orange4.isChecked(): if self.orange4.text().split()[0] != 'None': self.orange_plot_4.show() self.orange4.setCheckable(False) def orange5_plot(self): if self.orange5.isChecked(): if self.orange5.text().split()[0] != 'None': self.orange_plot_5.show() self.orange5.setCheckable(False) def orange6_plot(self): if self.orange6.isChecked(): if self.orange6.text().split()[0] != 'None': self.orange_plot_6.show() self.orange6.setCheckable(False) def orange7_plot(self): if self.orange7.isChecked(): if self.orange7.text().split()[0] != 'None': self.orange_plot_7.show() self.orange7.setCheckable(False) def orange8_plot(self): if self.orange8.isChecked(): if self.orange8.text().split()[0] != 'None': self.orange_plot_8.show() self.orange8.setCheckable(False) def orange9_plot(self): if self.orange9.isChecked(): if self.orange9.text().split()[0] != 'None': self.orange_plot_9.show() self.orange9.setCheckable(False) def orange10_plot(self): if self.orange10.isChecked(): if self.orange10.text().split()[0] != 'None': self.orange_plot_10.show() self.orange10.setCheckable(False) def orange11_plot(self): if self.orange11.isChecked(): if self.orange11.text().split()[0] != 'None': self.orange_plot_11.show() self.orange11.setCheckable(False) def orange12_plot(self): if self.orange12.isChecked(): if self.orange12.text().split()[0] != 'None': self.orange_plot_12.show() self.orange12.setCheckable(False) def show_another_result(self): self.other = another_result_explain() self.worker.another_shap_table.connect(self.other.show_another_result_table) self.worker.another_shap.connect(self.other.show_shap) self.other.show() class another_result_explain(QWidget): def __init__(self): super().__init__() # 서브 인터페이스 초기 설정 self.setWindowTitle('Another Result Explanation') self.setGeometry(300, 300, 800, 500) self.selected_para = pd.read_csv('./DataBase/Final_parameter_200825.csv') # 레이아웃 구성 combo_layout = QVBoxLayout() self.title_label = QLabel("<b>선택되지 않은 시나리오에 대한 결과 해석<b/>") self.title_label.setAlignment(Qt.AlignCenter) self.blank = QLabel(self) # Enter를 위한 라벨 self.show_table = QPushButton("Show Table") self.cb = QComboBox(self) self.cb.addItem('Normal') self.cb.addItem('Ab21-01: Pressurizer pressure channel failure (High)') self.cb.addItem('Ab21-02: Pressurizer pressure channel failure (Low)') self.cb.addItem('Ab20-04: Pressurizer level channel failure (Low)') self.cb.addItem('Ab15-07: Steam generator level channel failure (High)') self.cb.addItem('Ab15-08: Steam generator level channel failure (Low)') self.cb.addItem('Ab63-04: Control rod fall') self.cb.addItem('Ab63-02: Continuous insertion of control rod') self.cb.addItem('Ab21-12: Pressurizer PORV opening') self.cb.addItem('Ab19-02: Pressurizer safety valve failure') self.cb.addItem('Ab21-11: Pressurizer spray valve failed opening') self.cb.addItem('Ab23-03: Leakage from CVCS to RCS') self.cb.addItem('Ab60-02: Rupture of the front end of the regenerative heat exchanger') self.cb.addItem('Ab59-02: Leakage at the rear end of the charging flow control valve') self.cb.addItem('Ab23-01: Leakage from CVCS to CCW') self.cb.addItem('Ab23-06: Steam generator u-tube leakage') # Explanation Alarm 구현 cb_red_alarm = QGroupBox('Main basis for diagnosis') cb_red_alarm_layout = QGridLayout() cb_orange_alarm = QGroupBox('Sub basis for diagnosis') cb_orange_alarm_layout = QGridLayout() # Display Button 생성 self.cb_red1 = QPushButton(self) self.cb_red2 = QPushButton(self) self.cb_red3 = QPushButton(self) self.cb_red4 = QPushButton(self) self.cb_orange1 = QPushButton(self) self.cb_orange2 = QPushButton(self) self.cb_orange3 = QPushButton(self) self.cb_orange4 = QPushButton(self) self.cb_orange5 = QPushButton(self) self.cb_orange6 = QPushButton(self) self.cb_orange7 = QPushButton(self) self.cb_orange8 = QPushButton(self) self.cb_orange9 = QPushButton(self) self.cb_orange10 = QPushButton(self) self.cb_orange11 = QPushButton(self) self.cb_orange12 = QPushButton(self) # Layout에 widget 삽입 cb_red_alarm_layout.addWidget(self.cb_red1, 0, 0) cb_red_alarm_layout.addWidget(self.cb_red2, 0, 1) cb_red_alarm_layout.addWidget(self.cb_red3, 1, 0) cb_red_alarm_layout.addWidget(self.cb_red4, 1, 1) cb_orange_alarm_layout.addWidget(self.cb_orange1, 0, 0) cb_orange_alarm_layout.addWidget(self.cb_orange2, 0, 1) cb_orange_alarm_layout.addWidget(self.cb_orange3, 1, 0) cb_orange_alarm_layout.addWidget(self.cb_orange4, 1, 1) cb_orange_alarm_layout.addWidget(self.cb_orange5, 2, 0) cb_orange_alarm_layout.addWidget(self.cb_orange6, 2, 1) cb_orange_alarm_layout.addWidget(self.cb_orange7, 3, 0) cb_orange_alarm_layout.addWidget(self.cb_orange8, 3, 1) cb_orange_alarm_layout.addWidget(self.cb_orange9, 4, 0) cb_orange_alarm_layout.addWidget(self.cb_orange10, 4, 1) cb_orange_alarm_layout.addWidget(self.cb_orange11, 5, 0) cb_orange_alarm_layout.addWidget(self.cb_orange12, 5, 1) cb_red_alarm.setLayout(cb_red_alarm_layout) cb_orange_alarm.setLayout(cb_orange_alarm_layout) combo_layout.addWidget(self.title_label) combo_layout.addWidget(self.blank) combo_layout.addWidget(self.cb) combo_layout.addWidget(self.blank) # combo_layout.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) combo_layout.addWidget(cb_red_alarm) combo_layout.addWidget(cb_orange_alarm) combo_layout.addWidget(self.blank) combo_layout.addWidget(self.show_table) combo_layout.addItem(QSpacerItem(20, 40, QSizePolicy.Minimum, QSizePolicy.Expanding)) self.setLayout(combo_layout) self.combo_tableWidget = QTableWidget(0, 0) self.combo_tableWidget.setFixedHeight(500) self.combo_tableWidget.setFixedWidth(800) # self.combo_tableWidget = QTableWidget(0, 0) # 이벤트 처리 부분 ######################################################## self.show_table.clicked.connect(self.show_anoter_table) self.cb.activated[str].connect(self.show_another_result_table) self.cb.activated[str].connect(self.show_shap) ########################################################################## # Button 클릭 연동 이벤트 처리 convert_cb_red_btn = {0: self.cb_red1, 1: self.cb_red2, 2: self.cb_red3, 3: self.cb_red4} # Red Button convert_cb_red_plot = {0: self.cb_red1_plot, 1: self.cb_red2_plot, 2: self.cb_red3_plot, 3: self.cb_red4_plot} convert_cb_orange_btn = {0: self.cb_orange1, 1: self.cb_orange2, 2: self.cb_orange3, 3: self.cb_orange4, 4: self.cb_orange5, 5: self.cb_orange6, 6: self.cb_orange7, 7: self.cb_orange8, 8: self.cb_orange9, 9: self.cb_orange10, 10: self.cb_orange11, 11: self.cb_orange12} # Orange Button convert_cb_orange_plot = {0: self.cb_orange1_plot, 1: self.cb_orange2_plot, 2: self.cb_orange3_plot, 3: self.cb_orange4_plot, 4: self.cb_orange5_plot, 5: self.cb_orange6_plot, 6: self.cb_orange7_plot, 7: self.cb_orange8_plot, 8: self.cb_orange9_plot, 9: self.cb_orange10_plot, 10: self.cb_orange11_plot, 11: self.cb_orange12_plot} ################################################################################################################ # 초기 Button 위젯 선언 -> 초기에 선언해야 끊기지않고 유지됨. # Red Button [convert_cb_red_btn[i].clicked.connect(convert_cb_red_plot[i]) for i in range(4)] self.cb_red_plot_1 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_2 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_3 = pyqtgraph.PlotWidget(title=self) self.cb_red_plot_4 = pyqtgraph.PlotWidget(title=self) # Grid setting self.cb_red_plot_1.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_2.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_3.showGrid(x=True, y=True, alpha=0.3) self.cb_red_plot_4.showGrid(x=True, y=True, alpha=0.3) # Orange Button [convert_cb_orange_btn[i].clicked.connect(convert_cb_orange_plot[i]) for i in range(12)] self.cb_orange_plot_1 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_2 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_3 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_4 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_5 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_6 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_7 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_8 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_9 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_10 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_11 = pyqtgraph.PlotWidget(title=self) self.cb_orange_plot_12 = pyqtgraph.PlotWidget(title=self) # Grid setting self.cb_orange_plot_1.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_2.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_3.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_4.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_5.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_6.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_7.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_8.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_9.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_10.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_11.showGrid(x=True, y=True, alpha=0.3) self.cb_orange_plot_12.showGrid(x=True, y=True, alpha=0.3) ################################################################################################################ self.show() # Sub UI show command def show_shap(self, all_shap, symptom_db, compare_data): # all_shap : 전체 시나리오에 해당하는 shap_value를 가지고 있음. # symptom_db[0] : liner : appended time (axis-x) / symptom_db[1].iloc[1] : check_db (:line,2222)[1] if self.cb.currentText() == 'Normal': step1 = pd.DataFrame(all_shap[0], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()] elif self.cb.currentText() == 'Ab21-01: Pressurizer pressure channel failure (High)': step1 = pd.DataFrame(all_shap[1], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-02: Pressurizer pressure channel failure (Low)': step1 = pd.DataFrame(all_shap[2], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab20-04: Pressurizer level channel failure (Low)': step1 = pd.DataFrame(all_shap[3], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab15-07: Steam generator level channel failure (High)': step1 = pd.DataFrame(all_shap[4], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab15-08: Steam generator level channel failure (Low)': step1 = pd.DataFrame(all_shap[5], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab63-04: Control rod fall': step1 = pd.DataFrame(all_shap[6], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab63-02: Continuous insertion of control rod': step1 = pd.DataFrame(all_shap[7], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-12: Pressurizer PORV opening': step1 = pd.DataFrame(all_shap[8], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab19-02: Pressurizer safety valve failure': step1 = pd.DataFrame(all_shap[9], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab21-11: Pressurizer spray valve failed opening': step1 = pd.DataFrame(all_shap[10], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-03: Leakage from CVCS to RCS': step1 = pd.DataFrame(all_shap[11], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab60-02: Rupture of the front end of the regenerative heat exchanger': step1 = pd.DataFrame(all_shap[12], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab59-02: Leakage at the rear end of the charging flow control valve': step1 = pd.DataFrame(all_shap[13], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-01: Leakage from CVCS to CCW': step1 = pd.DataFrame(all_shap[14], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] elif self.cb.currentText() == 'Ab23-06: Steam generator u-tube leakage': step1 = pd.DataFrame(all_shap[15], columns=self.selected_para['0'].tolist()) compared_db = compare_data[self.cb.currentText()[:7]] step2 = step1.sort_values(by=0, ascending=True, axis=1) step3 = step2[step2.iloc[:] < 0].dropna(axis=1).T self.step4 = step3.reset_index() col = self.step4['index'] var = [self.selected_para['0'][self.selected_para['0'] == col_].index for col_ in col] val_col = [self.selected_para['1'][var_].iloc[0] for var_ in var] proba = [(self.step4[0][val_num] / sum(self.step4[0])) * 100 for val_num in range(len(self.step4[0]))] val_system = [self.selected_para['2'][var_].iloc[0] for var_ in var] self.step4['describe'] = val_col self.step4['probability'] = proba self.step4['system'] = val_system red_range = self.step4[self.step4['probability'] >= 10] orange_range = self.step4[ [self.step4['probability'].iloc[i] < 10 and self.step4['probability'].iloc[i] > 1 for i in range(len(self.step4['probability']))]] convert_red = {0: self.cb_red1, 1: self.cb_red2, 2: self.cb_red3, 3: self.cb_red4} convert_orange = {0: self.cb_orange1, 1: self.cb_orange2, 2: self.cb_orange3, 3: self.cb_orange4, 4: self.cb_orange5, 5: self.cb_orange6, 6: self.cb_orange7, 7: self.cb_orange8, 8: self.cb_orange9, 9: self.cb_orange10, 10: self.cb_orange11, 11: self.cb_orange12} if 4 - len(red_range) == 0: red_del = [] elif 4 - len(red_range) == 1: red_del = [3] elif 4 - len(red_range) == 2: red_del = [2, 3] elif 4 - len(red_range) == 3: red_del = [1, 2, 3] elif 4 - len(red_range) == 4: red_del = [0, 1, 2, 3] if 12 - len(orange_range) == 0: orange_del = [] elif 12 - len(orange_range) == 1: orange_del = [11] elif 12 - len(orange_range) == 2: orange_del = [10, 11] elif 12 - len(orange_range) == 3: orange_del = [9, 10, 11] elif 12 - len(orange_range) == 4: orange_del = [8, 9, 10, 11] elif 12 - len(orange_range) == 5: orange_del = [7, 8, 9, 10, 11] elif 12 - len(orange_range) == 6: orange_del = [6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 7: orange_del = [5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 8: orange_del = [4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 9: orange_del = [3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 10: orange_del = [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 11: orange_del = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] elif 12 - len(orange_range) == 12: orange_del = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] [convert_red[i].setText(f'{red_range["describe"].iloc[i]} \n[{round(red_range["probability"].iloc[i], 2)}%]') for i in range(len(red_range))] [convert_red[i].setText('None\nParameter') for i in red_del] [convert_red[i].setStyleSheet('color : white;' 'font-weight: bold;' 'background-color: blue;') for i in range(len(red_range))] [convert_red[i].setStyleSheet('color : black;' 'background-color: light gray;') for i in red_del] [convert_orange[i].setText(f'{orange_range["describe"].iloc[i]} \n[{round(orange_range["probability"].iloc[i], 2)}%]') for i in range(len(orange_range))] [convert_orange[i].setText('None\nParameter') for i in orange_del] ##################################################################################################################################### # 각 Button에 호환되는 Plotting 데이터 구축 # Red1 Button if self.cb_red1.text().split()[0] != 'None': self.cb_red_plot_1.clear() self.cb_red_plot_1.setTitle(red_range['describe'].iloc[0]) self.cb_red_plot_1.addLegend(offset=(-30,20)) self.cb_red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red2 Button if self.cb_red2.text().split()[0] != 'None': self.cb_red_plot_2.clear() self.cb_red_plot_2.setTitle(red_range['describe'].iloc[1]) self.cb_red_plot_2.addLegend(offset=(-30, 20)) self.cb_red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red3 Button if self.cb_red3.text().split()[0] != 'None': self.cb_red_plot_3.clear() self.cb_red_plot_3.setTitle(red_range['describe'].iloc[2]) self.cb_red_plot_3.addLegend(offset=(-30, 20)) self.cb_red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Red4 Button if self.cb_red4.text().split()[0] != 'None': self.cb_red_plot_4.clear() self.cb_red_plot_4.setTitle(red_range['describe'].iloc[3]) self.cb_red_plot_4.addLegend(offset=(-30, 20)) self.cb_red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_red_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[red_range['index'].iloc[3]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange1 Button if self.cb_orange1.text().split()[0] != 'None': self.cb_orange_plot_1.clear() self.cb_orange_plot_1.setTitle(orange_range['describe'].iloc[0]) self.cb_orange_plot_1.addLegend(offset=(-30, 20)) self.cb_orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_1.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[0]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange2 Button if self.cb_orange2.text().split()[0] != 'None': self.cb_orange_plot_2.clear() self.cb_orange_plot_2.setTitle(orange_range['describe'].iloc[1]) self.cb_orange_plot_2.addLegend(offset=(-30, 20)) self.cb_orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_2.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[1]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange3 Button if self.cb_orange3.text().split()[0] != 'None': self.cb_orange_plot_3.clear() self.cb_orange_plot_3.setTitle(orange_range['describe'].iloc[2]) self.cb_orange_plot_3.addLegend(offset=(-30, 20)) self.cb_orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_3.plot(x=symptom_db[0], y=pd.DataFrame(compared_db)[orange_range['index'].iloc[2]], pen=pyqtgraph.mkPen('k', width=3), name=self.cb.currentText()[:7]) # Orange4 Button if self.cb_orange4.text().split()[0] != 'None': self.cb_orange_plot_4.clear() self.cb_orange_plot_4.setTitle(orange_range['describe'].iloc[3]) self.cb_orange_plot_4.addLegend(offset=(-30, 20)) self.cb_orange_plot_4.plot(x=symptom_db[0], y=pd.DataFrame(symptom_db[1])[orange_range['index'].iloc[3]], pen=pyqtgraph.mkPen('b', width=3), name='Real Data') self.cb_orange_plot_4.plot(x=symptom_db[0], y=
pd.DataFrame(compared_db)
pandas.DataFrame
# Copyright 2016 Feather Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest import numpy as np from pandas.util.testing import assert_frame_equal import pandas as pd from feather.compat import guid from feather import FeatherReader, FeatherWriter import feather def random_path(): return 'feather_{}'.format(guid()) class TestFeatherReader(unittest.TestCase): def setUp(self): self.test_files = [] def tearDown(self): for path in self.test_files: try: os.remove(path) except os.error: pass def test_file_not_exist(self): with self.assertRaises(feather.FeatherError): FeatherReader('test_invalid_file') def _check_pandas_roundtrip(self, df, expected=None): path = random_path() self.test_files.append(path) feather.write_dataframe(df, path) if not os.path.exists(path): raise Exception('file not written') result = feather.read_dataframe(path) if expected is None: expected = df assert_frame_equal(result, expected) def test_num_rows_attr(self): df = pd.DataFrame({'foo': [1, 2, 3, 4, 5]}) path = random_path() self.test_files.append(path) feather.write_dataframe(df, path) reader = feather.FeatherReader(path) assert reader.num_rows == len(df) df = pd.DataFrame({}) path = random_path() self.test_files.append(path) feather.write_dataframe(df, path) reader = feather.FeatherReader(path) assert reader.num_rows == 0 def test_float_no_nulls(self): data = {} numpy_dtypes = ['f4', 'f8'] num_values = 100 for dtype in numpy_dtypes: values = np.random.randn(num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) self._check_pandas_roundtrip(df) def test_float_nulls(self): num_values = 100 path = random_path() self.test_files.append(path) writer = FeatherWriter(path) null_mask = np.random.randint(0, 10, size=num_values) < 3 dtypes = ['f4', 'f8'] expected_cols = [] for name in dtypes: values = np.random.randn(num_values).astype(name) writer.write_array(name, values, null_mask) values[null_mask] = np.nan expected_cols.append(values) writer.close() ex_frame = pd.DataFrame(dict(zip(dtypes, expected_cols)), columns=dtypes) result = feather.read_dataframe(path) assert_frame_equal(result, ex_frame) def test_integer_no_nulls(self): data = {} numpy_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 for dtype in numpy_dtypes: info = np.iinfo(dtype) values = np.random.randint(info.min, min(info.max, np.iinfo('i8').max), size=num_values) data[dtype] = values.astype(dtype) df = pd.DataFrame(data) self._check_pandas_roundtrip(df) def test_integer_with_nulls(self): # pandas requires upcast to float dtype path = random_path() self.test_files.append(path) int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] num_values = 100 writer = FeatherWriter(path) null_mask = np.random.randint(0, 10, size=num_values) < 3 expected_cols = [] for name in int_dtypes: values = np.random.randint(0, 100, size=num_values) writer.write_array(name, values, null_mask) expected = values.astype('f8') expected[null_mask] = np.nan expected_cols.append(expected) ex_frame = pd.DataFrame(dict(zip(int_dtypes, expected_cols)), columns=int_dtypes) writer.close() result = feather.read_dataframe(path) assert_frame_equal(result, ex_frame) def test_boolean_no_nulls(self): num_values = 100 np.random.seed(0) df = pd.DataFrame({'bools': np.random.randn(num_values) > 0}) self._check_pandas_roundtrip(df) def test_boolean_nulls(self): # pandas requires upcast to object dtype path = random_path() self.test_files.append(path) num_values = 100 np.random.seed(0) writer = FeatherWriter(path) mask = np.random.randint(0, 10, size=num_values) < 3 values = np.random.randint(0, 10, size=num_values) < 5 writer.write_array('bools', values, mask) expected = values.astype(object) expected[mask] = None writer.close() ex_frame = pd.DataFrame({'bools': expected}) result = feather.read_dataframe(path) assert_frame_equal(result, ex_frame) def test_boolean_object_nulls(self): arr = np.array([False, None, True] * 100, dtype=object) df = pd.DataFrame({'bools': arr}) self._check_pandas_roundtrip(df) def test_strings(self): repeats = 1000 values = [b'foo', None, u'bar', 'qux', np.nan] df = pd.DataFrame({'strings': values * repeats}) values = ['foo', None, u'bar', 'qux', None] expected = pd.DataFrame({'strings': values * repeats}) self._check_pandas_roundtrip(df, expected) def test_nan_as_null(self): # Create a nan that is not numpy.nan values = np.array(['foo', np.nan, np.nan * 2, 'bar'] * 10) df =
pd.DataFrame({'strings': values})
pandas.DataFrame
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy from bt.core import FixedIncomeStrategy, HedgeSecurity, FixedIncomeSecurity from bt.core import CouponPayingSecurity, CouponPayingHedgeSecurity from bt.core import is_zero import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree1(): # Create a regular strategy c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c1 assert p['c1'] != c2 c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root # Create a new parent strategy with a child sub-strategy m = Node('m', children=[p, c1]) p = m['p'] mc1 = m['c1'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 2 assert 'p' in m.children assert 'c1' in m.children assert mc1 != c1 assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent assert m == p.root assert m == c1.root assert m == c2.root # Add a new node into the strategy c0 = Node('c0', parent=p) c0 = p['c0'] assert 'c0' in p.children assert p == c0.parent assert m == c0.root assert len(p.children) == 3 # Add a new sub-strategy into the parent strategy p2 = Node( 'p2', children = [c0, c1], parent=m ) p2 = m['p2'] c0 = p2['c0'] c1 = p2['c1'] assert 'p2' in m.children assert p2.parent == m assert len(p2.children) == 2 assert 'c0' in p2.children assert 'c1' in p2.children assert c0 != p['c0'] assert c1 != p['c1'] assert p2 == c0.parent assert p2 == c1.parent assert m == p2.root assert m == c0.root assert m == c1.root def test_node_tree2(): # Just like test_node_tree1, but using the dictionary constructor c = Node('template') p = Node('p', children={'c1':c, 'c2':c, 'c3':'', 'c4':''}) assert 'c1' in p.children assert 'c2' in p.children assert p['c1'] != c assert p['c1'] != c c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert c1.name == 'c1' assert c2.name == 'c2' assert p == c1.parent assert p == c2.parent assert p == c1.root assert p == c2.root def test_node_tree3(): c1 = Node('c1') c2 = Node('c1') # Same name! raised = False try: p = Node('p', children=[c1, c2, 'c3', 'c4']) except ValueError: raised = True assert raised raised = False try: p = Node('p', children=['c1', 'c1']) except ValueError: raised = True assert raised c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2, 'c3', 'c4']) raised = False try: Node('c1', parent = p ) except ValueError: raised = True assert raised # This does not raise, as it's just providing an implementation of 'c3', # which had been declared earlier c3 = Node('c3', parent = p ) assert 'c3' in p.children def test_integer_positions(): c1 = Node('c1') c2 = Node('c2') c1.integer_positions = False p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert p.integer_positions assert c1.integer_positions assert c2.integer_positions p.use_integer_positions(False) assert not p.integer_positions assert not c1.integer_positions assert not c2.integer_positions c3 = Node('c3', parent=p) c3 = p['c3'] assert not c3.integer_positions p2 = Node( 'p2', children = [p] ) p = p2['p'] c1 = p['c1'] c2 = p['c2'] assert p2.integer_positions assert p.integer_positions assert c1.integer_positions assert c2.integer_positions def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 s.update(dts[0]) assert s.flows[ dts[0] ] == 1000 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 105 assert c2.price == 95 i = 2 s.update(dts[i], data.loc[dts[i]]) assert c1.price == 100 assert c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.loc[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.loc[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.loc[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.loc[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_lazy(): # A mix of test_strategybase_universe and test_strategybase_allocate # to make sure that assets with lazy_add work correctly. c1 = SecurityBase('c1', multiplier=2, lazy_add=True, ) c2 = FixedIncomeSecurity('c2', lazy_add=True) s = StrategyBase('s', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 s.adjust(1000) s.allocate(100, 'c1') s.allocate(100, 'c2') c1 = s['c1'] c2 = s['c2'] assert c1.multiplier == 2 assert isinstance( c2, FixedIncomeSecurity) def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 = s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 2 assert c2.value == 1000 assert c2.weight == 1000.0 / 1050. assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_no_post_update(): s = StrategyBase('s') s.set_commissions(lambda q, p: 1) dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.loc[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 999 assert s.capital == 49 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 999 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1049 assert s.capital == 49 assert len(s.children) == 1 assert 'c2' in s.children c2 = s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1049.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1047 assert s.capital == 2 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1047 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1102 assert s.capital == 2 assert c1.value == 1100 assert c1.weight == 1100.0 / 1102 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1100 assert s.capital == 55 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1100 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1098 assert s.capital == 53 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1098 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1096 assert s.capital == 51 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1096 assert c2.price == 95 def test_strategybase_prices(): dts = pd.date_range('2010-01-01', periods=21) rawd = [13.555, 13.75, 14.16, 13.915, 13.655, 13.765, 14.02, 13.465, 13.32, 14.65, 14.59, 14.175, 13.865, 13.865, 13.89, 13.85, 13.565, 13.47, 13.225, 13.385, 12.89] data = pd.DataFrame(index=dts, data=rawd, columns=['a']) s = StrategyBase('s') s.set_commissions(lambda q, p: 1) s.setup(data) # buy 100 shares on day 1 - hold until end # just enough to buy 100 shares + 1$ commission s.adjust(1356.50) s.update(dts[0]) # allocate all capital to child a # a should be dynamically created and should have # 100 shares allocated. s.capital should be 0 s.allocate(s.value, 'a') assert s.capital == 0 assert s.value == 1355.50 assert len(s.children) == 1 aae(s.price, 99.92628, 5) a = s['a'] assert a.position == 100 assert a.value == 1355.50 assert a.weight == 1 assert a.price == 13.555 assert len(a.prices) == 1 # update through all dates and make sure price is ok s.update(dts[1]) aae(s.price, 101.3638, 4) s.update(dts[2]) aae(s.price, 104.3863, 4) s.update(dts[3]) aae(s.price, 102.5802, 4) # finish updates and make sure ok at end for i in range(4, 21): s.update(dts[i]) assert len(s.prices) == 21 aae(s.prices[-1], 95.02396, 5) aae(s.prices[-2], 98.67306, 5) def test_fail_if_root_value_negative(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) s.adjust(-100) # trigger update s.update(dts[0]) assert s.bankrupt # make sure only triggered if root negative c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(-100) s.update(dts[0]) # now make it trigger c1.adjust(-1000) # trigger update s.update(dts[0]) assert s.bankrupt def test_fail_if_0_base_in_return_calc(): dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 # must setup tree because if not negative root error pops up first c1 = StrategyBase('c1') s = StrategyBase('s', children=[c1]) c1 = s['c1'] s.setup(data) s.adjust(1000) c1.adjust(100) s.update(dts[0]) c1.adjust(-100) s.update(dts[1]) try: c1.adjust(-100) s.update(dts[1]) assert False except ZeroDivisionError as e: if 'Could not update' not in str(e): assert False def test_strategybase_tree_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1', update=True) assert s.root.stale == True assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 # Check that rebalance with update=False # does not mark the node as stale s.rebalance(0.6, 'c1', update=False) assert s.root.stale == False def test_strategybase_tree_decimal_position_rebalance(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.use_integer_positions(False) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000.2) s.rebalance(0.42, 'c1') s.rebalance(0.58, 'c2') aae(c1.value, 420.084) aae(c2.value, 580.116) aae(c1.value + c2.value, 1000.2) def test_rebalance_child_not_in_tree(): s = StrategyBase('p') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) # rebalance to 0 w/ child that is not present - should ignore s.rebalance(0, 'c2') assert s.value == 1000 assert s.capital == 1000 assert len(s.children) == 0 def test_strategybase_tree_rebalance_to_0(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance c1 s.rebalance(0.5, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 # now rebalance c1 s.rebalance(0, 'c1') assert c1.position == 0 assert c1.value == 0 assert s.capital == 1000 assert s.value == 1000 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_rebalance_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now rebalance child s1 - since its children are 0, no waterfall alloc m.rebalance(0.5, 's1') assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child s1.rebalance(0.4, 'c1') assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 # now rebalance child s1 again and make sure c1 also gets proportional # increase m.rebalance(0.8, 's1') assert s1.value == 800 aae(m.capital, 200, 1) assert m.value == 1000 assert s1.weight == 800 / 1000 assert s2.weight == 0 assert c1.value == 300.0 assert c1.weight == 300.0 / 800 assert c1.position == 3 # now rebalance child s1 to 0 - should close out s1 and c1 as well m.rebalance(0, 's1') assert s1.value == 0 assert m.capital == 1000 assert m.value == 1000 assert s1.weight == 0 assert s2.weight == 0 assert c1.weight == 0 def test_strategybase_tree_rebalance_base(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) s.set_commissions(lambda q, p: 1) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.loc[dts[i]]) s.adjust(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # check that 2 rebalances of equal weight lead to two different allocs # since value changes after first call s.rebalance(0.5, 'c1') assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2') assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 # close out everything s.flatten() # adjust to get back to 1000 s.adjust(4) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now rebalance but set fixed base base = s.value s.rebalance(0.5, 'c1', base=base) assert c1.position == 4 assert c1.value == 400 assert s.capital == 1000 - 401 assert s.value == 999 assert c1.weight == 400.0 / 999 assert c2.weight == 0 s.rebalance(0.5, 'c2', base=base) assert c2.position == 4 assert c2.value == 400 assert s.capital == 1000 - 401 - 401 assert s.value == 998 assert c2.weight == 400.0 / 998 assert c1.weight == 400.0 / 998 def test_algo_stack(): a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # no run_always for now del a1.run_always del a2.run_always del a3.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert not a3.called # now test that run_always marked are run a1 = mock.MagicMock(return_value=True) a2 = mock.MagicMock(return_value=False) a3 = mock.MagicMock(return_value=True) # a3 will have run_always del a1.run_always del a2.run_always stack = AlgoStack(a1, a2, a3) target = mock.MagicMock() assert not stack(target) assert a1.called assert a2.called assert a3.called def test_set_commissions(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.set_commissions(lambda x, y: 1.0) s.setup(data) s.update(dts[0]) s.adjust(1000) s.allocate(500, 'c1') assert s.capital == 599 s.set_commissions(lambda x, y: 0.0) s.allocate(-400, 'c1') assert s.capital == 999 def test_strategy_tree_proper_return_calcs(): s1 = StrategyBase('s1') s2 = StrategyBase('s2') m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.loc['c1', dts[1]] = 105 data.loc['c2', dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.loc[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert m.price == 100 assert s1.value == 0 assert s2.value == 0 # now allocate directly to child s1.allocate(500) assert m.capital == 500 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.weight == 0 # allocate to child2 via parent method m.allocate(500, 's2') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000 assert s2.price == 100 # now allocate and incur commission fee s1.allocate(500, 'c1') assert m.capital == 0 assert m.value == 1000 assert m.price == 100 assert s1.value == 500 assert s1.weight == 500.0 / 1000 assert s1.price == 100 assert s2.value == 500 assert s2.weight == 500.0 / 1000.0 assert s2.price == 100 def test_strategy_tree_proper_universes(): def do_nothing(x): return True child1 = Strategy('c1', [do_nothing], ['b', 'c']) parent = Strategy('m', [do_nothing], [child1, 'a']) child1 = parent['c1'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame( {'a': pd.Series(data=1, index=dts, name='a'), 'b': pd.Series(data=2, index=dts, name='b'), 'c':
pd.Series(data=3, index=dts, name='c')
pandas.Series
import os import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader # from sklearn.preprocessing import StandardScaler from utils.tools import StandardScaler from utils.timefeatures import time_features import warnings warnings.filterwarnings('ignore') class Dataset_ETT_hour(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.flag = flag self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) self.df_raw = df_raw # lấy lengt() của dataset chia tỉ lệ 70% 20% num_train = int(len(df_raw)*0.15) num_test = int(len(df_raw)*0.80) # vali nghĩa là num_vali = len(df_raw) - num_train - num_test border1s = [0, num_train-self.seq_len, len(df_raw)-num_test-self.seq_len] border2s = [num_train, num_train+num_vali, len(df_raw)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': # Cắt lấy dòng tiêu đề và loại bỏ cột date. Dữ liệu bên trong: Index(['open', 'close', 'TT'], dtype='object') cols_data = df_raw.columns[1:] # lọc loại bỏ cột date df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: # dữ liệu dùng để train train_data = df_data[border1s[0]:border2s[0]] # tính mean và sdt chuẩn bị cho thu nhỏ dữ liệu self.scaler.fit(train_data.values) # thu nhỏ dữ liệu data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] =
pd.to_datetime(df_stamp.date)
pandas.to_datetime
import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import pytest import datetime from pandas.api.types import is_numeric_dtype import timeserio.ini as ini from timeserio.data.mock import mock_fit_data from timeserio.preprocessing import PandasDateTimeFeaturizer from timeserio.preprocessing.datetime import ( get_fractional_day_from_series, get_fractional_hour_from_series, get_fractional_year_from_series, truncate_series, get_zero_indexed_month_from_series, get_time_is_in_interval_from_series, get_is_holiday_from_series ) datetime_column = ini.Columns.datetime seq_column = f'seq_{ini.Columns.datetime}' usage_column = ini.Columns.target @pytest.fixture def df(): return mock_fit_data(start_date=datetime.datetime(2017, 1, 1, 1, 0)) @pytest.fixture def featurizer(): return PandasDateTimeFeaturizer() def test_get_fractional_hour_from_series(): series = pd.Series( pd.date_range(start='2000-01-01', freq='0.5H', periods=48) ) fractionalhour = get_fractional_hour_from_series(series) expected = pd.Series(np.linspace(0, 23.5, 48)) pdt.assert_series_equal(fractionalhour, expected) def test_get_fractional_day_from_series(): series = pd.Series(pd.date_range(start='2000-01-01', freq='6H', periods=5)) fractional_day = get_fractional_day_from_series(series) expected = pd.Series([0, 0.25, 0.5, 0.75, 0]) pdt.assert_series_equal(fractional_day, expected) def test_get_fractional_year_from_series(): series = pd.Series( pd.date_range(start='2000-01-01', freq='31D', periods=5) ) fractional_year = get_fractional_year_from_series(series) expected = pd.Series([0, 1, 2, 3, 4]) * 31 / 365. pdt.assert_series_equal(fractional_year, expected) def test_get_is_holiday_from_series(): series = pd.Series(pd.date_range(start='2000-01-01', freq='D', periods=5)) is_holiday = get_is_holiday_from_series(series) expected = pd.Series([1, 1, 1, 1, 0]) pdt.assert_series_equal(is_holiday, expected) @pytest.mark.parametrize( "country, expected", [("England", [1, 0, 0, 1]), ("Scotland", [1, 1, 1, 0])] ) def test_get_is_holiday_from_series_with_country(country, expected): dates = ["2020-01-01", "2020-01-02", "2020-08-03", "2020-08-31"] series = pd.to_datetime(pd.Series(dates)) is_holiday = get_is_holiday_from_series(series, country=country) pdt.assert_series_equal(is_holiday, pd.Series(expected)) def test_get_zero_indexed_month_from_series(): series = pd.Series( pd.date_range(start='2000-01-01', freq='1M', periods=12) ) month0 = get_zero_indexed_month_from_series(series) expected = pd.Series(range(12)) pdt.assert_series_equal(month0, expected) @pytest.mark.parametrize( 'series_data, truncation_period, expected_data', [ ([pd.Timestamp(2019, 1, 1, 1, 9)], 'H', [pd.Timestamp(2019, 1, 1, 1)]), ([pd.Timestamp(2019, 1, 2, 1)], 'd', [pd.Timestamp(2019, 1, 2)]), ([pd.Timestamp(2019, 1, 1)], 'W', [pd.Timestamp(2018, 12, 31)]), ([pd.Timestamp(2019, 1, 1)], 'W-FRI', [pd.Timestamp(2018, 12, 29)]), ([pd.Timestamp(2019, 1, 1)], 'W-TUE', [pd.Timestamp(2018, 12, 26)]), ([pd.Timestamp(2019, 2, 8)], 'm', [pd.Timestamp(2019, 2, 1)]), ([pd.Timestamp(2019, 3, 4)], 'Y', [pd.Timestamp(2019, 1, 1)]), ( [pd.Timestamp(2019, 1, 1, 1, 30), pd.Timestamp(2019, 1, 1, 2, 30)], 'H', [pd.Timestamp(2019, 1, 1, 1), pd.Timestamp(2019, 1, 1, 2)], ), ] ) def test_truncate_series(series_data, truncation_period, expected_data): out = truncate_series(pd.Series(series_data), truncation_period) expected = pd.Series(expected_data)
pdt.assert_series_equal(out, expected)
pandas.testing.assert_series_equal
# coding: utf-8 # In[1]: """Running basic code: Importing packages, setting working directory, printing out date""" from IPython.display import HTML import pandas as pd import numpy as np from matplotlib import pyplot as plt import seaborn as sns from IPython.display import YouTubeVideo from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram from matplotlib.colors import ListedColormap import networkx as nx import urllib import os as os import pandas as pd import numpy as np import itertools import networkx as nx from bokeh.io import show, output_file from bokeh.models import Plot, Range1d, MultiLine, Circle, HoverTool, TapTool, BoxSelectTool, BoxZoomTool, ResetTool, PanTool, WheelZoomTool import bokeh.models.graphs as graphs #from bokeh.model.graphs import from_networkx, NodesAndLinkedEdges, EdgesAndLinkedNodes from bokeh.palettes import Spectral4 plt.rcParams['figure.figsize'] = (16, 9) plt.rcParams['font.size'] = 9 plt.rcParams['font.family'] = 'Times New Roman' plt.rcParams['axes.labelsize'] = plt.rcParams['font.size'] plt.rcParams['axes.titlesize'] = 1.5*plt.rcParams['font.size'] plt.rcParams['legend.fontsize'] = plt.rcParams['font.size'] plt.rcParams['xtick.labelsize'] = plt.rcParams['font.size'] plt.rcParams['ytick.labelsize'] = plt.rcParams['font.size'] plt.rcParams['savefig.dpi'] = 600 plt.rcParams['xtick.major.size'] = 3 plt.rcParams['xtick.minor.size'] = 3 plt.rcParams['xtick.major.width'] = 1 plt.rcParams['xtick.minor.width'] = 1 plt.rcParams['ytick.major.size'] = 3 plt.rcParams['ytick.minor.size'] = 3 plt.rcParams['ytick.major.width'] = 1 plt.rcParams['ytick.minor.width'] = 1 plt.rcParams['legend.frameon'] = False plt.rcParams['legend.loc'] = 'center left' plt.rcParams['axes.linewidth'] = 1 plt.gca().spines['right'].set_color('none') plt.gca().spines['top'].set_color('none') plt.gca().xaxis.set_ticks_position('bottom') plt.gca().yaxis.set_ticks_position('left') plt.gca().spines['right'].set_color('none') plt.gca().spines['top'].set_color('none') plt.gca().xaxis.set_ticks_position('bottom') plt.gca().yaxis.set_ticks_position('left') sns.set_style('white') plt.close() ############################################################################################# ############################################################################################# def plot_unipartite_network (title,network, network_name, layout_func): """Creating positions of the nodes""" if layout_func == 'fruchterman_reingold': layout = nx.fruchterman_reingold_layout(network, scale=2 )#k = 0.05, iterations=500 elif layout_func =='spring': layout = nx.spring_layout(network, k = 0.05, scale=2) elif layout_func =='circular': layout = nx.circular_layout(network, scale=1, center=None, dim=2) elif layout_func == 'kamada': layout = nx.kamada_kawai_layout(network, scale=1, center=None, dim=2) elif layout_func == 'spectral': layout = nx.spectral_layout(network, scale=1, center=None, dim=2) else: layout = nx.fruchterman_reingold_layout(network, scale=2 )#k = 0.05, iterations=500 from bokeh.models import ColumnDataSource from bokeh.plotting import show, figure , output_file from bokeh.io import output_notebook from bokeh.models import HoverTool output_notebook() nodes, nodes_coordinates = zip(*layout.items()) nodes_xs, nodes_ys = list(zip(*nodes_coordinates)) #nodes_source = ColumnDataSource(dict(x=nodes_xs, y=nodes_ys, # name=nodes,)) node_data = dict(x=nodes_xs, y=nodes_ys, name=nodes) nd = pd.DataFrame.from_dict(node_data).dropna() #hostc = '#377eb8' nodes_source = ColumnDataSource(dict(x=nd.x.tolist(), y=nd.y.tolist(), name = nd.name.tolist())) """ Generate the figure 1. Create tools 2. Set plot size and tools """ #hover = HoverTool(tooltips=[('', '@name')]) #hover = HoverTool(names=["name"]) plot = figure(title=title, plot_width=800, plot_height=800, tools=['pan','wheel_zoom', 'reset','box_zoom','tap' ]) """ plot main circles 1. Plot only nodes according to their positions """ r_circles = plot.circle('x', 'y', source=nodes_source, size=10, color= '#377eb8', alpha=0.5, level = 'overlay',name='name') """ Function Get data for generation of edges """ def get_edges_specs(_network, _layout): c = dict(xs=[], ys=[], alphas=[]) #print d weights = [d['weight'] for u, v, d in _network.edges(data=True)] max_weight = max(weights) calc_alpha = lambda h: 0.1 + 0.5 * (h / max_weight) # example: { ..., ('user47', 'da_bjoerni', {'weight': 3}), ... } for u, v, data in _network.edges(data=True): c['xs'].append([_layout[u][0], _layout[v][0]]) c['ys'].append([_layout[u][1], _layout[v][1]]) c['alphas'].append(calc_alpha(data['weight'])) return c """ get the data for edges """ lines_source = ColumnDataSource(get_edges_specs(network, layout)) """ plot edge lines """ r_lines = plot.multi_line('xs', 'ys', line_width=1.5, alpha=1 , color='#b3b6b7', source=lines_source, )#name = 'edge' """Centrality """ centrality = nx.algorithms.centrality.betweenness_centrality(network) """ first element are nodes again """ _, nodes_centrality = zip(*centrality.items()) max_centraliy = max(nodes_centrality) nodes_source.add([7 + 15 * t / max_centraliy for t in nodes_centrality], 'centrality') """Communities""" from community import community_louvain partition = community_louvain.best_partition(network) p_, nodes_community = zip(*partition.items()) nodes_source.add(nodes_community, 'community') community_colors = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628', '#b3cde3','#ccebc5','#decbe4','#fed9a6','#ffffcc','#e5d8bd','#fddaec', '#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d', '#666666'] nodes_source.add([community_colors[t % len(community_colors)] for t in nodes_community],'community_color') """Host Type colour""" """Update the plot with communities and Centrality""" r_circles.glyph.size = 'centrality' r_circles.glyph.fill_color = 'community_color' hover = HoverTool(tooltips=[('', '@name')], renderers=[r_circles]) plot.add_tools(hover) output_file(network_name+"_unipartite.html") show(plot) ############################################################################################# ############################################################################################# def construct_bipartite_host_virus_network(dataframe, network_name, plot= False, filter_file= False, taxonomic_filter = None): #if data_filename: # """Importing all the data # data: """ # if ".pickle" in data_filename: # data = pd.read_pickle(data_filename,) # else: # data = pd.read_csv(data_filename, encoding='ISO-8859-1', low_memory=False) data = dataframe """ filter data according to viral family """ if taxonomic_filter: data = data[data.viral_family == taxonomic_filter] """hosttaxa: creating dataframe of unique hosts and their characteristics to generate nodes""" hosttaxa = data.groupby(['ScientificName']).size().reset_index().rename(columns={0:'count'}) """vlist: creating list of unique viruses to generate nodes""" vlist = data.virus_name.dropna().unique().tolist() """Construction of network""" from networkx.algorithms import bipartite DG=nx.Graph() """Initiating host nodes""" for index, row in hosttaxa.iterrows(): DG.add_node(row['ScientificName'], type="host", speciesname = row['ScientificName'], bipartite = 0 ) """Initiating virus nodes""" for virus in vlist: DG.add_node(virus, type="virus", virusname = virus, bipartite = 1) """Iterating through the raw data to add Edges if a virus is found in a host""" """Iterating through the raw data to add Edges if a virus is found in a host""" if filter_file: for index, row in data.iterrows(): if row.ConfirmationResult == 'Positive': DG.add_edge(row['ScientificName'], row['virus_name'], AnimalID = 'AnimalID', weight = 1) else: for index, row in data.iterrows(): DG.add_edge(row['ScientificName'], row['virus_name'], weight = 1) """Creating positions of the nodes""" #layout = nx.spring_layout(DG, k = 0.05, scale=2) # layout = nx.fruchterman_reingold_layout(DG, k = 0.05, iterations=50) """write graph """ nx.write_graphml(DG, network_name + "_bipartite.graphml") """ Plotting """ if plot: from bokeh.models import ColumnDataSource nodes, nodes_coordinates = zip(*layout.items()) nodes_xs, nodes_ys = list(zip(*nodes_coordinates)) node_data = dict(x=nodes_xs, y=nodes_ys, name=nodes) nd = pd.DataFrame.from_dict(node_data) def addNodeType(c): if c.name in vlist: return 'Virus' else: return 'Host' #nd['node_type'] = nd.apply(addNodeType, axis=1) virusc = '#ef8a62' # ,'#e05354' hostc = '#67a9cf' nt = [] nodecolors = [] for i in range (nd.shape[0]): if nd.name[i] in vlist: nt.append('virus') nodecolors.append(virusc) else: nt.append('host') nodecolors.append(hostc) nd['node_type'] = nt nd['colors'] = nodecolors #nodes_source = ColumnDataSource(nd.to_dict()) nodes_source = ColumnDataSource(dict(x=nd.x.tolist(), y=nd.y.tolist(), name = nd.name.tolist(), node_type = nd.node_type.tolist(), colors = nd.colors.tolist())) from bokeh.plotting import show, figure , output_file from bokeh.io import output_notebook from bokeh.models import HoverTool output_notebook() """ Generate the figure 1. Create tools 2. Set plot size and tools """ #hover = HoverTool(tooltips=[('name', '@name'),('type', '@node_type')]) plot = figure(title=network_name+": Host virus bipartite network", plot_width=1200, plot_height=1200, tools=['pan','wheel_zoom','reset','box_zoom','tap' ]) """ plot main circles 1. Plot only nodes according to their positions """ r_circles = plot.circle('x', 'y', source=nodes_source, size=10, color= "colors", alpha=0.5, level = 'overlay',) """ Function Get data for generation of edges """ def get_edges_specs(_network, _layout): c = dict(xs=[], ys=[], alphas=[]) #print d weights = [d['weight'] for u, v, d in _network.edges(data=True)] max_weight = max(weights) calc_alpha = lambda h: 0.1 + 0.6 * (h / max_weight) # example: { ..., ('user47', 'da_bjoerni', {'weight': 3}), ... } for u, v, data in _network.edges(data=True): c['xs'].append([_layout[u][0], _layout[v][0]]) c['ys'].append([_layout[u][1], _layout[v][1]]) c['alphas'].append(calc_alpha(data['weight'])) return c """ get the data for edges """ lines_source = ColumnDataSource(get_edges_specs(DG, layout)) """ plot edge lines """ r_lines = plot.multi_line('xs', 'ys', line_width=1.5, alpha=1 , color='#b3b6b7', source=lines_source) """Centrality """ centrality = nx.algorithms.centrality.betweenness_centrality(DG) """ first element are nodes again """ _, nodes_centrality = zip(*centrality.items()) max_centraliy = max(nodes_centrality) nodes_source.add([7 + 15 * t / max_centraliy for t in nodes_centrality], 'centrality') """Communities""" import community partition = community.best_partition(network) #import community #python-louvain #partition = community.best_partition(DG) p_, nodes_community = zip(*partition.items()) nodes_source.add(nodes_community, 'community') community_colors = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628', '#b3cde3','#ccebc5','#decbe4','#fed9a6','#ffffcc','#e5d8bd','#fddaec', '#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d', '#666666'] nodes_source.add([community_colors[t % len(community_colors)] for t in nodes_community],'community_color') """Host Type colour""" """Update the plot with communities and Centrality""" r_circles.glyph.size = 'centrality' hover = HoverTool(tooltips=[('', '@name')], renderers=[r_circles]) plot.add_tools(hover) output_file(network_name+"_bipartite.html") show(plot) return DG ############################################################################################# ############################################################################################# def construct_unipartite_virus_virus_network(dataframe, network_name, layout_func = 'fruchterman_reingold', plot= False, filter_file= False, taxonomic_filter = None, return_df = False): """first construct bipartite network""" if filter_file: BPnx = construct_bipartite_host_virus_network(dataframe = dataframe, network_name= network_name, plot=False, filter_file= True, taxonomic_filter = taxonomic_filter) else: BPnx = construct_bipartite_host_virus_network(dataframe = dataframe, network_name= network_name, plot=False, filter_file= False, taxonomic_filter = taxonomic_filter) #if data_filename: # """Importing all the data # data: """ # if ".pickle" in data_filename: # data = pd.read_pickle(data_filename,) # else: # data = pd.read_csv(data_filename, encoding='ISO-8859-1', low_memory=False) data = dataframe data['ScientificName'] = data['ScientificName'].str.replace('[^\x00-\x7F]','') if taxonomic_filter: data = data[data.viral_family == taxonomic_filter] """hosttaxa: creating dataframe of unique hosts and their characteristics to generate nodes""" hosttaxa = data.groupby(['ScientificName']).size().reset_index().rename(columns={0:'count'}) """vlist: creating list of unique viruses to generate nodes""" virus_dataframe = data.groupby(['virus_name', 'viral_family']).size().reset_index().rename(columns={0:'count'}) vlist = data.virus_name.dropna().unique().tolist() """Here we will copllapse the Bipartite network to monopartite Nodes will be viruses Edges will be hosts they share the virus with""" df = pd.DataFrame(list(itertools.combinations(vlist, 2))) df.columns = ['Virus1', 'Virus2'] def get_n_shared_hosts(c): return len(list(nx.common_neighbors(BPnx, c['Virus1'],c['Virus2']))) df['n_shared_hosts'] = df.apply(get_n_shared_hosts, axis=1) #"""removing pairs with 0 shared hosts""" #df.drop(df[df.n_shared_hosts == 0].index, inplace=True) def addsharedhosts (c): return sorted(nx.common_neighbors(BPnx, c['Virus1'],c['Virus2'])) df["shared_hosts"] = df.apply(addsharedhosts, axis=1) print ('we have '+str(df.shape[0])+' virus pairs in our model') """Creating the a network now using the df EDGES will be weighted according to number of shared hosts""" VS_unx = nx.Graph() """Initiating virus nodes""" for index, row in virus_dataframe.iterrows(): VS_unx.add_node(row['virus_name'], type="virus", ViralFamily = str(row['viral_family']), bipartite = 1) #for virus in pd.unique(df[['Virus1', 'Virus2']].values.ravel()).tolist(): # VS_unx.add_node(virus, type="virus", virusname = virus, bipartite = 1) """Iterating through the raw data to add Edges if a virus is found in a host""" for index, row in df.iterrows(): if row['n_shared_hosts'] > 0: VS_unx.add_edge(row['Virus1'], row['Virus2'], weight = row['n_shared_hosts'], hosts = ','.join(row['shared_hosts'])) """Creating positions of the nodes""" if layout_func == 'fruchterman_reingold': layout = nx.fruchterman_reingold_layout(VS_unx, scale=2 )#k = 0.05, iterations=500 elif layout_func =='spring': layout = nx.spring_layout(VS_unx, k = 0.05, scale=2) elif layout_func =='circular': layout = nx.circular_layout(VS_unx, scale=1, center=None, dim=2) elif layout_func == 'kamada': layout = nx.kamada_kawai_layout(VS_unx, scale=1, center=None, dim=2) elif layout_func == 'spectral': layout = nx.spectral_layout(VS_unx, scale=1, center=None, dim=2) else: layout = nx.fruchterman_reingold_layout(VS_unx, scale=2 )#k = 0.05, iterations=500 """write graph """ #nx.write_graphml(VS_unx, network_name+"unipartite.graphml") if plot: plot_unipartite_network(title = network_name,network = VS_unx, network_name = network_name, layout_func = layout_func) if return_df: return df, VS_unx ####################################################################################################### ####################################################################################################### def calculate_features(data_frame, network, Species_file_name, data_path, virus_df, long = False): print('calculate_features function is in function file 1st function') print ('calculating topographical features') ################################################################################################################################ ################################################################################################################################ ################################################################################################################################ ################################################################################################################################ print ('calculating Jaccard coefficients') def jaccard (c): return sorted(nx.jaccard_coefficient(network, [(c['Virus1'],c['Virus2'])]))[0][2] data_frame["jaccard"] = data_frame.apply(jaccard, axis=1) ################################################################################################################################ ################################################################################################################################ def hasShortestPath (c): return nx.has_path(network, c['Virus1'], c['Virus2']) data_frame["hasPath"] = data_frame.apply(hasShortestPath, axis=1) print ('calculating shortest path length') def ShortPathLen(c): if c["hasPath"]: return nx.shortest_path_length(network, c['Virus1'], c['Virus2']) else: return np.nan data_frame["ShortPathLen"] = data_frame.apply(ShortPathLen, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating adamic/adar index') def adar (c): return sorted(nx.adamic_adar_index(network, [(c['Virus1'],c['Virus2'])]))[0][2] data_frame["adamic_adar"] = data_frame.apply(adar, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating Resource coefficients') def resource (c): return sorted(nx.resource_allocation_index(network, [(c['Virus1'],c['Virus2'])]))[0][2] data_frame["resource"] = data_frame.apply(resource, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating preferential attachment coefficients') def preferential (c): return sorted(nx.preferential_attachment(network, [(c['Virus1'],c['Virus2'])]))[0][2] data_frame["preferential_attach"] = data_frame.apply(preferential, axis=1) ################################################################################################################################ ################################################################################################################################ if long: ################################################################################################################################ ################################################################################################################################ print ('listing neighbors') def neighbors (c): l = sorted(nx.common_neighbors(network, c['Virus1'],c['Virus2'])) return str(l)[1:-1] data_frame["neighbors"] = data_frame.apply(neighbors, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating number of neighbors') def neighbors_n (c): return len(sorted(nx.common_neighbors(network, c['Virus1'],c['Virus2']))) data_frame["neighbors_n"] = data_frame.apply(neighbors_n, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating difference in betweenness centrality') btw = nx.betweenness_centrality(network, 25) def betweenDiff(c): return abs(btw[c['Virus1']] - btw[c['Virus2']]) data_frame["betweeness_diff"] = data_frame.apply(betweenDiff, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating node clusters') from community import community_louvain partition = community_louvain.best_partition(network) ################################################################################################################################ ################################################################################################################################ def virus1_cluster(c): return partition[c['Virus1']] data_frame['VirusCluster1'] = data_frame.apply(virus1_cluster, axis=1) def virus2_cluster(c): return partition[c['Virus2']] data_frame['VirusCluster2'] = data_frame.apply(virus2_cluster, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating if nodes are in a same cluster') def in_same_cluster(c): if(partition[c['Virus1']] == partition[c['Virus2']]): return True else: return False data_frame["in_same_cluster"] = data_frame.apply(in_same_cluster, axis=1) ################################################################################################################################ ################################################################################################################################ print ('calculating difference in degree') degree = nx.degree(network) def degreeDiff(c): return abs(degree[c['Virus1']] - degree[c['Virus2']]) data_frame["degree_diff"] = data_frame.apply(degreeDiff, axis=1) ################################################################################################################################ ################################################################################################################################ if long: IUCN = pd.read_csv(data_path+ Species_file_name) IUCN["ScientificName"] = IUCN["Genus"].map(str) +' '+IUCN["Species"] IUCN.loc[IUCN.ScientificName== 'Homo sapiens', 'Order'] = 'Humans' ################################################################################################################################ ################################################################################################################################ print ('getting Order and Family values for shared hosts') def getOrders (c): orderlist = [] if len(c.shared_hosts) > 0: for h in (c.shared_hosts): try: orderlist.append(IUCN.loc[IUCN['ScientificName'] == h, 'Order'].iloc[0]) except: orderlist.append('MatchNotFound') return orderlist data_frame['orders'] = data_frame.apply(getOrders, axis=1) ################################################################################################################################ ################################################################################################################################ def getFamily (c): orderlist = [] if len(c.shared_hosts) > 0: for h in (c.shared_hosts): try: orderlist.append(IUCN.loc[IUCN['ScientificName'] == h, 'Family'].iloc[0]) except: orderlist.append('MatchNotFound') return orderlist data_frame['families'] = data_frame.apply(getFamily, axis=1) ################################################################################################################################ ################################################################################################################################ def OrderRichness (c): return len(set(c.orders)) def FamilyRichness (c): return len(set(c.families)) data_frame['OrderRichness'] = data_frame.apply(OrderRichness, axis=1) data_frame['FamilyRichness'] = data_frame.apply(FamilyRichness, axis=1) print ('richness calculations complete') ################################################################################################################################ ################################################################################################################################ print ('calculating ShannonH index of diversity for shared Orders and Familes of taxa') def shannon_order(c): total = len(c.orders) counts = pd.Series(c.orders).value_counts().tolist() h = sum(map(lambda x:abs(np.log(x/float(total)))*(x/float(total)), counts)) return h data_frame['Order_H'] = data_frame.apply(shannon_order, axis=1) ################################################################################################################################ ################################################################################################################################ def shannon_family(c): total = len(c.families) counts = pd.Series(c.families).value_counts().tolist() h = sum(map(lambda x:abs(np.log(x/float(total)))*(x/float(total)), counts)) return h data_frame['Familiy_H'] = data_frame.apply(shannon_family, axis=1) ################################################################################################################################ ################################################################################################################################ print ('Matching Virus Families') data_frame = pd.merge(data_frame,virus_df[['virus_name','viral_family','PubMed_Search_ln']], left_on='Virus1', right_on='virus_name', how='left') data_frame = pd.merge(data_frame,virus_df[['virus_name','viral_family', 'PubMed_Search_ln']], left_on='Virus2', right_on='virus_name', how='left') data_frame['ViralFamily1'] = data_frame['viral_family_x'] data_frame['ViralFamily2'] = data_frame['viral_family_y'] data_frame['PubMed_Search_ln1'] = data_frame['PubMed_Search_ln_x'] data_frame['PubMed_Search_ln2'] = data_frame['PubMed_Search_ln_y'] del data_frame['viral_family_y'] del data_frame['viral_family_x'] del data_frame['PubMed_Search_ln_x'] del data_frame['PubMed_Search_ln_y'] del data_frame['virus_name_x'] del data_frame['virus_name_y'] def MatchFamily(c): if c.ViralFamily1 == c.ViralFamily2: return 'True' else: return 'False' data_frame['FamilyMatch'] = data_frame.apply(MatchFamily, axis=1) ################################################################################################################################ ################################################################################################################################ print ('difference in PubMed hits') def PubMed_hits(c): return abs(c.PubMed_Search_ln1 - c.PubMed_Search_ln2) data_frame['PubMed_diff'] = data_frame.apply(PubMed_hits, axis=1) ################################################################################################################################ ################################################################################################################################ data_frame['hasPath'] = np.where(data_frame['hasPath']== True, 1, 0) data_frame['in_same_cluster'] =np.where(data_frame['in_same_cluster']== True, 1, 0) data_frame['FamilyMatch'] =np.where(data_frame['FamilyMatch']== 'True', 1, 0) data_frame['ShortPathLen'].fillna(0, inplace = True) data_frame['Link'] =np.where(data_frame['n_shared_hosts']>= 1, 1, 0) print (data_frame.shape) return data_frame ####################################################################################################### ####################################################################################################### def interactive_plot(network, network_name, layout_func = 'fruchterman_reingold'): plot = Plot(plot_width=800, plot_height=800, x_range=Range1d(-1.1,1.1), y_range=Range1d(-1.1,1.1)) plot.title.text = network_name plot.add_tools(HoverTool( tooltips=[('','@index')]),TapTool(), BoxSelectTool(), BoxZoomTool(), ResetTool(), PanTool(), WheelZoomTool()) if layout_func == 'fruchterman_reingold': graph_renderer = graphs.from_networkx(network, nx.fruchterman_reingold_layout, scale=1, center=(0,0)) elif layout_func =='spring': graph_renderer = graphs.from_networkx(network, nx.spring_layout, scale=1, center=(0,0)) elif layout_func =='circular': graph_renderer = graphs.from_networkx(network, nx.circular_layout, scale=1, center=(0,0)) elif layout_func == 'kamada': graph_renderer = graphs.from_networkx(network, nx.kamada_kawai_layout, scale=1, center=(0,0)) elif layout_func == 'spectral': graph_renderer = graphs.from_networkx(network, nx.spectral_layout, scale=1, center=(0,0)) else: graph_renderer = graphs.from_networkx(network, nx.fruchterman_reingold_layout, scale=1, center=(0,0)) centrality = nx.algorithms.centrality.betweenness_centrality(network) """ first element are nodes again """ _, nodes_centrality = zip(*centrality.items()) max_centraliy = max(nodes_centrality) c_centrality = [7 + 15 * t / max_centraliy for t in nodes_centrality] import community #python-louvain partition = community.best_partition(network) p_, nodes_community = zip(*partition.items()) community_colors = ['#e41a1c','#377eb8','#4daf4a','#984ea3','#ff7f00','#ffff33','#a65628', '#b3cde3','#ccebc5','#decbe4','#fed9a6','#ffffcc','#e5d8bd','#fddaec', '#1b9e77','#d95f02','#7570b3','#e7298a','#66a61e','#e6ab02','#a6761d', '#666666'] colors = [community_colors[t % len(community_colors)] for t in nodes_community] graph_renderer.node_renderer.data_source.add(c_centrality, 'centrality') graph_renderer.node_renderer.data_source.add(colors, 'colors') graph_renderer.node_renderer.glyph = Circle(size='centrality', fill_color='colors') graph_renderer.node_renderer.selection_glyph = Circle(size='centrality', fill_color=Spectral4[2]) graph_renderer.node_renderer.hover_glyph = Circle(size=15, fill_color=Spectral4[1]) graph_renderer.edge_renderer.glyph = MultiLine(line_color="#757474", line_alpha=0.2, line_width=2) graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=3) graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=1) graph_renderer.selection_policy = graphs.NodesAndLinkedEdges() graph_inspection_policy = graphs.NodesOnly() #graph_renderer.inspection_policy = graphs.EdgesAndLinkedNodes() plot.renderers.append(graph_renderer) #output_file("interactive_graphs.html") return plot ####################################################################################################### ####################################################################################################### def get_observed_network_data(Gc, BPnx, i, data_path, virus_df, Species_file_name): IUCN =
pd.read_csv(data_path+ Species_file_name,)
pandas.read_csv
#! /usr/bin/env python3 import os import sys import json import numpy as np import pandas as pd from datetime import datetime, timedelta from dateutil import tz if __name__ == '__main__': import argparse import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', type=str, required=True) parser.add_argument('-s', '--show', action='store_true') parser.add_argument('-fs', '--fine_sampling', type=int, default=600) parser.add_argument('-in', '--interpolation', choices=['lin', 'no'], default='lin') parser.add_argument('-a', '--aggr', choices=['rec', 'uniq'], default='uniq') args = parser.parse_args() fine_freq = f'{args.fine_sampling}s' filein = args.input base = filein[:filein.rfind('.')] if not os.path.exists(base): os.mkdir(base) tok = filein[:filein.rfind('.')].split('_') dt_fmt = '%Y%m%d-%H%M%S' try: start = datetime.strptime(tok[-2], dt_fmt) stop = datetime.strptime(tok[-1], dt_fmt) except: start = datetime.strptime(tok[-3], dt_fmt) stop = datetime.strptime(tok[-2], dt_fmt) try: df = pd.read_csv(filein, sep=';', usecols=['mac-address', 'date_time', 'station_name', 'kind'], parse_dates=['date_time'], index_col='date_time', engine='c') df = df.rename(columns={'mac-address':'mac_address'}) old_format = True except: # new format support old_format = False df = pd.read_csv(filein, sep=';', usecols=['mac_address', 'date_time', 'station_name', 'kind'], parse_dates=['date_time'], index_col='date_time', engine='c') df['wday'] = [ t.strftime('%a') for t in df.index ] df['date'] = df.index.date df['time'] = df.index.time if 1 and old_format: print(f'**** WARNING FILTERING FERRARA STATIONS') df = df[ df.station_name.str.startswith('Ferrara-') ] try: df['station_id'] = df.station_name.str.split('-', expand=True)[1] except: #old format support df['station_id'] = df.station_name.str.extract(r'.*\((\d)\)') #print(df) print(df[['wday', 'date', 'station_name', 'station_id']]) """ Perform device id counting with fine temporal scale """ tnow = datetime.now() stats = pd.DataFrame(index=pd.date_range("00:00", "23:59:59", freq=fine_freq).time) for (station, date), dfg in df.groupby(['station_id', 'date']): #print(station, date) if args.aggr == 'uniq': s =
pd.Series(dfg['mac_address'], index=dfg.index)
pandas.Series
#!python3 """ Module for creating the Excel reports from gdoc and local data """ import numpy as np import pandas as pd import os from datetime import datetime from modules.filework import safe2int # ---------------------------------------------------------------------- # Some helper functions for Excel writing def safe_write(ws, r, c, val, f=None, n_a="", make_float=False): """calls the write method of worksheet after first screening for NaN""" if not pd.isnull(val): if make_float: try: val = float(val) except: pass if f: ws.write(r, c, val, f) else: ws.write(r, c, val) elif n_a: if f: ws.write(r, c, n_a, f) else: ws.write(r, c, n_a) def write_array(ws, r, c, val, f=None): """speciality function to write an array. Assumed non-null""" if f: ws.write_formula(r, c, val, f) else: ws.write_formula(r, c, val) def create_formats(wb, cfg_fmt, f_db={}): """Takes a workbook and (likely empty) database to fill with formats""" for name, db in cfg_fmt.items(): f_db[name] = wb.add_format(db) return f_db def make_excel_indices(): """returns an array of Excel header columns from A through ZZ""" import string # We're not currently using this function, so leaving import here so as not to forget alphabet = string.ascii_uppercase master = list(alphabet) for i in range(len(alphabet)): master.extend([alphabet[i] + x for x in alphabet]) return master def _do_simple_sheet(writer, df, sheet_name, na_rep, index=True, f=None): """Helper function to write cells and bypass the Pandas write""" wb = writer.book ws = wb.add_worksheet(sheet_name) if index: safe_write(ws, 0, 0, df.index.name, f=f, n_a=na_rep) for col, label in enumerate(df.columns): safe_write(ws, 0, col + 1 * index, label, f=f, n_a=na_rep) row = 1 for i, data in df.iterrows(): if index: safe_write(ws, row, 0, i, f=None, n_a=na_rep) for col_num, col_name in enumerate(df.columns): safe_write(ws, row, col_num, data[col_name], f=None, n_a=na_rep) row += 1 return (wb, ws, sheet_name, len(df) + 1) def _do_initial_output(writer, df, sheet_name, na_rep, index=True): """Helper function to push data to xlsx and return formatting handles""" df.to_excel(writer, sheet_name=sheet_name, na_rep=na_rep, index=index) wb = writer.book ws = writer.sheets[sheet_name] max_row = len(df) + 1 return (wb, ws, sheet_name, max_row) def create_summary_tab(writer, config, format_db, do_campus, do_counselor=False): """ Adds the Summary tab to the output. If summarizing by counselor, do_counselor will be a list of counselor names """ wb = writer.book sum_label = "Counselor_Summary" if do_counselor else "Summary" ws = wb.add_worksheet(sum_label) for c, column in enumerate(config["columns"]): for label, fmt in column.items(): ws.write(0, c, label, format_db[fmt]) # Select summary options--campus (for whole network) or strategy/counselor if do_campus: row_labels = config["campuses"] s_name = "Campus" elif do_counselor: row_labels = do_counselor s_name = "Counselors" else: row_labels = config["strats"] s_name = "Strats" for r, label in enumerate(row_labels, start=1): rx = r + 1 # Excel reference is 1-indexed ws.write(r, 0, label) # field to summarize by ws.write(r, 1, f"=COUNTIF({s_name},A{rx})") # student column ws.write(r, 2, f'=IF(B{rx}>0,SUMIF({s_name},A{rx},MGRs)/B{rx},"")') # TGR ws.write(r, 3, f'=IF(A{rx}>0,SUMIFS(Schol4YR,{s_name},$A{rx}),"")') # Total 4yr ws.write(r, 4, f'=IF(B{rx}>0,D{rx}/B{rx},"")') # Avg 4yr ws.write(r, 5, f'=IF(B{rx}>0,COUNTIFS(PGR,"<>TBD",{s_name},$A{rx})/$B{rx},"")') # % decided ws.write( # % of awards collected r, 6, f'=IF(AND(B{rx}>0,SUMIFS(Accepts,{s_name},$A{rx})),SUMIFS(UAwards,{s_name},$A{rx})/SUMIFS(Accepts,{s_name},$A{rx}),"")', ) ws.write( # PGR r, 7, f'=IF(AND(B{rx}>0,F{rx}>0),SUMIF({s_name},A{rx},PGR)/COUNTIFS(PGR,"<>TBD",{s_name},$A{rx}),"")', ) ws.write( # PGR-TGR r, 8, f'=IF(AND(B{rx}>0,F{rx}>0),SUMIF({s_name},A{rx},PGRTGR)/COUNTIFS(PGR,"<>TBD",{s_name},$A{rx}),"")', ) ws.write( # % of students w/in 10% of TGR r, 9, f'=IF(AND(B{rx}>0,F{rx}>0),COUNTIFS({s_name},A{rx},PGRin10,"Yes")/COUNTIFS(PGRin10,"<>TBD",{s_name},$A{rx}),"")', ) ws.write( # % of students w/ award at choice r, 10, f'=IF(AND(B{rx}>0,F{rx}>0),COUNTIFS({s_name},A{rx}, OOP,"<>TBD")/COUNTIFS(PGR,"<>TBD",{s_name},$A{rx}),"")', ) ws.write( # Avg unmet need at choice college r, 11, f'=IF(COUNTIFS({s_name},A{rx}, UMN,"<>TBD")>0,SUMIFS(UMN,{s_name},A{rx}, UMN,"<>TBD")/COUNTIFS({s_name},A{rx}, UMN,"<>TBD"),"")', ) # Summary row fr = 2 lr = len(row_labels) + 1 # This is a little tricky--it's the write location and last value row to sum lrx = lr + 1 ws.write(lr, 1, f'=SUM(B{fr}:B{lr})', format_db["sum_centered_integer"]) ws.write(lr, 2, f'=SUMPRODUCT(B{fr}:B{lr},C{fr}:C{lr})/B{lrx}', format_db["sum_percent"]) ws.write(lr, 3, f'=SUM(D{fr}:D{lr})', format_db["sum_dollar"]) ws.write(lr, 4, f'=IF(B{lrx}>0,D{lrx}/B{lrx},"")', format_db["sum_dollar"]) ws.write(lr, 5, f'=SUMPRODUCT(B{fr}:B{lr},F{fr}:F{lr})/B{lrx}', format_db["sum_percent"]) # % decided ws.write(lr, 6, f'=SUM(UAwards)/SUM(Accepts)', format_db["sum_percent"]) ws.write(lr, 7, f'=SUMPRODUCT(B{fr}:B{lr},H{fr}:H{lr})/B{lrx}', format_db["sum_percent"]) ws.write(lr, 8, f'=SUMPRODUCT(B{fr}:B{lr},I{fr}:I{lr})/B{lrx}', format_db["sum_percent"]) ws.write(lr, 9, f'=SUMPRODUCT(B{fr}:B{lr},J{fr}:J{lr})/B{lrx}', format_db["sum_percent"]) ws.write(lr,10, f'=SUMPRODUCT(B{fr}:B{lr},K{fr}:K{lr})/B{lrx}', format_db["sum_percent"]) ws.write(lr,11, f'=SUMPRODUCT(B{fr}:B{lr},L{fr}:L{lr})/B{lrx}', format_db["sum_dollar"]) # Final formatting ws.set_column("A:A", 8.09, format_db["left_normal_text"]) ws.set_column("B:B", 8.09, format_db["centered_integer"]) ws.set_column("C:C", 9.55, format_db["single_percent_centered"]) ws.set_column("D:D", 13.73, format_db["dollar_no_cents_fmt"]) ws.set_column("E:E", 12.73, format_db["dollar_no_cents_fmt"]) ws.set_column("F:F", 9.73, format_db["single_percent_centered"]) ws.set_column("G:G", 8.09, format_db["single_percent_centered"]) ws.set_column("H:I", 6.36, format_db["single_percent_centered"]) ws.set_column("J:K", 8.09, format_db["single_percent_centered"]) ws.set_column("L:L", 10.91, format_db["dollar_no_cents_fmt"]) if not do_counselor: ws.activate() def create_awards_tab(writer, df, format_db): """Adds the Awards tab to the output""" df.drop(columns=["Unique", "Award", "MoneyCode"], inplace=True) wb, ws, sn, max_row = _do_simple_sheet(writer, df, "AwardData", "", index=False) ws.set_column("A:B", 8, None, {"hidden": 1}) ws.set_row(0, 75, format_db["p_header"]) # Add the calculated columns: ws.write(0, 17, "Unique") ws.write(0, 18, "Award") for r in range(1, max_row): ws.write( r, 17, f"=IF(OR(A{r+1}<>A{r},B{r+1}<>B{r}),1,0)", format_db["centered_integer"], ) ws.write( r, 18, f'=IF(OR(AND(R{r+1}=1,ISNUMBER(M{r+1})),AND(R{r+1}=0,ISNUMBER(M{r+1}),M{r}=""),AND(R{r+1}=1,ISNUMBER(N{r+1})),AND(R{r+1}=0,ISNUMBER(N{r+1}),N{r}=""),AND(R{r+1}=1,ISNUMBER(O{r+1})),AND(R{r+1}=0,ISNUMBER(O{r+1}),O{r}="")),1,0)', format_db["centered_integer"], ) names = { "Students": "A", "NCESs": "B", "Names": "G", "Results": "H", "DataA": "K", "DataB": "L", "DataC": "M", "DataD": "N", "DataF": "O", "DataW": "P", "Unique": "R", "Award": "S", } for name, col in names.items(): wb.define_name(name, "=" + sn + "!$" + col + "$2:$" + col + "$" + str(max_row)) max_col = max(names.values()) ws.autofilter("A1:" + max_col + "1") ws.freeze_panes(1, 3) def create_students_tab(writer, df, format_db, hide_campus=False): """Adds the Students tab to the output""" # wb, ws, sn, max_row = _do_initial_output(writer, df, "Students", "N/A", index=False) wb, ws, sn, max_row = _do_simple_sheet( writer, df.iloc[:, :12], "Students", "N/A", index=False, f=format_db["p_header"] ) # Add the calculated columns: ws.write(0, 12, "Acceptances", format_db["p_header_y"]) ws.write(0, 13, "Unique Awards", format_db["p_header_y"]) ws.write(0, 14, "% of awards collected", format_db["p_header_y"]) ws.write(0, 15, "Total grants & scholarships (1 yr value)", format_db["p_header_y"]) ws.write(0, 16, "Total grants & scholarships (4 yr value)", format_db["p_header_y"]) ws.write(0, 17, "College Choice", format_db["p_header_o"]) ws.write(0, 18, "Ambitious Postsecondary Pathway choice", format_db["p_header_o"]) ws.write(0, 19, "Other College Choice", format_db["p_header_o"]) ws.write(0, 20, "PGR for choice school", format_db["p_header_y"]) ws.write(0, 21, "PGR-TGR", format_db["p_header_y"]) ws.write(0, 22, "PGR within 10% of TGR?", format_db["p_header_y"]) ws.write(0, 23, "Reason for not meeting TGR", format_db["p_header_o"]) ws.write(0, 24, "Out of Pocket at Choice", format_db["p_header_o"]) ws.write(0, 25, "Unmet need", format_db["p_header_o"]) ws.write( 0, 26, "Exceeds Goal? (no more than 3000 over EFC)", format_db["p_header_o"] ) ws.write( 0, 27, "Comments (use for undermatching and affordability concerns)", format_db["p_header_o"], ) for r in range(1, max_row): ws.write( r, 12, f'=COUNTIFS(Students,B{r+1},Results,"Accepted!",Unique,1)+COUNTIFS(Students,B{r+1},Results,"Choice!",Unique,1)', format_db["centered_integer"], ) ws.write( r, 13, f"=COUNTIFS(Students,B{r+1},Award,1)", format_db["centered_integer"] ) ws.write( r, 14, f"=IF(M{r+1}>0,N{r+1}/M{r+1},0)", format_db["single_percent_centered"], ) ws.write( r, 15, f"=SUMIFS(DataC,Students,B{r+1},Award,1)", format_db["dollar_fmt"] ) ws.write(r, 16, f"=P{r+1}*4", format_db["dollar_fmt"]) safe_write(ws, r, 17, df["College Choice"].iloc[r - 1]) safe_write(ws, r, 18, df["Ambitious Postsecondary Pathway choice"].iloc[r - 1]) safe_write(ws, r, 19, df["Other College Choice"].iloc[r - 1]) safe_write( ws, r, 20, df["PGR for choice school"].iloc[r - 1], n_a="TBD", f=format_db["single_percent_centered"], make_float=True, ) safe_write( ws, r, 21, df["PGR-TGR"].iloc[r - 1], n_a="TBD", f=format_db["single_percent_centered"], make_float=True, ) safe_write( ws, r, 22, df["PGR within 10% of TGR?"].iloc[r - 1], n_a="TBD", f=format_db["centered"], ) safe_write(ws, r, 23, df["Reason for not meeting TGR"].iloc[r - 1]) safe_write( ws, r, 24, df["Out of Pocket at Choice (pulls from Award data tab weekly)"].iloc[ r - 1 ], n_a="TBD", f=format_db["dollar_no_cents_fmt"], make_float=True, ) safe_write( ws, r, 25, f'=IF(AND(ISNUMBER(Y{r+1}),ISNUMBER(D{r+1})),MAX(Y{r+1}-D{r+1},0),"TBD")', n_a="TBD", ) safe_write( ws, r, 26, df["Exceeds Goal? (no more than 3000 over EFC)"].iloc[r - 1], n_a="TBD", ) safe_write( ws, r, 27, df["Comments (use for undermatching and affordability concerns)"].iloc[ r - 1 ], ) # format data columns ws.set_column("A:A", 9, format_db["left_normal_text"]) # , {"hidden", 1}) ws.set_column("B:B", 9) ws.set_column("C:C", 34) ws.set_column("E:E", 9, format_db["single_percent_centered"]) # ws.set_column("D:L", 9) ws.set_column("P:Q", 13) ws.set_column("R:R", 35) ws.set_column("S:T", 22) ws.set_column("U:U", 9) ws.set_column("V:V", 7) ws.set_column("W:W", 10) ws.set_column("X:X", 23) ws.set_column("Y:Y", 9) ws.set_column("Z:Z", 8) ws.set_column("AA:AA", 14) ws.set_column("AB:AB", 33) ws.set_row(0, 60) names = { "Campus": "A", "SIDs": "B", "LastFirst": "C", "EFCs": "D", "MGRs": "E", "GPAs": "F", "SATs": "G", "Counselors": "H", "Advisors": "I", "Strats": "J", "Accepts": "M", "UAwards": "N", "Schol4Yr": "Q", "CollegeChoice": "R", "PGR": "U", "PGRTGR": "V", "PGRin10": "W", "OOP": "Y", "UMN": "Z", "Affordable": "AA", } for name, col in names.items(): wb.define_name(name, "=" + sn + "!$" + col + "$2:$" + col + "$" + str(max_row)) ws.autofilter("A1:AB" + "1") ws.freeze_panes(1, 3) def create_college_money_tab(writer, df, format_db): """Creates AllColleges from static file""" wb, ws, sn, max_row = _do_initial_output(writer, df, "CollegeMoneyData", "N/A") ws.set_column("D:E", 7, format_db["single_percent_centered"]) ws.set_column("B:B", 40) ws.set_column("C:C", 22) ws.set_column("F:L", 7) names = { "AllCollegeNCES": "A", "AllCollegeMoneyCode": "H", "AllCollegeLocation": "M", } for name, col in names.items(): wb.define_name(name, "=" + sn + "!$" + col + "$2:$" + col + "$" + str(max_row)) max_col = max(names.values()) ws.autofilter("A1:" + max_col + "1") ws.hide() # ---------------------------------------------------------------------------- def create_report_tables(dfs, campus, config, debug): # First, create a dataframe for the "Award data" tab dfs["award_report"] = build_award_df(dfs, campus, config, debug) # Second, create a dataframe for the "Students" tab # This one will have extra columns if the Decisions tab exists dfs["student_report"] = build_student_df(dfs, campus, config, debug) def create_excel(dfs, campus, config, debug): """Will create Excel reports for sharing details from Google Docs""" if debug: print("Creating Excel report for {}".format(campus), flush=True) dfs["award_report"].to_csv("award_table_for_excel.csv", index=False) dfs["student_report"].to_csv("student_table_for_excel.csv", index=False) # Create the excel: date_string = datetime.now().strftime("%m_%d_%Y") fn = ( config["report_filename"].replace("CAMPUS", campus).replace("DATE", date_string) ) writer = pd.ExcelWriter( os.path.join(config["report_folder"], fn), engine="xlsxwriter" ) wb = writer.book formats = create_formats(wb, config["excel_formats"]) # Award data tab create_awards_tab(writer, dfs["award_report"], formats) # Students tab create_students_tab( writer, dfs["student_report"], formats, hide_campus=(campus == "All") ) # Summary tab create_summary_tab( writer, config["summary_settings"], formats, do_campus=(campus == "All") ) # Summary tab with counselor summaries counselor_list = dfs["student_report"]["Counselor"].unique() counselor_list = sorted(counselor_list) if len(counselor_list) else ["TBD",] print(f"Counselors are {counselor_list}") create_summary_tab( writer, config["summary_settings"], formats, do_campus=False, do_counselor=counselor_list ) # Hidden college lookup create_college_money_tab(writer, dfs["college"], formats) # OptionsReport (maybe don't create in Excel?) writer.save() def build_student_df(dfs, campus, config, debug): """Builds a dataframe for the student fields""" report_student_fields = config["report_student_fields"] report_student_sorts = config["report_student_sorts"] all_student_fields = [] live_student_fields = [] # to hold the excel names live_student_targets = [] # to hold the live names # live_decision_fields = [] # to hold excel names for decision tabl # live_decision_targets = [] # to hold the live names complex_student_fields = [] for column in report_student_fields: # Each column will be a dict with a single element # The key will be the Excel column name and the value the source # from the live (EFC) table or other (lookup) table this_key = list(column.keys())[0] this_value = list(column.values())[0] all_student_fields.append(this_key) if ":" in this_value: complex_student_fields.append((this_key, this_value)) else: live_student_fields.append(this_key) live_student_targets.append(this_value) if live_student_targets: # fields here will be straight pulls from live df # These 2 lines are necessary to handle single campus reports if "Campus" not in dfs["live_efc"].columns: dfs["live_efc"]["Campus"] = campus student_df = dfs["live_efc"][live_student_targets] student_df = student_df.rename( columns=dict(zip(live_student_targets, live_student_fields)) ) else: print("Probably an error: no report columns pulling from live data") # Second, pull columns that are lookups from other tables and append # We skip the "special" ones for now because they might calculate off lookups for column, target in ( f for f in complex_student_fields if not f[1].startswith("SPECIAL") ): # parse the target and then call the appropriate function # to add a column to award_df # if debug: # print(f"{column} w spec({target})") tokens = target.split(sep=":") if tokens[0] == "INDEX": student_df[column] = dfs["live_efc"].index elif tokens[0] == "ROSTER": student_df[column] = dfs["live_efc"].index.map( lambda x: dfs["ros"].loc[x, tokens[1]] ) elif tokens[0] == "DECISION": if "live_decision" in dfs: student_df[column] = dfs["live_efc"].index.map( lambda x: dfs["live_decision"].loc[x, tokens[1]] ) for column, target in ( f for f in complex_student_fields if f[1].startswith("SPECIAL") ): # if debug: # print(f"{column} w spec({target})") tokens = target.split(sep=":") student_df[column] = student_df.apply( _do_special_award, args=(column, tokens[1:]), axis=1 ) student_df = student_df[[x for x in all_student_fields if not x.startswith("x")]] # These generators work on a list of single pair dicts sort_terms = [list(item.keys())[0] for item in report_student_sorts] sort_order = [list(item.values())[0] for item in report_student_sorts] # recast the EFC as numbers where possible: student_df.EFC = student_df.EFC.apply(lambda x: pd.to_numeric(x, errors="ignore")) return student_df.sort_values(by=sort_terms, ascending=sort_order) def build_award_df(dfs, campus, config, debug): """Builds a dataframe for the award fields""" # First, start the df for the items that are straight pulls from live_data report_award_fields = config["report_award_fields"] report_award_sorts = config["report_award_sorts"] all_award_fields = [] live_award_fields = [] # to hold the excel names live_award_targets = [] # to hold the live names complex_award_fields = [] for column in report_award_fields: # Each column will be a dict with a single element # The key will be the Excel column name and the value the source # from the live table or other (lookup) table this_key = list(column.keys())[0] this_value = list(column.values())[0] all_award_fields.append(this_key) if ":" in this_value: complex_award_fields.append((this_key, this_value)) else: live_award_fields.append(this_key) live_award_targets.append(this_value) if live_award_targets: # fields here will be straight pulls from live df award_df = dfs["live_award"][live_award_targets] award_df = award_df.rename( columns=dict(zip(live_award_targets, live_award_fields)) ) else: print("Probably an error: no report columns pulling from live data") # Quick detour: make a calculated index for app table lookups: award_df["xAppIndex"] = ( award_df["NCESid"].astype(str) + ":" + award_df["SID"].astype(str) ) # Second, pull columns that are lookups from other tables and append # We skip the "special" ones for now because they might calculate off lookups for column, target in ( f for f in complex_award_fields if not f[1].startswith("SPECIAL") ): # parse the target and then call the appropriate function # to add a column to award_df if debug: print(f"{column} w spec({target})") tokens = target.split(sep=":") if tokens[0] == "ROSTER": award_df[column] = dfs["live_award"][tokens[1]].apply( lambda x: dfs["ros"].loc[x, tokens[2]] ) elif tokens[0] == "COLLEGE": award_df[column] = dfs["live_award"][tokens[1]].apply( lambda x: np.nan if
pd.isnull(x)
pandas.isnull
import numpy as np import pandas as pd from typing import Union, List from scipy.special import binom from scipy.spatial import ConvexHull from tqdm import tqdm from ._containment import _is_in_simplex from ._helper import * __all__ = ['_pointwisedepth', '_samplepointwisedepth'] def _pointwisedepth( data: pd.DataFrame, to_compute: Union[list, pd.Index]=None, containment='simplex', quiet=True ) -> pd.Series: """ Compute pointwise depth for n points in R^p, where data is an nxp matrix of points. If points is not None, only compute depth for the given points (should be a subset of data.index) Parameters: ---------- data: pd.DataFrame n x d DataFrame, where we have n points in d dimensional space. points: list, pd.Index The particular points (indices) we would like to calculate band curve for. If None, we calculate depth for all points containment: str Definition of containment Returns: ---------- pd.Series: Depth values for the given points with respect to the data. Index of Series are indices of points in the original data, and the values are the depths """ n, d = data.shape depths = [] if to_compute is None: to_compute = data.index if containment == 'simplex': for time in tqdm(to_compute, disable=quiet): S_nj = 0 point = data.loc[time, :] subseq = _subsequences(list(data.drop(time, axis=0).index), d + 1) for seq in subseq: S_nj += _is_in_simplex(simplex_points= np.array(data.loc[seq, :]), point=np.array(point)) depths.append(S_nj / binom(n, d + 1)) elif containment == 'l1': return _L1_depth(data=data, to_compute=to_compute) elif containment == 'mahalanobis': return _mahalanobis_depth(data=data, to_compute=to_compute) elif containment == 'oja': return _oja_depth(data=data, to_compute=to_compute) else: # Probably will be more in the future raise ValueError(f'{containment} is not a valid containment measure. ') return
pd.Series(index=to_compute, data=depths)
pandas.Series
"""The module provides classes and functions responsible for loading and storing spectroscopy data. Class Region contains the data for one region. Class RegionCollection stores a number of Region objects """ import os import ntpath import logging import copy import csv import pandas as pd import numpy as np from specqp import helpers datahandler_logger = logging.getLogger("specqp.datahandler") # Creating child logger DATA_FILE_TYPES = ( "scienta", "specs", "csv" ) def load_calibration_curves(filenames, columnx='Press_03_value', columny='Press_05_value'): """Reads file or files using provided name(s). Checks for file existance etc. :param filenames: str or sequence: filepath(s) :param columns: str or sequence: columns to plot on y-axis :return: """ calibration_data = {} if type(filenames) == str or (not type(filenames) == str and not helpers.is_iterable(filenames)): filenames = [filenames] if type(columnx) == str or (not type(columnx) == str and not helpers.is_iterable(columnx)): columnx = [columnx] if type(columny) == str or (not type(columny) == str and not helpers.is_iterable(columny)): columny = [columny] if len(columnx) != len(filenames): columnx = [columnx[0]] * len(filenames) if len(columny) != len(filenames): columny = [columny[0]] * len(filenames) for i, filename in enumerate(filenames): if os.path.isfile(filename): try: with open(filename, 'r') as f: df =
pd.read_csv(f, sep='\t')
pandas.read_csv
import time import threading import argparse import tushare as ts import numpy as np import pandas as pd from pandas import datetime as dt from tqdm import tqdm from utils import * with open('../../tushare_token.txt', 'r') as f: token = f.readline() ts.set_token(token) tushare_api = ts.pro_api() # 概念分类表 df_all = tushare_api.concept(src='ts') # 概念股明细表 df =
pd.DataFrame()
pandas.DataFrame
################################################## ### import ### ################################################## # basic lib from ast import literal_eval import itertools import json import numpy as np import os import pandas as pd from pandarallel import pandarallel pandarallel.initialize(use_memory_fs=False) from scipy import ndimage from scipy.stats import entropy import sys from googletrans import Translator # logging lib import logging import src.log as log # time lib from time import time # multiprocess lib import multiprocessing as mp PROCESS_NUM = mp.cpu_count()-2 # custom lib import src.utils as utils import src.aggregator as aggregator def cal_score(aggregated_df, gold_df): ans_df = aggregated_df.loc[aggregated_df['ans'] == True][['id', 'candidates', 'prob']] # answered candidates fil_df = aggregated_df.loc[aggregated_df['ans'] == False][['id', 'candidates', 'prob']] # filtered candidates n_ans = len(ans_df) n_aggregated = len(aggregated_df) n_gold = len(gold_df) if fil_df.empty: FN_df = pd.DataFrame(columns=aggregated_df.columns) TN_df = pd.DataFrame(columns=aggregated_df.columns) n_TN = 0 else: FN_df = fil_df.loc[fil_df['id'].isin(gold_df['id'])] # false negative (filtered out answers) TN_df = fil_df.loc[~fil_df['id'].isin(gold_df['id'])] # true negative (correctly filtered) n_TN = len(TN_df) if ans_df.empty: FP_df = pd.DataFrame(columns=ans_df.columns) TP_df = pd.DataFrame(columns=ans_df.columns) FA_df = pd.DataFrame(columns=ans_df.columns) n_TP = 0 fil_p, fil_r, fil_f1, align_p, align_r, align_f1 = 0, 0, 0, 0, 0, 0 else: FP_df = ans_df.loc[~ans_df['id'].isin(gold_df['id'])] # false positive (answers which are not in gold) hit_df = ans_df.loc[ans_df['id'].isin(gold_df['id'])] # answers which are included in gold n_hit = len(hit_df) if n_hit == 0: fil_p = 0 fil_r = 0 fil_f1 = 0 else: fil_p = n_hit/n_ans fil_r = n_hit/n_gold fil_f1 = f1(fil_p, fil_r) merge_df =
pd.merge(gold_df, hit_df, left_on='id', right_on='id')
pandas.merge
import pandas as pd import numpy as np2 def build(args): # Get medians def get_medians(df_p, last): df_res = df_p.iloc[-last:].groupby(["param"]).median().reset_index()["median"][0] return df_res def medians_params(df_list, age_group, last): params_def = ["age", "beta", "IFR", "RecPeriod", "alpha", "sigma"] params_val = [ age_group, get_medians(df_list[0], last), get_medians(df_list[1], last), get_medians(df_list[2], last), get_medians(df_list[3], last), get_medians(df_list[4], last), ] res = dict(zip(params_def, params_val)) return res params_data_BOG = pd.read_csv(args.params_data_path, encoding="unicode_escape", delimiter=",") # Ages 0-19 young_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "0-19"]) young_ages_beta = pd.DataFrame(young_ages_params[young_ages_params["param"] == "contact_rate"]) young_ages_IFR = pd.DataFrame(young_ages_params[young_ages_params["param"] == "IFR"]) young_ages_RecPeriod = pd.DataFrame(young_ages_params[young_ages_params["param"] == "recovery_period"]) young_ages_alpha = pd.DataFrame(young_ages_params[young_ages_params["param"] == "report_rate"]) young_ages_sigma = pd.DataFrame(young_ages_params[young_ages_params["param"] == "relative_asymp_transmission"]) young_params = [young_ages_beta, young_ages_IFR, young_ages_RecPeriod, young_ages_alpha, young_ages_sigma] # Ages 20-39 youngAdults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "20-39"]) youngAdults_ages_beta = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "contact_rate"]) youngAdults_ages_IFR = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "IFR"]) youngAdults_ages_RecPeriod = pd.DataFrame( youngAdults_ages_params[youngAdults_ages_params["param"] == "recovery_period"] ) youngAdults_ages_alpha = pd.DataFrame(youngAdults_ages_params[youngAdults_ages_params["param"] == "report_rate"]) youngAdults_ages_sigma = pd.DataFrame( youngAdults_ages_params[youngAdults_ages_params["param"] == "relative_asymp_transmission"] ) youngAdults_params = [ youngAdults_ages_beta, youngAdults_ages_IFR, youngAdults_ages_RecPeriod, youngAdults_ages_alpha, youngAdults_ages_sigma, ] # Ages 40-49 adults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "40-49"]) adults_ages_beta = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "contact_rate"]) adults_ages_IFR = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "IFR"]) adults_ages_RecPeriod = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "recovery_period"]) adults_ages_alpha = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "report_rate"]) adults_ages_sigma = pd.DataFrame(adults_ages_params[adults_ages_params["param"] == "relative_asymp_transmission"]) adults_params = [adults_ages_beta, adults_ages_IFR, adults_ages_RecPeriod, adults_ages_alpha, adults_ages_sigma] # Ages 50-59 seniorAdults_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "50-59"]) seniorAdults_ages_beta = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "contact_rate"]) seniorAdults_ages_IFR = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "IFR"]) seniorAdults_ages_RecPeriod = pd.DataFrame( seniorAdults_ages_params[seniorAdults_ages_params["param"] == "recovery_period"] ) seniorAdults_ages_alpha = pd.DataFrame(seniorAdults_ages_params[seniorAdults_ages_params["param"] == "report_rate"]) seniorAdults_ages_sigma = pd.DataFrame( seniorAdults_ages_params[seniorAdults_ages_params["param"] == "relative_asymp_transmission"] ) seniorAdults_params = [ seniorAdults_ages_beta, seniorAdults_ages_IFR, seniorAdults_ages_RecPeriod, seniorAdults_ages_alpha, seniorAdults_ages_sigma, ] # Ages 60-69 senior_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "60-69"]) senior_ages_beta = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "contact_rate"]) senior_ages_IFR = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "IFR"]) senior_ages_RecPeriod = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "recovery_period"]) senior_ages_alpha = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "report_rate"]) senior_ages_sigma = pd.DataFrame(senior_ages_params[senior_ages_params["param"] == "relative_asymp_transmission"]) senior_params = [senior_ages_beta, senior_ages_IFR, senior_ages_RecPeriod, senior_ages_alpha, senior_ages_sigma] # Ages 70+ elderly_ages_params = pd.DataFrame(params_data_BOG[params_data_BOG["age_group"] == "70-90+"]) elderly_ages_beta = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "contact_rate"]) elderly_ages_IFR = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "IFR"]) elderly_ages_RecPeriod = pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "recovery_period"]) elderly_ages_alpha =
pd.DataFrame(elderly_ages_params[elderly_ages_params["param"] == "report_rate"])
pandas.DataFrame
# Preppin' Data 2021 Week 28 import pandas as pd import numpy as np import re # Load data world_cup = pd.read_excel('unprepped_data\\PD 2021 Wk 28 Input - InternationalPenalties.xlsx', sheet_name='WorldCup') euros = pd.read_excel('unprepped_data\\PD 2021 Wk 28 Input - InternationalPenalties.xlsx', sheet_name='Euros') # Determine what competition each penalty was taken in world_cup['Event'] = 'World Cup ' + world_cup['Round'] + ' ' + world_cup['Event Year'].astype(str) euros['Event'] = 'Euros ' + euros['Round'] + ' ' + euros['Event Year'].astype(str) # trim whitespace world_cup.columns = world_cup.columns.str.strip() euros.columns = euros.columns.str.strip() # lowercase columns world_cup.columns = world_cup.columns.str.lower() euros.columns = euros.columns.str.lower() # stack data frames penalty_df = pd.concat([world_cup,euros]) # Clean any fields, correctly format the date the penalty was taken, & group the two German countries (eg, West Germany & Germany) penalty_df['event year'] = penalty_df['event year'].str.replace(',', '', regex=True) penalty_df['event'] = penalty_df['event'].str.replace(',', '', regex=True) penalty_df['date'] = pd.to_datetime(penalty_df['date']) penalty_df['winner'] = penalty_df['winner'].str.strip() penalty_df['loser'] = penalty_df['loser'].str.strip() penalty_df['winner'] = penalty_df['winner'].str.replace('^(West|East) ', '', regex=True) penalty_df['loser'] = penalty_df['loser'].str.replace('^(West|East) ', '', regex=True) # Rank the countries on the following: # - Shootout win % (exclude teams who have never won a shootout) # - Penalties scored % # What is the most and least successful time to take a penalty? (What penalty number are you most likely to score or miss?) # determine which penalties were scored, missed or not taken (result already determined) penalty_df['winning team scored'] = penalty_df['winning team taker'].str.contains(' scored') penalty_df['losing team scored'] = penalty_df['losing team taker'].str.contains(' scored') penalty_df['winning team penalty score'] = np.where(penalty_df['winning team scored'] == True, 1, np.where(penalty_df['winning team scored'] == False,0,None)) penalty_df['losing team penalty score'] = np.where(penalty_df['losing team scored'] == True, 1, np.where(penalty_df['losing team scored'] == False,0,None)) # create data frame of shootout results penalty_winners = penalty_df[['event','winner']] penalty_losers = penalty_df[['event','loser']] penalty_winners = penalty_winners.drop_duplicates() penalty_losers = penalty_losers.drop_duplicates() penalty_winners.columns = ['event','team'] penalty_losers.columns = ['event','team'] penalty_winners['result'] = 1 penalty_losers['result'] = 0 shootout_df = pd.concat([penalty_winners,penalty_losers]) shootout_df['played'] = 1 # from shootout_df calculate Shootout win % (exclude teams who have never won a shootout) # total shoot out results by team, filter non-winners percent_shootout = shootout_df.groupby(['team']).agg({'result':'sum','played':'sum'}).reset_index() percent_shootout = percent_shootout.loc[percent_shootout['result'] > 0] # calculate columns for output percent_shootout['Shootout Win %'] = percent_shootout['result'] / percent_shootout['played'] percent_shootout['Total Shootouts'] = percent_shootout['played'] percent_shootout['Shootouts'] = percent_shootout['result'] percent_shootout['Team'] = percent_shootout['team'] # calculate rank, sort data frame, reduce and reorder columns percent_shootout['Win % Rank'] = percent_shootout['Shootout Win %'].rank(method='dense',ascending=False).astype(int) percent_shootout = percent_shootout.sort_values(by='Win % Rank', ascending=True).reset_index() percent_shootout = percent_shootout[['Win % Rank','Shootout Win %','Total Shootouts','Shootouts','Team']] # create data frame of penalties penalty_win_details = penalty_df[['event','winner','penalty number','winning team penalty score']] penalty_lose_details = penalty_df[['event','loser','penalty number','losing team penalty score']] penalty_win_details.columns = ['event','team','penalty number','penalty score'] penalty_lose_details.columns = ['event','team','penalty number','penalty score'] penalty_details =
pd.concat([penalty_win_details,penalty_lose_details])
pandas.concat
""" Copyright 2021 Biomedical Computer Vision Group, Heidelberg University. Author: <NAME> (<EMAIL>) Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import pandas as pd import skimage.util def disk_mask(imsz, ir, ic, nbpx): ys, xs = np.ogrid[-nbpx:nbpx + 1, -nbpx:nbpx + 1] se = xs ** 2 + ys ** 2 <= nbpx ** 2 mask = np.zeros(imsz, dtype=int) if ir - nbpx < 0 or ic - nbpx < 0 or ir + nbpx + 1 > imsz[0] or ic + nbpx + 1 > imsz[1]: mask = skimage.util.pad(mask, nbpx) mask[ir:ir + 2 * nbpx + 1, ic:ic + 2 * nbpx + 1] = se mask = skimage.util.crop(mask, nbpx) else: mask[ir - nbpx:ir + nbpx + 1, ic - nbpx:ic + nbpx + 1] = se return mask def find_nn(cim, icy, icx, nim, nbpx): mask = disk_mask(cim.shape, icy, icx, nbpx) iys_nim, ixs_nim = np.where(nim * mask) if iys_nim.size == 0: return np.NaN, np.NaN d2 = (icy - iys_nim) ** 2 + (icx - ixs_nim) ** 2 I1 = np.argsort(d2) iy_nim = iys_nim[I1[0]] ix_nim = ixs_nim[I1[0]] mask = disk_mask(cim.shape, iy_nim, ix_nim, nbpx) iys_cim, ixs_cim = np.where(cim * mask) d2 = (iy_nim - iys_cim) ** 2 + (ix_nim - ixs_cim) ** 2 I2 = np.argsort(d2) if not iys_cim[I2[0]] == icy or not ixs_cim[I2[0]] == icx: return np.NaN, np.NaN return iy_nim, ix_nim def points_linking(fn_in, fn_out, nbpx=6, th=25, minlen=50): data = pd.read_csv(fn_in, delimiter="\t") all_data = np.array(data) assert all_data.shape[1] in [3, 4], 'unknow collum(s) in input data!' coords = all_data[:, :3].astype('int64') frame_1st = np.min(coords[:, 0]) frame_end = np.max(coords[:, 0]) assert set([i for i in range(frame_1st, frame_end + 1)]).issubset(set(coords[:, 0].tolist())), "spots missing at some time point!" nSlices = frame_end stack_h = np.max(coords[:, 2]) + nbpx stack_w = np.max(coords[:, 1]) + nbpx stack = np.zeros((stack_h, stack_w, nSlices), dtype='int8') stack_r = np.zeros((stack_h, stack_w, nSlices), dtype='float64') for i in range(all_data.shape[0]): iyxz = tuple(coords[i, ::-1] - 1) stack[iyxz] = 1 if all_data.shape[1] == 4: stack_r[iyxz] = all_data[i, -1] else: stack_r[iyxz] = 1 tracks_all = np.array([], dtype=float).reshape(0, nSlices, 4) maxv = np.max(stack_r) br_max = maxv idx_max = np.argmax(stack_r) while 1: iyxz = np.unravel_index(idx_max, stack.shape) spot_br = np.empty((nSlices, 1)) track = np.empty((nSlices, 3)) for i in range(nSlices): spot_br[i] = np.NaN track[i, :] = np.array((np.NaN, np.NaN, np.NaN)) spot_br[iyxz[2]] = maxv track[iyxz[2], :] = np.array(iyxz[::-1]) + 1 # forward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] + 1, nSlices): iny, inx = find_nn(stack[:, :, inz - 1], icy, icx, stack[:, :, inz], nbpx) if np.isnan(iny) and not inz == nSlices - 1: iny, inx = find_nn(stack[:, :, inz - 1], icy, icx, stack[:, :, inz + 1], nbpx) if np.isnan(iny): break else: iny = icy inx = icx stack[iny, inx, inz] = 1 stack_r[iny, inx, inz] = stack_r[iny, inx, inz - 1] elif np.isnan(iny) and inz == nSlices - 1: break track[inz, :] = np.array((inz, inx, iny)) + 1 spot_br[inz] = stack_r[iny, inx, inz] icy = iny icx = inx # backward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] - 1, -1, -1): iny, inx = find_nn(stack[:, :, inz + 1], icy, icx, stack[:, :, inz], nbpx) if np.isnan(iny) and not inz == 0: iny, inx = find_nn(stack[:, :, inz + 1], icy, icx, stack[:, :, inz - 1], nbpx) if np.isnan(iny): break else: iny = icy inx = icx stack[iny, inx, inz] = 1 stack_r[iny, inx, inz] = stack_r[iny, inx, inz + 1] elif np.isnan(iny) and inz == 0: break track[inz, :] = np.array((inz, inx, iny)) + 1 spot_br[inz] = stack_r[iny, inx, inz] icy = iny icx = inx for iz in range(nSlices): if not np.isnan(track[iz, 0]): stack[track[iz, 2].astype(int) - 1, track[iz, 1].astype(int) - 1, iz] = 0 stack_r[track[iz, 2].astype(int) - 1, track[iz, 1].astype(int) - 1, iz] = 0 # discard short trajectories if np.count_nonzero(~np.isnan(spot_br)) > np.max((1, minlen * (frame_end - frame_1st) / 100)): tmp = np.concatenate((track, spot_br), axis=1) tracks_all = np.concatenate((tracks_all, tmp.reshape(1, -1, 4)), axis=0) maxv = np.max(stack_r) idx_max = np.argmax(stack_r) if maxv < th * br_max / 100 or maxv == 0: break with pd.ExcelWriter(fn_out) as writer: if tracks_all.shape[0] == 0: df = pd.DataFrame() df['No tracks found'] = np.NaN df.to_excel(writer, index=False, float_format='%.2f') else: for i in range(tracks_all.shape[0]): df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # COVID-19 Deaths Per Capita # > Comparing death rates adjusting for population size. # # - comments: true # - author: <NAME> & <NAME> # - categories: [growth, compare, interactive] # - hide: false # - image: images/covid-permillion-trajectories.png # - permalink: /covid-compare-permillion/ # In[1]: #hide import numpy as np import pandas as pd import matplotlib.pyplot as plt import altair as alt get_ipython().run_line_magic('config', "InlineBackend.figure_format = 'retina'") chart_width = 550 chart_height= 400 # ## Deaths Per Million Of Inhabitants # Since reaching at least 1 death per million # # > Tip: Click (Shift+ for multiple) on countries in the legend to filter the visualization. # In[2]: #hide data = pd.read_csv("https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Deaths.csv", error_bad_lines=False) data = data.drop(columns=["Lat", "Long"]) data = data.melt(id_vars= ["Province/State", "Country/Region"]) data = pd.DataFrame(data.groupby(['Country/Region', "variable"]).sum()) data.reset_index(inplace=True) data = data.rename(columns={"Country/Region": "location", "variable": "date", "value": "total_cases"}) data['date'] =pd.to_datetime(data.date) data = data.sort_values(by = "date") data.loc[data.location == "US","location"] = "United States" data.loc[data.location == "Korea, South","location"] = "South Korea" data_pwt = pd.read_stata("https://www.rug.nl/ggdc/docs/pwt91.dta") filter1 = data_pwt["year"] == 2017 data_pop = data_pwt[filter1] data_pop = data_pop[["country","pop"]] data_pop.loc[data_pop.country == "Republic of Korea","country"] = "South Korea" data_pop.loc[data_pop.country == "Iran (Islamic Republic of)","country"] = "Iran" # per habitant data_pc = data.copy() countries = ["China", "Italy", "Spain", "France", "United Kingdom", "Germany", "Portugal", "United States", "Singapore","South Korea", "Japan", "Brazil","Iran"] data_countries = [] data_countries_pc = [] # compute per habitant for i in countries: data_pc.loc[data_pc.location == i,"total_cases"] = data_pc.loc[data_pc.location == i,"total_cases"]/float(data_pop.loc[data_pop.country == i, "pop"]) # get each country time series filter1 = data_pc["total_cases"] > 1 for i in countries: filter_country = data_pc["location"]== i data_countries_pc.append(data_pc[filter_country & filter1]) # In[3]: #hide_input # Stack data to get it to Altair dataframe format data_countries_pc2 = data_countries_pc.copy() for i in range(0,len(countries)): data_countries_pc2[i] = data_countries_pc2[i].reset_index() data_countries_pc2[i]['n_days'] = data_countries_pc2[i].index data_countries_pc2[i]['log_cases'] = np.log(data_countries_pc2[i]["total_cases"]) data_plot = data_countries_pc2[0] for i in range(1, len(countries)): data_plot =
pd.concat([data_plot, data_countries_pc2[i]], axis=0)
pandas.concat
# encoding: utf-8 # (c) 2017-2021 Open Risk (https://www.openriskmanagement.com) # # TransitionMatrix is licensed under the Apache 2.0 license a copy of which is included # in the source distribution of TransitionMatrix. This is notwithstanding any licenses of # third-party software included in this distribution. You may not use this file except in # compliance with the License. # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, # either express or implied. See the License for the specific language governing permissions and # limitations under the License. import pprint as pp import pandas as pd from transitionMatrix.utils.converters import frame_to_array, datetime_to_float from transitionMatrix.utils.preprocessing import transitions_summary, validate_absorbing_state """ Examples of using transitionMatrix to prepare data sets (data cleansing). The functionality is primarily based on pandas, with transition data specific procedures supported by the utils sub-package. For some operations (and large datasets) it might be advisable to work with numpy arrays """ # Load the raw data into a pandas frame raw_data = pd.read_csv('../../datasets/rating_data_raw.csv') # Print a generic summary based on pandas describe() method print(raw_data.describe()) # Bring the column names to a standard convention raw_data.rename(columns={"RatingNum": "State", "Date": "Time", "CustomerId": "ID"}, inplace=True) print(raw_data.head()) # Print a summary of transition statistics pp.pprint(transitions_summary(raw_data)) # Drop redundant column raw_data = raw_data.drop(columns=['Rating']) # Move the NR column to the end reorder_dict = { 0: 8, 1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7 } raw_data = raw_data.replace({"State": reorder_dict}) print(raw_data.head(10)) # Convert date strings to floats [start_date, end_date, total_days], converted_data = datetime_to_float(raw_data, time_column='Time') print([start_date, end_date, total_days]) # NB: In the below the D = 7, NR = 8 special states are hardwired # remove an initial observation for an entity if it is classified as D # Reason: an initial defaulted observation is unusual / non-sensical rows = [] entity_id, event_time, entity_state = frame_to_array(converted_data) for i in range(len(entity_id)): if entity_id[i - 1] != entity_id[i] and entity_state[i] == 7: pass else: rows.append((entity_id[i], event_time[i], entity_state[i])) clean_data0 = pd.DataFrame(rows, columns=['ID', 'Time', 'State']) # remove an initial observation for an entity if it is classified as NR # Reason: left truncation of observations must be handled consistently rows = [] entity_id, event_time, entity_state = frame_to_array(clean_data0) for i in range(len(entity_id)): if entity_id[i - 1] != entity_id[i] and entity_state[i] == 8: pass else: rows.append((entity_id[i], event_time[i], entity_state[i])) clean_data1 = pd.DataFrame(rows, columns=['ID', 'Time', 'State']) # remove an intermediate observation for an entity if it is classified as NR # Reason: it is non-informative and it complicates the handling of NR state (non-absorbing) rows = [] entity_id, event_time, entity_state = frame_to_array(clean_data1) for i in range(len(entity_id) - 1): if entity_id[i + 1] == entity_id[i] and entity_state[i] == 8 and entity_state[i + 1] != 8: pass else: rows.append((entity_id[i], event_time[i], entity_state[i])) clean_data2 =
pd.DataFrame(rows, columns=['ID', 'Time', 'State'])
pandas.DataFrame
import numpy as np import glob import logging import os from time import time import SimpleITK as sitk import numpy as np import pandas as pd import yaml from sklearn.model_selection import KFold from src.utils.Utils_io import ensure_dir from src.visualization.Visualize import plot_value_histogram def copy_meta_and_save(new_image, reference_sitk_img, full_filename=None, override_spacing=None, copy_direction=True): """ Copy metadata, UID and structural information from one image to another Works also for different dimensions, returns new_image with copied structural info :param new_image: sitk.Image :param reference_sitk_img: sitk.Image :param path: full file path as str :return: """ t1 = time() try: # make sure this method works with nda and sitk images if isinstance(new_image, np.ndarray): if len(new_image.shape) == 4: # 4D needs to be built from a series new_image = [sitk.GetImageFromArray(img) for img in new_image] new_image = sitk.JoinSeries(new_image) else: new_image = sitk.GetImageFromArray(new_image) ensure_dir(os.path.dirname(os.path.abspath(full_filename))) if reference_sitk_img is not None: assert (isinstance(reference_sitk_img, sitk.Image)), 'no reference image given' assert (isinstance(new_image, sitk.Image)), 'only np.ndarrays and sitk images could be stored' # copy metadata for key in reference_sitk_img.GetMetaDataKeys(): new_image.SetMetaData(key, get_metadata_maybe(reference_sitk_img, key)) logging.debug('Metadata_copied: {:0.3f}s'.format(time() - t1)) # copy structural informations to image with same dimension and size if (reference_sitk_img.GetDimension() == new_image.GetDimension()) and ( reference_sitk_img.GetSize() == new_image.GetSize()): new_image.CopyInformation(reference_sitk_img) # same dimension (e.g. 4) but different size per dimension elif (reference_sitk_img.GetDimension() == new_image.GetDimension()): # copy spacing, origin and rotation but keep size as it is if copy_direction: new_image.SetDirection(reference_sitk_img.GetDirection()) new_image.SetOrigin(reference_sitk_img.GetOrigin()) new_image.SetSpacing(reference_sitk_img.GetSpacing()) # copy structural information to smaller images e.g. 4D to 3D elif reference_sitk_img.GetDimension() > new_image.GetDimension(): shape_ = len(new_image.GetSize()) reference_shape = len(reference_sitk_img.GetSize()) # copy direction to smaller images # 1. extract the direction, 2. create a matrix, 3. slice by the new shape, 4. flatten if copy_direction: direction = np.array(reference_sitk_img.GetDirection()) dir_ = direction.reshape(reference_shape, reference_shape) direction = dir_[:shape_, :shape_].flatten() new_image.SetDirection(direction) new_image.SetOrigin(reference_sitk_img.GetOrigin()[:shape_]) new_image.SetSpacing(reference_sitk_img.GetSpacing()[:shape_]) # copy structural information to bigger images e.g. 3D to 4D, fill with 1.0 spacing else: ones = [1.0] * (new_image.GetDimension() - reference_sitk_img.GetDimension()) new_image.SetOrigin((*reference_sitk_img.GetOrigin(), *ones)) new_image.SetSpacing((*reference_sitk_img.GetSpacing(), *ones)) # we cant copy the direction from smaller images to bigger ones logging.debug('spatial data_copied: {:0.3f}s'.format(time() - t1)) if override_spacing: new_image.SetSpacing(override_spacing) if full_filename != None: # copy uid writer = sitk.ImageFileWriter() # writer.KeepOriginalImageUIDOn() writer.SetFileName(full_filename) writer.Execute(new_image) logging.debug('image saved: {:0.3f}s'.format(time() - t1)) return True except Exception as e: logging.error('Error with saving file: {} - {}'.format(full_filename, str(e))) return False else: return new_image def create_4d_volumes_from_4d_files(img_f, mask_f, full_path='data/raw/GCN/3D/', slice_threshold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes by contoured time-steps copy all metadata save them to the destination path :param img_f: 4D image filepath as str :param mask_f: 4D mask filepath as str :param full_path: export path as str :param slice_threshold: minimal masks per timestep as int :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_threshold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] # write filtered 4d image to disk patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') img_file = '{}_{}{}'.format(patient_name, 'img', '.nrrd') mask_file = '{}_{}{}'.format(patient_name, 'msk', '.nrrd') copy_meta_and_save(img_4d_nda, img_4d_sitk, os.path.join(full_path, img_file)) copy_meta_and_save(mask_4d_nda, img_4d_sitk, os.path.join(full_path, mask_file)) return [masked_t, list(img_4d_nda.shape)] def extract_spacing(matlabfile=None, is_sax=True): """ extract the spacing from a medvisio export matlabfile of a CMR image, either SAX or 4CH returns (1,1,1,6) for (z,t,x,y) if none spacing could be found :param matlabfile (np.ndarray) matlabfile opened via scipy.io.loadmat(example.mat) :param is_sax (bool) toggle between sax or 4ch spacing :return: (tuple) spacing in the following order (z,t,x,y) """ assert (matlabfile is not None), 'no matlab file given, please provide *.mat file as np.ndarray' try: values = dict([(keys.lower(), value) for keys, value in zip(matlabfile['setstruct'][0].dtype.names, matlabfile['setstruct'][0][int(is_sax)])]) except Exception as e: print(str(e)) values = dict() spacing_x = float(values.get('resolutionx', 1)) spacing_y = float(values.get('resolutiony', 1)) spacing_t = float(1) spacing_z = float(values.get('slicethickness', 6)) return (spacing_z, spacing_t, spacing_x, spacing_y) def create_3d_volumes_from_4d_files(img_f, mask_f, full_path='data/raw/tetra/3D/', slice_treshhold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_treshhold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] # create t 3d volumes for img_3d, mask_3d, t in zip(img_4d_nda, mask_4d_nda, masked_t): # write 3d image patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') img_file = '{}_t{}_{}{}'.format(patient_name, str(t), 'img', '.nrrd') mask_file = '{}_t{}_{}{}'.format(patient_name, str(t), 'msk', '.nrrd') copy_meta_and_save(img_3d, img_4d_sitk, os.path.join(full_path, img_file)) copy_meta_and_save(mask_3d, img_4d_sitk, os.path.join(full_path, mask_file)) return [masked_t, list(img_4d_nda.shape)] def create_2d_slices_from_4d_volume_files(img_f, mask_f, export_path, filter_by_mask=True, slice_threshold=2): """ Expects an 4d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param export_path: str :param filter_by_mask: bool :param slice_threshold: int :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_4d_sitk = sitk.ReadImage(mask_f) img_4d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda if filter_by_mask: mask_4d_nda, masked_t = filter_4d_vol(mask_4d_sitk, slice_threshold=slice_threshold) img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk)[masked_t] else: img_4d_nda = sitk.GetArrayFromImage(img_4d_sitk) masked_t = list(range(img_4d_nda.shape[0])) mask_4d_nda = sitk.GetArrayFromImage(mask_4d_sitk) # create t x 3d volumes for img_3d, mask_3d, t in zip(img_4d_nda, mask_4d_nda, masked_t): # get patient_name patient_name = os.path.basename(img_f).split('.')[0].replace('volume_clean', '') # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position img_file = '{}_t{}_z{}_{}{}'.format(patient_name, str(t), str(z), 'img', '.nrrd') mask_file = '{}_t{}_z{}_{}{}'.format(patient_name, str(t), str(z), 'msk', '.nrrd') # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_4d_sitk, os.path.join(export_path, img_file), copy_direction=False) copy_meta_and_save(slice_2d[1], img_4d_sitk, os.path.join(export_path, mask_file), copy_direction=False) return [masked_t, list(img_4d_nda.shape)] def create_2d_slices_from_3d_volume_files_any_filename(img_f, mask_f, export_path): """ Helper to split a GCN 3D dicom file into z x 2D slices Expects an 3d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ import re logging.info('process file: {}'.format(img_f)) # get sitk images mask_3d_sitk = sitk.ReadImage(mask_f) img_3d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_3d = sitk.GetArrayFromImage(mask_3d_sitk) img_3d = sitk.GetArrayFromImage(img_3d_sitk) # get file names _, img_f = os.path.split(img_f) _, mask_f = os.path.split(mask_f) def get_new_name(f_name, z): match = '' # check if image or mask m = re.search('_img|_msk', f_name) if m: match = m.group(0) # extend filename at the very last position before 'img' or 'msk' return re.sub('{}.nrrd'.format(match), '_{}{}.nrrd'.format(z, match), f_name) # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position # extend the filename img_file = get_new_name(img_f, z) mask_file = get_new_name(mask_f, z) # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_3d_sitk, os.path.join(export_path, img_file)) copy_meta_and_save(slice_2d[1], img_3d_sitk, os.path.join(export_path, mask_file)) return list(img_3d.shape) def create_2d_slices_from_3d_volume_files(img_f, mask_f, export_path): """ Helper for ACDC data Expects an 3d-image and -mask file name and a target path filter mask and image volumes with segmentation copy all metadata save them to the destination path :param img_f: :param mask_f: :param full_path: :return: """ logging.info('process file: {}'.format(img_f)) # get sitk images mask_3d_sitk = sitk.ReadImage(mask_f) img_3d_sitk = sitk.ReadImage(img_f) # filter 4d image nda according to given mask nda mask_3d = sitk.GetArrayFromImage(mask_3d_sitk) img_3d = sitk.GetArrayFromImage(img_3d_sitk) # get patient_name patient_name = os.path.basename(img_f).split('_')[0] frame = os.path.basename(img_f).split('frame')[1][:2] # create z x 2d slices for z, slice_2d in enumerate(zip(img_3d, mask_3d)): # create filenames with reference to t and z position img_file = '{}__t{}_z{}_{}{}'.format(patient_name, str(frame), str(z), 'img', '.nrrd') mask_file = '{}__t{}_z{}_{}{}'.format(patient_name, str(frame), str(z), 'msk', '.nrrd') # save nrrd file with metadata copy_meta_and_save(slice_2d[0], img_3d_sitk, os.path.join(export_path, img_file)) copy_meta_and_save(slice_2d[1], img_3d_sitk, os.path.join(export_path, mask_file)) return [frame, list(img_3d.shape)] def get_patient(filename_to_2d_nrrd_file): """ Split the nrrd filename and returns the patient id split the filename by '_' returns the first two elements of that list If the filename contains '__' it returns the part before """ import re m = re.search('__', filename_to_2d_nrrd_file) if m: # nrrd filename with '__' return os.path.basename(filename_to_2d_nrrd_file).split('__')[0] if os.path.basename(filename_to_2d_nrrd_file).startswith('patient'): # acdc file return os.path.basename(filename_to_2d_nrrd_file).split('_')[0] else: # gcn filename return '_'.join(os.path.basename(filename_to_2d_nrrd_file).split('_')[:2]) def get_trainings_files(data_path, fold=0, path_to_folds_df='data/raw/gcn_05_2020_ax_sax_86/folds.csv'): """ Load trainings and test files of a directory by a given folds-dataframe :param data_path: :param fold: :param path_to_folds_df: :return: x_train, y_train, x_val, y_val """ img_suffix = '*img.nrrd' mask_suffix = '*msk.nrrd' # load the nrrd files with given pattern from the data path x = sorted(glob.glob(os.path.join(data_path, img_suffix))) y = sorted(glob.glob(os.path.join(data_path, mask_suffix))) if len(x) == 0: logging.info('no files found, try to load with acdc file pattern') x, y = load_acdc_files(data_path) df = pd.read_csv(path_to_folds_df) patients = df[df.fold.isin([fold])] # make sure we count each patient only once patients_train = patients[patients['modality'] == 'train']['patient'].unique() patients_test = patients[patients['modality'] == 'test']['patient'].unique() logging.info('Found {} images/masks in {}'.format(len(x), data_path)) logging.info('Patients train: {}'.format(len(patients_train))) def filter_files_for_fold(list_of_filenames, list_of_patients): """Helper to filter one list by a list of substrings""" from src.data.Dataset import get_patient return [str for str in list_of_filenames if get_patient(str) in list_of_patients] x_train = sorted(filter_files_for_fold(x, patients_train)) y_train = sorted(filter_files_for_fold(y, patients_train)) x_test = sorted(filter_files_for_fold(x, patients_test)) y_test = sorted(filter_files_for_fold(y, patients_test)) assert (len(x_train) == len(y_train)), 'len(x_train != len(y_train))' logging.info('Selected {} of {} files with {} of {} patients for training fold {}'.format(len(x_train), len(x), len(patients_train), len(df.patient.unique()), fold)) return x_train, y_train, x_test, y_test def get_kfolded_data(kfolds=4, path_to_data='data/raw/tetra/2D/', extract_patient_id=get_patient): """ filter all image files by patient names defined in fold n functions expects subfolders, collects all image, mask files and creates a list of unique patient ids create k folds of this patient ids filter the filenames containing the patient ids from each kfold split returns :param kfolds: number of splits :param path_to_data: path to root of split data e.g. 'data/raw/tetra/2D/' :param extract_patient_id: function which returns the patient id for each filename in path_to_data :return: a dataframe with the following columns: fold (kfolds-1), x_path (full filename to image as nrrd), y_path (full filename to mask as nrrd), modality(train or test) patient (patient id) """ img_pattern = '*img.nrrd' columns = ['fold', 'x_path', 'y_path', 'modality', 'patient'] modality_train = 'train' modality_test = 'test' seed = 42 # get all images, masks from given directory # get all img files in all subdirs x = sorted(glob.glob(os.path.join(path_to_data, '**/*{}'.format(img_pattern)))) # if no subdirs given, search in root if len(x) == 0: x = sorted(glob.glob(os.path.join(path_to_data, '*{}'.format(img_pattern)))) logging.info('found: {} files'.format(len(x))) # create a unique list of patient ids patients = sorted(list(set([extract_patient_id(f) for f in x]))) logging.info('found: {} patients'.format(len(patients))) # create a k-fold instance with k = kfolds kfold = KFold(n_splits=kfolds, shuffle=True, random_state=seed) def filter_x_by_patient_ids_(x, patient_ids, modality, columns, f): # create a dataframe from x (list of filenames) filter by patient ids # returns a dataframe df = pd.DataFrame(columns=columns) df['x_path'] = [elem for elem in x if extract_patient_id(elem) in patient_ids] df['y_path'] = [elem.replace('img', 'msk') for elem in df['x_path']] df['fold'] = [f] * len(df['x_path']) df['modality'] = [modality] * len(df['x_path']) df['patient'] = [extract_patient_id(elem) for elem in df['x_path']] logging.debug(len(df['x_path'])) logging.debug(patient_ids) logging.debug(len(x)) logging.debug(extract_patient_id(x[0])) return df # split patients k times # use the indexes to get the patient ids from x # use the patient ids to filter train/test from the complete list of files df_folds = pd.DataFrame(columns=columns) for f, idx in enumerate( kfold.split(patients)): # f = fold, idx = tuple with all indexes to split the patients in this fold train_idx, test_idx = idx # create a list of train and test indexes logging.debug("TRAIN: {}, TEST: {}".format(train_idx, test_idx)) # slice the filenames by the given indexes patients_train, patients_test = [patients[i] for i in train_idx], [patients[i] for i in test_idx] df_train = filter_x_by_patient_ids_(x, patients_train, modality_train, columns, f) df_test = filter_x_by_patient_ids_(x, patients_test, modality_test, columns, f) # merge train and test df_fold = pd.concat([df_train, df_test]) # merge fold into folds dataset df_folds = pd.concat([df_fold, df_folds]) return df_folds def filter_x_by_patient_ids(x, patient_ids, modality='test', columns=['x_path', 'y_path', 'fold', 'modality', 'patient', 'pathology'], fold=0, pathology=None, filter=True): """ Create a df from a given list of files and a list of patient which are used to filter the file names :param x: :param patient_ids: :param modality: :param columns: :param f: :param pathology: :return: """ # create a dataframe from x (list of filenames) filter by patient ids # returns a dataframe df = pd.DataFrame(columns=columns) if filter: df['x_path'] = [elem for elem in x if get_patient(elem) in patient_ids] else: df['x_path'] = [elem for elem in x] df['y_path'] = [elem.replace('img', 'msk') for elem in df['x_path']] df['fold'] = [fold] * len(df['x_path']) df['modality'] = [modality] * len(df['x_path']) df['patient'] = [get_patient(elem) for elem in df['x_path']] df['pathology'] = [pathology] * len(df['x_path']) return df def get_n_patients(df, n=1): """ Select n random patients Filter the data frame by this patients Use the Fold 0 split as default Override the modality for all random selected patients to "train" return filtered df :param df: :param n: :param fold: :return: """ # fold is not important, # because we return patients from train and test modality fold = 0 # make random.choice idempotent np.random.seed(42) # select random patients patients = np.random.choice(sorted(df['patient'].unique()), size=n) logging.info('Added patients: {} from the GCN dataset'.format(patients)) # filter data frame by fold and by random selected patients ids, make sure to make a copy to avoid side effects df_temp = df[(df['fold'] == fold) & (df['patient'].isin(patients))].copy() # make sure all selected images will be used during training, change modality to train for this images # train_kfolded will only use images with modality == train, override the modality for all selected patients/rows df_temp.loc[:, 'modality'] = 'train' df_temp.reset_index(inplace=True) return df_temp def get_train_data_from_df(first_df='reports/kfolds_data/2D/acdc/df_kfold.csv', second_df=None, n_second_df=0, n_first_df=None, fold=0, ): """ load one df and select n patients, default: use all load a second df, if given select n patients from second df, merge first df into second df return x_train, y_train, x_val, y_val as list of files :param df_fname: full file/pathname to first df (str) :param second_df_fname: full file/pathname to second df (str) :param n_second_df: number of patients from second df, that should be merged :param n_patients_first_df: int - number of patients to load from the first dataframe :param fold: select a fold from df :return: """ extend = dict() extend['GCN_PATIENTS'] = list() extend['GCN_IMAGES'] = 0 df = pd.read_csv(first_df) # take only n patients from the first dataframe if n_first_df: df = get_n_patients(df, n_first_df) # if second dataframe given, load df, select m patients, and concat this dataframe with the first one if second_df: # extend dataframe with n patients from second dataframe df_second = pd.read_csv(second_df) df_second = get_n_patients(df_second, n_second_df) df =
pd.concat([df, df_second], sort=False)
pandas.concat
import pandas as pd from fbprophet import Prophet from preprocess_ts_data import concatenate_features # Make a dataframe of center id, meal id and the two concatenated into one string center_meal_combo_id = concatenate_features(df_time_series, 'center_id', 'meal_id') def make_time_series_predictions(full_raw_time_series, forecast_period): """ Use Prophet: A Time Series Forecasting technique developed and open-sourced by Facebook """ time_series_period = len(full_raw_time_series['week'].value_counts().index.to_list()) total_predictions=pd.DataFrame() for combo in list(center_meal_combo_id['centre_id_meal_id']): combo_time_series = full_raw_time_series.loc[full_raw_time_series['center_meal_combo_id'] == combo,['ds','y']] # Instantiate a Prophet object and fit it to our time series m = Prophet(daily_seasonality=False, weekly_seasonality=True, yearly_seasonality=True) m.fit(combo_time_series) # Make a dataframe of future dates future = m.make_future_dataframe(freq='W', periods=forecast_period) # Make predictions on future dates forecast = m.predict(future) mini_predictions = forecast.loc[:,['ds','yhat']] combo_series =
pd.DataFrame([combo]*(time_series_period + forecast_period), columns=['centre_meal_combo_id'])
pandas.DataFrame
import pandas import requests from bs4 import BeautifulSoup import time, datetime, os city = "San-Leandro" realtor_base_url = "https://www.realtor.com/realestateandhomes-search/%s_CA" % city scraperapi_Key = "<KEY>" header = {"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36" ,'referer':'https://www.google.com/'} # Will be used to store Property results results_list = [] def parseContent(webSoup, find_Number_of_Properties = False): """ Takes in a BeautifulSoup object that has already been converted to parse webpage and a boolean value to determine if looking for max number of properties to display """ if not isinstance(webSoup, BeautifulSoup): raise ValueError("webSoup must be of type 'BeatifulSoup'") elif not isinstance(find_Number_of_Properties, bool): raise ValueError("find_Number_of_Properties must be of type 'bool'") else: # If find_Number_of_Properties is True, look for total number of houses if find_Number_of_Properties: try: home_count_Container = webSoup.find("span", class_="result-count") print("Total: %s" % home_count_Container.text) except Exception as ex: print("Error determing property count") raise ex # Get all property cards and parse through all try: properties_Container = webSoup.find_all("section", class_="srp-content")[0].find_all("li", attrs={"data-testid":"result-card"}, class_="component_property-card") print("Number of properties on this page: %s" % len(properties_Container)) except Exception as ex: print("%s Error occured initializing properties_container: %s" % (type(ex),ex)) # Return False to retry URL return False for prop in properties_Container: home = {} # Attempt to pull type try: home["Type"] = prop.find("div", class_="property-type", attrs={"data-label":"pc-type"}).text except AttributeError: home["Type"] = None pass except Exception as ex: print("%s Error occured in Type: %s" % (type(ex),ex)) home["Type"] = None # Attempt to pull price and estimated payment try: priceWrapper = prop.find_all("div", attrs={"data-label":"pc-price-wrapper"}, class_="price") except Exception as ex: print("%s Error occured initializing priceWrapper: %s" % (type(ex),ex)) return for wrap in priceWrapper: # pull price try: home["Price"] = wrap.find("span", attrs={"data-label":"pc-price"}).text except AttributeError: home["Price"] = None pass except Exception as ex: print("%s Error occured in Price: %s" % (type(ex),ex)) home["Price"] = None # TODO: pull estimated payment # try: # home["Estimate Payment"] = wrap.find("button", attrs={"estimate-payment-button"}, class_="estimate-payment-button").text # except Exception as ex: # print("Error occured in Estimate Payment: %s" % ex) # home["Estimate Payment"] = None # Find Home Details try: detailWrapper = prop.find("div", attrs={"data-testid":"property-meta-container"}) except: print("%s Error occured initializing detailWrapper: %s" % (type(ex),ex)) return # Attempt to pull Bed try: home["Beds"] = detailWrapper.find("li", attrs={"data-label":"pc-meta-beds"}).find("span", attrs={"data-label":"meta-value"}).text except AttributeError: home["Beds"] = None pass except Exception as ex: print("%s Error occured in Bed: %s" % (type(ex),ex)) home["Beds"] = None # Attempt to pull baths try: home["Baths"] = detailWrapper.find("li", attrs={"data-label":"pc-meta-baths"}).find("span", attrs={"data-label":"meta-value"}).text except AttributeError: home["Baths"] = None pass except Exception as ex: print("%s Error occured in Baths: %s" % (type(ex), ex)) home["Baths"] = None # Attempt to pull Home SqFt try: home["Home Square Footage"] = detailWrapper.find("li", attrs={"data-label":"pc-meta-sqft"}).find("span", attrs={"data-label":"meta-value"}).text except AttributeError: home["Home Square Footage"] = None pass except Exception as ex: print("%s Error occured in Home Square Footage: %s" % (type(ex), ex)) home["Home Square Footage"] = None # Attempt to pull Lot SqFt try: home["Lot Square Footage"] = detailWrapper.find("li", attrs={"data-label":"pc-meta-sqftlot"}).find("span", attrs={"data-label":"meta-value"}).text except AttributeError: home["Lot Square Footage"] = None pass except Exception as ex: print("%s Error occured in Lot Square Footage: %s" % (type(ex), ex)) home["Lot Square Footage"] = None # Attempt to pull address try: home["Address"] = prop.find("div", class_="address", attrs={"data-label":"pc-address"}).text except AttributeError: home["Address"] = None pass except Exception as ex: print("%s Error occured in Address: %s" % (type(ex),ex)) home["Address"] = None # Add Date Created try: home["Created"] = datetime.datetime.now().strftime("%b-%d-%Y %I:%M:%S") except Exception as ex: print("%s Error occured in Created: %s" % (type(ex),ex)) home["Created"] = "Unavailable" results_list.append(home) return True def requestNewURL(url): """ Takes in base url to scrape through and converts into BeautifulSoup """ print("Looking at webpage: %s" % url) payload = { "api_key": scraperapi_Key, "url": url } req = requests.get("http://api.scraperapi.com",params=payload,headers=header) if req.status_code != 200: print("STATUS CODE FOR %s : %s" % (url, req.status_code)) if req.status_code == 500: print("Request error 500. Trying again") req = requests.get("http://api.scraperapi.com",params=payload,headers=header) contents = req.text.strip() soup = BeautifulSoup(contents, "html.parser") if not parseContent(soup, False): # something went wrong getting property container. Try URL again. print("Trying URL Again") requestNewURL(url) # Start off parsing 1st page which will have some results payload = { "api_key": scraperapi_Key, "url": realtor_base_url } req = requests.get("http://api.scraperapi.com",params=payload,headers=header) contents = req.text.strip() soup = BeautifulSoup(contents, "html.parser") # To see web content results, uncomment the following line # print(soup.prettify()) # Parse through first page parseContent(soup, True) # Determine number of pages try: max_pages = soup.find_all("li", {"class":"pagination-number"})[-1].text print("Total Number of pages %s" % max_pages) # if more than 1 pages loop through all if int(max_pages) >= 2: # Since range is exclusive, we need to add one to the end for page in range(2,int(max_pages)+1): time.sleep(2) requestNewURL(realtor_base_url + "/pg-" +str(page)) except IndexError: print("Index Error occurred, Data may be missing.") pass print("Total number of successful pulled Properties: %s" % len(results_list)) # Create csv file with all results dataFrame =
pandas.DataFrame(results_list)
pandas.DataFrame
import math import os import gym import re from gym import spaces from sklearn.feature_extraction.text import TfidfVectorizer import random import pandas as pd import numpy as np class weigher(object): def __init__(self, ret_np=False): self.ret_np = ret_np self.model = TfidfVectorizer() def fit(self, input_text): if isinstance(input_text, str): with open(input_text) as f: self.model.fit(f) else: self.model.fit(input_text) self.vocab = self.model.vocabulary_ self.prepr = self.model.build_preprocessor() self.toker = self.model.build_tokenizer() def tokenize(self, string): return self.toker(self.prepr(string)) def tfidf(self, St): sparse_wv = self.model.transform([St]) st = [] for w in self.tokenize(St): try: widx = self.vocab[w] st.append(sparse_wv[0, widx]) except KeyError: st.append(0.0) return np.array(st) if self.ret_np else st class textEnv(gym.Env): """Custom text environment that follows gym interface""" metadata = {'render.modes': ['human']} def __init__(self, input_file_name, wsize=7, beta_rwd=1.5, gamma = 0.8, sample_size=20, traject_length=100, reward_smooth=True, n_trajects=10): super(textEnv, self).__init__() self.weiger = weigher(ret_np=True) self.weiger.fit(input_file_name) self.total_bytes = os.stat(input_file_name).st_size self.file = open(input_file_name) assert wsize > 3 # No context size smaller than 3 allowed self.w_size = wsize self.tlegth = traject_length self.tcount = 0 self.reward_smooth = True self.gamma = gamma self.beta = beta_rwd self.rand_byte = random.randint(0, self.total_bytes) self.current_step = 0 self.sample_size = sample_size self.n_trajects = n_trajects try: self.n_gram_model = TfidfVectorizer(analyzer='char_wb', ngram_range=(1,3)) except TypeError: self.n_gram_model = TfidfVectorizer(analyzer='char', ngram_range=(1,3)) token_pattern = re.compile('\\w+') self.tokenize = lambda s: token_pattern.findall(s) self.char_prep = self.n_gram_model.build_preprocessor() self.char_analyzer = self.n_gram_model.build_analyzer() def char_tokenizer(self, s): """Gives character n-gram tokens. args: s: string (a context window in string form). rets: a list of strings, each being an n-gram. """ return [ng for ng in self.char_analyzer(" ".join(self.tokenize( self.char_prep(s)))) if not ng in ['', ' ']] def reset(self): self.I_XZgY = [] self.I_XZ = [] self.tcount = 0 self.sample_semanticity = [] self.horizon_semanticity = 0.0 self.cum_rewards = [] self.current_byte = random.randint(0, self.total_bytes) self.file.seek(self.current_byte) self.current_step = 0 return self.next_observation() def _check_EOF(self): self.current_byte = self.file.tell() if self.current_byte == self.total_bytes: return True else: return False def _read_next_context(self): #if self._check_EOF(): # """If end of file is reached, then go to random line""" # self.file.seek(0) # self.current_byte = random.randint(0, self.total_bytes) # self.file.seek(self.current_byte) # self.file.readline() # skip this line to clear the partial line self.lline = [] while len(self.lline) < self.w_size: """Do not deliver a text line if it is shorter than the allowed window size""" if self._check_EOF(): self.file.seek(0) self.current_byte = random.randint(0, self.total_bytes) self.file.seek(self.current_byte) self.file.readline() # skip this line to clear the partial line self._read_next_context() else: self.lline = self.weiger.tokenize(self.file.readline()) #self.current_byte = self.file.tell() """ Update the current file position, pick up a random context from the current line at sc (start context, measured in tokens), and return it as a string.""" if len(self.lline) - self.w_size > 0: self.sc = random.randint(0, len(self.lline) - self.w_size) else: self.sc = 0 ctxt = " ".join(self.lline[self.sc:self.sc + self.w_size]) #print(ctxt) return ctxt def next_observation(self): #def _next_state(self): """This method reads |D_k| contexts to form a D_k sample in a step, and returns a matrix whose rows are \psi information signals of each context. args: no arguments rets: tuple(list of string contexts S_t, numpy matrix of \psi signals) """ D_k = [] #S_k = [] for _ in range(self.sample_size): context = self._read_next_context() D_k.append((context, self.weiger.tfidf(context))) #S_k.append(self.weiger.tfidf(context)) return D_k #, S_k def conditioned_MI(self, X, Y, Z): """Compute conditioned mutual information with respect to the hypothesis of that Y = y is the head for each triplet of the action (sample) step. args: X: list of strings corresponding to n-grams for the hypothesis of that X = x for each triplet of the current action step. Y: list of strings corresponding to n-grams for the hypothesis of that Y = y for each triplet of the current action step. Z: list of strings corresponding to n-grams for the hypothesis of that Z = z for each triplet of the current action step. rets: float: The method returns the CMI. """ Tn = set(X).intersection(Y).intersection(Z) Tu = set(X).union(Y).union(Z) XnY = set(X).intersection(Y) ZnY = set(Z).intersection(Y) P_XYZ = len(Tn)/len(Tu) P_XZgY = len(Tn)/len(Y) P_XgY = len(XnY) / len(Y) P_ZgY = len(ZnY) / len(Y) I_XZgY = P_XYZ * np.log(P_XZgY/(P_XgY * P_ZgY)) return I_XZgY def mutual_info(self, X, Y, Z): """Compute mutual information between the hypotheses of that X = x and Z = z for each triplet of the action (sample) step. The method needs the whole triplets (X, Y, Z) to compute X, Y probabilities within the sample. args: X: list of strings corresponding to n-grams for the hypothesis of that X = x for each triplet of the current action step. Y: list of strings corresponding to n-grams for the hypothesis of that Y = y for each triplet of the current action step. Z: list of strings corresponding to n-grams for the hypothesis of that Z = z for each triplet of the current action step. rets: float: The method returns the CMI. """ Tu = set(X).union(Y).union(Z) XnZ = set(X).intersection(Z) P_XZ = len(XnZ)/len(Tu) P_X = len(X)/len(Tu) P_Z = len(Z)/len(Tu) I_XZ = P_XZ * np.log(P_XZ/(P_X * P_Z)) return I_XZ def _interpret_action(self, action): """Actions 'a' from a sample constitute a step 'action', where args: action: list of dicts [a1, a2,...]\equiv [{Y: list(w1, w2,...), X: list(w1, w2,...), Z: list(w1, w2,...)}, ] rets: float: semanticity, and updating of reward domain via self.I_XZgY and self.I_XZ """ self.Ak =
pd.DataFrame(action)
pandas.DataFrame
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import os.path import unittest import pandas as pd import pandas.io.common import biom import skbio import qiime2 from pandas.util.testing import assert_frame_equal, assert_series_equal from q2_types.feature_table import BIOMV210Format from q2_types.feature_data import ( TaxonomyFormat, HeaderlessTSVTaxonomyFormat, TSVTaxonomyFormat, DNAFASTAFormat, DNAIterator, PairedDNAIterator, PairedDNASequencesDirectoryFormat, AlignedDNAFASTAFormat, DifferentialFormat, AlignedDNAIterator ) from q2_types.feature_data._transformer import ( _taxonomy_formats_to_dataframe, _dataframe_to_tsv_taxonomy_format) from qiime2.plugin.testing import TestPluginBase # NOTE: these tests are fairly high-level and mainly test the transformer # interfaces for the three taxonomy file formats. More in-depth testing for # border cases, errors, etc. are in `TestTaxonomyFormatsToDataFrame` and # `TestDataFrameToTSVTaxonomyFormat` below, which test the lower-level helper # functions utilized by the transformers. class TestTaxonomyFormatTransformers(TestPluginBase): package = 'q2_types.feature_data.tests' def test_taxonomy_format_to_dataframe_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', '3-column.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_dataframe_without_header(self): # Bug identified in https://github.com/qiime2/q2-types/issues/107 index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', 'headerless.tsv')) assert_frame_equal(obs, exp) def test_taxonomy_format_to_series_with_header(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', '3-column.tsv')) assert_series_equal(obs, exp) def test_taxonomy_format_to_series_without_header(self): # Bug identified in https://github.com/qiime2/q2-types/issues/107 index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', 'headerless.tsv')) assert_series_equal(obs, exp) def test_headerless_tsv_taxonomy_format_to_tsv_taxonomy_format(self): exp = ( 'Feature ID\tTaxon\tUnnamed Column 1\tUnnamed Column 2\n' 'seq1\tk__Foo; p__Bar\tsome\tanother\n' 'seq2\tk__Foo; p__Baz\tcolumn\tcolumn!\n' ) _, obs = self.transform_format( HeaderlessTSVTaxonomyFormat, TSVTaxonomyFormat, filename=os.path.join('taxonomy', 'headerless.tsv')) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_tsv_taxonomy_format_to_dataframe(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) _, obs = self.transform_format( TSVTaxonomyFormat, pd.DataFrame, filename=os.path.join('taxonomy', '3-column.tsv')) assert_frame_equal(obs, exp) def test_tsv_taxonomy_format_to_series(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.Series(['k__Foo; p__Bar', 'k__Foo; p__Baz'], index=index, name='Taxon', dtype=object) _, obs = self.transform_format( TSVTaxonomyFormat, pd.Series, filename=os.path.join('taxonomy', '3-column.tsv')) assert_series_equal(obs, exp) def test_dataframe_to_tsv_taxonomy_format(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Foo', 'Bar'] df = pd.DataFrame([['taxon1', '42', 'foo'], ['taxon2', '43', 'bar']], index=index, columns=columns, dtype=object) exp = ( 'Feature ID\tTaxon\tFoo\tBar\n' 'seq1\ttaxon1\t42\tfoo\n' 'seq2\ttaxon2\t43\tbar\n' ) transformer = self.get_transformer(pd.DataFrame, TSVTaxonomyFormat) obs = transformer(df) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_series_to_tsv_taxonomy_format(self): index = pd.Index(['emrakul', 'peanut'], name='Feature ID', dtype=object) series = pd.Series(['taxon1', 'taxon2'], index=index, name='Taxon', dtype=object) exp = ( 'Feature ID\tTaxon\n' 'emrakul\ttaxon1\n' 'peanut\ttaxon2\n' ) transformer = self.get_transformer(pd.Series, TSVTaxonomyFormat) obs = transformer(series) with obs.open() as fh: self.assertEqual(fh.read(), exp) def test_biom_table_to_tsv_taxonomy_format(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) obs = transformer(table) self.assertIsInstance(obs, TSVTaxonomyFormat) self.assertEqual( obs.path.read_text(), 'Feature ID\tTaxon\nO0\ta; b\nO1\ta; b\nO2\ta; b\nO3\ta; b\n') def test_biom_table_to_tsv_taxonomy_format_no_taxonomy_md(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) observation_metadata = [dict(taxon=['a', 'b']) for _ in range(4)] table = biom.Table(table.matrix_data, observation_ids=table.ids(axis='observation'), sample_ids=table.ids(axis='sample'), observation_metadata=observation_metadata) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) with self.assertRaisesRegex(ValueError, 'O0 does not contain `taxonomy`'): transformer(table) def test_biom_table_to_tsv_taxonomy_format_missing_md(self): filepath = self.get_data_path( os.path.join('taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom')) table = biom.load_table(filepath) observation_metadata = [dict(taxonomy=['a', 'b']) for _ in range(4)] observation_metadata[2]['taxonomy'] = None # Wipe out one entry table = biom.Table(table.matrix_data, observation_ids=table.ids(axis='observation'), sample_ids=table.ids(axis='sample'), observation_metadata=observation_metadata) transformer = self.get_transformer(biom.Table, TSVTaxonomyFormat) with self.assertRaisesRegex(TypeError, 'problem preparing.*O2'): transformer(table) def test_biom_v210_format_to_tsv_taxonomy_format(self): filename = os.path.join( 'taxonomy', 'feature-table-with-taxonomy-metadata_v210.biom') _, obs = self.transform_format(BIOMV210Format, TSVTaxonomyFormat, filename=filename) self.assertIsInstance(obs, TSVTaxonomyFormat) self.assertEqual( obs.path.read_text(), 'Feature ID\tTaxon\nO0\ta; b\nO1\ta; b\nO2\ta; b\nO3\ta; b\n') def test_biom_v210_format_no_md_to_tsv_taxonomy_format(self): with self.assertRaisesRegex(TypeError, 'observation metadata'): self.transform_format( BIOMV210Format, TSVTaxonomyFormat, filename=os.path.join('taxonomy', 'feature-table_v210.biom')) def test_taxonomy_format_with_header_to_metadata(self): _, obs = self.transform_format(TaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', '3-column.tsv')) index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_taxonomy_format_without_header_to_metadata(self): _, obs = self.transform_format(TaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', 'headerless.tsv')) index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp_df = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_tsv_taxonomy_format_to_metadata(self): _, obs = self.transform_format(TSVTaxonomyFormat, qiime2.Metadata, os.path.join('taxonomy', '3-column.tsv')) index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_tsv_taxonomy_to_metadata_trailing_whitespace_taxon(self): _, obs = self.transform_format(TSVTaxonomyFormat, qiime2.Metadata, os.path.join( 'taxonomy', 'trailing_space_taxon.tsv')) index = pd.Index(['seq1'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_tsv_taxonomy_to_metadata_leading_whitespace_taxon(self): _, obs = self.transform_format(TSVTaxonomyFormat, qiime2.Metadata, os.path.join( 'taxonomy', 'leading_space_taxon.tsv')) index = pd.Index(['seq1'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) def test_tsv_taxonomy_to_metadata_trailing_leading_whitespace_taxon(self): _, obs = self.transform_format(TSVTaxonomyFormat, qiime2.Metadata, os.path.join( 'taxonomy', 'start_end_space_taxon.tsv')) index = pd.Index(['seq1'], name='Feature ID', dtype=object) exp_df = pd.DataFrame([['k__Foo; p__Bar', '-1.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) exp = qiime2.Metadata(exp_df) self.assertEqual(exp, obs) # In-depth testing of the `_taxonomy_formats_to_dataframe` helper function, # which does the heavy lifting for the transformers. class TestTaxonomyFormatsToDataFrame(TestPluginBase): package = 'q2_types.feature_data.tests' def test_one_column(self): with self.assertRaisesRegex(ValueError, "two columns, found 1"): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', '1-column.tsv'))) def test_blanks(self): with self.assertRaises(pandas.io.common.EmptyDataError): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'blanks'))) def test_empty(self): with self.assertRaises(pandas.io.common.EmptyDataError): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'empty'))) def test_header_only(self): with self.assertRaisesRegex(ValueError, 'one row of data'): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'header-only.tsv'))) def test_has_header_with_headerless(self): with self.assertRaisesRegex(ValueError, 'requires a header'): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'headerless.tsv')), has_header=True) def test_jagged(self): with self.assertRaises(pandas.io.common.ParserError): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'jagged.tsv'))) def test_duplicate_ids(self): with self.assertRaisesRegex(ValueError, 'duplicated: SEQUENCE1'): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join( 'taxonomy', 'duplicate-ids.tsv'))) def test_duplicate_columns(self): with self.assertRaisesRegex(ValueError, 'duplicated: Column1'): _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join( 'taxonomy', 'duplicate-columns.tsv'))) def test_2_columns(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Bacteria; p__Proteobacteria'], ['k__Bacteria']], index=index, columns=['Taxon'], dtype=object) # has_header=None (default) obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', '2-column.tsv'))) assert_frame_equal(obs, exp) # has_header=True obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', '2-column.tsv')), has_header=True) assert_frame_equal(obs, exp) def test_3_columns(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Foo; p__Bar', '-1.0'], ['k__Foo; p__Baz', '-42.0']], index=index, columns=['Taxon', 'Confidence'], dtype=object) # has_header=None (default) obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', '3-column.tsv'))) assert_frame_equal(obs, exp) # has_header=True obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', '3-column.tsv')), has_header=True) assert_frame_equal(obs, exp) def test_valid_but_messy_file(self): index = pd.Index( ['SEQUENCE1', 'seq2'], name='Feature ID', dtype=object) exp = pd.DataFrame([['k__Bar; p__Baz', 'foo'], ['some; taxonomy; for; ya', 'bar baz']], index=index, columns=['Taxon', 'Extra Column'], dtype=object) # has_header=None (default) obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'valid-but-messy.tsv'))) assert_frame_equal(obs, exp) # has_header=True obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'valid-but-messy.tsv')), has_header=True) assert_frame_equal(obs, exp) def test_headerless(self): index = pd.Index(['seq1', 'seq2'], name='Feature ID', dtype=object) columns = ['Taxon', 'Unnamed Column 1', 'Unnamed Column 2'] exp = pd.DataFrame([['k__Foo; p__Bar', 'some', 'another'], ['k__Foo; p__Baz', 'column', 'column!']], index=index, columns=columns, dtype=object) # has_header=None (default) obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'headerless.tsv'))) assert_frame_equal(obs, exp) # has_header=False obs = _taxonomy_formats_to_dataframe( self.get_data_path(os.path.join('taxonomy', 'headerless.tsv')), has_header=False) assert_frame_equal(obs, exp) # In-depth testing of the `_dataframe_to_tsv_taxonomy_format` helper function, # which does the heavy lifting for the transformers. class TestDataFrameToTSVTaxonomyFormat(TestPluginBase): package = 'q2_types.feature_data.tests' def test_no_rows(self): index =
pd.Index([], name='Feature ID', dtype=object)
pandas.Index
import torch import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from collections import defaultdict def mean_of_attention_heads(matrix, out_dim): chunks = torch.split(matrix, out_dim, dim=1) return torch.mean(torch.stack(chunks), dim=0) def latent_dim_participation_in_clusters(latent_data, labels): latent_diff = np.zeros(shape=(latent_data.shape[1], len(set(labels)) + 1)) for l_dim in range(latent_data.shape[1]): cells_in_dim = latent_data[:, l_dim] l_dim_mean = np.mean(cells_in_dim) l_dim_std = np.std(cells_in_dim) variable_cells_larger = np.where(cells_in_dim > l_dim_mean + l_dim_std) variable_cells_smaller = np.where(cells_in_dim < l_dim_mean - l_dim_std) labels_larger = labels[variable_cells_larger] labels_smaller = labels[variable_cells_smaller] variable_labels = np.concatenate((labels_larger, labels_smaller), axis=None) cluster_count = {x: list(variable_labels).count(x) for x in labels} counter_per_cluster = np.array(list(cluster_count.values())) / len(variable_labels) counter_per_cluster = np.around(counter_per_cluster * 100.0, decimals=2) latent_diff[l_dim][1:] = counter_per_cluster latent_diff[l_dim][0] = int(l_dim) cluster_label = [str(i) for i in np.unique(labels)] latent_diff =
pd.DataFrame(latent_diff, columns=['Latent dimension'] + cluster_label)
pandas.DataFrame
import pandas as pd import numpy as np from pathlib import Path from sklearn.utils.extmath import cartesian from itertools import product from sklearn import preprocessing import gc class contest(object): __preferredColumnOrder = ['item_id','shop_id','date_block_num','quarter','half','year','item_category_id','new_item','new_shop_item', 'mode_item_price_month','min_item_price_month','max_item_price_month','mean_item_price_month', 'mean_item_category_price_month','min_item_category_price_month','max_item_category_price_month', 'mode_item_category_price_month'] def __init__(self, trainDataFile, testDataFile, itemDataFile, categoryDataFile): #validate that files were passed in and exist at location provided by caller if (not trainDataFile) | (not testDataFile) | (not itemDataFile) | (not categoryDataFile): raise RuntimeError('file locations must be provided for train, test, items, and category data.') for i,x in [[trainDataFile,'Train'], [testDataFile,'Test'], [itemDataFile, 'Item'], [categoryDataFile, 'Category']]: i = str(i).replace('\\','/').strip() if not Path(i).is_file(): raise RuntimeError('%s data file speicified [{%s}] does not exist.' % (x, i)) if x == 'Train': self.__orig_trainDataFile = i elif x == 'Test': self.__orig_testDataFile = i elif x == 'Item': self.__orig_itemDataFile = i else: self.__orig_categoryDataFile = i self.__out_trainDataFile = self.__outputFile(self.__orig_trainDataFile, 'pp_data_') self.__out_trainLabelsFile = self.__outputFile(self.__orig_trainDataFile, 'pp_labels_') self.__out_testDataFile = self.__outputFile(self.__orig_testDataFile, 'pp_') self.__out_validateTrainDataFile = self.__outputFile(self.__orig_trainDataFile, 'val_train_data_') self.__out_validateTrainLabelsFile = self.__outputFile(self.__orig_trainDataFile, 'val_train_labels_') self.__out_validateTestDataFile = self.__outputFile(self.__orig_trainDataFile, 'val_test_data_') self.__out_validateTestLabelsFile = self.__outputFile(self.__orig_trainDataFile, 'val_test_labels_') def __outputFile(self, inFile, prefix): x = inFile.split('/') x[len(x) - 1] = prefix + x[len(x) - 1] x = "/".join(x) return x def __downcast(self, df): #reduce all float and int 64 values down to 32-bit to save memory floats = [c for c in df if df[c].dtype == 'float64'] ints = [c for c in df if df[c].dtype == 'int64'] df[floats] = df[floats].astype(np.float32) df[ints] = df[ints].astype(np.int32) return df def __openFilePrepared(self, fileName): #open all files with no pre-specified index; downcast numeric data from 64 to 32-bit df =
pd.read_csv(fileName, index_col=False)
pandas.read_csv
''' Support functions for 2nd-level feature engineering ''' import pandas as pd import pycocotools.mask as mask_util from tqdm import tqdm from sklearn.neighbors import KDTree import numpy as np import cv2 def calculate_max_IOU_with_gt(targ, pred): '''Calculate IOU between predicted instances and target instances''' pred_masks = pred['instances'].pred_masks >= 0.5 enc_preds = [mask_util.encode(np.asarray(p, order='F')) for p in pred_masks] enc_targs = list(map(lambda x:x['segmentation'], targ)) ious = mask_util.iou(enc_preds, enc_targs, [0]*len(enc_targs)) return ious.max(axis=1) def print_log(log): for k in log.keys(): print(k, log[k]) def get_overlapping_features(pred): '''Compute features representing overlapping characteristics of each instance''' pred_masks = pred['instances'].pred_masks >= 0.5 enc_preds = [mask_util.encode(np.asarray(p, order='F')) for p in pred_masks] ious = mask_util.iou(enc_preds, enc_preds, [0]*len(enc_preds)) return ious.max(axis=1), ious.min(axis=1), ious.mean(axis=1),\ ious.std(axis=1), (ious > 0).sum(axis=1) def get_contour_features(pred): '''Get some morphology features''' masks = (pred['instances'].pred_masks.numpy() >= 0.5).astype('uint8') data_dict = { 'centroid_x':[], 'centroid_y':[], 'num_contours': [], 'equi_diameter':[], 'hull_area':[], 'solidity':[], 'is_convex':[], 'perimeter':[], 'rotation_ang':[], 'major_axis_length':[], 'minor_axis_length':[] } for mask in masks: contours, _ = cv2.findContours(mask, 1, 2) areas = [cv2.contourArea(cnt) for cnt in contours] max_ind = np.argmax(areas) area = areas[max_ind] cnt = contours[max_ind] M = cv2.moments(cnt) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) hull = cv2.convexHull(cnt) hull_area = cv2.contourArea(hull) solidity = float(area)/hull_area if hull_area > 0 else -1 equi_diameter = np.sqrt(4*area/np.pi) is_convex = int(cv2.isContourConvex(cnt)) perimeter = cv2.arcLength(cnt,True) try: ellipse = cv2.fitEllipse(cnt) _,(major_axis_length, minor_axis_length), rotation_ang = ellipse except: (major_axis_length, minor_axis_length), rotation_ang = (-1,-1),-1 data_dict['centroid_x'].append(cx) data_dict['centroid_y'].append(cy) data_dict['num_contours'].append(len(contours)) data_dict['equi_diameter'].append(equi_diameter) data_dict['solidity'].append(solidity) data_dict['hull_area'].append(hull_area) data_dict['is_convex'].append(is_convex) data_dict['perimeter'].append(perimeter) data_dict['rotation_ang'].append(rotation_ang) data_dict['major_axis_length'].append(major_axis_length) data_dict['minor_axis_length'].append(minor_axis_length) return pd.DataFrame(data_dict) def get_pixel_scores_features(outputs): '''Get features related to mask scores at pixel level''' pred_masks = outputs['instances'].pred_masks pred_masks_non_zeros = [mask[mask > 0] for mask in pred_masks] min_pscores = [mask.min().item() for mask in pred_masks_non_zeros] max_pscores = [mask.max().item() for mask in pred_masks_non_zeros] median_pscores = [mask.median().item() for mask in pred_masks_non_zeros] mean_pscores = [mask.mean().item() for mask in pred_masks_non_zeros] q1_pscores = [mask.quantile(0.25).item() for mask in pred_masks_non_zeros] q3_pscores = [mask.quantile(0.75).item() for mask in pred_masks_non_zeros] std_pscores = [mask.std().item() for mask in pred_masks_non_zeros] ret = { 'min_pixel_score':min_pscores, 'max_pixel_score':max_pscores, 'median_pixel_score':median_pscores, 'mean_pixel_score':mean_pscores, 'q1_pixel_score':q1_pscores, 'q3_pixel_score':q3_pscores, 'std_pixel_score':std_pscores } return pd.DataFrame(ret) def get_image_pixel_features(im, outputs): '''Get features related to pixels on the original images''' pred_masks = outputs['instances'].pred_masks pred_masks_binary = [mask > 0.5 for mask in pred_masks] im_masks = [im[mask,0] for mask in pred_masks_binary] min_pscores = [mask.min().item() for mask in im_masks] max_pscores = [mask.max().item() for mask in im_masks] median_pscores = [np.median(mask).item() for mask in im_masks] mean_pscores = [mask.mean().item() for mask in im_masks] q1_pscores = [np.quantile(mask, 0.25).item() for mask in im_masks] q3_pscores = [np.quantile(mask, 0.75) for mask in im_masks] std_pscores = [mask.std() for mask in im_masks] ret = { 'im_min_pixel':min_pscores, 'im_max_pixel':max_pscores, 'im_median_pixel':median_pscores, 'im_mean_pixel':mean_pscores, 'im_q1_pixel':q1_pscores, 'im_q3_pixel':q3_pscores, 'im_std_pixel':std_pscores } return pd.DataFrame(ret) def get_kdtree_nb_features(single_features): '''Get features related to neighboring relation ship determine by distance''' cols = ['centroid_x', 'centroid_y'] X = single_features[cols] tree = KDTree(X) ret = dict() for r in [25, 50, 75, 100, 150, 200]: ind, dist = tree.query_radius(X, r=r, return_distance=True, sort_results=True) ind = [i[1:] for i in ind] # exclude neareast neighbor (itself) dist = [d[1:] for d in dist] # exclude neareast neighbor (itself) ret[f'kdtree_nb_r{r}_count'] = [len(ind) for i in ind] ret[f'kdtree_nb_r{r}_median_dist'] = [np.median(d) if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_r{r}_mean_dist'] = [d.mean() if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_r{r}_std_dist'] = [np.std(d) if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_r{r}_median_area'] = [single_features.loc[i, 'mask_area'].median() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_r{r}_mean_area'] = [single_features.loc[i, 'mask_area'].mean() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_r{r}_std_area'] = [single_features.loc[i, 'mask_area'].std() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_r{r}_median_box_score'] = [single_features.loc[i, 'box_score'].median() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_r{r}_mean_box_score'] = [single_features.loc[i, 'box_score'].mean() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_r{r}_std_box_score'] = [single_features.loc[i, 'box_score'].std() if len(i)>0 else -1 for i in ind] for k in [2,3,5,7]: dist, ind = tree.query(X, k=k, return_distance=True) ind = [i[1:] for i in ind] # exclude neareast neighbor (itself) dist = [d[1:] for d in dist] # exclude neareast neighbor (itself) ret[f'kdtree_nb_top{k}_median_dist'] = [np.median(d) if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_top{k}_mean_dist'] = [d.mean() if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_top{k}_std_dist'] = [np.std(d) if len(d)>0 else -1 for d in dist] ret[f'kdtree_nb_top{k}_median_area'] = [single_features.loc[i, 'mask_area'].median() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_top{k}_mean_area'] = [single_features.loc[i, 'mask_area'].mean() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_top{k}_std_area'] = [single_features.loc[i, 'mask_area'].std() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_top{k}_median_box_score'] = [single_features.loc[i, 'box_score'].median() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_top{k}_mean_box_score'] = [single_features.loc[i, 'box_score'].mean() if len(i)>0 else -1 for i in ind] ret[f'kdtree_nb_top{k}_std_box_score'] = [single_features.loc[i, 'box_score'].std() if len(i)>0 else -1 for i in ind] return pd.DataFrame(ret) def get_features(im, outputs): '''Master function for generating features''' pred_masks = outputs['instances'].pred_masks mask_areas = (pred_masks >= 0.5).sum(axis=(1,2)) pred_boxes = outputs['instances'].pred_boxes.tensor widths = pred_boxes[:,2] - pred_boxes[:,0] heights = pred_boxes[:,3] - pred_boxes[:,1] box_areas = widths * heights box_scores = outputs['instances'].scores instance_count = len(outputs['instances']) aspect_ratios = widths / heights extents = mask_areas / box_areas neighbor_iou_max, neighbor_iou_min, neighbor_iou_mean, \ neighbor_iou_std, neighbor_overlap_count = get_overlapping_features(outputs) contour_features = get_contour_features(outputs) pixel_features = get_pixel_scores_features(outputs) im_pixel_features = get_image_pixel_features(im, outputs) ret = pd.DataFrame({ 'box_score':box_scores, 'mask_area':mask_areas, 'box_area':box_areas, 'box_x1':pred_boxes[:,0], 'box_y1':pred_boxes[:,1], 'box_x2':pred_boxes[:,2], 'box_y2':pred_boxes[:,3], 'width':widths, 'height':heights, 'instance_count':instance_count, 'neighbor_iou_max':neighbor_iou_max, 'neighbor_iou_min':neighbor_iou_min, 'neighbor_iou_mean':neighbor_iou_mean, 'neighbor_iou_std':neighbor_iou_std, 'neighbor_overlap_count':neighbor_overlap_count, 'aspect_ratio':aspect_ratios, 'extent':extents }) ret = pd.concat([ret, contour_features, pixel_features, im_pixel_features], axis=1) kdtree_nb_features = get_kdtree_nb_features(ret) ret =
pd.concat([ret, kdtree_nb_features], axis=1)
pandas.concat
"""Tests for ExtensionDtype Table Schema integration.""" from collections import OrderedDict import datetime as dt import decimal import json import pytest from pandas import ( DataFrame, array, ) from pandas.core.arrays.integer import Int64Dtype from pandas.core.arrays.string_ import StringDtype from pandas.core.series import Series from pandas.tests.extension.date import ( DateArray, DateDtype, ) from pandas.tests.extension.decimal.array import ( DecimalArray, DecimalDtype, ) from pandas.io.json._table_schema import ( as_json_table_type, build_table_schema, ) class TestBuildSchema: def test_build_table_schema(self): df = DataFrame( { "A": DateArray([dt.date(2021, 10, 10)]), "B": DecimalArray([decimal.Decimal(10)]), "C": array(["pandas"], dtype="string"), "D": array([10], dtype="Int64"), } ) result = build_table_schema(df, version=False) expected = { "fields": [ {"name": "index", "type": "integer"}, {"name": "A", "type": "any", "extDtype": "DateDtype"}, {"name": "B", "type": "any", "extDtype": "decimal"}, {"name": "C", "type": "any", "extDtype": "string"}, {"name": "D", "type": "integer", "extDtype": "Int64"}, ], "primaryKey": ["index"], } assert result == expected result = build_table_schema(df) assert "pandas_version" in result class TestTableSchemaType: @pytest.mark.parametrize( "date_data", [ DateArray([dt.date(2021, 10, 10)]), DateArray(dt.date(2021, 10, 10)), Series(DateArray(dt.date(2021, 10, 10))), ], ) def test_as_json_table_type_ext_date_array_dtype(self, date_data): assert as_json_table_type(date_data.dtype) == "any" def test_as_json_table_type_ext_date_dtype(self): assert as_json_table_type(DateDtype()) == "any" @pytest.mark.parametrize( "decimal_data", [ DecimalArray([decimal.Decimal(10)]), Series(DecimalArray([decimal.Decimal(10)])), ], ) def test_as_json_table_type_ext_decimal_array_dtype(self, decimal_data): assert as_json_table_type(decimal_data.dtype) == "any" def test_as_json_table_type_ext_decimal_dtype(self): assert as_json_table_type(DecimalDtype()) == "any" @pytest.mark.parametrize( "string_data", [ array(["pandas"], dtype="string"), Series(array(["pandas"], dtype="string")), ], ) def test_as_json_table_type_ext_string_array_dtype(self, string_data): assert as_json_table_type(string_data.dtype) == "any" def test_as_json_table_type_ext_string_dtype(self): assert as_json_table_type(StringDtype()) == "any" @pytest.mark.parametrize( "integer_data", [ array([10], dtype="Int64"), Series(array([10], dtype="Int64")), ], ) def test_as_json_table_type_ext_integer_array_dtype(self, integer_data): assert as_json_table_type(integer_data.dtype) == "integer" def test_as_json_table_type_ext_integer_dtype(self): assert as_json_table_type(Int64Dtype()) == "integer" class TestTableOrient: def setup_method(self): self.da = DateArray([dt.date(2021, 10, 10)]) self.dc = DecimalArray([decimal.Decimal(10)]) self.sa = array(["pandas"], dtype="string") self.ia = array([10], dtype="Int64") self.df = DataFrame( { "A": self.da, "B": self.dc, "C": self.sa, "D": self.ia, } ) def test_build_date_series(self): s = Series(self.da, name="a") s.index.name = "id" result = s.to_json(orient="table", date_format="iso") result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result["schema"] result["schema"].pop("pandas_version") fields = [ {"name": "id", "type": "integer"}, {"name": "a", "type": "any", "extDtype": "DateDtype"}, ] schema = {"fields": fields, "primaryKey": ["id"]} expected = OrderedDict( [ ("schema", schema), ("data", [OrderedDict([("id", 0), ("a", "2021-10-10T00:00:00.000")])]), ] ) assert result == expected def test_build_decimal_series(self): s = Series(self.dc, name="a") s.index.name = "id" result = s.to_json(orient="table", date_format="iso") result = json.loads(result, object_pairs_hook=OrderedDict) assert "pandas_version" in result["schema"] result["schema"].pop("pandas_version") fields = [ {"name": "id", "type": "integer"}, {"name": "a", "type": "any", "extDtype": "decimal"}, ] schema = {"fields": fields, "primaryKey": ["id"]} expected = OrderedDict( [ ("schema", schema), ("data", [OrderedDict([("id", 0), ("a", 10.0)])]), ] ) assert result == expected def test_build_string_series(self): s =
Series(self.sa, name="a")
pandas.core.series.Series
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 11:56:51 2019 @author: btt1 Signal Tampering Problem """ import os import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt import pulp as plp import time def extract_decision_variables(network_data): intersections = []; intersection_variables = [] for i in range(len(data)): if network_data.iloc[i]['type'] == 'intflow': if network_data.iloc[i]['start'].isalpha(): intersections.append(network_data.iloc[i]['start']) intersection_variables.append(network_data.iloc[i]['name']) elif network_data.iloc[i]['end'].isalpha(): intersections.append(network_data.iloc[i]['end']) intersection_variables.append(network_data.iloc[i]['name']) intersections = np.unique(np.array(intersections)) intersection_variables = np.unique(np.array(intersection_variables)) ends = []; end_flow_variables = [] for i in range(len(network_data)): if network_data.iloc[i]['type'] == 'end': end = network_data.iloc[i]['start'].split('_')[0] ends.append(end) end_flow_variables.append('y'+end+'S') ends = np.unique(np.array(ends)) end_flow_variables = np.unique(np.array(end_flow_variables)) start_nodes = []; end_nodes = [] for i in range(len(network_data)): if network_data.iloc[i]['type'] == 'start': node = network_data.iloc[i]['start'].split('_')[0] start_nodes.append(node) elif network_data.iloc[i]['type'] == 'end': node = network_data.iloc[i]['start'].split('_')[0] end_nodes.append(node) start_nodes = np.unique(np.array(start_nodes)) end_nodes = np.unique(np.array(end_nodes)) return intersections, intersection_variables, ends, end_flow_variables, start_nodes, end_nodes def create_graph_singletimestep(t, data): g = nx.DiGraph(timestep=t) for i in range(len(data)): row = data.iloc[i] start = str(row['start'])+'_{}'.format(t); end = str(row['end'])+'_{}'.format(t) name = row['name'] + '_' + str(t) g.add_edge(start, end, edge_type=row['type'], edge_name=name) return g def create_edge_betweengraphs(ts, G): nodes = np.array(list(G.nodes())) for t in range(ts-1): condition = [i.split('_')[-1]==str(t) and i.split('_')[-2]=='d' for i in nodes] start_nodes = np.extract(condition, nodes) for each in start_nodes: start = each end = each.split('_')[0]+'_s_'+str(t+1) name = 'x' + start.split('_')[0] + '_' + str(t+1) G.add_edge(start, end, edge_type='occ', edge_name=name) return G def create_supergraph(ts, data, start_nodes, end_nodes): print("\n----- Super graph -----\n") directed_graphs = []; print("\tCreating individual timestep graphs...") for t in range(ts): g = create_graph_singletimestep(t, data) directed_graphs.append(g) G = nx.DiGraph(name='SuperGraph') print("\tCreating Supergraph...") for g in directed_graphs: G = nx.union(G, g) G = create_edge_betweengraphs(ts, G); G.add_node('S') for i_start, start_cell in enumerate(start_nodes): source_node = 'R'+str(int(i_start)+1) start_node = start_cell + '_d' G.add_node(source_node) for t in range(ts): start = start_node + '_' + str(t) name_1 = 'y' + source_node + str(int(i_start)) + start_node.split('_')[0] + '_' + str(t) G.add_edge(source_node, start, edge_type='flow', edge_name=name_1) for end_cell in end_nodes: end_node = end_cell + '_s' for t in range(ts): end = end_node + '_' + str(t) name_2 = 'y' + end_node.split('_')[0] + 'S' + '_' + str(t) G.add_edge(end, 'S', edge_type='flow', edge_name=name_2) print("\tSupergraph created!") print("\t", nx.info(G), "\n") return G, directed_graphs def create_opt_formulation_constants(G, cost, demand_source, demand_sink, slack_bound, occupancy_bound, flow_bound, edge_list, node_list): A = np.array(nx.incidence_matrix(G, oriented=True).todense()) cost_vector = np.array([float(i.split("_")[-1]) + cost if i[0]=='x' else 0.0 for i in edge_list[:,2]]) demand_vector = np.array([-demand_source if 'R' in i else demand_sink if i=='S' else 0.0 for i in node_list]) bound_vector = np.array([occupancy_bound if i[0]=='x' else slack_bound if i[0]=='s' else flow_bound for i in edge_list[:,2]]) return A, cost_vector, demand_vector, bound_vector def solve_optimal_assignment(A, d, u, c, edge_list): s = time.time() prob = None print("\n----- Optimal Assignment Problem -----\n") print("\tCreating new problem instance...") prob = plp.LpProblem("Opt_assignment_problem", plp.LpMinimize) print("\tAdding super-graph variables...") flows = {i:plp.LpVariable(cat=plp.LpContinuous, lowBound=0, upBound=u[i], name=str(edge_list[:,2][i])) for i in range(A.shape[1])} print("\tAdding constraints..."); percent_complete = 0 for j in range(A.shape[0]): # prob += plp.LpAffineExpression([(flows[i],A[j,i]) for i in range(A.shape[1])]) == d[j] prob += plp.lpSum(A[j,i]*flows[i] for i in range(A.shape[1])) == d[j] if (j/A.shape[0])*100 > percent_complete: print("\t\t{} % of constraints added".format(percent_complete)) percent_complete += 10 e1 = time.time() print("\tConstraints added. Total time took: ", int((e1-s)/60), "mins") objective = plp.lpSum([c[i]*flows[i] for i in range(A.shape[1])]) prob.setObjective(objective) prob.writeLP("Opt_assignment_problem.lp") print("\tSolving the optimal assignment problem...") prob.solve(solver=plp.GUROBI_CMD()) print("\tSolution status: ", plp.LpStatus[prob.status]) print("\tObjective function value: ", plp.value(prob.objective)) solution = pd.DataFrame(columns=['Variable','OptimalValue']) for i,v in enumerate(prob.variables()): solution.loc[i] = [v.name, v.varValue] solution.to_csv("./Optimal_solution.csv"); print("\tSolutions saved.\n"); e2 = time.time() print("\tTotal time took for solving the optimal assignment: ", int((e2-s)/60), "mins") return prob, flows, solution def extract_intersection_flows(F, intersection_variables, sort=True): i = 0 intersection_flows = pd.DataFrame(columns=["Intersection","Var_id","Variables","Timesteps","OptimalValue"]) for var_id, var in F.items(): if var.name.split("_")[0] in intersection_variables: intersection_flows.loc[i] = [var.name.split("_")[0], float(var_id), var.name, int(var.name.split("_")[-1]), var.varValue] i += 1 if sort: intersection_flows.sort_values("Var_id", ascending=True, inplace=True) return intersection_flows def extract_end_flows(F, end_flow_variables): i = 0 end_flows =
pd.DataFrame(columns=["Ends","Endpoint","Var_id","Variables","Timesteps","OptimalValue"])
pandas.DataFrame
# -*- coding: utf-8 -*- """linearregression.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1SFWk7Ap06ZkvP2HmLhXLiyyqo-ei35M1 """ from __future__ import absolute_import, division, print_function, unicode_literals import pathlib import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from datetime import datetime import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers print(tf.__version__) # Download the daset with keras.utils.get_file dataset_path = keras.utils.get_file("housing.data", "https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data") column_names = ['CRIM','ZN','INDUS','CHAS','NOX', 'RM', 'AGE', 'DIS','RAD','TAX','PTRATION', 'B', 'LSTAT', 'MEDV'] raw_dataset = pd.read_csv(dataset_path, names=column_names, na_values = "?", comment='\t', sep=" ", skipinitialspace=True) # Create a dataset instant dataset = raw_dataset.copy() # This function returns last n rows from the object # based on position. dataset.tail(n=10) # Split data into train/test # p = training data portion p=0.8 trainDataset = dataset.sample(frac=p,random_state=0) testDataset = dataset.drop(trainDataset.index) # Visual representation of training data import matplotlib.pyplot as plt fig, ax = plt.subplots() # With .pop() command, the associated columns are extracted. x = trainDataset['RM'] y = trainDataset['MEDV'] ax.scatter(x, y, edgecolors=(0, 0, 0)) ax.set_xlabel('RM') ax.set_ylabel('MEDV') plt.show() # Pop command return item and drop it from frame. # After using trainDataset.pop('RM'), the 'RM' column # does not exist in the trainDataset frame anymore! trainInput = trainDataset['RM'] trainTarget = trainDataset['MEDV'] testInput = testDataset['RM'] testTarget = testDataset['MEDV'] # We don't specify anything for activation -> no activation is applied (ie. "linear" activation: a(x) = x) # Check: https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense def linear_model(): model = keras.Sequential([ layers.Dense(1, use_bias=True, input_shape=(1,), name='layer') ]) # Using adam optimizer optimizer = tf.keras.optimizers.Adam( learning_rate=0.01, beta_1=0.9, beta_2=0.99, epsilon=1e-05, amsgrad=False, name='Adam') # Check: https://www.tensorflow.org/api_docs/python/tf/keras/Model # loss: String (name of objective function), objective function or tf.keras.losses.Loss instance. See tf.keras.losses. # optimizer: String (name of optimizer) or optimizer instance. See tf.keras.optimizers. # metrics: List of metrics to be evaluated by the model during training and testing model.compile(loss='mse', optimizer=optimizer, metrics=['mae','mse']) return model # Create model instant model = linear_model() # Print the model summary model.summary() # params n_epochs = 4000 batch_size = 256 n_idle_epochs = 100 n_epochs_log = 200 n_samples_save = n_epochs_log * trainInput.shape[0] print('Checkpoint is saved for each {} samples'.format(n_samples_save)) # A mechanism that stops training if the validation loss is not improving for more than n_idle_epochs. #See https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping for details. earlyStopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=n_idle_epochs, min_delta=0.001) # Creating a custom callback to print the log after a certain number of epochs # Check: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks predictions_list = [] class NEPOCHLogger(tf.keras.callbacks.Callback): def __init__(self,per_epoch=100): ''' display: Number of batches to wait before outputting loss ''' self.seen = 0 self.per_epoch = per_epoch def on_epoch_end(self, epoch, logs=None): if epoch % self.per_epoch == 0: print('Epoch {}, loss {:.2f}, val_loss {:.2f}, mae {:.2f}, val_mae {:.2f}, mse {:.2f}, val_mse {:.2f}'\ .format(epoch, logs['loss'], logs['val_loss'],logs['mae'], logs['val_mae'],logs['mse'], logs['val_mse'])) # Call the object log_display = NEPOCHLogger(per_epoch=n_epochs_log) # Include the epoch in the file name (uses `str.format`) import os checkpoint_path = "training/cp-{epoch:05d}.ckpt" checkpoint_dir = os.path.dirname(checkpoint_path) # Create a callback that saves the model's weights every 5 epochs checkpointCallback = tf.keras.callbacks.ModelCheckpoint( filepath=checkpoint_path, verbose=1, save_weights_only=True, save_freq=n_samples_save) # Save the weights using the `checkpoint_path` format model.save_weights(checkpoint_path.format(epoch=0)) # Define the Keras TensorBoard callback. logdir="logs/fit/" + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) history = model.fit( trainInput, trainTarget, batch_size=batch_size, epochs=n_epochs, validation_split = 0.1, verbose=0, callbacks=[earlyStopping,log_display,tensorboard_callback,checkpointCallback]) # The fit model returns the history object for each Keras model # Let's explore what is inside history print('keys:', history.history.keys()) # Returning the desired values for plotting and turn to numpy array mae = np.asarray(history.history['mae']) val_mae = np.asarray(history.history['val_mae']) # Creating the data frame num_values = (len(mae)) values = np.zeros((num_values,2), dtype=float) values[:,0] = mae values[:,1] = val_mae # Using pandas to frame the data steps =
pd.RangeIndex(start=0,stop=num_values)
pandas.RangeIndex
# General imports import numpy as np import pandas as pd # Keras imports from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import TensorBoard # Sklearn imports from sklearn.preprocessing import StandardScaler from sklearn.metrics import recall_score, accuracy_score, precision_score, confusion_matrix class AutoEncoder(input_dim): def __init__(): # Initialize self._autoencoder self._autoencoder = Sequential() self._autoencoder.add(Dense(int(0.75 * input_dim), activation="relu", input_shape=(input_dim,))) self._autoencoder.add(Dense(int(0.5 * input_dim), activation="relu")) self._autoencoder.add(Dense(int(0.33 * input_dim), activation="relu")) self._autoencoder.add(Dense(int(0.25 * input_dim), activation="relu")) self._autoencoder.add(Dense(int(0.33 * input_dim), activation="relu")) self._autoencoder.add(Dense(int(0.5 * input_dim), activation="relu")) self._autoencoder.add(Dense(int(0.75 * input_dim), activation="relu")) self._autoencoder.add(Dense(input_dim)) # Initialize tensorboard self._tensorboard = TensorBoard( log_dir="logs", histogram_freq=0, write_graph=True, write_images=True) def preprocess(self, df): # Create malicious set malicious = df[df["anomaly"]==1] # Create & segment begnin set benign = df[df["anomaly"]==0] benign_train, benign_validate, benign_test_unscald = np.split(benign.sample(frac=1, random_state=42), [int(1/3 * len(benign)), int(2/3 * len(benign))]) benign_train_scaled = scaler.fit_transform(benign_train.iloc[:, :-1].values) benign_validate_scaled = scaler.fit_transform(benign_validate.iloc[:, :-1].values) return benign_train_scaled, benign_validate_scaled, begnin_test_unscaled, malicious def train(self, train_scaled): self._autoencoder.compile(loss="mean_squared_error", optimizer="sgd") self._autoencoder.fit(train_scaled, train_scaled, epochs=60, batch_size=100, verbose=1, callbacks=[self._tensorboard] ) def test(self, begnin_validation, begnin_test, malicious_test): # Create MSE valid_pred = self._autoencoder.predict(begnin_validation) mse = np.mean(np.power(begnin_validation - valid_pred, 2), axis =1) # Define begnin threshold tr = mse.mean() + mse.std() # Test model test_set = pd.concat([begnin_test, malicious_test]) test_scaled = scaler.transform(test_set.iloc[:,:-1].values) test_pred = self._autoencoder.predict(test_scaled) # Predict test set mse = np.mean(np.power(test_scaled - test_pred, 2), axis=1) predictions = (mse > tr).astype(int) print(f"Accuracy: {round(accuracy_score(test_set.iloc[:,-1], predictions), 4)*100}%") print(f"Recall: {round(recall_score(test_set.iloc[:,-1], predictions), 4)*100}%") print(f"Precision: {round(precision_score(test_set.iloc[:,-1], predictions), 4)*100}%") if __name__=="__main__": # Auto-encoder model = AutoEncoder() # Load dataset df = pd.concat([x for x in
pd.read_csv("dataset.csv", low_memory=False, chunksize=100000)
pandas.read_csv
""" ================================================================================================= <NAME> 9 July 2021 ================================================================================================= Python >= 3.8.5 homebrew_stats.py This module is meant to help with general statistical functions. Currently, there is only a small number of statistics options supported, but I suspect this will grow in the future. Currently supported: FDR Estimation (Storey) T-tests ================================================================================================= Dependencies: PACKAGE VERSION Pandas -> 1.2.3 Numpy -> 1.20.1 SciPy -> 1.7.2 ================================================================================================= """ import os print(f"Loading the module: helpers.{os.path.basename(__file__)}\n") ##################################################################################################################### # # Importables import fnmatch # Unix-like string searching import pandas as pd # General use for data import numpy as np # General use for data from math import sqrt import copy import scipy from scipy.stats import f, t from scipy.stats import studentized_range as q from scipy.interpolate import splrep, splev # Used for Storey Q-value estimation, fitting cubic spline from scipy.interpolate import UnivariateSpline from . import general_helpers as gh print(f"numpy {np.__version__}") print(f"scipy {scipy.__version__}") print(f"pandas {pd.__version__}\n") # # ##################################################################################################################### # # Miscellaneous Functions def filter_nans(data, threshold = 3, threshold_type = "data"): """ ================================================================================================= filter_nans(data, threshold, threshold_type) This function is meant to filter out the nan values from a list, based on the input arguments. ================================================================================================= Arguments: data -> A list (or iterable) of data points. The points are assumed to be numbers. threshold -> An integer describing the minimum value requirement. threshold_type -> A string describing how the threshold integer will be applied. "on_data" "on_nan" ================================================================================================= Returns: The filtered list, or an empty list if the threshold requirements were not met. ================================================================================================= """ # Make sure the user gave a valid thresholding option assert threshold_type.lower() in ["data", "on_data", "on data", "nan", "on_nan", "on nan"], "Threshold is either relative to NaN or data." assert type(data) == list, "The data should be in a list" # Filter NaNs, as they do not equal themselves filtered = [val for val in data if val == val] # Keep data if there are at least <threshold> data points if threshold_type.lower() in ["data", "on_data", "on data"]: if len(filtered) >= threshold: return filtered else: return [] # Keep data if there are no more than <threshold> nans elif threshold_type.lower() in ["nan", "on_nan", "on nan"]: if len(data) - len(filtered) <= threshold: return filtered else: return [] def filter_nan_dict(data, threshold = 3, threshold_type = "data"): """ ================================================================================================= filter_nan_dict(data, threshold, thershold_type) This function is meant to filter out nan values from the list-values in a dictionary. This function uses filter_nans() to filter lists. ================================================================================================= Arguments: data -> A dictionary of lists of data points. The points are assumed to be numbers. threshold -> An integer describing the minimum value requirement. threshold_type -> A string describing how the threshold integer will be applied. "on_data" "on_nan" ================================================================================================= Returns: A dictionary where all values have been filtered from the list-values. ================================================================================================= """ # Make sure a dictionary is given as input assert type(data) == dict, "The data should be in a dictionary" # Initialize the new dictionary filtered_dict = {} # Loop over the keys/values in the dictionary for key, value in data.items(): # Filter the nans filt_list = filter_nans(value) # If the list is not empty if filt_list != []: # then add it to the dictionary filtered_dict[key] = filt_list # IF the list is empty, it will not be added to the dictionary # Return the filtered dictionary. return filtered_dict def count_list(dataset): ''' Given a dataset, count the occurence of each data point and return them as a dictionary. ''' # First we create a dictionary to hold the counts. # We then loop over the elements of the dataset # and attempt to check the dictionary keys for them. # If the element has appeard, we add one to the count # and if the element is not in the dictionary, we # add a key to the dictionary with that elements name # and initialize it to 1 (since we have seen it once). # At the end, return the dictionary. dic = {} # Create the empty dictionary for element in dataset: # Loop over the elemnts in the dataset try: # Attempt dic[str(element)] += 1 # Look for the key of the element, add one to count except: # Otherwise dic[str(element)] = 1 # Add a key to the dicitonary with value 1 return dic # Return the dictionary # # ####################################################################################################### # # General Statistical Functions def mean(dataset): ''' Given a dataset, return the average value. ''' return sum(dataset) / len(dataset) def median(dataset): ''' Given a dataset, return the median value. ''' # The calculation for median depends on whether the # number of datapoints in the set is even or odd. # If the number of datapoints is even, then we need to # find the average of the two middle numbers. If the # number of datapoints is odd, then we simply need # to find the middle one. They also need to be sorted. dataset = sorted(dataset) if len(dataset) % 2 == 0: # if the dataset is even index = len(dataset) // 2 # get the middle data point med = (dataset[index] + dataset[index -1]) / 2 # average the middle two points return med # return this value elif len(dataset) % 2 == 1: # if the dataset is odd index = len(dataset) // 2 # get the middle point return dataset[index] # return the middle point def grand_mean(*data): all_data = gh.unpack_list(data) return sum(all_data)/len(all_data) def demean(data, grand = False): if not grand: return [d - mean(data) for d in data] else: return [mean(d) - grand_mean(data) for d in data] def variance(dataset, correction = 1): ''' Given a dataset, calculate the variance of the parent population of the dataset. ''' # Calculate the data without the mean, square # all of the elements, then return the sum of # those squares divided by the number of # datapoints minus 1. meanless = demean(dataset) # Remove the mean from the data squares = [x**2 for x in meanless] # Square all of the meanless datapoints return sum(squares) / (len(dataset) - correction) # return the sum of the squares divided by n-1 def standard_deviation(data, correction = 1): return sqrt(variance(data, correction = correction)) def sem(data, correction = 1): if len(data) < 2: return float("nan") return standard_deviation(data, correction=correction) / sqrt(len(data)) def sum_of_squares(vector): return sum([v**2 for v in vector]) def var_within(*data, correction = 1): variances = [variance(d, correction = correction) for d in data] return mean(variances) def var_between(*data, correction = 1): means = [mean(d) for d in data] return len(data[0]) * variance(means, correction = correction) def total_variation(*data): return sum_of_squares(demean(data, grand=True)) def sos_between(*data): demeaned = demean(data, grand = True) lens = [len(data[i]) for i in range(len(data))] return sum([lens[i]*demeaned[i]**2 for i in range(len(data))]) def ms_between(*data): return sos_between(*data) / (len(data)-1) def sos_within(*data, correction = 1): deg_frees = [len(d) - 1 for d in data] var = [variance(d, correction = correction) for d in data] return sum([deg_frees[i] * var[i] for i in range(len(data))]) def ms_within(*data, correction = 1): deg_free = sum([len(d) for d in data]) - len(data) return sos_within(*data, correction = correction)/deg_free def mode(dataset): ''' Given a dataset, returns the most frequent value and how many times that value appears ''' # First, we count all of the elements and arrange them in # a dictionary. Then, we create a sorted list of tuples # from the key value pairs. Initialize 'pair', to hold # the key value pair of the highest value, and an empty # list to hold any of the pairs that tie. We then loop # over the sorted lists keys and values, and look for the # highest counts. We return the highest count from the # dictionary, or the highest counts if there were any ties. counted = count_list(dataset) # Count the elements of the dataset sort = sorted(counted.items()) # Sort the numbers and occurences pair = 'hold', 0 # Initialize the pair ties = [] # Initialize the tie list for key, value in sort: # Loop over key, value in sorted dictionary if value > pair[1]: # If the value is greater than the pair pair = key, value # Re assign the pair to the current one ties = [] # Reset the tie list elif value == pair[1]: # If the value is equal to the current value ties.append((key, value)) # Append the new key, value pair to the list ties.append(pair) # After, append the pair to the list svar = sorted(ties) # Sort the list of ties if len(ties) > 1: # If there are any ties, return svar # Return the sorted list of ties elif len(ties) == 1: # If there are no ties return pair # Return the highest value def quantile(dataset, percentage): ''' Given a dataset and a pecentage, the function returns the value under which the given percentage of the data lies ''' # First, sort the dataset, then find the index at the # given percentage of the list. Then, return the # value of the dataset at that index. dataset = sorted(dataset) # Sort the dataset index = int(percentage * len(dataset)) # Get the index of element percentage return dataset[index] # return the element at the index def interquantile_range(dataset, per_1, per_2): ''' Given a dataset and two percentages that define a range of the dataset, find the range of the elements between those elements. ''' dataset = sorted(dataset) return quantile(dataset, per_2) - quantile(dataset, per_1) def data_range(dataset): ''' Given a dataset, return the range of the elements. ''' dataset = sorted(dataset) return dataset[-1] - dataset[1] def dot_product(data_1, data_2): ''' Given two datasets of equal length, return the dot product. ''' # First, we make sure that the lists are the same size, # Then we loop over the length of the lists, and sum the # product of the corresponding elements of each list. # Then, that sum is returned. assert len(data_1) == len(data_2), "These lists are not the same length" sum_total = 0 # Initialize the sum for i in range(len(data_1)): # Loop over the size of the list sum_total += data_1[i] * data_2[i] # Add to the sum the product of the datapoints in 1 and 2 return sum_total # Return the sum def covariance(data_1, data_2): ''' Given two datasets, calculate the covariance between them ''' n = len(data_1) return dot_product(demean(data_1),demean(data_2)) / (n-1) def correlation(data_1, data_2): ''' Given two datasets, calculate the correlation between them. ''' return covariance(data_1, data_2) / (standard_deviation(data_1) * standard_deviation(data_2)) def vector_sum(vectors): ''' Given a set of vectors, return a vector which contains the sum of the ith elements from each vector in index i ''' for i in range(len(vectors)-1): assert len(vectors[i]) == len(vectors[i+1]), 'Vectors are not the same length' return [sum(vector[i] for vector in vectors) for i in range(len(vectors[0]))] assert vector_sum([[1,2],[2,3],[3,4]]) == [6,9] def scalar_multiply(scalar, vector): ''' Given a scalar and a vector (list), return a vector where each component is multiplied by the scalar. ''' return [scalar * var for var in vector] assert scalar_multiply(3, [1,2,3,4]) == [3,6,9,12] def vector_subtract(vectors): ''' Given a set of vectors, return the difference between the vectors, in index order. This will look like: vectors[0] - vectors[1] - ... - vectors[n] = result ''' for i in range(len(vectors)-1): assert len(vectors[i]) == len(vectors[i+1]), 'Vectors are not the same length' pass_count = 0 result = vectors[0] for column in vectors: if column == result and pass_count == 0: pass_count += 1 pass else: for i in range(len(result)): result[i] += -column[i] pass_count += 1 return result assert vector_subtract([[1,2,3], [3,4,5]]) == [-2,-2,-2] def vector_mean(vectors): ''' Given a list of lists (which correspond to vectors, where each element of the vector represents a different variable) return the vector mean of the vectors (add each the vectors component-wise, divide each sum by the number of vectors) ''' n = len(vectors) return scalar_multiply(1/n, vector_sum(vectors)) assert vector_mean([[1,2],[2,3],[3,4]]) == [2,3] def scale(data_1): ''' Given a set of datapoint sets, return the mean of each dataset and the standard deviation for each set. Data points should be give as x = [[x1_1, x2_1,..., xn_1],...,[x1_n, x2_n,..., xn_n]] if the data are not in this format, but are in the format x = [[x1_1, x1_2,..., x1_n],...,[xn_1, xn_2,..., xn_n]] apply the function reformat_starts(*args) to the data. ''' # First, we make sure that all of the data points # given are the same length, then save the size of # the datasets as n. We then calculate the vector # mean of the data, as well as the standard deviations # of each data type. Then the means and SDs are returned for q in range(len(data_1) -1): assert len(data_1[q]) == len(data_1[q+1]), 'Data lists are different sizes' n = len(data_1[0]) means = vector_mean(data_1) s_deviations = [standard_deviation([vector[i] for vector in data_1]) for i in range(n)] return means, s_deviations t_vectors = [[-3, -1, 1], [-1, 0, 1], [1, 1, 1]] t_means, t_stdevs = scale(t_vectors) assert t_means == [-1, 0, 1] assert t_stdevs == [2, 1, 0] def rescale(data_1): ''' Given a set of data sets, return a list of the data rescaled, based on the means and the standard deviations of the data. ''' # First, we calculate the mean and standard deviations # of the data, and save the size of the datasets as # n. We then copy each of the vectors to the list # rescaled. Next, we loop over the vectors in rescaled, # and loop over the size of the datasets, and # scale each term in v[i] based on the mean and SD means, s_deviations = scale(data_1) n = len(data_1[0]) rescaled = [v[:] for v in data_1] for v in rescaled: for i in range(n): if s_deviations[i] > 0: v[i] = (v[i] - means[i]) / s_deviations[i] return rescaled t2_means, t2_stdevs = scale(rescale(t_vectors)) assert t2_means == [0, 0, 1] assert t2_stdevs == [1, 1, 0] def unscaled(scaled_data_1, data_1, coefficients = False): ''' Given a set of scaled datapoints, the original datapoints, and a truthy value for whether we are unscaling coefficients of regression, return the unscaled data points. ''' # This is basically 'rescale' in reverse, with the # condition of if we are unscaling coefficients. If # we are unscaling coefficients, we subtract from the # alpha term (v[0]) all elements in the form # v[j] * mean[j] / s_deviations[j] (as described in # Data Science from Scratch, 2nd Edition in Chapter # 16, Logistic Regression). OTherwise, all coefficient # are divided by the standard deviation term of the # corresponding data. n = len(data_1[0]) means, s_deviations = scale(data_1) unscaled = [v[:] for v in scaled_data_1] for v in unscaled: for i in range(n): if coefficients == False: v[i] = v[i]*s_deviations[i] + means[i] elif coefficients == True: if i == 0: for j in range(1,n): if s_deviations[j] > 0: v[0] = v[0] - (v[j]*means[j])/s_deviations[j] else: v[0] = v[0] - v[j] elif i != 0: if s_deviations[i] > 0: v[i] = v[i] / s_deviations[i] else: pass return unscaled assert unscaled(rescale(t_vectors), t_vectors) == t_vectors # # ##################################################################################################################### # # Q-Value Estimation Algorithms #### Storey def storey_check_groups(groups): """ ================================================================================================= storey_check_groups(groups) This function is meant to check the groups argument input into the function storey() ================================================================================================= Arguments: groups -> Either a list, tuple, pandas DataFrame, or a numpy array that describes the groups in Storey FDR estimation. ================================================================================================= Returns: A list of lists that describe the groups used in Storey FDR estimation ================================================================================================= """ # If the input groups are a pandas DataFrame if type(groups) == type(pd.DataFrame()): # Then convert the groups into a transposed numpy array groups = groups.to_numpy().transpose() # and use list comprehension to reformat the groups into # a list of pairs. groups = [[groups[j][i] for j in range(len(groups))] for i in range(len(groups[0])) ] # If the input groups are a lsit elif type(groups) == list: # Then loop over the number of lists for i in range(len(groups)): # If the type of the input groups are not # a list, tuple or array if type(groups[i]) not in [list, tuple, type(np.array([]))]: # Then list the element groups[i] = list(groups[i]) # Otherwise else: # Just keep the list the same groups[i] = groups[i] # If the groups were given as a tuple elif type(groups) == tuple: # Then turn the groups into a lsit groups = list(groups) # and loop over the number of items in the groups for i in range(len(groups)): # and if the element is not a list, tuple, array, if type(groups[i]) not in [list, tuple, type(np.array([]))]: # then list the element and save it groups[i] = list(groups[i]) # Otherwsie, else: # Keep the element the same groups[i] = groups[i] # If the input is a numpy array elif type(groups) == type(np.array([])): # Then use list comprehension to format the groups list. # Assumes the groups have been transposed in this instance groups = [[groups[j][i] for j in range(len(groups))] for i in range(len(groups[0]))] # At then end, return the groups list. return groups def storey_check_test(test): """ ================================================================================================= storey_check_test(test) This function is meant to check and format the T-test type from the inputs. The function works almost exactly like storey_check_groups() ================================================================================================= Arguments: test -> A list, array, tuple, or array describing the T-test types used for each P-value. ================================================================================================= Returns: A properly formatted list ================================================================================================= """ # If the groups are dataframes, make the input into a list of two-lists if type(test) == type(pd.DataFrame()) or type(test) == type(pd.Series([])): # If the input is a series or DataFrame object # then attempt to list it try: test = list(test) except: raise ValueError("The test dataframe is incorrectly formatted. Try: df_name['Test']") # If the input type is a list elif type(test) == list: # then iterate through each element of the list for i in range(len(test)): # and if any elements are not strings, then string them if type(test[i]) != str: test[i] = str(test[i]) else: test[i] = test[i] # If the input type is a tuple elif type(test) == tuple: # then list the test test = list(test) # and loop over the elements of test for i in range(len(test)): # If any elements are not strings, then string them if type(test[i]) != str: test[i] = str(test[i]) else: test[i] = test[i] # If the input is a numpy araray elif type(test) == type(np.array([])): # then use list comprehension to str all elements of the array test = [str(test[i]) for i in range(len(test))] # And at the end, return the test, reformatted return test def storey_check_args(pvals, groups, test): """ ================================================================================================= storey_check_args(pvals, groups, test) This function is meant to check the arguments passed into the storey() function, and ensures that FDR estimation may proceed without conflict. ================================================================================================= Arguments: pvals -> A list, numpy array, dataframe, tuple of P-values groups -> A list, numpy array, dataframe, tuple of group labels, index matched to the pvalues test -> A list, numpy array, dataframe, tuple of T-tests used for calculating P-values, index matched to the pvals argument. ================================================================================================= Returns: The pvalues, g_checker boolean (group checker) and the t_checker boolean (test checker) ================================================================================================= """ # First, type-check the inputs assert type(pvals) in [list, type(np.array([] ,dtype = float)), type(pd.Series()), type(pd.DataFrame())], "The p-values should be given as a list or a numpy array" assert type(groups) in [type(None), list, tuple, type(np.array([])), type(pd.Series()), type(pd.DataFrame())], "The p-values should be given as a list, tuple, numpy array, series or dataframe." # Then, if the pvals were a series or DataFrame object if type(pvals) == type(pd.Series()) or type(pvals) == type(pd.DataFrame()): # Turn them into numpy arrays and transpose them pvals = pvals.to_numpy().transpose() # Then, if the length of pvals is not 1, then raise an error if len(pvals) != 1: raise ValueError("The DataFrame or Series input has more than one dimension...") # Otherwise, pvals are the zeroeth element of the array else: pvals = pvals[0] # Next, check the groups. If somethign other than NoneType # was provided if type(groups) in [list, tuple, type(np.array([])), type(pd.Series()), type(pd.Series()), type(pd.DataFrame())]: # Then set g_checker to True, so we will check groups g_checker = True # Otherwise, set g_checker to False, as we do not need to check groups else: g_checker = False # If the test is a proper typed object if type(test) in [list, tuple, type(np.array([])), type(pd.Series()), type(pd.Series()), type(pd.DataFrame())]: # Then set t_checker to True, as we need to check the test t_checker = True # Otherwise, set t_checker to False, as we do not need to check test else: t_checker = False # and return pvals, g_chekcer and t_checker return pvals, g_checker, t_checker def storey_make_id_dict(pvals, groups, test, g_checker, t_checker): """ ================================================================================================= storey_make_id_dict(pvals, groups, test, g_checker, t_checker) This function is meant to take all relevant arguments to storey() and perform checking operations on each of those inputs. ================================================================================================= Arguments: For more information on pvals, groups, test, refer to storey_check_args(). g_checker -> A boolean, determines whether a group is in need of checking t_checker -> A boolean, determines whether a test is in need of checking ================================================================================================= Returns: A dictionary based on the pvals argument, and the groups and test arguments checked. ================================================================================================= """ # Initialize the idenities dictionary identities = {} # Then proceed with making the identity dictionary # If groups are given and tests are not given if g_checker != False and t_checker == False: # Make sure the groups are in the correct format. # Otherwise, terminate gracefully. groups = storey_check_groups(groups) # If there are not enough group labels given for all the pvals, if len(groups) != len(pvals): # Just proceed without group labels print("Each p-value should have a corresponding label/group tuple, proceeding without labels") # And make a dict of lists with key = pval, value = [position] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i] # Otherwise, use the labels as the keys of the dictionary else: # make a dict of lists with key = pval, value = [position, label] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i, *groups[i]] # If no groups were provided but tests were provieded elif g_checker == False and t_checker != False: # Make sure the tests are in the right format. Otherwise, terminate gracefully test = storey_check_test(test) # If there are not enough tests given for all the pvals, if len(test) != len(pvals): # Just proceed without labels print("Each p-value should have a corresponding test, proceeding without test identifier") # And make a dict of lists with key = pval, value = [position] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i] # Otherwise, use the tests as the keys of the dictionary else: # make a dict of lists with key = pval, value = [position, label] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i, test[i]] # If both tests and groups are provided elif g_checker != False and t_checker != False: # Make sure they're in the right format. Otherwise, terminate gracefully groups = storey_check_groups(groups) test = storey_check_test(test) # If there are not enough labels given for all the pvals, if len(groups) != len(pvals) and len(test) != len(pvals): # Just proceed without labels print("Each p-value should have a corresponding label/group tuple and test, proceeding without labels and test identifiers") # And make a dict of lists with key = pval, value = [position] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i] # Otherwise, use the labels as the keys of the dictionary elif len(groups) != len(pvals) and len(test) == len(pvals): print("Each p-value should have a corresponding test, proceeding without test identifiers") for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i, *groups[i]] elif len(groups) == len(pvals) and len(test) != len(pvals): print("Each p-value should have a corresponding label/group tuple, proceeding without labels") for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i, test[i]] else: # make a dict of lists with key = pval, value = [position, label] for i in range(len(pvals)): identities[f"{i}?{pvals[i]}"] = [i, *groups[i], test[i]] # If no labels are given, then just make the identities dictionary else: # by looping over the pvals for i in range(len(pvals)): # and making keys as index/pval and value index. identities[f"{i}?{pvals[i]}"] = [i] # Once checking is over, return the identities dictionary, groups and test return identities, groups, test def storey_reorder_qs(qs, pvals, og_pvals): """ ================================================================================================= storey_reorder_qs(qs, pvals, og_pvals) This function is used in storey(), and is meant to take the list of qvalues, the list of pvalues, and the original list of pvalues, and reorder the qvalue list in correspondence with the original pvalue list. ================================================================================================= Arguments: qs -> A list of q values created using the pvals list pvals -> A list of p values used to estimate the q values og_pvals -> A list of p values in their original order ================================================================================================= Returns: A list of q values which ahve been reordered to match the order of og_pvals ================================================================================================= """ # Initialize the list of seen pvalues and new qvalues seen = [] newqs = [] # Loop over original order of pvalues for i in range(len(og_pvals)): # If the current pvalue is already seen if og_pvals[i] in seen: # Then find the the index of this particular pvalue. It will # find the first instance of this pvalue in the pvals list. ind = pvals.index(og_pvals[i]) # Then, see how many of these pvalues have been identified num = seen.count(og_pvals[i]) # and qvalue corresponding to this pvalue is the index of # the pvals list up to the current pval + the number seen, # plus the number of elements before that list. ind = pvals[ind+num:].index(og_pvals[i]) + len(pvals[:ind+num]) # If the current pvalue is not seen else: # find the index of the og_pval[i] in pvals ind = pvals.index(og_pvals[i]) # move qs[ind] to newqs newqs.append(qs[ind]) # Add this value to the seen list seen.append(og_pvals[i]) # Once the loop is complete, the q value will be reordered based # on the original pvalue order. return newqs def pi_0(ps, lam): """ ================================================================================================= pi_0(ps, lam) This function is used to calculate the value of pi_0 in the Storey FDR estimation algorithm ================================================================================================= Arguments: ps -> A list of pvalues lam -> A critical value of lambda ================================================================================================= Returns: The sum of all p values greater than lambda divided by the number of p values times the difference and 1 and lambda. ================================================================================================= """ # hat(pi_0) = num(p_j >0) / len(p)/(1-lambda) # This just uses numpy functions to do that for us return np.sum(ps>lam) / (ps.shape[0]*(1-lam)) def storey(pvals, pi0 = None, groups = None, test = None): """ ================================================================================================= storey(pvals, pi0, groups, test) This function performs Storey False Discovery Rate Estimation, as described in the publication Statistical Significance for Genomewide Studies (Storey, Tibshirani 2003) https://www.pnas.org/content/pnas/100/16/9440.full.pdf ================================================================================================= Arguments: pvals -> A list of pvalues. Can be unordered pi0 -> A value for pi0. This does not need to be set. groups -> A list, tuple, dataframe, or numpy array describing comparison groups test -> A list, tuple, dataframe or numpy array describing the test used for Pvalue generation ================================================================================================= Returns: A DataFrame describing the P-values, the Q-values, and whatever metadata was provided. ================================================================================================= """ # First, get a list of the group names if groups are provided. group_names = None if type(groups) == type(
pd.DataFrame([])
pandas.DataFrame
# *- coding: utf-8 -* import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import AutoMinorLocator, MultipleLocator # from model.ESPNet_v2.SegmentationModel import EESPNet_Seg # from model.CGNet import CGNet # from model.ContextNet import ContextNet # from model.DABNet import DABNet # from model.EDANet import EDANet # from model.ENet import ENet # from model.ERFNet import ERFNet # from model.ESNet import ESNet # from model.ESPNet import ESPNet # from model.FastSCNN import FastSCNN # from model.FPENet import FPENet # from model.FSSNet import FSSNet # from model.LEDNet import LEDNet # from model.LinkNet import LinkNet # from model.SegNet import SegNet # from model.SQNet import SQNet # from model.UNet import UNet pd.set_option('display.width', 1000) pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) def analysisG(): # 对比比原网络和CONV6*6 # # https://www.cnblogs.com/happymeng/p/10481293.html dataset = 'camvid352' module_names = ['DABNet', 'ESNet', 'FastSCNN', 'LEDNet', 'FPENet', 'DF1Seg'] train_types = ['bs2gpu1_train'] losses = pd.DataFrame() mious = pd.DataFrame() for n in module_names: for t in train_types: try: df1 = pd.read_table("./checkpoint/" + dataset + "/" + n + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') df2 = pd.read_table("./checkpoint/" + dataset + "/" + n + 'G' + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') # df_loss = df1.loc[:,['Epoch']] df_loss = df1[['Epoch']].copy() df_loss[n] = df1['Loss(Tr)'] df_loss[n + 'G'] = df2['Loss(Tr)'] df_loss.plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + n + t + "_loss_vs_epochs.png") plt.clf() df_miou = df1[['Epoch']].copy() df_miou[n] = df1['mIOU(val)'] df_miou[n + 'G'] = df2['mIOU(val)'] df_miou = df_miou.dropna(axis=0, how='any') df_miou.plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + n + t + "_iou_vs_epochs.png") plt.clf() if len(losses.index) == 0: losses = df_loss.copy() mious = df_miou.copy() else: losses = pd.merge(losses, df_loss) mious = pd.merge(mious, df_miou) except: pass losses[500:].plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + t + "all_loss_vs_epochs.png") plt.clf() mious[4:].plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + t + "_all_iou_vs_epochs.png") plt.close('all') def fastscnn(): # compair with FastSCNN dataset = 'FastSCNN/FastSCNN-4' module_names = ['FastSCNN', 'FastSCNNG1', 'FastSCNNG3', 'FastSCNNG6'] train_types = ['bs4gpu1_train'] losses = pd.DataFrame() mious = pd.DataFrame() for t in train_types: for n in module_names: df = pd.read_table("./checkpoint/" + dataset + "/" + n + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') if len(losses.index) == 0: losses = df[['Epoch']].copy() mious = df[['Epoch']].copy() losses[n] = df['Loss(Tr)'] mious[n] = df['mIOU(val)'] else: losses[n] = df['Loss(Tr)'] mious[n] = df['mIOU(val)'] losses.plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + 'FastSCNN1234' + train_types[0] + "_loss_vs_epochs.png") plt.clf() mious = mious.dropna(axis=0, how='any') mious.plot(x='Epoch') plt.savefig("./checkpoint/" + dataset + "/" + 'FastSCNN1234' + train_types[0] + "_iou_vs_epochs.png") plt.clf() # plt.close('all') print(mious) def fastscnn_mean(): # compair with FastSCNN datasets = ['FastSCNN/FastSCNN-{}'.format(i) for i in range(1, 11)] module_names = ['FastSCNN', 'FastSCNNG1', 'FastSCNNG3', 'FastSCNNG6', 'FastSCNNG7', 'FastSCNNG8'] train_types = ['bs4gpu1_train'] losses_mean = pd.DataFrame() mious_mean = pd.DataFrame() t = train_types[0] for n in module_names: losses = pd.DataFrame() mious = pd.DataFrame() for d in datasets: df = pd.read_table("./checkpoint/" + d + "/" + n + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') if len(losses.index) == 0: losses = df[['Epoch']].copy() mious = df[['Epoch']].copy() losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] else: losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] tmp = losses.drop(['Epoch'], axis=1) losses[n + '_avg'] = tmp.mean(axis=1) losses.plot(x='Epoch') plt.savefig("./checkpoint/" + 'FastSCNN' + "/" + n + t + "_loss_vs_epochs.png") plt.clf() mious = mious.dropna(axis=0, how='any') tmp = mious.drop(['Epoch'], axis=1) mious[n + '_avg'] = tmp.mean(axis=1) mious_mean[n + '_avg'] = mious[n + '_avg'] mious.plot(x='Epoch') plt.savefig("./checkpoint/" + 'FastSCNN' + "/" + n + t + "_iou_vs_epochs.png") plt.clf() # plt.close('all') print(mious) print(mious_mean) mious_mean.to_csv('FastSCNNG_mious_mean.csv') mious_mean.plot() plt.savefig("./checkpoint/" + 'FastSCNN' + "/" + "FastSCNN" + t + "_avg_iou_vs_epochs.png") plt.clf() def lednet_mean(): # compair with FastSCNN datasets = ['LEDNet/LEDNet-{}'.format(i) for i in range(1, 2)] module_names = ['LEDNet', 'LEDNetG1', 'LEDNetG2', 'LEDNetG3'] train_types = ['bs4gpu1_train'] losses_mean = pd.DataFrame() mious_mean = pd.DataFrame() t = train_types[0] for n in module_names: losses = pd.DataFrame() mious = pd.DataFrame() for d in datasets: df = pd.read_table("./checkpoint/" + d + "/" + n + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') if len(losses.index) == 0: losses = df[['Epoch']].copy() mious = df[['Epoch']].copy() losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] else: losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] tmp = losses.drop(['Epoch'], axis=1) losses[n + '_avg'] = tmp.mean(axis=1) losses.plot(x='Epoch') plt.savefig("./checkpoint/" + 'LEDNet' + "/" + n + t + "_loss_vs_epochs.png") plt.clf() mious = mious.dropna(axis=0, how='any') tmp = mious.drop(['Epoch'], axis=1) mious[n + '_avg'] = tmp.mean(axis=1) mious_mean[n + '_avg'] = mious[n + '_avg'] mious.plot(x='Epoch') plt.savefig("./checkpoint/" + 'LEDNet' + "/" + n + t + "_iou_vs_epochs.png") plt.clf() # plt.close('all') print(mious) print(mious_mean) mious_mean.plot(figsize=(20, 15)) plt.savefig("./checkpoint/" + 'LEDNet' + "/" + "LEDNet" + t + "_avg_iou_vs_epochs.png") plt.clf() def fpenet_mean(): # compair with FastSCNN datasets = ['FPENet/FPENet-{}'.format(i) for i in range(1, 2)] module_names = ['FPENet', 'FPENetG0', 'FPENetG1', 'FPENetG2'] train_types = ['bs4gpu1_train'] losses_mean = pd.DataFrame() mious_mean = pd.DataFrame() t = train_types[0] for n in module_names: losses = pd.DataFrame() mious = pd.DataFrame() for d in datasets: df = pd.read_table("./checkpoint/" + d + "/" + n + t + "/log.txt", sep='\t\t', skiprows=2, header=None, names=['Epoch', 'Loss(Tr)', 'mIOU(val)', 'lr'], engine='python') if len(losses.index) == 0: losses = df[['Epoch']].copy() mious = df[['Epoch']].copy() losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] else: losses[d + '/' + n] = df['Loss(Tr)'] mious[d + '/' + n] = df['mIOU(val)'] tmp = losses.drop(['Epoch'], axis=1) losses[n + '_avg'] = tmp.mean(axis=1) losses.plot(x='Epoch') plt.savefig("./checkpoint/" + 'FPENet' + "/" + n + t + "_loss_vs_epochs.png") plt.clf() mious = mious.dropna(axis=0, how='any') tmp = mious.drop(['Epoch'], axis=1) mious[n + '_avg'] = tmp.mean(axis=1) mious_mean[n + '_avg'] = mious[n + '_avg'] mious.plot(x='Epoch') plt.savefig("./checkpoint/" + 'FPENet' + "/" + n + t + "_iou_vs_epochs.png") plt.clf() # plt.close('all') print(mious) print(mious_mean) mious_mean.plot(figsize=(20, 15)) plt.savefig("./checkpoint/" + 'FPENet' + "/" + "FPENet" + t + "_avg_iou_vs_epochs.png") plt.clf() def LEDNet_19_a(): # dataset = 'camvid352' module_names = ['LEDNet', 'LEDNet_19'] train_types = ['bs4gpu1_train'] losses =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ =============================================================================== FINANCIAL IMPACT FILE =============================================================================== Most recent update: 21 January 2019 =============================================================================== Made by: <NAME> Copyright: <NAME>, 2018 For more information, please email: <EMAIL> =============================================================================== """ import numpy as np import pandas as pd import sys sys.path.insert(0, '/***YOUR LOCAL FILE PATH***/CLOVER 4.0/Scripts/Conversion scripts') from Conversion import Conversion class Finance(): def __init__(self): self.location = 'Bahraich' self.CLOVER_filepath = '/***YOUR LOCAL FILE PATH***/CLOVER 4.0' self.location_filepath = self.CLOVER_filepath + '/Locations/' + self.location self.location_inputs = pd.read_csv(self.location_filepath + '/Location Data/Location inputs.csv',header=None,index_col=0)[1] self.finance_filepath = self.location_filepath + '/Impact/Finance inputs.csv' self.finance_inputs = pd.read_csv(self.finance_filepath,header=None,index_col=0).round(decimals=3)[1] self.inverter_inputs = pd.read_csv(self.location_filepath + '/Load/Device load/yearly_load_statistics.csv',index_col=0) #%% #============================================================================== # EQUIPMENT EXPENDITURE (NOT DISCOUNTED) # Installation costs (not discounted) for new equipment installations #============================================================================== # PV array costs def get_PV_cost(self,PV_array_size,year=0): ''' Function: Calculates cost of PV Inputs: PV_array_size Capacity of PV being installed year Installation year Outputs: Undiscounted cost ''' PV_cost = PV_array_size * self.finance_inputs.loc['PV cost'] annual_reduction = 0.01 * self.finance_inputs.loc['PV cost decrease'] return PV_cost * (1.0 - annual_reduction)**year # PV balance of systems costs def get_BOS_cost(self,PV_array_size,year=0): ''' Function: Calculates cost of PV BOS Inputs: PV_array_size Capacity of PV being installed year Installation year Outputs: Undiscounted cost ''' BOS_cost = PV_array_size * self.finance_inputs.loc['BOS cost'] annual_reduction = 0.01 * self.finance_inputs.loc['BOS cost decrease'] return BOS_cost * (1.0 - annual_reduction)**year # Battery storage costs def get_storage_cost(self,storage_size,year=0): ''' Function: Calculates cost of battery storage Inputs: storage_size Capacity of battery storage being installed year Installation year Outputs: Undiscounted cost ''' storage_cost = storage_size * self.finance_inputs.loc['Storage cost'] annual_reduction = 0.01 * self.finance_inputs.loc['Storage cost decrease'] return storage_cost * (1.0 - annual_reduction)**year # Diesel generator costs def get_diesel_cost(self,diesel_size,year=0): ''' Function: Calculates cost of diesel generator Inputs: diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' diesel_cost = diesel_size * self.finance_inputs.loc['Diesel generator cost'] annual_reduction = 0.01 * self.finance_inputs.loc['Diesel generator cost decrease'] return diesel_cost * (1.0 - annual_reduction)**year # Installation costs def get_installation_cost(self,PV_array_size,diesel_size,year=0): ''' Function: Calculates cost of installation Inputs: PV_array_size Capacity of PV being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' PV_installation = PV_array_size * self.finance_inputs.loc['PV installation cost'] annual_reduction_PV = 0.01 * self.finance_inputs.loc['PV installation cost decrease'] diesel_installation = diesel_size * self.finance_inputs.loc['Diesel installation cost'] annual_reduction_diesel = 0.01 * self.finance_inputs.loc['Diesel installation cost decrease'] return PV_installation * (1.0 - annual_reduction_PV)**year + diesel_installation * (1.0 - annual_reduction_diesel)**year # Miscellaneous costs def get_misc_costs(self,PV_array_size,diesel_size): ''' Function: Calculates cost of miscellaneous capacity-related costs Inputs: PV_array_size Capacity of PV being installed diesel_size Capacity of diesel generator being installed Outputs: Undiscounted cost ''' misc_costs = (PV_array_size + diesel_size) * self.finance_inputs.loc['Misc. costs'] return misc_costs # Total cost of newly installed equipment def get_total_equipment_cost(self,PV_array_size,storage_size,diesel_size,year=0): ''' Function: Calculates cost of all equipment costs Inputs: PV_array_size Capacity of PV being installed storage_size Capacity of battery storage being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Undiscounted cost ''' PV_cost = self.get_PV_cost(PV_array_size,year) BOS_cost = self.get_BOS_cost(PV_array_size,year) storage_cost = self.get_storage_cost(storage_size,year) diesel_cost = self.get_diesel_cost(diesel_size,year) installation_cost = self.get_installation_cost(PV_array_size,diesel_size,year) misc_costs = self.get_misc_costs(PV_array_size,diesel_size) return PV_cost + BOS_cost + storage_cost + diesel_cost + installation_cost + misc_costs #%% #============================================================================== # EQUIPMENT EXPENDITURE (DISCOUNTED) # Find system equipment capital expenditure (discounted) for new equipment #============================================================================== def discounted_equipment_cost(self,PV_array_size,storage_size,diesel_size,year=0): ''' Function: Calculates cost of all equipment costs Inputs: PV_array_size Capacity of PV being installed storage_size Capacity of battery storage being installed diesel_size Capacity of diesel generator being installed year Installation year Outputs: Discounted cost ''' undiscounted_cost = self.get_total_equipment_cost(PV_array_size,storage_size,diesel_size,year) discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year return undiscounted_cost * discount_fraction def get_connections_expenditure(self,households,year=0): ''' Function: Calculates cost of connecting households to the system Inputs: households DataFrame of households from Energy_System().simulation(...) year Installation year Outputs: Discounted cost ''' households = pd.DataFrame(households) connection_cost = self.finance_inputs.loc['Connection cost'] new_connections = np.max(households) - np.min(households) undiscounted_cost = float(connection_cost * new_connections) discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year total_discounted_cost = undiscounted_cost * discount_fraction # Section in comments allows a more accurate consideration of the discounted # cost for new connections, but substantially increases the processing time. # new_connections = [0] # for t in range(int(households.shape[0])-1): # new_connections.append(households['Households'][t+1] - households['Households'][t]) # new_connections = pd.DataFrame(new_connections) # new_connections_daily = Conversion().hourly_profile_to_daily_sum(new_connections) # total_daily_cost = connection_cost * new_connections_daily # total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost # Grid extension components def get_grid_extension_cost(self,grid_extension_distance,year): ''' Function: Calculates cost of extending the grid network to a community Inputs: grid_extension_distance Distance to the existing grid network year Installation year Outputs: Discounted cost ''' grid_extension_cost = self.finance_inputs.loc['Grid extension cost'] # per km grid_infrastructure_cost = self.finance_inputs.loc['Grid infrastructure cost'] discount_fraction = (1.0 - self.finance_inputs.loc['Discount rate'])**year return grid_extension_distance * grid_extension_cost * discount_fraction + grid_infrastructure_cost #%% # ============================================================================= # EQUIPMENT EXPENDITURE (DISCOUNTED) ON INDEPENDENT EXPENDITURE # Find expenditure (discounted) on items independent of simulation periods # ============================================================================= def get_independent_expenditure(self,start_year,end_year): ''' Function: Calculates cost of equipment which is independent of simulation periods Inputs: start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' inverter_expenditure = self.get_inverter_expenditure(start_year,end_year) total_expenditure = inverter_expenditure # ... + other components as required return total_expenditure def get_inverter_expenditure(self,start_year,end_year): ''' Function: Calculates cost of inverters based on load calculations Inputs: start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' # Initialise inverter replacement periods replacement_period = int(self.finance_inputs.loc['Inverter lifetime']) system_lifetime = int(self.location_inputs['Years']) replacement_intervals = pd.DataFrame(np.arange(0,system_lifetime,replacement_period)) replacement_intervals.columns = ['Installation year'] # Check if inverter should be replaced in the specified time interval if replacement_intervals.loc[replacement_intervals['Installation year'].isin( range(start_year,end_year))].empty == True: inverter_discounted_cost = float(0.0) return inverter_discounted_cost # Initialise inverter sizing calculation max_power = [] inverter_step = float(self.finance_inputs.loc['Inverter size increment']) inverter_size = [] for i in range(len(replacement_intervals)): # Calculate maximum power in interval years start = replacement_intervals['Installation year'].iloc[i] end = start + replacement_period max_power_interval = self.inverter_inputs['Maximum'].iloc[start:end].max() max_power.append(max_power_interval) # Calculate resulting inverter size inverter_size_interval = np.ceil(0.001*max_power_interval / inverter_step) * inverter_step inverter_size.append(inverter_size_interval) inverter_size = pd.DataFrame(inverter_size) inverter_size.columns = ['Inverter size (kW)'] inverter_info = pd.concat([replacement_intervals,inverter_size],axis=1) # Calculate inverter_info['Discount rate'] = [(1 - self.finance_inputs.loc['Discount rate']) ** inverter_info['Installation year'].iloc[i] for i in range(len(inverter_info))] inverter_info['Inverter cost ($/kW)'] = [self.finance_inputs.loc['Inverter cost'] * (1 - 0.01*self.finance_inputs.loc['Inverter cost decrease']) **inverter_info['Installation year'].iloc[i] for i in range(len(inverter_info))] inverter_info['Discounted expenditure ($)'] = [inverter_info['Discount rate'].iloc[i] * inverter_info['Inverter size (kW)'].iloc[i] * inverter_info['Inverter cost ($/kW)'].iloc[i] for i in range(len(inverter_info))] inverter_discounted_cost = np.sum(inverter_info.loc[inverter_info['Installation year']. isin(np.array(range(start_year,end_year))) ]['Discounted expenditure ($)']).round(2) return inverter_discounted_cost #%% #============================================================================== # EXPENDITURE (DISCOUNTED) ON RUNNING COSTS # Find expenditure (discounted) incurred during the simulation period #============================================================================== def get_kerosene_expenditure(self,kerosene_lamps_in_use_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of kerosene usage Inputs: kerosene_lamps_in_use_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' kerosene_cost = kerosene_lamps_in_use_hourly * self.finance_inputs.loc['Kerosene cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(kerosene_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_kerosene_expenditure_mitigated(self,kerosene_lamps_mitigated_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of kerosene usage that has been avoided by using the system Inputs: kerosene_lamps_mitigated_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' kerosene_cost = kerosene_lamps_mitigated_hourly * self.finance_inputs.loc['Kerosene cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(kerosene_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_grid_expenditure(self,grid_energy_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of grid electricity used by the system Inputs: grid_energy_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' grid_cost = grid_energy_hourly * self.finance_inputs.loc['Grid cost'] total_daily_cost = Conversion().hourly_profile_to_daily_sum(grid_cost) total_discounted_cost = self.discounted_cost_total(total_daily_cost,start_year,end_year) return total_discounted_cost def get_diesel_fuel_expenditure(self,diesel_fuel_usage_hourly,start_year=0,end_year=20): ''' Function: Calculates cost of diesel fuel used by the system Inputs: diesel_fuel_usage_hourly Output from Energy_System().simulation(...) start_year Start year of simulation period end_year End year of simulation period Outputs: Discounted cost ''' diesel_fuel_usage_daily = Conversion().hourly_profile_to_daily_sum(diesel_fuel_usage_hourly) start_day = start_year * 365 end_day = end_year * 365 diesel_price_daily = [] original_diesel_price = self.finance_inputs.loc['Diesel fuel cost'] r_y = 0.01 * self.finance_inputs.loc['Diesel fuel cost decrease'] r_d = ((1.0 + r_y) ** (1.0/365.0)) - 1.0 for t in range(start_day,end_day): diesel_price = original_diesel_price * (1.0 - r_d)**t diesel_price_daily.append(diesel_price) diesel_price_daily =
pd.DataFrame(diesel_price_daily)
pandas.DataFrame
import sqlite3 import json import os import pandas as pd import re conn = sqlite3.connect('happiness.db') c = conn.cursor() #Create Countries table c.execute("""CREATE TABLE countries (id INTEGER PRIMARY KEY AUTOINCREMENT,country varchar, images_file text, image_url text, alpha2 text, alpha3 text, country_code integer, iso_3166_2 text, region text, sub_region text, intermediate_region text, region_code integer, sub_region_code integer, intermediate_region_code integer )""") #Read countries json file myJsonFile = open('Data_Files\Data Files\countries_continents_codes_flags_url.json','r') json_data = myJsonFile.read() countries_json_obj = json.loads(json_data) #Insert Data in Countries table for country in countries_json_obj: c.execute("insert into countries (country,images_file,image_url,alpha2,alpha3,country_code,iso_3166_2,region,sub_region,intermediate_region,region_code,sub_region_code,intermediate_region_code) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)", [country['country'], country['images_file'], country['image_url'], country['alpha-2'], country['alpha-3'], country['country-code'], country['iso_3166-2'], country['region'], country['sub-region'], country['intermediate-region'], country['region-code'], country['sub-region-code'], country['intermediate-region-code']]) conn.commit() #Read CSV files csv_file_path = os.getcwd()+'\\Data_Files\\Data Files\\csv_files\\' csv_files = [] for file in os.listdir(csv_file_path): if(file.endswith('.csv')): csv_files.append(file) #Create DataFrame of csv files df = {} df_list = [] for file in csv_files: df[file] = pd.read_csv(csv_file_path + file) file_name_str = str(file) report_year = re.findall('(\d{4})', file_name_str) df[file].loc[:, 'year'] = str(report_year[0]) df[file].columns = [x.lower().replace(" ","_").replace("?","") \ .replace("-","_").replace("(","").replace(")","").replace("..","_").replace(".","_") \ for x in df[file].columns] for x in df[file].columns: col_name = str(x) if col_name.endswith("_"): c_col_name = col_name col_name = col_name[:-1] df[file].rename(columns = ({c_col_name: col_name}),inplace=True) df[file].rename(columns=({"economy_gdp_per_capita": "gdp_per_capita"}), inplace=True) df[file].rename(columns=({"score": "happiness_score"}), inplace=True) df[file].rename(columns=({"freedom": "freedom_to_make_life_choices"}), inplace=True) df[file].rename(columns=({"country_or_region": "country"}), inplace=True) df[file].rename(columns=({"healthy_life_expectancy": "health_life_expectancy"}), inplace=True) df_list.append(df[file]) result = pd.concat(df_list) replacements = { 'object': 'varchar', 'float64': 'float', 'int64': 'int', 'datetime64': 'timestamp', 'timedelta64[ns]': 'varchar' } col_str = ", ".join("{} {}".format(n, d) for (n, d) in zip(result.columns, result.dtypes.replace(replacements))) conn = sqlite3.connect('happiness.db') c = conn.cursor() #Create countries_happiness record table c.execute("""CREATE TABLE countries_happiness (ID INTEGER PRIMARY KEY AUTOINCREMENT, %s);""" % (col_str)) conn.commit() #Insert data from csv files to countries_happiness table result.to_sql(name="countries_happiness", con=conn, if_exists='append', index=False) #Question 3 - SQL Query to CSV SQL_Query_Q3 =
pd.read_sql_query('''select ch.year,c.country,c.image_url,c.region_code,c.region,ch.gdp_per_capita,ch.family,ch.social_support,ch.health_life_expectancy,ch.freedom_to_make_life_choices,ch.generosity,ch.perceptions_of_corruption from countries c inner join countries_happiness ch on c.country=ch.country''', conn)
pandas.read_sql_query
from datetime import date, datetime, timedelta from dateutil import tz import numpy as np import pytest import pandas as pd from pandas import DataFrame, Index, Series, Timestamp, date_range import pandas._testing as tm class TestDatetimeIndex: def test_setitem_with_datetime_tz(self): # 16889 # support .loc with alignment and tz-aware DatetimeIndex mask = np.array([True, False, True, False]) idx =
date_range("20010101", periods=4, tz="UTC")
pandas.date_range
import json import csv import codecs import pandas as pd dic = {} # 名前の意味情報を読み取る with codecs.open('./meaning.csv', "r") as f: reader = csv.reader(f) meaning = [row for row in reader] dic_name = {} # ヘッダー削除 meaning = meaning[1:] for mean in meaning: if mean[3] == "" or mean[4] == "": continue if mean[4] == "備考": continue category = int(mean[4]) - 1 if category > 13 or category < 0: print(mean[0]) print(category) continue if not mean[3] in dic.keys(): dic[mean[3]] = [] # alphabet to bukken if not mean[3] in dic_name.keys(): dic_name[mean[3]] = mean[0] #alphabet to katakana # 建物情報を読み取る with codecs.open('./suumo_tokyo.csv', "r") as f: reader = csv.reader(f) buiding = [row for row in reader] # ヘッダー削除 buiding = buiding[1:] for bill in buiding: for key in dic.keys(): if dic_name[key] in bill[1]: # 建物名にキーワードが含まれているか dic[key].append(bill[1]) name = [] billdings = [] for key in dic.keys(): for bill in dic[key]: name.append(key) billdings.append(bill) name = pd.Series(name) billdings = pd.Series(billdings) df =
pd.concat([name, billdings], axis=1)
pandas.concat
import logging import multiprocessing import os from collections import defaultdict from typing import Iterable import pandas as pd from pascal_voc_tools import XmlParser from PIL import Image from ...files import ensure_directory, iterate_directories from .annotation import AnnotatedImage, Annotation, BoundingBox def load_voc_from_directories( directories: Iterable[str], num_workers: int = None ) -> pd.DataFrame: """Load a pandas dataframe from directories containing VOC files""" items = defaultdict(lambda: []) num_workers = num_workers or multiprocessing.cpu_count() files = tuple(iterate_directories(directories, "xml")) with multiprocessing.Pool(num_workers) as pool: for result in pool.imap(_parse_dataset_item, files): if result is not None: file, image_file = result items["annotation"].append(file) items["image"].append(image_file) return
pd.DataFrame(items)
pandas.DataFrame
import unittest import numpy as np import pandas as pd from pyalink.alink import * class TestSqlQuery(unittest.TestCase): def test_batch(self): source = CsvSourceBatchOp() \ .setSchemaStr( "sepal_length double, sepal_width double, petal_length double, petal_width double, category string") \ .setFilePath("https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/iris.csv") source.registerTableName("A") result = BatchOperator.sqlQuery("SELECT sepal_length FROM A") result.print() def test_batch2(self): data = np.array([ ["1", 1, 1.1, 1.0, True], ["2", -2, 0.9, 2.0, False], ["3", 100, -0.01, 3.0, True], ["4", -99, None, 4.0, False], ["5", 1, 1.1, 5.0, True], ["6", -2, 0.9, 6.0, False] ]) df = pd.DataFrame({"f1": data[:, 0], "f2": data[:, 1], "f3": data[:, 2], "f4": data[:, 3], "f5": data[:, 4]}) data = dataframeToOperator(df, schemaStr='f1 string, f2 long, f3 double, f4 double, f5 boolean', opType='batch') data.print() data.registerTableName("t1") data.registerTableName("t2") res = BatchOperator.sqlQuery("select a.f1,b.f2 from t1 as a join t2 as b on a.f1=b.f1") res.print() def test_batch3(self): data = np.array([ ["1", 1, 1.1, 1.0, True], ["2", -2, 0.9, 2.0, False], ["3", 100, -0.01, 3.0, True], ["4", -99, None, 4.0, False], ["5", 1, 1.1, 5.0, True], ["6", -2, 0.9, 6.0, False] ]) df =
pd.DataFrame({"f1": data[:, 0], "f2": data[:, 1], "f3": data[:, 2], "f4": data[:, 3], "f5": data[:, 4]})
pandas.DataFrame
""" This module includes two types of discrete state-space formulations for biogas plants. The anaerobic digestion model in FlexibleBiogasPlantModel is based on the work in https://doi.org/10.1016/j.energy.2017.12.073 and ISBN: 978-3-319-16192-1 The module is designed to work with fledge: https://doi.org/10.5281/zenodo.3715873 The code is organized and implemented based on the flexible building model cobmo: https://zenodo.org/record/3523539 """ import numpy as np import pandas as pd import scipy.linalg import os import inspect import sys import datetime as dt import pyomo.environ as pyo import bipmo.utils class BiogasPlantModel(object): """ BiogasPlantModel represents all attributes and functions that all biogas plants have in common. It is the basis for every model that inherits from it. Caution: It does not work as a standalone model! """ model_type: str = None der_name: str = 'Biogas Plant' plant_scenarios: pd.DataFrame states: pd.Index controls: pd.Index outputs: pd.Index switches: pd.Index chp_schedule: pd.DataFrame disturbances: pd.Index state_vector_initial: pd.Series state_matrix: pd.DataFrame control_matrix: pd.DataFrame disturbance_matrix: pd.DataFrame state_output_matrix: pd.DataFrame control_output_matrix: pd.DataFrame disturbance_output_matrix: pd.DataFrame timestep_start: pd.Timestamp timestep_end: pd.Timestamp timestep_interval: pd.Timedelta timesteps: pd.Index disturbance_timeseries: pd.DataFrame output_maximum_timeseries: pd.DataFrame output_minimum_timeseries: pd.DataFrame marginal_cost: float lhv_table: pd.DataFrame temp_in: float cp_water: float feedstock_limit_type: str available_feedstock: float def __init__( self, scenario_name: str, timestep_start=None, timestep_end=None, timestep_interval=None, connect_electric_grid=True, ): # Scenario name. self.scenario_name = scenario_name # Define the biogas plant model (change paths accordingly). base_path = os.path.dirname(os.path.dirname(os.path.normpath(__file__))) # Load the scenario. self.plant_scenarios = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_scenario.csv') ) self.plant_scenarios = self.plant_scenarios[ self.plant_scenarios['scenario_name'] == self.scenario_name] self.plant_scenarios.index = pd.Index([self.scenario_name]) # Load marginal cost self.marginal_cost = self.plant_scenarios.loc[ self.scenario_name, 'marginal_cost_EUR_Wh-1'] # Load feedstock data used in the scenario. self.plant_feedstock = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_feedstock.csv') ) self.plant_feedstock = self.plant_feedstock[ self.plant_feedstock['feedstock_type'] == self.plant_scenarios.loc[self.scenario_name, 'feedstock_type'] ] self.plant_feedstock.index = pd.Index([self.scenario_name]) self.feedstock_limit_type = self.plant_scenarios.loc[ self.scenario_name, 'availability_limit_type'] self.available_feedstock = self.plant_scenarios.loc[ self.scenario_name, 'availability_substrate_ton_per_year'] # Load CHP data used in the scenario. self.CHP_list = self.plant_scenarios.CHP_name[self.scenario_name].split() self.number_CHP = len(self.CHP_list) self.plant_CHP_source = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_CHP.csv') ) self.plant_CHP = pd.DataFrame(columns=self.plant_CHP_source.columns) for i in self.CHP_list: self.plant_CHP = pd.concat([ self.plant_CHP, self.plant_CHP_source[self.plant_CHP_source['CHP_name'] == i] ]) self.plant_CHP.index = self.plant_CHP['CHP_name'] self.elec_cap_list = pd.DataFrame([cap for cap in self.plant_CHP.elec_cap_Wel], index=self.CHP_list, columns=['elec_cap_Wel']) self.ramp_rate_list = pd.DataFrame([rate for rate in self.plant_CHP.ramp_capacity_W_min], index=self.CHP_list, columns=['ramp_rate_W_min']) # Load storage data used in the scenario. self.plant_storage = pd.read_csv( os.path.join(base_path, 'data/biogas_plant_storage.csv') ) self.plant_storage = self.plant_storage[ self.plant_storage['storage_name'] == self.plant_scenarios.loc[self.scenario_name, 'storage_name'] ] self.plant_storage.index = pd.Index([self.scenario_name]) # Define useful values. self.lhv_table = pd.DataFrame( # Lower heating value of methane in J/m3. [35.8e6], pd.Index(['LHV_methane']), pd.Index(['LHV value (in J/m^3)']) ) self.temp_in = self.plant_scenarios.loc[ # Temperature of the digestion process in °C. self.scenario_name, 'digester_temp'] self.cp_water = 4182 # Specific heat of water in J/(K*kg) at 20°C. # Define CHP coefficients self.set_gains = pd.Index([]) # Define the heat and power CHP coefficients. for i in range(len(self.CHP_list)): self.set_gains = pd.Index([ self.plant_CHP['CHP_name'][i] + '_biogas_volume_inflow_m3_s-1' ]).union(self.set_gains) self.gain_heat = pd.DataFrame( 0.0, pd.Index([0]), pd.Index(range(0, self.set_gains.size)) ) self.gain_power = pd.DataFrame( 0.0, pd.Index([0]), pd.Index(range(0, self.set_gains.size)) ) for i in range(0, self.number_CHP): for j in range(0, self.lhv_table.size): self.gain_heat[self.lhv_table.size * i + j] = self.plant_CHP['therm_eff'][i] * \ self.lhv_table['LHV value (in J/m^3)'][j] * \ self.plant_feedstock['methane_content'][ self.scenario_name] self.gain_power[self.lhv_table.size * i + j] = self.plant_CHP['elec_eff'][i] * \ self.lhv_table['LHV value (in J/m^3)'][j] * \ self.plant_feedstock['methane_content'][ self.scenario_name] self.gain_heat.columns = self.set_gains self.gain_power.columns = self.set_gains # Empty control variables (are added in the inherited classes) self.controls = pd.Index( [], name='control_name' ) # Add the chp controls (every biogas plant has at least one CHP) for i in range(len(self.CHP_list)): self.controls = pd.Index([ # CHPs Biogas inflows self.plant_CHP['CHP_name'][i] + '_biogas_volume_inflow_m3_s-1' ]).union(self.controls) # State variable for storage (every bg has a storage) self.states = pd.Index( # Storage biogas content. self.plant_scenarios['scenario_name'] + '_storage_content_m3', name='state_name' ) # Output variables. self.outputs = pd.Index( # Storage biogas content. self.plant_scenarios['scenario_name'] + '_storage_content_m3', name='output_name' ) self.outputs = pd.Index([ # net active power output 'active_power', # net reactive power output 'reactive_power', # net thermal output (heat) 'thermal_power' ]).union(self.outputs) self.switches = pd.Index([]) for i in range(len(self.CHP_list)): self.outputs = pd.Index([ # CHPs active power production. self.plant_CHP['CHP_name'][i] + '_active_power_Wel', # CHPs reactive power production. self.plant_CHP['CHP_name'][i] + '_react_power_Var', # CHPs heat power production. self.plant_CHP['CHP_name'][i] + '_heat_Wth' ]).union(self.outputs) self.switches = pd.Index([ # CHP switch to turn on/off self.plant_CHP['CHP_name'][i] + '_switch', ]).union(self.switches) # Define timesteps. if timestep_start is not None: self.timestep_start = pd.Timestamp(timestep_start) else: self.timestep_start = pd.Timestamp(self.plant_scenarios.loc[self.scenario_name, 'time_start']) if timestep_end is not None: self.timestep_end = pd.Timestamp(timestep_end) else: self.timestep_end = pd.Timestamp(self.plant_scenarios.loc[self.scenario_name, 'time_end']) if timestep_interval is not None: self.timestep_interval = pd.Timedelta(timestep_interval) else: self.timestep_interval = pd.Timedelta(self.plant_scenarios.loc[self.scenario_name, 'time_step']) self.timesteps = pd.Index( pd.date_range( start=self.timestep_start, end=self.timestep_end, freq=self.timestep_interval ), name='time' ) # construct default chp schedule self.chp_schedule = pd.DataFrame( +1.0, self.timesteps, self.switches ) # Disturbance variables: add constant active and thermal power requirements self.disturbances = pd.Index([ 'active_power_requirement_const_Wel', 'thermal_power_requirement_const_Wth' ], name='disturbance_name') self.disturbances_data_set = { 'active_power_requirement_const_Wel': float(self.plant_scenarios.loc[self.scenario_name, 'const_power_requirement']), 'thermal_power_requirement_const_Wth': float(self.plant_scenarios.loc[self.scenario_name, 'const_heat_requirement']), } def instantiate_state_space_matrices(self): # Instantiate empty state-space model matrices. self.state_matrix = pd.DataFrame( 0.0, self.states, self.states ) self.control_matrix = pd.DataFrame( 0.0, self.states, self.controls ) self.disturbance_matrix = pd.DataFrame( 0.0, self.states, self.disturbances ) self.state_output_matrix = pd.DataFrame( 0.0, self.outputs, self.states ) self.control_output_matrix = pd.DataFrame( 0.0, self.outputs, self.controls ) self.disturbance_output_matrix = pd.DataFrame( 0.0, self.outputs, self.disturbances ) def define_state_output_matrix(self): # Define the state output matrix. for state in self.states: for output in self.outputs: if state == output: self.state_output_matrix.loc[state, output] = 1 def define_control_output_matrix(self): # Define the control output matrix. for control in self.controls: for output in self.outputs: if ('active_power_Wel' in output) and (control[0:5] == output[0:5]): self.control_output_matrix.loc[output, control] \ = self.gain_power[control][0] * self.plant_CHP.loc[control[0:5], 'power_factor'] if ('react_power_Var' in output) and (control[0:5] == output[0:5]): self.control_output_matrix.loc[output, control] \ = self.gain_power[control][0] * (1 - self.plant_CHP.loc[control[0:5], 'power_factor']) if ('heat_Wth' in output) and (control[0:5] == output[0:5]): self.control_output_matrix.loc[output, control] \ = self.gain_heat[control][0] # add net active/reactive/thermal output for chp in self.plant_CHP['CHP_name'].to_list(): for control in self.controls: if control[0:5] == chp: self.control_output_matrix.loc['active_power', control] \ = self.gain_power[control][0] * self.plant_CHP.loc[control[0:5], 'power_factor'] self.control_output_matrix.loc['reactive_power', control] \ = self.gain_power[control][0] * (1 - self.plant_CHP.loc[control[0:5], 'power_factor']) self.control_output_matrix.loc['thermal_power', control] \ = self.gain_heat[control][0] def define_disturbance_timeseries(self): self.disturbance_timeseries = pd.DataFrame( 0.0, self.timesteps, self.disturbances ) # Reindex, interpolate and construct full disturbance timeseries. for disturbance in self.disturbances: self.disturbance_timeseries[disturbance] = self.disturbances_data_set[disturbance] def define_disturbance_output_matrix(self): # Add a constant heat and power demand self.disturbance_output_matrix.loc['active_power', 'active_power_requirement_const_Wel']\ = -1.0 self.disturbance_output_matrix.loc['thermal_power', 'thermal_power_requirement_const_Wth']\ = -1.0 def define_output_constraint_timeseries(self): # Instantiate constraint timeseries. self.output_maximum_timeseries = pd.DataFrame( +1.0 * np.infty, self.timesteps, self.outputs ) self.output_minimum_timeseries = pd.DataFrame( -1.0 * np.infty, self.timesteps, self.outputs ) # Minimum constraint for active power outputs. for i in self.CHP_list: self.output_minimum_timeseries.loc[ :, self.outputs.str.contains(i + '_active_power_Wel')] \ = self.plant_CHP.loc[i, 'elec_min_Wel'] # Maximum constraint for active power outputs. self.output_maximum_timeseries.loc[ :, self.outputs.str.contains(i + '_active_power_Wel')] \ = self.plant_CHP.loc[i, 'elec_cap_Wel'] # Minimum constraint for storage content. self.output_minimum_timeseries.loc[ :, self.outputs.str.contains('_storage') ] = self.plant_storage.loc[self.scenario_name, 'SOC_min_m3'] # Maximum constraint for storage content. self.output_maximum_timeseries.loc[ :, self.outputs.str.contains('_storage') ] = self.plant_storage.loc[self.scenario_name, 'SOC_max_m3'] # Optimization methods def define_optimization_variables( self, optimization_problem: pyo.ConcreteModel, ): # Define variables. optimization_problem.state_vector = pyo.Var(self.timesteps, [self.der_name], self.states) optimization_problem.control_vector = pyo.Var(self.timesteps, [self.der_name], self.controls) optimization_problem.output_vector = pyo.Var(self.timesteps, [self.der_name], self.outputs) def define_optimization_constraints( self, optimization_problem: pyo.ConcreteModel, ): # Define shorthand for indexing 't+1'. # - This implementation assumes that timesteps are always equally spaced. timestep_interval = self.timesteps[1] - self.timesteps[0] # Define constraints. if optimization_problem.find_component('der_model_constraints') is None: optimization_problem.der_model_constraints = pyo.ConstraintList() # Initial state. for state in self.states: # Set initial state according to the initial state vector. optimization_problem.der_model_constraints.add( optimization_problem.state_vector[self.timesteps[0], self.der_name, state] == self.state_vector_initial.at[state] ) for timestep in self.timesteps[:-1]: # State equation. for state in self.states: optimization_problem.der_model_constraints.add( optimization_problem.state_vector[timestep + timestep_interval, self.der_name, state] == sum( self.state_matrix.at[state, state_other] * optimization_problem.state_vector[timestep, self.der_name, state_other] for state_other in self.states ) + sum( self.control_matrix.at[state, control] * optimization_problem.control_vector[timestep, self.der_name, control] for control in self.controls ) + sum( self.disturbance_matrix.at[state, disturbance] * self.disturbance_timeseries.at[timestep, disturbance] for disturbance in self.disturbances ) ) for timestep in self.timesteps: # Output equation. for output in self.outputs: optimization_problem.der_model_constraints.add( optimization_problem.output_vector[timestep, self.der_name, output] == sum( self.state_output_matrix.at[output, state] * optimization_problem.state_vector[timestep, self.der_name, state] for state in self.states ) + sum( self.control_output_matrix.at[output, control] * optimization_problem.control_vector[timestep, self.der_name, control] for control in self.controls ) + sum( self.disturbance_output_matrix.at[output, disturbance] * self.disturbance_timeseries.at[timestep, disturbance] for disturbance in self.disturbances ) ) # Output limits. for output in self.outputs: if self.chp_schedule is not None and 'active_power_Wel' in output: for chp in self.CHP_list: if chp in output and any(self.switches.str.contains(chp)): pass # this is done in the script currently to support MILP # optimization_problem.der_model_constraints.add( # optimization_problem.output_vector[timestep, self.der_name, output] # >= # self.output_minimum_timeseries.at[timestep, output] # * self.chp_schedule.loc[timestep, chp+'_switch'] # ) # optimization_problem.der_model_constraints.add( # optimization_problem.output_vector[timestep, self.der_name, output] # <= # self.output_maximum_timeseries.at[timestep, output] # * self.chp_schedule.loc[timestep, chp+'_switch'] # ) else: optimization_problem.der_model_constraints.add( optimization_problem.output_vector[timestep, self.der_name, output] >= self.output_minimum_timeseries.at[timestep, output] ) optimization_problem.der_model_constraints.add( optimization_problem.output_vector[timestep, self.der_name, output] <= self.output_maximum_timeseries.at[timestep, output] ) # Control limits. for timestep in self.timesteps: # Feedstock input limits (maximum daily or hourly feed-in depending on available feedstock). for control in self.controls: if self.feedstock_limit_type == 'daily': if ('mass_flow' in control) and (timestep + dt.timedelta(days=1) - self.timestep_interval <= self.timestep_end): optimization_problem.der_model_constraints.add( sum( self.timestep_interval.seconds * optimization_problem.control_vector[timestep + i * self.timestep_interval, self.der_name, control] for i in range(int(dt.timedelta(days=1)/self.timestep_interval)) ) <= self.available_feedstock * 1000/365 ) elif self.feedstock_limit_type == 'hourly': if ('mass_flow' in control) and (timestep + dt.timedelta(hours=1) - self.timestep_interval <= self.timestep_end): optimization_problem.der_model_constraints.add( sum( self.timestep_interval.seconds * optimization_problem.control_vector[ timestep + i * self.timestep_interval, self.der_name, control] for i in range(int(dt.timedelta(hours=1) / self.timestep_interval)) ) <= self.available_feedstock * 1000 / (365*24) ) # Final SOC storage soc_end = self.plant_storage.loc[self.scenario_name, 'SOC_end'] if soc_end == 'init': # Final SOC greater or equal to initial SOC optimization_problem.der_model_constraints.add( optimization_problem.output_vector[self.timesteps[-1], self.der_name, self.scenario_name + '_storage_content_m3'] == self.state_vector_initial[self.scenario_name + '_storage_content_m3'] ) def define_optimization_objective( self, optimization_problem: pyo.ConcreteModel, price_timeseries: pd.DataFrame ): # Obtain timestep interval in hours, for conversion of power to energy. timestep_interval_hours = (self.timesteps[1] - self.timesteps[0]) /
pd.Timedelta('1h')
pandas.Timedelta
import pandas import os import ast def create_CSV_pipeline1( platename, seriesperwell, path, illum_path, platedict, one_or_many, Channeldict ): if one_or_many == "one": print("CSV creation not enabled for Channeldict for one file/well") return else: columns_per_channel = ["PathName_", "FileName_", "Frame_"] columns = ["Metadata_Plate", "Metadata_Series", "Metadata_Site"] channels = [] Channeldict = ast.literal_eval(Channeldict) rounddict = {} Channelrounds = list(Channeldict.keys()) for eachround in Channelrounds: templist = [] templist += Channeldict[eachround].values() channels += list(i[0] for i in templist) rounddict[eachround] = list(i[0] for i in templist) df = pandas.DataFrame(columns=columns) for chan in channels: listoffiles = [] for round in rounddict.keys(): if chan in rounddict[round]: for well in platedict.keys(): listoffiles.append(platedict[well][round]) listoffiles = [x for l in listoffiles for x in l] df["FileName_Orig" + chan] = listoffiles df["Metadata_Plate"] = [platename] * len(listoffiles) df["Metadata_Series"] = list(range(seriesperwell)) * len(platedict.keys()) for eachround in Channelrounds: pathperround = path + eachround + "/" for chan in channels: for i in list(Channeldict[eachround].values()): if chan == i[0]: df["PathName_Orig" + chan] = pathperround df["Frame_Orig" + chan] = i[1] file_out_name = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name, index=False) # Make .csv for 2_CP_ApplyIllum df["Metadata_Site"] = df["Metadata_Series"] well_df_list = [] well_val_df_list = [] for eachwell in platedict.keys(): well_df_list += [eachwell] * seriesperwell wellval = eachwell.split("Well")[1] if wellval[0] == "_": wellval = wellval[1:] well_val_df_list += [wellval] * seriesperwell df["Metadata_Well"] = well_df_list df["Metadata_Well_Value"] = well_val_df_list for chan in channels: listoffiles = [] for round in rounddict.keys(): if chan in rounddict[round]: for well in platedict.keys(): listoffiles.append(platedict[well][round]) listoffiles = [x for l in listoffiles for x in l] df["PathName_Illum" + chan] = [illum_path] * len(listoffiles) df["FileName_Illum" + chan] = [platename + "_Illum" + chan + ".npy"] * len( listoffiles ) file_out_name_2 = "/tmp/" + str(platename) + ".csv" df.to_csv(file_out_name_2, index=False) return file_out_name, file_out_name_2 def create_CSV_pipeline3(platename, seriesperwell, path, well_list, range_skip): columns = [ "Metadata_Plate", "Metadata_Site", "Metadata_Well", "Metadata_Well_Value", ] columns_per_channel = ["PathName_", "FileName_"] channels = ["DNA", "Phalloidin"] columns += [col + chan for col in columns_per_channel for chan in channels] df =
pandas.DataFrame(columns=columns)
pandas.DataFrame
from pathlib import Path import pandas as pd import numpy as np from sklearn.metrics import f1_score, accuracy_score #---------------------------------------------------------- l_pct=[0, 20, 50, 80, 100] n=5 fd_out='./out/a00_random_01_score' f_in='./out/a00_random_00_mod/data.csv' #----------------------------------------------------------- Path(fd_out).mkdir(exist_ok=True, parents=True) df=pd.read_csv(f_in, index_col=0) #----------------------------------------------------------- def get_f1(df, name): #pp y_true=df['tumor'] df_tmp=df.drop('tumor', axis=1).copy() #get score l_data=[] for pct in l_pct: df_pred=(df_tmp>pct).astype('int') #20 means 80% predict tumor l_score=[f1_score(y_true, df_pred[col]) for col in df_pred.columns] avg=np.array(l_score).mean() std=np.array(l_score).std() l_data.append((f'{name}-{pct}', avg, std)) df_tmp=pd.DataFrame(l_data, columns=['mod', 'avg', 'std']) return df_tmp def get_accu(df, name): #pp y_true=df['tumor'] df_tmp=df.drop('tumor', axis=1).copy() #get score l_data=[] for pct in l_pct: df_pred=(df_tmp>pct).astype('int') #20 means 80% predict tumor l_score=[accuracy_score(y_true, df_pred[col]) for col in df_pred.columns] avg=np.array(l_score).mean() std=np.array(l_score).std() l_data.append((f'{name}-{pct}', avg, std)) df_tmp=
pd.DataFrame(l_data, columns=['mod', 'avg', 'std'])
pandas.DataFrame
import psychopy.core import psychopy.event import psychopy.visual import pandas as pd import numpy as np import psychopy.gui import psychopy.sound from SBDM_Data import SBDM_Data from Block import Block class Game: def __init__(self, params, data_frame, no_of_blocks, break_interval, win): self.data_frame = data_frame self.no_of_blocks = no_of_blocks self.break_interval = break_interval self.win = win self.params = params self.textmsg = self.params['break_text'] self.sbdm = SBDM_Data(self.data_frame) self.stim_list = self.sbdm.create_stim_list() def run_game(self): list_of_results = [] # will contain DataFrames for block_idx in range(self.no_of_blocks): block = Block(self.stim_list, self.data_frame, self.params) list_of_results[block] = block.run_block() if np.mod(block_idx / self.break_interval) == 0: # load the break instructions message message = psychopy.visual.TextStim(self.win, text=self.textmsg) # opens a break instructions picture from Images folder # draw the break instructions image message.draw() self.win.flip() psychopy.event.waitKeys(keyList=['space']) curr_final_results =
pd.DataFrame(list_of_results[0])
pandas.DataFrame
# 101803503 <NAME> import pandas as pd from os import path import sys import math def validate_input_file(data_file): if not (path.exists(data_file)): print(" 🛑 File doesn't exist") exit(0) if not data_file.endswith('.csv'): print("🛑 CSV is the only supported format") exit(0) try: input_file = pd.read_csv(data_file) except Exception: print( "🛑 Error Opening File" ) exit(0) col = input_file.shape if not col[1] >= 3: print(f"🛑 {data_file} should have 3 columns ") exit(0) k = 0 for i in input_file.columns: k = k + 1 for j in input_file.index: if k != 1: val = isinstance(input_file[i][j], int) val1 = isinstance(input_file[i][j], float) if not val and not val1: print(f'Value is not numeric in {k} column') exit(0) return 1 def validate_result_file(data_file): if not data_file.endswith('.csv'): print("🛑 CSV is the only supported format for result files") exit(0) return 1 def validate_weights(data_file, weights_str): input_file = pd.read_csv(data_file) col = input_file.shape weight = [] split_weights_str = weights_str.split(',') for split_weights_str_obj in split_weights_str : split_weights_str_obj_ = 0 for split_weights_str_obj_char in split_weights_str_obj: if not split_weights_str_obj_char.isnumeric(): if split_weights_str_obj_ >= 1 or split_weights_str_obj_char != '.': print("🛑 Weights not in Corrent Format") exit(0) else: split_weights_str_obj_ = split_weights_str_obj_ + 1 weight.append(float(split_weights_str_obj)) if len(weight) != (col[1] - 1): print(f"🛑 No. of Weights should be same as no. of columns in {data_file}") exit(0) return weight def validate_impacts(data_file, impact_str): input_file = pd.read_csv(data_file) col = input_file.shape impact = impact_str.split(',') for i in impact: if i not in {'+', '-'}: print(f"🛑 Only \" + \" or \" - \" are allowed not {i}") exit(0) if len(impact) != (col[1] - 1): print(f"🛑 Columns in {data_file} and Impacts shouls be Equal in No.") exit(0) return impact def input_matrix_normalized(data_file): data_frame =
pd.read_csv(data_file)
pandas.read_csv
import pandas as pd import os # where to save or read CSV_DIR = 'OECD_csv_datasets' PROCESSED_DIR = 'OECD_csv_processed' # datafile = 'OECD_csv_processed/industry_candidates.csv' if not os.path.exists(PROCESSED_DIR): os.makedirs(PROCESSED_DIR) # STAGE 3: def standardize_data(dset_id, df): # standardized column names stdcol_dict = {'Time Period': 'YEAR', 'Observation': 'series', 'Industry': 'INDUSTRY', 'Measure': 'MEASURE', 'Country': 'NATION'} cols = df.columns.values.tolist() print(dset_id, cols) # for test # original_df = df # first deal with any potential tuple columns # e.g. 'Country - distribution' tuple_col = 'Country - distribution' if tuple_col in cols: split_list = tuple_col.split(' - ') new_col_list = [split_list[0], split_list[1]] for n, col in enumerate(new_col_list): df[col] = df[tuple_col].apply(lambda x: x.split('-')[n]) df = df.drop(tuple_col, axis=1) # rename common occurrence column names # 'Time Period' to 'YEAR', 'Observation' to 'series' # 'Industry' to 'INDUSTRY', 'Country' to 'NATION' df.rename(stdcol_dict, axis='columns', inplace=True) cols = df.columns.values.tolist() # Industry 'other' rename industry_renames = ['Activity', 'ISIC3', 'Sector'] if any(k in industry_renames for k in cols): no = list(set(industry_renames) & set(cols)) df.rename(columns={no[0]: 'INDUSTRY'}, inplace=True) cols = df.columns.values.tolist() # Country 'other' rename - has do be done in order # 'Country - distribution' is a special case already dealt with above country_renames = ['Declaring country', 'Partner country', 'Reporting country'] for cname in country_renames: if cname in cols: df.rename({cname: 'NATION'}, axis='columns', inplace=True) break cols = df.columns.values.tolist() print(dset_id, cols) # now find columns that are not YEAR, series, INDUSTRY, MEASURE or NATION stdcols_list = [] nonstdcols_list = [] measurecol = False for k in stdcol_dict: stdcols_list.append(stdcol_dict[k]) for cname in cols: if cname not in stdcols_list: nonstdcols_list.append(cname) elif not measurecol and cname == 'MEASURE': measurecol = True if nonstdcols_list: if measurecol: df = df.rename(columns={'MEASURE': 'temp'}) nonstdcols_list.append('temp') df['MEASURE'] = df[nonstdcols_list].apply(lambda x: ','.join(x), axis=1) df.drop(nonstdcols_list, axis=1, inplace=True) cols = df.columns.values.tolist() print(dset_id, nonstdcols_list, measurecol) print(dset_id, cols) df.set_index('YEAR', inplace=True) df.to_csv(os.path.join(PROCESSED_DIR, dset_id + '_C.csv')) # STAGE 1: OECD data set CSV analysis for data sets covering industries # criteria criteria = ['Industry', 'Activity', 'ISIC3', 'Sector'] candidates = [] column_name = [] # iterate through each CSV file in the directory and analyse it for filename in os.listdir(CSV_DIR): if filename.endswith(".csv"): dsetid = os.path.splitext(filename)[0] fromfile = os.path.join(CSV_DIR, filename) oecd_dataset_df = pd.read_csv(fromfile) oecd_cols = oecd_dataset_df.columns.values.tolist() if any(k in criteria for k in oecd_cols): intersection = list(set(criteria) & set(oecd_cols)) candidates.append(dsetid) occurrence = next((x for x in intersection if x == criteria[0]), None) if occurrence is None: column_name.append(intersection[0]) else: column_name.append(occurrence) print(dsetid, intersection, occurrence) # create candidate DataFrame candidates_df = pd.DataFrame({'KeyFamilyId': candidates, 'ColumnName': column_name}) # diagnostic info print(len(candidates), 'industry candidates found') # STAGE 2 : analysis of OECD industry related data set for specific industry criteria # criteria industryTypeKey = 'ELECTRICITY' hasTarget = [] # find which have data on target industry type for row in candidates_df.iterrows(): datasetId = row[1]['KeyFamilyId'] colName = row[1]['ColumnName'] dataset_df = pd.read_csv(os.path.join(CSV_DIR, datasetId + '.csv')) print('checking', datasetId) try: filtered_df = dataset_df[dataset_df[colName].str.startswith(industryTypeKey)] except ValueError: # all NaNs in target column, nothing to see here - move on pass else: if len(filtered_df.index): # non-empty DataFrame hasTarget.append(datasetId) # call stage 3 standardize_data(datasetId, filtered_df) # diagnostic info print(len(hasTarget), 'beginning with', industryTypeKey) print(hasTarget) # target data frame def_cols = ['YEAR', 'series', 'INDUSTRY', 'NATION', 'MEASURE'] combined_df = pd.DataFrame(columns=def_cols) # STAGE 4. Iterate through each CSV file in the directory and concatenate it for filename in os.listdir(PROCESSED_DIR): if filename.endswith("_C.csv"): fname = os.path.splitext(filename)[0] fromfile = os.path.join(PROCESSED_DIR, filename) print(fname) source_df = pd.read_csv(fromfile) list_of_series = [source_df[def_cols[0]], source_df[def_cols[1]], source_df[def_cols[2]], source_df[def_cols[3]], source_df[def_cols[4]]] stripped_df =
pd.concat(list_of_series, axis=1)
pandas.concat
import os, sys import collections import pprint import pandas as pd import pysam class Call: def __init__(self, call, quality = None, is_error = False): self.call = call self.quality = quality self.is_error = is_error self.is_indel = len(call) > 1 def get_call_for_pileup_read(pileup_read, ref = None): if pileup_read.alignment.mapping_quality < 20: return Call('_MAPQ', is_error = True) elif pileup_read.alignment.is_secondary or pileup_read.alignment.is_supplementary or pileup_read.alignment.is_qcfail: return Call('_FLAG', is_error = True) elif pileup_read.alignment.is_duplicate: return Call('_DUPE', is_error = True) elif pileup_read.indel > 0: quals = pileup_read.alignment.query_qualities[pileup_read.query_position:pileup_read.query_position+pileup_read.indel+1] return Call( pileup_read.alignment.query_sequence[pileup_read.query_position:pileup_read.query_position+pileup_read.indel+1], 1.0 * sum(quals) / len(quals) ) elif pileup_read.indel < 0: #print(ref, pileup_read.indel, len(ref), ref[0:-abs(pileup_read.indel)]) #if abs(pileup_read.indel) < len(ref): # return ref[0:-abs(pileup_read.indel)] #else: # return '_DEL' #hacky way to handle deletions... return Call( '%s-%d' % (pileup_read.alignment.query_sequence[pileup_read.query_position], abs(pileup_read.indel)), sum(pileup_read.alignment.query_qualities[pileup_read.query_position:pileup_read.query_position+2]) / 2.0 ) elif pileup_read.is_del: return Call('_DEL', is_error = True) elif pileup_read.is_refskip: return Call('_SKIP', is_error = True) else: return Call(pileup_read.alignment.query_sequence[pileup_read.query_position], pileup_read.alignment.query_qualities[pileup_read.query_position]) def get_read_calls(samfile, chrom, pos1, ref = None, max_depth = 1e7, calculate_stats = False): read_calls = {} read_stats = {} for pileup_column in samfile.pileup(chrom, pos1-1, pos1, max_depth = max_depth, stepper = 'nofilter', truncate=True): print(chrom, pos1, '->', pileup_column.reference_name, pileup_column.reference_pos, ' - found ', pileup_column.nsegments, 'alignments') for pileup_read in pileup_column.pileups: #ignore secondary and supplementary alignments if pileup_read.alignment.is_secondary: continue if pileup_read.alignment.is_supplementary: continue assert not pileup_read.alignment.query_name in read_calls, 'encountered multiple alignments for single read?' read_calls[pileup_read.alignment.query_name] = get_call_for_pileup_read(pileup_read, ref) if calculate_stats: read_stats[pileup_read.alignment.query_name] = { 'length': pileup_read.alignment.infer_query_length(), 'mismatches': pileup_read.alignment.get_tag('NM'), 'mapping_quality': pileup_read.alignment.mapping_quality, 'mean_baseq': 1.0 * sum(pileup_read.alignment.query_qualities) / len(pileup_read.alignment.query_qualities) } if calculate_stats: return read_calls, read_stats else: return read_calls "Get counts of how often each call was observed at each SNP" def get_call_counts(samfile, snps): snp_call_counts = {} for snp in snps.itertuples(): snp_call_counts[snp.name] = collections.Counter() for pileup_column in samfile.pileup(snp.CHROM, snp.POS-1, snp.POS, max_depth = 1e4, stepper = 'nofilter', truncate=True): for pileup_read in pileup_column.pileups: call = get_call_for_pileup_read(pileup_read) #, snp.REF snp_call_counts[snp.name][call.call] += 1 return snp_call_counts def get_allele_type(allele, snp): if allele in snp.paternal and allele in snp.maternal: return 'shared' elif allele in snp.maternal: return 'maternal' elif allele in snp.paternal: return 'paternal' else: return None def get_mutation_allele_type(allele, mutation): if allele == mutation['REF_processed']: return 'wild-type' elif allele == mutation['ALT_processed']: return 'mutation' else: return None def process_family(fam, fam_rows, bam_mask, snps_mask, subsample = None): print() print(fam, 'STARTING') assert 'proband' in fam_rows['relationship'].values, 'need at least one proband' snps_fn = snps_mask % fam if not os.path.isfile(snps_fn): raise Exception('%s: %s missing!' % (fam, snps_fn)) snps = pd.read_csv(snps_fn, sep='\t', dtype={'#CHROM': str, 'POS': int, 'ID': str, 'REF': str, 'ALT': str}) snps.rename(columns = { '#CHROM': 'CHROM' }, inplace=True) snps.loc[~snps['CHROM'].str.startswith('chr'), 'CHROM'] = ['chr' + c for c in snps.loc[~snps['CHROM'].str.startswith('chr'), 'CHROM']] snps['name'] = ['%s_%d' % (snp.CHROM, snp.POS) for snp in snps.itertuples()] #the "calls" we actually get back from the pileup are just a single base, so if we have a deletion #such as GA>G, what we actually see if a G with indel == 0 or indel == 1. #thus, we need to adjust the REF/ALT we actually expect to see #this is stupid, what we should really do is to process the pileups in a smarter way... snps['REF_processed'] = [snp.REF[0] if len(snp.REF) > 1 else snp.REF for snp in snps.itertuples()] snps['ALT_processed'] = ['%s-%d' % (snp.REF[0], len(snp.REF) - len(snp.ALT)) if len(snp.REF) > 1 else snp.ALT for snp in snps.itertuples()] print(snps) mutation = snps[snps.ID == 'mutation'] assert len(mutation) == 1, 'only one mutation allowed' mutation = mutation.iloc[0] background_snps_list = [] for offset in [10, 50, 100]: for sign in [1, -1]: background_snps_list.append( pd.DataFrame([ { 'CHROM': snp.CHROM, 'POS': snp.POS + sign * offset, 'name': '{}_{}'.format(snp.name, sign * offset) } for snp in snps.itertuples() ]) ) background_snps = pd.concat(background_snps_list) background_snps = background_snps[background_snps.POS > 0] background_snps.drop_duplicates(inplace = True) background_snps.set_index(['name'], inplace = True) print(fam, 'Using', len(background_snps), 'background SNPs:') print(background_snps) #get allele counts for all SNPs snp_sample_counts = collections.defaultdict(dict) for sample in fam_rows.itertuples(): fn = bam_mask % sample.BC print(fam, 'Getting allele counts for', sample.BC) with pysam.AlignmentFile(fn, "rb") as samfile: snp_sample_counts[sample.BC] = get_call_counts(samfile, snps) print(fam, 'Checked', len(snp_sample_counts), 'SNPs.') #make a dataframe, the stupid way rows = [] for sample, x in snp_sample_counts.items(): for snp_name, xx in x.items(): for snp_allele, count in xx.items(): rows.append({ 'count': count, 'snp_name': snp_name, 'snp_allele': snp_allele, 'sample': sample }) all_allele_counts = pd.DataFrame(rows).set_index(['sample', 'snp_name', 'snp_allele']) print(all_allele_counts.head()) if 'mother' in fam_rows['relationship'].values and 'father' in fam_rows['relationship'].values: assert (fam_rows['relationship'] == 'proband').sum() == 1, 'only one proband sample allowed' print('Found parents, finding informative SNPs...') informative_snp_dicts = [] for snp in snps.itertuples(): #we don't want the mutation if snp.ID == 'mutation': continue gt_calls = {} for sample in fam_rows.itertuples(): relationship = sample.relationship sample_counts = snp_sample_counts[sample.BC] snp_counts = sample_counts[snp.name] #only consider REF + ALT here, ignore the rest total_counts = snp_counts[snp.REF_processed] + snp_counts[snp.ALT_processed] if snp_counts[snp.REF_processed] > 0.25 * total_counts and snp_counts[snp.ALT_processed] > 0.25 * total_counts: gt_calls[relationship] = 'het' elif snp_counts[snp.REF_processed] > 0.6 * total_counts: gt_calls[relationship] = snp.REF_processed elif snp_counts[snp.ALT_processed] > 0.6 * total_counts: gt_calls[relationship] = snp.ALT_processed else: gt_calls[relationship] = None print(snp.name, relationship, snp_counts[snp.REF_processed], snp_counts[snp.ALT_processed], total_counts, gt_calls[relationship]) print(snp.name, gt_calls) if 'mother' in gt_calls and 'father' in gt_calls and 'proband' in gt_calls \ and gt_calls['proband'] == 'het' \ and gt_calls['mother'] != gt_calls['father'] \ and gt_calls['mother'] is not None \ and gt_calls['father'] is not None: snp_dict = snp._asdict() snp_dict['maternal'] = [gt_calls['mother']] if gt_calls['mother'] != 'het' else [snp.REF_processed, snp.ALT_processed] snp_dict['paternal'] = [gt_calls['father']] if gt_calls['father'] != 'het' else [snp.REF_processed, snp.ALT_processed] informative_snp_dicts.append(snp_dict) informative_snps = pd.DataFrame(informative_snp_dicts) if len(informative_snps) == 0: print(fam, 'No informative SNPs') return None, None, None informative_snps = informative_snps[list(snps.columns) + ['maternal', 'paternal']] #remove Index, ensure right order else: print(fam, 'Assuming that all non-mutation SNPs are informative') informative_snps = snps.loc[snps.ID != 'mutation'].copy() informative_snps['maternal'] = [[] for _ in range(len(informative_snps))] informative_snps['paternal'] = [[] for _ in range(len(informative_snps))] print(fam, 'Found', len(informative_snps), 'informative SNPs:') print(informative_snps) sample_informative_allele_counts = {} sample_mutation_read_stats = {} sample_read_mutation_calls = {} sample_read_snp_calls = {} sample_read_background_calls = {} phase_evidence = [] for sample in fam_rows.itertuples(): #include all -- [rows['relationship'] == 'proband'] fn = bam_mask % sample.BC print(fn) #get calls for each read at the mutation and each informative snp informative_calls = {} sample_read_background_calls_rows = [] with pysam.AlignmentFile(fn, "rb") as samfile: mutation_calls, mutation_read_stats = get_read_calls(samfile, mutation['CHROM'], mutation['POS'], calculate_stats = True) #get calls for background snps (should all be ref and high q) for snp in background_snps.itertuples(): for read, background_call in get_read_calls(samfile, snp.CHROM, snp.POS).items(): sample_read_background_calls_rows.append({ 'read': read, 'snp_name': snp.Index, #name = Index 'snp_call': background_call.call, 'snp_call_quality': background_call.quality, }) #get calls for actual informative snps for snp in informative_snps.itertuples(): informative_calls[snp.name] = get_read_calls(samfile, snp.CHROM, snp.POS) sample_read_background_calls[sample.BC] = pd.DataFrame(sample_read_background_calls_rows) \ .set_index(['read']) \ .join(background_snps, on = 'snp_name') #should we subsample reads? just subsample on mutation calls, we will simply ignore the reads for which we don't have a mutation call if subsample is not None: n_subsample = ceil(subsample * len(mutation_calls)) print('subsampling', len(mutation_calls), 'mutation_calls to', n_subsample, '(', subsample, ')') mutation_calls = dict(random.sample(mutation_calls.items(), k = n_subsample)) mutation_read_stats = dict(random.sample(mutation_read_stats.items(), k = n_subsample)) assert len(mutation_calls) == n_subsample #process mutation read stats sample_mutation_read_stats[sample.BC] = pd.DataFrame(list(mutation_read_stats.values())) #summarize basecounts for mutation and each SNP sample_read_mutation_calls_rows = [] site_basecounts = collections.Counter() for read, mutation_base in mutation_calls.items(): simplified_call = mutation_base.call if mutation_base.is_error: simplified_call = '_FILTERED' elif mutation_base.is_indel and not mutation_base.call in [mutation['REF_processed'], mutation['ALT_processed']]: simplified_call = '_OTHER_INDEL' site_basecounts[(mutation['name'],simplified_call)] += 1 sample_read_mutation_calls_rows.append({ 'read': read, 'mutation_call': mutation_base.call, 'mutation_call_type': get_mutation_allele_type(mutation_base.call, mutation = mutation), 'mutation_call_simplified': simplified_call, 'mutation_call_quality': mutation_base.quality, }) sample_read_mutation_calls[sample.BC] = pd.DataFrame(sample_read_mutation_calls_rows) \ .set_index(['read']) for snp in informative_snps.itertuples(): snp_calls = informative_calls[snp.name] for snp_base in snp_calls.values(): simplified_call = snp_base.call if snp_base.is_error: simplified_call = '_FILTERED' elif snp_base.is_indel and not snp_base.call in [snp.REF_processed, snp.ALT_processed]: simplified_call = '_OTHER_INDEL' site_basecounts[(snp.name,simplified_call)] += 1 sample_informative_allele_counts[sample.BC] = pd.DataFrame( [{'count': x, 'snp_name': name, 'snp_allele': allele} for ((name, allele), x) in site_basecounts.items()], ).set_index(['snp_name', 'snp_allele']) #count haplotypes for each informative SNP sample_read_snp_calls_rows = [] mutation_allele_counts = {} for snp in informative_snps.itertuples(): snp_calls = informative_calls[snp.name] mutation_allele_counts[snp.name] = collections.defaultdict(collections.Counter) for read, mutation_base in mutation_calls.items(): simplified_mutatation_call = mutation_base.call #only allow REF/ALT for mutation if not mutation_base.call in [mutation['REF_processed'], mutation['ALT_processed']]: simplified_mutatation_call = '_OTHER' #did we cover the SNP? if so, get the call simplified_snp_call = '_NONE' if read in snp_calls: snp_base = snp_calls[read] #only allow REF/ALT for SNP simplified_snp_call = snp_base.call if not snp_base.call in [snp.REF_processed, snp.ALT_processed]: simplified_snp_call = '_OTHER' #note each call separately for later testing sample_read_snp_calls_rows.append({ 'read': read, 'snp_name': snp.name, 'snp_call': snp_base.call, 'snp_call_type': get_allele_type(snp_base.call, snp = snp), 'snp_call_quality': snp_base.quality, }) #also build up a dict of dicts with counts for each individual snp for simple heatmaps mutation_allele_counts[snp.name][simplified_mutatation_call][simplified_snp_call] += 1 sample_read_snp_calls[sample.BC] = pd.DataFrame(sample_read_snp_calls_rows) \ .set_index(['read', 'snp_name']) #post-process counts into dataframe for snp in informative_snps.itertuples(): pair_counts = mutation_allele_counts[snp.name] df = pd.DataFrame.from_dict(pair_counts) df.reset_index(inplace = True) df.fillna(0, inplace=True) df.rename(columns={'index': 'snp_allele'}, inplace=True) df = df.melt(id_vars=['snp_allele'], var_name='mutation_allele', value_name='count').astype({'count': int}) #add annotation about paternal/maternal allele df['snp_allele_type'] = df['snp_allele'].apply(get_allele_type, snp = snp) #add annotation about mutation/wild-type df['mutation_allele_type'] = df['mutation_allele'].apply(get_mutation_allele_type, mutation = mutation) #add general info df['sample'] = sample.BC df['snp_name'] = snp.name df = df[['sample', 'snp_name', 'snp_allele', 'mutation_allele', 'count', 'snp_allele_type', 'mutation_allele_type']] #, 'fraction' df.set_index(['sample', 'snp_name', 'snp_allele', 'mutation_allele'], inplace=True) phase_evidence.append(df) print(fam, 'processed sample:', sample) print(fam, 'DONE') return ( informative_snps, all_allele_counts, pd.concat(sample_mutation_read_stats, names=['sample']) if len(sample_mutation_read_stats) > 0 else None, pd.concat(sample_informative_allele_counts, names=['sample']) if len(sample_informative_allele_counts) > 0 else None, pd.concat(sample_read_background_calls, names=['sample']) if len(sample_read_background_calls_rows) > 0 else None, pd.concat(sample_read_mutation_calls, names=['sample']) if len(sample_read_mutation_calls_rows) > 0 else None, pd.concat(sample_read_snp_calls, names=['sample']) if len(sample_read_snp_calls_rows) > 0 else None, pd.concat(phase_evidence) if len(phase_evidence) > 0 else None, ) def write_csv(d, fn): d.to_csv(fn) print('Wrote', len(d), 'rows:') print(fn) def main(): import argparse parser = argparse.ArgumentParser( description = "ddOWL mutatation allele phasing and plotting tools, v0.1 - <NAME>", formatter_class = argparse.ArgumentDefaultsHelpFormatter ) #specify parameters parser.add_argument("-v", "--version", help="print version and exit", action="store_true") parser.add_argument("--first", help="only first family", action="store_true") parser.add_argument("--debug", help="enable debug output", action="store_true") parser.add_argument("--family", help="specifiv family to run") parser.add_argument("FAMILIES", help="CSV file with family info") parser.add_argument("SNPS", help="mask for SNP TSV filenames (%s replaced by family ID)") parser.add_argument("BAMS", help="mask for BAM filenames (%s replaced by sample ID)") args = parser.parse_args() families = pd.read_csv(args.FAMILIES) assert len(families) > 0, 'no families' print(families.head()) if args.family: print('Only analysing family {}'.format(args.family)) families = families[families['FamilyID'] == args.family] assert len(families) > 0, 'no families after filtering' print(families.head()) fn_prefix = '{}.{}'.format(args.FAMILIES, args.family) else: fn_prefix = args.FAMILIES if args.debug: fn_prefix = '{}.DEBUG'.format(fn_prefix) if args.first: fn_prefix = '{}.FIRST'.format(fn_prefix) informative_snp_dict = {} read_background_calls_dict = {} read_mutation_calls_dict = {} read_snp_calls_dict = {} phase_evidence_dict = {} read_stat_dict = {} allele_count_dict = {} informative_allele_count_dict = {} for family, group in families.groupby('FamilyID'): try: ( fam_informative_snps, fam_allele_counts, fam_read_stats, fam_informative_allele_counts, fam_read_background_calls, fam_read_mutation_calls, fam_read_snp_calls, fam_phase_evidence ) = process_family( family, group, bam_mask = args.BAMS, snps_mask = args.SNPS, ) if fam_informative_snps is not None: informative_snp_dict[family] = fam_informative_snps if fam_allele_counts is not None: allele_count_dict[family] = fam_allele_counts if fam_read_stats is not None: read_stat_dict[family] = fam_read_stats if fam_informative_allele_counts is not None: informative_allele_count_dict[family] = fam_informative_allele_counts if fam_read_background_calls is not None: read_background_calls_dict[family] = fam_read_background_calls if fam_read_mutation_calls is not None: read_mutation_calls_dict[family] = fam_read_mutation_calls if fam_read_snp_calls is not None: read_snp_calls_dict[family] = fam_read_snp_calls if fam_phase_evidence is not None: phase_evidence_dict[family] = fam_phase_evidence except Exception as e: #print(e) raise if args.first: print('--first is set: Stopping after first family!') break informative_snps =
pd.concat(informative_snp_dict, names=['FamilyID'])
pandas.concat
import os import sys import time import argparse import unicodedata import librosa import numpy as np import pandas as pd from tqdm import tqdm from hparams import hparams def run_prepare(args, hparams): def normalize_wave(wave, sample_rate): """normalize wave format""" wave = librosa.resample(wave, sample_rate, hparams.sample_rate) return wave def normalize_text(text): """normalize text format""" text = ''.join(char for char in unicodedata.normalize('NFD', text) if unicodedata.category(char) != 'Mn') return text.strip() if args.dataset == 'BIAOBEI': dataset_name = 'BZNSYP' dataset_path = os.path.join('./', dataset_name) if not os.path.isdir(dataset_path): print("BIAOBEI dataset folder doesn't exist") sys.exit(0) total_duration = 0 text_file_path = os.path.join(dataset_path, 'ProsodyLabeling', '000001-010000.txt') try: text_file = open(text_file_path, 'r', encoding='utf8') except FileNotFoundError: print('text file no exist') sys.exit(0) data_array = np.zeros(shape=(1, 3), dtype=str) for index, each in tqdm(enumerate(text_file.readlines())): if index % 2 == 0: list = [] basename = each.strip().split()[0] raw_text = each.strip().split()[1] list.append(basename) list.append(raw_text) else: pinyin_text = normalize_text(each) list.append(pinyin_text) data_array = np.append(data_array, np.array(list).reshape(1, 3), axis=0) wave_file_path = os.path.join(dataset_path, 'Wave', '{}.wav'.format(basename)) if not os.path.exists(wave_file_path): # print('wave file no exist') continue try: wave, sr = librosa.load(wave_file_path, sr=None) except EOFError: print('wave format error at {}'.format(basename+'.wav')) continue if not sr == hparams.sample_rate: wave = normalize_wave(wave, sr) duration = librosa.get_duration(wave) total_duration += duration librosa.output.write_wav(wave_file_path, wave, hparams.sample_rate) data_frame = pd.DataFrame(data_array[1:]) data_frame.to_csv(os.path.join(dataset_path, 'metadata.csv'), sep='|', header=False, index=False, encoding='utf8') text_file.close() print("total audio duration: %ss" % (time.strftime('%H:%M:%S', time.gmtime(total_duration)))) elif args.dataset == 'THCHS-30': dataset_name = 'data_thchs30' dataset_path = os.path.join('./', dataset_name) if not os.path.isdir(dataset_path): print("{} dataset folder doesn't exist".format(args.dataset)) sys.exit(0) total_duration = 0 raw_dataset_path = os.path.join(dataset_path, 'wavs') data_array = np.zeros(shape=(1, 3), dtype=str) for root, dirs, files in os.walk(raw_dataset_path): for file in tqdm(files): if not file.endswith('.wav.trn'): continue list = [] basename = file[:-8] list.append(basename) text_file = os.path.join(raw_dataset_path, file) if not os.path.exists(text_file): print('text file {} no exist'.format(file)) continue with open(text_file, 'r', encoding='utf8') as f: lines = f.readlines() raw_text = lines[0].rstrip('\n') pinyin_text = lines[1].rstrip('\n') pinyin_text = normalize_text(pinyin_text) list.append(raw_text) list.append(pinyin_text) wave_file = os.path.join(raw_dataset_path, '{}.wav'.format(basename)) if not os.path.exists(wave_file): print('wave file {}.wav no exist'.format(basename)) continue try: wave, sr = librosa.load(wave_file, sr=None) except EOFError: print('wave file {}.wav format error'.format(basename)) continue if not sr == hparams.sample_rate: print('sample rate of wave file {}.wav no match'.format(basename)) wave = librosa.resample(wave, sr, hparams.sample_rate) duration = librosa.get_duration(wave) if duration < 10: total_duration += duration librosa.output.write_wav(wave_file, wave, hparams.sample_rate) data_array = np.append(data_array, np.array(list).reshape(1, 3), axis=0) data_frame =
pd.DataFrame(data_array[1:])
pandas.DataFrame
# Imports from bs4 import BeautifulSoup import pandas as pd from urllib.request import Request, urlopen from urllib.error import URLError, HTTPError # Definindo a url url = 'https://www.fundamentus.com.br/resultado.php' headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (HTML, like Gecko) ' 'Chrome/76.0.3809.100 Safari/537.36'} # Realizando o request: try: request = Request(url, headers=headers) response = urlopen(request) print("Request realizado!") print(response.getcode()) html = response.read() # Tratando possíveis erros: except HTTPError as e: print('HTTPError\n\n') print(response.getcode()) print(e.reason) except URLError as e: print('URLError\n\n') print(response.getcode()) print(e.reason) # Instanciando um objeto BeautifulSoup: soup = BeautifulSoup(html, 'html.parser') # Pegando os nomes das colunas da tabela colunas_names = [col.getText() for col in soup.find('table', {'id': 'resultado'}).find('thead').findAll('th')] colunas = {i: col.getText() for i, col in enumerate(soup.find('table', {'id': 'resultado'}).find('thead').findAll('th'))} # Criando um DataFrame com os nomes das colunas dados =
pd.DataFrame(columns=colunas_names)
pandas.DataFrame
import time import re import math import matplotlib matplotlib.use('Agg') from matplotlib.ticker import FormatStrFormatter, PercentFormatter from unidecode import unidecode from db import get_db_config import pandas as pd import numpy as np import matplotlib.pyplot as plt def get_player_data(db, ids, min_battles=100): sql = "SELECT accountid as player_id, CAST(wins AS float) / CAST(battlescount AS float) as player_winrate " \ "FROM wot.player " \ "WHERE accountid in %s and battlescount > %s" % ( str(tuple(ids.values)), min_battles) # that's a hack to get the proper string data = pd.read_sql(sql, con=db, index_col='player_id') return data def get_tank_winrates(db, vehicle_id, min_battles=100): sql = "SELECT player_id, CAST(wins AS float) / CAST(battles AS float) as tank_winrate, battles " \ "FROM wot.player_vehicle " \ "WHERE vehicle_id = %s and battles > %s" % (vehicle_id, str(min_battles)) data =
pd.read_sql(sql, con=db, index_col='player_id')
pandas.read_sql
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng = date_range('1/1/2000', periods=10) # raise TypeError for now self.assertRaises(TypeError, rng.__lt__, rng[3].value) result = rng == list(rng) exp = rng == rng self.assert_numpy_array_equal(result, exp) def test_map(self): rng = date_range('1/1/2000', periods=10) f = lambda x: x.strftime('%Y%m%d') result = rng.map(f) exp = [f(x) for x in rng] self.assert_numpy_array_equal(result, exp) def test_add_union(self): rng = date_range('1/1/2000', periods=5) rng2 = date_range('1/6/2000', periods=5) result = rng + rng2 expected = rng.union(rng2) self.assertTrue(result.equals(expected)) def test_misc_coverage(self): rng = date_range('1/1/2000', periods=5) result = rng.groupby(rng.day) tm.assert_isinstance(list(result.values())[0][0], Timestamp) idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) self.assertTrue(idx.equals(list(idx))) non_datetime = Index(list('abc')) self.assertFalse(idx.equals(list(non_datetime))) def test_union_coverage(self): idx = DatetimeIndex(['2000-01-03', '2000-01-01', '2000-01-02']) ordered = DatetimeIndex(idx.order(), freq='infer') result = ordered.union(idx) self.assertTrue(result.equals(ordered)) result = ordered[:0].union(ordered) self.assertTrue(result.equals(ordered)) self.assertEqual(result.freq, ordered.freq) def test_union_bug_1730(self): rng_a = date_range('1/1/2012', periods=4, freq='3H') rng_b = date_range('1/1/2012', periods=4, freq='4H') result = rng_a.union(rng_b) exp = DatetimeIndex(sorted(set(list(rng_a)) | set(list(rng_b)))) self.assertTrue(result.equals(exp)) def test_union_bug_1745(self): left = DatetimeIndex(['2012-05-11 15:19:49.695000']) right = DatetimeIndex(['2012-05-29 13:04:21.322000', '2012-05-11 15:27:24.873000', '2012-05-11 15:31:05.350000']) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_union_bug_4564(self): from pandas import DateOffset left = date_range("2013-01-01", "2013-02-01") right = left + DateOffset(minutes=15) result = left.union(right) exp = DatetimeIndex(sorted(set(list(left)) | set(list(right)))) self.assertTrue(result.equals(exp)) def test_intersection_bug_1708(self): from pandas import DateOffset index_1 = date_range('1/1/2012', periods=4, freq='12H') index_2 = index_1 + DateOffset(hours=1) result = index_1 & index_2 self.assertEqual(len(result), 0) # def test_add_timedelta64(self): # rng = date_range('1/1/2000', periods=5) # delta = rng.values[3] - rng.values[1] # result = rng + delta # expected = rng + timedelta(2) # self.assertTrue(result.equals(expected)) def test_get_duplicates(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-02', '2000-01-03', '2000-01-03', '2000-01-04']) result = idx.get_duplicates() ex = DatetimeIndex(['2000-01-02', '2000-01-03']) self.assertTrue(result.equals(ex)) def test_argmin_argmax(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) self.assertEqual(idx.argmin(), 1) self.assertEqual(idx.argmax(), 0) def test_order(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) ordered = idx.order() self.assertTrue(ordered.is_monotonic) ordered = idx.order(ascending=False) self.assertTrue(ordered[::-1].is_monotonic) ordered, dexer = idx.order(return_indexer=True) self.assertTrue(ordered.is_monotonic) self.assert_numpy_array_equal(dexer, [1, 2, 0]) ordered, dexer = idx.order(return_indexer=True, ascending=False) self.assertTrue(ordered[::-1].is_monotonic) self.assert_numpy_array_equal(dexer, [0, 2, 1]) def test_insert(self): idx = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-02']) result = idx.insert(2, datetime(2000, 1, 5)) exp = DatetimeIndex(['2000-01-04', '2000-01-01', '2000-01-05', '2000-01-02']) self.assertTrue(result.equals(exp)) # insertion of non-datetime should coerce to object index result = idx.insert(1, 'inserted') expected = Index([datetime(2000, 1, 4), 'inserted', datetime(2000, 1, 1), datetime(2000, 1, 2)]) self.assertNotIsInstance(result, DatetimeIndex) tm.assert_index_equal(result, expected) idx = date_range('1/1/2000', periods=3, freq='M') result = idx.insert(3, datetime(2000, 4, 30)) self.assertEqual(result.freqstr, 'M') def test_map_bug_1677(self): index = DatetimeIndex(['2012-04-25 09:30:00.393000']) f = index.asof result = index.map(f) expected = np.array([f(index[0])]) self.assert_numpy_array_equal(result, expected) def test_groupby_function_tuple_1677(self): df = DataFrame(np.random.rand(100), index=date_range("1/1/2000", periods=100)) monthly_group = df.groupby(lambda x: (x.year, x.month)) result = monthly_group.mean() tm.assert_isinstance(result.index[0], tuple) def test_append_numpy_bug_1681(self): # another datetime64 bug dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') a = DataFrame() c = DataFrame({'A': 'foo', 'B': dr}, index=dr) result = a.append(c) self.assertTrue((result['B'] == dr).all()) def test_isin(self): index =
tm.makeDateIndex(4)
pandas.util.testing.makeDateIndex
import dominate from dominate.tags import * import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import json import glob import datetime import numpy as np import nibabel import itertools import os from nilearn import plotting FORMATRECS=5 XLABELROT=30 def create_document(title, stylesheet=None, script=None): doc = dominate.document(title = title) if stylesheet is not None: with doc.head: link(rel='stylesheet',href=stylesheet) if script is not None: with doc.head: script(type='text/javascript',src=script) with doc: with div(id='header'): h1(title) p('Report generated on {}'.format(datetime.datetime.strftime(datetime.datetime.now(), '%Y-%m-%dT%H:%M:%S.%f')) ) return doc def create_section(doc, divid, divclass, captiontext): with doc: if divclass is None: d = div(id=divid) else: d = div(id=divid, cls=divclass) with d: h2(captiontext) return doc def create_table(doc, divid, divclass, tabid, tabclass, headers, captiontext, reportlist): with doc: if divclass is None: d = div(id=divid) else: d = div(id=divid, cls=divclass) with d: h3(captiontext) if tabclass is None: t = table(id = tabid) else: t = table(id = tabid, cls = tabclass) with t: with thead(): with tr(): for header in headers: th(header) with tbody(): for listitem in reportlist: with tr(): for itemvalue in listitem: td(itemvalue) return doc def create_float_table(tabid, tabclass, headers, reportlist): if tabclass is None: t = table(id = tabid) else: t = table(id = tabid, cls = tabclass) with t: with thead(): with tr(): for header in headers: th(header) with tbody(): for listitem in reportlist: with tr(): for itemvalue in listitem: td(itemvalue) return t def add_image(doc, divid, divclass, captiontext, image): with doc: if divclass is None: d = div(id=divid) else: d = div(id=divid, cls=divclass) with d: h3(captiontext) img(src=image) return doc def add_float_image(imgid, imgclass, image): if imgclass is None: m = img(id=imgid, src=image) else: m = img(id=imgid, cls=imgclass, src=image) return m def getSnrData(reportdict, modality): table_data=[] for keydate, rep in reportdict.items(): with open (rep, 'r') as file: rep_json = json.load(file) acqdate=rep_json[modality]["DateTime"] snr=rep_json[modality]["snr"] for itemkey, itemvalue in snr.items(): roi_val = itemkey for itemkey, itemvalue in itemvalue.items(): space_val = itemkey # only insert base_space; remove this if statement for both spaces if space_val == 'base_space': snr_val = itemvalue['snr'] signal_roi = itemvalue['signal_roi'] noise_roi = itemvalue['noise_roi'] in_file = itemvalue['in_file'] #table_data.append([acqdate, roi_val, space_val, snr_val ]) table_data.append([acqdate, roi_val, snr_val, signal_roi, noise_roi, in_file ]) return table_data def getTsnrData(reportdict, modality): table_data=[] for keydate, rep in reportdict.items(): with open (rep, 'r') as file: rep_json = json.load(file) acqdate=rep_json[modality]["DateTime"] snr=rep_json[modality]["tsnr"] for itemkey, itemvalue in snr.items(): roi_val = itemkey for itemkey, itemvalue in itemvalue.items(): space_val = itemkey # only insert base_space; remove this if statement for both spaces if space_val == 'base_space': tsnr_val = itemvalue["tsnr_in_roi"] tsnr_file = itemvalue["tsnr_file"] signal_roi = itemvalue["signal_roi"] #table_data.append([acqdate, roi_val, space_val, snr_val ]) table_data.append([acqdate, roi_val, tsnr_val,tsnr_file,signal_roi ]) return table_data def getSortedReportSet(reportjson, numitems=None): reportjson_dict={} for rep in reportjson: with open (rep, 'r') as file: rep_json = json.load(file) acqdate=rep_json["structural"]["DateTime"] reportjson_dict[acqdate]=rep sorted_dict = dict(sorted(reportjson_dict.items(),reverse=True)) if numitems is not None and numitems < len(sorted_dict): sorted_dict = dict(itertools.islice(sorted_dict.items(), numitems)) return sorted_dict def getGeometryData(reportdict, modality): table_data=[] for keydate, rep in reportdict.items(): with open (rep, 'r') as file: rep_json = json.load(file) acqdate=rep_json[modality]["DateTime"] geom=rep_json[modality]["geometry"] for itemkey, itemvalue in geom.items(): if itemkey == 'determinant' or itemkey == 'average_scaling' or itemkey == 'scales' or itemkey == 'skews': if isinstance(itemvalue,list): itemvalue=str(itemvalue) table_data.append([acqdate, itemkey, itemvalue ]) return table_data def formatDateTime(row, fmt): dt = datetime.datetime.strptime(row['datetime'],'%Y-%m-%dT%H:%M:%S.%f') return datetime.datetime.strftime(dt, fmt) def returnAverage(row): if len(str(row['value']).split(',')) > 1: row_values= [float(x) for x in row['value'].replace('[','').replace(']','').replace(' ','').split(',')] return np.mean(np.asarray(row_values)) else: return row['value'] def writeROIimage(mask_rois, threeDfile, image ): combo = None for roi in mask_rois: roiimg = nibabel.load(roi) roidata = roiimg.get_fdata() if combo is None: combo = roidata combo_affine = roiimg.affine combo_header = roiimg.header else: combo=np.add(combo,roidata) funcimg = nibabel.load(threeDfile) if len(funcimg.header.get_data_shape()) > 3: funclist = nibabel.funcs.four_to_three(funcimg) threeDfile = funclist[0] combo_img = nibabel.Nifti1Image(combo, combo_affine, combo_header) display=plotting.plot_roi(combo_img, bg_img=threeDfile) display.savefig(image) def writeStatImage(threeDfile, image, dmode='ortho'): display=plotting.plot_stat_map(threeDfile, display_mode=dmode) display.savefig(image) def createSNRSection(doc,reportdict,modality,imagedir,reportcurr=None): table_columns=['datetime','roi', 'snr', 'signal_roi', 'noise_roi', 'in_file'] if reportcurr is not None: d = div() captiontext="{} ROIs used for average SNR".format(modality).capitalize() d += h3(captiontext,id='{}_snr_roi_display_h'.format(modality)) snr_table_data = getSnrData(reportcurr,modality) snr_df =
pd.DataFrame(snr_table_data, columns=table_columns)
pandas.DataFrame