prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""Tests for functions in preprocess.py.""" import puget.preprocess as pp import puget import os import os.path as op import pandas as pd import pandas.util.testing as pdt import numpy as np import tempfile import json from numpy.testing import assert_equal import pytest def test_std_path_setup(): filename = 'test' data_dir = 'data' # test with one year paths = ['test_2012'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2012': op.join(data_dir, 'test_2012', filename)} assert_equal(file_spec, test_dict) # test with limited years paths = ['test_2012', 'test_2013'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2012': op.join(data_dir, 'test_2012', filename), 'test_2013': op.join(data_dir, 'test_2013', filename)} assert_equal(file_spec, test_dict) # test with all years paths = ['test_2011', 'test_2012', 'test_2013', 'test_2014'] file_spec = pp.std_path_setup(filename, data_dir, paths) test_dict = {'test_2011': op.join(data_dir, 'test_2011', filename), 'test_2012': op.join(data_dir, 'test_2012', filename), 'test_2013': op.join(data_dir, 'test_2013', filename), 'test_2014': op.join(data_dir, 'test_2014', filename)} assert_equal(file_spec, test_dict) def test_read_table(): """Test read_table function.""" # create temporary csv file temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df = pd.DataFrame({'id': [1, 1, 2, 2], 'time1': ['2001-01-13', '2004-05-21', '2003-06-10', '2003-06-10'], 'drop1': [2, 3, 4, 5], 'ig_dedup1': [5, 6, 7, 8], 'categ1': [0, 8, 0, 0]}) df.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) file_spec = {'2011': temp_csv_file.name} df = pp.read_table(file_spec, data_dir=None, paths=None, columns_to_drop=['drop1'], categorical_var=['categ1'], time_var=['time1'], duplicate_check_columns=['id', 'time1', 'categ1']) df_test = pd.DataFrame({'id': [1, 1, 2], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21', '2003-06-10'], errors='coerce'), 'ig_dedup1': [5, 6, 8], 'categ1': [0, np.nan, 0]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 1, 3]) pdt.assert_frame_equal(df, df_test) # test passing a string filename with data_dir and path path, fname = op.split(temp_csv_file.name) path0, path1 = op.split(path) df = pp.read_table(fname, data_dir=path0, paths=[path1], columns_to_drop=['drop1'], categorical_var=['categ1'], time_var=['time1'], duplicate_check_columns=['id', 'time1', 'categ1']) temp_csv_file.close() # test error checking with pytest.raises(ValueError): pp.read_table(file_spec, data_dir=op.join(pp.DATA_PATH, 'king')) # test error checking with pytest.raises(ValueError): pp.read_table('test', data_dir=None, paths=None) def test_read_entry_exit(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.read_entry_exit_table(file_spec=file_spec, data_dir=None, paths=None, metadata=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'categorical_var': ['value']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.read_entry_exit_table(file_spec=file_spec, metadata=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_enrollment(): """Test get_enrollment function.""" # create temporary csv file & metadata file to read in temp_csv_file = tempfile.NamedTemporaryFile(mode='w') temp_meta_file = tempfile.NamedTemporaryFile(mode='w') df = pd.DataFrame({'id': [1, 1, 2, 2], 'time1': ['2001-01-13', '2004-05-21', '2003-06-10', '2003-06-10'], 'drop1': [2, 3, 4, 5], 'ig_dedup1': [5, 6, 7, 8], 'categ1': [0, 8, 0, 0]}) df.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) metadata = ({'name': 'test', 'person_enrollment_ID': 'id', 'person_ID': 'id', 'program_ID': 'id', 'duplicate_check_columns': ['id', 'time1', 'categ1'], 'columns_to_drop': ['drop1'], 'categorical_var': ['categ1'], 'time_var': ['time1'], 'groupID_column': 'id', 'entry_date': 'time1' }) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} # first try with groups=True (default) df = pp.get_enrollment(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'id': [1, 1], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21'], errors='coerce'), 'ig_dedup1': [5, 6], 'categ1': [0, np.nan]}) pdt.assert_frame_equal(df, df_test) # try again with groups=False df = pp.get_enrollment(groups=False, file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'id': [1, 1, 2], 'time1': pd.to_datetime(['2001-01-13', '2004-05-21', '2003-06-10'], errors='coerce'), 'ig_dedup1': [5, 6, 8], 'categ1': [0, np.nan, 0]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 1, 3]) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_exit(): """test get_exit function.""" # create temporary csv file & metadata file to read in temp_csv_file = tempfile.NamedTemporaryFile(mode='w') temp_meta_file = tempfile.NamedTemporaryFile(mode='w') dest_rand_ints = np.random.random_integers(1, 30, 3) df_init = pd.DataFrame({'id': [11, 12, 13], 'dest': dest_rand_ints}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) metadata = ({'name': 'test', 'duplicate_check_columns': ['id'], "destination_column": 'dest', 'person_enrollment_ID': ['id']}) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_exit(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) mapping_table = pd.read_csv(op.join(puget.data.DATA_PATH, 'metadata', 'destination_mappings.csv')) map_table_test_ints = [2, 25, 26] map_table_test = pd.DataFrame({'Standard': np.array(['New Standards']*3), 'DestinationNumeric': np.array( map_table_test_ints).astype(float), 'DestinationDescription': ['Transitional housing for homeless persons (including homeless youth)', 'Long-term care facility or nursing home', 'Moved from one HOPWA funded project to HOPWA PH'], 'DestinationGroup': ['Temporary', 'Permanent', 'Permanent'], 'DestinationSuccess': ['Other Exit', 'Successful Exit', 'Successful Exit'], 'Subsidy': ['No', 'No', 'Yes']}) map_table_subset = mapping_table[mapping_table['DestinationNumeric'] == map_table_test_ints[0]] map_table_subset = map_table_subset.append(mapping_table[ mapping_table['DestinationNumeric'] == map_table_test_ints[1]]) map_table_subset = map_table_subset.append(mapping_table[ mapping_table['DestinationNumeric'] == map_table_test_ints[2]]) # Have to change the index to match the one we made up map_table_subset.index = pd.Int64Index([0, 1, 2]) # sort because column order is not assured because started with dicts map_table_test = map_table_test.sort_index(axis=1) map_table_subset = map_table_subset.sort_index(axis=1) pdt.assert_frame_equal(map_table_subset, map_table_test) mapping_table = mapping_table[mapping_table.Standard == 'New Standards'] mapping_table['Subsidy'] = mapping_table['Subsidy'].map({'Yes': True, 'No': False}) mapping_table = mapping_table.drop(['Standard'], axis=1) df_test = pd.DataFrame({'id': [11, 12, 13], 'dest': dest_rand_ints}) df_test = pd.merge(left=df_test, right=mapping_table, how='left', left_on='dest', right_on='DestinationNumeric') df_test = df_test.drop('dest', axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_client(): # create temporary csv files & metadata file to read in temp_csv_file1 = tempfile.NamedTemporaryFile(mode='w') temp_csv_file2 = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 12, 13, 15, 16, 17], 'first_name':['AAA', 'BBB', 'CCC', 'EEE', 'FFF', 'noname'], 'dob_col': ['1990-01-13', '2012-05-21', '1850-06-14', '1965-11-22', '1948-09-03', '2012-03-18'], 'time_col': ['1996-01-13', '2014-05-21', '1950-06-14', '1985-11-22', '1978-09-03', '2014-03-18'], 'bool_col': [1, 99, 1, 8, 0, 1], 'numeric': [99, 3, 6, 0, 8, np.NaN]}) df2_init = pd.DataFrame({'id': [11, 12, 13, 14, 15, 16, 17, 18], 'first_name':['AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'FFF', 'noname', 'HHH'], 'dob_col': ['1990-01-15', '2012-05-21', '1850-06-14', '1975-12-08', '1967-11-22', pd.NaT, '2010-03-18', '2014-04-30'], 'time_col': ['1996-01-15', '2014-05-21', '1950-06-14', '1995-12-08', '1987-11-22', pd.NaT, '2012-03-18', '2015-04-30'], 'bool_col': [0, 0, 1, 0, 8, 0, np.NaN, 1], 'numeric': [5, 3, 7, 1, 0, 8, 6, 0]}) df_init.to_csv(temp_csv_file1, index=False) temp_csv_file1.seek(0) df2_init.to_csv(temp_csv_file2, index=False) temp_csv_file2.seek(0) file_spec = {'2011': temp_csv_file1.name, '2012': temp_csv_file2.name} temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = ({'name': 'test', 'person_ID': 'id', 'duplicate_check_columns': ['id', 'dob_col', 'first_name'], 'columns_to_drop': [], 'categorical_var': ['bool_col', 'numeric'], 'time_var': ['dob_col', 'time_col'], 'boolean': ['bool_col'], 'numeric_code': ['numeric'], 'dob_column': 'dob_col', 'name_columns': ["first_name"]}) metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) for name_exclusion in [False, True]: # get path & filenames df = pp.get_client(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name, name_exclusion=name_exclusion) df_test = pd.DataFrame({'id': [11, 11, 12, 13, 14, 15, 15, 16, 16, 17, 17, 18], 'first_name':['AAA', 'AAA', 'BBB', 'CCC', 'DDD', 'EEE', 'EEE', 'FFF', 'FFF', 'noname', 'noname', 'HHH'], 'dob_col': pd.to_datetime(['1990-01-13', '1990-01-15', '2012-05-21', '1850-06-14', '1975-12-08', '1965-11-22', '1967-11-22', '1948-09-03', pd.NaT, '2012-03-18', '2010-03-18', '2014-04-30']), 'time_col': pd.to_datetime(['1996-01-14', '1996-01-14', '2014-05-21', '1950-06-14', '1995-12-08', pd.NaT, pd.NaT, '1978-09-03', '1978-09-03', pd.NaT, pd.NaT, '2015-04-30']), 'bool_col': [1, 1, 0, 1, 0, np.NaN, np.NaN, 0, 0, 1, 1, 1], 'numeric': [5, 5, 3, np.NaN, 1, 0, 0, np.NaN, np.NaN, 6, 6, 0]}) if name_exclusion: df_test = df_test[~(df_test['first_name'] == 'noname')] # Have to sort & change the indexes to match df = df.sort_values(by=['id', 'dob_col']) df = df.reset_index(drop=True) df_test = df_test.sort_values(by=['id', 'dob_col']) df_test = df_test.reset_index(drop=True) print(df.dtypes) print(df_test.dtypes) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = ({'name': 'test', 'duplicate_check_columns': ['id', 'dob_col'], 'categorical_var': ['bool_col', 'numeric'], 'time_var': ['time_col'], 'boolean': ['bool_col'], 'numeric_code': ['numeric'], 'dob_column': 'dob_col'}) metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_client(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file1.close() temp_csv_file2.close() temp_meta_file.close() def test_get_disabilities(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [11, 11, 11, 11, 12, 12, 12, 12], 'stage': [10, 10, 20, 20, 10, 10, 20, 20], 'type': [5, 6, 5, 6, 5, 6, 5, 6], 'response': [0, 1, 0, 1, 99, 0, 0, 1]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'columns_to_drop': [], 'categorical_var': ['response'], 'collection_stage_column': 'stage', 'entry_stage_val': 10, 'exit_stage_val': 20, 'update_stage_val': 30, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'type_column': 'type', 'response_column': 'response', 'person_enrollment_ID': 'pid'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_disabilities(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) type_dict = {5: 'Physical', 6: 'Developmental', 7: 'ChronicHealth', 8: 'HIVAIDS', 9: 'MentalHealth', 10: 'SubstanceAbuse'} # make sure values are floats df_test = pd.DataFrame({'pid': [11, 12], 'Physical_entry': [0, np.NaN], 'Physical_exit': [0.0, 0.0], 'Developmental_entry': [1.0, 0.0], 'Developmental_exit': [1.0, 1.0]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'categorical_var': ['response']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_disabilities(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_employment_education(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'columns_to_drop': [], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_employment_education(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_health_dv(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'id': [11, 11, 12], 'stage': [0, 1, 0], 'value': [0, 1, 0]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['id', 'stage', 'value'], 'columns_to_drop': [], 'categorical_var': ['value'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'id'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_health_dv(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) # make sure values are floats df_test = pd.DataFrame({'id': [11, 12], 'value_entry': [0, 0], 'value_exit': [1, np.NaN]}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) temp_csv_file.close() temp_meta_file.close() def test_get_income(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [11, 11, 11, 12, 12, 12, 12], 'stage': [0, 0, 1, 0, 0, 1, 1], 'income': [1, 1, 1, 0, 1, np.NaN, 1], 'incomeAmount': [5, 8, 12, 0, 6, 0, 3]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'income', 'incomeAmount'], 'columns_to_drop': [], 'categorical_var': ['income'], 'collection_stage_column': 'stage', 'entry_stage_val': 0, 'exit_stage_val': 1, 'update_stage_val': 2, 'annual_assessment_stage_val': 5, 'post_exit_stage_val': 6, 'person_enrollment_ID': 'pid', 'columns_to_take_max': ['income', 'incomeAmount']} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_income(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'pid': [11, 12], 'income_entry': [1.0, 1.0], 'income_exit': [1.0, 1.0], 'incomeAmount_entry': [8, 6], 'incomeAmount_exit': [12, 3]}) # Have to change the index to match the one we de-duplicated df_test.index = pd.Int64Index([0, 2]) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1) pdt.assert_frame_equal(df, df_test) # test error checking temp_meta_file2 = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'duplicate_check_columns': ['pid', 'stage', 'type'], 'categorical_var': ['response']} metadata_json = json.dumps(metadata) temp_meta_file2.file.write(metadata_json) temp_meta_file2.seek(0) with pytest.raises(ValueError): pp.get_income(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file2.name) temp_csv_file.close() temp_meta_file.close() temp_meta_file2.close() def test_get_project(): temp_csv_file = tempfile.NamedTemporaryFile(mode='w') df_init = pd.DataFrame({'pid': [3, 4], 'name': ['shelter1', 'rrh2'], 'ProjectType': [1, 13]}) df_init.to_csv(temp_csv_file, index=False) temp_csv_file.seek(0) temp_meta_file = tempfile.NamedTemporaryFile(mode='w') metadata = {'name': 'test', 'program_ID': 'pid', 'duplicate_check_columns': ['pid', 'name', 'ProjectType'], 'columns_to_drop': [], 'project_type_column': 'ProjectType'} metadata_json = json.dumps(metadata) temp_meta_file.file.write(metadata_json) temp_meta_file.seek(0) file_spec = {2011: temp_csv_file.name} df = pp.get_project(file_spec=file_spec, data_dir=None, paths=None, metadata_file=temp_meta_file.name) df_test = pd.DataFrame({'pid': [3, 4], 'name': ['shelter1', 'rrh2'], 'ProjectNumeric': [1, 13], 'ProjectType': ['Emergency Shelter', 'PH - Rapid Re-Housing']}) # sort because column order is not assured because started with dicts df = df.sort_index(axis=1) df_test = df_test.sort_index(axis=1)
pdt.assert_frame_equal(df, df_test)
pandas.util.testing.assert_frame_equal
import numpy as np import pandas as pd from scripts.utils import remove_outliers, linear_regression import seaborn as sns import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.preprocessing import normalize #from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split import torch lan = "all" if lan == "es": language = "Spanish" elif lan == "fr": language = "French" elif lan == "all": language = "French & Spanish" # Load time taken to translate and calculate sentence length if lan == "all": es = pd.read_csv("data/un-timed-sentences/en-es.processed", sep='\t') fr = pd.read_csv("data/un-timed-sentences/en-fr.processed", sep='\t') wpd = pd.concat([es,fr], axis=0, ignore_index=True).drop_duplicates() else: wpd = pd.read_csv("data/un-timed-sentences/en-"+lan+".processed", sep='\t').drop_duplicates() words=[] for i in wpd.index: words.append(len(wpd['Segment'][i].split())) wpd["words"] = words # Filter empty sentences (with only serial number) time = wpd.loc[~wpd['Segment'].str.contains("^\s*\S*[0-9]\S*\s*$"), ['Time-to-edit', 'words']].reset_index(drop=True) time.columns= ["time (ms)", "words"] """ TER - words per day""" # Load TER scores if lan == "all": es = pd.read_csv("data/un-timed-sentences/en-es-gs.score", header=None, sep='\t') fr = pd.read_csv("data/un-timed-sentences/en-fr-gs.score", header=None, sep='\t') ter = pd.concat([es,fr], axis=0, ignore_index=True) else: ter = pd.read_csv("data/un-timed-sentences/en-"+lan+"-gs.score", header=None, sep='\t') ter.columns = ["score"] # Join important columns to single dataframe df = pd.concat([ter, time], axis=1) # Calculate translation rate (and normalise) #df['perms'] = df['words'] / df['time (ms)'] # words per ms df['spw'] = (df['time (ms)'])/1000 / df['words'] # seconds per word #df['rate'] = (df['perms'] - df['perms'].min()) / (df['perms'].max() - df['perms'].min()) # Remove perfect translations dft = df.loc[df['score'] != 0] # Remove outliers dfr = remove_outliers(df, 'spw', lq=0.05, uq=0.95) # Correlation print(dfr.corr().round(3)['score']) # Quantiles def quantiles(df): """ Output distribution of each quantile in the data set. """ q1 = df.loc[df['perms'] <= df['perms'].quantile(0.25)] q2 = df.loc[(df['perms'] >= df['perms'].quantile(0.25)) & (df['perms'] <= df['perms'].quantile(0.50))] q3 = df.loc[(df['perms'] >= df['perms'].quantile(0.50)) & (df['perms'] <= df['perms'].quantile(0.75))] q4 = df.loc[df['perms'] >= df['perms'].quantile(0.75)] q_corr={} q_df={1:q1, 2:q2, 3:q3, 4:q4} for q in range(1,5): q_corr[q] = q_df[q].corr()['score'] qcor_df = pd.DataFrame.from_dict(q_corr) qcor_df.columns=['q1', 'q2', 'q3', 'q4'] print(qcor_df.round(3)) #dfr = dfr.loc[dfr['spw'] < 8] # filter out extreme cases dfr = dfr.loc[dfr['score'] <= 1.0] dfr = dfr.loc[dfr['words'] <= 90] # scatter plots plt.scatter(dfr['spw'], dfr['score']) plt.xlabel("seconds per word") plt.ylabel("TER") #plt.xlim([min(df['spw'])-0.0001, max(df['spw'])+0.0001]) #plt.scatter(q3['perms'], q3['score']) c, m = np.polynomial.polynomial.polyfit(dfr['spw'], dfr['score'], 1) y_pred = m*dfr['spw'] + c residuals = dfr['score'] - y_pred median_error = abs(residuals).median() MAE = mean_absolute_error(dfr['score'], y_pred) # mean absolute error plt.plot(np.unique(dfr['spw']), np.poly1d(np.polyfit(dfr['spw'], dfr['score'], 1))(np.unique(dfr['spw'])), 'k--') x1 = np.linspace(min(dfr['spw']), max(dfr['spw'])) y1 = m*x1 + c plt.plot(x1, y1+MAE, 'r--') # confidence intervals (bestfit +/- MAE) plt.plot(x1, y1-MAE, 'r--') plt.show() plt.figure() plt.scatter(dfr['words'], dfr['score']) #plt.plot(np.unique(dfr['words']), np.poly1d(np.polyfit(dfr['words'], dfr['score'], 1))(np.unique(dfr['words'])), 'r--') plt.xlabel("Sentence length (words)") plt.ylabel("TER") plt.title("Timed Sentences - %s" % language) plt.show() plt.figure() plt.scatter(dfr['words'], dfr['time (ms)']) plt.plot(np.unique(dfr['words']), np.poly1d(np.polyfit(dfr['words'], dfr['time (ms)'], 1))(np.unique(dfr['words'])), 'k--') plt.xlabel("Sentence length (words)") plt.ylabel("Time taken to translate (ms)") plt.title("Timed Sentences - %s" % language) #plt.show() # Line of best fit and distance from each point to the line c, m = np.polynomial.polynomial.polyfit(dfr['words'], dfr['time (ms)'], 1) y_pred = m*dfr['words'] + c residuals = dfr['time (ms)'] - y_pred median_error = abs(residuals).median() MAE = mean_absolute_error(dfr['time (ms)'], y_pred) # mean absolute error x1 = np.linspace(min(dfr['words']), max(dfr['words'])) y1 = m*x1 + c plt.plot(x1, y1+MAE, 'r--') # confidence intervals (bestfit +/- MAE) plt.plot(x1, y1-MAE, 'r--') plt.show() pos_res = residuals.loc[residuals > MAE] # points above the line neg_res = residuals.loc[residuals < -MAE] # points below the line # Load biber dimension and select useful dimensions if lan == "all": es = pd.read_csv("data/un-timed-sentences/en-es-biber.en", sep='\t') fr = pd.read_csv("data/un-timed-sentences/en-fr-biber.en", sep='\t') biber = pd.concat([es,fr], axis=0, ignore_index=True) else: biber = pd.read_csv("data/un-timed-sentences/en-"+lan+"-biber.en", sep='\t') drop_cols = biber.columns[(biber == 0).sum() > 0.75*biber.shape[0]] biber.drop(drop_cols, axis=1, inplace=True) pos_res_df = biber.loc[pos_res.index] neg_res_df = biber.loc[neg_res.index] # biber plots fig, axs = plt.subplots(1, 3, figsize=(15,15)) fig.suptitle('Timed Sentences - %s' % language, fontsize=16) axs[0].scatter(pos_res_df['f26.NOUN'], pos_res_df['f27.wordLength']) axs[0].scatter(neg_res_df['f26.NOUN'], neg_res_df['f27.wordLength']) axs[0].set_xlabel('f26.NOUN') axs[0].set_ylabel('f27.wordLength') axs[0].legend(['below-lobf', 'above-lobf']) axs[1].scatter(pos_res_df['f28.ADP'], pos_res_df['f29.typeTokenRatio']) axs[1].scatter(neg_res_df['f28.ADP'], neg_res_df['f29.typeTokenRatio']) axs[1].set_xlabel('f28.ADP') axs[1].set_ylabel('f29.typeTokenRatio') axs[1].legend(['below-lobf', 'above-lobf']) if lan=='fr': axs[2].scatter(pos_res_df['f30.attributiveAdjectives'], pos_res_df['f57.conjuncts']) axs[2].scatter(neg_res_df['f30.attributiveAdjectives'], neg_res_df['f57.conjuncts']) axs[2].set_xlabel('f30.attributiveAdjectives') axs[2].set_ylabel('f57.conjuncts') axs[2].legend(['below-lobf', 'above-lobf']) elif lan=='es': axs[2].scatter(pos_res_df['f30.attributiveAdjectives'], pos_res_df['f47.nominalizations']) axs[2].scatter(neg_res_df['f30.attributiveAdjectives'], neg_res_df['f47.nominalizations']) axs[2].set_xlabel('f30.attributiveAdjectives') axs[2].set_ylabel('f47.nominalizations') axs[2].legend(['below-lobf', 'above-lobf']) plt.show() """ XLM / BERT - words per day / TER """ def embedding_regression(var_name='spw', model='xlm'): # Load sentece embeddings if model == 'xlm' or model == 'XLM': features = pd.DataFrame(torch.load("data/un-timed-sentences/en-"+lan+"-gs-xlm-embeddings.pt").data.numpy()) elif model == 'bert' or model == 'BERT': features = pd.read_csv("data/un-timed-sentences/bert-embeddings-timed-sentences-"+lan+"-multi.csv", header=None) reg_df = dfr.merge(features, left_index=True, right_index=True) print("Predicting %s using %s..." % (var_name, model)) ols, scaler, X_test, y_test = linear_regression(reg_df.drop(columns=["score", "time (ms)", "words", "spw"]), reg_df[var_name]) def embedding_classification(var_name='spw', model='xlm'): # Load sentece embeddings if model == 'xlm' or model == 'XLM': features = pd.DataFrame(torch.load("data/un-timed-sentences/en-"+lan+"-gs-xlm-embeddings.pt").data.numpy()) elif model == 'bert' or model == 'BERT': features =
pd.read_csv("data/un-timed-sentences/bert-embeddings-timed-sentences-"+lan+"-multi.csv", header=None)
pandas.read_csv
import pandas as pd import numpy as np import glob, math # 合併月營收資料 val = pd.read_excel(r"./Data/營收/上市電子業_營收.xlsx") val['年份'] = val['年月'].apply(lambda x: x[:4]) val['月份'] = val['年月'].apply(lambda x: int(x[5:])) val['季'] = val['年月'].apply(lambda x: math.ceil(int(x[5:]) / 3)) val_season = val.groupby(['代號', '年份', '季'])['單月營收(千元)'].count().to_frame('紀錄').reset_index() val_season = val_season[val_season['紀錄']==3] save_list = list(zip(val_season['代號'], val_season['年份'], val_season['季'])) new_val = pd.DataFrame() for x, y, z in save_list: a = val['代號']==x b = val['年份']==y c = val['季']==z tmp = val[(a)&(b)&(c)] new_val = pd.concat([new_val, tmp], 0) season = new_val.groupby(['代號', '年份', '季'])['單月營收(千元)'].sum().to_frame('單季營收(千元)').reset_index() new_val =
pd.merge(new_val, season, on=['代號', '年份', '季'], how='left')
pandas.merge
import pandas as pd from fairlens.metrics.correlation import distance_cn_correlation, distance_nn_correlation from fairlens.sensitive.correlation import find_column_correlation, find_sensitive_correlations pair_race = "race", "Ethnicity" pair_age = "age", "Age" pair_marital = "marital", "Family Status" pair_gender = "gender", "Gender" pair_nationality = "nationality", "Nationality" def test_correlation(): col_names = ["gender", "random", "score"] data = [ ["male", 10, 60], ["female", 10, 80], ["male", 10, 60], ["female", 10, 80], ["male", 9, 59], ["female", 11, 80], ["male", 12, 61], ["female", 10, 83], ] df = pd.DataFrame(data, columns=col_names) res = {"score": [pair_gender]} assert find_sensitive_correlations(df) == res def test_double_correlation(): col_names = ["gender", "nationality", "random", "corr1", "corr2"] data = [ ["woman", "spanish", 715, 10, 20], ["man", "spanish", 1008, 20, 20], ["man", "french", 932, 20, 10], ["woman", "french", 1300, 10, 10], ] df = pd.DataFrame(data, columns=col_names) res = {"corr1": [pair_gender], "corr2": [pair_nationality]} assert find_sensitive_correlations(df) == res def test_multiple_correlation(): col_names = ["race", "age", "score", "entries", "marital", "credit", "corr1"] data = [ ["arabian", 21, 10, 2000, "married", 10, 60], ["carribean", 20, 10, 3000, "single", 10, 90], ["indo-european", 41, 10, 1900, "widowed", 10, 120], ["carribean", 40, 10, 2000, "single", 10, 90], ["indo-european", 42, 10, 2500, "widowed", 10, 120], ["arabian", 19, 10, 2200, "married", 10, 60], ] df = pd.DataFrame(data, columns=col_names) res = {"corr1": [pair_race, pair_marital]} assert find_sensitive_correlations(df, corr_cutoff=0.9) == res def test_common_correlation(): col_names = ["race", "age", "score", "entries", "marital", "credit", "corr1", "corr2"] data = [ ["arabian", 21, 10, 2000, "married", 10, 60, 120], ["carribean", 20, 10, 3000, "single", 10, 90, 130], ["indo-european", 41, 10, 1900, "widowed", 10, 120, 210], ["carribean", 40, 10, 2000, "single", 10, 90, 220], ["indo-european", 42, 10, 2500, "widowed", 10, 120, 200], ["arabian", 19, 10, 2200, "married", 10, 60, 115], ] df = pd.DataFrame(data, columns=col_names) res = { "corr1": [pair_race, pair_age, pair_marital], "corr2": [pair_age], } assert find_sensitive_correlations(df) == res def test_column_correlation(): col_names = ["gender", "nationality", "random", "corr1", "corr2"] data = [ ["woman", "spanish", 715, 10, 20], ["man", "spanish", 1008, 20, 20], ["man", "french", 932, 20, 10], ["woman", "french", 1300, 10, 10], ] df = pd.DataFrame(data, columns=col_names) res1 = [pair_gender] res2 = [pair_nationality] assert find_column_correlation("corr1", df) == res1 assert find_column_correlation("corr2", df) == res2 def test_series_correlation(): col_names = ["race", "age", "score", "entries", "marital", "credit"] data = [ ["arabian", 21, 10, 2000, "married", 10], ["carribean", 20, 10, 3000, "single", 10], ["indo-european", 41, 10, 1900, "widowed", 10], ["carribean", 40, 10, 2000, "single", 10], ["indo-european", 42, 10, 2500, "widowed", 10], ["arabian", 19, 10, 2200, "married", 10], ] df =
pd.DataFrame(data, columns=col_names)
pandas.DataFrame
import pytest from olliepy.InteractiveDashboard import InteractiveDashboard import pandas as pd from .utils import delete_directory import olliepy valid_output_directory = './tests/output' @pytest.mark.parametrize("title", [ None, 20, False ]) def test_invalid_title(title): with pytest.raises(TypeError): InteractiveDashboard(title=title, output_directory=valid_output_directory, dataframes=[pd.DataFrame()], dataframes_names=['TestDF'], numerical_columns=[], categorical_columns=[], date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("output_directory", [ 'fake_output', './fake_output' ]) def test_invalid_output_directory(output_directory): with pytest.raises(NotADirectoryError): InteractiveDashboard(title='Test dashboard title', output_directory=output_directory, dataframes=[pd.DataFrame()], dataframes_names=['TestDF'], numerical_columns=[], categorical_columns=[], date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("dataframes", [ [{'A': ['1', '2', '3']}], ['a', 'b'], False, 3 ]) def test_invalid_dataframes(dataframes): with pytest.raises(TypeError): InteractiveDashboard(title='Test dashboard title', output_directory=valid_output_directory, dataframes=dataframes, dataframes_names=['TestDF'], numerical_columns=[], categorical_columns=[], date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("dataframes_names", [ [{'A': ['1', '2', '3']}], [pd.DataFrame()], False, 3, 'test' ]) def test_invalid_dataframes_names(dataframes_names): with pytest.raises(TypeError): InteractiveDashboard(title='Test dashboard title', output_directory=valid_output_directory, dataframes=[pd.DataFrame()], dataframes_names=dataframes_names, numerical_columns=[], categorical_columns=[], date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("numerical_columns", [ [1, 2, 3], [1, 'test', 3], 'test', 3 ]) def test_invalid_numerical_columns_type(numerical_columns): with pytest.raises(TypeError): InteractiveDashboard(title='Test dashboard title', output_directory=valid_output_directory, dataframes=[pd.DataFrame()], dataframes_names=['test'], numerical_columns=numerical_columns, categorical_columns=[], date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("categorical_columns", [ [1, 2, 3], [1, 'test', 3], 'test', 3 ]) def test_invalid_categorical_columns_type(categorical_columns): with pytest.raises(TypeError): InteractiveDashboard(title='Test dashboard title', output_directory=valid_output_directory, dataframes=[pd.DataFrame()], dataframes_names=['test'], numerical_columns=[], categorical_columns=categorical_columns, date_columns=None, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("date_columns", [ [1, 2, 3], [1, 'test', 3], 'test', 3 ]) def test_invalid_date_columns_type(date_columns): with pytest.raises(TypeError): InteractiveDashboard(title='Test dashboard title', output_directory=valid_output_directory, dataframes=[pd.DataFrame()], dataframes_names=['test'], numerical_columns=[], categorical_columns=[], date_columns=date_columns, dashboard_folder_name=None, encryption_secret=None, generate_encryption_secret=False) @pytest.mark.parametrize("dataframes, dataframes_names", [ ([
pd.DataFrame()
pandas.DataFrame
"""shell pip install autokeras pip install git+https://github.com/keras-team/[email protected] """ """ ## A Simple Example The first step is to prepare your data. Here we use the [Titanic dataset](https://www.kaggle.com/c/titanic) as an example. """ import tensorflow as tf import autokeras as ak TRAIN_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/train.csv" TEST_DATA_URL = "https://storage.googleapis.com/tf-datasets/titanic/eval.csv" train_file_path = tf.keras.utils.get_file("train.csv", TRAIN_DATA_URL) test_file_path = tf.keras.utils.get_file("eval.csv", TEST_DATA_URL) """ The second step is to run the [StructuredDataClassifier](/structured_data_classifier). As a quick demo, we set epochs to 10. You can also leave the epochs unspecified for an adaptive number of epochs. """ # Initialize the structured data classifier. clf = ak.StructuredDataClassifier( overwrite=True, max_trials=3) # It tries 3 different models. # Feed the structured data classifier with training data. clf.fit( # The path to the train.csv file. train_file_path, # The name of the label column. 'survived', epochs=10) # Predict with the best model. predicted_y = clf.predict(test_file_path) # Evaluate the best model with testing data. print(clf.evaluate(test_file_path, 'survived')) """ ## Data Format The AutoKeras StructuredDataClassifier is quite flexible for the data format. The example above shows how to use the CSV files directly. Besides CSV files, it also supports numpy.ndarray, pandas.DataFrame or [tf.data.Dataset]( https://www.tensorflow.org/api_docs/python/tf/data/Dataset?version=stable). The data should be two-dimensional with numerical or categorical values. For the classification labels, AutoKeras accepts both plain labels, i.e. strings or integers, and one-hot encoded encoded labels, i.e. vectors of 0s and 1s. The labels can be numpy.ndarray, pandas.DataFrame, or pandas.Series. The following examples show how the data can be prepared with numpy.ndarray, pandas.DataFrame, and tensorflow.data.Dataset. """ import pandas as pd import numpy as np # x_train as pandas.DataFrame, y_train as pandas.Series x_train = pd.read_csv(train_file_path) print(type(x_train)) # pandas.DataFrame y_train = x_train.pop('survived') print(type(y_train)) # pandas.Series # You can also use pandas.DataFrame for y_train. y_train = pd.DataFrame(y_train) print(type(y_train)) # pandas.DataFrame # You can also use numpy.ndarray for x_train and y_train. x_train = x_train.to_numpy() y_train = y_train.to_numpy() print(type(x_train)) # numpy.ndarray print(type(y_train)) # numpy.ndarray # Preparing testing data. x_test =
pd.read_csv(test_file_path)
pandas.read_csv
import os import audiofile import audiofile as af import numpy as np import pandas as pd import pytest import audinterface import audformat def signal_duration(signal, sampling_rate): return signal.shape[1] / sampling_rate def signal_max(signal, sampling_rate): return np.max(signal) SEGMENT = audinterface.Segment( process_func=lambda x, sr: audinterface.utils.signal_index( pd.to_timedelta(0), pd.to_timedelta(x.shape[1] / sr, unit='s') / 2, ) ) def signal_modification(signal, sampling_rate, subtract=False): if subtract: signal -= 0.1 * signal else: signal += 0.1 * signal return signal @pytest.mark.parametrize( 'process_func, segment, signal, sampling_rate, start, end, keep_nat, ' 'channels, mixdown, expected_output', [ ( signal_max, None, np.ones((1, 3)), 8000, None, None, False, None, False, 1, ), ( signal_max, SEGMENT, np.ones((1, 8000)), 8000, None, None, False, None, False, 1, ), ( signal_max, None, np.ones(3), 8000, None, None, False, 0, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 0, False, 0, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, 1, False, 1, ), ( signal_max, None, np.array([[0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, None, True, 0.5, ), ( signal_max, None, np.array([[-1., -1., -1.], [0., 0., 0.], [1., 1., 1.]]), 8000, None, None, False, [1, 2], True, 0.5, ), # invalid channel selection pytest.param( signal_max, None, np.ones((1, 3)), 8000, None, None, False, 1, False, 1, marks=pytest.mark.xfail(raises=ValueError), ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, None, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, False, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.NaT, True, None, False, 3.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), None, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.NaT, False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, None, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.NaT, pd.to_timedelta('2s'), False, None, False, 2.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, pd.to_timedelta('1s'), pd.to_timedelta('2s'), False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1s', '2s', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, '1000ms', '2000ms', False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1, 2, False, None, False, 1.0, ), ( signal_duration, None, np.zeros((1, 24000)), 8000, 1.0, 2.0, False, None, False, 1.0, ), ], ) def test_process_file( tmpdir, process_func, segment, signal, sampling_rate, start, end, keep_nat, channels, mixdown, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, channels=channels, mixdown=mixdown, segment=segment, keep_nat=keep_nat, verbose=False, ) # create test file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # test absolute path y = process.process_file( path, start=start, end=end, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) # test relative path y = process.process_file( file, start=start, end=end, root=root, ) np.testing.assert_almost_equal( y.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'process_func, num_files, signal, sampling_rate, starts, ends, ' 'expected_output', [ ( signal_duration, 2, np.zeros((1, 24000)), 8000, None, None, [3.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, '1s', '2s', [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, 1, 2, [1.0] * 2, ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, 1], [None, 2], [3.0, 1.0], ), ( signal_duration, 2, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s'], [3.0, 1.0], ), ( signal_duration, 3, np.zeros((1, 24000)), 8000, [None, '1s'], [None, '2s', None], [3.0, 1.0], ), ( signal_duration, 1, np.zeros((1, 24000)), 8000, [None], [None, '2s'], [3.0], ), ], ) def test_process_files( tmpdir, process_func, num_files, signal, sampling_rate, starts, ends, expected_output, ): process = audinterface.Process( process_func=process_func, sampling_rate=sampling_rate, resample=False, verbose=False, ) # create files files = [] paths = [] root = tmpdir for idx in range(num_files): file = f'file{idx}.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) files.append(file) paths.append(path) # test absolute paths output = process.process_files( paths, starts=starts, ends=ends, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) # test relative paths output = process.process_files( files, starts=starts, ends=ends, root=root, ) np.testing.assert_almost_equal( output.values, expected_output, decimal=4, ) @pytest.mark.parametrize( 'num_files, segment, num_workers, multiprocessing', [ (3, None, 1, False, ), (3, None, 2, False, ), (3, None, None, False, ), (3, SEGMENT, 1, False, ), ] ) def test_process_folder( tmpdir, num_files, segment, num_workers, multiprocessing, ): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, segment=segment, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 path = str(tmpdir.mkdir('wav')) files = [ os.path.join(path, f'file{n}.wav') for n in range(num_files) ] for file in files: signal = np.random.uniform(-1.0, 1.0, (1, sampling_rate)) af.write(file, signal, sampling_rate) y = process.process_folder(path) pd.testing.assert_series_equal( y, process.process_files(files), ) def test_process_func_args(): def process_func(s, sr, arg1, arg2): assert arg1 == 'foo' assert arg2 == 'bar' audinterface.Process( process_func=process_func, process_func_args={ 'arg1': 'foo', 'arg2': 'bar', } ) with pytest.warns(UserWarning): audinterface.Process( feature_names=('o1', 'o2', 'o3'), process_func=process_func, arg1='foo', arg2='bar', ) @pytest.mark.parametrize( 'num_workers, multiprocessing', [ (1, False, ), (2, False, ), (None, False, ), ] ) def test_process_index(tmpdir, num_workers, multiprocessing): process = audinterface.Process( process_func=None, sampling_rate=None, resample=False, num_workers=num_workers, multiprocessing=multiprocessing, verbose=False, ) sampling_rate = 8000 signal = np.random.uniform(-1.0, 1.0, (1, 3 * sampling_rate)) # create file root = str(tmpdir.mkdir('wav')) file = 'file.wav' path = os.path.join(root, file) af.write(path, signal, sampling_rate) # empty index index = audformat.segmented_index() y = process.process_index(index) assert y.empty # segmented index with absolute paths index = audformat.segmented_index( [path] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # filewise index with absolute paths index = audformat.filewise_index(path) y = process.process_index(index) for (path, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( path, start=start, end=end ) np.testing.assert_equal(signal, value) # segmented index with relative paths index = audformat.segmented_index( [file] * 3, pd.timedelta_range('0s', '2s', 3), pd.timedelta_range('1s', '3s', 3), ) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) # filewise index with relative paths index = audformat.filewise_index(path) y = process.process_index(index, root=root) for (file, start, end), value in y.items(): signal, sampling_rate = audinterface.utils.read_audio( file, start=start, end=end, root=root ) np.testing.assert_equal(signal, value) @pytest.mark.parametrize( 'process_func, process_func_args, segment, signal, ' 'sampling_rate, file, start, end, keep_nat, expected_signal', [ ( None, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, np.array([1., 2., 3.]), ), ( None, {}, None, np.array([1., 2., 3.]), 44100, 'file', None, None, False, np.array([1., 2., 3.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, None, None, None, False, np.array([1., 2.]), ), ( None, {}, SEGMENT, np.array([1., 2., 3., 4.]), 44100, 'file', None, None, False, np.array([1., 2.]), ), ( signal_max, {}, None, np.array([1., 2., 3.]), 44100, None, None, None, False, 3.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 3, None, None, None, False, 1.0, ), ( signal_duration, {}, None, np.array([1., 2., 3.]), 1, None,
pd.to_timedelta('2s')
pandas.to_timedelta
import collections import datetime import logging import typing from abc import ABC, abstractmethod from typing import Callable, List, Iterable, Optional import numpy as np import pandas as pd from . import distance_metric, util, data_transformation from .distance_metric import DistanceMetric from .featuregen import FeatureGeneratorFromNamedTuples from .util.string import objectRepr from .util.typing import PandasNamedTuple from .vector_model import VectorClassificationModel, VectorRegressionModel log = logging.getLogger(__name__) class Neighbor: def __init__(self, value: PandasNamedTuple, distance: float): self.distance = distance self.value = value self.identifier = value.Index class NeighborProvider(ABC): def __init__(self, dfIndexedById: pd.DataFrame): self.df = dfIndexedById self.index = self.df.index if any(self.index.duplicated()): raise Exception("Dataframe index should not contain duplicates") self.indexPositionDict = {idx: pos for pos, idx in enumerate(self.index)} @abstractmethod def iterPotentialNeighbors(self, value: PandasNamedTuple) -> Iterable[PandasNamedTuple]: pass @abstractmethod def __str__(self): return super().__str__() class AllNeighborsProvider(NeighborProvider): def __init__(self, dfIndexedById: pd.DataFrame): super().__init__(dfIndexedById) self.namedTuples = None def __getstate__(self): d = self.__dict__.copy() d["namedTuples"] = None return d def iterPotentialNeighbors(self, value): identifier = value.Index if self.namedTuples is None: self.namedTuples = list(self.df.itertuples()) for nt in self.namedTuples: if nt.Index != identifier: yield nt def __str__(self): return str(self.__class__.__name__) class TimerangeNeighborsProvider(NeighborProvider): def __init__(self, dfIndexedById: pd.DataFrame, timestampsColumn="timestamps", pastTimeRangeDays=120, futureTimeRangeDays=120): super().__init__(dfIndexedById) if not pd.core.dtypes.common.is_datetime64_any_dtype(self.df[timestampsColumn]): raise Exception(f"Column {timestampsColumn} does not have a compatible datatype") self.timestampsColumn = timestampsColumn self.pastTimeRangeDays = pastTimeRangeDays self.futureTimeRangeDays = futureTimeRangeDays self.pastTimeDelta = datetime.timedelta(days=pastTimeRangeDays) self.futureTimeDelta = datetime.timedelta(days=futureTimeRangeDays) def iterPotentialNeighbors(self, value: PandasNamedTuple): identifier = value.Index inputTime = getattr(value, self.timestampsColumn) maxTime, minTime = inputTime + self.futureTimeDelta, inputTime - self.pastTimeDelta neighborsDf = self.df[ self.df[self.timestampsColumn].apply(lambda time: minTime < time < inputTime) ] if identifier in neighborsDf.index: neighborsDf.drop(identifier, inplace=True) return neighborsDf.itertuples() def __str__(self): return objectRepr(self, ["pastTimeRangeDays", "futureTimeRangeDays"]) class AbstractKnnFinder(ABC): @abstractmethod def findNeighbors(self, namedTuple: PandasNamedTuple, n_neighbors=20) -> List[Neighbor]: pass @abstractmethod def __str__(self): super().__str__() class CachingKNearestNeighboursFinder(AbstractKnnFinder): """ A nearest neighbor finder which uses a cache for distance metrics in order speed up repeated computations of the neighbors of the same data point by keeping a pandas.Series of distances to all provided data points cached. If the distance metric is of the composite type LinearCombinationDistanceMetric, its component distance metrics are cached, such that weights in the linear combination can be varied without necessitating recomputations. """ log = log.getChild(__qualname__) def __init__(self, cache: 'CachingKNearestNeighboursFinder.DistanceMetricCache', distanceMetric: DistanceMetric, neighborProvider: NeighborProvider): self.neighborProvider = neighborProvider # This field is purely for logging purposes self.distanceMetric = distanceMetric if isinstance(distanceMetric, distance_metric.LinearCombinationDistanceMetric): self.weightedDistanceMetrics = [(cache.getCachedMetric(dm), w) for (w, dm) in distanceMetric.metrics] else: self.weightedDistanceMetrics = [(cache.getCachedMetric(distanceMetric), 1)] def __str__(self): return objectRepr(self, ["neighborProvider", "distanceMetric"]) class DistanceMetricCache: """ A cache for distance metrics which identifies equivalent distance metrics by their string representations. The cache can be passed (consecutively) to multiple KNN models in order to speed up computations for the same test data points. If the cache is reused, it is assumed that the neighbor provider remains the same. """ log = log.getChild(__qualname__) def __init__(self): self._cachedMetricsByName = {} def getCachedMetric(self, distanceMetric): key = str(distanceMetric) cachedMetric = self._cachedMetricsByName.get(key) if cachedMetric is None: self.log.info(f"Creating new cached metric for key '{key}'") cachedMetric = CachingKNearestNeighboursFinder.CachedSeriesDistanceMetric(distanceMetric) self._cachedMetricsByName[key] = cachedMetric else: self.log.info(f"Reusing cached metric for key '{key}'") return cachedMetric class CachedSeriesDistanceMetric: """ Provides caching for a wrapped distance metric: the series of all distances to provided potential neighbors are retained in a cache """ def __init__(self, distanceMetric): self.distanceMetric = distanceMetric self.cache = {} def getDistanceSeries(self, namedTuple: PandasNamedTuple, potentialNeighborValues): identifier = namedTuple.Index series = self.cache.get(identifier) if series is None: distances = [] for neighborTuple in potentialNeighborValues: distances.append(self.distanceMetric.distance(namedTuple, neighborTuple)) series =
pd.Series(distances)
pandas.Series
"""Tradier options view""" __docformat__ = "numpy" import argparse from typing import List from bisect import bisect_left import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import mplfinance as mpf from colorama import Fore, Style from tabulate import tabulate from gamestonk_terminal.helper_funcs import ( parse_known_args_and_warn, check_non_negative, export_data, plot_autoscale, patch_pandas_text_adjustment, ) from gamestonk_terminal.options import op_helpers, tradier_model from gamestonk_terminal import config_plot as cfp from gamestonk_terminal import feature_flags as gtff column_map = {"mid_iv": "iv", "open_interest": "oi", "volume": "vol"} def red_highlight(val): """Red highlight Parameters ---------- val dataframe values to color Returns ---------- str colored dataframes values """ return f"{Fore.RED}{val}{Style.RESET_ALL}" def green_highlight(val): """Green highlight Parameters ---------- values : List[str] dataframe values to color Returns ---------- List[str] colored dataframes values """ return f"{Fore.GREEN}{val}{Style.RESET_ALL}" def check_valid_option_chains_headers(headers: str) -> List[str]: """Check valid option chains headers Parameters ---------- headers : str Option chains headers Returns ---------- List[str] List of columns string """ columns = [str(item) for item in headers.split(",")] for header in columns: if header not in tradier_model.df_columns: raise argparse.ArgumentTypeError("Invalid option chains header selected!") return columns def display_chains(ticker: str, expiry: str, other_args: List[str]): """Display option chain Parameters ---------- ticker: str Stock ticker expiry: str Expiration date of option other_args: List[str] Argparse arguments """ parser = argparse.ArgumentParser( prog="chains", add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="Display option chains", ) parser.add_argument( "--calls", action="store_true", default=False, dest="calls_only", help="Flag to show calls only", ) parser.add_argument( "--puts", action="store_true", default=False, dest="puts_only", help="Flag to show puts only", ) parser.add_argument( "-m", "--min", dest="min_sp", type=check_non_negative, default=-1, help="minimum strike price to consider.", ) parser.add_argument( "-M", "--max", dest="max_sp", type=check_non_negative, default=-1, help="maximum strike price to consider.", ) parser.add_argument( "-d", "--display", dest="to_display", default=tradier_model.default_columns, type=check_valid_option_chains_headers, help="columns to look at. Columns can be: {bid, ask, strike, bidsize, asksize, volume, open_interest, delta, " "gamma, theta, vega, ask_iv, bid_iv, mid_iv} ", ) parser.add_argument( "--export", choices=["csv", "json", "xlsx"], default="", dest="export", help="Export dataframe data to csv,json,xlsx file", ) try: ns_parser = parse_known_args_and_warn(parser, other_args) if not ns_parser: return chains_df = tradier_model.get_option_chains(ticker, expiry) columns = ns_parser.to_display + ["strike", "option_type"] chains_df = chains_df[columns].rename(columns=column_map) if ns_parser.min_sp == -1: min_strike = np.percentile(chains_df["strike"], 25) else: min_strike = ns_parser.min_sp if ns_parser.max_sp == -1: max_strike = np.percentile(chains_df["strike"], 75) else: max_strike = ns_parser.max_sp print(f"The strike prices are displayed between {min_strike} and {max_strike}") chains_df = chains_df[chains_df["strike"] >= min_strike] chains_df = chains_df[chains_df["strike"] <= max_strike] if ns_parser.export: # Note the extra dirname needed due to the subfolder in options export_data( ns_parser.export, os.path.dirname(os.path.dirname(os.path.abspath(__file__))), f"chains_{ticker}_{expiry}", chains_df, ) calls_df = chains_df[chains_df.option_type == "call"].drop( columns=["option_type"] ) puts_df = chains_df[chains_df.option_type == "put"].drop( columns=["option_type"] ) if ns_parser.calls_only: print( tabulate( calls_df, headers=calls_df.columns, tablefmt="grid", showindex=False, floatfmt=".2f", ) ) elif ns_parser.puts_only: print( tabulate( puts_df, headers=puts_df.columns, tablefmt="grid", showindex=False, floatfmt=".2f", ) ) else: puts_df = puts_df[puts_df.columns[::-1]] chain_table = calls_df.merge(puts_df, on="strike") if gtff.USE_COLOR: call_cols = [col for col in chain_table if col.endswith("_x")] put_cols = [col for col in chain_table if col.endswith("_y")] patch_pandas_text_adjustment() pd.set_option("display.max_colwidth", 0)
pd.set_option("display.max_rows", None)
pandas.set_option
""" Instructions to process/merge SMS and Suncor frame crack data, to be completed monthly for FleetMonthlyReport 1. Load frame cracks from sap (load_framecracks.vbs) + copy to clipboard 2. Make sure SMS data has been categorized front, mid, rear from eventlog 3. run pre_process_framecracks (copies merged data to clipboard) - NOTE make sure d_lower set correctly for last time processed >>> from smseventlog.data import framecracks as frm df = frm.pre_process_framecracks(d_lower=None) OR >>> make framecracks 4. paste data back to working xlsx file and remove duplicates/split rows as needed 5. Paste WO numbers back into EventLog to merge properly in future 6. Once categorization complete, reset vals in _merge column to 'old' """ import re import numpy as np import pandas as pd from smseventlog import config as cf from smseventlog import delta, dt from smseventlog import functions as f from smseventlog import getlog from smseventlog.database import db from smseventlog.queries import FrameCracks from smseventlog.utils import fileops as fl log = getlog(__name__) p_frm_excel = cf.p_res / 'csv/FH Frame Cracks History.xlsx' def load_df_smr(d_lower=None): if d_lower is None: d_lower = dt(2018, 1, 1) sql = f"select a.* \ FROM Unitsmr a \ LEFT JOIN UnitID b on a.unit=b.unit \ Where b.MineSite='FortHills' and \ a.datesmr>='{d_lower}'" return pd.read_sql(sql=sql, con=db.engine) \ .pipe(f.parse_datecols) \ .pipe(f.lower_cols) \ .rename(columns=dict(date_smr='date_added')) \ .sort_values(['date_added']) def format_int(df, cols): for col in cols: df[col] =
pd.to_numeric(df[col], errors='coerce')
pandas.to_numeric
import pandas as pd import numpy as np def filter_data(data, conditions): """ Remove elements that do not match the condition provided. Takes a data list as input and returns a filtered list. Conditions should be a list of strings of the following format: '<field> <op> <value>' where the following operations are valid: >, <, >=, <=, ==, != Example: ["duration < 15", "city == 'San Francisco'"] """ for condition in conditions: field, op, value = condition.split(" ", 2) # check if field is valid if field not in data.columns.values: raise Exception("'{}' is not a feature of the dataframe. Did you spell something wrong?".format(field)) # convert value into number or strip excess quotes if string try: value = float(value) except: value = value.strip("\'\"") # get booleans for filtering if op == ">": matches = data[field] > value elif op == "<": matches = data[field] < value elif op == ">=": matches = data[field] >= value elif op == "<=": matches = data[field] <= value elif op == "==": matches = data[field] == value elif op == "!=": matches = data[field] != value else: # catch invalid operation codes raise Exception("Invalid comparison operator. Only >, <, >=, <=, ==, != allowed.") # filter data and outcomes data = data[matches].reset_index(drop=True) return data def dest_process(dest): if dest == '1': dest_processed = '希思罗机场' elif dest == '2': dest_processed = '曼彻斯特机场' elif dest == '3': dest_processed = '爱丁堡机场' else: dest_processed = '伯明翰机场' return dest_processed def data_process(dataframe): dataframe.date =
pd.to_datetime(dataframe.date)
pandas.to_datetime
import os import pandas as pd from fbprophet import Prophet from matplotlib import pyplot def forecast_volume(data_file, days_forward): """ Forecast hourly order volume based on days_forward. :param data_file: ( String ) Input CSV file w/ order hours + number of orders. :param days_forward: ( Integer ) Number of days forward. :return: ( DataFrame ) Forecast Timestamp + Predicted Order Volumes. """ # Read input data hourly_volume_df = pd.read_csv(f"{os.getcwd()}/../data/{data_file}", usecols = ["order_hour","num_orders"]) # Convert order_hour into datetime hourly_volume_df["order_hour"] =
pd.to_datetime(hourly_volume_df["order_hour"])
pandas.to_datetime
import numpy as np import pandas as pd from numba import njit, typeof from numba.typed import List from datetime import datetime, timedelta import pytest import vectorbt as vbt from vectorbt.portfolio.enums import * from vectorbt.generic.enums import drawdown_dt from vectorbt import settings from vectorbt.utils.random import set_seed from vectorbt.portfolio import nb from tests.utils import record_arrays_close seed = 42 day_dt = np.timedelta64(86400000000000) settings.returns['year_freq'] = '252 days' # same as empyrical price = pd.Series([1., 2., 3., 4., 5.], index=pd.Index([ datetime(2020, 1, 1), datetime(2020, 1, 2), datetime(2020, 1, 3), datetime(2020, 1, 4), datetime(2020, 1, 5) ])) price_wide = price.vbt.tile(3, keys=['a', 'b', 'c']) big_price = pd.DataFrame(np.random.uniform(size=(1000,))) big_price.index = [datetime(2018, 1, 1) + timedelta(days=i) for i in range(1000)] big_price_wide = big_price.vbt.tile(1000) # ############# nb ############# # def assert_same_tuple(tup1, tup2): for i in range(len(tup1)): assert tup1[i] == tup2[i] or np.isnan(tup1[i]) and np.isnan(tup2[i]) def test_process_order_nb(): # Errors, ignored and rejected orders log_record = np.empty(1, dtype=log_dt)[0] log_record[0] = 0 log_record[1] = 0 log_record[2] = 0 log_record[3] = 0 log_record[-1] = 0 cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=0)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=1)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( -100., 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.nan, 100., 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.inf, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., np.nan, 10., 1100., nb.create_order_nb(size=10, price=10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, size_type=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=-2), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=20), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., -100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, slippage=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=np.inf), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=0), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, max_size=-10), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=np.nan), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=-1), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=2), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., np.nan, nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=3)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., -10., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=4)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., np.inf, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., -10., 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., np.nan, 1100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=2)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) assert cash_now == 100. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=6)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 10., 10., 1100., nb.create_order_nb(size=0, price=10), log_record) assert cash_now == 100. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=1, status_info=5)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=15, price=10, max_size=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=9)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1., raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, reject_prob=1.), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=10)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 100., 10., 1100., nb.create_order_nb(size=10, price=10, direction=Direction.All), log_record) assert cash_now == 0. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=7)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.LongOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.ShortOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=np.inf, price=10, direction=Direction.ShortOnly), log_record) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( np.inf, 100., 10., 1100., nb.create_order_nb(size=-np.inf, price=10, direction=Direction.All), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 1100., nb.create_order_nb(size=-10, price=10, direction=Direction.LongOnly), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=8)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, fixed_fees=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=100, price=10, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, min_size=100), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=12)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-200, price=10, direction=Direction.LongOnly, allow_partial=False), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=13)) with pytest.raises(Exception) as e_info: _ = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000, raise_reject=True), log_record) cash_now, shares_now, order_result = nb.process_order_nb( 100., 100., 10., 1100., nb.create_order_nb(size=-10, price=10, fixed_fees=1000), log_record) assert cash_now == 100. assert shares_now == 100. assert_same_tuple(order_result, OrderResult( size=np.nan, price=np.nan, fees=np.nan, side=-1, status=2, status_info=11)) # Calculations cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 0. assert shares_now == 8.18181818181818 assert_same_tuple(order_result, OrderResult( size=8.18181818181818, price=11.0, fees=10.000000000000014, side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 180. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10.0, price=9.0, fees=10.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, fees=0.1, fixed_fees=1, slippage=0.1), log_record) assert cash_now == 909. assert shares_now == -100. assert_same_tuple(order_result, OrderResult( size=100.0, price=9.0, fees=91.0, side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-10, price=10, size_type=SizeType.TargetShares), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-100, price=10, size_type=SizeType.TargetValue), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.TargetPercent), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 50. assert shares_now == 4.9 assert_same_tuple(order_result, OrderResult( size=4.9, price=10.0, fees=1., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-1, price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., 10., 10., 100., nb.create_order_nb(size=-0.5, price=10, size_type=SizeType.Percent, fixed_fees=1.), log_record) assert cash_now == 49. assert shares_now == 5. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=1., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., -10., 10., 100., nb.create_order_nb(size=1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 0. assert shares_now == 0. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 0., -10., 10., 100., nb.create_order_nb(size=-1., price=10, size_type=SizeType.Percent), log_record) assert cash_now == 100. assert shares_now == -20. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10), log_record) assert cash_now == 0. assert shares_now == 10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=0, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=10., price=10.0, fees=0., side=1, status=0, status_info=-1)) cash_now, shares_now, order_result = nb.process_order_nb( 150., -5., 10., 100., nb.create_order_nb(size=-np.inf, price=10), log_record) assert cash_now == 200. assert shares_now == -10. assert_same_tuple(order_result, OrderResult( size=5., price=10.0, fees=0., side=1, status=0, status_info=-1)) # Logging _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.nan, 0, 2, np.nan, 0., 0., 0., 0., np.inf, 0., True, False, True, 100., 0., np.nan, np.nan, np.nan, -1, 1, 0, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 0., 10., 10., 10., 0., 0, 0, -1, 0 )) _ = nb.process_order_nb( 100., 0., 10., 100., nb.create_order_nb(size=-np.inf, price=10, log=True), log_record) assert_same_tuple(log_record, ( 0, 0, 0, 0, 100., 0., 10., 100., -np.inf, 0, 2, 10., 0., 0., 0., 0., np.inf, 0., True, False, True, 200., -10., 10., 10., 0., 1, 0, -1, 0 )) def test_build_call_seq_nb(): group_lens = np.array([1, 2, 3, 4]) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Default), nb.build_call_seq((10, 10), group_lens, CallSeqType.Default) ) np.testing.assert_array_equal( nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Reversed), nb.build_call_seq((10, 10), group_lens, CallSeqType.Reversed) ) set_seed(seed) out1 = nb.build_call_seq_nb((10, 10), group_lens, CallSeqType.Random) set_seed(seed) out2 = nb.build_call_seq((10, 10), group_lens, CallSeqType.Random) np.testing.assert_array_equal(out1, out2) # ############# from_signals ############# # entries = pd.Series([True, True, True, False, False], index=price.index) entries_wide = entries.vbt.tile(3, keys=['a', 'b', 'c']) exits = pd.Series([False, False, True, True, True], index=price.index) exits_wide = exits.vbt.tile(3, keys=['a', 'b', 'c']) def from_signals_all(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='all', **kwargs) def from_signals_longonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='longonly', **kwargs) def from_signals_shortonly(price=price, entries=entries, exits=exits, **kwargs): return vbt.Portfolio.from_signals(price, entries, exits, direction='shortonly', **kwargs) class TestFromSignals: def test_one_column(self): record_arrays_close( from_signals_all().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly().order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_signals_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 200., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 200., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 200., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 0), (1, 3, 0, 100., 4., 0., 1), (2, 0, 1, 100., 1., 0., 0), (3, 3, 1, 100., 4., 0., 1), (4, 0, 2, 100., 1., 0., 0), (5, 3, 2, 100., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100., 1., 0., 1), (1, 3, 0, 50., 4., 0., 0), (2, 0, 1, 100., 1., 0., 1), (3, 3, 1, 50., 4., 0., 0), (4, 0, 2, 100., 1., 0., 1), (5, 3, 2, 50., 4., 0., 0) ], dtype=order_dt) ) portfolio = from_signals_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size(self): record_arrays_close( from_signals_all(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 2.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1), (4, 0, 3, 100.0, 1.0, 0.0, 0), (5, 3, 3, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=[[-1, 0, 1, np.inf]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 3, 2, 1.0, 4.0, 0.0, 0), (4, 0, 3, 100.0, 1.0, 0.0, 1), (5, 3, 3, 50.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): with pytest.raises(Exception) as e_info: _ = from_signals_all(size=0.5, size_type='percent') record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=0.5, size_type='percent', close_first=True, accumulate=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 3, 0, 31.25, 4., 0., 1), (3, 4, 0, 15.625, 5., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=0.5, size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 3, 0, 50., 4., 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=0.5, size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_signals_longonly( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 0, 1, 25., 1., 0., 0), (2, 0, 2, 12.5, 1., 0., 0), (3, 3, 0, 50., 4., 0., 1), (4, 3, 1, 25., 4., 0., 1), (5, 3, 2, 12.5, 4., 0., 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_signals_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 3, 0, 198.01980198019803, 4.04, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099, 1.01, 0., 0), (1, 3, 0, 99.00990099, 4.04, 0., 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 3, 0, 49.504950495049506, 4.04, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_signals_all(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.8, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 8.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.4, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 4.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.4, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 4.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_signals_all(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 2.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 2.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.1, 0), (3, 3, 1, 1.0, 4.0, 0.1, 1), (4, 0, 2, 1.0, 1.0, 1.0, 0), (5, 3, 2, 1.0, 4.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.1, 1), (3, 3, 1, 1.0, 4.0, 0.1, 0), (4, 0, 2, 1.0, 1.0, 1.0, 1), (5, 3, 2, 1.0, 4.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_signals_all(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 2.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 2.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.1, 0.0, 0), (3, 3, 1, 1.0, 3.6, 0.0, 1), (4, 0, 2, 1.0, 2.0, 0.0, 0), (5, 3, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 0.9, 0.0, 1), (3, 3, 1, 1.0, 4.4, 0.0, 0), (4, 0, 2, 1.0, 0.0, 0.0, 1), (5, 3, 2, 1.0, 8.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_signals_all(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_signals_all(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 4, 0, 0.5, 5.0, 0.0, 1), (3, 0, 1, 1.0, 1.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 1), (6, 0, 2, 1.0, 1.0, 0.0, 0), (7, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 3, 0, 0.5, 4.0, 0.0, 1), (2, 0, 1, 1.0, 1.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1), (4, 0, 2, 1.0, 1.0, 0.0, 0), (5, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 3, 0, 0.5, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_signals_all(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 2.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 3, 0, 1.0, 4.0, 0.0, 1), (2, 1, 1, 1.0, 2.0, 0.0, 0), (3, 3, 1, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1., reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 1.0, 4.0, 0.0, 0), (2, 1, 1, 1.0, 2.0, 0.0, 1), (3, 3, 1, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) def test_close_first(self): record_arrays_close( from_signals_all(close_first=[[False, True]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1), (4, 4, 1, 80.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all( price=pd.Series(price.values[::-1], index=price.index), entries=pd.Series(entries.values[::-1], index=price.index), exits=pd.Series(exits.values[::-1], index=price.index), close_first=[[False, True]] ).order_records, np.array([ (0, 0, 0, 20.0, 5.0, 0.0, 1), (1, 3, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 20.0, 5.0, 0.0, 1), (3, 3, 1, 20.0, 2.0, 0.0, 0), (4, 4, 1, 160.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_signals_all(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1), (2, 3, 1, 1000.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 3, 0, 275.0, 4.0, 0.0, 0), (2, 0, 1, 1000.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_all(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=np.inf, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 3, 0, 50.0, 4.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_signals_all(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 1100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 100.0, 4.0, 0.0, 1) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=True, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_all(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(size=1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(size=1000, allow_partial=False, raise_reject=True).order_records def test_accumulate(self): record_arrays_close( from_signals_all(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(size=1, accumulate=True).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_log(self): record_arrays_close( from_signals_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 3, 0, 0, 0.0, 100.0, 4.0, 400.0, -np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 800.0, -100.0, 200.0, 4.0, 0.0, 1, 0, -1, 1) ], dtype=log_dt) ) def test_conflict_mode(self): kwargs = dict( price=price.iloc[:3], entries=pd.DataFrame([ [True, True, True, True, True], [True, True, True, True, False], [True, True, True, True, True] ]), exits=pd.DataFrame([ [True, True, True, True, True], [False, False, False, False, True], [True, True, True, True, True] ]), size=1., conflict_mode=[[ 'ignore', 'entry', 'exit', 'opposite', 'opposite' ]] ) record_arrays_close( from_signals_all(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 0, 2, 1.0, 1.0, 0.0, 1), (3, 1, 2, 2.0, 2.0, 0.0, 0), (4, 2, 2, 2.0, 3.0, 0.0, 1), (5, 1, 3, 1.0, 2.0, 0.0, 0), (6, 2, 3, 2.0, 3.0, 0.0, 1), (7, 1, 4, 1.0, 2.0, 0.0, 1), (8, 2, 4, 2.0, 3.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 0), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 1, 2, 1.0, 2.0, 0.0, 0), (3, 2, 2, 1.0, 3.0, 0.0, 1), (4, 1, 3, 1.0, 2.0, 0.0, 0), (5, 2, 3, 1.0, 3.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(**kwargs).order_records, np.array([ (0, 1, 0, 1.0, 2.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 1), (2, 1, 2, 1.0, 2.0, 0.0, 1), (3, 2, 2, 1.0, 3.0, 0.0, 0), (4, 1, 3, 1.0, 2.0, 0.0, 1), (5, 2, 3, 1.0, 3.0, 0.0, 0) ], dtype=order_dt) ) def test_init_cash(self): record_arrays_close( from_signals_all(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 3, 0, 1.0, 4.0, 0.0, 1), (1, 0, 1, 1.0, 1.0, 0.0, 0), (2, 3, 1, 2.0, 4.0, 0.0, 1), (3, 0, 2, 1.0, 1.0, 0.0, 0), (4, 3, 2, 2.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_longonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 1, 1.0, 1.0, 0.0, 0), (1, 3, 1, 1.0, 4.0, 0.0, 1), (2, 0, 2, 1.0, 1.0, 0.0, 0), (3, 3, 2, 1.0, 4.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_signals_shortonly(price=price_wide, size=1., init_cash=[0., 1., 100.]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 3, 0, 0.25, 4.0, 0.0, 0), (2, 0, 1, 1.0, 1.0, 0.0, 1), (3, 3, 1, 0.5, 4.0, 0.0, 0), (4, 0, 2, 1.0, 1.0, 0.0, 1), (5, 3, 2, 1.0, 4.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_signals_all(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_longonly(init_cash=np.inf).order_records with pytest.raises(Exception) as e_info: _ = from_signals_shortonly(init_cash=np.inf).order_records def test_group_by(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 0, 1, 100.0, 1.0, 0.0, 0), (3, 3, 1, 200.0, 4.0, 0.0, 1), (4, 0, 2, 100.0, 1.0, 0.0, 0), (5, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_signals_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 3, 0, 200.0, 4.0, 0.0, 1), (2, 3, 1, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_signals_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 3, 1, 200.0, 4.0, 0.0, 1), (2, 3, 0, 200.0, 4.0, 0.0, 1), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 3, 2, 200.0, 4.0, 0.0, 1) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., entries=pd.DataFrame([ [False, False, True], [False, True, False], [True, False, False], [False, False, True], [False, True, False], ]), exits=pd.DataFrame([ [False, False, False], [False, False, True], [False, True, False], [True, False, False], [False, False, True], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_signals_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_signals_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) portfolio = from_signals_longonly(**kwargs, size=1., size_type='percent') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 0, 2], [0, 1, 2], [2, 0, 1] ]) ) def test_max_orders(self): _ = from_signals_all(price=price_wide) _ = from_signals_all(price=price_wide, max_orders=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, max_orders=5) def test_max_logs(self): _ = from_signals_all(price=price_wide, log=True) _ = from_signals_all(price=price_wide, log=True, max_logs=6) with pytest.raises(Exception) as e_info: _ = from_signals_all(price=price_wide, log=True, max_logs=5) # ############# from_holding ############# # class TestFromHolding: def test_from_holding(self): record_arrays_close( vbt.Portfolio.from_holding(price).order_records, vbt.Portfolio.from_signals(price, True, False, accumulate=False).order_records ) # ############# from_random_signals ############# # class TestFromRandom: def test_from_random_n(self): result = vbt.Portfolio.from_random_signals(price, n=2, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, True, False, False], [False, True, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, n=[1, 2], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [True, False], [False, True], [False, False], [False, False]], [[False, False], [False, True], [False, False], [False, True], [True, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.Int64Index([1, 2], dtype='int64', name='rand_n') ) def test_from_random_prob(self): result = vbt.Portfolio.from_random_signals(price, prob=0.5, seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [True, False, False, False, False], [False, False, False, False, True] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, price.vbt.wrapper.index ) pd.testing.assert_index_equal( result.wrapper.columns, price.vbt.wrapper.columns ) result = vbt.Portfolio.from_random_signals(price, prob=[0.25, 0.5], seed=seed) record_arrays_close( result.order_records, vbt.Portfolio.from_signals( price, [[False, True], [False, False], [False, False], [False, False], [True, False]], [[False, False], [False, True], [False, False], [False, False], [False, False]] ).order_records ) pd.testing.assert_index_equal( result.wrapper.index, pd.DatetimeIndex([ '2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05' ], dtype='datetime64[ns]', freq=None) ) pd.testing.assert_index_equal( result.wrapper.columns, pd.MultiIndex.from_tuples([(0.25, 0.25), (0.5, 0.5)], names=['rprob_entry_prob', 'rprob_exit_prob']) ) # ############# from_orders ############# # order_size = pd.Series([np.inf, -np.inf, np.nan, np.inf, -np.inf], index=price.index) order_size_wide = order_size.vbt.tile(3, keys=['a', 'b', 'c']) order_size_one = pd.Series([1, -1, np.nan, 1, -1], index=price.index) def from_orders_all(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='all', **kwargs) def from_orders_longonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='longonly', **kwargs) def from_orders_shortonly(price=price, size=order_size, **kwargs): return vbt.Portfolio.from_orders(price, size, direction='shortonly', **kwargs) class TestFromOrders: def test_one_column(self): record_arrays_close( from_orders_all().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly().order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all() pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_multiple_columns(self): record_arrays_close( from_orders_all(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1), (8, 0, 2, 100.0, 1.0, 0.0, 0), (9, 1, 2, 100.0, 2.0, 0.0, 1), (10, 3, 2, 50.0, 4.0, 0.0, 0), (11, 4, 2, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price_wide).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0), (4, 0, 2, 100.0, 1.0, 0.0, 1), (5, 1, 2, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) portfolio = from_orders_all(price=price_wide) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None def test_size_inf(self): record_arrays_close( from_orders_all(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[np.inf, -np.inf]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1) ], dtype=order_dt) ) def test_price(self): record_arrays_close( from_orders_all(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 198.01980198019803, 2.02, 0.0, 1), (2, 3, 0, 99.00990099009901, 4.04, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 0), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 1), (2, 3, 0, 49.504950495049506, 4.04, 0.0, 0), (3, 4, 0, 49.504950495049506, 5.05, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(price=price * 1.01).order_records, np.array([ (0, 0, 0, 99.00990099009901, 1.01, 0.0, 1), (1, 1, 0, 99.00990099009901, 2.02, 0.0, 0) ], dtype=order_dt) ) def test_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.2, 1), (6, 3, 1, 1.0, 4.0, 0.4, 0), (7, 4, 1, 1.0, 5.0, 0.5, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 2.0, 1), (10, 3, 2, 1.0, 4.0, 4.0, 0), (11, 4, 2, 1.0, 5.0, 5.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.2, 0), (6, 3, 1, 1.0, 4.0, 0.4, 1), (7, 4, 1, 1.0, 5.0, 0.5, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 2.0, 0), (10, 3, 2, 1.0, 4.0, 4.0, 1), (11, 4, 2, 1.0, 5.0, 5.0, 0) ], dtype=order_dt) ) def test_fixed_fees(self): record_arrays_close( from_orders_all(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.1, 0), (5, 1, 1, 1.0, 2.0, 0.1, 1), (6, 3, 1, 1.0, 4.0, 0.1, 0), (7, 4, 1, 1.0, 5.0, 0.1, 1), (8, 0, 2, 1.0, 1.0, 1.0, 0), (9, 1, 2, 1.0, 2.0, 1.0, 1), (10, 3, 2, 1.0, 4.0, 1.0, 0), (11, 4, 2, 1.0, 5.0, 1.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, fixed_fees=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.1, 1), (5, 1, 1, 1.0, 2.0, 0.1, 0), (6, 3, 1, 1.0, 4.0, 0.1, 1), (7, 4, 1, 1.0, 5.0, 0.1, 0), (8, 0, 2, 1.0, 1.0, 1.0, 1), (9, 1, 2, 1.0, 2.0, 1.0, 0), (10, 3, 2, 1.0, 4.0, 1.0, 1), (11, 4, 2, 1.0, 5.0, 1.0, 0) ], dtype=order_dt) ) def test_slippage(self): record_arrays_close( from_orders_all(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.1, 0.0, 0), (5, 1, 1, 1.0, 1.8, 0.0, 1), (6, 3, 1, 1.0, 4.4, 0.0, 0), (7, 4, 1, 1.0, 4.5, 0.0, 1), (8, 0, 2, 1.0, 2.0, 0.0, 0), (9, 1, 2, 1.0, 0.0, 0.0, 1), (10, 3, 2, 1.0, 8.0, 0.0, 0), (11, 4, 2, 1.0, 0.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, slippage=[[0., 0.1, 1.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 0.9, 0.0, 1), (5, 1, 1, 1.0, 2.2, 0.0, 0), (6, 3, 1, 1.0, 3.6, 0.0, 1), (7, 4, 1, 1.0, 5.5, 0.0, 0), (8, 0, 2, 1.0, 0.0, 0.0, 1), (9, 1, 2, 1.0, 4.0, 0.0, 0), (10, 3, 2, 1.0, 0.0, 0.0, 1), (11, 4, 2, 1.0, 10.0, 0.0, 0) ], dtype=order_dt) ) def test_min_size(self): record_arrays_close( from_orders_all(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, min_size=[[0., 1., 2.]]).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_max_size(self): record_arrays_close( from_orders_all(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 0), (1, 1, 0, 0.5, 2.0, 0.0, 1), (2, 3, 0, 0.5, 4.0, 0.0, 0), (3, 4, 0, 0.5, 5.0, 0.0, 1), (4, 0, 1, 1.0, 1.0, 0.0, 0), (5, 1, 1, 1.0, 2.0, 0.0, 1), (6, 3, 1, 1.0, 4.0, 0.0, 0), (7, 4, 1, 1.0, 5.0, 0.0, 1), (8, 0, 2, 1.0, 1.0, 0.0, 0), (9, 1, 2, 1.0, 2.0, 0.0, 1), (10, 3, 2, 1.0, 4.0, 0.0, 0), (11, 4, 2, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, max_size=[[0.5, 1., np.inf]]).order_records, np.array([ (0, 0, 0, 0.5, 1.0, 0.0, 1), (1, 1, 0, 0.5, 2.0, 0.0, 0), (2, 3, 0, 0.5, 4.0, 0.0, 1), (3, 4, 0, 0.5, 5.0, 0.0, 0), (4, 0, 1, 1.0, 1.0, 0.0, 1), (5, 1, 1, 1.0, 2.0, 0.0, 0), (6, 3, 1, 1.0, 4.0, 0.0, 1), (7, 4, 1, 1.0, 5.0, 0.0, 0), (8, 0, 2, 1.0, 1.0, 0.0, 1), (9, 1, 2, 1.0, 2.0, 0.0, 0), (10, 3, 2, 1.0, 4.0, 0.0, 1), (11, 4, 2, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_reject_prob(self): record_arrays_close( from_orders_all(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 1, 1, 1.0, 2.0, 0.0, 1), (5, 3, 1, 1.0, 4.0, 0.0, 0), (6, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 1.0, 2.0, 0.0, 1), (2, 3, 0, 1.0, 4.0, 0.0, 0), (3, 4, 0, 1.0, 5.0, 0.0, 1), (4, 3, 1, 1.0, 4.0, 0.0, 0), (5, 4, 1, 1.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one, reject_prob=[[0., 0.5, 1.]], seed=42).order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 1), (1, 1, 0, 1.0, 2.0, 0.0, 0), (2, 3, 0, 1.0, 4.0, 0.0, 1), (3, 4, 0, 1.0, 5.0, 0.0, 0), (4, 3, 1, 1.0, 4.0, 0.0, 1), (5, 4, 1, 1.0, 5.0, 0.0, 0) ], dtype=order_dt) ) def test_allow_partial(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1), (4, 1, 1, 1000.0, 2.0, 0.0, 1), (5, 4, 1, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0), (4, 0, 1, 1000.0, 1.0, 0.0, 1), (5, 3, 1, 1000.0, 4.0, 0.0, 1), (6, 4, 1, 1000.0, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1), (4, 0, 1, 100.0, 1.0, 0.0, 0), (5, 1, 1, 100.0, 2.0, 0.0, 1), (6, 3, 1, 50.0, 4.0, 0.0, 0), (7, 4, 1, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size, allow_partial=[[True, False]]).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 1), (1, 1, 0, 100.0, 2.0, 0.0, 0), (2, 0, 1, 100.0, 1.0, 0.0, 1), (3, 1, 1, 100.0, 2.0, 0.0, 0) ], dtype=order_dt) ) def test_raise_reject(self): record_arrays_close( from_orders_all(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 1000.0, 2.0, 0.0, 1), (2, 3, 0, 500.0, 4.0, 0.0, 0), (3, 4, 0, 1000.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 100.0, 2.0, 0.0, 1), (2, 3, 0, 50.0, 4.0, 0.0, 0), (3, 4, 0, 50.0, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=order_size_one * 1000, allow_partial=True, raise_reject=True).order_records, np.array([ (0, 0, 0, 1000.0, 1.0, 0.0, 1), (1, 1, 0, 550.0, 2.0, 0.0, 0), (2, 3, 0, 1000.0, 4.0, 0.0, 1), (3, 4, 0, 800.0, 5.0, 0.0, 0) ], dtype=order_dt) ) with pytest.raises(Exception) as e_info: _ = from_orders_all(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_longonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records with pytest.raises(Exception) as e_info: _ = from_orders_shortonly(size=order_size_one * 1000, allow_partial=False, raise_reject=True).order_records def test_log(self): record_arrays_close( from_orders_all(log=True).log_records, np.array([ (0, 0, 0, 0, 100.0, 0.0, 1.0, 100.0, np.inf, 0, 2, 1.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 100.0, 100.0, 1.0, 0.0, 0, 0, -1, 0), (1, 1, 0, 0, 0.0, 100.0, 2.0, 200.0, -np.inf, 0, 2, 2.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, 200.0, 2.0, 0.0, 1, 0, -1, 1), (2, 2, 0, 0, 400.0, -100.0, 3.0, 100.0, np.nan, 0, 2, 3.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 400.0, -100.0, np.nan, np.nan, np.nan, -1, 1, 0, -1), (3, 3, 0, 0, 400.0, -100.0, 4.0, 0.0, np.inf, 0, 2, 4.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, 100.0, 4.0, 0.0, 0, 0, -1, 2), (4, 4, 0, 0, 0.0, 0.0, 5.0, 0.0, -np.inf, 0, 2, 5.0, 0.0, 0.0, 0.0, 1e-08, np.inf, 0.0, True, False, True, 0.0, 0.0, np.nan, np.nan, np.nan, -1, 2, 6, -1) ], dtype=log_dt) ) def test_group_by(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1])) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 3, 0, 100.0, 4.0, 0.0, 0), (3, 0, 1, 100.0, 1.0, 0.0, 0), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 3, 1, 100.0, 4.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing def test_cash_sharing(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing with pytest.raises(Exception) as e_info: _ = portfolio.regroup(group_by=False) def test_call_seq(self): portfolio = from_orders_all(price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 3, 0, 200.0, 4.0, 0.0, 0), (4, 4, 0, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed') record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 3, 1, 200.0, 4.0, 0.0, 0), (4, 4, 1, 200.0, 5.0, 0.0, 1), (5, 0, 2, 100.0, 1.0, 0.0, 0), (6, 1, 2, 200.0, 2.0, 0.0, 1), (7, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = from_orders_all( price=price_wide, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 3, 1, 100.0, 4.0, 0.0, 0), (3, 0, 2, 100.0, 1.0, 0.0, 0), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 3, 2, 100.0, 4.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) kwargs = dict( price=1., size=pd.DataFrame([ [0., 0., np.inf], [0., np.inf, -np.inf], [np.inf, -np.inf, 0.], [-np.inf, 0., np.inf], [0., np.inf, -np.inf], ]), group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto' ) portfolio = from_orders_all(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 200.0, 1.0, 0.0, 1), (2, 1, 1, 200.0, 1.0, 0.0, 0), (3, 2, 1, 400.0, 1.0, 0.0, 1), (4, 2, 0, 400.0, 1.0, 0.0, 0), (5, 3, 0, 800.0, 1.0, 0.0, 1), (6, 3, 2, 800.0, 1.0, 0.0, 0), (7, 4, 2, 1400.0, 1.0, 0.0, 1), (8, 4, 1, 1400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_longonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 0), (1, 1, 2, 100.0, 1.0, 0.0, 1), (2, 1, 1, 100.0, 1.0, 0.0, 0), (3, 2, 1, 100.0, 1.0, 0.0, 1), (4, 2, 0, 100.0, 1.0, 0.0, 0), (5, 3, 0, 100.0, 1.0, 0.0, 1), (6, 3, 2, 100.0, 1.0, 0.0, 0), (7, 4, 2, 100.0, 1.0, 0.0, 1), (8, 4, 1, 100.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 0, 1], [1, 2, 0], [0, 1, 2], [2, 0, 1] ]) ) portfolio = from_orders_shortonly(**kwargs) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 2, 100.0, 1.0, 0.0, 1), (1, 1, 1, 200.0, 1.0, 0.0, 1), (2, 1, 2, 100.0, 1.0, 0.0, 0), (3, 2, 0, 300.0, 1.0, 0.0, 1), (4, 2, 1, 200.0, 1.0, 0.0, 0), (5, 3, 2, 400.0, 1.0, 0.0, 1), (6, 3, 0, 300.0, 1.0, 0.0, 0), (7, 4, 1, 500.0, 1.0, 0.0, 1), (8, 4, 2, 400.0, 1.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [2, 0, 1], [1, 0, 2], [0, 2, 1], [2, 1, 0], [1, 0, 2] ]) ) def test_target_shares(self): record_arrays_close( from_orders_all(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[75., -75.]], size_type='targetshares').order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=75., size_type='targetshares', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 75.0, 1.0, 0.0, 0), (1, 0, 1, 25.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_target_value(self): record_arrays_close( from_orders_all(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 25.0, 2.0, 0.0, 0), (7, 2, 1, 8.333333333333332, 3.0, 0.0, 0), (8, 3, 1, 4.166666666666668, 4.0, 0.0, 0), (9, 4, 1, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 25.0, 2.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (4, 4, 0, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[50., -50.]], size_type='targetvalue').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 25.0, 2.0, 0.0, 0), (2, 2, 0, 8.333333333333332, 3.0, 0.0, 0), (3, 3, 0, 4.166666666666668, 4.0, 0.0, 0), (4, 4, 0, 2.5, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=50., size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0), (2, 1, 0, 25.0, 2.0, 0.0, 1), (3, 1, 1, 25.0, 2.0, 0.0, 1), (4, 1, 2, 25.0, 2.0, 0.0, 0), (5, 2, 0, 8.333333333333332, 3.0, 0.0, 1), (6, 2, 1, 8.333333333333332, 3.0, 0.0, 1), (7, 2, 2, 8.333333333333332, 3.0, 0.0, 1), (8, 3, 0, 4.166666666666668, 4.0, 0.0, 1), (9, 3, 1, 4.166666666666668, 4.0, 0.0, 1), (10, 3, 2, 4.166666666666668, 4.0, 0.0, 1), (11, 4, 0, 2.5, 5.0, 0.0, 1), (12, 4, 1, 2.5, 5.0, 0.0, 1), (13, 4, 2, 2.5, 5.0, 0.0, 1) ], dtype=order_dt) ) def test_target_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1), (5, 0, 1, 50.0, 1.0, 0.0, 1), (6, 1, 1, 37.5, 2.0, 0.0, 0), (7, 2, 1, 6.25, 3.0, 0.0, 0), (8, 3, 1, 2.34375, 4.0, 0.0, 0), (9, 4, 1, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 1, 0, 12.5, 2.0, 0.0, 1), (2, 2, 0, 6.25, 3.0, 0.0, 1), (3, 3, 0, 3.90625, 4.0, 0.0, 1), (4, 4, 0, 2.734375, 5.0, 0.0, 1) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='targetpercent').order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 1), (1, 1, 0, 37.5, 2.0, 0.0, 0), (2, 2, 0, 6.25, 3.0, 0.0, 0), (3, 3, 0, 2.34375, 4.0, 0.0, 0), (4, 4, 0, 1.171875, 5.0, 0.0, 0) ], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 50.0, 1.0, 0.0, 0), (1, 0, 1, 50.0, 1.0, 0.0, 0) ], dtype=order_dt) ) def test_percent(self): record_arrays_close( from_orders_all(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_longonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([ (0, 0, 0, 50., 1., 0., 0), (1, 1, 0, 12.5, 2., 0., 0), (2, 2, 0, 4.16666667, 3., 0., 0), (3, 3, 0, 1.5625, 4., 0., 0), (4, 4, 0, 0.625, 5., 0., 0) ], dtype=order_dt) ) record_arrays_close( from_orders_shortonly(size=[[0.5, -0.5]], size_type='percent').order_records, np.array([], dtype=order_dt) ) record_arrays_close( from_orders_all( price=price_wide, size=0.5, size_type='percent', group_by=np.array([0, 0, 0]), cash_sharing=True).order_records, np.array([ (0, 0, 0, 5.00000000e+01, 1., 0., 0), (1, 0, 1, 2.50000000e+01, 1., 0., 0), (2, 0, 2, 1.25000000e+01, 1., 0., 0), (3, 1, 0, 3.12500000e+00, 2., 0., 0), (4, 1, 1, 1.56250000e+00, 2., 0., 0), (5, 1, 2, 7.81250000e-01, 2., 0., 0), (6, 2, 0, 2.60416667e-01, 3., 0., 0), (7, 2, 1, 1.30208333e-01, 3., 0., 0), (8, 2, 2, 6.51041667e-02, 3., 0., 0), (9, 3, 0, 2.44140625e-02, 4., 0., 0), (10, 3, 1, 1.22070312e-02, 4., 0., 0), (11, 3, 2, 6.10351562e-03, 4., 0., 0), (12, 4, 0, 2.44140625e-03, 5., 0., 0), (13, 4, 1, 1.22070312e-03, 5., 0., 0), (14, 4, 2, 6.10351562e-04, 5., 0., 0) ], dtype=order_dt) ) def test_auto_seq(self): target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value, size_type='targetvalue', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) pd.testing.assert_frame_equal( from_orders_all( price=1., size=target_hold_value / 100, size_type='targetpercent', group_by=np.array([0, 0, 0]), cash_sharing=True, call_seq='auto').holding_value(group_by=False), target_hold_value ) def test_max_orders(self): _ = from_orders_all(price=price_wide) _ = from_orders_all(price=price_wide, max_orders=9) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, max_orders=8) def test_max_logs(self): _ = from_orders_all(price=price_wide, log=True) _ = from_orders_all(price=price_wide, log=True, max_logs=15) with pytest.raises(Exception) as e_info: _ = from_orders_all(price=price_wide, log=True, max_logs=14) # ############# from_order_func ############# # @njit def order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col]) @njit def log_order_func_nb(oc, size): return nb.create_order_nb(size=size if oc.i % 2 == 0 else -size, price=oc.close[oc.i, oc.col], log=True) class TestFromOrderFunc: @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_one_column(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price.tolist(), order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func(price, order_func_nb, np.inf, row_wise=test_row_wise) record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_multiple_columns(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func(price_wide, order_func_nb, np.inf, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (4, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (5, 0, 1, 100.0, 1.0, 0.0, 0), (6, 1, 1, 200.0, 2.0, 0.0, 1), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.index, pd.DatetimeIndex(['2020-01-01', '2020-01-02', '2020-01-03', '2020-01-04', '2020-01-05']) ) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['a', 'b', 'c'], dtype='object') ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.freq == day_dt assert portfolio.wrapper.grouper.group_by is None @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_shape(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5,), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64') ) assert portfolio.wrapper.ndim == 1 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 1), row_wise=test_row_wise, keys=pd.Index(['first'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Int64Index([0, 1, 2], dtype='int64', name='iteration_idx') ) assert portfolio.wrapper.ndim == 2 portfolio = vbt.Portfolio.from_order_func( price, order_func_nb, np.inf, target_shape=(5, 3), row_wise=test_row_wise, keys=pd.Index(['first', 'second', 'third'], name='custom')) pd.testing.assert_index_equal( portfolio.wrapper.columns, pd.Index(['first', 'second', 'third'], dtype='object', name='custom') ) assert portfolio.wrapper.ndim == 2 @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_group_by(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 0, 2, 100.0, 1.0, 0.0, 0), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 1, 200.0, 2.0, 0.0, 1), (5, 1, 2, 200.0, 2.0, 0.0, 1), (6, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (7, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (10, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (11, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (12, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (13, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 1, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 2, 0, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (8, 4, 0, 53.33333333333335, 5.0, 0.0, 0), (9, 4, 1, 53.33333333333335, 5.0, 0.0, 0), (10, 0, 2, 100.0, 1.0, 0.0, 0), (11, 1, 2, 200.0, 2.0, 0.0, 1), (12, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (13, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (14, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([200., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert not portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_cash_sharing(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) pd.testing.assert_index_equal( portfolio.wrapper.grouper.group_by, pd.Int64Index([0, 0, 1], dtype='int64') ) pd.testing.assert_series_equal( portfolio.init_cash, pd.Series([100., 100.], index=pd.Int64Index([0, 1], dtype='int64')).rename('init_cash') ) assert portfolio.cash_sharing @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_call_seq(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 1, 1, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 100.0, 1.0, 0.0, 0), (1, 1, 0, 200.0, 2.0, 0.0, 1), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 2, 0, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 0, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 0, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='reversed', row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 0, 200.0, 2.0, 0.0, 1), (4, 1, 2, 200.0, 2.0, 0.0, 1), (5, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (6, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (7, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 1, 0, 200.0, 2.0, 0.0, 1), (3, 2, 1, 266.6666666666667, 3.0, 0.0, 0), (4, 3, 1, 333.33333333333337, 4.0, 0.0, 1), (5, 4, 1, 266.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='random', seed=seed, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 0, 2, 100.0, 1.0, 0.0, 0), (2, 1, 1, 200.0, 2.0, 0.0, 1), (3, 1, 2, 200.0, 2.0, 0.0, 1), (4, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (5, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (6, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (7, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (8, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (9, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 1, 100.0, 1.0, 0.0, 0), (1, 1, 1, 200.0, 2.0, 0.0, 1), (2, 2, 1, 133.33333333333334, 3.0, 0.0, 0), (3, 3, 1, 66.66666666666669, 4.0, 0.0, 1), (4, 3, 0, 66.66666666666669, 4.0, 0.0, 1), (5, 4, 1, 106.6666666666667, 5.0, 0.0, 0), (6, 0, 2, 100.0, 1.0, 0.0, 0), (7, 1, 2, 200.0, 2.0, 0.0, 1), (8, 2, 2, 133.33333333333334, 3.0, 0.0, 0), (9, 3, 2, 66.66666666666669, 4.0, 0.0, 1), (10, 4, 2, 53.33333333333335, 5.0, 0.0, 0) ], dtype=order_dt) ) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [1, 0, 0], [0, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]) ) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, group_by=np.array([0, 0, 1]), cash_sharing=True, call_seq='auto', row_wise=test_row_wise ) target_hold_value = pd.DataFrame({ 'a': [0., 70., 30., 0., 70.], 'b': [30., 0., 70., 30., 30.], 'c': [70., 30., 0., 70., 0.] }, index=price.index) @njit def segment_prep_func_nb(sc, target_hold_value): order_size = np.copy(target_hold_value[sc.i, sc.from_col:sc.to_col]) order_size_type = np.full(sc.group_len, SizeType.TargetValue) direction = np.full(sc.group_len, Direction.All) order_value_out = np.empty(sc.group_len, dtype=np.float_) sc.last_val_price[sc.from_col:sc.to_col] = sc.close[sc.i, sc.from_col:sc.to_col] nb.sort_call_seq_nb(sc, order_size, order_size_type, direction, order_value_out) return order_size, order_size_type, direction @njit def pct_order_func_nb(oc, order_size, order_size_type, direction): col_i = oc.call_seq_now[oc.call_idx] return nb.create_order_nb( size=order_size[col_i], size_type=order_size_type[col_i], price=oc.close[oc.i, col_i], direction=direction[col_i] ) portfolio = vbt.Portfolio.from_order_func( price_wide * 0 + 1, pct_order_func_nb, group_by=np.array([0, 0, 0]), cash_sharing=True, segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(target_hold_value.values,), row_wise=test_row_wise) np.testing.assert_array_equal( portfolio.call_seq.values, np.array([ [0, 1, 2], [2, 1, 0], [0, 2, 1], [1, 0, 2], [2, 1, 0] ]) ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=False), target_hold_value ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_value(self, test_row_wise): @njit def target_val_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_val_order_func_nb(oc): return nb.create_order_nb(size=50., size_type=SizeType.TargetValue, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_val_order_func_nb, segment_prep_func_nb=target_val_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (3, 3, 0, 4.166666666666668, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_target_percent(self, test_row_wise): @njit def target_pct_segment_prep_func_nb(sc, val_price): sc.last_val_price[sc.from_col:sc.to_col] = val_price[sc.i] return () @njit def target_pct_order_func_nb(oc): return nb.create_order_nb(size=0.5, size_type=SizeType.TargetPercent, price=oc.close[oc.i, oc.col]) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 1, 0, 25.0, 3.0, 0.0, 0), (1, 2, 0, 8.333333333333332, 4.0, 0.0, 1), (2, 3, 0, 1.0416666666666679, 5.0, 0.0, 1) ], dtype=order_dt) ) portfolio = vbt.Portfolio.from_order_func( price.iloc[1:], target_pct_order_func_nb, segment_prep_func_nb=target_pct_segment_prep_func_nb, segment_prep_args=(price.iloc[:-1].values,), row_wise=test_row_wise) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 50.0, 2.0, 0.0, 0), (1, 1, 0, 25.0, 3.0, 0.0, 1), (2, 3, 0, 3.125, 5.0, 0.0, 1) ], dtype=order_dt) ) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_init_cash(self, test_row_wise): portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=[1., 10., np.inf]) if test_row_wise: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 0, 1, 10.0, 1.0, 0.0, 0), (2, 0, 2, 10.0, 1.0, 0.0, 0), (3, 1, 0, 10.0, 2.0, 0.0, 1), (4, 1, 1, 10.0, 2.0, 0.0, 1), (5, 1, 2, 10.0, 2.0, 0.0, 1), (6, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 2, 2, 10.0, 3.0, 0.0, 0), (9, 3, 0, 10.0, 4.0, 0.0, 1), (10, 3, 1, 10.0, 4.0, 0.0, 1), (11, 3, 2, 10.0, 4.0, 0.0, 1), (12, 4, 0, 8.0, 5.0, 0.0, 0), (13, 4, 1, 8.0, 5.0, 0.0, 0), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) else: record_arrays_close( portfolio.order_records, np.array([ (0, 0, 0, 1.0, 1.0, 0.0, 0), (1, 1, 0, 10.0, 2.0, 0.0, 1), (2, 2, 0, 6.666666666666667, 3.0, 0.0, 0), (3, 3, 0, 10.0, 4.0, 0.0, 1), (4, 4, 0, 8.0, 5.0, 0.0, 0), (5, 0, 1, 10.0, 1.0, 0.0, 0), (6, 1, 1, 10.0, 2.0, 0.0, 1), (7, 2, 1, 6.666666666666667, 3.0, 0.0, 0), (8, 3, 1, 10.0, 4.0, 0.0, 1), (9, 4, 1, 8.0, 5.0, 0.0, 0), (10, 0, 2, 10.0, 1.0, 0.0, 0), (11, 1, 2, 10.0, 2.0, 0.0, 1), (12, 2, 2, 10.0, 3.0, 0.0, 0), (13, 3, 2, 10.0, 4.0, 0.0, 1), (14, 4, 2, 10.0, 5.0, 0.0, 0) ], dtype=order_dt) ) assert type(portfolio._init_cash) == np.ndarray base_portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=np.inf) portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.Auto) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.Auto portfolio = vbt.Portfolio.from_order_func( price_wide, order_func_nb, 10., row_wise=test_row_wise, init_cash=InitCashMode.AutoAlign) record_arrays_close( portfolio.order_records, base_portfolio.orders.values ) assert portfolio._init_cash == InitCashMode.AutoAlign def test_func_calls(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def group_prep_func_nb(gc, call_i, group_lst): call_i[0] += 1 group_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,) ) assert call_i[0] == 28 assert list(sim_lst) == [1] assert list(group_lst) == [2, 18] assert list(segment_lst) == [3, 6, 9, 12, 15, 19, 21, 23, 25, 27] assert list(order_lst) == [4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 20, 22, 24, 26, 28] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) group_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, True], [False, False], [False, True], [False, False], [False, True], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), group_prep_func_nb=group_prep_func_nb, group_prep_args=(group_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask ) assert call_i[0] == 8 assert list(sim_lst) == [1] assert list(group_lst) == [2] assert list(segment_lst) == [3, 5, 7] assert list(order_lst) == [4, 6, 8] def test_func_calls_row_wise(self): @njit def prep_func_nb(simc, call_i, sim_lst): call_i[0] += 1 sim_lst.append(call_i[0]) return (call_i,) @njit def row_prep_func_nb(gc, call_i, row_lst): call_i[0] += 1 row_lst.append(call_i[0]) return (call_i,) @njit def segment_prep_func_nb(sc, call_i, segment_lst): call_i[0] += 1 segment_lst.append(call_i[0]) return (call_i,) @njit def order_func_nb(oc, call_i, order_lst): call_i[0] += 1 order_lst.append(call_i[0]) return NoOrder call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), row_wise=True ) assert call_i[0] == 31 assert list(sim_lst) == [1] assert list(row_lst) == [2, 8, 14, 20, 26] assert list(segment_lst) == [3, 6, 9, 12, 15, 18, 21, 24, 27, 30] assert list(order_lst) == [4, 5, 7, 10, 11, 13, 16, 17, 19, 22, 23, 25, 28, 29, 31] call_i = np.array([0]) sim_lst = List.empty_list(typeof(0)) row_lst = List.empty_list(typeof(0)) segment_lst = List.empty_list(typeof(0)) order_lst = List.empty_list(typeof(0)) active_mask = np.array([ [False, False], [False, True], [True, False], [True, True], [False, False], ]) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, order_lst, group_by=np.array([0, 0, 1]), prep_func_nb=prep_func_nb, prep_args=(call_i, sim_lst), row_prep_func_nb=row_prep_func_nb, row_prep_args=(row_lst,), segment_prep_func_nb=segment_prep_func_nb, segment_prep_args=(segment_lst,), active_mask=active_mask, row_wise=True ) assert call_i[0] == 14 assert list(sim_lst) == [1] assert list(row_lst) == [2, 5, 9] assert list(segment_lst) == [3, 6, 10, 13] assert list(order_lst) == [4, 7, 8, 11, 12, 14] @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_orders(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, order_func_nb, np.inf, row_wise=test_row_wise, max_orders=14) @pytest.mark.parametrize( "test_row_wise", [False, True], ) def test_max_logs(self, test_row_wise): _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise) _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=15) with pytest.raises(Exception) as e_info: _ = vbt.Portfolio.from_order_func( price_wide, log_order_func_nb, np.inf, row_wise=test_row_wise, max_logs=14) # ############# Portfolio ############# # price_na = pd.DataFrame({ 'a': [np.nan, 2., 3., 4., 5.], 'b': [1., 2., np.nan, 4., 5.], 'c': [1., 2., 3., 4., np.nan] }, index=price.index) order_size_new = pd.Series([1., 0.1, -1., -0.1, 1.]) directions = ['longonly', 'shortonly', 'all'] group_by = pd.Index(['first', 'first', 'second'], name='group') portfolio = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=None, init_cash=[100., 100., 100.], freq='1D' ) # independent portfolio_grouped = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=False, init_cash=[100., 100., 100.], freq='1D' ) # grouped portfolio_shared = vbt.Portfolio.from_orders( price_na, order_size_new, size_type='shares', direction=directions, fees=0.01, fixed_fees=0.1, slippage=0.01, log=True, call_seq='reversed', group_by=group_by, cash_sharing=True, init_cash=[200., 100.], freq='1D' ) # shared class TestPortfolio: def test_config(self, tmp_path): assert vbt.Portfolio.loads(portfolio['a'].dumps()) == portfolio['a'] assert vbt.Portfolio.loads(portfolio.dumps()) == portfolio portfolio.save(tmp_path / 'portfolio') assert vbt.Portfolio.load(tmp_path / 'portfolio') == portfolio def test_wrapper(self): pd.testing.assert_index_equal( portfolio.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio.wrapper.columns, price_na.columns ) assert portfolio.wrapper.ndim == 2 assert portfolio.wrapper.grouper.group_by is None assert portfolio.wrapper.grouper.allow_enable assert portfolio.wrapper.grouper.allow_disable assert portfolio.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_grouped.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_grouped.wrapper.columns, price_na.columns ) assert portfolio_grouped.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_grouped.wrapper.grouper.group_by, group_by ) assert portfolio_grouped.wrapper.grouper.allow_enable assert portfolio_grouped.wrapper.grouper.allow_disable assert portfolio_grouped.wrapper.grouper.allow_modify pd.testing.assert_index_equal( portfolio_shared.wrapper.index, price_na.index ) pd.testing.assert_index_equal( portfolio_shared.wrapper.columns, price_na.columns ) assert portfolio_shared.wrapper.ndim == 2 pd.testing.assert_index_equal( portfolio_shared.wrapper.grouper.group_by, group_by ) assert not portfolio_shared.wrapper.grouper.allow_enable assert portfolio_shared.wrapper.grouper.allow_disable assert not portfolio_shared.wrapper.grouper.allow_modify def test_indexing(self): assert portfolio['a'].wrapper == portfolio.wrapper['a'] assert portfolio['a'].orders == portfolio.orders['a'] assert portfolio['a'].logs == portfolio.logs['a'] assert portfolio['a'].init_cash == portfolio.init_cash['a'] pd.testing.assert_series_equal(portfolio['a'].call_seq, portfolio.call_seq['a']) assert portfolio['c'].wrapper == portfolio.wrapper['c'] assert portfolio['c'].orders == portfolio.orders['c'] assert portfolio['c'].logs == portfolio.logs['c'] assert portfolio['c'].init_cash == portfolio.init_cash['c'] pd.testing.assert_series_equal(portfolio['c'].call_seq, portfolio.call_seq['c']) assert portfolio[['c']].wrapper == portfolio.wrapper[['c']] assert portfolio[['c']].orders == portfolio.orders[['c']] assert portfolio[['c']].logs == portfolio.logs[['c']] pd.testing.assert_series_equal(portfolio[['c']].init_cash, portfolio.init_cash[['c']]) pd.testing.assert_frame_equal(portfolio[['c']].call_seq, portfolio.call_seq[['c']]) assert portfolio_grouped['first'].wrapper == portfolio_grouped.wrapper['first'] assert portfolio_grouped['first'].orders == portfolio_grouped.orders['first'] assert portfolio_grouped['first'].logs == portfolio_grouped.logs['first'] assert portfolio_grouped['first'].init_cash == portfolio_grouped.init_cash['first'] pd.testing.assert_frame_equal(portfolio_grouped['first'].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped[['first']].wrapper == portfolio_grouped.wrapper[['first']] assert portfolio_grouped[['first']].orders == portfolio_grouped.orders[['first']] assert portfolio_grouped[['first']].logs == portfolio_grouped.logs[['first']] pd.testing.assert_series_equal( portfolio_grouped[['first']].init_cash, portfolio_grouped.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_grouped[['first']].call_seq, portfolio_grouped.call_seq[['a', 'b']]) assert portfolio_grouped['second'].wrapper == portfolio_grouped.wrapper['second'] assert portfolio_grouped['second'].orders == portfolio_grouped.orders['second'] assert portfolio_grouped['second'].logs == portfolio_grouped.logs['second'] assert portfolio_grouped['second'].init_cash == portfolio_grouped.init_cash['second'] pd.testing.assert_series_equal(portfolio_grouped['second'].call_seq, portfolio_grouped.call_seq['c']) assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].wrapper == portfolio_grouped.wrapper[['second']] assert portfolio_grouped[['second']].orders == portfolio_grouped.orders[['second']] assert portfolio_grouped[['second']].logs == portfolio_grouped.logs[['second']] pd.testing.assert_series_equal( portfolio_grouped[['second']].init_cash, portfolio_grouped.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_grouped[['second']].call_seq, portfolio_grouped.call_seq[['c']]) assert portfolio_shared['first'].wrapper == portfolio_shared.wrapper['first'] assert portfolio_shared['first'].orders == portfolio_shared.orders['first'] assert portfolio_shared['first'].logs == portfolio_shared.logs['first'] assert portfolio_shared['first'].init_cash == portfolio_shared.init_cash['first'] pd.testing.assert_frame_equal(portfolio_shared['first'].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].wrapper == portfolio_shared.wrapper[['first']] assert portfolio_shared[['first']].orders == portfolio_shared.orders[['first']] assert portfolio_shared[['first']].logs == portfolio_shared.logs[['first']] pd.testing.assert_series_equal( portfolio_shared[['first']].init_cash, portfolio_shared.init_cash[['first']]) pd.testing.assert_frame_equal(portfolio_shared[['first']].call_seq, portfolio_shared.call_seq[['a', 'b']]) assert portfolio_shared['second'].wrapper == portfolio_shared.wrapper['second'] assert portfolio_shared['second'].orders == portfolio_shared.orders['second'] assert portfolio_shared['second'].logs == portfolio_shared.logs['second'] assert portfolio_shared['second'].init_cash == portfolio_shared.init_cash['second'] pd.testing.assert_series_equal(portfolio_shared['second'].call_seq, portfolio_shared.call_seq['c']) assert portfolio_shared[['second']].wrapper == portfolio_shared.wrapper[['second']] assert portfolio_shared[['second']].orders == portfolio_shared.orders[['second']] assert portfolio_shared[['second']].logs == portfolio_shared.logs[['second']] pd.testing.assert_series_equal( portfolio_shared[['second']].init_cash, portfolio_shared.init_cash[['second']]) pd.testing.assert_frame_equal(portfolio_shared[['second']].call_seq, portfolio_shared.call_seq[['c']]) def test_regroup(self): assert portfolio.regroup(None) == portfolio assert portfolio.regroup(False) == portfolio assert portfolio.regroup(group_by) != portfolio pd.testing.assert_index_equal(portfolio.regroup(group_by).wrapper.grouper.group_by, group_by) assert portfolio_grouped.regroup(None) == portfolio_grouped assert portfolio_grouped.regroup(False) != portfolio_grouped assert portfolio_grouped.regroup(False).wrapper.grouper.group_by is None assert portfolio_grouped.regroup(group_by) == portfolio_grouped assert portfolio_shared.regroup(None) == portfolio_shared with pytest.raises(Exception) as e_info: _ = portfolio_shared.regroup(False) assert portfolio_shared.regroup(group_by) == portfolio_shared def test_cash_sharing(self): assert not portfolio.cash_sharing assert not portfolio_grouped.cash_sharing assert portfolio_shared.cash_sharing def test_call_seq(self): pd.testing.assert_frame_equal( portfolio.call_seq, pd.DataFrame( np.array([ [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_grouped.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.call_seq, pd.DataFrame( np.array([ [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0], [1, 0, 0] ]), index=price_na.index, columns=price_na.columns ) ) def test_incl_unrealized(self): assert not vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=False).incl_unrealized assert vbt.Portfolio.from_orders(price_na, 1000., incl_unrealized=True).incl_unrealized def test_orders(self): record_arrays_close( portfolio.orders.values, np.array([ (0, 1, 0, 0.1, 2.02, 0.10202, 0), (1, 2, 0, 0.1, 2.9699999999999998, 0.10297, 1), (2, 4, 0, 1.0, 5.05, 0.1505, 0), (3, 0, 1, 1.0, 0.99, 0.10990000000000001, 1), (4, 1, 1, 0.1, 1.98, 0.10198, 1), (5, 3, 1, 0.1, 4.04, 0.10404000000000001, 0), (6, 4, 1, 1.0, 4.95, 0.14950000000000002, 1), (7, 0, 2, 1.0, 1.01, 0.1101, 0), (8, 1, 2, 0.1, 2.02, 0.10202, 0), (9, 2, 2, 1.0, 2.9699999999999998, 0.1297, 1), (10, 3, 2, 0.1, 3.96, 0.10396000000000001, 1) ], dtype=order_dt) ) result = pd.Series( np.array([3, 4, 4]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.orders.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_orders(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_orders(group_by=False).count(), result ) result = pd.Series( np.array([7, 4]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_orders(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.orders.count(), result ) pd.testing.assert_series_equal( portfolio_shared.orders.count(), result ) def test_logs(self): record_arrays_close( portfolio.logs.values, np.array([ (0, 0, 0, 0, 100.0, 0.0, np.nan, 100.0, 1.0, 0, 0, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.0, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1), (1, 1, 0, 0, 100.0, 0.0, 2.0, 100.0, 0.1, 0, 0, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.69598, 0.1, 0.1, 2.02, 0.10202, 0, 0, -1, 0), (2, 2, 0, 0, 99.69598, 0.1, 3.0, 99.99598, -1.0, 0, 0, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, 0.1, 2.9699999999999998, 0.10297, 1, 0, -1, 1), (3, 3, 0, 0, 99.89001, 0.0, 4.0, 99.89001, -0.1, 0, 0, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 99.89001, 0.0, np.nan, np.nan, np.nan, -1, 2, 8, -1), (4, 4, 0, 0, 99.89001, 0.0, 5.0, 99.89001, 1.0, 0, 0, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 94.68951, 1.0, 1.0, 5.05, 0.1505, 0, 0, -1, 2), (5, 0, 1, 1, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 1, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.8801, -1.0, 1.0, 0.99, 0.10990000000000001, 1, 0, -1, 3), (6, 1, 1, 1, 100.8801, -1.0, 2.0, 98.8801, 0.1, 0, 1, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, 0.1, 1.98, 0.10198, 1, 0, -1, 4), (7, 2, 1, 1, 100.97612, -1.1, np.nan, np.nan, -1.0, 0, 1, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.97612, -1.1, np.nan, np.nan, np.nan, -1, 1, 1, -1), (8, 3, 1, 1, 100.97612, -1.1, 4.0, 96.57611999999999, -0.1, 0, 1, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 100.46808, -1.0, 0.1, 4.04, 0.10404000000000001, 0, 0, -1, 5), (9, 4, 1, 1, 100.46808, -1.0, 5.0, 95.46808, 1.0, 0, 1, 5.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 105.26858, -2.0, 1.0, 4.95, 0.14950000000000002, 1, 0, -1, 6), (10, 0, 2, 2, 100.0, 0.0, 1.0, 100.0, 1.0, 0, 2, 1.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.8799, 1.0, 1.0, 1.01, 0.1101, 0, 0, -1, 7), (11, 1, 2, 2, 98.8799, 1.0, 2.0, 100.8799, 0.1, 0, 2, 2.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 98.57588000000001, 1.1, 0.1, 2.02, 0.10202, 0, 0, -1, 8), (12, 2, 2, 2, 98.57588000000001, 1.1, 3.0, 101.87588000000001, -1.0, 0, 2, 3.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.41618000000001, 0.10000000000000009, 1.0, 2.9699999999999998, 0.1297, 1, 0, -1, 9), (13, 3, 2, 2, 101.41618000000001, 0.10000000000000009, 4.0, 101.81618000000002, -0.1, 0, 2, 4.0, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, 0.1, 3.96, 0.10396000000000001, 1, 0, -1, 10), (14, 4, 2, 2, 101.70822000000001, 0.0, np.nan, 101.70822000000001, 1.0, 0, 2, np.nan, 0.01, 0.1, 0.01, 1e-08, np.inf, 0.0, True, False, True, 101.70822000000001, 0.0, np.nan, np.nan, np.nan, -1, 1, 1, -1) ], dtype=log_dt) ) result = pd.Series( np.array([5, 5, 5]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.logs.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_logs(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_logs(group_by=False).count(), result ) result = pd.Series( np.array([10, 5]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_logs(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.logs.count(), result ) pd.testing.assert_series_equal( portfolio_shared.logs.count(), result ) def test_trades(self): record_arrays_close( portfolio.trades.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1, 0), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0, 1), (2, 1, 0.1, 0, 1.0799999999999998, 0.019261818181818182, 3, 4.04, 0.10404000000000001, -0.4193018181818182, -3.882424242424243, 1, 1, 2), (3, 1, 2.0, 0, 3.015, 0.3421181818181819, 4, 5.0, 0.0, -4.312118181818182, -0.7151108095884214, 1, 0, 2), (4, 2, 1.0, 0, 1.1018181818181818, 0.19283636363636364, 2, 2.9699999999999998, 0.1297, 1.5456454545454543, 1.4028135313531351, 0, 1, 3), (5, 2, 0.10000000000000009, 0, 1.1018181818181818, 0.019283636363636378, 3, 3.96, 0.10396000000000001, 0.1625745454545457, 1.4755115511551162, 0, 1, 3) ], dtype=trade_dt) ) result = pd.Series( np.array([2, 2, 2]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.trades.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_trades(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_trades(group_by=False).count(), result ) result = pd.Series( np.array([4, 2]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_trades(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.trades.count(), result ) pd.testing.assert_series_equal( portfolio_shared.trades.count(), result ) def test_positions(self): record_arrays_close( portfolio.positions.values, np.array([ (0, 0, 0.1, 1, 2.02, 0.10202, 2, 2.9699999999999998, 0.10297, -0.10999000000000003, -0.5445049504950497, 0, 1), (1, 0, 1.0, 4, 5.05, 0.1505, 4, 5.0, 0.0, -0.20049999999999982, -0.03970297029702967, 0, 0), (2, 1, 2.1, 0, 2.9228571428571426, 0.36138000000000003, 4, 4.954285714285714, 0.10404000000000001, -4.731420000000001, -0.7708406647116326, 1, 0), (3, 2, 1.1, 0, 1.1018181818181818, 0.21212000000000003, 3, 3.06, 0.23366000000000003, 1.7082200000000003, 1.4094224422442245, 0, 1) ], dtype=position_dt) ) result = pd.Series( np.array([2, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.positions.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_positions(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_positions(group_by=False).count(), result ) result = pd.Series( np.array([3, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_positions(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.positions.count(), result ) pd.testing.assert_series_equal( portfolio_shared.positions.count(), result ) def test_drawdowns(self): record_arrays_close( portfolio.drawdowns.values, np.array([ (0, 0, 0, 4, 4, 0), (1, 1, 0, 4, 4, 0), (2, 2, 2, 3, 4, 0) ], dtype=drawdown_dt) ) result = pd.Series( np.array([1, 1, 1]), index=price_na.columns ).rename('count') pd.testing.assert_series_equal( portfolio.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_grouped.get_drawdowns(group_by=False).count(), result ) pd.testing.assert_series_equal( portfolio_shared.get_drawdowns(group_by=False).count(), result ) result = pd.Series( np.array([1, 1]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('count') pd.testing.assert_series_equal( portfolio.get_drawdowns(group_by=group_by).count(), result ) pd.testing.assert_series_equal( portfolio_grouped.drawdowns.count(), result ) pd.testing.assert_series_equal( portfolio_shared.drawdowns.count(), result ) def test_close(self): pd.testing.assert_frame_equal(portfolio.close, price_na) pd.testing.assert_frame_equal(portfolio_grouped.close, price_na) pd.testing.assert_frame_equal(portfolio_shared.close, price_na) def test_fill_close(self): pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=False), price_na ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=False), price_na.ffill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=False, bfill=True), price_na.bfill() ) pd.testing.assert_frame_equal( portfolio.fill_close(ffill=True, bfill=True), price_na.ffill().bfill() ) def test_share_flow(self): pd.testing.assert_frame_equal( portfolio.share_flow(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 0.1], [-0.1, 0., -1.], [0., 0., -0.1], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.share_flow(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 0.1, 0.], [0., 0., 0.], [0., -0.1, 0.], [0., 1., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -0.1, 0.1], [-0.1, 0., -1.], [0., 0.1, -0.1], [1., -1., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.share_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.share_flow(), result ) def test_shares(self): pd.testing.assert_frame_equal( portfolio.shares(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.1, 0., 1.1], [0., 0., 0.1], [0., 0., 0.], [1., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.shares(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 1.1, 0.], [0., 1.1, 0.], [0., 1., 0.], [0., 2., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.1, -1.1, 1.1], [0., -1.1, 0.1], [0., -1., 0.], [1., -2., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.shares(), result ) pd.testing.assert_frame_equal( portfolio_grouped.shares(), result ) pd.testing.assert_frame_equal( portfolio_shared.shares(), result ) def test_pos_mask(self): pd.testing.assert_frame_equal( portfolio.pos_mask(direction='longonly'), pd.DataFrame( np.array([ [False, False, True], [True, False, True], [False, False, True], [False, False, False], [True, False, False] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.pos_mask(direction='shortonly'), pd.DataFrame( np.array([ [False, True, False], [False, True, False], [False, True, False], [False, True, False], [False, True, False] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [False, True, True], [True, True, True], [False, True, True], [False, True, False], [True, True, False] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(group_by=False), result ) result = pd.DataFrame( np.array([ [True, True], [True, True], [True, True], [True, False], [True, False] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.pos_mask(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.pos_mask(), result ) pd.testing.assert_frame_equal( portfolio_shared.pos_mask(), result ) def test_pos_coverage(self): pd.testing.assert_series_equal( portfolio.pos_coverage(direction='longonly'), pd.Series(np.array([0.4, 0., 0.6]), index=price_na.columns).rename('pos_coverage') ) pd.testing.assert_series_equal( portfolio.pos_coverage(direction='shortonly'), pd.Series(np.array([0., 1., 0.]), index=price_na.columns).rename('pos_coverage') ) result = pd.Series(np.array([0.4, 1., 0.6]), index=price_na.columns).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(group_by=False), result ) result = pd.Series( np.array([0.7, 0.6]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('pos_coverage') pd.testing.assert_series_equal( portfolio.pos_coverage(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.pos_coverage(), result ) pd.testing.assert_series_equal( portfolio_shared.pos_coverage(), result ) def test_cash_flow(self): pd.testing.assert_frame_equal( portfolio.cash_flow(short_cash=False), pd.DataFrame( np.array([ [0., -1.0999, -1.1201], [-0.30402, -0.29998, -0.30402], [0.19403, 0., 2.8403], [0., 0.29996, 0.29204], [-5.2005, -5.0995, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., 0.8801, -1.1201], [-0.30402, 0.09602, -0.30402], [0.19403, 0., 2.8403], [0., -0.50804, 0.29204], [-5.2005, 4.8005, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(group_by=False), result ) result = pd.DataFrame( np.array([ [0.8801, -1.1201], [-0.208, -0.30402], [0.19403, 2.8403], [-0.50804, 0.29204], [-0.4, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash_flow(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash_flow(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash_flow(), result ) def test_init_cash(self): pd.testing.assert_series_equal( portfolio.init_cash, pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_grouped.get_init_cash(group_by=False), pd.Series(np.array([100., 100., 100.]), index=price_na.columns).rename('init_cash') ) pd.testing.assert_series_equal( portfolio_shared.get_init_cash(group_by=False), pd.Series(np.array([200., 200., 100.]), index=price_na.columns).rename('init_cash') ) result = pd.Series( np.array([200., 100.]), pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') pd.testing.assert_series_equal( portfolio.get_init_cash(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.init_cash, result ) pd.testing.assert_series_equal( portfolio_shared.init_cash, result ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=None).init_cash, pd.Series( np.array([14000., 12000., 10000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.Auto, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 10000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=None).init_cash, pd.Series( np.array([14000., 14000., 14000.]), index=price_na.columns ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) pd.testing.assert_series_equal( vbt.Portfolio.from_orders( price_na, 1000., init_cash=InitCashMode.AutoAlign, group_by=group_by, cash_sharing=True).init_cash, pd.Series( np.array([26000.0, 26000.0]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('init_cash') ) def test_cash(self): pd.testing.assert_frame_equal( portfolio.cash(short_cash=False), pd.DataFrame( np.array([ [100., 98.9001, 98.8799], [99.69598, 98.60012, 98.57588], [99.89001, 98.60012, 101.41618], [99.89001, 98.90008, 101.70822], [94.68951, 93.80058, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [100., 100.8801, 98.8799], [99.69598, 100.97612, 98.57588], [99.89001, 100.97612, 101.41618], [99.89001, 100.46808, 101.70822], [94.68951, 105.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.cash(), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False), pd.DataFrame( np.array([ [200., 200.8801, 98.8799], [199.69598, 200.97612, 98.57588], [199.89001, 200.97612, 101.41618], [199.89001, 200.46808, 101.70822], [194.68951, 205.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.cash(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [200.8801, 200.8801, 98.8799], [200.6721, 200.97612, 98.57588000000001], [200.86613, 200.6721, 101.41618000000001], [200.35809, 200.35809, 101.70822000000001], [199.95809, 205.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200.8801, 98.8799], [200.6721, 98.57588], [200.86613, 101.41618], [200.35809, 101.70822], [199.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.cash(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.cash(), result ) pd.testing.assert_frame_equal( portfolio_shared.cash(), result ) def test_holding_value(self): pd.testing.assert_frame_equal( portfolio.holding_value(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 1.], [0.2, 0., 2.2], [0., 0., 0.3], [0., 0., 0.], [5., 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.holding_value(direction='shortonly'), pd.DataFrame( np.array([ [0., 1., 0.], [0., 2.2, 0.], [0., np.nan, 0.], [0., 4., 0.], [0., 10., 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -1., 1.], [0.2, -2.2, 2.2], [0., np.nan, 0.3], [0., -4., 0.], [5., -10., 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(group_by=False), result ) result = pd.DataFrame( np.array([ [-1., 1.], [-2., 2.2], [np.nan, 0.3], [-4., 0.], [-5., 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.holding_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.holding_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.holding_value(), result ) def test_gross_exposure(self): pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='longonly'), pd.DataFrame( np.array([ [0., 0., 0.01001202], [0.00200208, 0., 0.02183062], [0., 0., 0.00294938], [0., 0., 0.], [0.05015573, 0., 0.] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio.gross_exposure(direction='shortonly'), pd.DataFrame( np.array([ [0., 0.01001, 0.], [0., 0.02182537, 0.], [0., np.nan, 0.], [0., 0.03887266, 0.], [0., 0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [0., -0.01021449, 0.01001202], [0.00200208, -0.02282155, 0.02183062], [0., np.nan, 0.00294938], [0., -0.0421496, 0.], [0.05015573, -0.11933092, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.00505305, 0.01001202], [0.00100052, -0.01120162, 0.02183062], [0., np.nan, 0.00294938], [0., -0.02052334, 0.], [0.02503887, -0.05440679, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.005003, 0.01001202], [-0.01006684, 0.02183062], [np.nan, 0.00294938], [-0.02037095, 0.], [-0.02564654, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.gross_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.gross_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.gross_exposure(), result ) def test_net_exposure(self): result = pd.DataFrame( np.array([ [0., -0.01001, 0.01001202], [0.00200208, -0.02182537, 0.02183062], [0., np.nan, 0.00294938], [0., -0.03887266, 0.], [0.05015573, -0.09633858, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(group_by=False), pd.DataFrame( np.array([ [0., -0.0050025, 0.01001202], [0.00100052, -0.01095617, 0.02183062], [0., np.nan, 0.00294938], [0., -0.01971414, 0.], [0.02503887, -0.04906757, 0.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-0.00495344, 0.01001202], [-0.00984861, 0.02183062], [np.nan, 0.00294938], [-0.01957348, 0.], [-0.02323332, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.net_exposure(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.net_exposure(), result ) pd.testing.assert_frame_equal( portfolio_shared.net_exposure(), result ) def test_value(self): result = pd.DataFrame( np.array([ [100., 99.8801, 99.8799], [99.89598, 98.77612, 100.77588], [99.89001, np.nan, 101.71618], [99.89001, 96.46808, 101.70822], [99.68951, 95.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False), pd.DataFrame( np.array([ [200., 199.8801, 99.8799], [199.89598, 198.77612, 100.77588], [199.89001, np.nan, 101.71618], [199.89001, 196.46808, 101.70822], [199.68951, 195.26858, 101.70822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.value(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [199.8801, 199.8801, 99.8799], [198.6721, 198.77612000000002, 100.77588000000002], [np.nan, np.nan, 101.71618000000001], [196.35809, 196.35809, 101.70822000000001], [194.95809, 195.15859, 101.70822000000001] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [199.8801, 99.8799], [198.6721, 100.77588], [np.nan, 101.71618], [196.35809, 101.70822], [194.95809, 101.70822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.value(), result ) pd.testing.assert_frame_equal( portfolio_shared.value(), result ) def test_total_profit(self): result = pd.Series( np.array([-0.31049, -4.73142, 1.70822]), index=price_na.columns ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(group_by=False), result ) result = pd.Series( np.array([-5.04191, 1.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_profit') pd.testing.assert_series_equal( portfolio.total_profit(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_profit(), result ) pd.testing.assert_series_equal( portfolio_shared.total_profit(), result ) def test_final_value(self): result = pd.Series( np.array([99.68951, 95.26858, 101.70822]), index=price_na.columns ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(group_by=False), pd.Series( np.array([199.68951, 195.26858, 101.70822]), index=price_na.columns ).rename('final_value') ) result = pd.Series( np.array([194.95809, 101.70822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('final_value') pd.testing.assert_series_equal( portfolio.final_value(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.final_value(), result ) pd.testing.assert_series_equal( portfolio_shared.final_value(), result ) def test_total_return(self): result = pd.Series( np.array([-0.0031049, -0.0473142, 0.0170822]), index=price_na.columns ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(group_by=False), pd.Series( np.array([-0.00155245, -0.0236571, 0.0170822]), index=price_na.columns ).rename('total_return') ) result = pd.Series( np.array([-0.02520955, 0.0170822]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_return') pd.testing.assert_series_equal( portfolio.total_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_return(), result ) def test_returns(self): result = pd.DataFrame( np.array([ [0.00000000e+00, -1.19900000e-03, -1.20100000e-03], [-1.04020000e-03, -1.10530526e-02, 8.97057366e-03], [-5.97621646e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-2.00720773e-03, -1.24341648e-02, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False), pd.DataFrame( np.array([ [0.00000000e+00, -5.99500000e-04, -1.20100000e-03], [-5.20100000e-04, -5.52321117e-03, 8.97057366e-03], [-2.98655331e-05, np.nan, 9.33060570e-03], [0.00000000e+00, np.nan, -7.82569695e-05], [-1.00305163e-03, -6.10531746e-03, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_frame_equal( portfolio_shared.returns(group_by=False, in_sim_order=True), pd.DataFrame( np.array([ [0.0, -0.0005995000000000062, -1.20100000e-03], [-0.0005233022960706736, -0.005523211165093367, 8.97057366e-03], [np.nan, np.nan, 9.33060570e-03], [0.0, np.nan, -7.82569695e-05], [-0.0010273695869600474, -0.0061087373583639994, 0.00000000e+00] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [-5.99500000e-04, -1.20100000e-03], [-6.04362315e-03, 8.97057366e-03], [np.nan, 9.33060570e-03], [np.nan, -7.82569695e-05], [-7.12983101e-03, 0.00000000e+00] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.returns(), result ) def test_active_returns(self): result = pd.DataFrame( np.array([ [0., -np.inf, -np.inf], [-np.inf, -1.10398, 0.89598], [-0.02985, np.nan, 0.42740909], [0., np.nan, -0.02653333], [-np.inf, -0.299875, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [-np.inf, -np.inf], [-1.208, 0.89598], [np.nan, 0.42740909], [np.nan, -0.02653333], [-0.35, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.active_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.active_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.active_returns(), result ) def test_market_value(self): result = pd.DataFrame( np.array([ [100., 100., 100.], [100., 200., 200.], [150., 200., 300.], [200., 400., 400.], [250., 500., 400.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_value(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(group_by=False), pd.DataFrame( np.array([ [200., 200., 100.], [200., 400., 200.], [300., 400., 300.], [400., 800., 400.], [500., 1000., 400.] ]), index=price_na.index, columns=price_na.columns ) ) result = pd.DataFrame( np.array([ [200., 100.], [300., 200.], [350., 300.], [600., 400.], [750., 400.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_value(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_value(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_value(), result ) def test_market_returns(self): result = pd.DataFrame( np.array([ [0., 0., 0.], [0., 1., 1.], [0.5, 0., 0.5], [0.33333333, 1., 0.33333333], [0.25, 0.25, 0.] ]), index=price_na.index, columns=price_na.columns ) pd.testing.assert_frame_equal( portfolio.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(group_by=False), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(group_by=False), result ) result = pd.DataFrame( np.array([ [0., 0.], [0.5, 1.], [0.16666667, 0.5], [0.71428571, 0.33333333], [0.25, 0.] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) pd.testing.assert_frame_equal( portfolio.market_returns(group_by=group_by), result ) pd.testing.assert_frame_equal( portfolio_grouped.market_returns(), result ) pd.testing.assert_frame_equal( portfolio_shared.market_returns(), result ) def test_total_market_return(self): result = pd.Series( np.array([1.5, 4., 3.]), index=price_na.columns ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(group_by=False), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(group_by=False), result ) result = pd.Series( np.array([2.75, 3.]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('total_market_return') pd.testing.assert_series_equal( portfolio.total_market_return(group_by=group_by), result ) pd.testing.assert_series_equal( portfolio_grouped.total_market_return(), result ) pd.testing.assert_series_equal( portfolio_shared.total_market_return(), result ) def test_return_method(self): pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(), pd.DataFrame( np.array([ [-0.0005995, -0.001201], [-0.0066395, 0.0077588], [-0.0066395, 0.0171618], [-0.0066395, 0.0170822], [-0.01372199, 0.0170822] ]), index=price_na.index, columns=pd.Index(['first', 'second'], dtype='object', name='group') ) ) pd.testing.assert_frame_equal( portfolio_shared.cumulative_returns(group_by=False), pd.DataFrame( np.array([ [0., -0.0005995, -0.001201], [-0.0005201, -0.0061194, 0.0077588], [-0.00054995, -0.0061194, 0.0171618], [-0.00054995, -0.0061194, 0.0170822], [-0.00155245, -0.01218736, 0.0170822] ]), index=price_na.index, columns=price_na.columns ) ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(), pd.Series( np.array([-20.82791491, 10.2576347]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(risk_free=0.01), pd.Series( np.array([-66.19490297745766, -19.873024060759022]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(year_freq='365D'), pd.Series( np.array([-25.06639947, 12.34506527]), index=pd.Index(['first', 'second'], dtype='object', name='group') ).rename('sharpe_ratio') ) pd.testing.assert_series_equal( portfolio_shared.sharpe_ratio(group_by=False), pd.Series( np.array([-11.058998255347488, -21.39151322377427, 10.257634695847853]), index=price_na.columns ).rename('sharpe_ratio') ) def test_stats(self): pd.testing.assert_series_equal( portfolio.stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -1.1112299999999966, -1.1112299999999966, 283.3333333333333, 66.66666666666667, 1.6451238489727062, 1.6451238489727062, pd.Timedelta('3 days 08:00:00'), pd.Timedelta('3 days 08:00:00'), 1.3333333333333333, 33.333333333333336, -98.38058805880588, -100.8038553855386, -99.59222172217225, pd.Timedelta('2 days 08:00:00'), pd.Timedelta('2 days 04:00:00'), 0.10827272727272726, 1.2350921335789007, -0.01041305691622876, -7.373390156195147, 25.695952942372134, 5717.085878360386 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='stats_mean') ) pd.testing.assert_series_equal( portfolio['a'].stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, -11.057783842772304, -9.75393669809172, -46.721467294341814 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(required_return=0.1, risk_free=0.01), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, -188.9975847831419, -15.874008737030774, -46.721467294341814 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(active_returns=True), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 1, 0.0, -54.450495049504966, -54.450495049504966, -54.450495049504966, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('1 days 00:00:00'), -0.10999000000000003, np.nan, 0.010431562217554364, np.nan, np.nan, np.nan ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio['a'].stats(incl_unrealized=True), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 100.0, -0.3104900000000015, -0.3104900000000015, 150.0, 40.0, 0.3104900000000015, 0.3104900000000015, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 2, 0.0, -3.9702970297029667, -54.450495049504966, -29.210396039603964, pd.Timedelta('1 days 00:00:00'), pd.Timedelta('0 days 12:00:00'), -0.1552449999999999, -3.43044967406917, 0.010431562217554364, -11.057783842772304, -9.75393669809172, -46.721467294341814 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='a') ) pd.testing.assert_series_equal( portfolio_grouped['first'].stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), 200.0, -5.0419100000000014, -2.5209550000000007, 275.0, 70.0, 2.46248125751388, 2.46248125751388, pd.Timedelta('4 days 00:00:00'), pd.Timedelta('4 days 00:00:00'), 2, 0.0, -54.450495049504966, -388.2424242424243, -221.34645964596461, pd.Timedelta('3 days 00:00:00'), pd.Timedelta('2 days 00:00:00'), -0.2646459090909091, -1.711191707103453, -0.015271830375806438, -20.827914910501114, -13.477807138901431, -38.202477209943744 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Init. Cash', 'Total Profit', 'Total Return [%]', 'Benchmark Return [%]', 'Position Coverage [%]', 'Max. Drawdown [%]', 'Avg. Drawdown [%]', 'Max. Drawdown Duration', 'Avg. Drawdown Duration', 'Num. Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]', 'Max. Trade Duration', 'Avg. Trade Duration', 'Expectancy', 'SQN', 'Gross Exposure', 'Sharpe Ratio', 'Sortino Ratio', 'Calmar Ratio' ], dtype='object'), name='first') ) pd.testing.assert_series_equal( portfolio['c'].stats(), portfolio.stats(column='c') ) pd.testing.assert_series_equal( portfolio['c'].stats(), portfolio_grouped.stats(column='c', group_by=False) ) pd.testing.assert_series_equal( portfolio_grouped['second'].stats(), portfolio_grouped.stats(column='second') ) def test_returns_stats(self): pd.testing.assert_series_equal( portfolio.returns_stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'), pd.Timestamp('2020-01-05 00:00:00'), pd.Timedelta('5 days 00:00:00'), -0.3514495165378495, 283.3333333333333, 16.311169116434524, 6.502016923413218, -7.373390156195147, 5717.085878360386, -0.8844312951385028, 4.768700318817701, 25.695952942372134, 0.3292440354159287, -1.5661463405418332, 3.21984512467388, 7.438903089386976, -0.005028770371222715, -0.3453376142959778, 0.0014301079570843596 ]), index=pd.Index([ 'Start', 'End', 'Duration', 'Total Return [%]', 'Benchmark Return [%]', 'Annual Return [%]', 'Annual Volatility [%]', 'Sharpe Ratio', 'Calmar Ratio', 'Max. Drawdown [%]', 'Omega Ratio', 'Sortino Ratio', 'Skew', 'Kurtosis', 'Tail Ratio', 'Common Sense Ratio', 'Value at Risk', 'Alpha', 'Beta' ], dtype='object'), name='stats_mean') ) pd.testing.assert_series_equal( portfolio['a'].returns_stats(), pd.Series( np.array([ pd.Timestamp('2020-01-01 00:00:00'),
pd.Timestamp('2020-01-05 00:00:00')
pandas.Timestamp
"""xgboost""" from __future__ import annotations import logging import pathlib import typing import numpy as np import pandas as pd import sklearn.metrics import pytoolkit as tk from .core import Model logger = logging.getLogger(__name__) class XGBModel(Model): """XGBoostのモデル。 Args: params: XGBoostのパラメータ nfold: cvの分割数 models_dir: 保存先ディレクトリ early_stopping_rounds: xgboost.cvのパラメータ num_boost_round: xgboost.cvのパラメータ verbose_eval: xgboost.cvのパラメータ callbacks: xgboost.cvのパラメータ cv_params: xgboost.cvのパラメータ (kwargs) """ def __init__( self, params: dict[str, typing.Any], nfold: int, models_dir: tk.typing.PathLike, early_stopping_rounds: int = 200, num_boost_round: int = 9999, verbose_eval: int = 100, callbacks: list[typing.Callable[[typing.Any], None]] = None, cv_params: dict[str, typing.Any] = None, preprocessors: tk.pipeline.EstimatorListType = None, postprocessors: tk.pipeline.EstimatorListType = None, ): import xgboost super().__init__(nfold, models_dir, preprocessors, postprocessors) self.params = params self.early_stopping_rounds = early_stopping_rounds self.num_boost_round = num_boost_round self.verbose_eval = verbose_eval self.callbacks = callbacks self.cv_params = cv_params self.gbms_: list[xgboost.Booster] | None = None self.best_ntree_limit_: int | None = None def _save(self, models_dir: pathlib.Path): assert self.gbms_ is not None tk.utils.dump(self.gbms_, models_dir / "model.pkl") tk.utils.dump(self.best_ntree_limit_, models_dir / "best_ntree_limit.pkl") # ついでにfeature_importanceも。 df_importance = self.feature_importance() df_importance.to_excel(str(models_dir / "feature_importance.xlsx")) def _load(self, models_dir: pathlib.Path): self.gbms_ = tk.utils.load(models_dir / "model.pkl") self.best_ntree_limit_ = tk.utils.load(models_dir / "best_ntree_limit.pkl") assert self.gbms_ is not None assert len(self.gbms_) == self.nfold def _cv(self, dataset: tk.data.Dataset, folds: tk.validation.FoldsType) -> None: import xgboost assert isinstance(dataset.data, pd.DataFrame) train_set = xgboost.DMatrix( data=dataset.data, label=dataset.labels, weight=dataset.weights, feature_names=dataset.data.columns.values, ) self.gbms_ = [] def model_extractor(env): assert self.gbms_ is not None self.gbms_.clear() self.gbms_.extend([f.bst for f in env.cvfolds]) eval_hist = xgboost.cv( self.params, dtrain=train_set, folds=folds, callbacks=(self.callbacks or []) + [model_extractor], num_boost_round=self.num_boost_round, early_stopping_rounds=self.early_stopping_rounds, verbose_eval=self.verbose_eval, **(self.cv_params or {}), ) scores = {} for k, v in eval_hist.items(): if k.endswith("-mean"): name, score = k[:-5], v.values[-1] scores[name] = score logger.info(f"cv {name}: {score:,.3f}") self.best_ntree_limit_ = len(v) def _predict(self, dataset: tk.data.Dataset, fold: int) -> np.ndarray: import xgboost assert self.gbms_ is not None assert self.best_ntree_limit_ is not None assert isinstance(dataset.data, pd.DataFrame) data = xgboost.DMatrix( data=dataset.data, feature_names=dataset.data.columns.values ) return self.gbms_[fold].predict(data, ntree_limit=self.best_ntree_limit_) def feature_importance(self, importance_type: str = "total_gain"): """Feature ImportanceをDataFrameで返す。""" assert self.gbms_ is not None columns = self.gbms_[0].feature_names for gbm in self.gbms_: assert tuple(columns) == tuple(gbm.feature_names) fi = np.zeros((len(columns),), dtype=np.float32) for gbm in self.gbms_: d = gbm.get_score(importance_type=importance_type) fi += [d.get(c, 0) for c in columns] return
pd.DataFrame(data={"importance": fi}, index=columns)
pandas.DataFrame
import json import logging import warnings import os import pathlib import platform import tempfile import shutil import pandas as pd from cellpy.exceptions import UnderDefined from cellpy.parameters import prms from cellpy.readers import dbreader from cellpy.parameters.internal_settings import ( get_headers_journal, keys_journal_session, ) from cellpy.parameters.legacy.internal_settings import ( headers_journal_v0 as hdr_journal_old, ) from cellpy.utils.batch_tools.batch_core import BaseJournal from cellpy.utils.batch_tools.engines import simple_db_engine hdr_journal = get_headers_journal() trans_dict = {} missing_keys = [] for key in hdr_journal: if key in hdr_journal_old: trans_dict[hdr_journal_old[key]] = hdr_journal[key] else: missing_keys.append(key) class LabJournal(BaseJournal): def __init__(self, db_reader="default"): super().__init__() if db_reader == "default": self.db_reader = dbreader.Reader() else: logging.debug(f"Remark! db_reader: {db_reader}") self.db_reader = db_reader self.batch_col = "b01" def _check_file_name(self, file_name, to_project_folder=False): if file_name is None: if not self.file_name: self.generate_file_name() file_name = pathlib.Path(self.file_name) else: file_name = pathlib.Path(file_name) if to_project_folder: file_name = file_name.with_suffix(".json") file_name = pathlib.Path(self.project_dir) / file_name self.file_name = file_name # updates object (maybe not smart) return file_name def from_db(self, project=None, name=None, batch_col=None, **kwargs): logging.debug("creating journal from db") if batch_col is None: batch_col = self.batch_col if project is not None: self.project = project if name is None: name = self.name else: self.name = name logging.debug(f"batch_name, batch_col: {name}, {batch_col}") if self.db_reader is not None: srnos = self.db_reader.select_batch(name, batch_col) self.pages = simple_db_engine(self.db_reader, srnos, **kwargs) if self.pages.empty: logging.critical( f"EMPTY JOURNAL: are you sure you have provided correct input to batch?" ) logging.critical(f"name: {name}") logging.critical(f"project: {self.project}") logging.critical(f"batch_col: {batch_col}") else: logging.debug("creating empty journal pages") self.pages = pd.DataFrame() self.generate_empty_session() self.generate_folder_names() self.paginate() def generate_empty_session(self): self.session = {} for item in keys_journal_session: self.session[item] = None @staticmethod def _fix_cellpy_paths(p): if platform.system() != "Windows": if p.find("\\") >= 0: # convert from win to posix p = pathlib.PureWindowsPath(p) else: if p.find("/") >= 0: # convert from posix to win p = pathlib.PurePosixPath(p) return pathlib.Path(p) @classmethod def read_journal_jason_file(cls, file_name): logging.debug(f"json loader starting on {file_name}") with open(file_name, "r") as infile: top_level_dict = json.load(infile) pages_dict = top_level_dict["info_df"] meta = top_level_dict["metadata"] session = top_level_dict.get("session", None) pages = pd.DataFrame(pages_dict) if pages.empty: logging.critical("could not find any pages in the journal") raise UnderDefined pages = cls._clean_pages(pages) if session is None: logging.debug(f"no session - generating empty one") session = dict() session, pages = cls._clean_session(session, pages) return pages, meta, session @classmethod def read_journal_excel_file(cls, file_name, **kwargs): sheet_names = {"meta": "meta", "pages": "pages", "session": "session"} project = kwargs.pop("project", "NaN") name = kwargs.pop("batch", pathlib.Path(file_name).stem) _meta = { "name": name, "project": project, "project_dir": pathlib.Path("."), "batch_dir": pathlib.Path("."), "raw_dir": pathlib.Path("."), } logging.debug(f"xlsx loader starting on {file_name}") meta_sheet_name = sheet_names["meta"] # not tested yet pages_sheet_name = sheet_names["pages"] session_sheet_name = sheet_names["session"] # not tested yet temporary_directory = tempfile.mkdtemp() temporary_file_name = shutil.copy(file_name, temporary_directory) try: pages = pd.read_excel( temporary_file_name, engine="openpyxl", sheet_name=pages_sheet_name ) except KeyError: print(f"Worksheet '{pages_sheet_name}' does not exist.") return None try: session = pd.read_excel( temporary_file_name, sheet_name=session_sheet_name, engine="openpyxl", header=[0, 1], ) except (KeyError, ValueError): print(f"Worksheet '{session_sheet_name}' does not exist.") session = None try: meta = pd.read_excel( temporary_file_name, sheet_name=meta_sheet_name, engine="openpyxl" ) except (KeyError, ValueError): print(f"Worksheet '{meta_sheet_name}' does not exist.") meta = None if pages.empty: logging.critical("could not find any pages in the journal") raise UnderDefined pages = cls._clean_pages(pages) pages = pages.set_index(hdr_journal.filename) if meta is None: meta = _meta else: meta = cls._unpack_meta(meta) if session is None: logging.debug(f"no session - generating empty one") session = dict() else: session = cls._unpack_session(session) session, pages = cls._clean_session(session, pages) return pages, meta, session @classmethod def _unpack_session(cls, session): try: bcn2 = { l: list(sb["cycle_index"].values) for l, sb in session["bad_cycles"].groupby("cell_name") } except KeyError: bcn2 = [] try: bc2 = list(session["bad_cells"]["cell_name"].dropna().values.flatten()) except KeyError: bc2 = [] try: s2 = list(session["starred"]["cell_name"].dropna().values.flatten()) except KeyError: s2 = [] try: n2 = list(session["notes"]["txt"].dropna().values.flatten()) except KeyError: n2 = [] session = {"bad_cycles": bcn2, "bad_cells": bc2, "starred": s2, "notes": n2} return session @classmethod def _unpack_meta(cls, meta): # TODO: add try-except meta = meta.loc[:, ["parameter", "value"]] meta = meta.set_index("parameter") return meta.to_dict()["value"] @classmethod def _clean_session(cls, session, pages): # include steps for cleaning up the session dict here if not session: logging.critical("no session found in your journal file") for item in keys_journal_session: session[item] = session.get(item, None) return session, pages @classmethod def _clean_pages(cls, pages): logging.debug("removing empty rows") pages = pages.dropna(how="all") logging.debug("checking path-names") try: pages[hdr_journal.cellpy_file_name] = pages[ hdr_journal.cellpy_file_name ].apply(cls._fix_cellpy_paths) except KeyError: # assumes it is a old type journal file print(f"The key '{hdr_journal.cellpy_file_name}' is missing!") print(f"Assumes that this is an old-type journal file.") try: pages.rename(columns=trans_dict, inplace=True) pages[hdr_journal.cellpy_file_name] = pages[ hdr_journal.cellpy_file_name ].apply(cls._fix_cellpy_paths) logging.warning("old journal file - updating") except KeyError as e: print("Error! Could still not parse the pages.") print(f"Missing key: {hdr_journal.cellpy_file_name}") pages[hdr_journal.cellpy_file_name] = None # only keep selected cells if keep column exists if "keep" in pages.columns: logging.debug("Journal contains 'keep' - selecting only 'keep' > 0.") pages = pages.loc[pages.keep > 0, :] for column_name in missing_keys: if column_name not in pages.columns: logging.debug(f"wrong journal format - missing: {column_name}") pages[column_name] = None for column_name in hdr_journal: if column_name not in pages.columns: pages[column_name] = None return pages def from_file(self, file_name=None, paginate=True, **kwargs): """Loads a DataFrame with all the needed info about the experiment""" file_name = self._check_file_name(file_name) logging.debug(f"reading {file_name}") if pathlib.Path(file_name).suffix.lower() == ".xlsx": file_loader = self.read_journal_excel_file else: file_loader = self.read_journal_jason_file try: out = file_loader(file_name, **kwargs) if out is None: raise IOError(f"Error reading {file_name}.") pages, meta_dict, session = out except UnderDefined as e: logging.critical(f"could not load {file_name}") raise UnderDefined from e logging.debug(f"got pages and meta_dict") self.pages = pages self.session = session self.file_name = file_name self._prm_packer(meta_dict) if paginate: self.generate_folder_names() self.paginate() def from_file_old(self, file_name=None): """Loads a DataFrame with all the needed info about the experiment""" file_name = self._check_file_name(file_name) with open(file_name, "r") as infile: top_level_dict = json.load(infile) pages_dict = top_level_dict["info_df"] pages = pd.DataFrame(pages_dict) pages[hdr_journal.cellpy_file_name] = pages[hdr_journal.cellpy_file_name].apply( self._fix_cellpy_paths ) self.pages = pages self.file_name = file_name self._prm_packer(top_level_dict["metadata"]) self.generate_folder_names() self.paginate() def create_empty_pages(self, description=None): if description is not None: print(f"Creating from {type(description)} is not implemented yet") logging.debug("Creating an empty journal") logging.debug(f"name: {self.name}") logging.debug(f"project: {self.project}") col_names = list(hdr_journal.values()) pages = pd.DataFrame(columns=col_names) pages.set_index(hdr_journal.filename, inplace=True) return pages def to_file(self, file_name=None, paginate=True, to_project_folder=True): """Saves a DataFrame with all the needed info about the experiment. Args: file_name (str or pathlib.Path): journal file name paginate (bool): make project folders to_project_folder (bool): save journal file to the folder containing your cellpy projects Returns: """ file_name = self._check_file_name( file_name, to_project_folder=to_project_folder ) pages = self.pages session = self.session meta = self._prm_packer() top_level_dict = { "info_df": pages, "metadata": meta, "session": session, } is_json = False is_xlsx = False if file_name.suffix == ".xlsx": is_xlsx = True if file_name.suffix == ".json": is_json = True if is_xlsx: df_session = self._pack_session(session) df_meta = self._pack_meta(meta) try: with pd.ExcelWriter(file_name, mode="w", engine="openpyxl") as writer: pages.to_excel(writer, sheet_name="pages", engine="openpyxl") # no index is not supported for multi-index (update to index=False when pandas implements it): df_session.to_excel(writer, sheet_name="session", engine="openpyxl") df_meta.to_excel( writer, sheet_name="meta", engine="openpyxl", index=False ) except PermissionError as e: print(f"Could not load journal to xlsx ({e})") if is_json: jason_string = json.dumps( top_level_dict, default=lambda info_df: json.loads( info_df.to_json(default_handler=str) ), ) with open(file_name, "w") as outfile: outfile.write(jason_string) self.file_name = file_name logging.info(f"Saved file to {file_name}") if paginate: self.paginate() @staticmethod def _pack_session(session): frames = [] keys = [] try: l_bad_cycle_numbers = [] for k, v in session["bad_cycles"].items(): l_bad_cycle_numbers.append(pd.DataFrame(data=v, columns=[k])) df_bad_cycle_numbers = ( pd.concat(l_bad_cycle_numbers, axis=1) .melt(var_name="cell_name", value_name="cycle_index") .dropna() ) frames.append(df_bad_cycle_numbers) keys.append("bad_cycles") except KeyError: logging.debug("missing bad cycle numbers") df_bad_cells = pd.DataFrame(session["bad_cells"], columns=["cell_name"]) frames.append(df_bad_cells) keys.append("bad_cells") df_starred = pd.DataFrame(session["starred"], columns=["cell_name"]) frames.append(df_starred) keys.append("starred") df_notes = pd.DataFrame(session["notes"], columns=["txt"]) frames.append(df_notes) keys.append("notes") session = pd.concat(frames, axis=1, keys=keys) return session @staticmethod def _pack_meta(meta): meta =
pd.DataFrame(meta, index=[0])
pandas.DataFrame
""" """ """ >>> # --- >>> # SETUP >>> # --- >>> import os >>> import logging >>> logger = logging.getLogger('PT3S.Rm') >>> # --- >>> # path >>> # --- >>> if __name__ == "__main__": ... try: ... dummy=__file__ ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ','path = os.path.dirname(__file__)'," .")) ... path = os.path.dirname(__file__) ... except NameError: ... logger.debug("{0:s}{1:s}{2:s}".format('DOCTEST: __main__ Context: ',"path = '.' because __file__ not defined and: "," from Rm import Rm")) ... path = '.' ... from Rm import Rm ... else: ... path = '.' ... logger.debug("{0:s}{1:s}".format('Not __main__ Context: ',"path = '.' .")) >>> try: ... from PT3S import Mx ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Mx: ImportError: ","trying import Mx instead ... maybe pip install -e . is active ...")) ... import Mx >>> try: ... from PT3S import Xm ... except ImportError: ... logger.debug("{0:s}{1:s}".format("DOCTEST: from PT3S import Xm: ImportError: ","trying import Xm instead ... maybe pip install -e . is active ...")) ... import Xm >>> # --- >>> # testDir >>> # --- >>> # globs={'testDir':'testdata'} >>> try: ... dummy= testDir ... except NameError: ... testDir='testdata' >>> # --- >>> # dotResolution >>> # --- >>> # globs={'dotResolution':''} >>> try: ... dummy= dotResolution ... except NameError: ... dotResolution='' >>> import pandas as pd >>> import matplotlib.pyplot as plt >>> pd.set_option('display.max_columns',None) >>> pd.set_option('display.width',666666666) >>> # --- >>> # LocalHeatingNetwork SETUP >>> # --- >>> xmlFile=os.path.join(os.path.join(path,testDir),'LocalHeatingNetwork.XML') >>> xm=Xm.Xm(xmlFile=xmlFile) >>> mx1File=os.path.join(path,os.path.join(testDir,'WDLocalHeatingNetwork\B1\V0\BZ1\M-1-0-1'+dotResolution+'.MX1')) >>> mx=Mx.Mx(mx1File=mx1File,NoH5Read=True,NoMxsRead=True) >>> mx.setResultsToMxsFile(NewH5Vec=True) 5 >>> xm.MxSync(mx=mx) >>> rm=Rm(xm=xm,mx=mx) >>> # --- >>> # Plot 3Classes False >>> # --- >>> plt.close('all') >>> ppi=72 # matplotlib default >>> dpi_screen=2*ppi >>> fig=plt.figure(dpi=dpi_screen,linewidth=1.) >>> timeDeltaToT=mx.df.index[2]-mx.df.index[0] >>> # 3Classes und FixedLimits sind standardmaessig Falsch; RefPerc ist standardmaessig Wahr >>> # die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt immer ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66,pFWVBGCategory=['BLNZ1u5u7'],pVICsDf=pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']})) >>> # --- >>> # Check pFWVB Return >>> # --- >>> f=lambda x: "{0:8.5f}".format(x) >>> print(pFWVB[['Measure','MCategory','GCategory','VIC']].round(2).to_string(formatters={'Measure':f})) Measure MCategory GCategory VIC 0 0.81000 Top BLNZ1u5u7 NaN 1 0.67000 Middle NaN 2 0.66000 Middle BLNZ1u5u7 NaN 3 0.66000 Bottom BLNZ1u5u7 VIC1 4 0.69000 Middle NaN >>> # --- >>> # Print >>> # --- >>> (wD,fileName)=os.path.split(xm.xmlFile) >>> (base,ext)=os.path.splitext(fileName) >>> plotFileName=wD+os.path.sep+base+'.'+'pdf' >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) >>> plt.savefig(plotFileName,dpi=2*dpi_screen) >>> os.path.exists(plotFileName) True >>> # --- >>> # Plot 3Classes True >>> # --- >>> plt.close('all') >>> # FixedLimits wird automatisch auf Wahr gesetzt wenn 3Classes Wahr ... >>> pFWVB=rm.pltNetDHUS(timeDeltaToT=timeDeltaToT,pFWVBMeasure3Classes=True,pFWVBMeasureCBFixedLimitHigh=0.80,pFWVBMeasureCBFixedLimitLow=0.66) >>> # --- >>> # LocalHeatingNetwork Clean Up >>> # --- >>> if os.path.exists(mx.h5File): ... os.remove(mx.h5File) >>> if os.path.exists(mx.mxsZipFile): ... os.remove(mx.mxsZipFile) >>> if os.path.exists(mx.h5FileVecs): ... os.remove(mx.h5FileVecs) >>> if os.path.exists(plotFileName): ... os.remove(plotFileName) """ __version__='172.16.58.3.dev1' import warnings # 3.6 #...\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. # from ._conv import register_converters as _register_converters warnings.simplefilter(action='ignore', category=FutureWarning) #C:\Users\Wolters\Anaconda3\lib\site-packages\matplotlib\cbook\deprecation.py:107: MatplotlibDeprecationWarning: Adding an axes using the same arguments as a previous axes currently reuses the earlier instance. In a future version, a new instance will always be created and returned. Meanwhile, this warning can be suppressed, and the future behavior ensured, by passing a unique label to each axes instance. # warnings.warn(message, mplDeprecation, stacklevel=1) import matplotlib.cbook warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation) import os import sys import nbformat from nbconvert.preprocessors import ExecutePreprocessor from nbconvert.preprocessors.execute import CellExecutionError import timeit import xml.etree.ElementTree as ET import re import struct import collections import zipfile import pandas as pd import h5py from collections import namedtuple from operator import attrgetter import subprocess import warnings import tables import math import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.colorbar import make_axes import matplotlib as mpl import matplotlib.gridspec as gridspec import matplotlib.dates as mdates from matplotlib import markers from matplotlib.path import Path from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.backends.backend_pdf import PdfPages import numpy as np import scipy import networkx as nx from itertools import chain import math import sys from copy import deepcopy from itertools import chain import scipy from scipy.signal import savgol_filter import logging # --- # --- PT3S Imports # --- logger = logging.getLogger('PT3S') if __name__ == "__main__": logger.debug("{0:s}{1:s}".format('in MODULEFILE: __main__ Context','.')) else: logger.debug("{0:s}{1:s}{2:s}{3:s}".format('in MODULEFILE: Not __main__ Context: ','__name__: ',__name__," .")) try: from PT3S import Mx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Mx - trying import Mx instead ... maybe pip install -e . is active ...')) import Mx try: from PT3S import Xm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Xm - trying import Xm instead ... maybe pip install -e . is active ...')) import Xm try: from PT3S import Am except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Am - trying import Am instead ... maybe pip install -e . is active ...')) import Am try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx # --- # --- main Imports # --- import argparse import unittest import doctest import math from itertools import tee # --- Parameter Allgemein # ----------------------- DINA6 = (4.13 , 5.83) DINA5 = (5.83 , 8.27) DINA4 = (8.27 , 11.69) DINA3 = (11.69 , 16.54) DINA2 = (16.54 , 23.39) DINA1 = (23.39 , 33.11) DINA0 = (33.11 , 46.81) DINA6q = ( 5.83, 4.13) DINA5q = ( 8.27, 5.83) DINA4q = ( 11.69, 8.27) DINA3q = ( 16.54,11.69) DINA2q = ( 23.39,16.54) DINA1q = ( 33.11,23.39) DINA0q = ( 46.81,33.11) dpiSize=72 DINA4_x=8.2677165354 DINA4_y=11.6929133858 DINA3_x=DINA4_x*math.sqrt(2) DINA3_y=DINA4_y*math.sqrt(2) linestyle_tuple = [ ('loosely dotted', (0, (1, 10))), ('dotted', (0, (1, 1))), ('densely dotted', (0, (1, 1))), ('loosely dashed', (0, (5, 10))), ('dashed', (0, (5, 5))), ('densely dashed', (0, (5, 1))), ('loosely dashdotted', (0, (3, 10, 1, 10))), ('dashdotted', (0, (3, 5, 1, 5))), ('densely dashdotted', (0, (3, 1, 1, 1))), ('dashdotdotted', (0, (3, 5, 1, 5, 1, 5))), ('loosely dashdotdotted', (0, (3, 10, 1, 10, 1, 10))), ('densely dashdotdotted', (0, (3, 1, 1, 1, 1, 1)))] ylimpD=(-5,70) ylimpDmlc=(600,1350) #(300,1050) ylimQD=(-75,300) ylim3rdD=(0,3) yticks3rdD=[0,1,2,3] yGridStepsD=30 yticksALD=[0,3,4,10,20,30,40] ylimALD=(yticksALD[0],yticksALD[-1]) yticksRD=[0,2,4,10,15,30,45] ylimRD=(-yticksRD[-1],yticksRD[-1]) ylimACD=(-5,5) yticksACD=[-5,0,5] yticksTVD=[0,100,135,180,200,300] ylimTVD=(yticksTVD[0],yticksTVD[-1]) plotTVAmLabelD='TIMER u. AM [Sek. u. (N)m3*100]' def getDerivative(df,col,shiftSize=1,windowSize=60,fct=None,savgol_polyorder=None): """ returns a df df: the df col: the col of df to be derived shiftsize: the Difference between 2 indices for dValue and dt windowSize: size for rolling mean or window_length of savgol_filter; choosen filtertechnique is applied after fct windowsSize must be an even number for savgol_filter windowsSize-1 is used fct: function to be applied on dValue/dt savgol_polyorder: if not None savgol_filter is applied; pandas' rolling.mean() is applied otherwise new cols: dt (with shiftSize) dValue (from col) dValueDt (from col); fct applied dValueDtFiltered; choosen filtertechnique is applied """ mDf=df.dropna().copy(deep=True) try: dt=mDf.index.to_series().diff(periods=shiftSize) mDf['dt']=dt mDf['dValue']=mDf[col].diff(periods=shiftSize) mDf=mDf.iloc[shiftSize:] mDf['dValueDt']=mDf.apply(lambda row: row['dValue']/row['dt'].total_seconds(),axis=1) if fct != None: mDf['dValueDt']=mDf['dValueDt'].apply(fct) if savgol_polyorder == None: mDf['dValueDtFiltered']=mDf['dValueDt'].rolling(window=windowSize).mean() mDf=mDf.iloc[windowSize-1:] else: mDf['dValueDtFiltered']=savgol_filter(mDf['dValueDt'].values,windowSize-1, savgol_polyorder) mDf=mDf.iloc[windowSize/2+1+savgol_polyorder-1:] #mDf=mDf.iloc[windowSize-1:] except Exception as e: raise e finally: return mDf def fCVDNodesFromName(x): Nodes=x.replace('°','~') Nodes=Nodes.split('~') Nodes =[Node.lstrip().rstrip() for Node in Nodes if len(Node)>0] return Nodes def fgetMaxpMinFromName(CVDName,dfSegsNodesNDataDpkt): """ returns max. pMin for alle NODEs in CVDName """ nodeLst=fCVDNodesFromName(CVDName) df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['NODEsName'].isin(nodeLst)][['pMin','pMinMlc']] s=df.max() return s.pMin # --- Funktionen Allgemein # ----------------------- def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def genTimespans(timeStart ,timeEnd ,timeSpan=pd.Timedelta('12 Minutes') ,timeOverlap=pd.Timedelta('0 Seconds') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ): # generates timeSpan-Sections # if timeStart is # an int, it is considered as the number of desired Sections before timeEnd; timeEnd must be a time # a time, it is considered as timeStart # if timeEnd is # an int, it is considered as the number of desired Sections after timeStart; timeStart must be a time # a time, it is considered as timeEnd # if timeSpan is # an int, it is considered as the number of desired Sections # a time, it is considered as timeSpan # returns an array of tuples logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) xlims=[] try: if type(timeStart) == int: numOfDesiredSections=timeStart timeStartEff=timeEnd+timeEndPostfix-numOfDesiredSections*timeSpan+(numOfDesiredSections-1)*timeOverlap-timeStartPraefix else: timeStartEff=timeStart-timeStartPraefix logger.debug("{0:s}timeStartEff: {1:s}".format(logStr,str(timeStartEff))) if type(timeEnd) == int: numOfDesiredSections=timeEnd timeEndEff=timeStart-timeStartPraefix+numOfDesiredSections*timeSpan-(numOfDesiredSections-1)*timeOverlap+timeEndPostfix else: timeEndEff=timeEnd+timeEndPostfix logger.debug("{0:s}timeEndEff: {1:s}".format(logStr,str(timeEndEff))) if type(timeSpan) == int: numOfDesiredSections=timeSpan dt=timeEndEff-timeStartEff timeSpanEff=dt/numOfDesiredSections+(numOfDesiredSections-1)*timeOverlap else: timeSpanEff=timeSpan logger.debug("{0:s}timeSpanEff: {1:s}".format(logStr,str(timeSpanEff))) logger.debug("{0:s}timeOverlap: {1:s}".format(logStr,str(timeOverlap))) timeStartAct = timeStartEff while timeStartAct < timeEndEff: logger.debug("{0:s}timeStartAct: {1:s}".format(logStr,str(timeStartAct))) timeEndAct=timeStartAct+timeSpanEff xlim=(timeStartAct,timeEndAct) xlims.append(xlim) timeStartAct = timeEndAct - timeOverlap except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def gen2Timespans( timeStart # Anfang eines "Prozesses" ,timeEnd # Ende eines "Prozesses" ,timeSpan=pd.Timedelta('12 Minutes') ,timeStartPraefix=pd.Timedelta('0 Seconds') ,timeEndPostfix=pd.Timedelta('0 Seconds') ,roundStr=None # i.e. '5min': timeStart.round(roundStr) und timeEnd dito ): """ erzeugt 2 gleich lange Zeitbereiche 1 um timeStart herum 1 um timeEnd herum """ #print("timeStartPraefix: {:s}".format(str(timeStartPraefix))) #print("timeEndPostfix: {:s}".format(str(timeEndPostfix))) xlims=[] logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if roundStr != None: timeStart=timeStart.round(roundStr) timeEnd=timeEnd.round(roundStr) xlims.append((timeStart-timeStartPraefix,timeStart-timeStartPraefix+timeSpan)) xlims.append((timeEnd+timeEndPostfix-timeSpan,timeEnd+timeEndPostfix)) return xlims except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlims def fTotalTimeFromPairs( x ,denominator=None # i.e. pd.Timedelta('1 minute') for totalTime in Minutes ,roundToInt=True # round to and return as int if denominator is specified; else td is rounded by 2 ): tdTotal=pd.Timedelta('0 seconds') for idx,tPairs in enumerate(x): t1,t2=tPairs if idx==0: tLast=t2 else: if t1 <= tLast: print("Zeitpaar überlappt?!") td=t2-t1 if td < pd.Timedelta('1 seconds'): pass #print("Zeitpaar < als 1 Sekunde?!") tdTotal=tdTotal+td if denominator==None: return tdTotal else: td=tdTotal / denominator if roundToInt: td=int(round(td,0)) else: td=round(td,2) return td def findAllTimeIntervalls( df ,fct=lambda row: True if row['col'] == 46 else False ,tdAllowed=None ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: rows,cols=df.shape if df.empty: logger.debug("{:s}df ist leer".format(logStr)) elif rows == 1: logger.debug("{:s}df hat nur 1 Zeile: {:s}".format(logStr,df.to_string())) rowValue=fct(df.iloc[0]) if rowValue: tPair=(df.index[0],df.index[0]) tPairs.append(tPair) else: pass else: tEin=None # paarweise über alle Zeilen for (i1, row1), (i2, row2) in pairwise(df.iterrows()): row1Value=fct(row1) row2Value=fct(row2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not row1Value and row2Value: tEin=i2 # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif row1Value and not row2Value: if tEin != None: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: pass # sonst: Bed. ist jetzt Aus und war nicht Ein # Bed. kann nur im ersten Fall Ein gehen # wenn 1 x und 2 x elif row1Value and row2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # letztes Paar if row1Value and row2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) if tdAllowed != None: tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def findAllTimeIntervallsSeries( s=pd.Series() ,fct=lambda x: True if x == 46 else False ,tdAllowed=None # if not None all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=True ): """ # if fct: # alle [Zeitbereiche] finden fuer die fct Wahr ist; diese Zeitbereiche werden geliefert; es werden nur Paare geliefert; Wahr-Solitäre gehen nicht verloren sondern werden als Paar (t,t) geliefert # Wahr-Solitäre sind NUR dann enthalten, wenn s nur 1 Wert enthält und dieser Wahr ist; das 1 gelieferte Paar enthaelt dann den Solitär-Zeitstempel für beide Zeiten # tdAllowed can be be specified # dann im Anschluss in Zeitbereiche zusammenfassen, die nicht mehr als tdAllowed auseinander liegen; diese Zeitbereiche werden dann geliefert # if fct None: # tdAllowed must be specified # in Zeitbereiche zerlegen, die nicht mehr als Schwellwert tdAllowed auseinander liegen; diese Zeitbereiche werden geliefert # generell hat jeder gelieferte Zeitbereich Anfang und Ende (d.h. 2 Zeiten), auch dann, wenn dadurch ein- oder mehrfach der Schwellwert ignoriert werden muss # denn es soll kein Zeitbereich verloren gehen, der in s enthalten ist # wenn s nur 1 Wert enthält, wird 1 Zeitpaar mit demselben Zeitstempel für beide Zeiten geliefert, wenn Wert nicht Null # returns array of Time-Pair-Tuples >>> import pandas as pd >>> t=pd.Timestamp('2021-03-19 01:02:00') >>> t1=t +pd.Timedelta('1 second') >>> t2=t1+pd.Timedelta('1 second') >>> t3=t2+pd.Timedelta('1 second') >>> t4=t3+pd.Timedelta('1 second') >>> t5=t4+pd.Timedelta('1 second') >>> t6=t5+pd.Timedelta('1 second') >>> t7=t6+pd.Timedelta('1 second') >>> d = {t1: 46, t2: 0} # geht aus - kein Paar >>> s1PaarGehtAus=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 46} # geht ein - kein Paar >>> s1PaarGehtEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t5: 46, t6: 0} # geht ausE - kein Paar >>> s1PaarGehtAusE=pd.Series(data=d, index=[t5, t6]) >>> d = {t5: 0, t6: 46} # geht einE - kein Paar >>> s1PaarGehtEinE=pd.Series(data=d, index=[t5, t6]) >>> d = {t1: 46, t2: 46} # geht aus - ein Paar >>> s1PaarEin=pd.Series(data=d, index=[t1, t2]) >>> d = {t1: 0, t2: 0} # geht aus - kein Paar >>> s1PaarAus=pd.Series(data=d, index=[t1, t2]) >>> s2PaarAus=pd.concat([s1PaarGehtAus,s1PaarGehtAusE]) >>> s2PaarEin=pd.concat([s1PaarGehtEin,s1PaarGehtEinE]) >>> s2PaarAusEin=pd.concat([s1PaarGehtAus,s1PaarGehtEinE]) >>> s2PaarEinAus=pd.concat([s1PaarGehtEin,s1PaarGehtAusE]) >>> # 1 Wert >>> d = {t1: 46} # 1 Wert - Wahr >>> s1WertWahr=pd.Series(data=d, index=[t1]) >>> d = {t1: 44} # 1 Wert - Falsch >>> s1WertFalsch=pd.Series(data=d, index=[t1]) >>> d = {t1: None} # 1 Wert - None >>> s1WertNone=pd.Series(data=d, index=[t1]) >>> ### >>> # 46 0 >>> # 0 46 >>> # 0 0 >>> # 46 46 !1 Paar >>> # 46 0 46 0 >>> # 46 0 0 46 >>> # 0 46 0 46 >>> # 0 46 46 0 !1 Paar >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus) [] >>> findAllTimeIntervallsSeries(s1PaarGehtEin) [] >>> findAllTimeIntervallsSeries(s1PaarEin) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarAus) [] >>> findAllTimeIntervallsSeries(s2PaarEin) [] >>> findAllTimeIntervallsSeries(s2PaarAusEin) [] >>> findAllTimeIntervallsSeries(s2PaarEinAus) [(Timestamp('2021-03-19 01:02:02'), Timestamp('2021-03-19 01:02:05'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertFalsch) [] >>> ### >>> # 46 0 !1 Paar >>> # 0 46 !1 Paar >>> # 0 0 !1 Paar >>> # 46 46 !1 Paar >>> # 46 0 46 0 !2 Paare >>> # 46 0 0 46 !2 Paare >>> # 0 46 0 46 !2 Paare >>> # 0 46 46 0 !2 Paare >>> ### >>> findAllTimeIntervallsSeries(s1PaarGehtAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarGehtEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s1PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02'))] >>> findAllTimeIntervallsSeries(s2PaarAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarAusEin,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> findAllTimeIntervallsSeries(s2PaarEinAus,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:05'), Timestamp('2021-03-19 01:02:06'))] >>> # 1 Wert >>> findAllTimeIntervallsSeries(s1WertWahr,fct=None) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:01'))] >>> findAllTimeIntervallsSeries(s1WertNone,fct=None) [] >>> ### >>> d = {t1: 0, t3: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t1, t3]) >>> findAllTimeIntervallsSeries(s1PaarmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:03'))] >>> d = {t4: 0, t5: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t4, t5]) >>> s2PaarmZoZ=pd.concat([s1PaarmZ,s1PaaroZ]) >>> findAllTimeIntervallsSeries(s2PaarmZoZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t1: 0, t2: 0} >>> s1PaaroZ=pd.Series(data=d, index=[t1, t2]) >>> d = {t3: 0, t5: 0} >>> s1PaarmZ=pd.Series(data=d, index=[t3, t5]) >>> s2PaaroZmZ=pd.concat([s1PaaroZ,s1PaarmZ]) >>> findAllTimeIntervallsSeries(s2PaaroZmZ,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:05'))] >>> ### >>> d = {t6: 0, t7: 0} >>> s1PaaroZ2=pd.Series(data=d, index=[t6, t7]) >>> d = {t4: 0} >>> solitaer=pd.Series(data=d, index=[t4]) >>> s5er=pd.concat([s1PaaroZ,solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s5er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:02')), (Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] >>> s3er=pd.concat([s1PaaroZ,solitaer]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:01'), Timestamp('2021-03-19 01:02:04'))] >>> s3er=pd.concat([solitaer,s1PaaroZ2]) >>> findAllTimeIntervallsSeries(s3er,fct=None,tdAllowed=pd.Timedelta('1 second')) [(Timestamp('2021-03-19 01:02:04'), Timestamp('2021-03-19 01:02:07'))] """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) tPairs=[] try: if s.empty: logger.debug("{:s}Series {!s:s} ist leer".format(logStr,s.name)) elif s.size == 1: logger.debug("{:s}Series {!s:s} hat nur 1 Element: {:s}".format(logStr,s.name,s.to_string())) if fct != None: # 1 Paar mit selben Zeiten wenn das 1 Element Wahr sValue=fct(s.iloc[0]) if sValue: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: # 1 Paar mit selben Zeiten wenn das 1 Element nicht None sValue=s.iloc[0] if sValue != None: tPair=(s.index[0],s.index[0]) tPairs.append(tPair) else: pass else: tEin=None if fct != None: # paarweise über alle Zeiten for idx,((i1, s1), (i2, s2)) in enumerate(pairwise(s.iteritems())): s1Value=fct(s1) s2Value=fct(s2) # wenn 1 nicht x und 2 x tEin=t2 "geht Ein" if not s1Value and s2Value: tEin=i2 if idx > 0: # Info pass else: # beim ersten Paar "geht Ein" pass # wenn 1 x und 2 nicht x tAus=t2 "geht Aus" elif s1Value and not s2Value: if tEin != None: if tEin<i1: # Paar speichern tPair=(tEin,i1) tPairs.append(tPair) else: # singulaeres Ereignis # Paar mit selben Zeiten tPair=(tEin,i1) tPairs.append(tPair) pass else: # geht Aus ohne Ein zu sein if idx > 0: # Info pass else: # im ersten Paar pass # wenn 1 x und 2 x elif s1Value and s2Value: if tEin != None: pass else: # im ersten Wertepaar ist der Bereich Ein tEin=i1 # Behandlung letztes Paar # bleibt Ein am Ende der Series: Paar speichern if s1Value and s2Value: if tEin != None: tPair=(tEin,i2) tPairs.append(tPair) # Behandlung tdAllowed if tdAllowed != None: if debugOutput: logger.debug("{:s}Series {!s:s}: Intervalle werden mit {!s:s} zusammengefasst ...".format(logStr,s.name,tdAllowed)) tPairsOld=tPairs.copy() tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed,debugOutput=debugOutput) if debugOutput: tPairsZusammengefasst=sorted(list(set(tPairsOld) - set(tPairs))) if len(tPairsZusammengefasst)>0: logger.debug("{:s}Series {!s:s}: Intervalle wurden wg. {!s:s} zusammengefasst. Nachfolgend die zusgefassten Intervalle: {!s:s}. Sowie die entsprechenden neuen: {!s:s}".format( logStr ,s.name ,tdAllowed ,tPairsZusammengefasst ,sorted(list(set(tPairs) - set(tPairsOld))) )) else: # paarweise über alle Zeiten # neues Paar beginnen anzInPair=1 # Anzahl der Zeiten in aktueller Zeitspanne for (i1, s1), (i2, s2) in pairwise(s.iteritems()): td=i2-i1 if td > tdAllowed: # Zeit zwischen 2 Zeiten > als Schwelle: Zeitspanne ist abgeschlossen if tEin==None: # erstes Paar liegt bereits > als Schwelle auseinander # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert # aktuelle Zeitspanne beginnt beim 1. Wert und geht über Schwellwert tEin=i1 anzInPair=2 else: if anzInPair>=2: # Zeitspanne abschließen tPair=(tEin,i1) tPairs.append(tPair) # neue Zeitspanne beginnen tEin=i2 anzInPair=1 else: # Zeitspannenabschluss wird ignoriert, denn sonst Zeitspanne mit nur 1 Wert anzInPair=2 else: # Zeitspanne zugelassen, weiter ... if tEin==None: tEin=i1 anzInPair=anzInPair+1 # letztes Zeitpaar behandeln if anzInPair>=2: tPair=(tEin,i2) tPairs.append(tPair) else: # ein letzter Wert wuerde ueber bleiben, letzte Zeitspanne verlängern ... tPair=tPairs[-1] tPair=(tPair[0],i2) tPairs[-1]=tPair except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs def fCombineSubsequenttPairs( tPairs ,tdAllowed=pd.Timedelta('1 second') # all subsequent TimePairs with TimeDifference <= tdAllowed are combined to one TimePair ,debugOutput=False ): # returns tPairs logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: for idx,(tp1,tp2) in enumerate(pairwise(tPairs)): t1Ende=tp1[1] t2Start=tp2[0] if t2Start-t1Ende <= tdAllowed: if debugOutput: logger.debug("{:s} t1Ende: {!s:s} t2Start: {!s:s} Gap: {!s:s}".format(logStr,t1Ende,t2Start,t2Start-t1Ende)) tPairs[idx]=(tp1[0],tp2[1]) # Folgepaar in vorheriges Paar integrieren tPairs.remove(tp2) # Folgepaar löschen tPairs=fCombineSubsequenttPairs(tPairs,tdAllowed) # Rekursion except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return tPairs class RmError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') # --- Parameter und Funktionen LDS Reports # ---------------------------------------- def pltMakeCategoricalColors(color,nOfSubColorsReq=3,reversedOrder=False): """ Returns an array of rgb colors derived from color. Parameter: color: a rgb color nOfSubColorsReq: number of SubColors requested Raises: RmError >>> import matplotlib >>> color='red' >>> c=list(matplotlib.colors.to_rgb(color)) >>> import Rm >>> Rm.pltMakeCategoricalColors(c) array([[1. , 0. , 0. ], [1. , 0.375, 0.375], [1. , 0.75 , 0.75 ]]) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) rgb=None try: chsv = matplotlib.colors.rgb_to_hsv(color[:3]) arhsv = np.tile(chsv,nOfSubColorsReq).reshape(nOfSubColorsReq,3) arhsv[:,1] = np.linspace(chsv[1],0.25,nOfSubColorsReq) arhsv[:,2] = np.linspace(chsv[2],1,nOfSubColorsReq) rgb = matplotlib.colors.hsv_to_rgb(arhsv) if reversedOrder: rgb=list(reversed(rgb)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return rgb # Farben fuer Druecke SrcColorp='green' SrcColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorp)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorp='blue' SnkColorsp=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorp)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe # Farben fuer Fluesse SrcColorQ='red' SrcColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SrcColorQ)),nOfSubColorsReq=4,reversedOrder=False) # erste Farbe ist Original-Farbe SnkColorQ='orange' SnkColorsQ=pltMakeCategoricalColors(list(matplotlib.colors.to_rgb(SnkColorQ)),nOfSubColorsReq=4,reversedOrder=True) # letzte Farbe ist Original-Farbe lwBig=4.5 lwSmall=2.5 attrsDct={ 'p Src':{'color':SrcColorp,'lw':lwBig,'where':'post'} ,'p Snk':{'color':SnkColorp,'lw':lwSmall+1.,'where':'post'} ,'p Snk 2':{'color':'mediumorchid','where':'post'} ,'p Snk 3':{'color':'darkviolet','where':'post'} ,'p Snk 4':{'color':'plum','where':'post'} ,'Q Src':{'color':SrcColorQ,'lw':lwBig,'where':'post'} ,'Q Snk':{'color':SnkColorQ,'lw':lwSmall+1.,'where':'post'} ,'Q Snk 2':{'color':'indianred','where':'post'} ,'Q Snk 3':{'color':'coral','where':'post'} ,'Q Snk 4':{'color':'salmon','where':'post'} ,'Q Src RTTM':{'color':SrcColorQ,'lw':matplotlib.rcParams['lines.linewidth']+1.,'ls':'dotted','where':'post'} ,'Q Snk RTTM':{'color':SnkColorQ,'lw':matplotlib.rcParams['lines.linewidth'] ,'ls':'dotted','where':'post'} ,'Q Snk 2 RTTM':{'color':'indianred','ls':'dotted','where':'post'} ,'Q Snk 3 RTTM':{'color':'coral','ls':'dotted','where':'post'} ,'Q Snk 4 RTTM':{'color':'salmon','ls':'dotted','where':'post'} ,'p ISrc 1':{'color':SrcColorsp[-1],'ls':'dashdot','where':'post'} ,'p ISrc 2':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 3':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISrc 4':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 5':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISrc 6':{'color':SrcColorsp[-2],'ls':'dashdot','where':'post'} ,'p ISnk 1':{'color':SnkColorsp[0],'ls':'dashdot','where':'post'} ,'p ISnk 2':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 3':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} # ab hier selbe Farbe ,'p ISnk 4':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 5':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'p ISnk 6':{'color':SnkColorsp[1],'ls':'dashdot','where':'post'} ,'Q xSrc 1':{'color':SrcColorsQ[-1],'ls':'dashdot','where':'post'} ,'Q xSrc 2':{'color':SrcColorsQ[-2],'ls':'dashdot','where':'post'} ,'Q xSrc 3':{'color':SrcColorsQ[-3],'ls':'dashdot','where':'post'} ,'Q xSnk 1':{'color':SnkColorsQ[0],'ls':'dashdot','where':'post'} ,'Q xSnk 2':{'color':SnkColorsQ[1],'ls':'dashdot','where':'post'} ,'Q xSnk 3':{'color':SnkColorsQ[2],'ls':'dashdot','where':'post'} ,'Q (DE) Me':{'color': 'indigo','ls': 'dashdot','where': 'post','lw':1.5} ,'Q (DE) Re':{'color': 'cyan','ls': 'dashdot','where': 'post','lw':3.5} ,'p (DE) SS Me':{'color': 'magenta','ls': 'dashdot','where': 'post'} ,'p (DE) DS Me':{'color': 'darkviolet','ls': 'dashdot','where': 'post'} ,'p (DE) SS Re':{'color': 'magenta','ls': 'dotted','where': 'post'} ,'p (DE) DS Re':{'color': 'darkviolet','ls': 'dotted','where': 'post'} ,'p OPC LDSErgV':{'color':'olive' ,'lw':lwSmall-.5 ,'ms':matplotlib.rcParams['lines.markersize'] ,'marker':'x' ,'mec':'olive' ,'mfc':'olive' ,'where':'post'} ,'p OPC Src':{'color':SrcColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorp ,'mfc':SrcColorQ ,'where':'post'} ,'p OPC Snk':{'color':SnkColorp ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorp ,'mfc':SnkColorQ ,'where':'post'} ,'Q OPC Src':{'color':SrcColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SrcColorQ ,'mfc':SrcColorp ,'where':'post'} ,'Q OPC Snk':{'color':SnkColorQ ,'lw':0.05+2 ,'ms':matplotlib.rcParams['lines.markersize']/2 ,'marker':'D' ,'mec':SnkColorQ ,'mfc':SnkColorp ,'where':'post'} } attrsDctLDS={ 'Seg_AL_S_Attrs':{'color':'blue','lw':3.,'where':'post'} ,'Druck_AL_S_Attrs':{'color':'blue','lw':3.,'ls':'dashed','where':'post'} ,'Seg_MZ_AV_Attrs':{'color':'orange','zorder':3,'where':'post'} ,'Druck_MZ_AV_Attrs':{'color':'orange','zorder':3,'ls':'dashed','where':'post'} ,'Seg_LR_AV_Attrs':{'color':'green','zorder':1,'where':'post'} ,'Druck_LR_AV_Attrs':{'color':'green','zorder':1,'ls':'dashed','where':'post'} ,'Seg_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'where':'post'} ,'Druck_LP_AV_Attrs':{'color':'turquoise','zorder':0,'lw':1.50,'ls':'dashed','where':'post'} ,'Seg_NG_AV_Attrs':{'color':'red','zorder':2,'where':'post'} ,'Druck_NG_AV_Attrs':{'color':'red','zorder':2,'ls':'dashed','where':'post'} ,'Seg_SB_S_Attrs':{'color':'black','alpha':.5,'where':'post'} ,'Druck_SB_S_Attrs':{'color':'black','ls':'dashed','alpha':.75,'where':'post','lw':1.0} ,'Seg_AC_AV_Attrs':{'color':'indigo','where':'post'} ,'Druck_AC_AV_Attrs':{'color':'indigo','ls':'dashed','where':'post'} ,'Seg_ACF_AV_Attrs':{'color':'blueviolet','where':'post','lw':1.0} ,'Druck_ACF_AV_Attrs':{'color':'blueviolet','ls':'dashed','where':'post','lw':1.0} ,'Seg_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_ACC_Limits_Attrs':{'color':'indigo','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_TIMER_AV_Attrs':{'color':'chartreuse','where':'post'} ,'Druck_TIMER_AV_Attrs':{'color':'chartreuse','ls':'dashed','where':'post'} ,'Seg_AM_AV_Attrs':{'color':'chocolate','where':'post'} ,'Druck_AM_AV_Attrs':{'color':'chocolate','ls':'dashed','where':'post'} # ,'Seg_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[2][1]} # 'densely dotted' ,'Druck_DPDT_REF_Attrs':{'color':'violet','ls':linestyle_tuple[8][1]} # 'densely dashdotted' ,'Seg_DPDT_AV_Attrs':{'color':'fuchsia','where':'post','lw':2.0} ,'Druck_DPDT_AV_Attrs':{'color':'fuchsia','ls':'dashed','where':'post','lw':2.0} ,'Seg_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[6][1],'where':'post','lw':1.0} # 'loosely dashdotted' ,'Druck_QM16_AV_Attrs':{'color':'sandybrown','ls':linestyle_tuple[10][1],'where':'post','lw':1.0} # 'loosely dashdotdotted' } pSIDEvents=re.compile('(?P<Prae>IMDI\.)?Objects\.(?P<colRegExMiddle>3S_FBG_ESCHIEBER|FBG_ESCHIEBER{1})\.(3S_)?(?P<colRegExSchieberID>[a-z,A-Z,0-9,_]+)\.(?P<colRegExEventID>(In\.ZUST|In\.LAEUFT|In\.LAEUFT_NICHT|In\.STOER|Out\.AUF|Out\.HALT|Out\.ZU)$)') # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} valRegExMiddleCmds='3S_FBG_ESCHIEBER' # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) LDSParameter=[ 'ACC_SLOWTRANSIENT' ,'ACC_TRANSIENT' ,'DESIGNFLOW' ,'DT' ,'FILTERWINDOW' #,'L_PERCENT' ,'L_PERCENT_STDY' ,'L_PERCENT_STRAN' ,'L_PERCENT_TRANS' ,'L_SHUTOFF' ,'L_SLOWTRANSIENT' ,'L_SLOWTRANSIENTQP' ,'L_STANDSTILL' ,'L_STANDSTILLQP' ,'L_TRANSIENT' ,'L_TRANSIENTQP' ,'L_TRANSIENTVBIGF' ,'L_TRANSIENTPDNTF' ,'MEAN' ,'NAME' ,'ORDER' ,'TIMER' ,'TTIMERTOALARM' ,'TIMERTOLISS' ,'TIMERTOLIST' ] LDSParameterDataD={ 'ACC_SLOWTRANSIENT':0.1 ,'ACC_TRANSIENT':0.8 ,'DESIGNFLOW':250. ,'DT':1 ,'FILTERWINDOW':180 #,'L_PERCENT':1.6 ,'L_PERCENT_STDY':1.6 ,'L_PERCENT_STRAN':1.6 ,'L_PERCENT_TRANS':1.6 ,'L_SHUTOFF':2. ,'L_SLOWTRANSIENT':4. ,'L_SLOWTRANSIENTQP':4. ,'L_STANDSTILL':2. ,'L_STANDSTILLQP':2. ,'L_TRANSIENT':10. ,'L_TRANSIENTQP':10. ,'L_TRANSIENTVBIGF':3. ,'L_TRANSIENTPDNTF':1.5 ,'MEAN':1 ,'ORDER':1 ,'TIMER':180 ,'TTIMERTOALARM':45 # TIMER/4 ,'TIMERTOLISS':180 ,'TIMERTOLIST':180 ,'NAME':'' } def fSEGNameFromPV_2(Beschr): # fSEGNameFromSWVTBeschr # 2,3,4,5 if Beschr in ['',None]: return None m=re.search(Lx.pID,Beschr) if m == None: return Beschr return m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5') def fSEGNameFromPV_3(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') def fSEGNameFromPV_3m(PV): # fSEGNameFromPV # ... m=re.search(Lx.pID,PV) #print("C4: {:s} C6: {:s}".format(m.group('C4'),m.group('C6'))) if m.group('C4')=='AAD' and m.group('C6')=='_OHN': return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_OHV1' elif m.group('C4')=='OHN' and m.group('C6')=='_NGD': return m.group('C3')+'_'+'OHV2'+'_'+m.group('C5')+m.group('C6') else: return m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') # Ableitung eines DIVPipelineNamens von PV def fDIVNameFromPV(PV): m=re.search(Lx.pID,PV) return m.group('C2')+'-'+m.group('C4') # Ableitung eines DIVPipelineNamens von SEGName def fDIVNameFromSEGName(SEGName): if pd.isnull(SEGName): return None # dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) m=re.search('(\d+)_(\w+)_(\w+)_(\w+)',SEGName) if m == None: return SEGName return m.group(1)+'_'+m.group(3) #def getNamesFromOPCITEM_ID(dfSegsNodesNDataDpkt # ,OPCITEM_ID): # """ # Returns tuple (DIVPipelineName,SEGName) from OPCITEM_ID PH # """ # df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['OPCITEM_ID']==OPCITEM_ID] # if not df.empty: # return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def fGetBaseIDFromResID( ID='Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.MW.value' ): """ Returns 'Objects.3S_XXX_DRUCK.3S_6_BNV_01_PTI_01.In.' funktioniert im Prinzip fuer SEG- und Druck-Ergs: jede Erg-PV eines Vektors liefert die Basis gueltig fuer alle Erg-PVs des Vektors d.h. die Erg-PVs eines Vektors unterscheiden sich nur hinten siehe auch fGetSEGBaseIDFromSEGName """ if pd.isnull(ID): return None m=re.search(Lx.pID,ID) if m == None: return None try: base=m.group('A')+'.'+m.group('B')\ +'.'+m.group('C1')\ +'_'+m.group('C2')\ +'_'+m.group('C3')\ +'_'+m.group('C4')\ +'_'+m.group('C5')\ +m.group('C6') #print(m.groups()) #print(m.groupdict()) if 'C7' in m.groupdict().keys(): if m.group('C7') != None: base=base+m.group('C7') base=base+'.'+m.group('D')\ +'.' #print(base) except: base=m.group(0)+' (Fehler in fGetBaseIDFromResID)' return base def fGetSEGBaseIDFromSEGName( SEGName='6_AAD_41_OHV1' ): """ Returns 'Objects.3S_FBG_SEG_INFO.3S_L_'+SEGName+'.In.' In some cases SEGName is manipulated ... siehe auch fGetBaseIDFromResID """ if SEGName == '6_AAD_41_OHV1': x='6_AAD_41_OHN' elif SEGName == '6_OHV2_41_NGD': x='6_OHN_41_NGD' else: x=SEGName return 'Objects.3S_FBG_SEG_INFO.3S_L_'+x+'.In.' def getNamesFromSEGResIDBase(dfSegsNodesNDataDpkt ,SEGResIDBase): """ Returns tuple (DIVPipelineName,SEGName) from SEGResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==SEGResIDBase] if not df.empty: return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0]) def getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt ,DruckResIDBase): """ Returns tuple (DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) from DruckResIDBase """ df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase']==DruckResIDBase] if not df.empty: #return (df['DIVPipelineName'].iloc[0],df['SEGName'].iloc[0],df['SEGResIDBase'].iloc[0]) tupleLst=[] for index,row in df.iterrows(): tupleItem=(row['DIVPipelineName'],row['SEGName'],row['SEGResIDBase'],row['SEGOnlyInLDSPara']) tupleLst.append(tupleItem) return tupleLst else: return [] def fGetErgIDsFromBaseID( baseID='Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_BUA.In.' ,dfODI=pd.DataFrame() # df mit ODI Parametrierungsdaten ,strSep=' ' ,patternPat='^IMDI.' # ,pattern=True # nur ergIDs, fuer die 2ndPatternPat zutrifft liefern ): """ returns string mit strSep getrennten IDs aus dfODI, welche baseID enthalten (und bei pattern WAHR patternPat matchen) baseID (und group(0) von patternPat bei pattern WAHR) sind in den IDs entfernt """ if baseID in [None,'']: return None df=dfODI[dfODI.index.str.contains(baseID)] if df.empty: return None if pattern: ergIDs=''.join([e.replace(baseID,'').replace(re.search(patternPat,e).group(0),'')+' ' for e in df.index if re.search(patternPat,e) != None]) else: ergIDs=''.join([e.replace(baseID,'')+' ' for e in df.index if re.search(patternPat,e) == None]) return ergIDs def dfSegsNodesNDataDpkt( VersionsDir=r"C:\3s\Projekte\Projekt\04 - Versionen\Version82.3" ,Model=r"MDBDOC\FBG.mdb" # a Access Model ,am=None # a Access Model already processed ,SEGsDefPattern='(?P<SEG_Ki>\S+)~(?P<SEG_Kk>\S+)$' # RSLW-Beschreibung: liefert die Knotennamen der Segmentdefinition () ,RIDefPattern='(?P<Prae>\S+)\.(?P<Post>RICHT.S)$' # SWVT-Beschreibung (RICHT-DP): liefert u.a. SEGName ,fSEGNameFromPV_2=fSEGNameFromPV_2 # Funktion, die von SWVT-Beschreibung (RICHT-DP) u.a. SEGName liefert ,fGetBaseIDFromResID=fGetBaseIDFromResID # Funktion, die von OPCITEM-ID des PH-Kanals eines KNOTens den Wortstamm der Knotenergebnisse liefert ,fGetSEGBaseIDFromSEGName=fGetSEGBaseIDFromSEGName # Funktion, die aus SEGName den Wortstamm der Segmentergebnisse liefert ,LDSPara=r"App LDS\Modelle\WDFBG\B1\V0\BZ1\LDS_Para.xml" ,LDSParaPT=r"App LDS\SirOPC\AppLDS_DPDTParams.csv" ,ODI=r"App LDS\SirOPC\AppLDS_ODI.csv" ,LDSParameter=LDSParameter ,LDSParameterDataD=LDSParameterDataD ): """ alle Segmente mit Pfaddaten (Kantenzuege) mit Kanten- und Knotendaten sowie Parametrierungsdaten returns df: DIVPipelineName SEGName SEGNodes (Ki~Kk; Schluessel in LDSPara) SEGOnlyInLDSPara NODEsRef NODEsRef_max NODEsSEGLfdNr NODEsSEGLfdNrType NODEsName OBJTYPE ZKOR Blockname ATTRTYPE (PH) CLIENT_ID OPCITEM_ID NAME (der DPKT-Gruppe) DruckResIDBase SEGResIDBase SEGResIDs SEGResIDsIMDI DruckResIDs DruckResIDsIMDI NODEsSEGDruckErgLfdNr # LDSPara ACC_SLOWTRANSIENT ACC_TRANSIENT DESIGNFLOW DT FILTERWINDOW L_PERCENT_STDY L_PERCENT_STRAN L_PERCENT_TRANS L_SHUTOFF L_SLOWTRANSIENT L_SLOWTRANSIENTQP L_STANDSTILL L_STANDSTILLQP L_TRANSIENT L_TRANSIENTPDNTF L_TRANSIENTQP L_TRANSIENTVBIGF MEAN ORDER TIMER TIMERTOLISS TIMERTOLIST TTIMERTOALARM # LDSParaPT #ID pMin DT_Vorhaltemass TTimer_PMin Faktor_PMin MaxL_PMin pMinMlc pMinMlcMinSEG pMinMlcMaxSEG """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfSegsNodesNDataDpkt=pd.DataFrame() try: ###### --- LDSPara LDSParaFile=os.path.join(VersionsDir,LDSPara) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSPara',LDSPara)) with open(LDSParaFile) as f: xml = f.read() xmlWellFormed='<root>'+xml+'</root>' root=ET.fromstring(xmlWellFormed) LDSParameterData={} for key in LDSParameterDataD.keys(): LDSParameterData[key]=[] logger.debug("{:s}LDSParameter: {!s:s}.".format(logStr,LDSParameter)) for idx,element in enumerate(root.iter(tag='LDSI')): attribKeysMute=[] for key,value in element.attrib.items(): if key not in LDSParameter: logger.warning("{:s}{:s}: Parameter: {:s} undefiniert.".format(logStr,element.attrib['NAME'],key)) attribKeysMute.append(key) keysIst=element.attrib.keys() keysSoll=set(LDSParameter) keysExplizitFehlend=keysSoll-keysIst LDSIParaDct=element.attrib for key in keysExplizitFehlend: if key=='ORDER': LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) elif key=='TTIMERTOALARM': LDSIParaDct[key]=int(LDSIParaDct['TIMER'])/4 logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) else: LDSIParaDct[key]=LDSParameterDataD[key] logger.debug("{:s}{:25s}: explizit fehlender Parameter: {:20s} ({!s:s}).".format(logStr,element.attrib['NAME'],key,LDSIParaDct[key])) keyListToProcess=[key for key in LDSIParaDct.keys() if key not in attribKeysMute] for key in keyListToProcess: LDSParameterData[key].append(LDSIParaDct[key]) df=pd.DataFrame.from_dict(LDSParameterData) df=df.set_index('NAME').sort_index() df.index.rename('SEGMENT', inplace=True) df=df[sorted(df.columns.to_list())] df = df.apply(pd.to_numeric) #logger.debug("{:s}df: {:s}".format(logStr,df.to_string())) logger.debug("{:s}Parameter, die nicht auf Standardwerten sind:".format(logStr)) for index, row in df.iterrows(): for colName, colValue in zip(df.columns.to_list(),row): if colValue != LDSParameterDataD[colName]: logger.debug("Segment: {:30s}: Parameter: {:20s} Wert: {:10s} (Standard: {:s})".format(index,colName,str(colValue),str(LDSParameterDataD[colName]))) dfPara=df # --- Einlesen Modell if am == None: accFile=os.path.join(VersionsDir,Model) logger.info("{:s}###### {:10s}: {:s}: Lesen und verarbeiten ...".format(logStr,'Modell',Model)) am=Am.Am(accFile=accFile) V_BVZ_RSLW=am.dataFrames['V_BVZ_RSLW'] V_BVZ_SWVT=am.dataFrames['V_BVZ_SWVT'] V3_KNOT=am.dataFrames['V3_KNOT'] V3_VBEL=am.dataFrames['V3_VBEL'] V3_DPKT=am.dataFrames['V3_DPKT'] V3_RSLW_SWVT=am.dataFrames['V3_RSLW_SWVT'] # --- Segmente ermitteln # --- per Modell SEGsDefinesPerRICHT=V3_RSLW_SWVT[ (V3_RSLW_SWVT['BESCHREIBUNG'].str.match(SEGsDefPattern).isin([True])) # Muster Ki~Kk ... & #! (V3_RSLW_SWVT['BESCHREIBUNG_SWVT'].str.match(RIDefPattern).isin([True])) # Muster Förderrichtungs-PV ... ].copy(deep=True) SEGsDefinesPerRICHT=SEGsDefinesPerRICHT[['BESCHREIBUNG','BESCHREIBUNG_SWVT']] # --- nur per LDS Para lSEGOnlyInLDSPara=[str(SEGNodes) for SEGNodes in dfPara.index if str(SEGNodes) not in SEGsDefinesPerRICHT['BESCHREIBUNG'].values] for SEGNodes in lSEGOnlyInLDSPara: logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) # --- zusammenfassen SEGsDefines=pd.concat([SEGsDefinesPerRICHT,pd.DataFrame(lSEGOnlyInLDSPara,columns=['BESCHREIBUNG'])]) # Knotennamen der SEGDef ergänzen df=SEGsDefines['BESCHREIBUNG'].str.extract(SEGsDefPattern,expand=True) dfCols=df.columns.to_list() SEGsDefines=pd.concat([SEGsDefines,df],axis=1) # ausduennen SEGsDefines=SEGsDefines[dfCols+['BESCHREIBUNG_SWVT','BESCHREIBUNG']] # sortieren SEGsDefines=SEGsDefines.sort_values(by=['BESCHREIBUNG_SWVT','BESCHREIBUNG']).reset_index(drop=True) # SEGName SEGsDefines['BESCHREIBUNG_SWVT']=SEGsDefines.apply(lambda row: row['BESCHREIBUNG_SWVT'] if not pd.isnull(row['BESCHREIBUNG_SWVT']) else row['BESCHREIBUNG'] ,axis=1) #print(SEGsDefines) SEGsDefines['SEGName']=SEGsDefines['BESCHREIBUNG_SWVT'].apply(lambda x: fSEGNameFromPV_2(x)) # --- Segmentkantenzuege ermitteln dfSegsNodeLst={} # nur zu Kontrollzwecken dfSegsNode=[] for index,row in SEGsDefines[~SEGsDefines[dfCols[-1]].isnull()].iterrows(): df=Xm.Xm.constructShortestPathFromNodeList(df=V3_VBEL.reset_index() ,sourceCol='NAME_i' ,targetCol='NAME_k' ,nl=[row[dfCols[0]],row[dfCols[-1]]] ,weight=None,query=None,fmask=None,filterNonQ0Rows=True) s=pd.concat([pd.Series([row[dfCols[0]]]),df['nextNODE']]) s.name=row['SEGName'] dfSegsNodeLst[row['SEGName']]=s.reset_index(drop=True) df2=pd.DataFrame(s.reset_index(drop=True)).rename(columns={s.name:'NODEs'}) df2['SEGName']=s.name df2=df2[['SEGName','NODEs']] sObj=pd.concat([pd.Series(['None']),df['OBJTYPE']]) sObj.name='OBJTYPE' df3=pd.concat([df2,pd.DataFrame(sObj.reset_index(drop=True))],axis=1) df4=df3.reset_index().rename(columns={'index':'NODEsLfdNr','NODEs':'NODEsName'})[['SEGName','NODEsLfdNr','NODEsName','OBJTYPE']] df4['NODEsType']=df4.apply(lambda row: row['NODEsLfdNr'] if row['NODEsLfdNr'] < df4.index[-1] else -1, axis=1) df4=df4[['SEGName','NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] df4['SEGNodes']=row[dfCols[0]]+'~'+row[dfCols[-1]] dfSegsNode.append(df4) dfSegsNodes=pd.concat(dfSegsNode).reset_index(drop=True) # --- dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes['NODEsRef']=dfSegsNodes.sort_values( by=['NODEsName','SEGOnlyInLDSPara','NODEsType','SEGName'] ,ascending=[True,True,False,True]).groupby(['NODEsName']).cumcount() + 1 dfSegsNodes=pd.merge(dfSegsNodes,dfSegsNodes.groupby(['NODEsName']).max(),left_on='NODEsName',right_index=True,suffixes=('','_max')) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsLfdNr','NODEsType','NODEsName','OBJTYPE']] dfSegsNodes=dfSegsNodes.rename(columns={'NODEsLfdNr':'NODEsSEGLfdNr','NODEsType':'NODEsSEGLfdNrType'}) ### # --- ### dfSegsNodes['SEGOnlyInLDSPara']=dfSegsNodes.apply(lambda row: True if row['SEGNodes'] in lSEGOnlyInLDSPara else False,axis=1) dfSegsNodes=dfSegsNodes[['SEGName','SEGNodes','SEGOnlyInLDSPara' ,'NODEsRef' ,'NODEsRef_max' ,'NODEsSEGLfdNr','NODEsSEGLfdNrType','NODEsName','OBJTYPE']] # --- Knotendaten ergaenzen dfSegsNodesNData=pd.merge(dfSegsNodes,V3_KNOT, left_on='NODEsName',right_on='NAME',suffixes=('','KNOT')) dfSegsNodesNData=dfSegsNodesNData.filter(items=dfSegsNodes.columns.to_list()+['ZKOR','NAME_CONT','NAME_VKNO','pk']) dfSegsNodesNData=dfSegsNodesNData.rename(columns={'NAME_CONT':'Blockname','NAME_VKNO':'Bl.Kn. fuer Block'}) # --- Knotendatenpunktdaten ergänzen V3_DPKT_KNOT=pd.merge(V3_DPKT,V3_KNOT,left_on='fkOBJTYPE',right_on='pk',suffixes=('','_KNOT')) V3_DPKT_KNOT_PH=V3_DPKT_KNOT[V3_DPKT_KNOT['ATTRTYPE'].isin(['PH'])] # Mehrfacheintraege sollte es nicht geben ... # V3_DPKT_KNOT_PH[V3_DPKT_KNOT_PH.duplicated(subset=['fkOBJTYPE'])] df=pd.merge(dfSegsNodesNData,V3_DPKT_KNOT_PH,left_on='pk',right_on='fkOBJTYPE',suffixes=('','_DPKT'),how='left') cols=dfSegsNodesNData.columns.to_list() cols.remove('pk') df=df.filter(items=cols+['ATTRTYPE','CLIENT_ID','OPCITEM_ID','NAME']) dfSegsNodesNDataDpkt=df #dfSegsNodesNDataDpkt # --- colList=dfSegsNodesNDataDpkt.columns.to_list() dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fDIVNameFromSEGName(x)) ### dfSegsNodesNDataDpkt['DIVPipelineName']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(1)+'_'+re.search('(\d+)_(\w+)_(\w+)_(\w+)',x).group(3) ) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.filter(items=['DIVPipelineName']+colList) dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt.sort_values(by=['DIVPipelineName','SEGName','NODEsSEGLfdNr']).reset_index(drop=True) dfSegsNodesNDataDpkt['DruckResIDBase']=dfSegsNodesNDataDpkt['OPCITEM_ID'].apply(lambda x: fGetBaseIDFromResID(x) ) dfSegsNodesNDataDpkt['SEGResIDBase']=dfSegsNodesNDataDpkt['SEGName'].apply(lambda x: fGetSEGBaseIDFromSEGName(x) ) ###### --- ODI ODIFile=os.path.join(VersionsDir,ODI) logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'ODI',ODI)) dfODI=Lx.getDfFromODI(ODIFile) dfSegsNodesNDataDpkt['SEGResIDs']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['SEGResIDsIMDI']=dfSegsNodesNDataDpkt['SEGResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) dfSegsNodesNDataDpkt['DruckResIDs']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=False)) dfSegsNodesNDataDpkt['DruckResIDsIMDI']=dfSegsNodesNDataDpkt['DruckResIDBase'].apply(lambda x: fGetErgIDsFromBaseID(baseID=x,dfODI=dfODI,pattern=True)) # --- lfd. Nr. der Druckmessstelle im Segment ermitteln df=dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['DruckResIDBase'].notnull()].copy() df['NODEsSEGDruckErgLfdNr']=df.groupby('SEGName').cumcount() + 1 df['NODEsSEGDruckErgLfdNr']=df['NODEsSEGDruckErgLfdNr'].astype(int) cols=dfSegsNodesNDataDpkt.columns.to_list() cols.append('NODEsSEGDruckErgLfdNr') dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt ,df ,left_index=True ,right_index=True ,how='left' ,suffixes=('','_df') ).filter(items=cols) dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr']=dfSegsNodesNDataDpkt['NODEsSEGDruckErgLfdNr'].astype(int,errors='ignore') # LDSPara ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfPara,left_on='SEGNodes',right_index=True,suffixes=('','_LDSPara'),how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) #for SEGNodes in [str(SEGNodes) for SEGNodes in df.index if str(SEGNodes) not in dfSegsNodesNDataDpkt['SEGNodes'].values]: # logger.warning("{:s}LDSPara SEG {:s} ist nicht Modell-definiert!".format(logStr,SEGNodes)) ###### --- LDSParaPT LDSParaPTFile=os.path.join(VersionsDir,LDSParaPT) if os.path.exists(LDSParaPTFile): logger.info("{:s}###### {:10s}: {:s}: Lesen und prüfen ...".format(logStr,'LDSParaPT',LDSParaPT)) dfDPDTParams=pd.read_csv(LDSParaPTFile,delimiter=';',error_bad_lines=False,warn_bad_lines=True) dfMehrfach=dfDPDTParams.groupby(by='#ID').filter(lambda x: len(x) > 1) rows,cols=dfMehrfach.shape if rows > 0: logger.warning("{:s}Mehrfachkonfigurationen:".format(logStr)) logger.warning("{:s}".format(dfMehrfach.to_string())) dfDPDTParams=dfDPDTParams.groupby(by='#ID').first() # LDSParaPT ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,dfDPDTParams,left_on='CLIENT_ID',right_on='#ID',how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfOhne=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID']].reset_index(drop=True) rows,cols=dfOhne.shape if rows > 0: logger.debug("{:s}Druckmessstellen ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(dfOhne.to_string())) dfSegsNodesNDataDpkt['pMinMlc']=dfSegsNodesNDataDpkt.apply(lambda row: row['ZKOR']+row['pMin']*100000/(794.*9.81),axis=1) g=dfSegsNodesNDataDpkt.groupby(by='SEGName') df=g.pMinMlc.agg(pMinMlcMinSEG=np.min,pMinMlcMaxSEG=np.max) # pMinMlcMinSEG, pMinMlcMaxSEG ergaenzen logger.debug("{:s}dfSegsNodesNDataDpkt: shape vorher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) dfSegsNodesNDataDpkt=pd.merge(dfSegsNodesNDataDpkt,df,left_on='SEGName',right_index=True,how='left') logger.debug("{:s}dfSegsNodesNDataDpkt: shape nachher: {!s:s}".format(logStr,dfSegsNodesNDataDpkt.shape)) # Segmente ohne Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt.groupby(['SEGName']).first() df=df[pd.isnull(df['pMinMlcMinSEG'])][['DIVPipelineName','SEGNodes']] rows,cols=df.shape if rows > 0: logger.debug("{:s}ganze Segmente ohne Mindestdruck:".format(logStr)) logger.debug("{:s}".format(df.to_string())) # Mindestdruecke ausgeben df=dfSegsNodesNDataDpkt[(~pd.isnull(dfSegsNodesNDataDpkt['CLIENT_ID']) & dfSegsNodesNDataDpkt['CLIENT_ID'].str.len()>0 ) & (~pd.isnull(dfSegsNodesNDataDpkt['pMin'])) ][['DIVPipelineName','SEGName','NODEsName','ZKOR','CLIENT_ID','pMin']].reset_index(drop=True) logger.debug("{:s}dfSegsNodesNDataDpkt: Mindestdrücke: {!s:s}".format(logStr,df.to_string())) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfSegsNodesNDataDpkt def fResValidSeriesSTAT_S(x): # STAT_S if pd.isnull(x)==False: if x >=0: return True else: return False else: return False def fResValidSeriesSTAT_S601(x): # STAT_S if pd.isnull(x)==False: if x==601: return True else: return False else: return False def fResValidSeriesAL_S(x,value=20): # AL_S if pd.isnull(x)==False: if x==value: return True else: return False else: return False def fResValidSeriesAL_S10(x): return fResValidSeriesAL_S(x,value=10) def fResValidSeriesAL_S4(x): return fResValidSeriesAL_S(x,value=4) def fResValidSeriesAL_S3(x): return fResValidSeriesAL_S(x,value=3) ResChannelFunctions=[fResValidSeriesSTAT_S,fResValidSeriesAL_S,fResValidSeriesSTAT_S601] ResChannelResultNames=['Zustaendig','Alarm','Stoerung'] ResChannelTypes=['STAT_S','AL_S','STAT_S'] # (fast) alle verfuegbaren Erg-Kanaele ResChannelTypesAll=['AL_S','STAT_S','SB_S','MZ_AV','LR_AV','NG_AV','LP_AV','AC_AV','ACCST_AV','ACCTR_AV','ACF_AV','TIMER_AV','AM_AV','DNTD_AV','DNTP_AV','DPDT_AV' ,'DPDT_REF_AV' ,'DPDT_REF' # Workaround ,'QM_AV','ZHKNR_S'] baseColorsSchieber=[ # Schieberfarben 'g' # 1 ,'b' # 2 ,'m' # 3 ,'r' # 4 ,'c' # 5 # alle Basisfarben außer y gelb ,'tab:blue' # 6 ,'tab:orange' # 7 ,'tab:green' # 8 ,'tab:red' # 9 ,'tab:purple' # 10 ,'tab:brown' # 11 ,'tab:pink' # 12 ,'gold' # 13 ,'fuchsia' # 14 ,'coral' # 15 ] markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer ] # --- Reports LDS: Funktionen und Hilfsfunktionen # ----------------------------------------------- def getLDSResVecDf( ResIDBase='ID.' # i.e. for Segs Objects.3S_XYZ_SEG_INFO.3S_L_6_EL1_39_TUD.In. / i.e. for Drks Objects.3S_XYZ_DRUCK.3S_6_EL1_39_PTI_02_E.In. ,LDSResBaseType='SEG' # or Druck ,lx=None ,timeStart=None,timeEnd=None ,ResChannelTypes=ResChannelTypesAll ,timeShiftPair=None ): """ returns a df: the specified LDSResChannels (AL_S, ...) for an ResIDBase """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfResVec=pd.DataFrame() try: # zu lesende IDs basierend auf ResIDBase bestimmen ErgIDs=[ResIDBase+ext for ext in ResChannelTypes] IMDIErgIDs=['IMDI.'+ID for ID in ErgIDs] ErgIDsAll=[*ErgIDs,*IMDIErgIDs] # Daten lesen von TC-H5s dfFiltered=lx.getTCsFromH5s(timeStart=timeStart,timeEnd=timeEnd,LDSResOnly=True,LDSResColsSpecified=ErgIDsAll,LDSResTypeSpecified=LDSResBaseType,timeShiftPair=timeShiftPair) # Spalten umbenennen colDct={} for col in dfFiltered.columns: m=re.search(Lx.pID,col) colDct[col]=m.group('E') dfResVec=dfFiltered.rename(columns=colDct) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfResVec def fGetResTimes( ResIDBases=[] # Liste der Wortstaemme der Ergebnisvektoren ,df=pd.DataFrame() # TCsLDSRes... ,ResChannelTypes=ResChannelTypes # ['STAT_S','AL_S','STAT_S'] # Liste der Ergebnisvektoren Postfixe ,ResChannelFunctions=ResChannelFunctions # [fResValidSeriesSTAT_S,ResValidSeriesAL_S,fResValidSeriesSTAT_S601] # Liste der Ergebnisvektoren Funktionen ,ResChannelResultNames=ResChannelResultNames # ['Zustaendig','Alarm','Stoerung'] # Liste der key-Namen der Ergebnisse ,tdAllowed=pd.Timedelta('1 second') # erlaubte Zeitspanne zwischen geht und kommt (die beiden an diese Zeitspanne angrenzenden Zeitbereiche werden als 1 Zeit gewertet) ): """ Return: dct key: ResIDBase value: dct: key: ResChannelResultName Value: Liste mit Zeitpaaren (oder leere Liste) """ resTimesDct={} for ResIDBase in ResIDBases: tPairsDct={} for idx,ext in enumerate(ResChannelTypes): ID=ResIDBase+ext if ext == 'AL_S': debugOutput=True else: debugOutput=False if ID in df: #print("{:s} in Ergliste".format(ID)) tPairs=findAllTimeIntervallsSeries( s=df[ID].dropna() #! ,fct=ResChannelFunctions[idx] ,tdAllowed=tdAllowed#pd.Timedelta('1 second') ,debugOutput=debugOutput ) else: #print("{:s} nicht in Ergliste".format(ID)) tPairs=[] tPairsDct[ResChannelResultNames[idx]]=tPairs resTimesDct[ResIDBase]=tPairsDct return resTimesDct def getAlarmStatistikData( h5File='a.h5' ,dfSegsNodesNDataDpkt=pd.DataFrame() ,timeShiftPair=None # z.B. (1,'H') bei Replay ): """ Returns TCsLDSRes1,TCsLDSRes2,dfCVDataOnly """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) TCsLDSRes1=pd.DataFrame() TCsLDSRes2=pd.DataFrame() try: # "connect" to the App Logs lx=Lx.AppLog(h5File=h5File) if hasattr(lx, 'h5FileLDSRes'): logger.error("{0:s}{1:s}".format(logStr,'In den TCs nur Res und nicht Res1 und Res2?!')) raise RmError # zu lesende Daten ermitteln l=dfSegsNodesNDataDpkt['DruckResIDBase'].unique() l = l[~pd.isnull(l)] DruckErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] # l=dfSegsNodesNDataDpkt['SEGResIDBase'].unique() l = l[~pd.isnull(l)] SEGErgIDs=[*[ID+'AL_S' for ID in l],*[ID+'STAT_S' for ID in l],*[ID+'SB_S' for ID in l],*[ID+'ZHKNR_S' for ID in l]] ErgIDs=[*DruckErgIDs,*SEGErgIDs] # Daten lesen TCsLDSRes1,TCsLDSRes2=lx.getTCsFromH5s(LDSResOnly=True,LDSResColsSpecified=ErgIDs,timeShiftPair=timeShiftPair) (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) dfCVDataOnly=lx.getCVDFromH5(timeDelta=timeDelta,returnDfCVDataOnly=True) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return TCsLDSRes1,TCsLDSRes2,dfCVDataOnly def processAlarmStatistikData( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,tdAllowed=None # pd.Timedelta('1 second') # Alarm geht ... Alarm kommt (wieder): wenn Zeitspanne ... <= tdAllowed, dann wird dies _gewertet als dieselbe Alarmzeitspanne # d.h. es handelt sich _gewertet inhaltlich um denselben Alarm # None zählt die Alarme strikt getrennt ): """ Returns: SEGResDct,DruckResDct ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.<KEY>. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: <KEY>S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Zeiten SEGErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['SEGResIDBase'].unique() if not pd.isnull(baseID)] SEGResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes1,tdAllowed=tdAllowed) logger.debug("{:s}SEGResDct: {!s:s}".format(logStr,SEGResDct)) # Zeiten DruckErgs mit zustaendig und Alarm ... l=[baseID for baseID in dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']]['DruckResIDBase'].unique() if not pd.isnull(baseID)] DruckResDct=fGetResTimes(ResIDBases=l,df=TCsLDSRes2,tdAllowed=tdAllowed) logger.debug("{:s}DruckResDct: {!s:s}".format(logStr,DruckResDct)) # verschiedene Auspraegungen pro Alarmzeit ermitteln for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] for keyStr, colExt in zip(['AL_S_SB_S','<KEY>'],['SB_S','ZHKNR_S']): lGes=[] if tPairs != []: for tPair in tPairs: col=ID+colExt lSingle=ResSrc.loc[tPair[0]:tPair[1],col] lSingle=[int(x) for x in lSingle if pd.isnull(x)==False] lSingle=[lSingle[0]]+[lSingle[i] for i in range(1,len(lSingle)) if lSingle[i]!=lSingle[i-1]] lGes.append(lSingle) IDDct[keyStr]=lGes # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def addNrToAlarmStatistikData( SEGResDct={} ,DruckResDct={} ,dfAlarmEreignisse=pd.DataFrame() ): """ Returns: SEGResDct,DruckResDct added with key AL_S_NR ResDct: key: baseID (i.e. Objects.3S_FBG_SEG_INFO.3S_L_6_BUV_01_SPV.In. value: dct key: Zustaendig: value: Zeitbereiche, in denen der Ergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen der Ergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen der Ergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) key: AL_S_SB_S: value: Liste mit Listen (den verschiedenen SB_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) key: AL_S_ZHKNR_S: value: Liste mit Listen (den verschiedenen ZHKNR_S pro Alarm in der zeitlichen Reihenfolge ihres Auftretens) (Länge der Liste == Länge der Liste von Alarm) # ergänzt: key: AL_S_NR: value: Liste mit der Nr. (aus dfAlarmEreignisse) pro Alarm (Länge der Liste == Länge der Liste von Alarm) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # for ResDct, LDSResBaseType in zip([SEGResDct, DruckResDct],['SEG','Druck']): for idxID,(ID,IDDct) in enumerate(ResDct.items()): # IDDct: das zu erweiternde Dct # Alarme tPairs=IDDct['Alarm'] lNr=[] if tPairs != []: ZHKNRnListen=IDDct['AL_S_ZHKNR_S'] for idxAlarm,tPair in enumerate(tPairs): ZHKNRnListe=ZHKNRnListen[idxAlarm] ZHKNR=ZHKNRnListe[0] ae=AlarmEvent(tPair[0],tPair[1],ZHKNR,LDSResBaseType) Nr=dfAlarmEreignisse[dfAlarmEreignisse['AlarmEvent']==ae]['Nr'].iloc[0] lNr.append(Nr) IDDct['AL_S_NR']=lNr # das erweiterte Dct zuweisen ResDct[ID]=IDDct except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGResDct,DruckResDct def processAlarmStatistikData2( DruckResDct=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ): """ Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet Returns: SEGDruckResDct ResDct: key: baseID value: dct sortiert und direkt angrenzende oder gar ueberlappende Zeiten aus Druckergebnissen zusammenfasst key: Zustaendig: value: Zeitbereiche, in denen ein Druckergebnisvektor zustaendig ist (Liste von Zeitstempelpaaren) key: Alarm: value: Zeitbereiche, in denen ein Druckergebnisvektor in Alarm war (Liste von Zeitstempelpaaren) key: Stoerung: value: Zeitbereiche, in denen ein Druckergebnisvektor in Stoerung war (Liste von Zeitstempelpaaren) voneiander verschiedene Ausprägungen (sortiert) aus Druckergebnissen key: AL_S_SB_S: Liste key: AL_S_ZHKNR_S: Liste key: AL_S_NR: Liste """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: # Druckergebnisaussagen auf Segmentergebnisaussagen geeignet verdichtet SEGDruckResDct={} # merken, ob eine ID bereits bei einem SEG gezählt wurde; die Alarme einer ID sollen nur bei einem SEG gezaehlt werden IDBereitsGezaehlt={} # über alle DruckErgs for idx,(ID,tPairsDct) in enumerate(DruckResDct.items()): # SEG ermitteln # ein DruckErg kann zu mehreren SEGs gehoeren z.B. gehoert ein Verzweigungsknoten i.d.R. zu 3 versch. SEGs tupleLst=getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,ID) for idxTuple,(DIVPipelineName,SEGName,SEGResIDBase,SEGOnlyInLDSPara) in enumerate(tupleLst): # wenn internes SEG if SEGOnlyInLDSPara: logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt da dieses SEG intern.".format(logStr,ID,SEGName)) continue # ID wurde bereits gezählt if ID in IDBereitsGezaehlt.keys(): logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern wurde bereits bei SEGName {:s} gezaehlt.".format(logStr,ID,SEGName,IDBereitsGezaehlt[ID])) continue else: # ID wurde noch nicht gezaehlt IDBereitsGezaehlt[ID]=SEGName #if idxTuple>0: # logger.debug("{:s}ID {:35s} wird bei SEGName {:s} nicht gezaehlt sondern nur bei SEGName {:s}.".format(logStr,ID,SEGName,tupleLst[0][1])) # continue if len(tPairsDct['Alarm'])>0: logger.debug("{:s}SEGName {:20s}: durch ID {:40s} mit Alarm. Nr des Verweises von ID auf ein Segment: {:d}".format(logStr,SEGName,ID, idxTuple+1)) if SEGResIDBase not in SEGDruckResDct.keys(): # auf dieses SEG wurde noch nie verwiesen SEGDruckResDct[SEGResIDBase]=deepcopy(tPairsDct) # das Segment erhält die Ergebnisse des ersten Druckvektors der zum Segment gehört else: # ergaenzen # Zeitlisten ergänzen for idx2,ext in enumerate(ResChannelTypes): tPairs=tPairsDct[ResChannelResultNames[idx2]] for idx3,tPair in enumerate(tPairs): if True: #tPair not in SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]]: # keine identischen Zeiten mehrfach zaehlen # die Ueberlappung von Zeiten wird weiter unten behandelt SEGDruckResDct[SEGResIDBase][ResChannelResultNames[idx2]].append(tPair) # weitere Listen ergaenzen for ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: SEGDruckResDct[SEGResIDBase][ext]=SEGDruckResDct[SEGResIDBase][ext]+tPairsDct[ext] # Ergebnis: sortieren und dann direkt angrenzende oder gar ueberlappende Zeiten zusammenfassen for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): if ext in ['AL_S_SB_S','AL_S_ZHKNR_S','AL_S_NR']: # keine Zeiten pass else: tPairs=tPairsDct[ResChannelResultNames[idx2]] tPairs=sorted(tPairs,key=lambda tup: tup[0]) tPairs=fCombineSubsequenttPairs(tPairs) SEGDruckResDct[ID][ResChannelResultNames[idx2]]=tPairs # voneiander verschiedene Ausprägungen (sortiert) for idx,(ID,tPairsDct) in enumerate(SEGDruckResDct.items()): for idx2,ext in enumerate(tPairsDct.keys()): v=tPairsDct[ext] if ext in ['AL_S_SB_S','AL_S_ZHKNR_S']: # Liste von Listen l=[*{*chain.from_iterable(v)}] l=sorted(pd.unique(l)) SEGDruckResDct[ID][ext]=l elif ext in ['AL_S_NR']: # Liste l=sorted(pd.unique(v)) SEGDruckResDct[ID][ext]=l else: pass logger.debug("{:s}SEGDruckResDct: {!s:s}".format(logStr,SEGDruckResDct)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return SEGDruckResDct def buildAlarmDataframes( TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,SEGResDct={} ,DruckResDct={} ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] ,NrAsc=[False]+4*[True] ): """ Returns dfAlarmStatistik,dfAlarmEreignisse,SEGDruckResDct """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmStatistik=pd.DataFrame() dfAlarmEreignisse=pd.DataFrame() try: # Ereignisse dfAlarmEreignisse=buildDfAlarmEreignisse( SEGResDct=SEGResDct ,DruckResDct=DruckResDct ,TCsLDSRes1=TCsLDSRes1 ,TCsLDSRes2=TCsLDSRes2 ,dfCVDataOnly=dfCVDataOnly ,dfSegsNodesNDataDpkt=dfSegsNodesNDataDpkt ,replaceTup=replaceTup ,NrBy=NrBy ,NrAsc=NrAsc ) # in dfAlarmEreignisse erzeugte Alarm-Nr. an Dct merken SEGResDct,DruckResDct=addNrToAlarmStatistikData( SEGResDct ,DruckResDct ,dfAlarmEreignisse ) # BZKat der Alarme def fGetAlarmKat(row): """ """ # baseID des Alarms baseID=row['OrteIDs'][0] # dct des Alarms if row['LDSResBaseType']=='SEG': dct=SEGResDct[baseID] else: dct=DruckResDct[baseID] # Nrn der baseID Nrn=dct['AL_S_NR'] # idx dieses Alarms innerhalb der Alarme der baseID idxAl=Nrn.index(row['Nr']) # Zustaende dieses alarms SB_S=dct['AL_S_SB_S'][idxAl] kat='' if 3 in SB_S: kat='instationär' else: if 2 in SB_S: kat = 'schw. instationär' else: if 1 in SB_S: kat = 'stat. Fluss' elif 4 in SB_S: kat = 'stat. Ruhe' return kat dfAlarmEreignisse['BZKat']=dfAlarmEreignisse.apply(lambda row: fGetAlarmKat(row),axis=1) # Segment-verdichtete Druckergebnisse SEGDruckResDct=processAlarmStatistikData2( DruckResDct ,TCsLDSRes2 ,dfSegsNodesNDataDpkt ) # Alarmstatistik bilden dfAlarmStatistik=dfSegsNodesNDataDpkt[~dfSegsNodesNDataDpkt['SEGOnlyInLDSPara']] dfAlarmStatistik=dfAlarmStatistik[['DIVPipelineName','SEGName','SEGNodes','SEGResIDBase']].drop_duplicates(keep='first').reset_index(drop=True) dfAlarmStatistik['Nr']=dfAlarmStatistik.apply(lambda row: "{:2d}".format(int(row.name)),axis=1) # SEG dfAlarmStatistik['FörderZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Zustaendig']) dfAlarmStatistik['FörderZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Alarm']) dfAlarmStatistik['FörderZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['Stoerung']) dfAlarmStatistik['FörderZeitenAlAnz']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['FörderZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_SB_S']) dfAlarmStatistik['FörderZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGResDct[x]['AL_S_NR']) # Druck (SEG-verdichtet) dfAlarmStatistik['RuheZeiten']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Zustaendig'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAl']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Alarm'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenSt']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['Stoerung'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlSbs']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_SB_S'] if x in SEGDruckResDct.keys() else []) dfAlarmStatistik['RuheZeitenAlNrn']=dfAlarmStatistik['SEGResIDBase'].apply(lambda x: SEGDruckResDct[x]['AL_S_NR'] if x in SEGDruckResDct.keys() else []) #dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: len(x)) dfAlarmStatistik['RuheZeitenAlAnz']=dfAlarmStatistik['RuheZeitenAlNrn'].apply(lambda x: len(x)) # je 3 Zeiten bearbeitet dfAlarmStatistik['FörderZeit']=dfAlarmStatistik['FörderZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeit']=dfAlarmStatistik['RuheZeiten'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitAl']=dfAlarmStatistik['FörderZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitAl']=dfAlarmStatistik['RuheZeitenAl'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['FörderZeitSt']=dfAlarmStatistik['FörderZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) dfAlarmStatistik['RuheZeitSt']=dfAlarmStatistik['RuheZeitenSt'].apply(lambda x: fTotalTimeFromPairs(x,pd.Timedelta('1 minute'),False)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse, dfAlarmStatistik,SEGDruckResDct def plotDfAlarmStatistik( dfAlarmStatistik=pd.DataFrame() ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) df=dfAlarmStatistik[[ 'Nr' ,'DIVPipelineName' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'FörderZeitSt' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ,'RuheZeitSt' ]].copy() # diese Zeiten um (Störzeiten) annotieren df['FörderZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['FörderZeit'],row['FörderZeitSt']) if row['FörderZeitSt'] > 0. else row['FörderZeit'] ,axis=1) df['RuheZeit']=df.apply(lambda row: "{!s:s} ({!s:s})".format(row['RuheZeit'],row['RuheZeitSt']) if row['RuheZeitSt'] > 0. else row['RuheZeit'],axis=1) # LfdNr. annotieren df['LfdNr']=df.apply(lambda row: "{:2d} - {:s}".format(int(row.Nr)+1,str(row.DIVPipelineName)),axis=1) # Zeiten Alarm um Alarm-Nrn annotieren def fAddZeitMitNrn(zeit,lAlNr): if len(lAlNr) > 0: if len(lAlNr) <= 3: return "{!s:s} (Nrn.: {!s:s})".format(zeit,lAlNr) else: # mehr als 3 Alarme... return "{!s:s} (Nrn.: {!s:s}, ...)".format(zeit,lAlNr[0]) else: return zeit df['FörderZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['FörderZeitAl'],row['FörderZeitenAlNrn']),axis=1) df['RuheZeitAl']=dfAlarmStatistik.apply(lambda row: fAddZeitMitNrn(row['RuheZeitAl'],row['RuheZeitenAlNrn']),axis=1) df=df[[ 'LfdNr' ,'SEGName' ,'FörderZeit' ,'FörderZeitenAlAnz' ,'FörderZeitAl' ,'RuheZeit' ,'RuheZeitenAlAnz' ,'RuheZeitAl' ]] try: t=plt.table(cellText=df.values, colLabels=df.columns, loc='center') cols=df.columns.to_list() colIdxLfdNr=cols.index('LfdNr') colIdxFoerderZeit=cols.index('FörderZeit') colIdxFoerderZeitenAlAnz=cols.index('FörderZeitenAlAnz') colIdxFoerderZeitAl=cols.index('FörderZeitAl') colIdxRuheZeit=cols.index('RuheZeit') colIdxRuheZeitenAlAnz=cols.index('RuheZeitenAlAnz') colIdxRuheZeitAl=cols.index('RuheZeitAl') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 if row == 0: if col in [colIdxRuheZeit,colIdxRuheZeitenAlAnz,colIdxRuheZeitAl]: pass cellObj.set_text_props(backgroundcolor='plum') elif col in [colIdxFoerderZeit,colIdxFoerderZeitenAlAnz,colIdxFoerderZeitAl]: pass cellObj.set_text_props(backgroundcolor='lightsteelblue') if col == colIdxLfdNr: if row==0: continue if 'color' in dfAlarmStatistik.columns.to_list(): color=dfAlarmStatistik['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) if col == colIdxFoerderZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'FörderZeitSt']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxFoerderZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'FörderZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Förderzeit if df.loc[row-1,'FörderZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # palegoldenrod #if df.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: if dfAlarmStatistik.loc[row-1,'FörderZeitAl']/ dfAlarmStatistik.loc[row-1,'FörderZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') if col == colIdxRuheZeit: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: pass else: if dfAlarmStatistik.loc[row-1,'RuheZeitSt']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='goldenrod') if col == colIdxRuheZeitenAlAnz: if row==0: continue if dfAlarmStatistik.loc[row-1,'RuheZeit']==0: cellObj.set_text_props(backgroundcolor='lightgrey') else: # hat Ruhezeit if df.loc[row-1,'RuheZeitenAlAnz']==0: cellObj.set_text_props(backgroundcolor='springgreen') else: pass cellObj.set_text_props(ha='center') cellObj.set_text_props(backgroundcolor='navajowhite') # # palegoldenrod #if df.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: if dfAlarmStatistik.loc[row-1,'RuheZeitAl']/ dfAlarmStatistik.loc[row-1,'RuheZeit']*100>1: cellObj.set_text_props(backgroundcolor='tomato') plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def fOrteStripped(LDSResBaseType,OrteIDs): """ returns Orte stripped """ if LDSResBaseType == 'SEG': # 'Objects.3S_FBG_SEG_INFO.3S_L_6_MHV_02_FUD.In.'] orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+'_'+m.group('C6') orteStripped.append(ortStripped) return orteStripped elif LDSResBaseType == 'Druck': # Objects.3S_FBG_DRUCK.3S_6_BNV_01_PTI_01.In orteStripped=[] for OrtID in OrteIDs: pass m=re.search(Lx.pID,OrtID+'dummy') ortStripped=m.group('C2')+'_'+m.group('C3')+'_'+m.group('C4')+'_'+m.group('C5')+m.group('C6') orteStripped.append(ortStripped) return orteStripped else: return None def fCVDTime(row,dfSEG,dfDruck,replaceTup=('2021-','')): """ in: dfSEG/dfDruck: TCsLDSRes1/TCsLDSRes2 row: Zeile aus dfAlarmEreignisse von row verwendet: LDSResBaseType: SEG (dfSEG) oder nicht (dfDruck) OrteIDs: ==> ID von ZHKNR_S in dfSEG/dfDruck ZHKNR: ZHKNR returns: string: xZeitA - ZeitEx ZeitA: erste Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt ZeitE: letzte Zeit in der ZHKNR_S in dfSEG/dfDruck den Wert von ZHKNR trägt xZeitA, wenn ZeitA die erste Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert xZeitE, wenn ZeitE die letzte Zeit in dfSEG/dfDruck ist mit einem von Null verschiedenen Wert in Zeit wurde replaceTup angewendet """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: Time="" ID=row['OrteIDs'][0]+'ZHKNR_S' ZHKNR=row['ZHKNR'] if row['LDSResBaseType']=='SEG': df=dfSEG else: df=dfDruck s=df[df[ID]==ZHKNR][ID] # eine Spalte; Zeilen in denen ZHKNR_S den Wert von ZHKNR trägt tA=s.index[0] # 1. Zeit tE=s.index[-1] # letzte Zeit Time=" {!s:s} - {!s:s} ".format(tA,tE) try: if tA==df[ID].dropna().index[0]: Time='x'+Time.lstrip() except: logger.debug("{0:s}Time: {1:s}: x-tA Annotation Fehler; keine Annotation".format(logStr,Time)) try: if tE==df[ID].dropna().index[-1]: Time=Time.rstrip()+'x' except: logger.debug("{0:s}Time: {1:s}: x-tE Annotation Fehler; keine Annotation".format(logStr,Time)) Time=Time.replace(replaceTup[0],replaceTup[1]) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return Time def buildDfAlarmEreignisse( SEGResDct={} ,DruckResDct={} ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ,dfCVDataOnly=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,replaceTup=('2021-','') ,NrBy=['LDSResBaseType','SEGName','Ort','tA','ZHKNR'] # Sortierspalten für die Nr. der Ereignisse ,NrAsc=[False]+4*[True] # aufsteigend j/n für die o.g. Sortierspalten ): """ Returns dfAlarmEreignisse: Nr: lfd. Nr (gebildet gem. NrBy und NrAsc) tA: Anfangszeit tE: Endezeit tD: Dauer des Alarms ZHKNR: ZHKNR (die zeitlich 1., wenn der Alarm sich über mehrere ZHKNRn erstreckt) tD_ZHKNR: Lebenszeit der ZHKNR; x-Annotationen am Anfang/Ende, wenn ZHK beginnt bei Res12-Anfang / andauert bei Res12-Ende; '-1', wenn Lebenszeit nicht ermittelt werden konnte ZHKNRn: sortierte Liste der ZHKNRn des Alarms; eine davon ist ZHKNR; typischerweise die 1. der Liste LDSResBaseType: SEG oder Druck OrteIDs: OrteIDs des Alarms Orte: Kurzform von OrteIDs des Alarms Ort: der 1. Ort von Orte SEGName: Segment zu dem der 1. Ort des Alarms gehört DIVPipelineName: Voralarm: ermittelter Vorlalarm des Alarms; -1, wenn kein Voralarm in Res12 gefunden werden konnte Type: Typ des Kontrollraumns; z.B. p-p für vollständige Flussbilanzen; '', wenn kein Typ gefunden werden konnte Name: Name des Bilanzraumes NrSD: lfd. Nr Alarm BaseType NrName: lfd. Nr Alarm Name NrSEGName: lfd. Nr Alarm SEGName AlarmEvent: AlarmEvent-Objekt ###BZKat: Betriebszustandskategorie des Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) dfAlarmEreignisse=pd.DataFrame() try: AlarmEvents=[] # Liste von AlarmEvent AlarmEventsOrte={} # dct der Orte, die diesen (key) AlarmEvent melden AlarmEventsZHKNRn={} # dct der ZHKNRn, die zu diesem (key) gehoeren # über SEG- und Druck-Ergebnisvektoren for ResDct, ResSrc, LDSResBaseType in zip([SEGResDct, DruckResDct],[TCsLDSRes1,TCsLDSRes2],['SEG','Druck']): for ResIDBase,dct in ResDct.items(): AL_S=dct['Alarm'] if len(AL_S) > 0: # eine Erg-ID weist Alarme [(tA,tE),...] auf # korrespondiernede Liste der ZHKs: [(999,1111),...] ZHKNRnListen=dct['AL_S_ZHKNR_S'] ID=ResIDBase+'ZHKNR_S' # fuer nachfolgende Ausgabe # ueber alle Alarme der Erg-ID for idx,AL_S_Timepair in enumerate(AL_S): (t1,t2)=AL_S_Timepair # tA, tE ZHKNR_S_Lst=ZHKNRnListen[idx] # Liste der ZHKs in dieser Zeit if len(ZHKNR_S_Lst) != 1: logger.warning(("{:s}ID:\n\t {:s}: Alarm {:d} der ID\n\t Zeit von {!s:s} bis {!s:s}:\n\t Anzahl verschiedener ZHKNRn !=1: {:d} {:s}:\n\t ZHKNR eines Alarms wechselt waehrend eines Alarms. Alarm wird identifiziert mit 1. ZHKNR.".format(logStr,ID ,idx ,t1 ,t2 ,len(ZHKNR_S_Lst) ,str(ZHKNR_S_Lst) ))) # die erste wird verwendet ZHKNR=int(ZHKNR_S_Lst[0]) # AlarmEvent erzeugen alarmEvent=AlarmEvent(t1,t2,ZHKNR,LDSResBaseType) if alarmEvent not in AlarmEvents: # diesen Alarm gibt es noch nicht in der Ereignisliste ... AlarmEvents.append(alarmEvent) AlarmEventsOrte[alarmEvent]=[] AlarmEventsZHKNRn[alarmEvent]=[] else: pass # Ort ergaenzen (derselbe Alarm wird erst ab V83.5.3 nur an einem Ort - dem lexikalisch kleinsten des Bilanzraumes - ausgegeben; zuvor konnte derselbe Alarm an mehreren Orten auftreten) AlarmEventsOrte[alarmEvent].append(ResIDBase) # ZHKNR(n) ergaenzen (ein Alarm wird unter 1 ZHKNR geführt) AlarmEventsZHKNRn[alarmEvent].append(ZHKNR_S_Lst) # df erzeugen dfAlarmEreignisse=pd.DataFrame.from_records( [alarmEvent for alarmEvent in AlarmEvents], columns=AlarmEvent._fields ) # Liste der EventOrte erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): l.append(AlarmEventsOrte[alarmEvent]) dfAlarmEreignisse['OrteIDs']=l # abgekuerzte Orte dfAlarmEreignisse['Orte']=dfAlarmEreignisse.apply(lambda row: fOrteStripped(row.LDSResBaseType,row.OrteIDs),axis=1) dfAlarmEreignisse['Ort']=dfAlarmEreignisse['Orte'].apply(lambda x: x[0]) # Liste der ZHKNRn erstellen, zuweisen l=[] for idx,alarmEvent in enumerate(AlarmEvents): lOfZl=AlarmEventsZHKNRn[alarmEvent] lOfZ=[*{*chain.from_iterable(lOfZl)}] lOfZ=sorted(pd.unique(lOfZ)) l.append(lOfZ) dfAlarmEreignisse['ZHKNRn']=l # Segmentname eines Ereignisses dfAlarmEreignisse['SEGName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGResIDBase']==row['OrteIDs'][0]]['SEGName'].iloc[0] if row['LDSResBaseType']=='SEG' else [tuple for tuple in getNamesFromDruckResIDBase(dfSegsNodesNDataDpkt,row['OrteIDs'][0]) if not tuple[-1]][0][1],axis=1) # DIVPipelineName eines Ereignisses dfAlarmEreignisse['DIVPipelineName']=dfAlarmEreignisse.apply(lambda row: dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DIVPipelineName'].iloc[0] ,axis=1) # Alarm: --- #tA: Anfangszeit #tE: Endezeit #ZHKNR: ZHKNR (1. bei mehreren Alarmen) #LDSResBaseType: SEG oder Druck # Orte: --- #OrteIDs: OrteIDs des Alarms #Orte: Kurzform von OrteIDs des Alarms #ZHKNRn: #SEGName: Segmentname #DIVPipelineName ## Nr. dfAlarmEreignisse.sort_values(by=NrBy,ascending=NrAsc,inplace=True) dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 #dfAlarmEreignisse['Nr']=dfAlarmEreignisse['Nr']+1 logger.debug("{0:s}{1:s}: {2:s}".format(logStr,'dfAlarmEreignisse',dfAlarmEreignisse.to_string())) # Voralarm VoralarmTypen=[] for index, row in dfAlarmEreignisse.iterrows(): # zur Information bei Ausgaben OrteIDs=row['OrteIDs'] OrtID=OrteIDs[0] VoralarmTyp=None try: if row['LDSResBaseType']=='SEG': VoralarmTyp=TCsLDSRes1.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] elif row['LDSResBaseType']=='Druck': VoralarmTyp=TCsLDSRes2.loc[:row['tA']-pd.Timedelta('1 second'),OrtID+'AL_S'].iloc[-1] except: pass if pd.isnull(VoralarmTyp): # == None: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=-1 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: kein (isnull) Vorlalarm gefunden?! (ggf. neutraler BRWechsel) - Voralarm gesetzt auf: {:d}".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'],int(VoralarmTyp))) if int(VoralarmTyp)==0: # == 0: #?! - ggf. Nachfolger eines neutralen Bilanzraumwechsels VoralarmTyp=0 logger.warning("{:s}PV: {:40s} Alarm Nr. {:d} ZHKNR {:d}\n\t tA {!s:s}: Vorlalarm 0?! (ggf. war Bilanz in Stoerung)".format(logStr ,row['OrteIDs'][0] ,int(row['Nr']) ,row['ZHKNR'] ,row['tA'])) if int(VoralarmTyp) not in [-1,0,3,4,10]: logger.warning("{:s}PV: {:s} Alarm Nr. {:d} {:d} tA {!s:s}: unbekannter Vorlalarm gefunden: {:d}".format(logStr,row['OrteIDs'][0],int(row['Nr']),row['ZHKNR'],row['tA'],int(VoralarmTyp))) logger.debug("{:s}{:d} {!s:s} VoralarmTyp:{:d}".format(logStr,int(row['Nr']),row['tA'],int(VoralarmTyp))) VoralarmTypen.append(VoralarmTyp) dfAlarmEreignisse['Voralarm']=[int(x) for x in VoralarmTypen] # Type (aus dfCVDataOnly) und Erzeugungszeit (aus dfCVDataOnly) und Name (aus dfCVDataOnly) dfAlarmEreignisse['ZHKNR']=dfAlarmEreignisse['ZHKNR'].astype('int64') dfAlarmEreignisse['ZHKNRStr']=dfAlarmEreignisse['ZHKNR'].astype('string') dfCVDataOnly['ZHKNRStr']=dfCVDataOnly['ZHKNR'].astype('string') # wg. aelteren App-Log Versionen in denen ZHKNR in dfCVDataOnly nicht ermittelt werden konnte # Type,ScenTime,Name sind dann undefiniert dfAlarmEreignisse=pd.merge(dfAlarmEreignisse,dfCVDataOnly,on='ZHKNRStr',suffixes=('','_CVD'),how='left').filter(items=dfAlarmEreignisse.columns.to_list()+['Type' #,'ScenTime' ,'Name']) dfAlarmEreignisse=dfAlarmEreignisse.drop(['ZHKNRStr'],axis=1) dfAlarmEreignisse=dfAlarmEreignisse.fillna(value='') # lfd. Nummern dfAlarmEreignisse['NrSD']=dfAlarmEreignisse.groupby(['LDSResBaseType']).cumcount() + 1 dfAlarmEreignisse['NrName']=dfAlarmEreignisse.groupby(['Name']).cumcount() + 1 dfAlarmEreignisse['NrSEGName']=dfAlarmEreignisse.groupby(['SEGName']).cumcount() + 1 # Lebenszeit der ZHKNR try: dfAlarmEreignisse['tD_ZHKNR']=dfAlarmEreignisse.apply(lambda row: fCVDTime(row,TCsLDSRes1,TCsLDSRes2,replaceTup),axis=1) except: logger.debug("{:s}Spalte tD_ZHKNR (Lebenszeit einer ZHKNR) konnte nicht ermittelt werden. Vmtl. aeltere App-Log Version.".format(logStr)) dfAlarmEreignisse['tD_ZHKNR']='-1' # Dauer des Alarms dfAlarmEreignisse['tD']=dfAlarmEreignisse.apply(lambda row: row['tE']-row['tA'],axis=1) dfAlarmEreignisse['tD']= dfAlarmEreignisse['tD'].apply(lambda x: "{!s:s}".format(x).replace('days','Tage').replace('0 Tage','').replace('Tage','T')) # AlarmEvent = namedtuple('alarmEvent','tA,tE,ZHKNR,LDSResBaseType') dfAlarmEreignisse=dfAlarmEreignisse[['Nr','tA', 'tE','tD','ZHKNR','tD_ZHKNR','ZHKNRn','LDSResBaseType' ,'OrteIDs', 'Orte', 'Ort', 'SEGName','DIVPipelineName' ,'Voralarm', 'Type', 'Name' ,'NrSD', 'NrName', 'NrSEGName' ]] dfAlarmEreignisse['AlarmEvent']=dfAlarmEreignisse.apply(lambda row: AlarmEvent(row['tA'],row['tE'],row['ZHKNR'],row['LDSResBaseType']),axis=1) # unklar, warum erforderlich dfAlarmEreignisse['Nr']=dfAlarmEreignisse.index+1 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse def fCVDName(Name ): """ """ lName=len(Name) if len(Name)==0: Name='ZHKName vmtl. nicht in Log' lNameMaxH=20 if lName > 2*lNameMaxH: Name=Name[:lNameMaxH-2]+'....'+Name[lName-lNameMaxH+2:] Name=Name.replace('°','|') return Name def plotDfAlarmEreignisse( dfAlarmEreignisse=pd.DataFrame() ,sortBy=[] ,replaceTup=('2021-','') ,replaceTuptD=('0 days','') ): """ Returns the plt.table """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: df=dfAlarmEreignisse[['Nr','LDSResBaseType','Voralarm','Type','NrSD','tA','tE','tD','ZHKNR','Name','Orte','tD_ZHKNR','NrName','NrSEGName','SEGName','BZKat']].copy() df['tA']=df['tA'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) df['tE']=df['tE'].apply(lambda x: str(x).replace(replaceTup[0],replaceTup[1])) ###df['Anz']=df['Orte'].apply(lambda x: len(x)) ##df['Orte']=df['Orte'].apply(lambda x: str(x).replace('[','').replace(']','').replace("'","")) df['Orte']=df['Orte'].apply(lambda x: str(x[0])) df['LDSResBaseType']=df.apply(lambda row: "{:s} {:s} - {:d}".format(row['LDSResBaseType'],row['Type'],row['Voralarm']),axis=1) df=df[['Nr','LDSResBaseType','NrSD','tA','tE','tD','ZHKNR','Name','NrName','NrSEGName','SEGName','tD_ZHKNR','Orte','BZKat']] df.rename(columns={'LDSResBaseType':'ResTyp - Voralarm'},inplace=True) df.rename(columns={'tD_ZHKNR':'ZHKZeit','Name':'ZHKName'},inplace=True) ###df['ZHKName']=df['ZHKName'].apply(lambda x: fCVDName(x)) ####df['ZHKName']=df['Orte'].apply(lambda x: x[0]) df['NrSEGName (SEGName)']=df.apply(lambda row: "{!s:2s} ({!s:s})".format(row['NrSEGName'],row['SEGName']),axis=1) df=df[['Nr','ResTyp - Voralarm','NrSD','tA','tD','ZHKNR' ,'Orte' #'ZHKName' ,'BZKat' ,'NrName','NrSEGName (SEGName)','ZHKZeit']] df.rename(columns={'Orte':'ID'},inplace=True) df['tD']=df['tD'].apply(lambda x: str(x).replace(replaceTuptD[0],replaceTuptD[1])) def fGetZHKNRStr(row,dfOrig): """ returns: ZHKNStr in Abhängigkeit der aktuellen Zeile und dfOrig """ s=dfOrig[dfOrig['Nr']==row['Nr']].iloc[0] if len(s.ZHKNRn)>1: if len(s.ZHKNRn)==2: return "{:d} ({!s:s})".format(row['ZHKNR'],s.ZHKNRn[1:]) else: return "{:d} (+{:d})".format(row['ZHKNR'],len(s.ZHKNRn)-1) else: return "{:d}".format(row['ZHKNR']) df['ZHKNR']=df.apply(lambda row: fGetZHKNRStr(row,dfAlarmEreignisse),axis=1) if sortBy!=[]: df=df.sort_values(by=sortBy) t=plt.table(cellText=df.values, colLabels=df.columns ,colWidths=[.03,.1 # Nr ResTyp-Voralarm ,.04 # NrSD ,.08,.08 # tA tD ,.085 # ZHKNR ,.1125,.07 #.1125 # ID BZKat ,.04 # NrName ,.14 # NrSEGName (SEGName) ,.2125] # ZHKZeit , cellLoc='left' , loc='center') t.auto_set_font_size(False) t.set_fontsize(10) cols=df.columns.to_list() #colIdxOrte=cols.index('Orte') #colIdxName=cols.index('ZHKName') colIdxNrSD=cols.index('NrSD') colIdxNrSEG=cols.index('NrSEGName (SEGName)') # ResTyp - Voralarm colIdxResTypVA=cols.index('ResTyp - Voralarm') cells = t.properties()["celld"] for cellTup,cellObj in cells.items(): cellObj.set_text_props(ha='left') row,col=cellTup # row: 0 fuer Ueberschrift bei Ueberschrift; col mit 0 #if col == colIdxName: # cellObj.set_text_props(ha='left') if col == colIdxNrSD: if row > 0: if dfAlarmEreignisse.loc[row-1,'LDSResBaseType']=='SEG': cellObj.set_text_props(backgroundcolor='lightsteelblue') else: cellObj.set_text_props(backgroundcolor='plum') elif col == colIdxNrSEG: if row==0: continue if 'color' in dfAlarmEreignisse.columns.to_list(): color=dfAlarmEreignisse['color'].iloc[row-1] cellObj.set_text_props(backgroundcolor=color) elif col == colIdxResTypVA and row > 0: pass if dfAlarmEreignisse.loc[row-1,'Voralarm'] in [10]: cellObj.set_text_props(backgroundcolor='sandybrown') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [4]: cellObj.set_text_props(backgroundcolor='pink') elif dfAlarmEreignisse.loc[row-1,'Voralarm'] in [3]: cellObj.set_text_props(backgroundcolor='lightcoral') else: pass #cellObj.set_text_props(fontsize=16) plt.axis('off') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return t def plotDfAlarmStatistikReportsSEGErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,SEGResDct={} ,timeStart=None,timeEnd=None ,SEGErgsFile='SEGErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' # Runden (1 Stunde) ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with FörderZeitenAlAnz>0 1 Base Plot and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime logger.debug("{0:s}timeStart (ohne timeShift): {1:s} timeEnd (ohne timeShift): {2:s}".format(logStr,str(timeStart),str(timeEnd))) xlimsDct={} pdf=PdfPages(SEGErgsFile) (fileNameBase,ext)= os.path.splitext(SEGErgsFile) if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,row['SEGResIDBase']) if row['FörderZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("{:s}: FörderZeitenAlAnz: 0".format(titleStr)) continue # keine SEGs ohne Alarme drucken # Erg lesen ResIDBase=row['SEGResIDBase'] dfSegReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='SEG',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) ID='AL_S' if ID not in dfSegReprVec.keys(): continue idxSEGPlotted=idxSEGPlotted+1 xlimsDct[ResIDBase]=[] logger.debug("{:s}ResIDBase: {:s} dfSegReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfSegReprVec.columns.to_list())) # Plot Basis ########################################################### fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ,plotLegend=True ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) if row['FörderZeitenAlAnz'] > 0: if row['FörderZeitenAlAnz'] <= 3: txtNr=" Nrn.: {!s:s}".format(row['FörderZeitenAlNrn']) else: txtNr=" Nrn.: {!s:s} u.w.".format(row['FörderZeitenAlNrn'][0]) txt=txt+txtNr else: txtNr='' ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,txtNr.replace('Nrn.: ','Nrn ').replace(',','').replace('[','').replace(']','').replace('u.w.','u w')) plt.savefig(fileName) plt.show() ###plt.clf() plt.close() # Plot Alarme ########################################################### dct=SEGResDct[row['SEGResIDBase']] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['FörderZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) # wenn AlarmRand - PlotRand < 3 Minuten: um 3 Minuten erweitern if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['FörderZeit']==0: backgroundcolor='lightgrey' else: # hat Förderzeit if row['FörderZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['FörderZeitAl']/row['FörderZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: FörderZeit: {:8.2f} FörderZeitenAlAnz: {:d}".format(row['SEGNodes'],row['FörderZeit'],row['FörderZeitenAlAnz']) txtNr=" Nr.: {!s:s}".format(AlNr) txt=txt+txtNr ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['FörderZeitSt']>0: backgroundcolor='white' if row['FörderZeitSt']/row['FörderZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: FörderZeitSt: {:8.2f})".format(row['FörderZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) ax.set_title( titleStr,loc='left') #logger.info("{:s}".format(titleStr)) fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png #(fileName,ext)= os.path.splitext(SEGErgsFile) fileNameAlarm="{:s} {:s}.png".format(fileName.replace('.png','') ,txtNr.replace('Nr.: ','Nr ').replace(',','').replace('[','').replace(']','')) plt.savefig(fileNameAlarm) plt.show() ###plt.clf() plt.close() ###plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotDfAlarmStatistikReportsDruckErgs( h5File='a.h5' ,dfAlarmStatistik=pd.DataFrame() ,dfSegsNodesNDataDpkt=pd.DataFrame() ,DruckResDct={} ,timeStart=None,timeEnd=None ,DruckErgsFile='DruckErgs.pdf' ,stopAtSEGNr=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,byhour=[0,3,6,9,12,15,18,21] ,byminute=None ,bysecond=None ,timeFloorCeilStr=None #'1H' ,timeFloorCeilStrDetailPre='6T' # Runden (3 Minuten) ,timeFloorCeilStrDetailPost='3T' ,timeShiftPair=None ): """ Creates PDF for all SEGs with RuheZeitenAlAnz>0 1 Base Plot for a Druck with an Alarm and Detail Plots for the Alarms Creates corresponding Single-PNGs Returns xlimsDct: key: BaseID value: list of Timepairs of the Detail Plots for the Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lx=Lx.AppLog(h5File=h5File) firstTime,lastTime,tdTotalGross,tdTotal,tdBetweenFilesTotal=lx.getTotalLogTime() logger.debug("{0:s}firstTime (ohne TimeShift): {1:s} lastTime (ohne TimeShift): {2:s}".format(logStr,str(firstTime),str(lastTime))) if timeStart==None: if timeFloorCeilStr != None: timeStart = firstTime.floor(freq=timeFloorCeilStr) # https://stackoverflow.com/questions/35339139/where-is-the-documentation-on-pandas-freq-tags else: timeStart = firstTime if timeEnd==None: if timeFloorCeilStr != None: timeEnd = lastTime.ceil(freq=timeFloorCeilStr) else: timeEnd = lastTime if timeShiftPair != None: (preriod,freq)=timeShiftPair timeDeltaStr="{:d} {:s}".format(preriod,freq) timeDelta=pd.Timedelta(timeDeltaStr) else: timeDelta=pd.Timedelta('0 Seconds') logger.debug("{0:s}timeStart abgerundet (ohne TimeShift): {1:s} timeEnd aufgerundet (ohne TimeShift): {2:s} TimeShift: {3:s}".format(logStr ,str(timeStart) ,str(timeEnd) ,str(timeDelta))) xlimsDct={} pdf=PdfPages(DruckErgsFile) (fileNameBase,ext)= os.path.splitext(DruckErgsFile) # über alle Segmente der Alarmstatistik (die DruckIDs sollen in der Reihenfolge der Alarmstatistik abgearbeitet werden) idxSEGPlotted=0 for idx,(index,row) in enumerate(dfAlarmStatistik.iterrows()): if row['RuheZeitenAlAnz']==0: # and row['RuheZeitenAlAnz']==0: logger.info("LfdNr {:2d} - {:s}: {:s}: RuheZeitenAlAnz: 0".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'])) continue # keine SEGs ohne Alarme drucken if stopAtSEGNr != None: if idxSEGPlotted>=stopAtSEGNr: break idxSEGPlotted=idxSEGPlotted+1 # DruckIDs eines Segmentes DruckIDs=sorted([ID for ID in dfSegsNodesNDataDpkt[dfSegsNodesNDataDpkt['SEGName']==row['SEGName']]['DruckResIDBase'].unique() if not pd.isnull(ID)]) for idxDruckID,DruckResIDBase in enumerate(DruckIDs): dct=DruckResDct[DruckResIDBase] if len(dct['Alarm'])==0: # nur DruckIDs mit Alarmen plotten continue fig=plt.figure(figsize=DINA4q,dpi=dpiSize) # Erg lesen ResIDBase=DruckResIDBase dfDruckReprVec=getLDSResVecDf(ResIDBase=ResIDBase,LDSResBaseType='Druck',lx=lx,timeStart=timeStart,timeEnd=timeEnd,timeShiftPair=timeShiftPair) logger.debug("{:s}ResIDBase: {:s} dfDruckReprVec: Spalten: {!s:s}".format(logStr,ResIDBase,dfDruckReprVec.columns.to_list())) logger.debug("{:s}ID: {:s}: timeStart (mit TimeShift): {:s} timeEnd (mit TimeShift): {:s}".format(logStr ,DruckResIDBase ,str(dfDruckReprVec.index[0]) ,str(dfDruckReprVec.index[-1]) )) ID='AL_S' if ID not in dfDruckReprVec.keys(): continue xlimsDct[ResIDBase]=[] ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStart+timeDelta,timeEnd+timeDelta) ,dateFormat=dateFormat ,byhour=byhour ,byminute=byminute ,bysecond=bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten)) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # png fileName="{:s} {:2d} - {:s} {:s} {:s}.png".format(fileNameBase ,int(row.Nr)+1 ,str(row.DIVPipelineName) ,row['SEGName'] ,fOrteStripped('Druck',[DruckResIDBase])[0] ) plt.savefig(fileName) plt.show() pdf.savefig(fig) plt.close() # Plot Alarme ########################################################### dct=DruckResDct[DruckResIDBase] timeFirstAlarmStarts,dummy=dct['Alarm'][0] dummy,timeLastAlarmEnds=dct['Alarm'][-1] for idxAl,AlNr in enumerate(row['RuheZeitenAlNrn']): timeAlarmStarts,timeAlarmEnds=dct['Alarm'][idxAl] timeStartDetail = timeAlarmStarts.floor(freq=timeFloorCeilStrDetailPre) timeEndDetail = timeAlarmEnds.ceil(freq=timeFloorCeilStrDetailPost) if timeAlarmStarts-timeStartDetail<pd.Timedelta('3 Minutes'): timeStartDetail=timeStartDetail-pd.Timedelta('3 Minutes') if timeEndDetail-timeAlarmEnds<pd.Timedelta('3 Minutes'): timeEndDetail=timeEndDetail+pd.Timedelta('3 Minutes') xlimsDct[ResIDBase].append((timeStartDetail,timeEndDetail)) fig=plt.figure(figsize=DINA4q,dpi=dpiSize) ax=fig.gca() pltLDSErgVec( ax ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=dfDruckReprVec # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=(timeStartDetail,timeEndDetail) # wenn die dct-Zeiten time-geshifted sind ist das korrekt ,dateFormat=dateFormat ,byhour=None#byhour ,byminute=list(np.arange(0,60))#byminute ,bysecond=None#bysecond ) backgroundcolor='white' if row['RuheZeit']==0: backgroundcolor='lightgrey' else: # hat Ruhezeit if row['RuheZeitenAlAnz']==0: backgroundcolor='springgreen' else: backgroundcolor='navajowhite' if row['RuheZeitAl']/row['RuheZeit']*100>1: backgroundcolor='tomato' txt="SEG: {:s}: LfdNr {:2d}: RuheZeit: {:8.2f} RuheZeitenAlAnz: {:d}".format( row['SEGNodes'] ,int(row.Nr)+1 ,row['RuheZeit'] ,row['RuheZeitenAlAnz']) ax.text(.98, .1,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) if row['RuheZeitSt']>0: backgroundcolor='white' if row['RuheZeitSt']/row['RuheZeit']*100>1: backgroundcolor='goldenrod' txt="(SEG: RuheZeitSt: {:8.2f})".format(row['RuheZeitSt']) ax.text(.98, .05,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor=backgroundcolor, transform=ax.transAxes) RuheZeiten=DruckResDct[DruckResIDBase]['Zustaendig'] RuheZeit=fTotalTimeFromPairs(RuheZeiten,pd.Timedelta('1 minute'),False) AlarmZeiten=DruckResDct[DruckResIDBase]['Alarm'] AlarmZeit=fTotalTimeFromPairs(AlarmZeiten,pd.Timedelta('1 minute'),False) RuheZeitenSt=DruckResDct[DruckResIDBase]['Stoerung'] RuheZeitSt=fTotalTimeFromPairs(RuheZeitenSt,pd.Timedelta('1 minute'),False) txt="Druck: RuheZeit: {:8.2f} (davon St: {:8.2f}) RuheZeitenAlAnz: {:3d} Nr. {:4d}".format( RuheZeit ,RuheZeitSt ,len(AlarmZeiten) ,AlNr) ax.text(.98, .15,txt, horizontalalignment='right', verticalalignment='center', backgroundcolor='white', transform=ax.transAxes) titleStr="LfdNr {:2d} - {:s}: {:s}: {:s}".format( int(row.Nr)+1 ,str(row.DIVPipelineName) # ,row['SEGNodes'] ,row['SEGName'] ,DruckResIDBase) ax.set_title( titleStr,loc='left') fig.tight_layout(pad=2.) # PDF pdf.savefig(fig) # png fileNameAlarm="{:s} Nr {:d}.png".format(fileName.replace('.png',''),AlNr) plt.savefig(fileNameAlarm) plt.show() plt.close() #plt.close() pdf.close() except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return xlimsDct def plotTimespans( xlims # list of sections ,orientation='landscape' # oben HYD unten LDS; 'portrait': # links HYD rechts LDS ,pad=3.5 # tight_layout() can take keyword arguments of pad, w_pad and h_pad. These control the extra padding around the figure border and between subplots. The pads are specified in fraction of fontsize. ,w_pad=0.5 ,h_pad=0.5 # 'portrait' # links HYD rechts LDS ,rectSpalteLinks=[0, 0, 0.5, 1] ,rectSpalteRechts=[0.325, 0, 1, 1] # 'landscape': # oben HYD unten LDS ,rectZeileOben=[0, .5, 1, 1] ,rectZeileUnten=[0, 0, 1, .5] ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,figTitle='' #! ,figSave=False #! ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,sectionTitlesLDS=None # list of section titles to be used ,sectionTextsLDS=None # list of section texts to be used ,vLinesX=[] # plotted in each HYD section if X-time fits ,hLinesY=[] # plotted in each HYD section ,vAreasX=[] # for each HYD section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXLDS=None # plotted in each LDS section if X-time fits ,vAreasXLDS=None # for each LDS section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' ,vLinesXColorLDS=None ,vAreasXColorLDS=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # --- Args Fct. HYD ---: ,TCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,TCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,TCsOPCScenTimeShift=pd.Timedelta('1 hour') ,TCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,TCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,TCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,TCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={} ,pDct={} ,QDctOPC={} ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber # --- Args Fct. LDS ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() ,ylimAL=ylimALD ,yticksAL=yticksALD ,ylimR=ylimRD #can be a list #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False # can be a list #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD # can be a list of lists #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: fig=plt.gcf() if orientation=='landscape': # oben HYD unten LDS gsHYD = gridspec.GridSpec(1,len(xlims),figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.ncols)] gsLDS = gridspec.GridSpec(1,len(xlims),figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.ncols)] else: # links HYD rechts LDS gsHYD = gridspec.GridSpec(len(xlims),1,figure=fig) axLstHYD=[fig.add_subplot(gsHYD[idx]) for idx in np.arange(gsHYD.nrows)] gsLDS = gridspec.GridSpec(len(xlims),1,figure=fig) axLstLDS=[fig.add_subplot(gsLDS[idx]) for idx in np.arange(gsLDS.nrows)] pltLDSpQAndEventsResults=plotTimespansHYD( axLst=axLstHYD ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitles ,sectionTexts=sectionTexts ,vLinesX=vLinesX ,hLinesY=hLinesY ,vAreasX=vAreasX ,vLinesXColor=vLinesXColor ,vAreasXColor=vAreasXColor ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfTCsLDSIn=TCsLDSIn ,dfTCsOPC=TCsOPC ,dfTCsOPCScenTimeShift=TCsOPCScenTimeShift ,dfTCsSIDEvents=TCsSIDEvents ,dfTCsSIDEventsTimeShift=TCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=TCsSIDEventsInXlimOnly ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ ,yGridSteps=yGridSteps ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ) if orientation=='landscape': # oben HYD unten LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileOben) else: # links HYD rechts LDS gsHYD.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteLinks) if sectionTitlesLDS==None: sectionTitlesLDS=sectionTitles if sectionTextsLDS==None: sectionTextsLDS=sectionTexts if vLinesXLDS==None: vLinesXLDS=vLinesX if vAreasXLDS==None: vAreasXLDS=vAreasX if vLinesXColorLDS==None: vLinesXColorLDS=vLinesXColor if vAreasXColorLDS==None: vAreasXColorLDS=vAreasXColor pltLDSErgVecResults=plotTimespansLDS( axLst=axLstLDS ,xlims=xlims ,figTitle=figTitle # '' ,figSave=figSave # False ,sectionTitles=sectionTitlesLDS ,sectionTexts=sectionTextsLDS ,vLinesX=vLinesXLDS ,vAreasX=vAreasXLDS ,vLinesXColor=vLinesXColorLDS ,vAreasXColor=vAreasXColorLDS ,plotLegend=plotLegend ,plotLegend1stOnly=plotLegend1stOnly # --- Args Fct. ---: ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,ylimR=ylimR ,ylimRxlim=ylimRxlim ,yticksR=yticksR ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) # wenn weniger als 5 Achsen geplottet werden stimmt der erste Wert von rectSpalteRechts nicht #(axes,lines)=pltLDSErgVecResults[0] # # numOfYAxes=len(axes) #corFac=5-numOfYAxes #rectSpalteRechtsCor=rectSpalteRechts #[0.325, 0, 1, 1] #rectSpalteRechtsCor[0]=rectSpalteRechtsCor[0]+0.06*corFac if orientation=='landscape': # oben HYD unten LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectZeileUnten) else: # links HYD rechts LDS gsLDS.tight_layout(fig, pad=pad,h_pad=h_pad,w_pad=w_pad, rect=rectSpalteRechts) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return gsHYD,gsLDS,pltLDSpQAndEventsResults,pltLDSErgVecResults def plotTimespansHYD( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,hLinesY=[] # plotted in each section ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfTCsLDSIn=pd.DataFrame() # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorstehenden Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() # es werden alle Schieberevents geplottet ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={ # Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSrc 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None#[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #[0,50,100] #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,yGridSteps=yGridStepsD ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSpQAndEvents selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) # plots pltLDSpQAndEvents-Sections # returns a Lst of pltLDSpQAndEvents-Results, a Lst of (axes,lines,scatters) try: if sectionTitles==[] or sectionTitles==None: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansHYD sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSpQAndEventsResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] (axes,lines,scatters)=pltLDSpQAndEvents( ax ,dfTCsLDSIn=dfTCsLDSIn ,dfTCsOPC=dfTCsOPC ,dfTCsOPCScenTimeShift=dfTCsOPCScenTimeShift ,dfTCsSIDEvents=dfTCsSIDEvents ,dfTCsSIDEventsTimeShift=dfTCsSIDEventsTimeShift ,dfTCsSIDEventsInXlimOnly=dfTCsSIDEventsInXlimOnly ,dfTCsSIDEventsyOffset=dfTCsSIDEventsyOffset ,QDct=QDct ,pDct=pDct ,QDctOPC=QDctOPC ,pDctOPC=pDctOPC ,attrsDct=attrsDct ,fctsDct=fctsDct ,xlim=xlim ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,plotRTTM=plotRTTM ,ylimp=ylimp ,ylabelp=ylabelp ,yticksp=yticksp ,ylimQ=ylimQ ,yticksQ=yticksQ # 3. Achse ,ylim3rd=ylim3rd ,yticks3rd=yticks3rd ,yGridSteps=yGridSteps ,plotLegend=plotLegendFct ,baseColorsDef=baseColorsDef ) pltLDSpQAndEventsResults.append((axes,lines,scatters)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) for hLineY in hLinesY: ax.axhline(y=hLineY,xmin=0, xmax=1,color='gray',ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly: legendHorizontalPos='center' # wenn nur 1x Legende dann Mitte if plotLegend1stOnly and idx>0: pass else: patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSpQAndEventsResults def plotTimespansLDS( axLst # list of axes to be used ,xlims # list of sections ,figTitle='' # the title of the plot; will be extended by min. and max. time calculated over all sections; will be also the pdf and png fileName ,figSave=False #True # creates pdf and png ,sectionTitles=[] # list of section titles to be used ,sectionTexts=[] # list of section texts to be used ,vLinesX=[] # plotted in each section if X-time fits ,vAreasX=[] # for each section a list of areas to highlight i.e. [[(timeStartAusschnittDruck,timeEndAusschnittDruck),...],...] ,vLinesXColor='gray' ,vAreasXColor='whitesmoke' # --- Args Fct. ---: ,dfSegReprVec=pd.DataFrame() ,dfDruckReprVec=pd.DataFrame() #,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' # can be a list ,bysecond=None #[0,15,30,45] # can be a list ,byminute=None # can be a list ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD ,yTwinedAxesPosDeltaHPStart=-0.0125 ,yTwinedAxesPosDeltaHP=-0.0875 ,ylimR=ylimRD # can be a list ,ylimRxlim=False # can be a list ,yticksR=yticksRD # can be a list # dito Beschl. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 ,plotLegend=True # interpretiert fuer diese Funktion; Inverse gilt fuer pltLDSErgVec selbst ,plotLegend1stOnly=True # diese Funktion plottet wenn plotLegend=True die Legende nur im ersten Plot ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): # plots pltLDSErgVec-Sections # returns a Lst of pltLDSErgVec-Results, a Lst of (axes,lines) logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if sectionTitles==[] or sectionTitles ==None: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if not isinstance(sectionTitles, list): logger.warning("{0:s}sectionTitles muss eine Liste von strings sein.".format(logStr)) sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if len(sectionTitles)!=len(xlims): logger.debug("{0:s}sectionTitles muss dieselbe Laenge haben wie xlims.".format(logStr)) if len(sectionTitles) == 1: sectionTitles=len(xlims)*[sectionTitles[0]] else: sectionTitles=len(xlims)*['a plotTimespansLDS sectionTitle Praefix'] if sectionTexts==[] or sectionTexts==None: sectionTexts=len(xlims)*[''] if not isinstance(sectionTexts, list): logger.warning("{0:s}sectionTexts muss eine Liste von strings sein.".format(logStr)) sectionTexts=len(xlims)*[''] if len(sectionTexts)!=len(xlims): logger.warning("{0:s}sectionTexts muss dieselbe Laenge haben wie xlims.".format(logStr)) sectionTexts=len(xlims)*[''] if plotLegend: plotLegendFct=False else: plotLegendFct=True pltLDSErgVecResults=[] for idx,xlim in enumerate(xlims): ax = axLst[idx] if isinstance(dateFormat, list): dateFormatIdx=dateFormat[idx] else: dateFormatIdx=dateFormat bysecondIdx=bysecond if isinstance(bysecond, list): if any(isinstance(el, list) for el in bysecond): bysecondIdx=bysecond[idx] byminuteIdx=byminute if isinstance(byminute, list): if any(isinstance(el, list) for el in byminute): byminuteIdx=byminute[idx] byhourIdx=byhour if isinstance(byhour, list): if any(isinstance(el, list) for el in byhour): byhourIdx=byhour[idx] ylimRIdx=ylimR if isinstance(ylimR, list): ylimRIdx=ylimR[idx] ylimRxlimIdx=ylimRxlim if isinstance(ylimRxlim, list): ylimRxlimIdx=ylimRxlim[idx] yticksRIdx=yticksR if isinstance(yticksR, list): if any(isinstance(el, list) for el in yticksR): yticksRIdx=yticksR[idx] (axes,lines)=pltLDSErgVec( ax ,dfSegReprVec=dfSegReprVec ,dfDruckReprVec=dfDruckReprVec ,xlim=xlims[idx] ,dateFormat=dateFormatIdx ,bysecond=bysecondIdx ,byminute=byminuteIdx ,byhour=byhourIdx ,ylimAL=ylimAL ,yticksAL=yticksAL ,yTwinedAxesPosDeltaHPStart=yTwinedAxesPosDeltaHPStart ,yTwinedAxesPosDeltaHP=yTwinedAxesPosDeltaHP ,ylimR=ylimRIdx ,ylimRxlim=ylimRxlimIdx ,yticksR=yticksRIdx ,ylimAC=ylimAC ,ylimACxlim=ylimACxlim ,yticksAC=yticksAC ,ySpanMin=ySpanMin ,plotLegend=plotLegendFct ,legendLoc=legendLoc ,legendFramealpha=legendFramealpha ,legendFacecolor=legendFacecolor ,attrsDctLDS=attrsDctLDS ,plotLPRate=plotLPRate ,plotR2FillSeg=plotR2FillSeg ,plotR2FillDruck=plotR2FillDruck ,plotAC=plotAC ,plotACCLimits=plotACCLimits ,highlightAreas=highlightAreas ,Seg_Highlight_Color=Seg_Highlight_Color ,Seg_Highlight_Alpha=Seg_Highlight_Alpha ,Seg_Highlight_Fct=Seg_Highlight_Fct ,Seg_HighlightError_Color=Seg_HighlightError_Color ,Seg_Highlight_Alpha_Error=Seg_Highlight_Alpha_Error # ,Seg_HighlightError_Fct=Seg_HighlightError_Fct ,Druck_Highlight_Color=Druck_Highlight_Color ,Druck_Highlight_Alpha=Druck_Highlight_Alpha ,Druck_Highlight_Fct=Druck_Highlight_Fct ,Druck_HighlightError_Color=Druck_HighlightError_Color ,Druck_Highlight_Alpha_Error=Druck_Highlight_Alpha_Error # ,Druck_HighlightError_Fct=Druck_HighlightError_Fct ,plotTV=plotTV ,plotTVTimerFct=plotTVTimerFct ,plotTVAmFct=plotTVAmFct ,plotTVAmLabel=plotTVAmLabel ,ylimTV=ylimTV ,yticksTV=yticksTV ,plotDPDT=plotDPDT ,plotSB_S=plotSB_S ) pltLDSErgVecResults.append((axes,lines)) sectionText=sectionTexts[idx] ax.text( 0.5, 0.5, sectionText, ha='center', va='top', transform=ax.transAxes ) (timeStart,timeEnd)=xlim sectionTitleSingle="{:s}: Plot Nr. {:d} - Zeitspanne: {:s}".format(sectionTitles[idx],idx+1,str(timeEnd-timeStart)).replace('days','Tage') ax.set_title(sectionTitleSingle) for vLineX in vLinesX: if vLineX >= timeStart and vLineX <= timeEnd: ax.axvline(x=vLineX,ymin=0, ymax=1, color=vLinesXColor,ls=linestyle_tuple[11][1]) if len(vAreasX) == len(xlims): vAreasXSection=vAreasX[idx] if vAreasXSection==[] or vAreasXSection==None: pass else: for vArea in vAreasXSection: ax.axvspan(vArea[0], vArea[1], alpha=0.6, color=vAreasXColor) else: if len(vAreasX)>0: logger.warning("{0:s}vAreasX muss dieselbe Laenge haben wie xlims.".format(logStr)) # Legend if plotLegend: legendHorizontalPos='center' if len(xlims)>1: if idx in [0,2,4]: # Anfahren ... legendHorizontalPos='right' elif idx in [1,3,5]: # Abfahren ... legendHorizontalPos='left' if plotLegend1stOnly and idx>0: pass else: if not dfSegReprVec.empty: patternSeg='Seg$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternSeg,line) != None]) ,tuple([line for line in lines if re.search(patternSeg,line) != None]) ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if not dfDruckReprVec.empty: patternDruck='Drk$' axes['A'].add_artist(axes['A'].legend( tuple([lines[line] for line in lines if re.search(patternDruck,line) != None]) ,tuple([line for line in lines if re.search(patternDruck,line) != None]) ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) # Titel tMin=xlims[0][0] tMax=xlims[-1][1] for tPair in xlims: (t1,t2)=tPair if t1 < tMin: tMin=t1 if t2>tMax: tMax=t2 if figTitle not in ['',None]: figTitle="{:s} - {:s} - {:s}".format(figTitle,str(tMin),str(tMax)).replace(':',' ') fig=plt.gcf() fig.suptitle(figTitle) # speichern?! if figSave: fig.tight_layout(pad=2.) # gs.tight_layout(fig,pad=2.) plt.savefig(figTitle+'.png') plt.savefig(figTitle+'.pdf') except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return pltLDSErgVecResults def pltLDSpQAndEvents( ax ,dfTCsLDSIn # es werden nur die aDct-definierten geplottet ,dfTCsOPC=pd.DataFrame() # es werden nur die aDctOPC-definierten geplottet # der Schluessel in den vorgenannten Dcts ist die ID (der Spaltenname) in den TCs ,dfTCsOPCScenTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEvents=pd.DataFrame() ,dfTCsSIDEventsTimeShift=pd.Timedelta('1 hour') ,dfTCsSIDEventsInXlimOnly=True # es werden nur die Spalten geplottet, die in xlim vorkommen und dort mindestens 1x nicht Null sind (sonst sind alle (zumindest in der Legende) dargestellt) ,dfTCsSIDEventsyOffset=.05 # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden) ,QDct={ # Exanple 'Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value':{'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,'Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value':{'IDPlt':'Q Snk','RTTM':'IMDI.Objects.FBG_MESSW.6_TUD_39_FT_01.In.MW.value'} } ,pDct={# Example 'Objects.FBG_HPS_M.6_KED_39_PTI_01_E.In.MW.value':{'IDPlt':'p Src'} ,'Objects.FBG_HPS_M.6_TUD_39_PTI_01_E.In.MW.value':{'IDPlt':'p Snk'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_01_E.In.MW.value':{'IDPlt':'p ISrc 1'} ,'Objects.FBG_HPS_M.6_EL1_39_PTI_02_E.In.MW.value':{'IDPlt':'p ISnk 2'} } ,QDctOPC={ # Exanple 'Objects.FBG_MESSW.6_EL1_39_FT_01.In.MW.value':{'IDPlt':'Q xSnk 1'} } ,pDctOPC={} ,IDPltKey='IDPlt' # Schluesselbezeichner in den vorstehenden 4 Dcts; Wert ist Referenz auf das folgende Layout-Dct und das folgende Fcts-Dct; Werte muessen eindeutig sein ,attrsDct=attrsDct ,fctsDct={} # a Dct with Fcts ,xlim=None ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,plotRTTM=True # plot RTTM-Echoes # p y-Achse ,ylimp=ylimpD #wenn undef., dann min/max ,ylimpxlim=False #wenn Wahr und ylim undef., dann wird xlim beruecksichtigt bei min/max ,yticksp=None #wenn undef., dann aus ylimp ,ylabelp='[bar]' # Q y-Achse ,ylimQ=ylimQD ,ylimQxlim=False ,yticksQ=None #wenn undef., dann aus ylimQ ,ylabelQ='[Nm³/h]' # 3. Achse ,ylim3rd=ylim3rdD ,yticks3rd=yticks3rdD ,ylabel3rd='Schieber (ZUSTände 0,1,2 jew. + x; Befehle)' ,yGridSteps=30 # 0: das y-Gitter besteht dann bei ylimp=ylimQ=yticksp=yticksQ None nur aus min/max (also 1 Gitterabschnitt) ,ySpanMin=0.9 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' # SchieberEvents ,pSIDEvents=pSIDEvents # ausgewertet werden: colRegExSchieberID (um welchen Schieber geht es), colRegExMiddle (Befehl oder Zustand) und colRegExEventID (welcher Befehl bzw. Zustand) # die Befehle bzw. Zustaende (die Auspraegungen von colRegExEventID) muessen nachf. def. sein um den Marker (des Befehls bzw. des Zustandes) zu definieren ,eventCCmds=eventCCmds ,eventCStats=eventCStats ,valRegExMiddleCmds=valRegExMiddleCmds # colRegExMiddle-Auspraegung fuer Befehle (==> eventCCmds) # es muessen soviele Farben definiert sein wie Schieber ,baseColorsDef=baseColorsSchieber ,markerDef=markerDefSchieber ): """ zeichnet pq-Zeitkurven - ggf. ergaenzt durch Events Returns: * axes (Dct of axes) * lines (Dct of lines) * scatters (List of ax.scatter-Results) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} lines={} scatters=[] try: axes['p']=ax # x-Achse ---------------- if xlim == None: xlimMin=dfTCsLDSIn.index[0] xlimMax=dfTCsLDSIn.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}dfTCsOPCScenTimeShift: {1:s}".format(logStr,str(dfTCsOPCScenTimeShift))) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # Eindeutigkeit der IDPlts pruefen keys=[] keysUneindeutig=[] for dct in [QDct,pDct,QDctOPC,pDctOPC]: for key, value in dct.items(): if IDPltKey in value.keys(): IDPltValue=value[IDPltKey] if IDPltValue in keys: print("IDPlt {:s} bereits vergeben".format(IDPltValue)) keysUneindeutig.append(IDPltValue) else: keys.append(IDPltValue) # 1. Achse p ----------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p')) for key, value in pDct.items(): # nur die konfigurierten IDs plotten if key in dfTCsLDSIn.columns: # nur dann, wenn ID als Spalte enthalten label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=key # Spaltenname ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct # a Dct with - i.e. {'Q Src':{'color':'red'},...} ,IDPltKey=IDPltKey # Schluesselbezeichner in value ,IDPltValuePostfix=None ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('1 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys(): if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 1. Achse p OPC')) for key, value in pDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) ylimp,yticksp=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,pDct.keys() ,ylim=ylimp ,yticks=yticksp ,ylimxlim=ylimpxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax.set_ylim(ylimp) ax.set_yticks(yticksp) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel(ylabelp) # 2. y-Achse Q ---------------------------------------- logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q')) ax2 = ax.twinx() axes['Q']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) for key, value in QDct.items(): if key in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=key ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct # ,timeShift=pd.Timedelta('0 hour') # pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) if 'RTTM' in value.keys() and plotRTTM: if value['RTTM'] in dfTCsLDSIn.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsLDSIn ,ID=value['RTTM'] ,xDctValue=value # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=' RTTM' ,xDctFcts=fctsDct #,timeShift=pd.Timedelta('0 hour') #pd.Timedelta('0 seconds') ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,value['RTTM'])) if not dfTCsOPC.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 2. Achse Q OPC')) for key, value in QDctOPC.items(): if key in dfTCsOPC.columns: label, linesAct = pltLDSpQHelper( ax2 ,TCdf=dfTCsOPC ,ID=key ,xDctValue=value ,xDctAttrs=attrsDct ,IDPltKey=IDPltKey ,IDPltValuePostfix=None ,xDctFcts=fctsDct ,timeShift=dfTCsOPCScenTimeShift ) lines[label]=linesAct[0] else: logger.debug("{0:s}Spalte {1:s} gibt es nicht. Weiter.".format(logStr,key)) pltLDSHelperY(ax2) ylimQ,yticksQ=pltLDSpQHelperYLimAndTicks( dfTCsLDSIn ,QDct.keys() ,ylim=ylimQ ,yticks=yticksQ ,ylimxlim=ylimQxlim ,xlim=xlim ,ySpanMin=ySpanMin ,yGridSteps=yGridSteps ) ax2.set_ylim(ylimQ) ax2.set_yticks(yticksQ) ax2.grid() ax2.set_ylabel(ylabelQ) # ggf. 3. Achse if not dfTCsSIDEvents.empty: logger.debug("{0:s}{1:s}".format(logStr,'# 3. Achse SID')) ax3 = ax.twinx() axes['SID']=ax3 pltHelperX( ax3 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP ) if dfTCsSIDEventsInXlimOnly: # auf xlim beschränken dfTCsSIDEventsPlot=dfTCsSIDEvents[ (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: (dfTCsSIDEvents.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] # weiter beschränken auf die, die in xlim mind. 1 Eintrag haben dfTCsSIDEventsPlot=dfTCsSIDEventsPlot.dropna(axis=1,how='all') else: dfTCsSIDEventsPlot=dfTCsSIDEvents # doppelte bzw. mehrfache Spaltennamen eliminieren (das waere ein Aufruf-Fehler) dfTCsSIDEventsPlot = dfTCsSIDEventsPlot.loc[:,~dfTCsSIDEventsPlot.columns.duplicated()] logger.debug("{:s}dfTCsSIDEventsPlot.dropna(how='all'): {:s}".format(logStr,dfTCsSIDEventsPlot.dropna(how='all').to_string())) if not dfTCsSIDEventsPlot.dropna(how='all').empty: # mind. 1 Ereignis in irgendeiner Spalte muss ueberbleiben # aus Performanzgruenden wird nur zum Plot gegeben, was in xlim auch zu sehen sein wird dfTCsSIDEventsPlot2=dfTCsSIDEventsPlot[ ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift>=xlim[0]) &#: ( dfTCsSIDEventsPlot.index-dfTCsSIDEventsTimeShift<=xlim[1]) ] labelsOneCall,scattersOneCall=pltLDSSIDHelper( ax3 ,dfTCsSIDEventsPlot2 ,dfTCsSIDEventsTimeShift ,dfTCsSIDEventsyOffset ,pSIDEvents ,valRegExMiddleCmds ,eventCCmds ,eventCStats ,markerDef ,baseColorsDef ) scatters=scatters+scattersOneCall pltLDSHelperY(ax3) ax3.set_ylim(ylim3rd) ax3.set_yticks(yticks3rd) ax3.set_ylabel(ylabel3rd) if plotLegend: legendHorizontalPos='center' patterBCp='^p S[rc|nk]' patterBCQ='^Q S[rc|nk]' patterBCpQ='^[p|Q] S[rc|nk]' linesp=[line for line in lines if re.search(patterBCp,line) != None] linesQ=[line for line in lines if re.search(patterBCQ,line) != None] linespTxt=tuple([lines[line] for line in linesp]) linesQTxt=tuple([lines[line] for line in linesQ]) moreLines=[line for line in lines if re.search(patterBCpQ,line) == None] moreLinesp=[line for line in moreLines if re.search('^p',line) != None] moreLinesQ=[line for line in moreLines if re.search('^Q',line) != None] moreLinespTxt=tuple([lines[line] for line in moreLinesp]) moreLinesQTxt=tuple([lines[line] for line in moreLinesQ]) axes['p'].add_artist(axes['p'].legend( linespTxt+moreLinespTxt ,linesp+moreLinesp ,loc='upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) axes['Q'].add_artist(axes['Q'].legend( linesQTxt+moreLinesQTxt ,linesQ+moreLinesQ ,loc='lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if 'SID' in axes.keys() and len(scatters)>0: if legendHorizontalPos == 'center': legendHorizontalPosAct='' else: legendHorizontalPosAct=' '+legendHorizontalPos axes['SID'].legend(loc='center'+legendHorizontalPosAct ,framealpha=legendFramealpha ,facecolor=legendFacecolor) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return axes,lines,scatters def pltLDSErgVec( ax=None # Axes auf die geplottet werden soll (und aus der neue axes ge-twinx-ed werden; plt.gcf().gca() wenn undef. ,dfSegReprVec=pd.DataFrame() # Ergebnisvektor SEG; pass empty Df if Druck only ,dfDruckReprVec=pd.DataFrame() # Ergebnisvektor DRUCK; pass empty Df if Seg only ,xlim=None # tuple (xmin,xmax); wenn undef. gelten min/max aus vorgenannten Daten als xlim; wenn Seg angegeben, gilt Seg ,dateFormat='%y.%m.%d: %H:%M:%S' ,bysecond=None #[0,15,30,45] ,byminute=None ,byhour=None ,ylimAL=ylimALD ,yticksAL=yticksALD #[0,10,20,30,40] ,yTwinedAxesPosDeltaHPStart=-0.0125 #: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche ,yTwinedAxesPosDeltaHP=-0.0875 #: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche ,ylimR=ylimRD #None #(-10,10) #wenn undef., dann min/max dfSegReprVec ,ylimRxlim=False #wenn Wahr und ylimR undef. (None), dann wird xlim beruecksichtigt bei min/max dfSegReprVec ,yticksR=yticksRD #[0,2,4,10,15,30,40] #wenn undef. (None), dann aus ylimR; matplotlib "vergrößert" mit dem Setzen von yTicks ein ebenfalls gesetztes ylim wenn die Ticks außerhalb des ylims liegen # <NAME>. ,ylimAC=ylimACD ,ylimACxlim=False ,yticksAC=yticksACD ,ySpanMin=0.9 # wenn ylim R/AC undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,plotLegend=True ,legendLoc='best' ,legendFramealpha=.2 ,legendFacecolor='white' ,attrsDctLDS=attrsDctLDS ,plotLPRate=True ,plotR2FillSeg=True ,plotR2FillDruck=True ,plotAC=True ,plotACCLimits=True ,highlightAreas=True ,Seg_Highlight_Color='cyan' ,Seg_Highlight_Alpha=.1 ,Seg_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Seg_HighlightError_Color='peru' ,Seg_Highlight_Alpha_Error=.3 ,Seg_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,Druck_Highlight_Color='cyan' ,Druck_Highlight_Alpha=.1 ,Druck_Highlight_Fct=lambda row: True if row['STAT_S']==101 else False ,Druck_HighlightError_Color='peru' ,Druck_Highlight_Alpha_Error=.3 ,Druck_HighlightError_Fct=lambda row: True if row['STAT_S']==601 else False ,plotTV=True ,plotTVTimerFct=None ,plotTVAmFct=lambda x: x*100 ,plotTVAmLabel=plotTVAmLabelD ,ylimTV=ylimTVD ,yticksTV=yticksTVD ,plotDPDT=True ,plotSB_S=True ): """ zeichnet Zeitkurven von App LDS Ergebnisvektoren auf ax return: axes (Dct der Achsen), yLines (Dct der Linien) Dct der Achsen: 'A': Alarm etc.; 'R': m3/h; 'a': ACC; 'TV': Timer und Leckvolumen #! Lücken (nicht plotten) wenn keine Zeiten """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) axes={} yLines={} try: if dfSegReprVec.empty and dfDruckReprVec.empty: logger.error("{0:s}{1:s}".format(logStr,'dfSegReprVec UND dfDruckReprVec leer?! Return.')) return if not dfSegReprVec.empty: # keine komplett leeren Zeilen dfSegReprVec=dfSegReprVec[~dfSegReprVec.isnull().all(1)] # keine doppelten Indices dfSegReprVec=dfSegReprVec[~dfSegReprVec.index.duplicated(keep='last')] # dfSegReprVec.groupby(dfSegReprVec.index).last() # df[~df.index.duplicated(keep='last')] if not dfDruckReprVec.empty: # keine komplett leeren Zeilen dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.isnull().all(1)] # keine doppelten Indices dfDruckReprVec=dfDruckReprVec[~dfDruckReprVec.index.duplicated(keep='last')] # dfDruckReprVec.groupby(dfDruckReprVec.index).last() # df[~df.index.duplicated(keep='last')] if ax==None: ax=plt.gcf().gca() axes['A']=ax # x-Achse ---------------- if xlim == None: if not dfSegReprVec.empty: xlimMin=dfSegReprVec.index[0] xlimMax=dfSegReprVec.index[-1] elif not dfDruckReprVec.empty: xlimMin=dfDruckReprVec.index[0] xlimMax=dfDruckReprVec.index[-1] xlim=(xlimMin,xlimMax) (xlimMin,xlimMax)=xlim ax.set_xlim(xlim) logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) logger.debug("{0:s}dateFormat: {1:s}".format(logStr,dateFormat)) pltHelperX( ax ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart ) # 1. Achse Alarm ----------------------- if not dfSegReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha, color=Seg_Highlight_Color) tPairs=findAllTimeIntervalls(dfSegReprVec,Seg_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Seg_Highlight_Alpha_Error, color=Seg_HighlightError_Color) if not dfDruckReprVec.empty and highlightAreas: tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_Highlight_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha, color=Druck_Highlight_Color) tPairs=findAllTimeIntervalls(dfDruckReprVec,Druck_HighlightError_Fct) for t1,t2 in tPairs: ax.axvspan(t1, t2, alpha=Druck_Highlight_Alpha_Error, color=Druck_HighlightError_Color) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'AL_S',attrsDctLDS['Seg_AL_S_Attrs']) yLines['AL_S Seg']=lines[0] if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'AL_S',attrsDctLDS['Druck_AL_S_Attrs']) yLines['AL_S Drk']=lines[0] if not dfSegReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfSegReprVec,'SB_S',attrsDctLDS['Seg_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Seg']=lines[0] if not dfDruckReprVec.empty and plotSB_S: lines = pltLDSErgVecHelper(ax,dfDruckReprVec,'SB_S',attrsDctLDS['Druck_SB_S_Attrs'],fct=lambda x: x*10) yLines['SB_S Drk']=lines[0] ax.set_ylim(ylimAL) ax.set_yticks(yticksAL) ax.grid() ax.set_zorder(10) ax.patch.set_visible(False) ax.set_ylabel('A [0/10/20] u. 10x B [0/1/2/3/4]') # 2. y-<NAME> ---------------------------------------- ax2 = ax.twinx() axes['R']=ax2 pltHelperX( ax2 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+yTwinedAxesPosDeltaHP ) pltLDSHelperY(ax2) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'MZ_AV',attrsDctLDS['Seg_MZ_AV_Attrs']) yLines['MZ_AV (R1) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LR_AV',attrsDctLDS['Seg_LR_AV_Attrs']) yLines['LR_AV (R2) Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'NG_AV',attrsDctLDS['Seg_NG_AV_Attrs']) yLines['NG_AV Seg']=lines[0] lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'QM_AV',attrsDctLDS['Seg_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Seg']=lines[0] if plotLPRate: # R2 = R1 - LP # R2 - R1 = -LP # LP = R1 - R2 lines = pltLDSErgVecHelper(ax2,dfSegReprVec,'LP_AV',attrsDctLDS['Seg_LP_AV_Attrs']) yLines['LP_AV Seg']=lines[0] if plotR2FillSeg: df=dfSegReprVec df=df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')) df=df.fillna(method='ffill').fillna(method='bfill') # R2 unter 0 dummy=ax2.fill_between(df.index, df['LR_AV'],0 ,where=df['LR_AV']<0,color='grey',alpha=.2) # zwischen R2 und 0 dummy=ax2.fill_between(df.index, 0, df['LR_AV'] ,where=df['LR_AV']>0 #,color='yellow',alpha=.1 ,color='red',alpha=.1 ) # R2 über 0 aber unter NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=(df['LR_AV']>0) & (df['LR_AV']<df['NG_AV']) #,color='red',alpha=.1 ,color='yellow',alpha=.1 ) # R2 über NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=df['LR_AV']>df['NG_AV'] ,color='red',alpha=.2) if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'MZ_AV',attrsDctLDS['Druck_MZ_AV_Attrs']) yLines['MZ_AV (R1) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LR_AV',attrsDctLDS['Druck_LR_AV_Attrs']) yLines['LR_AV (R2) Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'NG_AV',attrsDctLDS['Druck_NG_AV_Attrs']) yLines['NG_AV Drk']=lines[0] if plotLPRate: lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'LP_AV',attrsDctLDS['Druck_LP_AV_Attrs']) yLines['LP_AV Drk']=lines[0] lines = pltLDSErgVecHelper(ax2,dfDruckReprVec,'QM_AV',attrsDctLDS['Druck_QM16_AV_Attrs'],fct=lambda x: x*1.6/100.) yLines['QM16_AV Drk']=lines[0] if plotR2FillDruck: df=dfDruckReprVec df=df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1s')) df=df.fillna(method='ffill').fillna(method='bfill') # R2 unter 0 dummy=ax2.fill_between(df.index, df['LR_AV'],0 ,where=df['LR_AV']<0,color='grey',alpha=.4) # zwischen R2 und 0 dummy=ax2.fill_between(df.index, 0, df['LR_AV'] ,where=df['LR_AV']>0 #,color='yellow',alpha=.1 ,color='red',alpha=.1 ) # R2 über 0 aber unter NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=(df['LR_AV']>0) & (df['LR_AV']<df['NG_AV']) #,color='red',alpha=.1 ,color='yellow',alpha=.1 ) # R2 über NG dummy=ax2.fill_between(df.index, df['LR_AV'], df['NG_AV'] ,where=df['LR_AV']>df['NG_AV'] ,color='red',alpha=.2) ylimSeg,yticksSeg=pltLDSErgVecHelperYLimAndTicks( dfSegReprVec ,'LR_AV' ,ylim=ylimR ,yticks=yticksR ,ylimxlim=ylimRxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimRSeg: {1:s} yticksRSeg: {2:s}".format(logStr,str(ylimSeg),str(yticksSeg))) ylimDrk,yticksDrk=pltLDSErgVecHelperYLimAndTicks( dfDruckReprVec ,'LR_AV' ,ylim=ylimR ,yticks=yticksR ,ylimxlim=ylimRxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimRDrk: {1:s} yticksRDrk: {2:s}".format(logStr,str(ylimDrk),str(yticksDrk))) if ylimSeg[1]>=ylimDrk[1]: ylimR=ylimSeg yticksR=yticksSeg else: ylimR=ylimDrk yticksR=yticksDrk logger.debug("{0:s}ylimR: {1:s} yticksR: {2:s}".format(logStr,str(ylimR),str(yticksR))) ax2.set_ylim(ylimR) ax2.set_yticks(yticksR) ax2.grid() ax2.set_ylabel('R1, R2, NG, LP (R1-R2), QM 1.6% [Nm³/h]') # 3. y-Achse Beschleunigung ---------------------------------------- if plotAC: # 3. y-Achse Beschleunigung ------------------------------------------------- ax3 = ax.twinx() axes['a']=ax3 pltHelperX( ax3 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP ) pltLDSHelperY(ax3) if not dfSegReprVec.empty: lines = pltLDSErgVecHelper(ax3,dfSegReprVec,'AC_AV',attrsDctLDS['Seg_AC_AV_Attrs']) yLines['AC_AV Seg']=lines[0] lines = pltLDSErgVecHelper(ax3,dfSegReprVec,'ACF_AV',attrsDctLDS['Seg_ACF_AV_Attrs']) yLines['ACF_AV Seg']=lines[0] if not dfDruckReprVec.empty: lines = pltLDSErgVecHelper(ax3,dfDruckReprVec,'AC_AV',attrsDctLDS['Druck_AC_AV_Attrs']) yLines['AC_AV Drk']=lines[0] lines = pltLDSErgVecHelper(ax3,dfDruckReprVec,'ACF_AV',attrsDctLDS['Druck_ACF_AV_Attrs']) yLines['ACF_AV Drk']=lines[0] # ACC Limits if plotACCLimits: if not dfSegReprVec.empty: # + line=ax3.axhline(y=dfSegReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=dfSegReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfDruckReprVec.empty: # + line=ax3.axhline(y=dfDruckReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=dfDruckReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfSegReprVec.empty: # - line=ax3.axhline(y=-dfSegReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=-dfSegReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Seg_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) if not dfDruckReprVec.empty: # - line=ax3.axhline(y=-dfDruckReprVec['ACCST_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) line=ax3.axhline(y=-dfDruckReprVec['ACCTR_AV'].max()) for prop,value in attrsDctLDS['Druck_ACC_Limits_Attrs'].items(): plt.setp(line,"{:s}".format(prop),value) ylimSeg,yticksSeg=pltLDSErgVecHelperYLimAndTicks( dfSegReprVec ,'AC_AV' ,ylim=ylimAC ,yticks=yticksAC ,ylimxlim=ylimACxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimACSeg: {1:s} yticksACSeg: {2:s}".format(logStr,str(ylimSeg),str(yticksSeg))) ylimDrk,yticksDrk=pltLDSErgVecHelperYLimAndTicks( dfDruckReprVec ,'AC_AV' ,ylim=ylimAC ,yticks=yticksAC ,ylimxlim=ylimACxlim ,xlim=xlim ,ySpanMin=ySpanMin ) logger.debug("{0:s}ylimACDrk: {1:s} yticksACDrk: {2:s}".format(logStr,str(ylimDrk),str(yticksDrk))) if ylimSeg[1]>=ylimDrk[1]: ylimAC=ylimSeg yticksAC=yticksSeg else: ylimAC=ylimDrk yticksAC=yticksDrk logger.debug("{0:s}ylimAC: {1:s} yticksAC: {2:s}".format(logStr,str(ylimAC),str(yticksAC))) ax3.set_ylim(ylimAC) ax3.set_yticks(yticksAC) ax3.set_ylabel('a [mm/s²]') # 4. y-Achse Timer und Volumen ---------------------------------------- if plotTV: # 4. y-Achse Timer und Volumen ---------------------------------------- ax4 = ax.twinx() axes['TV']=ax4 yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP if plotAC: yPos=yPos+yTwinedAxesPosDeltaHP pltHelperX( ax4 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yPos ) pltLDSHelperY(ax4) if not dfSegReprVec.empty: # TIMER_AV lines = pltLDSErgVecHelper(ax4,dfSegReprVec,'TIMER_AV',attrsDctLDS['Seg_TIMER_AV_Attrs'],fct=plotTVTimerFct) yLines['TIMER_AV Seg']=lines[0] # AM_AV lines = pltLDSErgVecHelper(ax4,dfSegReprVec,'AM_AV',attrsDctLDS['Seg_AM_AV_Attrs'],fct=plotTVAmFct) yLines['AM_AV Seg']=lines[0] if not dfDruckReprVec.empty: # TIMER_AV lines = pltLDSErgVecHelper(ax4,dfDruckReprVec,'TIMER_AV',attrsDctLDS['Druck_TIMER_AV_Attrs'],fct=plotTVTimerFct) yLines['TIMER_AV Drk']=lines[0] # AM_AV lines = pltLDSErgVecHelper(ax4,dfDruckReprVec,'AM_AV',attrsDctLDS['Druck_AM_AV_Attrs'],fct=plotTVAmFct) yLines['AM_AV Drk']=lines[0] if not dfSegReprVec.empty or not dfDruckReprVec.empty: ax4.set_ylim(ylimTV) ax4.set_yticks(yticksTV) ax4.set_ylabel(plotTVAmLabel) ax4.grid() # 5. y-Achse DPDT ---------------------------------------- if plotDPDT and (not dfSegReprVec.empty or not dfDruckReprVec.empty): # Min. ermitteln DPDT_REF_MinSEG=0 if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): s=dfSegReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() if not s.empty: DPDT_REF_MinSEG=s.min() DPDT_REF_MinDruck=0 if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): s=dfDruckReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() if not s.empty: DPDT_REF_MinDruck=s.min() DPDT_REF_Min=min(DPDT_REF_MinSEG,DPDT_REF_MinDruck) if DPDT_REF_Min >= 0: pass # es gibt nichts zu plotten else: # Max ermitteln maxSeg=DPDT_REF_Min if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): s=dfSegReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() s=s[s<0] if not s.empty: DPDT_REF_MinSEG=s.max() maxDruck=DPDT_REF_Min if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): s=dfDruckReprVec.loc[xlim[0]:xlim[1],'DPDT_REF'].dropna() s=s[s<0] if not s.empty: DPDT_REF_MinDruck=s.max() DPDT_REF_Max=max(maxSeg,maxDruck) # 5. y-Achse DPDT ---------------------------------------- ax5 = ax.twinx() axes['DPDT']=ax5 yPos=yTwinedAxesPosDeltaHPStart+2*yTwinedAxesPosDeltaHP if plotAC: yPos=yPos+yTwinedAxesPosDeltaHP if plotTV: yPos=yPos+yTwinedAxesPosDeltaHP pltHelperX( ax5 ,dateFormat=dateFormat ,bysecond=bysecond ,byminute=byminute ,byhour=byhour ,yPos=yPos ) pltLDSHelperY(ax5) if not dfSegReprVec.empty: if 'DPDT_REF' in dfSegReprVec.columns.to_list(): lines = pltLDSErgVecHelper(ax5,dfSegReprVec,'DPDT_REF',attrsDctLDS['Seg_DPDT_REF_Attrs'],fct=None) yLines['DPDT_REF Seg']=lines[0] df=dfSegReprVec.loc[xlim[0]:xlim[1],:].query('DPDT_AV < 0') #logger.debug("{0:s}df (neg. DPDT): {1:s}".format(logStr,df.to_string())) lines = pltLDSErgVecHelper(ax5,df,'DPDT_AV',attrsDctLDS['Seg_DPDT_AV_Attrs'],fct=None) yLines['DPDT_AV Seg']=lines[0] if not dfDruckReprVec.empty: if 'DPDT_REF' in dfDruckReprVec.columns.to_list(): lines = pltLDSErgVecHelper(ax5,dfDruckReprVec,'DPDT_REF',attrsDctLDS['Druck_DPDT_REF_Attrs'],fct=None) yLines['DPDT_REF Drk']=lines[0] df=dfDruckReprVec.loc[xlim[0]:xlim[1],:].query('DPDT_AV < 0') #logger.debug("{0:s}df (neg. DPDT): {1:s}".format(logStr,df.to_string())) lines = pltLDSErgVecHelper(ax5,df,'DPDT_AV',attrsDctLDS['Druck_DPDT_AV_Attrs'],fct=None) yLines['DPDT_AV Drk']=lines[0] yTickList=[DPDT_REF_Min*10 ,DPDT_REF_Min/0.9 # bei einem Vorhaltemass von 0.9 steht hier x; 0.9 X x kann man an den anderen beiden Ticks ablesen #,DPDT_REF_Min ,0 ,DPDT_REF_Min*-1 ] ax5.set_ylim(yTickList[0],yTickList[-1]) ax5.set_yticks([round(yTick,2) for yTick in yTickList]) if DPDT_REF_Max > DPDT_REF_Min: ax5.set_ylabel("bar/Minute (max. Wert: {:6.3f})".format(DPDT_REF_Max)) else: ax5.set_ylabel('bar/Minute') ax5.grid() if plotLegend: legendHorizontalPos='center' if not dfSegReprVec.empty: if dfDruckReprVec.empty: loc=legendLoc # Vorgabe else: loc='upper '+legendHorizontalPos # beide: fix patternSeg='Seg$' axes['A'].add_artist(axes['A'].legend( tuple([yLines[line] for line in yLines if re.search(patternSeg,line) != None]) ,tuple([line for line in yLines if re.search(patternSeg,line) != None]) ,loc=loc #'upper '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) if not dfDruckReprVec.empty: if dfSegReprVec.empty: loc=legendLoc # Vorgabe else: loc='lower '+legendHorizontalPos # beide: fix patternDruck='Drk$' axes['A'].add_artist(axes['A'].legend( tuple([yLines[line] for line in yLines if re.search(patternDruck,line) != None]) ,tuple([line for line in yLines if re.search(patternDruck,line) != None]) ,loc=loc #'lower '+legendHorizontalPos ,framealpha=legendFramealpha ,facecolor=legendFacecolor )) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return axes,yLines def pltHelperX( ax ,dateFormat='%d.%m.%y: %H:%M:%S' ,bysecond=None # [0,15,30,45] ,byminute=None ,byhour=None ,yPos=-0.0125 #: (i.d.R. negativer) Abstand der y-Achse von der Zeichenfläche; default: -0.0125 ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: logger.debug("{0:s}bysecond: {1:s}".format(logStr,str(bysecond))) logger.debug("{0:s}byminute: {1:s}".format(logStr,str(byminute))) logger.debug("{0:s}byhour: {1:s}".format(logStr,str(byhour))) logger.debug("{0:s}dateFormat: {1:s}".format(logStr,dateFormat)) if bysecond != None: majLocatorTmp=mdates.SecondLocator(bysecond=bysecond) elif byminute != None: majLocatorTmp=mdates.MinuteLocator(byminute=byminute) elif byhour != None: majLocatorTmp=mdates.HourLocator(byhour=byhour) else: majLocatorTmp=mdates.HourLocator(byhour=[0,12]) majFormatterTmp=mdates.DateFormatter(dateFormat) logger.debug("{0:s}ax.xaxis.set_major_locator ...".format(logStr)) ax.xaxis.set_major_locator(majLocatorTmp) logger.debug("{0:s}ax.xaxis.set_major_formatter ...".format(logStr)) ax.xaxis.set_major_formatter(majFormatterTmp) #logger.debug("{0:s}ax.get_xticks(): {1:s}".format(logStr,str(ax.get_xticks()))) logger.debug("{0:s}setp(ax.xaxis.get_majorticklabels() ...".format(logStr)) dummy=plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.spines["left"].set_position(("axes",yPos)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltLDSHelperY( ax ): logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) #logger.debug("{0:s}{1:s}".format(logStr,'Start.')) pltMakePatchSpinesInvisible(ax) ax.spines['left'].set_visible(True) ax.yaxis.set_label_position('left') ax.yaxis.set_ticks_position('left') #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltLDSErgVecHelperYLimAndTicks( dfReprVec ,dfReprVecCol ,ylim=None #(-10,10) # wenn undef., dann min/max dfReprVec ,yticks=None #[-10,0,10] # wenn undef., dann aus dem Ergebnis von ylim ,ylimxlim=False #wenn Wahr und ylim undef., dann wird nachf. xlim beruecksichtigt bei min/max dfReprVec ,xlim=None ,ySpanMin=0.1 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ): """ Returns: ylim,yticks Der y-Werte-Bereich ylim wird zur x-Achse symmetrisch ermittelt. yticks spielt dabei keine Rolle. Sind ylim bzw. yticks definiert, erfahren sie keine Änderung. """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) if ylim != None: # der y-Wertebereich ist explizit definiert pass else: if not dfReprVec.empty and not dfReprVec.loc[:,dfReprVecCol].isnull().all().all(): if not ylimxlim: ylimmin=dfReprVec.loc[:,dfReprVecCol].min() ylimmax=dfReprVec.loc[:,dfReprVecCol].max() else: (xlimMin,xlimMax)=xlim if not dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].isnull().all().all(): ylimmin=dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].min() ylimmax=dfReprVec.loc[xlimMin:xlimMax,dfReprVecCol].max() else: ylimmin=0 ylimmax=0 ylimminR=round(ylimmin,0) ylimmaxR=round(ylimmax,0) if ylimminR > ylimmin: ylimminR=ylimminR-1 if ylimmaxR < ylimmax: ylimmaxR=ylimmaxR+1 ylimminAbsR=math.fabs(ylimminR) # B auf den extremaleren Wert ylimB=max(ylimminAbsR,ylimmaxR) if ylimB < ySpanMin: # B auf Mindestwert ylimB=ySpanMin ## Differenz < Mindestwert: B+ #if math.fabs(ylimmax-ylimmin) < ySpanMin: # ylimB=.5*(ylimminAbs+ylimmax)+ySpanMin ylim=(-ylimB,ylimB) else: ylim=(-ySpanMin,ySpanMin) if yticks != None: # die y-Ticks sind explizit definiert pass else: # aus Wertebereich (ylimMin,ylimMax)=ylim yticks=[ylimMin,0,ylimMax] #logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return ylim,yticks def pltLDSpQHelperYLimAndTicks( dfReprVec ,dfReprVecCols ,ylim=None # wenn undef., dann min/max dfReprVec ,yticks=None # wenn undef., dann aus ylimR ,ylimxlim=False # wenn Wahr und ylim undef., dann wird nachf. xlim beruecksichtigt bei min/max dfReprVec ,xlim=None # x-Wertebereich ,ySpanMin=0.1 # wenn ylim undef. vermeidet dieses Maß eine y-Achse mit einer zu kleinen Differenz zwischen min/max ,yGridSteps=yGridStepsD ): """ Returns: ylim,yticks """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: if ylim != None: # der y-Wertebereich ist explizit definiert pass else: df=dfReprVec.loc[:,[col for col in dfReprVecCols]] if not ylimxlim: # Extremalwerte Analysebereich ylimmin=df.min().min() ylimmax=df.max().max() else: if xlim == None: logger.error("{0:s} xlim muss angegeben sein wenn ylimxlim Wahr gesetzt wird. Weiter mit ylimxlim Falsch.".format(logStr)) ylimmin=df.min().min() ylimmax=df.max().max() else: # Extremalwerte x-Wertebereich (xlimMin,xlimMax)=xlim # Extremalwerte Analysebereich ylimmin=df.loc[xlimMin:xlimMax,:].min().min() ylimmax=df.loc[xlimMin:xlimMax,:].max().max() logger.debug("{0:s} ylimmin={1:10.2f} ylimmax={2:10.2f}.".format(logStr,ylimmin,ylimmax)) if math.fabs(ylimmax-ylimmin) < ySpanMin: ylimmax=ylimmin+ySpanMin logger.debug("{0:s} ylimmin={1:10.2f} ylimmax={2:10.2f}.".format(logStr,ylimmin,ylimmax)) ylimMinR=round(ylimmin,0) ylimMaxR=round(ylimmax,0) if ylimMinR>ylimmin: ylimMinR=ylimMinR-1 if ylimMaxR<ylimmax: ylimMaxR=ylimMaxR+1 logger.debug("{0:s} ylimMinR={1:10.2f} ylimMaxR={2:10.2f}.".format(logStr,ylimMinR,ylimMaxR)) ylim=(ylimMinR,ylimMaxR) if yticks != None: # die y-Ticks sind explizit definiert pass else: # aus Wertebereich (ylimMin,ylimMax)=ylim if yGridSteps==0: yticks=[ylimMin,ylimMax] else: dYGrid=(ylimMax-ylimMin)/yGridSteps y=np.arange(ylimMin,ylimMax,dYGrid) if y[-1]<ylimMax: y=np.append(y,y[-1]+dYGrid) yticks=y logger.debug("{0:s} yticks={1:s}.".format(logStr,str(yticks))) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return ylim,yticks def pltLDSErgVecHelper( ax ,dfReprVec=pd.DataFrame() ,ID='AL_S' # Spaltenname in dfReprVec ,attrs={} ,fct=None # Function ): """ Helper Returns: lines: ax.plot-Ergebnis """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: lines=[] label=ID x=dfReprVec.index.values if ID in dfReprVec.columns.to_list(): if fct==None: y=dfReprVec[ID].values else: y=dfReprVec[ID].apply(fct).values if 'where' in attrs.keys(): logger.debug("{0:s}ID: {1:s}: step-Plot".format(logStr,ID)) lines = ax.step(x,y,label=label ,where=attrs['where']) else: lines = ax.plot(x,y,label=label ) for prop,propValue in [(prop,value) for (prop, value) in attrs.items() if prop not in ['where']]: plt.setp(lines[0],"{:s}".format(prop),propValue) else: logger.warning("{0:s}Spalte: {1:s}: nicht vorhanden?!".format(logStr,ID)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return lines def pltLDSpQHelper( ax ,TCdf=pd.DataFrame() ,ID='' # Spaltenname ,xDctValue={} # a Dct - i.e. {'IDPlt':'Q Src','RTTM':'IMDI.Objects.FBG_MESSW.6_KED_39_FT_01.In.MW.value'} ,xDctAttrs={} # a Dct with - i.e. {'Q Src':{'color':'red'},...} ,IDPltKey='IDPlt' # Schluesselbezeichner in xDctValue (Key in xDctAttrs und xDctFcts) ,IDPltValuePostfix=None # SchluesselPostfix in xDctAttrs und xDctFcts - i.e. ' RTTM' ,xDctFcts={} # a Dct with Fcts - i.e. {'p Src': lambda x: 134.969 + x*10^5/(794.*9.81)} ,timeShift=pd.Timedelta('0 seconds') ): """ Helper Returns: label: Bezeichner lines: ax.plot-Ergebnis """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: logger.debug("{:s}Echo der Parameter: xDctFcts: {!s:s}".format(logStr,xDctFcts)) label='' lines=[] # nur Not Null plotten s=TCdf[ID][TCdf[ID].notnull()] logger.debug("{0:s}timeShift: {1:s}".format(logStr,str(timeShift))) x=s.index.values+timeShift #TCdf.index.values+timeShift IDPltValue=None if IDPltKey in xDctValue.keys(): # es liegt ein Schluessel fuer eine Layout-Informationen vor IDPltValue=xDctValue[IDPltKey] # koennte auch None sein ... {'IDPlt':None} if IDPltValue != None and IDPltValuePostfix != None: IDPltValue=IDPltValue+IDPltValuePostfix if IDPltValue in xDctFcts.keys(): logger.debug("{:s}Fcts fuer: {:s}".format(logStr,IDPltValue)) fct=xDctFcts[IDPltValue] y=s.apply(fct).values#TCdf[ID].apply(fct).values else: y=s.values #TCdf[ID].values if IDPltValue != None: label=IDPltValue+' '+ID if IDPltValue in xDctAttrs.keys(): if 'where' in xDctAttrs[IDPltValue].keys(): logger.debug("{0:s}ID: {1:s}: step-Plot".format(logStr,ID)) lines = ax.step(x,y ,label=label ,where=xDctAttrs[IDPltValue]['where']) else: lines = ax.plot(x,y ,label=label ) for prop,propValue in [(prop,value) for (prop, value) in xDctAttrs[IDPltValue].items() if prop not in ['where']]: plt.setp(lines[0],"{:s}".format(prop),propValue) else: # es ist kein Layout definiert - einfach plotten logger.debug("{0:s}IDPltValue: {1:s}: es ist kein Layout definiert - einfach plotten ...".format(logStr,IDPltValue)) lines = ax.plot(x,y ,label=label ) else: # es liegt kein Schluessel (oder Wert None) fuer eine Layout-Informationen vor - einfach plotten label=ID logger.debug("{0:s}ID: {1:s}: es liegt kein Schluessel (oder kein Wert) fuer eine Layout-Informationen vor - einfach plotten ...".format(logStr,ID)) lines = ax.plot(x,y) logger.debug("{0:s}label: '{1:s}' len(lines): {2:d}".format(logStr,label,len(lines))) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return label, lines def pltLDSSIDHelper( ax ,dfTCsSIDEvents ,dfTCsScenTimeShift ,dfTCsSIDEventsyOffset # die y-Werte werden ab dem 1. Schieber um je dfTCsSIDEventsyOffset erhöht (damit zeitgleiche Events besser sichtbar werden); max. Erhöhung: 0.9 ,pSIDEvents ,valRegExMiddleCmds ,eventCCmds ,eventCStats ,markerDef ,baseColorsDef ): """ Helper Returns: labels: Bezeichner scatters: ax.scatter-Ergebnisse eventCCmds={ 'Out.AUF':0 ,'Out.ZU':1 ,'Out.HALT':2} eventCStats={'In.LAEUFT':3 ,'In.LAEUFT_NICHT':4 ,'In.ZUST':5 ,'Out.AUF':6 ,'Out.ZU':7 ,'Out.HALT':8 ,'In.STOER':9} markerDefSchieber=[ # Schiebersymobole '^' # 0 Auf ,'v' # 1 Zu ,'>' # 2 Halt # ab hier Zustaende ,'4' # 3 Laeuft ,'3' # 4 Laeuft nicht ,'P' # 5 Zust (gefülltes "dickes" Kreuz) ,'1' # 6 Auf ,'2' # 7 Zu ,'+' # 8 Halt ,'x' # 9 Stoer """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: labels=[] scatters=[] # Anzahl der verschiedenen Schieber ermitteln idxKat={} idxSchieberLfd=0 for col in dfTCsSIDEvents.columns: m=re.search(pSIDEvents,col) valRegExSchieberID=m.group('colRegExSchieberID') if valRegExSchieberID not in idxKat.keys(): idxKat[valRegExSchieberID]=idxSchieberLfd idxSchieberLfd=idxSchieberLfd+1 logger.debug("{0:s}Dct idxKat: keys (versch. Schieber - meint versch. Kategorien): {1:s}: values (Index der jeweiligen Kategorie): {2:s}".format(logStr,str(idxKat.keys()),str(idxKat.values()))) dfTCsSIDEventsPlot = dfTCsSIDEvents # hier keine Veränderungen mehr for col in dfTCsSIDEventsPlot.columns: m=re.search(pSIDEvents,col) valRegExSchieberID=m.group('colRegExSchieberID') idxSchieberLfd=idxKat[valRegExSchieberID] valRegExEventID=m.group('colRegExEventID') valRegExMiddle=m.group('colRegExMiddle') # Markersize s=plt.rcParams['lines.markersize']**2 # Marker if valRegExMiddle == valRegExMiddleCmds: idxMarker=eventCCmds[valRegExEventID] else: idxMarker=eventCStats[valRegExEventID] if valRegExEventID in ['In.ZUST']: s=s*2.5 if idxMarker < len(markerDef): m=markerDef[idxMarker] else: m=markerDef[-1] logger.debug("{0:s}{1:s}: idxMarker: Soll: {2:d} MarkerIdx gewählt: {3:d}".format(logStr,col,idxMarker,len(markerDef)-1)) if idxSchieberLfd < len(baseColorsDef): c=baseColorsDef[idxSchieberLfd] else: c=baseColorsDef[-1] logger.debug("{0:s}{1:s}: idxSchieberLfd: Ist: {2:d} FarbenIdx gewählt: {3:d}".format(logStr,col,idxSchieberLfd,len(baseColorsDef)-1)) colors=[c for idx in range(len(dfTCsSIDEventsPlot.index))] # alle Ereignisse (der Spalte) haben dieselbe Farbe label=col # alle Ereignisse (der Spalte) haben dasselbe Label #sDefault=plt.rcParams['lines.markersize']**2 x=dfTCsSIDEventsPlot.index.values+dfTCsScenTimeShift y=dfTCsSIDEventsPlot[col].values+min(idxSchieberLfd*dfTCsSIDEventsyOffset,.9) logger.debug("{:s}{:s}: erste und letzte Werte: x:{!s:s} y:{!s:s}...".format(logStr,col,x[::len(x)-1],y[::len(y)-1])) scatter = ax.scatter( x ,y ,c=colors ,marker=m ,label=label ,s=s#Default ) # scatter ist eine PathCollection; Attribut u.a. get_label(): Return the label used for this artist in the legend # auch wenn y durchgehend Null wird ein scatter zurueckgegeben (d.h. ist ein Legendeneintrag vorhanden) labels.append(label) scatters.append(scatter) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return labels, scatters # --- PLOT: Funktionen und Hilfsfunktionen # ----------------------------------------------- def pltMakeCategoricalCmap(baseColorsDef="tab10",catagoryColors=None,nOfSubCatsReq=3,reversedSubCatOrder=False): """ Returns a cmap with nOfCatsReq * nOfSubCatsReq discrete colors. Parameter: baseColorsDef: a (discrete) cmap defining the "base"colors default: tab10 if baseColorsDef is not via get_cmap a matplotlib.colors.ListedColormap, baseColorsDef is interpreted via to_rgb as a list of colors in this case catagoryColors is ignored catagoryColors: a list of "base"colors indices for this cmap the length of the list is the number of Categories requested: nOfCatsReq apparently cmap's nOfColors must be ge than nOfCatsReq default: None (==> nOfCatsReq = cmap's nOfColors) i.e. [2,8,3] for tab10 is green, yellow (ocher), red nOfSubCatsReq: number of Subcategories requested reversedSubCatOrder: False (default): if True, the last color of a category is from baseColorsDef reversedSubCatOrder can be a list Returns: cmap with nOfCatsReq * nOfSubCatsReq discrete colors; None if an error occurs one "base"color per category nOfSubCatsReq "sub"colors per category so each category consists of nOfSubCatsReq colors Raises: RmError >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import numpy as np >>> import Rm >>> Rm.pltMakeCategoricalCmap().N 30 >>> Rm.pltMakeCategoricalCmap(catagoryColors=[2,8,3]).N # 2 8 3 in tab10: grün gelb rot 9 >>> baseColorsDef="tab10" >>> catagoryColors=[2,8,3] >>> nOfSubCatsReq=4 >>> # grün gelb rot mit je 4 Farben von hell nach dunkel >>> cm=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> cm.colors array([[0.75 , 1. , 0.75 ], [0.51819172, 0.87581699, 0.51819172], [0.32570806, 0.75163399, 0.32570806], [0.17254902, 0.62745098, 0.17254902], [0.9983871 , 1. , 0.75 ], [0.91113148, 0.91372549, 0.51165404], [0.82408742, 0.82745098, 0.30609849], [0.7372549 , 0.74117647, 0.13333333], [1. , 0.75 , 0.75142857], [0.94640523, 0.53069452, 0.53307001], [0.89281046, 0.33167491, 0.3348814 ], [0.83921569, 0.15294118, 0.15686275]]) >>> cm2=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=[False]+2*[True]) >>> cm.colors[nOfSubCatsReq-1]==cm2.colors[0] array([ True, True, True]) >>> plt.close() >>> size_DINA6quer=(5.8,4.1) >>> fig, ax = plt.subplots(figsize=size_DINA6quer) >>> fig.subplots_adjust(bottom=0.5) >>> norm=matplotlib.colors.Normalize(vmin=0, vmax=100) >>> cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cm2,norm=norm,orientation='horizontal') >>> cb.set_label('baseColorsDef was (via get_cmap) a matplotlib.colors.ListedColormap') >>> #plt.show() >>> cm3=Rm.pltMakeCategoricalCmap(baseColorsDef=['b','c','m'],nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> cm3.colors array([[0.75 , 0.75 , 1. ], [0.5 , 0.5 , 1. ], [0.25 , 0.25 , 1. ], [0. , 0. , 1. ], [0.75 , 1. , 1. ], [0.45833333, 0.91666667, 0.91666667], [0.20833333, 0.83333333, 0.83333333], [0. , 0.75 , 0.75 ], [1. , 0.75 , 1. ], [0.91666667, 0.45833333, 0.91666667], [0.83333333, 0.20833333, 0.83333333], [0.75 , 0. , 0.75 ]]) >>> plt.close() >>> fig, ax = plt.subplots(figsize=size_DINA6quer) >>> fig.subplots_adjust(bottom=0.5) >>> norm=matplotlib.colors.Normalize(vmin=0, vmax=100) >>> cb=matplotlib.colorbar.ColorbarBase(ax, cmap=cm3,norm=norm,orientation='horizontal') >>> cb.set_label('baseColorsDef was (via to_rgb) a list of colors') >>> #plt.show() """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) cmap=None try: try: # Farben, "base"colors, welche die cmap hat nOfColors=plt.get_cmap(baseColorsDef).N if catagoryColors==None: catagoryColors=np.arange(nOfColors,dtype=int) # verlangte Kategorien nOfCatsReq=len(catagoryColors) if nOfCatsReq > nOfColors: logStrFinal="{0:s}: nOfCatsReq: {1:d} > cmap's nOfColors: {2:d}!".format(logStr,nOfCatsReq,nOfColors) raise RmError(logStrFinal) if max(catagoryColors) > nOfColors-1: logStrFinal="{0:s}: max. Idx of catsReq: {1:d} > cmap's nOfColors-1: {2:d}!".format(logStr,max(catagoryColors),nOfColors-1) raise RmError(logStrFinal) # alle Farben holen, welche die cmap hat ccolors = plt.get_cmap(baseColorsDef)(np.arange(nOfColors,dtype=int)) # die gewuenschten Kategorie"Basis"farben extrahieren ccolors=[ccolors[idx] for idx in catagoryColors] except: listOfColors=baseColorsDef nOfColors=len(listOfColors) nOfCatsReq=nOfColors ccolors=[] for color in listOfColors: ccolors.append(list(matplotlib.colors.to_rgb(color))) finally: pass logger.debug("{0:s}ccolors: {1:s}".format(logStr,str(ccolors))) logger.debug("{0:s}nOfCatsReq: {1:s}".format(logStr,str((nOfCatsReq)))) logger.debug("{0:s}nOfSubCatsReq: {1:s}".format(logStr,str((nOfSubCatsReq)))) # Farben bauen ------------------------------------- # resultierende Farben vorbelegen cols = np.zeros((nOfCatsReq*nOfSubCatsReq, 3)) # ueber alle Kategoriefarben if type(reversedSubCatOrder) is not list: reversedSubCatOrderLst=nOfCatsReq*[reversedSubCatOrder] else: reversedSubCatOrderLst=reversedSubCatOrder logger.debug("{0:s}reversedSubCatOrderLst: {1:s}".format(logStr,str((reversedSubCatOrderLst)))) for i, c in enumerate(ccolors): rgb=pltMakeCategoricalColors(c,nOfSubColorsReq=nOfSubCatsReq,reversedOrder=reversedSubCatOrderLst[i]) cols[i*nOfSubCatsReq:(i+1)*nOfSubCatsReq,:] = rgb cmap = matplotlib.colors.ListedColormap(cols) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return cmap def pltMakePatchSpinesInvisible(ax): ax.set_frame_on(True) ax.patch.set_visible(False) for sp in ax.spines.values(): sp.set_visible(False) def pltHlpAlignMarker(marker,halign='center',valign='middle'): """ create markers with specified alignment. Parameters ---------- marker : a valid marker specification. See mpl.markers halign : string, float {'left', 'center', 'right'} Specifies the horizontal alignment of the marker. *float* values specify the alignment in units of the markersize/2 (0 is 'center', -1 is 'right', 1 is 'left'). valign : string, float {'top', 'middle', 'bottom'} Specifies the vertical alignment of the marker. *float* values specify the alignment in units of the markersize/2 (0 is 'middle', -1 is 'top', 1 is 'bottom'). Returns ------- marker_array : numpy.ndarray A Nx2 array that specifies the marker path relative to the plot target point at (0, 0). Notes ----- The mark_array can be passed directly to ax.plot and ax.scatter, e.g.:: ax.plot(1, 1, marker=align_marker('>', 'left')) """ if isinstance(halign,str): halign = {'right': -1., 'middle': 0., 'center': 0., 'left': 1., }[halign] if isinstance(valign,str): valign = {'top': -1., 'middle': 0., 'center': 0., 'bottom': 1., }[valign] # Define the base marker bm = markers.MarkerStyle(marker) # Get the marker path and apply the marker transform to get the # actual marker vertices (they should all be in a unit-square # centered at (0, 0)) m_arr = bm.get_path().transformed(bm.get_transform()).vertices # Shift the marker vertices for the specified alignment. m_arr[:, 0] += halign / 2 m_arr[:, 1] += valign / 2 return Path(m_arr, bm.get_path().codes) def pltNetFigAx(pDf,**kwds): """ Erzeugt eine für die Netzdarstellung verzerrungsfreie Axes-Instanz. * verwendet gcf() (will return an existing figure if one is open, or it will make a new one if there is no active figure) * an already existing figure might be created this way: fig=plt.figure(dpi=2*72,linewidth=1.) * errechnet die verzerrungsfreie Darstellung unter Berücksichtigung einer zukünftigen horizontalen Farblegende * erzeugt eine Axes-Instanz * setzt Attribute der Axes-Instanz * setzt Attribute der Figure-Instanz Args: pDf: dataFrame Coordinates: * pXCor_i: colName in pDf (default: 'pXCor_i'): x-Start Coordinate of all Edges to be plotted * pYCor_i: colName in pDf (default: 'pYCor_i'): y-Start Coordinate of all Edges to be plotted * pXCor_k: colName in pDf (default: 'pXCor_k'): x-End Coordinate of all Edges to be plotted * pYCor_k: colName in pDf (default: 'pYCor_k'): y-End Coordinate of all Edges to be plotted Colorlegend: * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) Figure: * pltTitle: title [not suptitle] (default: 'pltNetFigAx') * figFrameon: figure frame (background): displayed or invisible (default: True) * figEdgecolor: edge color of the Figure rectangle (default: 'black') * figFacecolor: face color of the Figure rectangle (default: 'white') """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Coordinates if 'pXCor_i' not in keys: kwds['pXCor_i']='pXCor_i' if 'pYCor_i' not in keys: kwds['pYCor_i']='pYCor_i' if 'pXCor_k' not in keys: kwds['pXCor_k']='pXCor_k' if 'pYCor_k' not in keys: kwds['pYCor_k']='pYCor_k' # Colorlegend if 'CBFraction' not in keys: kwds['CBFraction']=0.05 if 'CBHpad' not in keys: kwds['CBHpad']=0.0275 # Figure if 'pltTitle' not in keys: kwds['pltTitle']='pltNetFigAx' if 'figFrameon' not in keys: kwds['figFrameon']=True if 'figEdgecolor' not in keys: kwds['figEdgecolor']='black' if 'figFacecolor' not in keys: kwds['figFacecolor']='white' except: pass try: dx=max(pDf[kwds['pXCor_i']].max(),pDf[kwds['pXCor_k']].max()) dy=max(pDf[kwds['pYCor_i']].max(),pDf[kwds['pYCor_k']].max()) # erf. Verhältnis bei verzerrungsfreier Darstellung dydx=dy/dx if(dydx>=1): dxInch=DINA4_x # Hochformat else: dxInch=DINA4_y # Querformat figwidth=dxInch #verzerrungsfrei: Blattkoordinatenverhaeltnis = Weltkoordinatenverhaeltnis factor=1-(kwds['CBFraction']+kwds['CBHpad']) # verzerrungsfreie Darstellung sicherstellen figheight=figwidth*dydx*factor # Weltkoordinatenbereich xlimLeft=0 ylimBottom=0 xlimRight=dx ylimTop=dy # plt.figure(dpi=, facecolor=, edgecolor=, linewidth=, frameon=True) fig = plt.gcf() # This will return an existing figure if one is open, or it will make a new one if there is no active figure. fig.set_figwidth(figwidth) fig.set_figheight(figheight) logger.debug("{:s}dx={:10.2f} dy={:10.2f}".format(logStr,dx,dy)) logger.debug("{:s}figwidth={:10.2f} figheight={:10.2f}".format(logStr,figwidth,figheight)) ax=plt.subplot() ax.set_xlim(left=xlimLeft) ax.set_ylim(bottom=ylimBottom) ax.set_xlim(right=xlimRight) ax.set_ylim(top=ylimTop) xTicks=ax.get_xticks() dxTick = xTicks[1]-xTicks[0] yTicks=ax.set_yticks([idx*dxTick for idx in range(math.floor(dy/dxTick)+1)]) plt.title(kwds['pltTitle']) fig.set_frameon(kwds['figFrameon']) fig.set_edgecolor(kwds['figEdgecolor']) fig.set_facecolor(kwds['figFacecolor']) # https://stackoverflow.com/questions/14827650/pyplot-scatter-plot-marker-size # Size in pts: # the argument markersize in plot denotes the markersize (i.e. diameter) in points # the argument s in scatter denotes the markersize**2 in points^2 # so a given plot-marker with markersize=x needs a scatter-marker with s=x**2 if the scatter-marker shall cover the same "area" in points^2 # the "area" of the scatter-marker is proportional to the s param # What are points - pts: # the standard size of points in matplotlib is 72 ppi # 1 point is hence 1/72 inches (1 inch = 1 Zoll = 2.54 cm) # 1 point = 0.352777.... mm # points and pixels - px: # 1 point = dpi/ppi # the standard dpi in matplotlib is 100 # a scatter-marker whos "area" covers always 10 pixel: # s=(10*ppi/dpi)**2 except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetNodes(pDf,**kwds): """ Scatters NODEs on gca(). Args: pDf: dataFrame NODE: Size (Attribute) * pAttribute: colName (default: 'Attribute') in pDf * pSizeFactor: (deafault: 1.) * scatter Sy-Area in pts^2 = pSizeFactor * Attribute NODE: Color (Measure) * pMeasure: colName (default: 'Measure') in pDf * pMeasureColorMap (default: plt.cm.autumn) * pMeasureAlpha (default: 0.9) * pMeasureClip (default: False) * CBFixedLimits (default: True) * CBFixedLimitLow (default: 0.) * CBFixedLimitHigh (default: 1.) NODE: 3Classes * pMeasure3Classes (default: True) * pMCategory: colName (default: 'MCategory') in pDf * pMCatTopTxt (default: 'Top') * pMCatMidTxt (default: 'Middle') * pMCatBotTxt (default: 'Bottom') * pMCatTopColor (default: 'palegreen') * pMCatTopAlpha (default: 0.9) * pMCatTopClip (default: False) * pMCatMidColorMap (default: plt.cm.autumn) * pMCatMidAlpha (default: 0.9) * pMCatMidClip (default: False) * pMCatBotColor (default: 'violet') * pMCatBotAlpha (default: 0.9) * pMCatBotClip (default: False) NODE: * pXCor: colName (default: 'pXCor_i') in pDf * pYCor: colName (default: 'pYCor_i') in pDf Returns: (pcN, vmin, vmax) * pcN: die mit Farbskala gezeichneten Symbole * vmin/vmax: die für die Farbskala verwendeten Extremalwerte """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # NODE: Size (Attribute) if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pSizeFactor' not in keys: kwds['pSizeFactor']=1. # NODE: Color (Measure) if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureColorMap' not in keys: kwds['pMeasureColorMap']=plt.cm.autumn if 'pMeasureAlpha' not in keys: kwds['pMeasureAlpha']=0.9 if 'pMeasureClip' not in keys: kwds['pMeasureClip']=False if 'CBFixedLimits' not in keys: kwds['CBFixedLimits']=True if 'CBFixedLimitLow' not in keys: kwds['CBFixedLimitLow']=0. if 'CBFixedLimitHigh' not in keys: kwds['CBFixedLimitHigh']=1. # NODE: 3Classes if 'pMeasure3Classes' not in keys: kwds['pMeasure3Classes']=True if 'pMCategory' not in keys: kwds['pMCategory']='MCategory' if 'pMCatTopTxt' not in keys: kwds['pMCatTopTxt']='Top' if 'pMCatMidTxt' not in keys: kwds['pMCatMidTxt']='Middle' if 'pMCatBotTxt' not in keys: kwds['pMCatBotTxt']='Bottom' if 'pMCatTopColor' not in keys: kwds['pMCatTopColor']='palegreen' if 'pMCatTopAlpha' not in keys: kwds['pMCatTopAlpha']=0.9 if 'pMCatTopClip' not in keys: kwds['pMCatTopClip']=False if 'pMCatMidColorMap' not in keys: kwds['pMCatMidColorMap']=plt.cm.autumn if 'pMCatMidAlpha' not in keys: kwds['pMCatMidAlpha']=0.9 if 'pMCatMidClip' not in keys: kwds['pMCatMidClip']=False if 'pMCatBotColor' not in keys: kwds['pMCatBotColor']='violet' if 'pMCatBotAlpha' not in keys: kwds['pMCatBotAlpha']=0.9 if 'pMCatBotClip' not in keys: kwds['pMCatBotClip']=False # NODE: if 'pXCor' not in keys: kwds['pXCor']='pXCor_i' if 'pYCor' not in keys: kwds['pYCor']='pYCor_i' except: pass try: ax=plt.gca() if kwds['pMeasure3Classes']: pN_top=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatTopTxt'])] pN_mid=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatMidTxt'])] pN_bot=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatBotTxt'])] pN_top_Anz,col=pN_top.shape pN_mid_Anz,col=pN_mid.shape pN_bot_Anz,col=pN_bot.shape pcN_top=ax.scatter( pN_top[kwds['pXCor']],pN_top[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_top[kwds['pAttribute']] ,color=kwds['pMCatTopColor'] ,alpha=kwds['pMCatTopAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatTopClip']) logger.debug("{:s}Anzahl mit fester Farbe Top gezeichneter Symbole={:d}".format(logStr,pN_top_Anz)) if not kwds['CBFixedLimits']: vmin=pN_mid[kwds['pMeasure']].min() vmax=pN_mid[kwds['pMeasure']].max() else: vmin=kwds['CBFixedLimitLow'] vmax=kwds['CBFixedLimitHigh'] pcN=ax.scatter( pN_mid[kwds['pXCor']],pN_mid[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_mid[kwds['pAttribute']] # Farbskala ,cmap=kwds['pMCatMidColorMap'] # Normierung Farbe ,vmin=vmin ,vmax=vmax # Farbwert ,c=pN_mid[kwds['pMeasure']] ,alpha=kwds['pMCatMidAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatMidClip'] ) logger.debug("{:s}Anzahl mit Farbskala gezeichneter Symbole={:d}".format(logStr,pN_mid_Anz)) pcN_bot=ax.scatter( pN_bot[kwds['pXCor']],pN_bot[kwds['pYCor']] ,s=kwds['pSizeFactor']*pN_bot[kwds['pAttribute']] ,color=kwds['pMCatBotColor'] ,alpha=kwds['pMCatBotAlpha'] ,edgecolors='face' ,clip_on=kwds['pMCatBotClip']) logger.debug("{:s}Anzahl mit fester Farbe Bot gezeichneter Symbole={:d}".format(logStr,pN_bot_Anz)) else: pN_Anz,col=pDf.shape if not kwds['CBFixedLimits']: vmin=pDf[kwds['pMeasure']].min() vmax=pDf[kwds['pMeasure']].max() else: vmin=kwds['CBFixedLimitLow'] vmax=kwds['CBFixedLimitHigh'] pcN=ax.scatter( pDf[kwds['pXCor']],pDf[kwds['pYCor']] ,s=kwds['pSizeFactor']*pDf[kwds['pAttribute']] # Farbskala ,cmap=kwds['pMeasureColorMap'] # Normierung Farbe ,vmin=vmin ,vmax=vmax # Farbwert ,c=pDf[kwds['pMeasure']] ,alpha=kwds['pMeasureAlpha'] ,edgecolors='face' ,clip_on=kwds['pMeasureClip'] ) logger.debug("{:s}Anzahl mit Farbskala gezeichneter Symbole={:d}".format(logStr,pN_Anz)) logger.debug("{:s}Farbskala vmin={:10.3f} Farbskala vmax={:10.3f}".format(logStr,vmin,vmax)) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return (pcN, vmin, vmax) def pltNetPipes(pDf,**kwds): """ Plots Lines with Marker on gca(). Args: pDf: dataFrame PIPE-Line: * pAttribute: column in pDf (default: 'Attribute') * pAttributeLs (default: '-') * pAttributeSizeFactor: plot linewidth in pts = pAttributeSizeFactor (default: 1.0) * Attribute * pAttributeSizeMin (default: None): if set: use pAttributeSizeMin-Value as Attribute for LineSize if Attribute < pAttributeSizeMin * pAttributeColorMap (default: plt.cm.binary) * pAttributeColorMapUsageStart (default: 1./3; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart PIPE-Marker: * pMeasure: column in pDf (default: 'Measure') * pMeasureMarker (default: '.') * pMeasureSizeFactor: plot markersize in pts = pMeasureSizeFactor (default: 1.0) * Measure * pMeasureSizeMin (default: None): if set: use pMeasureSizeMin-Value as Measure for MarkerSize if Measure < pMeasureSizeMin * pMeasureColorMap (default: plt.cm.cool) * pMeasureColorMapUsageStart (default: 0.; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart PIPE: * pWAYPXCors: column in pDf (default: 'pWAYPXCors') * pWAYPYCors: column in pDf (default: 'pWAYPYCors') * pClip (default: False) """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # PIPE-Line if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pAttributeSizeFactor' not in keys: kwds['pAttributeSizeFactor']=1. if 'pAttributeSizeMin' not in keys: kwds['pAttributeSizeMin']=None if 'pAttributeLs' not in keys: kwds['pAttributeLs']='-' if 'pAttributeColorMap' not in keys: kwds['pAttributeColorMap']=plt.cm.binary if 'pAttributeColorMapUsageStart' not in keys: kwds['pAttributeColorMapUsageStart']=1./3. # PIPE-Marker if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureSizeFactor' not in keys: kwds['pMeasureSizeFactor']=1. if 'pMeasureSizeMin' not in keys: kwds['pMeasureSizeMin']=None if 'pMeasureMarker' not in keys: kwds['pMeasureMarker']='.' if 'pMeasureColorMap' not in keys: kwds['pMeasureColorMap']=plt.cm.cool if 'pMeasureColorMapUsageStart' not in keys: kwds['pMeasureColorMapUsageStart']=0. # PIPE if 'pWAYPXCors' not in keys: kwds['pWAYPXCors']='pWAYPXCors' if 'pWAYPYCors' not in keys: kwds['pWAYPYCors']='pWAYPYCors' if 'pClip' not in keys: kwds['pClip']=False except: pass try: # Line minLine=pDf[kwds['pAttribute']].min() maxLine=pDf[kwds['pAttribute']].max() logger.debug("{:s}minLine (Attribute): {:6.2f}".format(logStr,minLine)) logger.debug("{:s}maxLine (Attribute): {:6.2f}".format(logStr,maxLine)) normLine=colors.Normalize(minLine,maxLine) usageLineValue=minLine+kwds['pAttributeColorMapUsageStart']*(maxLine-minLine) usageLineColor=kwds['pAttributeColorMap'](normLine(usageLineValue)) # Marker minMarker=pDf[kwds['pMeasure']].min() maxMarker=pDf[kwds['pMeasure']].max() logger.debug("{:s}minMarker (Measure): {:6.2f}".format(logStr,minMarker)) logger.debug("{:s}maxMarker (Measure): {:6.2f}".format(logStr,maxMarker)) normMarker=colors.Normalize(minMarker,maxMarker) usageMarkerValue=minMarker+kwds['pMeasureColorMapUsageStart']*(maxMarker-minMarker) usageMarkerColor=kwds['pMeasureColorMap'](normMarker(usageMarkerValue)) ax=plt.gca() for xs,ys,vLine,vMarker in zip(pDf[kwds['pWAYPXCors']],pDf[kwds['pWAYPYCors']],pDf[kwds['pAttribute']],pDf[kwds['pMeasure']]): if vLine >= usageLineValue: colorLine=kwds['pAttributeColorMap'](normLine(vLine)) else: colorLine=usageLineColor if vMarker >= usageMarkerValue: colorMarker=kwds['pMeasureColorMap'](normMarker(vMarker)) else: colorMarker=usageMarkerColor linewidth=kwds['pAttributeSizeFactor']*vLine if kwds['pAttributeSizeMin'] != None: if vLine < kwds['pAttributeSizeMin']: linewidth=kwds['pAttributeSizeFactor']*kwds['pAttributeSizeMin'] mSize=kwds['pMeasureSizeFactor']*vMarker if kwds['pMeasureSizeMin'] != None: if vMarker < kwds['pMeasureSizeMin']: mSize=kwds['pMeasureSizeFactor']*kwds['pMeasureSizeMin'] pcLines=ax.plot(xs,ys ,color=colorLine ,linewidth=linewidth ,ls=kwds['pAttributeLs'] ,marker=kwds['pMeasureMarker'] ,mfc=colorMarker ,mec=colorMarker ,mfcalt=colorMarker ,mew=0 ,ms=mSize #kwds['pMeasureSizeFactor']*vMarker ,markevery=[0,len(xs)-1] ,aa=True ,clip_on=kwds['pClip'] ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetLegendColorbar(pc,pDf,**kwds): """ Erzeugt eine Axes cax für den Legendenbereich aus ax (=gca()) und zeichnet auf cax die Farblegende (die Farbskala mit allen Eigenschaften). Args: pc: (eingefaerbte) PathCollection (aus pltNetNodes); wird für die Erzeugung der Farbskala zwingend benoetigt pDf: dataFrame (default: None) Measure: * pMeasure: colName in pDf (default: 'Measure') * pMeasureInPerc: Measure wird interpretiert in Prozent [0-1] (default: True) * pMeasure3Classes (default: False d.h. Measure wird nicht in 3 Klassen dargestellt) CBFixedLimits (Ticks): * CBFixedLimits (default: False d.h. Farbskala nach vorh. min./max. Wert) * CBFixedLimitLow (default: .10) * CBFixedLimitHigh (default: .95) Label: * pMeasureUNIT (default: '[]') * pMeasureTYPE (default: '') CB * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) * CBLabelPad (default: -50) * CBTicklabelsHPad (default: 0.) * CBAspect: ratio of long to short dimension (default: 10.) * CBShrink: fraction by which to shrink the colorbar (default: 0.3) * CBAnchorHorizontal: horizontaler Fußpunkt der colorbar in Plot-% (default: 0.) * CBAnchorVertical: vertikaler Fußpunkt der colorbar in Plot-% (default: 0.2) Return: cax """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Measure if 'pMeasure' not in keys: kwds['pMeasure']='Measure' if 'pMeasureInPerc' not in keys: kwds['pMeasureInPerc']=True if 'pMeasure3Classes' not in keys: kwds['pMeasure3Classes']=False # Label if 'pMeasureUNIT' not in keys: kwds['pMeasureUNIT']='[]' if 'pMeasureTYPE' not in keys: kwds['pMeasureTYPE']='' # CBFixedLimits if 'CBFixedLimits' not in keys: kwds['CBFixedLimits']=False if 'CBFixedLimitLow' not in keys: kwds['CBFixedLimitLow']=.10 if 'CBFixedLimitHigh' not in keys: kwds['CBFixedLimitHigh']=.95 # CB if 'CBFraction' not in keys: kwds['CBFraction']=0.05 if 'CBHpad' not in keys: kwds['CBHpad']=0.0275 if 'CBLabelPad' not in keys: kwds['CBLabelPad']=-50 if 'CBTicklabelsHPad' not in keys: kwds['CBTicklabelsHPad']=0 if 'CBAspect' not in keys: kwds['CBAspect']=10. if 'CBShrink' not in keys: kwds['CBShrink']=0.3 if 'CBAnchorHorizontal' not in keys: kwds['CBAnchorHorizontal']=0. if 'CBAnchorVertical' not in keys: kwds['CBAnchorVertical']=0.2 except: pass try: ax=plt.gca() fig=plt.gcf() # cax cax=None cax,kw=make_axes(ax ,location='right' ,fraction=kwds['CBFraction'] # fraction of original axes to use for colorbar ,pad=kwds['CBHpad'] # fraction of original axes between colorbar and new image axes ,anchor=(kwds['CBAnchorHorizontal'],kwds['CBAnchorVertical']) # the anchor point of the colorbar axes ,aspect=kwds['CBAspect'] # ratio of long to short dimension ,shrink=kwds['CBShrink'] # fraction by which to shrink the colorbar ) # colorbar colorBar=fig.colorbar(pc ,cax=cax ,**kw ) # tick Values if kwds['pMeasure3Classes']: # FixedLimits should be True and FixedLimitHigh/Low should be set ... minCBtickValue=kwds['CBFixedLimitLow'] maxCBtickValue=kwds['CBFixedLimitHigh'] else: if kwds['CBFixedLimits'] and isinstance(kwds['CBFixedLimitHigh'],float) and isinstance(kwds['CBFixedLimitLow'],float): minCBtickValue=kwds['CBFixedLimitLow'] maxCBtickValue=kwds['CBFixedLimitHigh'] else: minCBtickValue=pDf[kwds['pMeasure']].min() maxCBtickValue=pDf[kwds['pMeasure']].max() colorBar.set_ticks([minCBtickValue,minCBtickValue+.5*(maxCBtickValue-minCBtickValue),maxCBtickValue]) # tick Labels if kwds['pMeasureInPerc']: if kwds['pMeasure3Classes']: minCBtickLabel=">{:3.0f}%".format(minCBtickValue*100) maxCBtickLabel="<{:3.0f}%".format(maxCBtickValue*100) else: minCBtickLabel="{:6.2f}%".format(minCBtickValue*100) maxCBtickLabel="{:6.2f}%".format(maxCBtickValue*100) else: if kwds['pMeasure3Classes']: minCBtickLabel=">{:6.2f}".format(minCBtickValue) maxCBtickLabel="<{:6.2f}".format(maxCBtickValue) else: minCBtickLabel="{:6.2f}".format(minCBtickValue) maxCBtickLabel="{:6.2f}".format(maxCBtickValue) logger.debug("{:s}minCBtickLabel={:s} maxCBtickLabel={:s}".format(logStr,minCBtickLabel,maxCBtickLabel)) colorBar.set_ticklabels([minCBtickLabel,'',maxCBtickLabel]) colorBar.ax.yaxis.set_tick_params(pad=kwds['CBTicklabelsHPad']) # Label if kwds['pMeasureInPerc']: CBLabelText="{:s} in [%]".format(kwds['pMeasureTYPE']) else: CBLabelText="{:s} in {:s}".format(kwds['pMeasureTYPE'],kwds['pMeasureUNIT']) colorBar.set_label(CBLabelText,labelpad=kwds['CBLabelPad']) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return cax def pltNetLegendColorbar3Classes(pDf,**kwds): """ Zeichnet auf gca() die ergaenzenden Legendeninformationen bei 3 Klassen. * scatters the Top-Symbol * scatters the Bot-Symbol * the "Mid-Symbol" is the (already existing) colorbar with (already existing) ticks and ticklabels Args: pDf: dataFrame Category: * pMCategory: colName in pDf (default: 'MCategory') * pMCatTopText * pMCatMidText * pMCatBotText CBLegend (3Classes) - Parameterization of the representative Symbols * CBLe3cTopVPad (default: 1+1*1/4) * CBLe3cMidVPad (default: .5) * CBLe3cBotVPad (default: 0-1*1/4) * "1" is the height of the Colorbar * the VPads (the vertical Sy-Positions) are defined in cax.transAxes Coordinates * cax is the Colorbar Axes * CBLe3cSySize=10**2 (Sy-Area in pts^2) * CBLe3cSyType='o' Color: * pMCatBotColor='violet' * pMCatTopColor='palegreen' Returns: (bbTop, bbMid, bbBot): the boundingBoxes of the 3Classes-Symbols """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # Cats if 'pMCategory' not in keys: kwds['pMCategory']='MCategory' if 'pMCatTopText' not in keys: kwds['pMCatTopText']='Top' if 'pMCatMidText' not in keys: kwds['pMCatMidText']='Middle' if 'pMCatBotText' not in keys: kwds['pMCatBotText']='Bottom' # CBLegend3Cats if 'CBLe3cTopVPad' not in keys: kwds['CBLe3cTopVPad']=1+1*1/4 if 'CBLe3cMidVPad' not in keys: kwds['CBLe3cMidVPad']=.5 if 'CBLe3cBotVPad' not in keys: kwds['CBLe3cBotVPad']=0-1*1/4 if 'CBLe3cSySize' not in keys: kwds['CBLe3cSySize']=10**2 if 'CBLe3cSyType' not in keys: kwds['CBLe3cSyType']='o' # CatAttribs if 'pMCatTopColor' not in keys: kwds['pMCatTopColor']='palegreen' if 'pMCatBotColor' not in keys: kwds['pMCatBotColor']='violet' except: pass try: cax=plt.gca() pDf_top=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatTopTxt'])] pDf_mid=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatMidTxt'])] pDf_bot=pDf[(pDf[kwds['pMCategory']]==kwds['pMCatBotTxt'])] pDf_top_Anz,col=pDf_top.shape pDf_mid_Anz,col=pDf_mid.shape pDf_bot_Anz,col=pDf_bot.shape logger.debug("{:s} pDf_bot_Anz={:d} pDf_mid_Anz={:d} pDf_top_Anz={:d}".format(logStr,pDf_bot_Anz,pDf_mid_Anz,pDf_top_Anz)) logger.debug("{:s} CBLe3cBotVPad={:f} CBLe3cMidVPad={:f} CBLe3cTopVPad={:f}".format(logStr,kwds['CBLe3cBotVPad'],kwds['CBLe3cMidVPad'],kwds['CBLe3cTopVPad'])) bbBot=None bbMid=None bbTop=None if pDf_bot_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cBotVPad'] ,s=kwds['CBLe3cSySize'] ,c=kwds['pMCatBotColor'] ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) # Text dazu o=po.findobj(match=None) p=o[0] bbBot=p.get_datalim(cax.transAxes) logger.debug("{:s} bbBot={!s:s}".format(logStr,bbBot)) # a=plt.annotate(pMCatBotText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cBotVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatBotColor # ) # # weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_bot_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cBotVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatBotColor # ) if pDf_top_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cTopVPad'] ,s=kwds['CBLe3cSySize'] ,c=kwds['pMCatTopColor'] ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) o=po.findobj(match=None) p=o[0] bbTop=p.get_datalim(cax.transAxes) # #Text dazu # o=po.findobj(match=None) # p=o[0] # bb=p.get_datalim(cax.transAxes) # bbTop=bb # a=plt.annotate(pMCatTopText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cTopVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatTopColor # ) # #weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_top_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad++CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cTopVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatTopColor # ) if pDf_mid_Anz >= 0: po=cax.scatter( 0.,kwds['CBLe3cMidVPad'] ,s=kwds['CBLe3cSySize'] ,c='lightgrey' ,alpha=0.9 ,edgecolors='face' ,clip_on=False ,visible=False # es erden nur die Koordinaten benoetigt ,marker=pltHlpAlignMarker(kwds['CBLe3cSyType'], halign='left') ) o=po.findobj(match=None) p=o[0] bbMid=p.get_datalim(cax.transAxes) # #Text dazu # o=po.findobj(match=None) # p=o[0] # bb=p.get_datalim(cax.transAxes) # a=plt.annotate(pMCatMidText # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0),CBLe3cMidVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatMidColor # ,visible=False # ) # #weiterer Text dazu # a=plt.annotate("Anz HA: {:6d}".format(pDf_mid_Anz) # ,xy=(CBHpad+CBLe3cHpadSymbol+CBLe3cHpad+CBLe3cTextSpaceFactor*(bb.x1-bb.x0)+.5,CBLe3cMidVpad) # ,xycoords=cax.transAxes # ,rotation='vertical' #90 # ,va='center' # ,ha='center' # ,color=pMCatMidColor # ,visible=False # ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return (bbTop, bbMid, bbBot) def pltNetLegendTitleblock(text='',**kwds): """ Zeichnet auf gca() ergaenzende Schriftfeldinformationen. Args: text Parametrierung: * anchorVertical """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) if 'anchorVertical' not in keys: kwds['anchorVertical']=1. except: pass cax=plt.gca() try: a=plt.text( 0. ,kwds['anchorVertical'] ,text ,transform=cax.transAxes ,family='monospace' ,size='smaller' ,rotation='vertical' ,va='bottom' ,ha='left' ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetTextblock(text='',**kwds): """ Zeichnet einen Textblock auf gca(). """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) if 'x' not in keys: kwds['x']=0. if 'y' not in keys: kwds['y']=1. except: pass ax=plt.gca() try: a=plt.text( kwds['x'] ,kwds['y'] ,text ,transform=ax.transAxes ,family='monospace' ,size='smaller' ,rotation='horizontal' ,va='bottom' ,ha='left' ) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) class Rm(): @classmethod def pltNetPipes(cls,pDf,**kwds): """ Plots colored PIPES. Args: DATA: pDf: dataFrame * query: query to filter pDf; default: None; Exp.: ="CONT_ID == '1001'" * fmask: function to filter pDf; default: None; Exp.: =lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False * query and fmask are used both (query 1st) if not None * sort_values_by: list of colNames defining the plot order; default: None (d.h. die Plotreihenfolge - und damit die z-Order - ist dann die pDF-Reihenfolge) * sort_values_ascending; default: False (d.h. kleine zuletzt und damit (wenn pAttrLineSize = pAttribute/pAttributeFunc) auch dünne über dicke); nur relevant bei sort_values_by AXES: pAx: Axes to be plotted on; if not specified: gca() is used Colorlegend: * CBFraction in % (default: 5) * CBHpad (default: 0.05) * CBLabel (default: pAttribute/pAttributeFunc) * CBBinTicks (default: None, d.h. keine Vorgabe von Außen); Vorgabe N: N yTicks; bei diskreten CM gemeint im Sinne von N-1 diskreten Kategorien * CBBinDiscrete (default: False, d.h. eine gegebene (kontinuierliche) CM wird nicht in eine diskrete gewandelt) * wenn CBBinDiscrete, dann gilt N aus CBBinTicks fuer die Ticks (bzw. Kategorien); ist CBBinTicks undef. gilt 4 (also 3 Kategorien) * bei den vorgenannten Kategorien handelt es sich um eine gleichmäßige Unterteilung des definierten Wertebereiches * CBBinBounds (default: None): wenn die CM eine diskrete ist, dann wird eine vorgegebene BoundaryNorm angewandt; CBBinTicks hat dann keine Bedeutung * CBTicks: individuell vorgegebene Ticks; wird am Schluss prozessiert, d.h. vorh. (ggf. auch durch CBBinTicks bzw. <=/>= u. v=/^= bereits manipulierte) ... * ... Ticks werden überschrieben; kann ohne CBTickLabels verwendet werden * CBTickLabels: individuell vorgegebene Ticklabels; wird danach prozessiert; Länge muss zu dann existierenden Ticks passen; kann auch ohne CBTicks verwendet werden PIPE-Attribute: * pAttribute: column in pDf (default: 'Attribute') * pAttributeFunc: * function to be used to construct a new col to be plotted * if pAttributeFunc is not None pAttribute is not used: pAttribute is set to 'pAttributeFunc' * the new constructed col is named 'pAttributeFunc'; this name can be used in sort_values_by PIPE-Color: * pAttributeColorMap (default: plt.cm.cool) * Farbskalamapping: * ------------------ * pAttributeColorMapMin (default: pAttribute.min()); ordnet der kleinsten Farbe einen Wert zu; CM: wenn angegeben _und unterschritten: <= * pAttributeColorMapMax (default: pAttribute.max()); ordnet der größten Farbe einen Wert zu; CM: wenn angegeben _und überschritten: >= * Standard: Farbskala wird voll ausgenutzt; d.h. der (ggf. mit Min/Max) eingegrenzte Wertebereich wird den Randfarben der Skala zugeordnet * wenn ein anderer, kleinerer, Wertebereich mit derselben Farbskala geplottet wird, dann sind die Farben in den Plots nicht vergleichbar ... * ... wenn eine Farbvergleichbarkeit erzielt werden soll, darf dieselbe Farbskala nicht voll ausgenutzt werden * pAttributeColorMapUsageStart (default: 0.; Wertebereich: [0,1[) * hier: die Farbskala wird unten nur ab UsageStart genutzt ... * ... d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart; CM: v= * pAttributeColorMapUsageEnd (default: 1.; Wertebereich: ]0,1]) * hier: die Farbskala wird oben nur bis UsageEnd genutzt ... * ... d.h. Werte die eine "größere" Farbe hätten, bekommen die Farbe von UsageEnd; CM: ^= * etwas anderes ist es, wenn man eine Farbskala an den Rändern nicht voll ausnutzen möchte weil einem die Farben dort nicht gefallen ... PIPE-Color 2nd: * um "unwichtige" Bereiche zu "dimmen": Beispiele: * räumlich: nicht-Schnitt Bereiche; Bestand (2nd) vs. Ausbau; Zonen unwichtig (2nd) vs. Zonen wichtig; Ok (2nd) von NOK * es werden erst die 2nd-Color Pipes gezeichnet; die (1st-)Color Pipes werden danach gezeichnet, liegen also "über" den "unwichtigen" * es wird dieselbe Spalte pAttribute/pAttributeFunc für die 2. Farbskala verwendet * es wird derselbe Linienstil (pAttributeLs) für die 2. Farbskala verwendet * es wird dieselbe Dicke pAttrLineSize (pAttribute/pAttributeFunc) für die 2. Farbskala verwendet * nur die Farbskala ist anders sowie ggf. das Farbskalamapping * pAttributeColorMapFmask: function to filter pDf to decide to plot with colorMap; default: =lambda row: True * pAttributeColorMap2ndFmask: function to filter pDf to decide to plot with colorMap2nd; default: =lambda row: False * mit den beiden Funktionsmasken kann eine Filterung zusätzlich zu query und fmask realisiert werden * die Funktionsmasken sollten schnittmengenfrei sein; wenn nicht: 2nd überschreibt * pAttributeColorMap2nd (default: plt.cm.binary) * Farbskalamapping: * ------------------ * pAttributeColorMap2ndMin (default: pAttributeColorMapMin) * pAttributeColorMap2ndMax (default: pAttributeColorMapMax) * die Farbskala wird an den Rändern nicht voll ausgenutzt wenn die Farben dort ggf. nicht gefallen: * pAttributeColorMap2ndUsageStart (default: 0.; Wertebereich: [0,1[) * pAttributeColorMap2ndUsageEnd (default: 1.; Wertebereich: ]0,1]) PIPE-Linestyle: * pAttributeLs (default: '-') * same for all colors if mutliple colors are specified PIPE-Linesize: * pAttrLineSize: column in pDf; if not specified: pAttribute/pAttributeFunc * pAttrLineSizeFactor (>0): plot linewidth in pts = pAttrLineSizeFactor (default: =...) * fabs(pAttrLineSize) * ...: 1./(pDf[pAttrLineSize].std()*2.) * same for all colors if mutliple colors are specified PIPE-Geometry: * pWAYPXCors: column in pDf (default: 'pWAYPXCors') * pWAYPYCors: column in pDf (default: 'pWAYPYCors') * pClip (default: True) >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import math >>> # --- >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> xm=xms['DHNetwork'] >>> #mx=mxs['DHNetwork'] >>> # --- >>> plt.close() >>> size_DINA3quer=(16.5, 11.7) >>> dpiSize=72 >>> fig=plt.figure(figsize=size_DINA3quer,dpi=dpiSize) >>> gs = gridspec.GridSpec(4, 2) >>> # --- >>> vROHR=xm.dataFrames['vROHR'] >>> # --- >>> # Attribute (with neg. Values) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttribute='ROHR~*~*~*~QMAV' ... ) >>> txt=axNfd.set_title('RL QMAV') >>> # --- >>> # Function as Attribute >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[1]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs') >>> # -------------------------- >>> # --- >>> # Mi/MaD zS auf >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[2]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1600. ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ) >>> txt=axNfd.set_title('Mi/MaD zS auf') >>> # -------------------------- >>> # --- >>> # ind. Kategorien >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[3]) >>> cm = matplotlib.colors.ListedColormap(['cyan', 'royalblue', 'magenta', 'coral']) >>> cm.set_over('0.25') >>> cm.set_under('0.75') >>> bounds = [10.,100.,200.,800.,1600.] >>> norm = matplotlib.colors.BoundaryNorm(bounds, cm.N) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMap=cm ... ,CBBinBounds=bounds ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ) >>> txt=axNfd.set_title('ind. Kategorien') >>> # -------------------------- >>> # --- >>> # Unwichtiges ausblenden über 2nd Color >>> # -------------------------- >>> vAGSN=xm.dataFrames['vAGSN'] >>> hpRL=vAGSN[(vAGSN['LFDNR']=='1') & (vAGSN['Layer']==2)] >>> pDf=pd.merge(vROHR ... ,hpRL[hpRL.IptIdx=='S'] # wg. Innenpunkte ... ,how='left' ... ,left_on='pk' ... ,right_on='OBJID' ... ,suffixes=('','_AGSN')).filter(items=vROHR.columns.tolist()+['OBJID']) >>> axNfd = fig.add_subplot(gs[4]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinTicks=7 ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ) >>> txt=axNfd.set_title('Unwichtiges ausblenden über 2nd Color') >>> # -------------------------- >>> # --- >>> # Farbskalen an den Rändern abschneiden >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[5]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ,pAttributeColorMapUsageStart=3/15. ... ,pAttributeColorMapUsageEnd=12/15. ... ) >>> txt=axNfd.set_title('Farbskalen an den Rändern abschneiden') >>> # -------------------------- >>> # --- >>> # Farbskala diskretisieren >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[6]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinDiscrete=True ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ,CBTicks=[250,750,1250] ... ,CBTickLabels=['klein','mittel','groß'] ... ) >>> txt=axNfd.set_title('Farbskala diskretisieren') >>> # -------------------------- >>> # --- >>> # Unterkategorien >>> # -------------------------- >>> baseColorsDef="tab10" >>> catagoryColors=[9,6,1] >>> nOfSubCatsReq=4 >>> cm=Rm.pltMakeCategoricalCmap(baseColorsDef=baseColorsDef,catagoryColors=catagoryColors,nOfSubCatsReq=nOfSubCatsReq,reversedSubCatOrder=True) >>> axNfd = fig.add_subplot(gs[7]) >>> Rm.Rm.pltNetPipes(pDf ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ,pAttributeColorMap=cm ... ,pAttributeColorMapMin=0. ... ,pAttributeColorMapMax=1500. ... ,CBBinTicks=16 ... ,CBLabel='Q [t/h]' ... ,sort_values_by=['pAttributeFunc'] ... ,sort_values_ascending=True ... ,pAttributeColorMapFmask=lambda row: True if not pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndFmask=lambda row: True if pd.isnull(row.OBJID) else False ... ,pAttributeColorMap2ndUsageStart=.5/5. # nicht zu weiß ... ,pAttributeColorMap2ndUsageEnd=2.5/5. # nicht zu schwarz ... ) >>> txt=axNfd.set_title('Unterkategorien') >>> # -------------------------- >>> gs.tight_layout(fig) >>> plt.show() >>> plt.savefig('pltNetPipes.pdf',format='pdf',dpi=dpiSize*2) >>> # ----- >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=dpiSize) >>> gs = gridspec.GridSpec(1, 1) >>> # --- >>> # >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' and row.LTGR_NAME=='NWDUF2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs (Ausschnitt)') >>> gs.tight_layout(fig) >>> plt.show() >>> # ----- >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3,dpi=dpiSize) >>> gs = gridspec.GridSpec(1, 1) >>> # --- >>> # >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> Rm.Rm.pltNetPipes(vROHR ... ,query="CONT_ID == '1001'" ... ,fmask=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' and row.LTGR_NAME=='NWDUF2' else False ... ,pAx=axNfd ... ,pAttributeFunc=lambda row: math.fabs(row['ROHR~*~*~*~QMAV']) ... ) >>> txt=axNfd.set_title('RL QMAV Abs (Ausschnitt)') >>> gs.tight_layout(fig) >>> plt.show() """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() # CB if 'CBFraction' not in keys: kwds['CBFraction']=5 # in % if 'CBHpad' not in keys: kwds['CBHpad']=0.05 if 'CBLabel' not in keys: kwds['CBLabel']=None # CB / Farbskala if 'CBBinTicks' not in keys: kwds['CBBinTicks']=None if 'CBBinDiscrete' not in keys: kwds['CBBinDiscrete']=False if kwds['CBBinDiscrete']: if kwds['CBBinTicks']==None: kwds['CBBinTicks']=4 # (d.h. 3 Kategorien) if 'CBBinBounds' not in keys: kwds['CBBinBounds']=None # customized yTicks if 'CBTicks' not in keys: kwds['CBTicks'] = None if 'CBTickLabels' not in keys: kwds['CBTickLabels'] = None # DATA if 'query' not in keys: kwds['query']=None # Exp.: = "KVR_i=='2' & KVR_k=='2'" if 'fmask' not in keys: kwds['fmask']=None # Exp.: =lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False if 'sort_values_by' not in keys: kwds['sort_values_by']=None if 'sort_values_ascending' not in keys: kwds['sort_values_ascending']=False # PIPE-Attribute if 'pAttribute' not in keys: kwds['pAttribute']='Attribute' if 'pAttributeFunc' not in keys: logger.debug("{:s}pAttribute: not specified?! 'Attribute' will be used. pAttributeFunc is also not specified?!".format(logStr)) if 'pAttributeFunc' not in keys: kwds['pAttributeFunc']=None # PIPE-Color if 'pAttributeColorMap' not in keys: kwds['pAttributeColorMap']=plt.cm.cool if 'pAttributeColorMapMin' not in keys: kwds['pAttributeColorMapMin']=None if 'pAttributeColorMapMax' not in keys: kwds['pAttributeColorMapMax']=None # Trunc Cmap if 'pAttributeColorMapUsageStart' not in keys and 'pAttributeColorMapUsageEnd' not in keys: kwds['pAttributeColorMapTrunc']=False else: kwds['pAttributeColorMapTrunc']=True if 'pAttributeColorMapUsageStart' not in keys: kwds['pAttributeColorMapUsageStart']=0. if 'pAttributeColorMapUsageEnd' not in keys: kwds['pAttributeColorMapUsageEnd']=1. # PIPE-Color 1st/2nd - FMasks if 'pAttributeColorMapFmask' not in keys: kwds['pAttributeColorMapFmask']=lambda row: True else: logger.debug("{:s}Color 1st-PIPEs are filtered with fmask: {:s} ...".format(logStr,str(kwds['pAttributeColorMapFmask']))) if 'pAttributeColorMap2ndFmask' not in keys: kwds['pAttributeColorMap2ndFmask']=lambda row: False else: logger.debug("{:s}Color 2nd-PIPEs are filtered with fmask: {:s} ...".format(logStr,str(kwds['pAttributeColorMap2ndFmask']))) # PIPE-Color 2nd if 'pAttributeColorMap2nd' not in keys: kwds['pAttributeColorMap2nd']=plt.cm.binary if 'pAttributeColorMap2ndMin' not in keys: kwds['pAttributeColorMap2ndMin']=kwds['pAttributeColorMapMin'] if 'pAttributeColorMap2ndMax' not in keys: kwds['pAttributeColorMap2ndMax']=kwds['pAttributeColorMapMax'] # Trunc Cmap if 'pAttributeColorMap2ndUsageStart' not in keys and 'pAttributeColorMap2ndUsageEnd' not in keys: kwds['pAttributeColorMap2ndTrunc']=False else: kwds['pAttributeColorMap2ndTrunc']=True if 'pAttributeColorMap2ndUsageStart' not in keys: kwds['pAttributeColorMap2ndUsageStart']=0. if 'pAttributeColorMap2ndUsageEnd' not in keys: kwds['pAttributeColorMap2ndUsageEnd']=1. # PIPE-Linestyle if 'pAttributeLs' not in keys: kwds['pAttributeLs']='-' # PIPE-Linesize if 'pAttrLineSize' not in keys: kwds['pAttrLineSize']=None if 'pAttrLineSizeFactor' not in keys: kwds['pAttrLineSizeFactor']=None # PIPE-Geometry if 'pWAYPXCors' not in keys: kwds['pWAYPXCors']='pWAYPXCors' if 'pWAYPYCors' not in keys: kwds['pWAYPYCors']='pWAYPYCors' if 'pClip' not in keys: kwds['pClip']=True except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) try: # ggf. filtern if kwds['query'] != None: logger.debug("{:s}pDf is filtered with query: {:s} ...".format(logStr,str(kwds['query']))) pDf=pd.DataFrame(pDf.query(kwds['query']).values,columns=pDf.columns) if kwds['fmask'] != None: logger.debug("{:s}pDf is filtered with fmask: {:s} ...".format(logStr,str(kwds['fmask']))) pDf=pd.DataFrame(pDf[pDf.apply(kwds['fmask'],axis=1)].values,columns=pDf.columns) # ggf. zu plottende Spalte(n) neu ausrechnen bzw. Plotreihenfolge ändern: Kopie erstellen if kwds['pAttributeFunc'] != None or kwds['sort_values_by'] != None: # Kopie! logger.debug("{:s}pDf is copied ...".format(logStr)) pDf=pDf.copy(deep=True) # ggf. zu plottende Spalte(n) neu ausrechnen if kwds['pAttributeFunc'] != None: logger.debug("{:s}pAttribute: col '{:s}' is not used: ...".format(logStr,kwds['pAttribute'])) logger.debug("{:s}... pAttributeFunc {:s} is used to calculate a new col named 'pAttributeFunc'".format(logStr,str(kwds['pAttributeFunc']))) pDf['pAttributeFunc']=pDf.apply(kwds['pAttributeFunc'],axis=1) kwds['pAttribute']='pAttributeFunc' logger.debug("{:s}col '{:s}' is used as Attribute.".format(logStr,kwds['pAttribute'])) # Label für CB if kwds['CBLabel'] == None: kwds['CBLabel']=kwds['pAttribute'] # Spalte für Liniendicke ermitteln if kwds['pAttrLineSize'] == None: kwds['pAttrLineSize']=kwds['pAttribute'] logger.debug("{:s}col '{:s}' is used as LineSize.".format(logStr,kwds['pAttrLineSize'])) # Liniendicke skalieren if kwds['pAttrLineSizeFactor']==None: kwds['pAttrLineSizeFactor']=1./(pDf[kwds['pAttrLineSize']].std()*2.) logger.debug("{:s}Faktor Liniendicke: {:12.6f} - eine Linie mit Attributwert {:6.2f} wird in {:6.2f} Pts Dicke geplottet.".format(logStr ,kwds['pAttrLineSizeFactor'] ,pDf[kwds['pAttrLineSize']].std()*2. ,kwds['pAttrLineSizeFactor']*pDf[kwds['pAttrLineSize']].std()*2. )) logger.debug("{:s}min. Liniendicke: Attributwert {:9.2f} Pts: {:6.2f}.".format(logStr ,math.fabs(pDf[kwds['pAttrLineSize']].min()) ,kwds['pAttrLineSizeFactor']*math.fabs(pDf[kwds['pAttrLineSize']].min())) ) logger.debug("{:s}max. Liniendicke: Attributwert {:9.2f} Pts: {:6.2f}.".format(logStr ,math.fabs(pDf[kwds['pAttrLineSize']].max()) ,kwds['pAttrLineSizeFactor']*math.fabs(pDf[kwds['pAttrLineSize']].max())) ) # ggf. Plotreihenfolge ändern if kwds['sort_values_by'] != None: logger.debug("{:s}pDf is sorted (=Plotreihenfolge) by {:s} ascending={:s}.".format(logStr,str(kwds['sort_values_by']),str(kwds['sort_values_ascending']))) pDf.sort_values(by=kwds['sort_values_by'],ascending=kwds['sort_values_ascending'],inplace=True) # ---------------------------------------------------------------------------------------------------------------------------------------- # x,y-Achsen: Lims ermitteln und setzen (das Setzen beeinflusst Ticks und data_ratio; ohne dieses Setzen wären diese auf Standardwerten) # ---------------------------------------------------------------------------------------------------------------------------------------- xMin=923456789 yMin=923456789 xMax=0 yMax=0 for xs,ys in zip(pDf[kwds['pWAYPXCors']],pDf[kwds['pWAYPYCors']]): xMin=min(xMin,min(xs)) yMin=min(yMin,min(ys)) xMax=max(xMax,max(xs)) yMax=max(yMax,max(ys)) logger.debug("{:s}pWAYPXCors: {:s} Min: {:6.2f} Max: {:6.2f}".format(logStr,kwds['pWAYPXCors'],xMin,xMax)) logger.debug("{:s}pWAYPYCors: {:s} Min: {:6.2f} Max: {:6.2f}".format(logStr,kwds['pWAYPYCors'],yMin,yMax)) dx=xMax-xMin dy=yMax-yMin dxdy=dx/dy dydx=1./dxdy # i.d.R. "krumme" Grenzen (die Ticks werden von mpl i.d.R. trotzdem "glatt" ermittelt) kwds['pAx'].set_xlim(xMin,xMax) kwds['pAx'].set_ylim(yMin,yMax) # ---------------------------------------------------------------------------------------------------------------------------------------- # x,y-Achsen: Ticks ermitteln aber NICHT verändern ----------------------------------------------------------------- # auch bei "krummen" Grenzen setzt matplotlib i.d.R. "glatte" Ticks # ---------------------------------------------------------------------------------------------------------------------------------------- # Ticks ermitteln xTicks=kwds['pAx'].get_xticks() yTicks=kwds['pAx'].get_yticks() dxTick = xTicks[1]-xTicks[0] xTickSpan=xTicks[-1]-xTicks[0] dyTick = yTicks[1]-yTicks[0] yTickSpan=yTicks[-1]-yTicks[0] logger.debug("{:s}xTicks : {:s} dx: {:6.2f}".format(logStr,str(xTicks),dxTick)) logger.debug("{:s}yTicks : {:s} dy: {:6.2f}".format(logStr,str(yTicks),dyTick)) # dTick gleich setzen (deaktiviert) if dyTick == dxTick: pass # nichts zu tun elif dyTick > dxTick: # dyTick zu dxTick (kleinere) setzen dTickW=dxTick # erf. Anzahl numOfTicksErf=math.floor(dy/dTickW)+1 newTicks=[idx*dTickW+yTicks[0] for idx in range(numOfTicksErf)] #kwds['pAx'].set_yticks(newTicks) #yTicks=kwds['pAx'].get_yticks() #dyTick = yTicks[1]-yTicks[0] #logger.debug("{:s}yTicks NEU: {:s} dy: {:6.2f}".format(logStr,str(yTicks),dyTick)) else: # dxTick zu dyTick (kleinere) setzen dTickW=dyTick # erf. Anzahl numOfTicksErf=math.floor(dx/dTickW)+1 newTicks=[idx*dTickW+xTicks[0] for idx in range(numOfTicksErf)] #kwds['pAx'].set_xticks(newTicks) #xTicks=kwds['pAx'].get_xticks() #dxTick = xTicks[1]-xTicks[0] #logger.debug("{:s}xTicks NEU: {:s} dx: {:6.2f}".format(logStr,str(xTicks),dxTick)) # ---------------------------------------------------------------------------------------------------------------------------------------- # Grid und Aspect # ---------------------------------------------------------------------------------------------------------------------------------------- kwds['pAx'].grid() kwds['pAx'].set_aspect(aspect='equal') # zur Sicherheit; andere als verzerrungsfreie Darstellungen machen im Netz kaum Sinn kwds['pAx'].set_adjustable('box') kwds['pAx'].set_anchor('SW') ## x,y-Seitenverhältnisse ermitteln --------------------------------------------------------------------------- ## total figure size #figW, figH = kwds['pAx'].get_figure().get_size_inches() ## Axis pos. on figure #x0, y0, w, h = kwds['pAx'].get_position().bounds ## Ratio of display units #disp_ratio = (figH * h) / (figW * w) #disp_ratioA = (figH) / (figW ) #disp_ratioB = (h) / (w) ## Ratio of data units #data_ratio=kwds['pAx'].get_data_ratio() #logger.debug("{:s}figW: {:6.2f} figH: {:6.2f}".format(logStr,figW,figH)) #logger.debug("{:s}x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) #logger.debug("{:s}pWAYPCors: Y/X: {:6.2f}".format(logStr,dydx)) #logger.debug("{:s}Ticks: Y/X: {:6.2f}".format(logStr,yTickSpan/xTickSpan)) #logger.debug("{:s}disp_ratio: {:6.2f} data_ratio: {:6.2f}".format(logStr,disp_ratio,data_ratio)) #logger.debug("{:s}disp_ratioA: {:6.2f} disp_ratioB: {:6.2f}".format(logStr,disp_ratioA,disp_ratioB)) # PIPE-Color: Farbskalamapping: cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['CBBinDiscrete'] and hasattr(cMap,'from_list'): # diskrete Farbskala aus kontinuierlicher erzeugen N=kwds['CBBinTicks']-1 color_list = cMap(np.linspace(0, 1, N)) cmap_name = cMap.name + str(N) kwds['pAttributeColorMap']=cMap.from_list(cmap_name, color_list, N) minAttr=pDf[kwds['pAttribute']].min() maxAttr=pDf[kwds['pAttribute']].max() if kwds['pAttributeColorMapMin'] != None: minLine=kwds['pAttributeColorMapMin'] else: minLine=minAttr if kwds['pAttributeColorMapMax'] != None: maxLine=kwds['pAttributeColorMapMax'] else: maxLine=maxAttr logger.debug("{:s}Attribute: minLine (used for CM-Scaling): {:8.2f} min (Data): {:8.2f}".format(logStr,minLine,minAttr)) logger.debug("{:s}Attribute: maxLine (used for CM-Scaling): {:8.2f} max (Data): {:8.2f}".format(logStr,maxLine,maxAttr)) # Norm normLine=colors.Normalize(minLine,maxLine) # kont. Farbskala truncated: Farbskala und Norm anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['pAttributeColorMapTrunc'] and hasattr(cMap,'from_list'): # usageStartLineValue=minLine+kwds['pAttributeColorMapUsageStart']*(maxLine-minLine) usageStartLineColor=kwds['pAttributeColorMap'](normLine(usageStartLineValue)) logger.debug("{:s}pAttributeColorMapUsageStart: {:6.2f} ==> usageStartLineValue: {:8.2f} (minLine: {:8.2f}) color: {:s}".format(logStr ,kwds['pAttributeColorMapUsageStart'] ,usageStartLineValue,minLine,str(usageStartLineColor))) # usageEndLineValue=maxLine-(1.-kwds['pAttributeColorMapUsageEnd'])*(maxLine-minLine) usageEndLineColor=kwds['pAttributeColorMap'](normLine(usageEndLineValue)) logger.debug("{:s}pAttributeColorMapUsageEnd: {:6.2f} ==> usageEndLineValue: {:8.2f} (maxLine: {:8.2f}) color: {:s}".format(logStr ,kwds['pAttributeColorMapUsageEnd'] ,usageEndLineValue,maxLine,str(usageEndLineColor))) nColors=100 kwds['pAttributeColorMap'] = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cMap.name, a=kwds['pAttributeColorMapUsageStart'], b=kwds['pAttributeColorMapUsageEnd']) ,cMap(np.linspace(kwds['pAttributeColorMapUsageStart'],kwds['pAttributeColorMapUsageEnd'],nColors))) normLine=colors.Normalize(max(minLine,usageStartLineValue),min(maxLine,usageEndLineValue)) # diskrete Farbskala mit individuellen Kategorien: Norm anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap']) if kwds['CBBinBounds'] != None and not hasattr(cMap,'from_list'): # diskrete Farbskala liegt vor und Bounds sind vorgegeben normLine = colors.BoundaryNorm(kwds['CBBinBounds'],cMap.N) #CBPropExtend='both' CBPropExtend='neither' else: CBPropExtend='neither' # PIPE-Color 2nd: Farbskalamapping: if kwds['pAttributeColorMap2ndMin'] != None: minLine2nd=kwds['pAttributeColorMap2ndMin'] else: minLine2nd=minAttr if kwds['pAttributeColorMap2ndMax'] != None: maxLine2nd=kwds['pAttributeColorMap2ndMax'] else: maxLine2nd=maxAttr logger.debug("{:s}Attribute: minLine2nd (used for CM-Scaling): {:8.2f} min (Data): {:8.2f}".format(logStr,minLine2nd,minAttr)) logger.debug("{:s}Attribute: maxLine2nd (used for CM-Scaling): {:8.2f} max (Data): {:8.2f}".format(logStr,maxLine2nd,maxAttr)) # Norm normLine2nd=colors.Normalize(minLine2nd,maxLine2nd) # kont. Farbskala truncated: Farbskala anpassen cMap=plt.cm.get_cmap(kwds['pAttributeColorMap2nd']) if kwds['pAttributeColorMap2ndTrunc'] and hasattr(cMap,'from_list'): # usageStartLineValue2nd=minLine2nd+kwds['pAttributeColorMap2ndUsageStart']*(maxLine2nd-minLine2nd) logger.debug("{:s}pAttributeColorMap2ndUsageStart: {:8.2f} ==> usageStartLineValue2nd: {:8.2f} (minLine2nd: {:8.2f})".format(logStr,kwds['pAttributeColorMap2ndUsageStart'],usageStartLineValue2nd,minLine2nd)) usageStartLineColor2nd=kwds['pAttributeColorMap2nd'](normLine2nd(usageStartLineValue2nd)) # usageEndLineValue2nd=maxLine2nd-(1.-kwds['pAttributeColorMap2ndUsageEnd'])*(maxLine2nd-minLine2nd) logger.debug("{:s}pAttributeColorMap2ndUsageEnd: {:8.2f} ==> usageEndLineValue2nd: {:8.2f} (maxLine2nd: {:8.2f})".format(logStr,kwds['pAttributeColorMap2ndUsageEnd'],usageEndLineValue2nd,maxLine2nd)) usageEndLineColor2nd=kwds['pAttributeColorMap2nd'](normLine2nd(usageEndLineValue2nd)) nColors=100 kwds['pAttributeColorMap2nd'] = colors.LinearSegmentedColormap.from_list( 'trunc({n},{a:.2f},{b:.2f})'.format(n=cMap.name, a=kwds['pAttributeColorMap2ndUsageStart'], b=kwds['pAttributeColorMap2ndUsageEnd']) ,cMap(np.linspace(kwds['pAttributeColorMap2ndUsageStart'],kwds['pAttributeColorMap2ndUsageEnd'],nColors))) # PIPE-Color 2nd: PLOT pDfColorMap2nd=pDf[pDf.apply(kwds['pAttributeColorMap2ndFmask'],axis=1)] (rows ,cols)=pDf.shape (rows2nd,cols)=pDfColorMap2nd.shape logger.debug("{:s}Color 2nd-PIPEs: {:d} von {:d}".format(logStr,rows2nd,rows)) for xs,ys,vLine,tLine in zip(pDfColorMap2nd[kwds['pWAYPXCors']],pDfColorMap2nd[kwds['pWAYPYCors']],pDfColorMap2nd[kwds['pAttribute']],pDfColorMap2nd[kwds['pAttrLineSize']]): #if vLine >= usageStartLineValue2nd and vLine <= usageEndLineValue2nd: # colorLine=kwds['pAttributeColorMap2nd'](normLine2nd(vLine)) #elif vLine > usageEndLineValue2nd: # colorLine=usageEndLineColor2nd #else: # colorLine=usageStartLineColor2nd colorLine=kwds['pAttributeColorMap2nd'](normLine2nd(vLine)) pcLines=kwds['pAx'].plot(xs,ys ,color=colorLine ,linewidth=kwds['pAttrLineSizeFactor']*math.fabs(tLine)#(vLine) ,ls=kwds['pAttributeLs'] ,solid_capstyle='round' ,aa=True ,clip_on=kwds['pClip'] ) # PIPE-Color: PLOT pDfColorMap=pDf[pDf.apply(kwds['pAttributeColorMapFmask'],axis=1)] (rows ,cols)=pDf.shape (rows1st,cols)=pDfColorMap.shape colorsCBValues=[] logger.debug("{:s}Color 1st-PIPEs: {:d} von {:d}".format(logStr,rows1st,rows)) for xs,ys,vLine,tLine in zip(pDfColorMap[kwds['pWAYPXCors']],pDfColorMap[kwds['pWAYPYCors']],pDfColorMap[kwds['pAttribute']],pDfColorMap[kwds['pAttrLineSize']]): #if vLine >= usageStartLineValue and vLine <= usageEndLineValue: # colorLine=kwds['pAttributeColorMap'](normLine(vLine)) # value=vLine #elif vLine > usageEndLineValue: # colorLine=usageEndLineColor # value=usageEndLineValue #else: # colorLine=usageStartLineColor # value=usageStartLineValue colorLine=kwds['pAttributeColorMap'](normLine(vLine)) colorsCBValues.append(vLine) pcLines=kwds['pAx'].plot(xs,ys ,color=colorLine ,linewidth=kwds['pAttrLineSizeFactor']*math.fabs(tLine)#(vLine) ,ls=kwds['pAttributeLs'] ,solid_capstyle='round' ,aa=True ,clip_on=kwds['pClip'] ) # PIPE-Color: PLOT der PIPE-Anfänge um Farbskala konstruieren zu koennen xScatter=[] yScatter=[] for xs,ys in zip(pDfColorMap[kwds['pWAYPXCors']],pDfColorMap[kwds['pWAYPYCors']]): xScatter.append(xs[0]) yScatter.append(ys[0]) s=kwds['pAttrLineSizeFactor']*pDfColorMap[kwds['pAttrLineSize']].apply(lambda x: math.fabs(x)) s=s.apply(lambda x: math.pow(x,2)) # https://stackoverflow.com/questions/14827650/pyplot-scatter-plot-marker-size #pcN=kwds['pAx'].scatter(pDfColorMap['pXCor_i'],pDfColorMap['pYCor_i'] pcN=kwds['pAx'].scatter(xScatter,yScatter ,s=s ,linewidth=0 # the linewidth of the marker edges # Farbskala ,cmap=kwds['pAttributeColorMap'] # Normierung Farbe ,norm=normLine # Werte ,c=colorsCBValues ,edgecolors='none' ,clip_on=kwds['pClip'] ) # CB: Axes divider = make_axes_locatable(kwds['pAx']) cax = divider.append_axes('right',size="{:f}%".format(kwds['CBFraction']),pad=kwds['CBHpad']) x0, y0, w, h = kwds['pAx'].get_position().bounds #logger.debug("{:s}ohne Änderung?!: x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) kwds['pAx'].set_aspect(1.) #! x0, y0, w, h = kwds['pAx'].get_position().bounds #logger.debug("{:s}ohne Änderung?!: x0: {:6.2f} y0: {:6.2f} w: {:6.2f} h: {:6.2f}".format(logStr,x0,y0,w,h)) # CB cB=plt.gcf().colorbar(pcN, cax=cax, orientation='vertical',extend=CBPropExtend,spacing='proportional') # Label cB.set_label(kwds['CBLabel']) # CB Ticks if kwds['CBBinTicks'] != None: cB.set_ticks(np.linspace(minLine,maxLine,kwds['CBBinTicks'])) ticks=cB.get_ticks() try: ticks=np.unique(np.append(ticks,[usageStartLineValue,usageEndLineValue])) except: pass cB.set_ticks(ticks) # CB Ticklabels labels=cB.ax.get_yticklabels() if kwds['pAttributeColorMapUsageStart'] > 0: idx=np.where(ticks == usageStartLineValue) labels[idx[0][0]].set_text(labels[idx[0][0]].get_text()+" v=") if kwds['pAttributeColorMapUsageEnd'] < 1: idx=np.where(ticks == usageEndLineValue) labels[idx[0][0]].set_text(labels[idx[0][0]].get_text()+" ^=") if kwds['pAttributeColorMapMax'] != None and maxLine<maxAttr: labels[-1].set_text(labels[-1].get_text()+" >=") if kwds['pAttributeColorMapMin'] != None and minLine>minAttr: labels[0].set_text(labels[0].get_text()+" <=") cB.ax.set_yticklabels(labels) # customized yTicks -------------------- if kwds['CBTicks'] != None: cB.set_ticks(kwds['CBTicks']) if kwds['CBTickLabels'] != None: labels=cB.ax.get_yticklabels() if len(labels)==len(kwds['CBTickLabels']): for label,labelNew in zip(labels,kwds['CBTickLabels']): label.set_text(labelNew) cB.ax.set_yticklabels(labels) else: logStrFinal="{:s}Error: Anz. CB Ticklabels Ist: {:d} != Anz. Ticklabeles Soll: {:d} ?!".format(logStr,len(labels),len(kwds['CBTickLabels'])) logger.error(logStrFinal) raise RmError(logStrFinal) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) @classmethod def pltHP(cls,pDf,**kwds): """ Plots a Hydraulic Profile. Args: DATA: pDf: dataFrame defining the HPLINES (xy-curves) Identification: the different HPs in pDf are identified by the two cols NAMECol: default: 'NAME'; set to None if NAMECol is not criteria for Identification ... and LayerCol: default: 'Layer'; set to None if LayerCol is not criteria for Identification ... for each HP several lines (xy-curves) are plotted ... not criteria ... if NAMECol is None only LayerCol is used if LayerCol also is None, all rows are treated as "the" HPLINE defining the HPLINES (xy-curves) Geometry: * xCol: col in pDf for x; example: 'x' the col is the same for all HPs and all y * edgeNodesColSequence: cols to be used for start-node, end-node, next-node; default: ['NAME_i','NAME_k','nextNODE'] * 'NAME'_'Layer' (i.e. Nord-Süd_1) NAMECol_LayerCol is used as an Index in hpLineGeoms * hpLineGeoms - Example - = { 'V-Abzweig_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-3107','matchType':'starts'} } - masterHP: Bezugs-Schnitt - masterNode: muss es in masterHP geben - masterNode: muss es auch im Schnitt geben bei matchType='matches'; bei 'starts' wird der Anfang gemapped; bei 'ends' das Ende defining the HPLINES (xy-curves) y-Achsentypen (y-Axes): * hpLines: list of cols in pDf for y; example: ['P'] each col in hpLines defines a hpLine (a xy-curve) to be plotted for each identified HP all defined hpLines are plotted defining the HPLINES (xy-curves) Layout: # 'NAME'_'Layer'_'hpLineType' (i.e. Nord-Süd_1_P) is used as an Index in hpLineProps * hpLineProps - Example - = { 'Nord-Süd_1_P':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ,'Nord-Süd_2_P':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} } if 'NAME'_'Layer'_'hpLine' not in hpLineProps: default props are used if hpLineProps['NAME'_'Layer'_'hpLine'] == None: HPLINE is not plotted y-Achsentypen (y-Axes): * werden ermittelt aus hpLines * der Spaltenname - z.B. 'P' - wird dabei als Bezeichner für den Achsentyp benutzt * die Achsen werden erstellt in der Reihenfolge in der sie in hpLines auftreten * Bezeichner wie 'P','P_1',... werden dabei als vom selben Achsentyp 'P' (selbe y-Achse also) gewertet * P_1, P_2, ... können z.B. P zu verschiedenen Zeiten sein oder Aggregate über die Zeit wie Min/Max * yAxesDetectionPattern: regExp mit welcher die Achsentypen ermittelt werden; default: '([\w ]+)(_)(\d+)$' * yTwinedAxesPosDeltaHPStart: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 * yTwinedAxesPosDeltaHP: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 AXES: pAx: Axes to be plotted on; if not specified: gca() is used Return: yAxes: dct with AXES; key=y-Achsentypen yLines: dct with Line2Ds; key=Index from hpLineProps xNodeInfs: dct with NodeInformation; key=Index also used in i.e. hpLineGeoms key: NAMECol_LayerCol value: dct key: node value: dct kwds['xCol']: x in HP kwds['xCol']+'Plot': x in HP-Plot pDfIdx: Index in pDf >>> # -q -m 0 -s pltHP -y no -z no -w DHNetwork >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import math >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> xm=xms['DHNetwork'] >>> mx=mxs['DHNetwork'] >>> xm.MxAdd(mx=mx,aggReq=['TIME','TMIN','TMAX'],timeReq=3*[mx.df.index[0]],timeReq2nd=3*[mx.df.index[-1]],viewList=['vAGSN'],ForceNoH5Update=True) >>> vAGSN=xm.dataFrames['vAGSN'] >>> for PH,P,RHO,Z in zip(['PH','PH_1','PH_2'],['P','P_1','P_2'],['RHO','RHO_1','RHO_2'],['Z','Z_1','Z_2']): ... vAGSN[PH]=vAGSN.apply(lambda row: row[P]*math.pow(10.,5.)/(row[RHO]*9.81),axis=1) ... vAGSN[PH]=vAGSN[PH]+vAGSN[Z].astype('float64') >>> for bBzg,P,RHO,Z in zip(['bBzg','bBzg_1','bBzg_2'],['P','P_1','P_2'],['RHO','RHO_1','RHO_2'],['Z','Z_1','Z_2']): ... vAGSN[bBzg]=vAGSN.apply(lambda row: row[RHO]*9.81/math.pow(10.,5.),axis=1) ... vAGSN[bBzg]=vAGSN[P]+vAGSN[Z].astype('float64')*vAGSN[bBzg] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> yAxes,yLines,xNodeInfs=Rm.Rm.pltHP(vAGSN,pAx=axNfd ... ,hpLines=['bBzg','bBzg_1','bBzg_2','Q'] ... ,hpLineProps={ ... 'AGFW Symposium DH_1_bBzg':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg_1':{'label':'RL min','color':'blue','linestyle':'-.','linewidth':1} ... ,'AGFW Symposium DH_1_bBzg_2':{'label':'VL max','color':'red' ,'linestyle':'-.','linewidth':1} ... ,'AGFW Symposium DH_1_bBzg_1':None ... ,'AGFW Symposium DH_2_bBzg_2':None ... ,'AGFW Symposium DH_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'AGFW Symposium DH_2_Q':{'label':'RL Q','color':'lightblue','linestyle':'--','linewidth':2} ... } ... ) >>> yAxes.keys() dict_keys(['bBzg', 'Q']) >>> yLines.keys() dict_keys(['AGFW Symposium DH_1_bBzg', 'AGFW Symposium DH_1_bBzg_2', 'AGFW Symposium DH_1_Q', 'AGFW Symposium DH_2_bBzg', 'AGFW Symposium DH_2_bBzg_1', 'AGFW Symposium DH_2_Q']) >>> txt=axNfd.set_title('HP') >>> gs.tight_layout(fig) >>> plt.show() >>> ### >>> Rcuts=[ ... {'NAME':'R-Abzweig','nl':['R-3107','R-3427']} ... ,{'NAME':'R-EndsTest','nl':['R-HWSU','R-HKW3S']} ... ,{'NAME':'R-MatchesTest','nl':['R-HKW1','R-2104']} ... ] >>> Vcuts=[ ... {'NAME':'V-Abzweig','nl':['V-3107','V-3427']} ... ,{'NAME':'V-EndsTest','nl':['V-HWSU','V-HKW3S']} ... ,{'NAME':'V-MatchesTest','nl':['V-HKW1','V-2104']} ... ] >>> fV=lambda row: True if row.KVR_i=='1' and row.KVR_k=='1' else False >>> fR=lambda row: True if row.KVR_i=='2' and row.KVR_k=='2' else False >>> for vcut,rcut in zip(Vcuts,Rcuts): ... ret=xm.vAGSN_Add(nl=vcut['nl'],weight='L',Layer=1,AKTIV=None,NAME=vcut['NAME'],fmask=fV) ... ret=xm.vAGSN_Add(nl=rcut['nl'],weight='L',Layer=2,AKTIV=None,NAME=rcut['NAME'],fmask=fR) >>> # Schnitte erneut mit Ergebnissen versorgen, da Schnitte neu definiert wurden >>> xm.MxAdd(mx=mx,ForceNoH5Update=True) >>> vAGSN=xm.dataFrames['vAGSN'] >>> for PH,P,RHO,Z in zip(['PH'],['P'],['RHO'],['Z']): ... vAGSN[PH]=vAGSN.apply(lambda row: row[P]*math.pow(10.,5.)/(row[RHO]*9.81),axis=1) ... vAGSN[PH]=vAGSN[PH]+vAGSN[Z].astype('float64') >>> for bBzg,P,RHO,Z in zip(['bBzg'],['P'],['RHO'],['Z']): ... vAGSN[bBzg]=vAGSN.apply(lambda row: row[RHO]*9.81/math.pow(10.,5.),axis=1) ... vAGSN[bBzg]=vAGSN[P]+vAGSN[Z].astype('float64')*vAGSN[bBzg] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axNfd = fig.add_subplot(gs[0]) >>> yAxes,yLines,xNodeInfs=Rm.Rm.pltHP(vAGSN[vAGSN['NAME'].isin(['R-Abzweig','V-Abzweig','AGFW Symposium DH','R-EndsTest','V-EndsTest','R-MatchesTest','V-MatchesTest'])],pAx=axNfd ... ,hpLines=['bBzg','Q'] ... ,hpLineGeoms={ ... 'V-Abzweig_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-3107','matchType':'starts'} ... ,'R-Abzweig_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-3107','matchType':'starts'} ... ,'V-EndsTest_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-HKW3S','matchType':'ends'} ... ,'R-EndsTest_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-HKW3S','matchType':'ends'} ... ,'V-MatchesTest_1':{'masterHP':'AGFW Symposium DH_1','masterNode':'V-1312','matchType':'matches','offset':-500} ... ,'R-MatchesTest_2':{'masterHP':'AGFW Symposium DH_2','masterNode':'R-1312','matchType':'matches'} ... } ... ,hpLineProps={ ... 'AGFW Symposium DH_1_bBzg':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_2_bBzg':{'label':'RL','color':'blue','linestyle':'-','linewidth':3} ... ,'AGFW Symposium DH_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'AGFW Symposium DH_2_Q':{'label':'RL Q','color':'lightblue','linestyle':'--','linewidth':2} ... ,'V-Abzweig_1_bBzg':{'label':'VL','color':'tomato' ,'linestyle':'-','linewidth':3} ... ,'R-Abzweig_2_bBzg':{'label':'RL','color':'plum' ,'linestyle':'-','linewidth':3} ... ,'V-Abzweig_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-Abzweig_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... ,'V-EndsTest_1_bBzg':{'label':'VL','color':'lightcoral' ,'linestyle':'-','linewidth':3} ... ,'R-EndsTest_2_bBzg':{'label':'RL','color':'aquamarine' ,'linestyle':'-','linewidth':3} ... ,'V-EndsTest_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-EndsTest_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... #,'V-MatchesTest_1_bBzg':{'label':'VL','color':'orange' ,'linestyle':'-','linewidth':1} ... ,'R-MatchesTest_2_bBzg':{'label':'RL','color':'slateblue' ,'linestyle':'-','linewidth':1} ... ,'V-MatchesTest_1_Q':{'label':'VL Q','color':'magenta' ,'linestyle':'--','linewidth':2} ... ,'R-MatchesTest_2_Q':{'label':'VL Q','color':'lightblue' ,'linestyle':'--','linewidth':2} ... } ... ) >>> txt=axNfd.set_title('HP') >>> gs.tight_layout(fig) >>> plt.show() >>> sorted(xNodeInfs.keys()) ['AGFW Symposium DH_1', 'AGFW Symposium DH_2', 'R-Abzweig_2', 'R-EndsTest_2', 'R-MatchesTest_2', 'V-Abzweig_1', 'V-EndsTest_1', 'V-MatchesTest_1'] >>> xNodeInf=xNodeInfs['R-Abzweig_2'] >>> nl=Rcuts[0]['nl'] >>> nodeInfS=xNodeInf[nl[0]] >>> nodeInfE=xNodeInf[nl[-1]] >>> sorted(nodeInfS.keys()) ['pDfIdx', 'x', 'xPlot'] >>> dxPlot=nodeInfE['xPlot']-nodeInfS['xPlot'] >>> dxHP=nodeInfE['x']-nodeInfS['x'] >>> dxPlot==dxHP True >>> nodeInfE['x']=round(nodeInfE['x'],3) >>> nodeInfE['xPlot']=round(nodeInfE['xPlot'],3) >>> {key:value for key,value in nodeInfE.items() if key not in ['pDfIdx']} {'x': 3285.0, 'xPlot': 20312.428} >>> """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() if 'NAMECol' not in keys: kwds['NAMECol']='NAME' if 'LayerCol' not in keys: kwds['LayerCol']='Layer' if 'xCol' not in keys: kwds['xCol']='x' if 'hpLines' not in keys: kwds['hpLines']=['P'] if 'hpLineProps' not in keys: kwds['hpLineProps']={'NAME_1_P':{'label':'HP NAME Layer 1 P','color':'red','linestyle':'-','linewidth':3}} if 'hpLineGeoms' not in keys: kwds['hpLineGeoms']=None if 'edgeColSequence' not in keys: kwds['edgeColSequence']=['NAME_i','NAME_k','nextNODE'] if 'yTwinedAxesPosDeltaHPStart' not in keys: # (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 kwds['yTwinedAxesPosDeltaHPStart']=-0.0125 if 'yTwinedAxesPosDeltaHP' not in keys: # (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 kwds['yTwinedAxesPosDeltaHP']=-0.05 if 'yAxesDetectionPattern' not in keys: # regExp mit welcher die Achsentypen ermittelt werden kwds['yAxesDetectionPattern']='([\w ]+)(_)(\d+)$' logger.debug("{:s}xCol: {:s}.".format(logStr,kwds['xCol'])) logger.debug("{:s}hpLines: {:s}.".format(logStr,str(kwds['hpLines']))) logger.debug("{:s}hpLineProps: {:s}.".format(logStr,str(kwds['hpLineProps']))) logger.debug("{:s}hpLineGeoms: {:s}.".format(logStr,str(kwds['hpLineGeoms']))) logger.debug("{:s}edgeColSequence: {:s}.".format(logStr,str(kwds['edgeColSequence']))) logger.debug("{:s}yTwinedAxesPosDeltaHPStart: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHPStart']))) logger.debug("{:s}yTwinedAxesPosDeltaHP: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHP']))) logger.debug("{:s}yAxesDetectionPattern: {:s}.".format(logStr,str(kwds['yAxesDetectionPattern']))) # Schnitte und Layer ermitteln if kwds['NAMECol'] != None and kwds['LayerCol'] != None: hPs=pDf[[kwds['NAMECol'],kwds['LayerCol']]].drop_duplicates() elif kwds['NAMECol'] != None: hPs=pDf[[kwds['NAMECol']]].drop_duplicates() hPs['Layer']=None elif kwds['LayerCol'] != None: hPs=pDf[[kwds['LayerCol']]].drop_duplicates() hPs['NAME']=None hPs=hPs[['NAME','Layer']] else: hPs=pd.DataFrame(data={'NAME':[None],'Layer':[None]}) #logger.debug("{:s}hPs: {:s}.".format(logStr,hPs.to_string())) # hPs hat 2 Spalten: NAME und Layer # y-Achsen-Typen ermitteln hpLineTypesSequence=[col if re.search(kwds['yAxesDetectionPattern'],col)==None else re.search(kwds['yAxesDetectionPattern'],col).group(1) for col in kwds['hpLines']] # y-Achsen konstruieren yAxes={} colType1st=hpLineTypesSequence[0] axHP=kwds['pAx'] axHP.spines["left"].set_position(("axes",kwds['yTwinedAxesPosDeltaHPStart'] )) axHP.set_ylabel(colType1st) yAxes[colType1st]=axHP logger.debug("{:s}colType: {:s} is attached to Axes pcAx .".format(logStr,colType1st)) for idx,colType in enumerate(hpLineTypesSequence[1:]): if colType not in yAxes: yPos=kwds['yTwinedAxesPosDeltaHPStart']+kwds['yTwinedAxesPosDeltaHP']*len(yAxes) logger.debug("{:s}colType: {:s}: new Axes_ yPos: {:1.4f} ...".format(logStr,colType,yPos)) # weitere y-Achse axHP = axHP.twinx() axHP.spines["left"].set_position(("axes", yPos)) pltMakePatchSpinesInvisible(axHP) axHP.spines['left'].set_visible(True) axHP.yaxis.set_label_position('left') axHP.yaxis.set_ticks_position('left') axHP.set_ylabel(colType) yAxes[colType]=axHP yLines={} xNodeInfs={} for index,row in hPs.iterrows(): # über alle Schnitte (NAME) und Layer (Layer) def getKeyBaseAndDf(dfSource,col1Name,col2Name,col1Value,col2Value): #logger.debug("{:s}getKeyBaseAndDf: dfSource: {:s} ...".format(logStr,dfSource[[col1Name,col2Name,'nextNODE']].to_string())) # dfSource bzgl. cols filtern if col1Name != None and col2Name != None: dfFiltered=dfSource[ (dfSource[col1Name].astype(str)==str(col1Value)) & (dfSource[col2Name].astype(str)==str(col2Value)) ] keyBase=str(row[col1Name])+'_'+str(col2Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Schnitt: {!s:s} Layer: {!s:s} ...".format(logStr,col1Value,col2Value)) elif col1Name != None: dfFiltered=dfSource[ (dfSource[col1Name].astype(str)==str(col1Value)) ] keyBase=str(col1Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Schnitt: {!s:s} ...".format(logStr,col1Value)) elif col2Name != None: dfFiltered=dfSource[ (dfSource[col2Name].astype(str)==str(col2Value)) ] keyBase=str(col2Value)+'_'#+hpLine logger.debug("{:s}getKeyBaseAndDf: Layer: {!s:s} ...".format(logStr,col2Value)) else: dfFiltered=dfSource keyBase='' #logger.debug("{:s}getKeyBaseAndDf: dfFiltered: {:s} ...".format(logStr,dfFiltered[[col1Name,col2Name,'nextNODE']].to_string())) return keyBase, dfFiltered # Schnitt+Layer nach hPpDf filtern keyBase,hPpDf=getKeyBaseAndDf(pDf ,kwds['NAMECol'] # Spaltenname 1 ,kwds['LayerCol'] # Spaltenname 2 ,row[kwds['NAMECol']] # Spaltenwert 1 ,row[kwds['LayerCol']] # Spaltenwert 2 ) if hPpDf.empty: logger.info("{:s}Schnitt: {!s:s} Layer: {!s:s}: NICHT in pDf ?! ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']])) continue xOffset=0 xOffsetStatic=0 xFactorStatic=1 if kwds['hpLineGeoms'] != None: if keyBase.rstrip('_') in kwds['hpLineGeoms'].keys(): hpLineGeom=kwds['hpLineGeoms'][keyBase.rstrip('_')] logger.debug("{:s}Line: {:s}: hpLineGeom: {:s} ...".format(logStr,keyBase.rstrip('_'),str(hpLineGeom))) if 'offset' in hpLineGeom.keys(): xOffsetStatic=hpLineGeom['offset'] if 'factor' in hpLineGeom.keys(): xFactorStatic=hpLineGeom['factor'] if 'masterHP' in hpLineGeom.keys(): masterHP=hpLineGeom['masterHP'] name=masterHP.split('_')[0] layer=masterHP.replace(name,'') layer=layer.replace('_','') keyBaseMaster,hPpDfMaster=getKeyBaseAndDf(pDf ,kwds['NAMECol'] # Spaltenname 1 ,kwds['LayerCol'] # Spaltenname 2 ,name # Spaltenwert 1 ,layer # Spaltenwert 2 ) if 'masterNode' in hpLineGeom.keys(): masterNode=hpLineGeom['masterNode'] def fGetMatchingRows(row,cols,matchNode): for col in cols: if row[col]==matchNode: return True return False # Anker x suchen anhand der Spalten ... if 'matchAnchorCols' in hpLineGeom.keys(): matchAnchorCols=hpLineGeom['matchAnchorCols'] else: matchAnchorCols=[kwds['edgeColSequence'][2]] # AnkerKnoten: Zeilen die in Frage kommen .... hPpDfMatched=hPpDf[hPpDf.apply(fGetMatchingRows,axis=1,cols=matchAnchorCols,matchNode=masterNode)] hPpDfMasterMatched=hPpDfMaster[hPpDfMaster.apply(fGetMatchingRows,axis=1,cols=matchAnchorCols,matchNode=masterNode)] if 'matchType' in hpLineGeom.keys(): matchType=hpLineGeom['matchType'] else: matchType='starts' # Anker x suchen in Master ------------------------- if 'matchAnchor' in hpLineGeom.keys(): matchAnchor=hpLineGeom['matchAnchor'] else: matchAnchor='max' if hPpDfMasterMatched.empty: logger.info("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s}: in Master in den cols {!s:s} NICHT gefunden. Loesung: xMasterOffset=0.".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,matchAnchorCols)) xMasterOffset=0 else: if matchAnchor=='min': hPpDfMasterMatched=hPpDfMaster.loc[hPpDfMasterMatched[kwds['xCol']].idxmin(),:] else: # matchAnchor=='max' hPpDfMasterMatched=hPpDfMaster.loc[hPpDfMasterMatched.iloc[::-1][kwds['xCol']].idxmax(),:] xMasterOffset=hPpDfMasterMatched[kwds['xCol']] logger.debug("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s} xMasterOffset={:9.3f} ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,xMasterOffset)) # Anker x suchen in HP selbst -------------------------- if 'matchAnchorChild' in hpLineGeom.keys(): matchAnchorChild=hpLineGeom['matchAnchorChild'] else: matchAnchorChild='max' if hPpDfMatched.empty: logStrTmp="{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s}: in Child in den cols {!s:s} NICHT gefunden.".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,matchAnchorCols) if matchType=='matches': logger.info(logStrTmp+' Loesung: xChildOffset=0.') else: if matchType=='ends': logger.debug(logStrTmp+' Child endet nicht mit masterNode. xChildOffset=0') else: logger.debug(logStrTmp+' Child startet evtl. mit masterNode. xChildOffset=0') xChildOffset=0 else: if matchAnchorChild=='min': hPpDfMatched=hPpDf.loc[hPpDfMatched[kwds['xCol']].idxmin(),:] else: # matchAnchorChild=='max' hPpDfMatched=hPpDf.loc[hPpDfMatched.iloc[::-1][kwds['xCol']].idxmax(),:] xChildOffset=hPpDfMatched[kwds['xCol']] logger.debug("{:s}Schnitt: {!s:s}_{!s:s} Master: {!s:s}_{!s:s} masterNode: {!s:s} xChildOffset={:9.3f} ...".format(logStr,row[kwds['NAMECol']],row[kwds['LayerCol']],name,layer,masterNode,xChildOffset)) # xOffset errechnen if matchType=='starts': xOffset=xMasterOffset-hPpDf[kwds['xCol']].min() # der Beginn # matchNode ist Anfang if hPpDf[kwds['edgeColSequence'][2]].iloc[0] == hPpDf[kwds['edgeColSequence'][1]].iloc[0]: # nextNode = k matchNode=hPpDf[kwds['edgeColSequence'][0]].iloc[0] else: # nextNode = i matchNode=hPpDf[kwds['edgeColSequence'][1]].iloc[0] elif matchType=='ends': xOffset=xMasterOffset-hPpDf[kwds['xCol']].max() # das Ende # matchNode ist Ende if hPpDf[kwds['edgeColSequence'][2]].iloc[-1] == hPpDf[kwds['edgeColSequence'][1]].iloc[-1]: # nextNode = k matchNode=hPpDf[kwds['edgeColSequence'][1]].iloc[-1] else: # nextNode = i matchNode=hPpDf[kwds['edgeColSequence'][0]].iloc[-1] else: # 'matches' # per Knoten matchNode=masterNode xOffset=xMasterOffset-xChildOffset # xOffset wurde berechnet # masterNode und matchNode sind bekannt logger.debug("{:s}hPpDfMatched: {:s} ...".format(logStr,hPpDfMatched[[kwds['NAMECol'],kwds['LayerCol'],'nextNODE',kwds['xCol'],'NAME_i','NAME_k','OBJTYPE','IptIdx']].to_string())) logger.debug("{:s}hPpDfMasterMatched: {:s} ...".format(logStr,hPpDfMasterMatched[[kwds['NAMECol'],kwds['LayerCol'],'nextNODE',kwds['xCol'],'NAME_i','NAME_k','OBJTYPE','IptIdx']].to_string())) else: logger.debug("{:s}Line: {:s}: keine Geometrieeigenschaften definiert.".format(logStr,keyBase.rstrip('_'))) # xNodeInfs ermitteln nodeList=hPpDf[kwds['edgeColSequence'][2]].copy() if hPpDf[kwds['edgeColSequence'][2]].iloc[0] == hPpDf[kwds['edgeColSequence'][1]].iloc[0]: # nextNode = k # 1. Knoten i nodeList.iloc[0]=hPpDf[kwds['edgeColSequence'][0]].iloc[0] else: # nextNode = i # 1. Knoten k nodeList.iloc[0]=hPpDf[kwds['edgeColSequence'][1]].iloc[0] nodeList=nodeList.unique() xNodeInf={} for idx,node in enumerate(nodeList): nodeInf={} if idx==0: nodeInf[kwds['xCol']]=0 nodeInf['pDfIdx']=hPpDf.index.values[0] else: nodeInf[kwds['xCol']]=hPpDf[hPpDf[kwds['edgeColSequence'][2]]==node][kwds['xCol']].max() nodeInf['pDfIdx']=hPpDf[hPpDf[kwds['edgeColSequence'][2]]==node][kwds['xCol']].idxmax() nodeInf[kwds['xCol']+'Plot']=nodeInf[kwds['xCol']]*xFactorStatic+xOffset+xOffsetStatic xNodeInf[node]=nodeInf xNodeInfs[keyBase.rstrip('_')]=xNodeInf # über alle Spalten (d.h. darzustellenden y-Werten) for idx,hpLine in enumerate(kwds['hpLines']): key=keyBase+hpLine logger.debug("{:s}Line: {:s} ...".format(logStr,key)) if key in kwds['hpLineProps']: hpLineProp=kwds['hpLineProps'][key] if hpLineProp == None: logger.debug("{:s}Line: {:s} ...: kein Plot.".format(logStr,key)) continue # kein Plot label=key color='black' linestyle='-' linewidth=3 hpLineType=hpLineTypesSequence[idx] axHP=yAxes[hpLineType] lines=axHP.plot(hPpDf[kwds['xCol']]*xFactorStatic+xOffset+xOffsetStatic,hPpDf[hpLine],label=label,color=color,linestyle=linestyle,linewidth=linewidth) yLines[label]=lines[0] if key in kwds['hpLineProps']: hpLineProp=kwds['hpLineProps'][key] logger.debug("{:s}Line: {:s}: hpLineProp: {:s}.".format(logStr,key,str(hpLineProp))) for prop,value in hpLineProp.items(): plt.setp(yLines[label],"{:s}".format(prop),value) else: logger.debug("{:s}Line: {:s}: keine Eigenschaften definiert.".format(logStr,key)) continue except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return yAxes,yLines,xNodeInfs @classmethod def pltTC(cls,pDf,tcLines,**kwds): """ Plots a Time Curve Diagram. Args: DATA: pDf: dataFrame index: times cols: values (with mx.df colnames) tcLines: dct defining the Curves and their Layout: Key: OBJTYPE~NAME1~NAME2~ATTRTYPE is used as a key, d.h. OBJTYPE_PK ist nicht im Schluessel enthalten * tcLines - Example - = { 'KNOT~NAME1~~PH':{'label':'VL','color':'red' ,'linestyle':'-','linewidth':3} } Definition der y-Achsentypen (y-Axes): * werden ermittelt aus den verschiedenen ATTRTYPEs in tcLines * ATTRTYPE - z.B. 'PH' - wird dabei als Bezeichner für den Achsentyp benutzt * die Achsen werden erstellt in der Reihenfolge in der sie in tcLines auftreten * yTwinedAxesPosDeltaHPStart: (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 * yTwinedAxesPosDeltaHP: (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 Attribute: * alle gültigen * + * forceYType * offset * factor * timeStart * timeEnd * legendInfosFmt * label AXES: pAx: Axes to be plotted on; if not specified: gca() is used x-Achsen-Formatierung: majLocator - Beispiele: mdates.MinuteLocator(interval=5) mdates.MinuteLocator(byminute=[0,5,10,15,20,25,30,35,40,45,50,55]) majFormatter - Beispiele: mdates.DateFormatter('%d.%m.%y: %H:%M') xTicksLabelsOff: wenn True, dann keine x-Achsen TickLabels Return: yAxes: dct with AXES; key=y-Achsentypen yLines: dct with Line2Ds; key=Index from tcLines vLines: dct with Line2Ds; key=Index from vLines yLinesLegendLabels: dct with Legendlabels; key=Index from tcLines >>> # -q -m 0 -s pltTC -y no -z no -w DHNetwork >>> import pandas as pd >>> import matplotlib >>> import matplotlib.pyplot as plt >>> import matplotlib.gridspec as gridspec >>> import matplotlib.dates as mdates >>> import math >>> try: ... import Rm ... except ImportError: ... from PT3S import Rm >>> # --- >>> # xm=xms['DHNetwork'] >>> mx=mxs['DHNetwork'] >>> sir3sID=mx.getSir3sIDFromSir3sIDoPK('ALLG~~~LINEPACKGEOM') # 'ALLG~~~5151766074450398225~LINEPACKGEOM' >>> # mx.df[sir3sID].describe() >>> # mx.df[sir3sID].iloc[0] >>> plt.close() >>> fig=plt.figure(figsize=Rm.DINA3q,dpi=Rm.dpiSize) >>> gs = gridspec.GridSpec(3, 1) >>> # -------------------------- >>> axTC = fig.add_subplot(gs[0]) >>> yAxes,yLines,vLines,yLinesLegendLabels=Rm.Rm.pltTC(mx.df ... ,tcLines={ ... 'ALLG~~~LINEPACKRATE':{'label':'Linepackrate','color':'red' ,'linestyle':'-','linewidth':3,'drawstyle':'steps','factor':10} ... ,'ALLG~~~LINEPACKGEOM':{'label':'Linepackgeometrie','color':'b' ,'linestyle':'-','linewidth':3,'offset':-mx.df[sir3sID].iloc[0] ... ,'timeStart':mx.df.index[0]+pd.Timedelta('10 Minutes') ... ,'timeEnd':mx.df.index[-1]-pd.Timedelta('10 Minutes')} ... ,'RSLW~wNA~~XA':{'label':'RSLW~wNA~~XA','color':'lime','forceYType':'N'} ... ,'PUMP~R-A-SS~R-A-DS~N':{'label':'PUMP~R-A-SS~R-A-DS~N','color':'aquamarine','linestyle':'--','legendInfosFmt':'{:4.0f}'} ... } ... ,pAx=axTC ... ,vLines={ ... 'a vLine Label':{'time': mx.df.index[0] + pd.Timedelta('10 Minutes') ... ,'color':'dimgrey' ... ,'linestyle':'--' ... ,'linewidth':5.} ... } ... ,majLocator=mdates.MinuteLocator(byminute=[0,5,10,15,20,25,30,35,40,45,50,55]) ... ,majFormatter=mdates.DateFormatter('%d.%m.%y: %H:%M') ... #,xTicksLabelsOff=True ... ) >>> sorted(yAxes.keys()) ['LINEPACKGEOM', 'LINEPACKRATE', 'N'] >>> sorted(yLines.keys()) ['ALLG~~~LINEPACKGEOM', 'ALLG~~~LINEPACKRATE', 'PUMP~R-A-SS~R-A-DS~N', 'RSLW~wNA~~XA'] >>> sorted(vLines.keys()) ['a vLine Label'] >>> gs.tight_layout(fig) >>> plt.show() >>> """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keys = sorted(kwds.keys()) # AXES if 'pAx' not in keys: kwds['pAx']=plt.gca() if 'yTwinedAxesPosDeltaHPStart' not in keys: # (i.d.R. negativer) Abstand der 1. y-Achse von der Zeichenfläche; default: -0.0125 kwds['yTwinedAxesPosDeltaHPStart']=-0.0125 if 'yTwinedAxesPosDeltaHP' not in keys: # (i.d.R. negativer) zus. Abstand jeder weiteren y-Achse von der Zeichenfläche; default: -0.05 kwds['yTwinedAxesPosDeltaHP']=-0.05 logger.debug("{:s}tcLines: {:s}.".format(logStr,str(tcLines))) logger.debug("{:s}yTwinedAxesPosDeltaHPStart: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHPStart']))) logger.debug("{:s}yTwinedAxesPosDeltaHP: {:s}.".format(logStr,str(kwds['yTwinedAxesPosDeltaHP']))) if 'lLoc' not in keys: kwds['lLoc']='best' if 'lFramealpha' not in keys: kwds['lFramealpha']=matplotlib.rcParams["legend.framealpha"] if 'lFacecolor' not in keys: kwds['lFacecolor']='white' if 'lOff' not in keys: kwds['lOff']=False yAxes=yLines=vLines=None # fuer jede Spalte Schluessel ohne OBJTYPE_PK ermitteln == Schluessel in tcLines colFromTcKey={} for col in pDf.columns.tolist(): if pd.isna(col): continue try: colNew=Mx.getSir3sIDoPKFromSir3sID(col) colFromTcKey[colNew]=col # merken welche Originalspalte zu dem tcLines Schluessel gehoert logger.debug("{:s}Zu Spalte ohne Schlüssel: {:s} gehört Spalte: {:s} in pDf.".format(logStr,colNew,col)) except: logger.debug("{:s}keine Zuordnung gefunden (z.B. kein Mx.getSir3sIDoPKFromSir3sID-match) fuer pDf-Spalte: {:s}. Spaltenname(n) keine vollständigen SIR 3S Schluessel (mehr)?!".format(logStr,col)) # y-Achsen-Typen ermitteln yTypesSequence=[] for key,props in tcLines.items(): try: mo=re.match(Mx.reSir3sIDoPKcompiled,key) yType=mo.group('ATTRTYPE') if 'forceYType' in props.keys(): yType=props['forceYType'] if yType not in yTypesSequence: yTypesSequence.append(yType) logger.debug("{:s}neuer y-Achsentyp: {:s}.".format(logStr,yType)) except: logger.debug("{:s}kein Achsentyp ermittelt (z.B. kein Mx.reSir3sIDoPKcompiled-match) fuer: {:s}. tcLine(s) Schluessel kein SIR 3S Schluessel oPK?!".format(logStr,key)) # y-Achsen konstruieren yAxes={} colType1st=yTypesSequence[0] axTC=kwds['pAx'] axTC.spines["left"].set_position(("axes",kwds['yTwinedAxesPosDeltaHPStart'] )) axTC.set_ylabel(colType1st) yAxes[colType1st]=axTC logger.debug("{:s}colType: {:s}: is attached to 1st Axes.".format(logStr,colType1st)) for idx,colType in enumerate(yTypesSequence[1:]): # weitere y-Achse yPos=kwds['yTwinedAxesPosDeltaHPStart']+kwds['yTwinedAxesPosDeltaHP']*len(yAxes) logger.debug("{:s}colType: {:s}: is attached to a new Axes: yPos: {:1.4f} ...".format(logStr,colType,yPos)) axTC = axTC.twinx() axTC.spines["left"].set_position(("axes", yPos)) pltMakePatchSpinesInvisible(axTC) axTC.spines['left'].set_visible(True) axTC.yaxis.set_label_position('left') axTC.yaxis.set_ticks_position('left') axTC.set_ylabel(colType) yAxes[colType]=axTC # ueber alle definierten Kurven # max. Länge label vor Infos ermitteln labels=[] infos=[] for key,props in tcLines.items(): label=key if 'label' in props: label=props['label'] labels.append(label) if 'legendInfosFmt' in props: legendInfosFmt=props['legendInfosFmt'] else: legendInfosFmt='{:6.2f}' if key not in colFromTcKey.keys(): logger.debug("{:s}Line: {:s}: es konnte keine Spalte in pDf ermittelt werden. Spaltenname(n) kein SIR 3S Schluessel?! Kein Plot.".format(logStr,key)) continue else: col=colFromTcKey[key] logger.debug("{:s}Line: {:s}: Spalte in pDf: {:s}.".format(logStr,key,col)) if 'timeStart' in props: timeStart=props['timeStart'] else: timeStart=pDf.index[0] if 'timeEnd' in props: timeEnd=props['timeEnd'] else: timeEnd=pDf.index[-1] plotDf=pDf.loc[timeStart:timeEnd,:] infos.append(legendInfosFmt.format(plotDf[col].min())) infos.append(legendInfosFmt.format(plotDf[col].max())) labelsLength=[len(label) for label in labels] labelsLengthMax=max(labelsLength) infosLength=[len(info) for info in infos] infosLengthMax=max(infosLength) # zeichnen yLines={} yLinesLegendLabels={} # ueber alle definierten Kurven for key,props in tcLines.items(): if key not in colFromTcKey.keys(): logger.debug("{:s}Line: {:s}: es konnte keine Spalte in pDf ermittelt werden. Spaltenname(n) kein SIR 3S Schluessel?! Kein Plot.".format(logStr,key)) continue else: col=colFromTcKey[key] mo=re.match(Mx.reSir3sIDoPKcompiled,key) yType=mo.group('ATTRTYPE') if 'forceYType' in props.keys(): yType=props['forceYType'] axTC=yAxes[yType] logger.debug("{:s}Line: {:s} on Axes {:s} ...".format(logStr,key,yType)) label=key color='black' linestyle='-' linewidth=3 if 'offset' in props: offset=props['offset'] else: offset=0. if 'factor' in props: factor=props['factor'] else: factor=1. if 'timeStart' in props: timeStart=props['timeStart'] else: timeStart=pDf.index[0] if 'timeEnd' in props: timeEnd=props['timeEnd'] else: timeEnd=pDf.index[-1] if 'legendInfosFmt' in props: legendInfosFmt=props['legendInfosFmt'] else: legendInfosFmt='{:6.2f}' plotDf=pDf.loc[timeStart:timeEnd,:] lines=axTC.plot(plotDf.index.values,plotDf[col]*factor+offset,label=label,color=color,linestyle=linestyle,linewidth=linewidth) yLines[key]=lines[0] if 'label' in props: label=props['label'] else: label=label legendLabelFormat="Anf.: {:s} Ende: {:s} Min: {:s} Max: {:s}"#.format(*4*[legendInfosFmt]) legendLabelFormat="{:s} "+legendLabelFormat legendInfos=[plotDf[col].iloc[0],plotDf[col].iloc[-1],plotDf[col].min(),plotDf[col].max()] legendInfos=[factor*legendInfo+offset for legendInfo in legendInfos] legendLabel=legendLabelFormat.format(label.ljust(labelsLengthMax,' '), *["{:s}".format(legendInfosFmt).format(legendInfo).rjust(infosLengthMax,' ') for legendInfo in legendInfos] ) yLinesLegendLabels[key]=legendLabel logger.debug("{:s}legendLabel: {:s}.".format(logStr,legendLabel)) for prop,value in props.items(): if prop not in ['forceYType','offset','factor','timeStart','timeEnd','legendInfosFmt']: plt.setp(yLines[key],"{:s}".format(prop),value) # x-Achse # ueber alle Axes for key,ax in yAxes.items(): ax.set_xlim(pDf.index[0],pDf.index[-1]) if 'majLocator' in kwds.keys(): ax.xaxis.set_major_locator(kwds['majLocator']) if 'majFormatter' in kwds.keys(): ax.xaxis.set_major_formatter(kwds['majFormatter']) plt.setp(ax.xaxis.get_majorticklabels(),rotation='vertical',ha='center') ax.xaxis.grid() # Beschriftung ausschalten if 'xTicksLabelsOff' in kwds.keys(): # xTicksOff if kwds['xTicksLabelsOff']: logger.debug("{:s}Achse: {:s}: x-Achse Labels aus.".format(logStr,key)) #for tic in ax.xaxis.get_major_ticks(): # tic.tick1On = tic.tick2On = False ax.set_xticklabels([]) # vLines # ueber alle definierten vLines vLines={} if 'vLines' in kwds.keys(): for key,props in kwds['vLines'].items(): if 'time' in props.keys(): logger.debug("{:s}vLine: {:s} ....".format(logStr,key)) vLine=ax.axvline(x=props['time'], ymin=0, ymax=1, label=key) vLines[key]=vLine for prop,value in props.items(): if prop not in ['time']: plt.setp(vLine,"{:s}".format(prop),value) else: logger.debug("{:s}vLine: {:s}: time nicht definiert.".format(logStr,key)) # Legend import matplotlib.font_manager as font_manager font = font_manager.FontProperties(family='monospace' #weight='bold', #style='normal', #size=16 ) if not kwds['lOff']: l=kwds['pAx'].legend( tuple([yLines[yline] for yline in yLines]) , tuple([yLinesLegendLabels[yLine] for yLine in yLinesLegendLabels]) ,loc=kwds['lLoc'] ,framealpha=kwds['lFramealpha'] ,facecolor=kwds['lFacecolor'] ,prop=font ) except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return yAxes,yLines,vLines,yLinesLegendLabels def __init__(self,xm=None,mx=None): """ Args: xm: Xm.Xm Object mx: Mx.Mx Object """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: self.xm=xm self.mx=mx try: vNRCV_Mx1=self.xm.dataFrames['vNRCV_Mx1'] # d.h. Sachdaten bereits annotiert mit MX1-Wissen except: logger.debug("{:s}{:s} not in {:s}. Sachdaten mit MX1-Wissen zu annotieren wird nachgeholt ...".format(logStr,'vNRCV_Mx1','dataFrames')) self.xm.MxSync(mx=self.mx) except RmError: raise except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise RmError(logStrFinal) finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) def pltNetDHUS(self,**kwds): """Plot: Net: DistrictHeatingUnderSupply. Args (optional): TIMEs (als TIMEDELTA zu Szenariumbeginn): * timeDeltaToRef: Reference Scenariotime (for MeasureInRefPerc-Calculations) (default: pd.to_timedelta('0 seconds')) * timeDeltaToT: Scenariotime (default: pd.to_timedelta('0 seconds')) FWVB * pFWVBFilterFunction: Filterfunction to be applied to FWVB to determine the FWVB to be plotted * default: lambda df: (df.CONT_ID.astype(int).isin([1001])) & (df.W0LFK>0) * CONT_IDisIn: [1001] * um zu vermeiden, dass FWVB aus Bloecken gezeichnet werden (unwahrscheinlich, dass es solche gibt) * W0LFK>0: * um zu vermeiden, dass versucht wird, FWVB mit der Soll-Leistung 0 zu zeichnen (pFWVBAttribute default is 'W0LFK') FWVB Attribute (Size, z-Order) - from vFWVB * pFWVBAttribute: columnName (default: 'W0LFK') * the column must be able to be converted to a float * the conversion is done before FilterFunction * see ApplyFunction and NaNValue for conversion details: * pFWVBAttributeApplyFunction: Function to be applied to column pFWVBAttribute * default: lambda x: pd.to_numeric(x,errors='coerce') * pFWVBAttributeApplyFunctionNaNValue: Value for NaN-Values produced by pFWVBAttributeApplyFunction if any * default: 0 * .fillna(pFWVBAttributeApplyFunktionNaNValue).astype(float) is called after ApplyFunction * pFWVBAttributeAsc: z-Order (default: False d.h. "kleine auf große") * pFWVBAttributeRefSize: scatter Sy-Area in pts^2 of for RefSizeValue (default: 10**2) * corresponding RefSizeValue is Attribute.std() or Attribute.mean() if Attribute.std() is < 1 FWVB (plot only large (small, medium) FWVB ...) * quantil_pFWVBAttributeHigh <= (default: 1.) * quantil_pFWVBAttributeLow >= (default: .0) * default: all FWVB are plotted * note that Attribute >0 is a precondition FWVB Measure (Color) - from mx * pFWVBMeasure (default: 'FWVB~*~*~*~W') * float() must be possible * pFWVBMeasureInRefPerc (default: True d.h. Measure wird verarbeitet in Prozent T zu Ref) * 0-1 * if refValue is 0 than refPerc-Result is set to 1 * pFWVBMeasureAlpha/Colormap/Clip * 3Classes * pFWVBMeasure3Classes (default: False) * False: * Measure wird nicht in 3 Klassen dargestellt * die Belegung von MCategory gemaess FixedLimitsHigh/Low erfolgt dennoch * CatTexts (werden verwendet wenn 3Classes Wahr gesetzt ist) * für CBLegend (3Classes) als _zusätzliche Beschriftung rechts * als Texte für die Spalte MCategory in return pFWVB * pMCatTopText * pMCatMidText * pMCatBotText * CatAttribs (werden verwendet wenn 3Classes Wahr gesetzt ist) * für die Knotendarstellung * pMCatTopAlpha/Color/Clip * pMCatMidAlpha/Colormap/Clip * pMCatBotAlpha/Color/Clip * CBFixedLimits * pFWVBMeasureCBFixedLimits (default: False d.h. Farbskala nach vorh. min./max. Wert) * wird Wahr gesetzt sein, wenn 3Classes Wahr gesetzt ist * damit die mittlere Farbskala den Klassengrenzen "gehorcht" * pFWVBMeasureCBFixedLimitLow (default: .10) * pFWVBMeasureCBFixedLimitHigh (default: .95) CB * CBFraction: fraction of original axes to use for colorbar (default: 0.05) * CBHpad: fraction of original axes between colorbar and new image axes (default: 0.0275) * CBLabelPad (default: -50) * CBTicklabelsHPad (default: 0.) * CBAspect: ratio of long to short dimension (default: 10.) * CBShrink: fraction by which to shrink the colorbar (default: .3) * CBAnchorHorizontal: horizontaler Fußpunkt der colorbar in Plot-% (default: 0.) * CBAnchorVertical: vertikaler Fußpunkt der colorbar in Plot-% (default: 0.2) CBLegend (3Classes) - Parameterization of the representative Symbols * CBLe3cTopVPad (default: 1+1*1/4) * CBLe3cMidVPad (default: .5) * CBLe3cBotVPad (default: 0-1*1/4) * "1" is the height of the Colorbar * the VPads (the vertical Sy-Positions) are defined in cax.transAxes Coordinates * cax is the Colorbar Axes * CBLe3cSySize=10**2 (Sy-Area in pts^2) * CBLe3cSyType='o' ROHR * pROHRFilterFunction: Filterfunction to be applied to PIPEs to determine the PIPEs to be plotted * default: lambda df: (df.KVR.astype(int).isin([2])) & (df.CONT_ID.astype(int).isin([1001])) & (df.DI.astype(float)>0) * KVRisIn: [2] * 1: supply-line * 2: return-line * CONT_IDisIn: [1001] * um zu vermeiden, dass Rohre aus Bloecken gezeichnet werden (deren Koordinaten nicht zu den Koordinaten von Rohren aus dem Ansichtsblock passen) * DI>0: * um zu vermeiden, dass versucht wird, Rohre mit dem Innendurchmesser 0 zu zeichnen (pROHRAttribute default is 'DI') ROHR (PIPE-Line: Size and Color, z-Order) - from vROHR * pROHRAttribute: columnName (default: 'DI') * the column must be able to be converted to a float * the conversion is done before FilterFunction * see ApplyFunction and NaNValue for conversion details: * pROHRAttributeApplyFunction: Function to be applied to column pROHRAttribute * default: lambda x: pd.to_numeric(x,errors='coerce') * pROHRAttributeApplyFunctionNaNValue: Value for NaN-Values produced by pROHRAttributeApplyFunction if any * default: 0 * .fillna(pROHRAttributeApplyFunktionNaNValue).astype(float) is called after ApplyFunction * pROHRAttributeAsc: z-Order (default: False d.h. "kleine auf grosse") * pROHRAttributeLs (default: '-') * pROHRAttributeRefSize: plot linewidth in pts for RefSizeValue (default: 1.0) * pROHRAttributeSizeMin (default: None): if set: use pROHRAttributeSizeMin-Value as Attribute for LineSize if Attribute < pROHRAttributeSizeMin * corresponding RefSizeValue is Attribute.std() or Attribute.mean() if Attribute.std() is < 1 * pROHRAttributeColorMap (default: plt.cm.binary) * pROHRAttributeColorMapUsageStart (default: 1./3; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe haetten, bekommen die Farbe von UsageStart ROHR (plot only large (small, medium) pipes ...) * quantil_pROHRAttributeHigh <= (default: 1.) * quantil_pROHRAttributeLow >= (default: .75) * default: only the largest 25% are plotted * note that Attribute >0 is a precondition ROHR (PIPE-Marker: Size and Color) - from mx * pROHRMeasure columnName (default: 'ROHR~*~*~*~QMAV') * pROHRMeasureApplyFunction: Function to be applied to column pROHRMeasure (default: lambda x: math.fabs(x)) * pROHRMeasureMarker (default: '.') * pROHRMeasureRefSize: plot markersize for RefSizeValue in pts (default: 1.0) * pROHRMeasureSizeMin (default: None): if set: use pROHRMeasureSizeMin-Value as Measure for MarkerSize if Measure < pROHRMeasureSizeMin * corresponding RefSizeValue is Measure.std() or Measure.mean() if Measure.std() is < 1 * if pROHRMeasureRefSize is None: plot markersize will be plot linewidth * pROHRMeasureColorMap (default: plt.cm.cool) * pROHRMeasureColorMapUsageStart (default: 0.; Wertebereich: [0,1]) * Farbskala nach vorh. min./max. Wert * die Farbskala wird nur ab UsageStart genutzt * d.h. Werte die eine "kleinere" Farbe hätten, bekommen die Farbe von UsageStart NRCVs - NumeRiCal Values to be displayed * pFIGNrcv: List of Sir3sID RegExps to be displayed (i.e. ['KNOT~PKON-Knoten~\S*~\S+~QM']) default: None the 1st Match is used if a RegExp matches more than 1 Channel further Examples for RegExps (and corresponding Texts): * WBLZ~WärmeblnzGes~\S*~\S+~WES (Generation) * WBLZ~WärmeblnzGes~\S*~\S+~WVB (Load) * WBLZ~WärmeblnzGes~\S*~\S+~WVERL (Loss) WBLZ~[\S ]+~\S*~\S+~\S+: Example for a RegExp matching all Channels with OBJTYPE WBLZ * pFIGNrcvTxt: corresponding (same length required!) List of Texts (i.e. ['Kontrolle DH']) default: None * pFIGNrcvFmt (i.e. '{:12s}: {:8.2f} {:6s}') * Text (from pFIGNrcvTxt) * Value * UNIT (determined from Channel-Data) * pFIGNrcvPercFmt (i.e. ' {:6.1f}%') * ValueInRefPercent * if refValue==0: 100% * pFIGNrcvXStart (.5 default) * pFIGNrcvYStart (.5 default) Category - User Heat Balances to be displayed * pFWVBGCategory: List of Heat Balances to be displayed (i.e. ['BLNZ1u5u7']) default: None * pFWVBGCategoryUnit: Unit of all these Balances (default: '[kW]']) * pFWVBGCategoryXStart (.1 default) * pFWVBGCategoryYStart (.9 default) * pFWVBGCategoryCatFmt (i.e. '{:12s}: {:6.1f} {:4s}') * Category NAME * Category Load * pFWVBGCategoryUnit * pFWVBGCategoryPercFmt (i.e. ' {:6.1f}%') * Last Ist/Soll * pFWVBGCategory3cFmt (i.e. ' {:5d}/{:5d}/{:5d}') * NOfTops * NOfMids * NOfBots VICs - VeryImportantCustomers whose Values to be displayed * pVICsDf: DataFrame with VeryImportantCustomers (Text & Specification) columns expected: * Kundenname (i.e. 'VIC1') - Text * Knotenname (i.e. 'V-K007') - Specification by Supply-Node i.e.: pd.DataFrame({'Kundenname': ['VIC1'],'Knotenname': ['V-K007']}) * pVICsPercFmt (i.e. '{:12s}: {:6.1f}%') * Kundenname * Load in Percent to Reference * pVICsFmt (i.e. '{:12s}: {:6.1f} {:6s}') * Kundenname * Load * pFWVBGCategoryUnit * pVICsXStart (.5 default) * pVICsYStart (.1 default) Figure: * pltTitle: title [not suptitle] (default: 'pltNetFigAx') * figFrameon: figure frame (background): displayed or invisible (default: True) * figEdgecolor: edge color of the Figure rectangle (default: 'black') * figFacecolor: face color of the Figure rectangle (default: 'white') Returns: pFWVB * columns changed (compared to vFWVB): * pFWVBAttribute (wg. z.B. pFWVBAttributeApplyFunction und .astype(float)) * columns added (compared to vFWVB): * Measure (in % zu Ref wenn pFWVBMeasureInRefPer=True) * MeasureRef (Wert von Measure im Referenzzustand) * MeasureOrig (Wert von Measure) * MCategory: str (Kategorisierung von Measure mit FixedLimitHigh/Low-Werten): * TopText or * MidText or * BotText * GCategory: list (non-empty only if req. GCategories are a subset of the available Categories and object belongs to a req. Category) * VIC (filled with Kundenname from pVICsDf) * rows (compared to vFWVB): * pFWVB enthaelt dieselben Objekte wie vFWVB * aber: die geplotteten Objekte sind ggf. nur eine Teilmenge (wg. z.B. pFWVBFilterFunction) """ logStr = "{0:s}.{1:s}: ".format(self.__class__.__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: keysDefined=['CBAnchorHorizontal', 'CBAnchorVertical', 'CBAspect', 'CBFraction', 'CBHpad', 'CBLabelPad' ,'CBLe3cBotVPad', 'CBLe3cMidVPad', 'CBLe3cSySize', 'CBLe3cSyType', 'CBLe3cTopVPad' ,'CBShrink', 'CBTicklabelsHPad' ,'figEdgecolor', 'figFacecolor', 'figFrameon' ,'pFIGNrcv','pFIGNrcvFmt', 'pFIGNrcvPercFmt','pFIGNrcvTxt', 'pFIGNrcvXStart', 'pFIGNrcvYStart' ,'pFWVBFilterFunction' ,'pFWVBAttribute' ,'pFWVBAttributeApplyFunction','pFWVBAttributeApplyFunctionNaNValue' ,'pFWVBAttributeAsc' ,'pFWVBAttributeRefSize' ,'pFWVBGCategory', 'pFWVBGCategoryUnit','pFWVBGCategory3cFmt','pFWVBGCategoryCatFmt', 'pFWVBGCategoryPercFmt', 'pFWVBGCategoryXStart', 'pFWVBGCategoryYStart' ,'pFWVBMeasure', 'pFWVBMeasure3Classes', 'pFWVBMeasureAlpha', 'pFWVBMeasureCBFixedLimitHigh', 'pFWVBMeasureCBFixedLimitLow', 'pFWVBMeasureCBFixedLimits', 'pFWVBMeasureClip', 'pFWVBMeasureColorMap', 'pFWVBMeasureInRefPerc' ,'pMCatBotAlpha', 'pMCatBotClip', 'pMCatBotColor', 'pMCatBotText', 'pMCatMidAlpha', 'pMCatMidClip', 'pMCatMidColorMap', 'pMCatMidText', 'pMCatTopAlpha', 'pMCatTopClip', 'pMCatTopColor', 'pMCatTopText' ,'pROHRFilterFunction' ,'pROHRAttribute' ,'pROHRAttributeApplyFunction','pROHRAttributeApplyFunctionNaNValue' ,'pROHRAttributeAsc', 'pROHRAttributeColorMap', 'pROHRAttributeColorMapUsageStart', 'pROHRAttributeLs', 'pROHRAttributeRefSize','pROHRAttributeSizeMin' ,'pROHRMeasure','pROHRMeasureApplyFunction' ,'pROHRMeasureColorMap', 'pROHRMeasureColorMapUsageStart', 'pROHRMeasureMarker', 'pROHRMeasureRefSize','pROHRMeasureSizeMin' ,'pVICsDf','pVICsPercFmt','pVICsFmt','pVICsXStart', 'pVICsYStart' ,'pltTitle' ,'quantil_pFWVBAttributeHigh', 'quantil_pFWVBAttributeLow' ,'quantil_pROHRAttributeHigh', 'quantil_pROHRAttributeLow' ,'timeDeltaToRef', 'timeDeltaToT'] keys=sorted(kwds.keys()) for key in keys: if key in keysDefined: value=kwds[key] logger.debug("{0:s}kwd {1:s}: {2:s}".format(logStr,key,str(value))) else: logger.warning("{0:s}kwd {1:s} NOT defined!".format(logStr,key)) del kwds[key] # TIMEs if 'timeDeltaToRef' not in keys: kwds['timeDeltaToRef']=
pd.to_timedelta('0 seconds')
pandas.to_timedelta
import warnings import numpy as np from pandas import Categorical, DataFrame, Series from .pandas_vb_common import tm class Construction: params = ["str", "string"] param_names = ["dtype"] def setup(self, dtype): self.series_arr = tm.rands_array(nchars=10, size=10 ** 5) self.frame_arr = self.series_arr.reshape((50_000, 2)).copy() # GH37371. Testing construction of string series/frames from ExtensionArrays self.series_cat_arr = Categorical(self.series_arr) self.frame_cat_arr = Categorical(self.frame_arr) def time_series_construction(self, dtype): Series(self.series_arr, dtype=dtype) def peakmem_series_construction(self, dtype): Series(self.series_arr, dtype=dtype) def time_frame_construction(self, dtype): DataFrame(self.frame_arr, dtype=dtype) def peakmem_frame_construction(self, dtype): DataFrame(self.frame_arr, dtype=dtype) def time_cat_series_construction(self, dtype): Series(self.series_cat_arr, dtype=dtype) def peakmem_cat_series_construction(self, dtype): Series(self.series_cat_arr, dtype=dtype) def time_cat_frame_construction(self, dtype): DataFrame(self.frame_cat_arr, dtype=dtype) def peakmem_cat_frame_construction(self, dtype): DataFrame(self.frame_cat_arr, dtype=dtype) class Methods: def setup(self): self.s = Series(tm.makeStringIndex(10 ** 5)) def time_center(self): self.s.str.center(100) def time_count(self): self.s.str.count("A") def time_endswith(self): self.s.str.endswith("A") def time_extract(self): with warnings.catch_warnings(record=True): self.s.str.extract("(\\w*)A(\\w*)") def time_findall(self): self.s.str.findall("[A-Z]+") def time_find(self): self.s.str.find("[A-Z]+") def time_rfind(self): self.s.str.rfind("[A-Z]+") def time_get(self): self.s.str.get(0) def time_len(self): self.s.str.len() def time_join(self): self.s.str.join(" ") def time_match(self): self.s.str.match("A") def time_normalize(self): self.s.str.normalize("NFC") def time_pad(self): self.s.str.pad(100, side="both") def time_partition(self): self.s.str.partition("A") def time_rpartition(self): self.s.str.rpartition("A") def time_replace(self): self.s.str.replace("A", "\x01\x01") def time_translate(self): self.s.str.translate({"A": "\x01\x01"}) def time_slice(self): self.s.str.slice(5, 15, 2) def time_startswith(self): self.s.str.startswith("A") def time_strip(self): self.s.str.strip("A") def time_rstrip(self): self.s.str.rstrip("A") def time_lstrip(self): self.s.str.lstrip("A") def time_title(self): self.s.str.title() def time_upper(self): self.s.str.upper() def time_lower(self): self.s.str.lower() def time_wrap(self): self.s.str.wrap(10) def time_zfill(self): self.s.str.zfill(10) class Repeat: params = ["int", "array"] param_names = ["repeats"] def setup(self, repeats): N = 10 ** 5 self.s = Series(tm.makeStringIndex(N)) repeat = {"int": 1, "array": np.random.randint(1, 3, N)} self.values = repeat[repeats] def time_repeat(self, repeats): self.s.str.repeat(self.values) class Cat: params = ([0, 3], [None, ","], [None, "-"], [0.0, 0.001, 0.15]) param_names = ["other_cols", "sep", "na_rep", "na_frac"] def setup(self, other_cols, sep, na_rep, na_frac): N = 10 ** 5 mask_gen = lambda: np.random.choice([True, False], N, p=[1 - na_frac, na_frac]) self.s = Series(tm.makeStringIndex(N)).where(mask_gen()) if other_cols == 0: # str.cat self-concatenates only for others=None self.others = None else: self.others = DataFrame( {i: tm.makeStringIndex(N).where(mask_gen()) for i in range(other_cols)} ) def time_cat(self, other_cols, sep, na_rep, na_frac): # before the concatenation (one caller + other_cols columns), the total # expected fraction of rows containing any NaN is: # reduce(lambda t, _: t + (1 - t) * na_frac, range(other_cols + 1), 0) # for other_cols=3 and na_frac=0.15, this works out to ~48% self.s.str.cat(others=self.others, sep=sep, na_rep=na_rep) class Contains: params = [True, False] param_names = ["regex"] def setup(self, regex): self.s = Series(tm.makeStringIndex(10 ** 5)) def time_contains(self, regex): self.s.str.contains("A", regex=regex) class Split: params = [True, False] param_names = ["expand"] def setup(self, expand): self.s = Series(tm.makeStringIndex(10 ** 5)).str.join("--") def time_split(self, expand): self.s.str.split("--", expand=expand) def time_rsplit(self, expand): self.s.str.rsplit("--", expand=expand) class Dummies: def setup(self): self.s = Series(tm.makeStringIndex(10 ** 5)).str.join("|") def time_get_dummies(self): self.s.str.get_dummies("|") class Encode: def setup(self): self.ser = Series(tm.makeUnicodeIndex()) def time_encode_decode(self): self.ser.str.encode("utf-8").str.decode("utf-8") class Slice: def setup(self): self.s =
Series(["abcdefg", np.nan] * 500000)
pandas.Series
import numpy as np import time import math import pandas as pd import gym import gym.spaces from gym.utils import seeding from collections import deque from utils import convert_datetime, get_commisions, resample_ohlc from datetime import datetime, timedelta from enum import Enum from utils.influxdb.connection import HistoricalConnection import settings import warnings import pytz from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from utils import random_date from gym_trading.render import BitcoinTradingGraph warnings.simplefilter(action='ignore', category=FutureWarning) class Actions(Enum): Buy = 0 Sell = 1 Nothing = 2 Close = 3 Moveup_Stoplimit = 4 Movedown_Stoplimit = 5 class MarketPosition(Enum): Long = 0 Short = 1 Flat = 2 class State: def __init__(self, symbol, start_date, end_date, connection: HistoricalConnection, info_st, info_lt=None, enable_tick_by_tick_step=False, transposed=True): assert isinstance(symbol, str) assert isinstance(start_date, str) assert isinstance(end_date, str) self.symbol = symbol self.start_date = convert_datetime(start_date) self.end_date = convert_datetime(end_date) # Convert start_date and end_date to timezone tz_new_york = pytz.timezone(settings.DEFAULT_TIME_ZONE) tz_utc = pytz.timezone('UTC') print("{} ****** {}".format(start_date, end_date)) self.start_date = tz_new_york.localize(self.start_date).astimezone(tz_utc) self.end_date = tz_new_york.localize(self.end_date).astimezone(tz_utc) self.transposed = transposed self.info_st = info_st self.info_lt = info_lt long_term_elements = 0 if info_lt is not None: long_term_elements = len(info_lt) self.info = deque(maxlen=long_term_elements + 1) # Add Short Term Info self.info.append(self.info_st) # Add Long Term Info if info_lt is not None: for i in info_lt: self.info.append(i) # Tick by Tick Timeserie Enable self.enable_tick_by_tick_step = enable_tick_by_tick_step self.switch_tick_by_tick_step = False # InfluxDB Connection self.connection = connection # The market have a screenshot with the essential information for the agent self.state = deque(maxlen=len(self.info)) self.columns = ['open', 'high', 'low', 'close', 'volume', 'cons'] self.columns_state = ['open', 'high', 'low', 'close', 'volume'] # BarsArray self.bars_array = deque(maxlen=len(self.info)) self._bars_array = {} self.iterator = deque(maxlen=len(self.info)) self.current_bars = deque(maxlen=len(self.info)) for i, info in enumerate(self.info): self.current_bars.append(info['backperiods']) # Validate if resample is needed in_list = False for ts in settings.INFLUXDB_DEFAULT_SERIES_PER_INSTRUMENT: if ts['type'] == info['type'] and ts['frame'] == info['frame']: in_list = True print("Find {} {}".format(ts['type'], ts['frame '])) type_query = info['type'] frame_query = info['frame'] offset_query = 0 # ++++++++++++++++++++++++ InfluxDB get data ++++++++++++++++++++++ # Get the start consecutive start and end offset_query = -self.current_bars[-1] get_cons = self.connection.get_first_cons(measurement='ohlc', start=self.start_date.strftime("%Y-%m-%d %H:%M:%S"), end=self.end_date.strftime("%Y-%m-%d %H:%M:%S"), symbol=symbol, type=type_query, frame=frame_query) cons_values = list(get_cons)[0] start_cons = cons_values['first'] end_cons = cons_values['last'] # Validate if exist enough backperiods if start_cons - info['backperiods'] < 0: assert IndexError("No se puede manejar indices negativos.") # Get the data series with the start_cons and end_cons data = self.connection.get_data(start_cons=start_cons, end_cons=end_cons, symbol=symbol, type=type_query, frame=frame_query, offset=offset_query) self.bars_array.append(data) # El cons de la fila con fecha de inicio de la simulacion id_start_date = self.bars_array[-1].loc[start_date:]['cons'][0] # Truncar bars_array con los datos necesarios solamente, de forma que la fecha de inicio corresponda al numero de backperiods utilizando el iloc mask2 = (self.bars_array[-1]['cons'] > (id_start_date - self.current_bars[-1])) self.bars_array[-1] = self.bars_array[-1].loc[mask2, self.columns_state] # Get State --- Option 1 self.state.append(self.bars_array[-1].iloc[:self.current_bars[-1], :][self.columns_state]) self.iterator.append(0) # Used for syncronize timeframes base_bars = [{'type': 'Min', 'frame': 1}] for i in base_bars: # +++++++++++++++++++++++++++ InfluxDB Get Data ++++++++++++++++++++++++++++++++ # Get the start consecutive start and end cons_values = list(self.connection.get_first_cons(measurement='ohlc', start=self.start_date.strftime("%Y-%m-%d %H:%M:%S"), end=self.end_date.strftime("%Y-%m-%d %H:%M:%S"), symbol=symbol, type=i['type'], frame=i['frame']))[0] start_cons = cons_values['first'] end_cons = cons_values['last'] self._bars_array[i['type']] = self.connection.get_data(start_cons=start_cons, end_cons=end_cons, symbol=symbol, type=i['type'], frame=i['frame']) # Market variables self.market_position = MarketPosition.Flat self.account_balance = settings.ACCOUNT_MONEY self.max_account_balance = self.account_balance self.current_price = 0.0 self.current_date = 0.0 self.price_entry = 0.0 self.stoploss = 0.0 self.stoploss_ticks = 12 self.stoploss_position = False self.risk_init = 0 # Current Trade self.current_trade = None # Trades taken by the agent self.data = { 'date_entry': [], 'date_exit': [], 'symbol': [], 'market_position': [], 'contracts': [], 'price_entry': [], 'price_exit': [], 'commisions': [], 'gross_profit': [], 'profit': [] } # Valor del portafolio self.net_worths = [self.account_balance] self.trades =
pd.DataFrame(data=self.data)
pandas.DataFrame
import os import random import time import pandas as pd from pinyinlib import Pinyin # 重置随机种子 random.seed(time.time()) # 读取原始表格 df = pd.read_table(os.path.dirname(__file__)+'/input.txt',sep='!',encoding='gbk',low_memory=False) # 生成序号列表 serial = [] for i in range(0, df.shape[0]): serial.append(str(i+1).zfill(6)) dfo1 = pd.DataFrame({'序号': serial}) # 生成户名列表 name = df.loc[:, '客户信息平台姓名'].values.tolist() dfo2 = pd.DataFrame({'户名': name}) # 生成证件类型列表 dfo3 = pd.DataFrame({'证件类型': ([10]*df.shape[0])}) # 生成证件号码列表 id_number = list(map(str, df.loc[:, '客户信息平台证件号码'].values.tolist())) dfo4 = pd.DataFrame({'证件号码': id_number}) # 生成英文名 english_name = [] for i in name: english_name.append(Pinyin().get_pinyin_name(i, '', '', 'upper')) dfo5 = pd.DataFrame({'英文名': english_name}) # 生成性别列表 gender = [] for i in id_number: # 如果是身份证号码,则生成性别 if(len(i)==18): # 男:1,女:2,未知:0 if(int(i[-2]) % 2 == 0): gender.append(2) else: gender.append(1) else: gender.append(0) dfo6 = pd.DataFrame({'性别': gender}) # 生成国籍/地区列表 dfo7 = pd.DataFrame({'国籍/地区': (['CN']*df.shape[0])}) # 生成固定电话列表,注意生成的固定电话不带区号键“-” landline = [] for i in list(map(str, df.loc[:, '固话'].values.tolist())): # 固定电话自带的情况 if(i != 'nan'): # 将可能的区号键和小数去掉 i = i.replace('-', '').replace('.0', '') # 如果长度为七,则插入区号0728,如果长度少一位或者多一位,则随机生成数字自动补全,分为带区号和不带区号两种情况,随机补全的电话尾部有“~”号 if(len(i) == 7): landline.append('0728'+i) elif(len(i) == 6 or len(i) == 10): landline.append(i+str(random.randint(0, 9))+'~') elif(len(i) == 8 or len(i) == 12): landline.append(i[0:-1]) else: landline.append(i) # 固定电话非自带的情况 else: # 随机生成,经查证,目前只有城镇5开头和乡镇4开头的区分,故第一位只生成4或5,第二位生成非0,其余五位随机生成,随机生成的电话尾部有“~”号 landline.append('0728'+str(random.randint(4, 5)) + str(random.randint(1, 9))+str(random.randint(0, 99999)).zfill(5)+'~') dfo8 = pd.DataFrame({'固定电话': landline}) # 生成手机号列表 phone_number=[] for i in list(map(str, df.loc[:, '手机号'].values.tolist())): # 手机号自带的情况 if(i!='nan'): phone_number.append(i) # 手机号不自带的情况 else: phone_number.append('') dfo9 = pd.DataFrame({'手机号': phone_number}) # 生成通讯地址列表 dfo10 = pd.DataFrame({'通讯地址': df.loc[:, '联系地址'].values.tolist()}) # 生成职业列表 career_list = [ '49900~', '50100~', '50101~', '50102~', '50199~', '50200~', '50201~', '50202~', '50203~', '50204~', '50299~', '50300~', '50301~', '50302~', '50303~', '50399~', '50400~', '50401~', '50402~', '50403~', '50499~', '50500~', '50501~', '50502~', '50503~', '50504~', '50505~', '50506~', '50599~', '59900~', '60100~', '60101~' ] career = [] for i in range(0, df.shape[0]): # 从职业列表中随机生成职业代码,随机生成出来的号码尾部有“~”号 career.append(random.sample(career_list, 1)[0]) dfo11 = pd.DataFrame({'职业': career}) # 生成是否居住满一年列表 lived_full_year = [] for i in id_number: # 如果是身份证号码,则生成居住是否满一年 if(len(i)==18): if(i[0:6] == '429006' or i[0:6] == '422428'): lived_full_year.append('1') else: lived_full_year.append('0') # 否则,生成“1” else: lived_full_year.append('1') dfo12 = pd.DataFrame({'是否居住满一年': lived_full_year}) # 生成发证机关所在地代码列表 locate_code = [] for i in id_number: # 如果是身份证号码,则生成发证机关所在地代码 if(len(i)==18): if(i[0:6] == '422428'): locate_code.append('429006') else: locate_code.append(i[0:6]) # 否则,生成“429006” else: locate_code.append('429006') dfo13 = pd.DataFrame({'发证机关所在地代码': locate_code}) # 生成证件有效截止日期列表 birthdate = [] for i in id_number: # 如果是身份证号码,则生成出生日期 if(len(i)==18): birthdate.append(int(i[6:14])) else: birthdate.append(0) turncate_date = [] n = -1 for i in list(map(str, df.loc[:, '证件到期日'].values.tolist())): n = n+1 # 证件有效截止日期自带的情况 if(i != 'nan'): i = i.replace('.0', '').replace( '年', '').replace('月', '').replace('日', '') # 没有过期 if(int(i) >= 20200610): turncate_date.append(i) else: # 生日为空或90后,截止日期往后延10年,判断闰年情况 if(birthdate[n]==0 or birthdate[n] >= 19900610): if(i[4:8] == '0229'): years = int(i[0:4])+10 if (not((years % 4 == 0 and years % 100 != 0) or (years % 400 == 0))): turncate_date.append(str(years)+'0301') continue turncate_date.append(str(int(i)+100000)) # 72-90年,截止日期往后延20年,判断闰年情况 elif(birthdate[n] > 19720610 and birthdate[n] < 19900610): if(i[4:8] == '0229'): years = int(i[0:4])+20 if (not((years % 4 == 0 and years % 100 != 0) or (years % 400 == 0))): turncate_date.append(str(years)+'0301') continue turncate_date.append(str(int(i)+200000)) # 72年前,截止日期设为永久 else: turncate_date.append('20991231') # 证件有效截止日期非自带的情况 else: # 生日为空,则来自户口本信息,留空 if(birthdate[n]==0): turncate_date.append('') # 未满16岁的截止日期改为16岁生日当天,判断闰年情况 elif(birthdate[n] > 20041231): if(str(birthdate[n])[4:8] == '0229'): years = int(str(birthdate[n])[0:4])+16 if (not((years % 4 == 0 and years % 100 != 0) or (years % 400 == 0))): turncate_date.append(str(years)+'0301') continue turncate_date.append(str(birthdate[n]+160000)) # 已满16岁但是是72年前的,随机生成2021年到2038年的到期日期,随机生成的日期尾部有“~”号 elif(birthdate[n] > 19730610 and birthdate[n] <= 20041231): random_time = random.randint(time.mktime(( 2021, 1, 1, 0, 0, 0, 0, 0, 0)), time.mktime((2038, 12, 31, 23, 59, 59, 0, 0, 0))) turncate_date.append(time.strftime( '%Y%m%d', time.localtime(random_time))+'~') else: turncate_date.append('20991231') dfo14 =
pd.DataFrame({'证件有效截止日期': turncate_date})
pandas.DataFrame
"""Helpers for building Dash applications.""" import csv import json import sqlite3 import time from contextlib import ContextDecorator from datetime import datetime from pathlib import Path import pandas as pd from cerberus import Validator # ---------------------------------------------------------------------------------------------------------------------- # For Working with Data def enable_verbose_pandas(max_columns=None, max_rows=None, max_seq_items=None): """Update global pandas configuration for printed dataframes. Args: max_columns: the number of max columns. Default is None (to show all) max_rows: the number of max rows. Default is None (to show all) max_seq_items: the number of max sequence items. Default is None (to show all) # TODO: what does this set? """ # Enable all columns to be displayed at once (or tweak to set a new limit) pd.set_option('display.max_columns', None) pd.set_option('display.width', None)
pd.set_option('display.max_colwidth', max_columns)
pandas.set_option
# 1.题出问题 # 什么样的人在泰坦尼克号中更容易存活? # 2.理解数据 # 2.1 采集数据 # https://www.kaggle.com/c/titanic # 2.2 导入数据 # 忽略警告提示 import warnings warnings.filterwarnings('ignore') # 导入处理数据包 import numpy as np import pandas as pd # 导入数据 # 训练数据集 train = pd.read_csv("./train.csv") # 测试数据集 test =
pd.read_csv("./test.csv")
pandas.read_csv
# -*- coding: utf-8 -*- # # Written by <NAME>, https://github.com/MatthieuSarkis # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. from datetime import datetime import gym import itertools import json import matplotlib.pyplot as plt import numpy as np import os import pandas as pd from pathlib import Path import pickle import seaborn as sns sns.set_theme() from sklearn.preprocessing import StandardScaler from typing import List, Union def create_directory_tree(mode: str, experimental: bool, checkpoint_directory: str): date: str = datetime.now().strftime("%Y.%m.%d.%H.%M.%S") if experimental: checkpoint_directory = os.path.join("saved_outputs", "experimental") else: checkpoint_directory = os.path.join("saved_outputs", date) if mode=='train' else checkpoint_directory # Create various subdirectories checkpoint_directory_networks = os.path.join(checkpoint_directory, "networks") checkpoint_directory_logs = os.path.join(checkpoint_directory, "logs") checkpoint_directory_plots = os.path.join(checkpoint_directory, "plots") Path(checkpoint_directory_networks).mkdir(parents=True, exist_ok=True) Path(checkpoint_directory_logs).mkdir(parents=True, exist_ok=True) Path(checkpoint_directory_plots).mkdir(parents=True, exist_ok=True) # write the checkpoint directory name in a file for quick access when testing if mode == 'train': with open(os.path.join(checkpoint_directory, "checkpoint_directory.txt"), "w") as f: f.write(checkpoint_directory) return checkpoint_directory def plot_reward(x: List[int], rewards: np.ndarray, figure_file: str, mode: str, bins: int = 20, ) -> None: """Helper function to plot the reward history in train mode and the reward probability distribution in test mode. Args: x (np.array): a linspace, horizontal axis of the plot rewards (np.array): reward history figure_file (str): filepath of the figure file mode (str): train or test to decide what type of plot to generate bins (int): number of bins for the histogram, by default set to the square root of the number of samples Returns: no value """ running_average = np.zeros(len(rewards)) for i in range(len(running_average)): running_average[i] = np.mean(rewards[max(0, i-50): i+1]) if mode == 'train': plt.plot(x, rewards, linestyle='-', color='blue', label='reward') plt.plot(x, running_average, linestyle='--', color='green', label='running average 50') plt.legend() plt.title('Reward as a function of the epoch/episode') elif mode == 'test': plt.hist(rewards, bins=bins) plt.title('Reward distribution') plt.savefig(figure_file) def plot_portfolio_value(x: List[int], values: np.ndarray, figure_file: str, ) -> None: plt.plot(x, values.T, linestyle='-', linewidth=0.5) plt.xlim((0, len(x))) plt.title('Portfolio value') plt.savefig(figure_file) def instanciate_scaler(env: gym.Env, mode: str, checkpoint_directory: str) -> StandardScaler: """Instanciate and either fit or load parameter depending on mode. In train mode, the agent behaves randomly in order to store typical observations in the environment. The random agent trades for 10 episodes to have a more accurate scaler. Args: env (gym.Env): trading environment mode (mode): train or test Returns: trained sklearn standard scaler """ scaler = StandardScaler() if mode == 'train': observations = [] for _ in range(10): observation = env.reset() observations.append(observation) done = False while not done: action = env.action_space.sample() observation_, _, done, _ = env.step(action) observations.append(observation_) scaler.fit(observations) with open(os.path.join(checkpoint_directory, 'networks', 'scaler.pkl'), 'wb') as f: pickle.dump(scaler, f) if mode == 'test': with open(os.path.join(checkpoint_directory, 'networks', 'scaler.pkl'), 'rb') as f: scaler = pickle.load(f) return scaler def prepare_initial_portfolio(initial_portfolio: Union[int, float, str], tickers: List[str]) -> dict: """Prepare the initial portfolio to give to the environment constructor. Args: initial_portfolio (int or float or string): if numerical then initial cash in bank assuming no shares are owned initially, otherwise path to a json file prescribing the initial cah in bank as well as the number of owned shares of each asset. tickers (List[str]): list of asset names Returns: dictionary giving the structure of the initial portfolio """ print('>>>>> Reading the provided initial portfolio <<<<<') if isinstance(initial_portfolio, int) or isinstance(initial_portfolio, float): initial_portfolio_returned = {key: 0 for key in tickers} initial_portfolio_returned["Bank_account"] = initial_portfolio else: with open(initial_portfolio, "r") as file: initial_portfolio = json.load(file) initial_portfolio_returned = {key: 0 for key in tickers} initial_portfolio_returned["Bank_account"] = initial_portfolio["Bank_account"] for key in initial_portfolio_returned.keys(): if key in initial_portfolio.keys(): initial_portfolio_returned[key] = initial_portfolio[key] return initial_portfolio_returned def append_corr_matrix(df: pd.DataFrame, window: int, ) -> pd.DataFrame: """Append the sliding correlation matrix of a multidimensional time series. timewise flattens it and extracts just the upper triangular part (since it is symmetric), then appends it to the initial time series. Args: df (pd.DataFrame): the multidimensional time series whose sliding correlation matrix is computed window (int): size of the sliding window used to compute the correlation matrix Returns: the input time series with the sliding correlation matrix appended """ print('>>>>> Appending the correlation matrix <<<<<') columns = ['{}/{}'.format(m, n) for (m, n) in itertools.combinations_with_replacement(df.columns, r=2)] corr = df.rolling(window).cov() corr_flattened =
pd.DataFrame(index=columns)
pandas.DataFrame
import pdb import glob import copy import os import pickle import joblib import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.stats import sklearn.feature_selection from random import choices class FeatureColumn: def __init__(self, category, field, preprocessors, args=None, cost=None): self.category = category self.field = field self.preprocessors = preprocessors self.args = args self.data = None self.cost = cost class NHANES: def __init__(self, db_path=None, columns=None): self.db_path = db_path self.columns = columns # Depricated self.dataset = None # Depricated self.column_data = None self.column_info = None self.df_features = None self.df_targets = None self.costs = None def process(self): df = None cache = {} # collect relevant data df = [] for fe_col in self.columns: sheet = fe_col.category field = fe_col.field data_files = glob.glob(self.db_path+sheet+'/*.XPT') df_col = [] for dfile in data_files: print(80*' ', end='\r') print('\rProcessing: ' + dfile.split('/')[-1], end='') # read the file if dfile in cache: df_tmp = cache[dfile] else: df_tmp = pd.read_sas(dfile) cache[dfile] = df_tmp # skip of there is no SEQN if 'SEQN' not in df_tmp.columns: continue #df_tmp.set_index('SEQN') # skip if there is nothing interseting there sel_cols = set(df_tmp.columns).intersection([field]) if not sel_cols: continue else: df_tmp = df_tmp[['SEQN'] + list(sel_cols)] df_tmp.set_index('SEQN', inplace=True) df_col.append(df_tmp) try: df_col = pd.concat(df_col) except: #raise Error('Failed to process' + field) raise Exception('Failed to process' + field) df.append(df_col) df = pd.concat(df, axis=1) #df = pd.merge(df, df_sel, how='outer') # do preprocessing steps df_proc = []#[df['SEQN']] for fe_col in self.columns: field = fe_col.field fe_col.data = df[field].copy() # do preprocessing if fe_col.preprocessors is not None: prepr_col = df[field] for x in range(len(fe_col.preprocessors)): prepr_col = fe_col.preprocessors[x](prepr_col, fe_col.args[x]) else: prepr_col = df[field] # handle the 1 to many if (len(prepr_col.shape) > 1): fe_col.cost = [fe_col.cost] * prepr_col.shape[1] else: fe_col.cost = [fe_col.cost] df_proc.append(prepr_col) self.dataset = pd.concat(df_proc, axis=1) return self.dataset # Preprocessing functions def preproc_onehot(df_col, args=None): return pd.get_dummies(df_col, prefix=df_col.name, prefix_sep='#') def preproc_map_mode(df_col, args=None): if args is None: args={'cutoff':np.inf} df_col[df_col > args['cutoff']] = np.nan df_col[pd.isna(df_col)] = df_col.mode() return df_col def preproc_map_median(df_col, args=None): if args is None: args={'cutoff':np.inf} df_col[df_col > args['cutoff']] = np.nan df_col[pd.isna(df_col)] = df_col.median() return df_col def preproc_real(df_col, args=None): if args is None: args={'cutoff':np.inf} # other answers as nan df_col[df_col > args['cutoff']] = np.nan # nan replaced by mean df_col[pd.isna(df_col)] = df_col.mean() # statistical normalization df_col = (df_col-df_col.mean()) / df_col.std() return df_col def preproc_real_mapped(df_col, args): if args is None or not 'mappedValue' in args: raise Exception("Missing required argument 'mappedValue'!") if not 'cutoff' in args: args['cutoff'] = np.inf if not 'normalize' in args: args['normalize'] = True # other answers as nan df_col[df_col > args['cutoff']] = np.nan # nan replaced by mappedValue df_col[pd.isna(df_col)] = args['mappedValue'] # statistical normalization if args['normalize'] == True: df_col = (df_col-df_col.mean()) / df_col.std() return df_col def preproc_real_transform(df_col, args): if args is None or not 'toTransform' in args: raise Exception("Missing required argument 'toTransform'!") if not 'cutoff' in args: args['cutoff'] = np.inf if not 'useOldMean' in args: args['useOldMean'] = True if not 'normalize' in args: args['normalize'] = True # other answers as nan df_col[df_col > args['cutoff']] = np.nan old_mean = df_col.mean() # replace certain values with other values for x in args['toTransform']: df_col[df_col == x['selectValue']] = x['mappedValue'] if 'mappedValue' in args: # nan replaced by mappedValue df_col[
pd.isna(df_col)
pandas.isna
''' MIT License Copyright (c) 2020 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' """ Los productos que salen del reporte diario son: 3 4 5 7 8 9 10 11 12 13 14 17 20 23 24 26 27 30 36 """ import pandas as pd from utils import * from shutil import copyfile from os import listdir from os.path import isfile, join from datetime import datetime import numpy as np def prod4(fte, producto): print('Generando producto 4') now = datetime.now() today = now.strftime("%Y-%m-%d") output = producto + today + '-CasosConfirmados-totalRegional.csv' df = pd.read_csv(fte, quotechar='"', sep=',', thousands=r'.', decimal=",") df.rename(columns={'Unnamed: 0': 'Region'}, inplace=True) if 'Unnamed: 7' in df.columns: df.drop(columns=['Unnamed: 7'], inplace=True) df_obj = df.select_dtypes(['object']) df[df_obj.columns] = df_obj.apply(lambda x: x.str.strip()) regionName(df) df.at[16, 'Region'] = 'Total' # texttract reconoce 0 como o df.replace({'O': 0}, inplace=True) numeric_columns = [x for x in df.columns if x != 'Region'] for i in numeric_columns: df[i] = df[i].astype(str) #df[i] = df[i].replace({r'\.': ''}, regex=True) df[i] = df[i].replace({r'\,': '.'}, regex=True) df.to_csv(output, index=False) def prod5(fte, producto): print('Generando producto 5') # necesito series a nivel nacional por fecha: # Casos nuevos con sintomas # Casos totales # Casos recuperados #ya no se reporta # Fallecidos # Casos activos # Casos nuevos sin sintomas now = datetime.now() timestamp = now.strftime("%Y-%m-%d") timestamp_dia_primero = now.strftime("%d-%m-%Y") a = pd.read_csv(fte + 'CasosConfirmados.csv') a['Fecha'] = timestamp a = a[a['Region'] == 'Total'] print(a.to_string()) #las columnas son : # Casos totales acumulados Casos nuevos totales Casos nuevos con sintomas Casos nuevos sin sintomas* Fallecidos totales % Total Fecha a.rename(columns={'Casos totales acumulados': 'Casos totales', 'Casos nuevos totales': 'Casos nuevos totales', 'Casos nuevos con sintomas': 'Casos nuevos con sintomas', 'Casos nuevos sin sintomas*': 'Casos nuevos sin sintomas', 'Fallecidos totales': 'Fallecidos'}, inplace=True) #Faltan casos activos: prod 5 esta ahora en el reporte diario, hay que migrar para alla casos_confirmados_totales =
pd.read_csv('../input/ReporteDiario/CasosConfirmadosTotales.csv')
pandas.read_csv
from datetime import datetime import utils as utils import coinbase_api as cb import algorithms as alg import matplotlib.pyplot as plt import pandas as pd import numpy as np import sys import warnings class BackTest: def __init__(self, df): self.df = df self.index = int(0.85 * len(df)) def calculate_sma(self, coin_id, n_days): sma = 0 j = 0 while (j <= n_days * 24 and (self.index + j) < len(self.df)): sma += float(self.df.close[self.index + j]) j += 24 return sma / n_days def get_current_price(self, coin_id): price = float(self.df.close[self.index]) self.index -= 1 return price def obtain_crypto_dataset(ticker): data = [] i = 4 while(i < 5000): start_days_prior = i num_days = 4 data += cb.getHistoricalData(ticker, start_days_prior, num_days) if (len(data) <= 1): utils.writelog(f"Error obtaining historical data. response = {data}", True) print(i) break i += 4 df = pd.DataFrame(data, columns=[ "time", "low", "high", "open", "close", "volume" ]) df.to_csv(f"../datasets/{ticker}.csv", mode='a') return df def plot_test_results(ticker, df, buy_and_sell_points): plt.locator_params(axis="x", nbins=4) plt.locator_params(axis="y", nbins=4) plt.xlabel("Time") plt.ylabel("Price in Dollars") plt.plot(df.time, df.close) plt.title(f"{ticker} price over time.") warnings.filterwarnings("ignore") plt.axes().set_xticklabels([utils.epoch_time_to_human(x) for x in plt.axes().get_xticks()]) plt.axes().set_yticklabels(['$' + str(y) for y in plt.axes().get_yticks()]) for point in buy_and_sell_points: (action, (time, price)) = point plt.annotate(action, (time, price)) plt.savefig(f"{ticker}-test-results.png", figsize=(10, 10), dpi=100) def main(): if (len(sys.argv) != 2): print(f"Error with arguments. \nUsage:\n{sys.argv[0]} <ticker>") sys.exit() ticker = sys.argv[1] try: df =
pd.read_csv(f"../datasets/{ticker}.csv")
pandas.read_csv
#!/usr/bin/env python # -*- coding=utf-8 -*- import pickle import pandas as pd from pandas import * import numpy as np from nltk import word_tokenize from nltk.util import ngrams import collections from collections import Counter import os import regex as re from make_ngrams import compute_ngrams import math from collections import defaultdict from processing_functions import load_list, load_speakerlist, process_excel, remove_diacritic, compute_tfidf, normalize_dicts, write_to_excel, convert_keys_to_string, compute_difference, cosine_similarity from scipy import spatial global num_speeches doc_freq = pickle.load(open("bigram_doc_freq.pickle", "rb")) # This is the function that reads in the Excel files and calls the necessary functions to compute the distances # It then writes those distance dictionaries to Excel def distance_analysis(): gir_tfidf = process_excel('girondins_tfidf_allbigrams.xlsx') mont_tfidf = process_excel("montagnards_tfidf_allbigrams.xlsx") gir_dict = convert_keys_to_string(gir_tfidf) mont_dict = convert_keys_to_string(mont_tfidf) gir_mont_diff = compute_difference(gir_dict, mont_dict) by_month = pd.read_excel("By_Month.xlsx") by_date = pd.read_excel("By_Date.xlsx") by_speaker = pd.read_excel("By_Speaker_Convention.xlsx") """by_month = create_tfidf_vectors(by_month) by_month_dist = compute_distances(by_month, 'month', gir_dict, mont_dict, gir_mont_diff) write_to_excel(by_month_dist, 'by_month_distances.xlsx') by_date = create_tfidf_vectors(by_date) by_period = aggregate_by_period(by_date) by_period_dist = compute_distances(by_period, 'period', gir_dict, mont_dict, gir_mont_diff) write_to_excel(by_period_dist, "by_period_distances.xlsx") by_date_dist = compute_distances(by_date, 'date', gir_dict, mont_dict, gir_mont_diff) write_to_excel(by_date_dist, 'by_date_distances.xlsx')""" by_speaker = create_tfidf_vectors(by_speaker) by_speaker_dist = compute_distances(by_speaker, 'speaker', gir_dict, mont_dict, gir_mont_diff) write_to_excel(by_speaker_dist, 'by_speaker_distances.xlsx') # Aggregates the data based on three periods - before the convention, during the convention, and after the convention def aggregate_by_period(dataframe): before_convention = Counter() convention = Counter() after_convention = Counter() for i, time in enumerate(dataframe['Full Date']): # Convert time to a string to do the string equality analysis to determine which period the row belongs to time = str(time) if (time >= "1792-6-10") and (time <= "1792-8-10"): before_convention = before_convention + dataframe['ngrams'].iloc[i] if (time >= "1792-9-20") and (time < "1793-6-2"): convention = convention + dataframe['ngrams'].iloc[i] if (time >= "1793-6-2") and (time <= "1793-8-2"): after_convention = after_convention + dataframe['ngrams'].iloc[i] before_convention_tfidf = compute_tfidf(before_convention, num_speeches, doc_freq) convention_tfidf = compute_tfidf(convention, num_speeches, doc_freq) after_convention_tfidf = compute_tfidf(after_convention, num_speeches, doc_freq) before_convention_df = pd.DataFrame.from_dict(before_convention_tfidf, orient = "index") convention_df = pd.DataFrame.from_dict(convention_tfidf, orient = "index") after_convention_df = pd.DataFrame.from_dict(after_convention_tfidf, orient = "index") #period_df = pd.DataFrame([before_convention, convention, after_convention]) #write_to_excel(period_df, 'periods.xlsx') period_df = [before_convention_tfidf, convention_tfidf, after_convention_tfidf] return period_df # Creates two new columns in each dataframe - ngram Counter objects and tfidf dictionaries # These columsn are used for aggregation and cosine similarity computation def create_tfidf_vectors(dataframe): speeches = dataframe['concat_speeches'].tolist() ngrams = [] for unit in speeches: ngrams.append(compute_ngrams(unit, 2)) ngrams_to_add = pd.Series(ngrams) dataframe['ngrams'] = ngrams_to_add.values tfidf = [] for element in ngrams: tfidf.append(compute_tfidf(element, num_speeches, doc_freq)) tfidf_to_add = pd.Series(tfidf) dataframe['tfidf'] = tfidf_to_add.values return dataframe # This function computes the cosine similarity and distances between the given dataframe and the three points of analysis # It assumes that the dataframe contains a tfidf column def compute_distances(dataframe, period, gir_dict, mont_dict, gir_mont_diff): period_vector = [] if period == 'month': period_vector = dataframe['Year-Month'].tolist() period_vector = pd.Series(period_vector) tfidf_scores = dataframe['tfidf'].tolist() elif period == 'date': period_vector = dataframe['Date'].tolist() period_vector = pd.Series(period_vector) tfidf_scores = dataframe['tfidf'].tolist() elif period == 'speaker': period_vector = dataframe['Speaker'].tolist() period_vector =
pd.Series(period_vector)
pandas.Series
# generate dataset with spice parameters and exported file of ads import numpy as np import pandas as pd spice_data = './spice_data/spice_data.csv' # ads_export = './spice_data/ads_export_mass_0-10.csv' ads_export = './spice_data/ads_export_mass_0-10_f=2.3-2.6.csv' spice_pd = pd.read_csv(spice_data) ads_pd =
pd.read_csv(ads_export)
pandas.read_csv
from re import X import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.sparse import dia from sklearn.model_selection import train_test_split from pandas.plotting import scatter_matrix from scipy.stats import f_oneway from statsmodels.stats.multicomp import pairwise_tukeyhsd import seaborn as sns from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import OrdinalEncoder from scipy.stats import iqr from sklearn.preprocessing import StandardScaler from sklearn.compose import ColumnTransformer from sklearn import linear_model from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score from sklearn.model_selection import RepeatedKFold from sklearn.metrics import mean_squared_error from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedShuffleSplit from sklearn.ensemble import RandomForestRegressor # read data, using read_csv function from pandas module df = pd.read_csv("dataset/diamonds.csv") # display the first 5 rows for the dataframe print(df.head()) print(df.describe()) # return a description of data, the description containt an information about data: # count, mean, std, min value, 25%,50%, 75%, max value print(df.info()) # display data information # # Replace x,y,z: df1 = df df["cubic_volume"] = df.x * df.y * df.z # create a diamond size series, by Multiplying The three dimensions of a diamond df.cubic_volume.replace(0, np.median(df.cubic_volume), inplace=True) # replace zeros values from cubic_volume series with the median df = df.drop("Unnamed: 0", axis=1) # delete ID "unnamed" attribute, because we don't need this df = df.drop(['x', 'y', 'z'], axis=1) # delete x,y,z series print(df.head()) # # Delete Outliers: # outliers data records that differ dramatically from all others. # directly effect the machine learning model # we use IQR to detect outliers df_without_outliers = df for i in ['price', "carat", 'depth', 'table', 'cubic_volume']: q75, q25 = np.percentile(df[i], [75, 25]) iqr = q75 - q25 high_outlier = q75 + 1.5 * iqr low_outlier = q25 - 1.5 * iqr df_without_outliers = df_without_outliers[ (df_without_outliers[i] < high_outlier) & (df_without_outliers[i] > low_outlier)] final_df = df_without_outliers print('outliers ratio:', (len(df) - len(final_df)) / len(df)) print("number of outliers", len(df) - len(final_df)) # # Data Visualization # # Data With Outliers: # his diagram df.hist(figsize=(20, 14), bins=50) plt.show() fig, ax = plt.subplots(1, 4, figsize=(20, 6)) # Create a figure and a subplots, with size of figure 20X6 fig.subplots_adjust(wspace=0.25) j = 0 for i in ['carat', 'depth', 'table', 'cubic_volume']: sns.regplot(data=df, x=i, y='price', color="#003f5c", line_kws={'color': '#ffa600'}, ax=ax[j]) # method to plot data and a linear regression model fit. j = j + 1 fig.show() Numerical_attr = ["carat", "depth", "color", "x", "y", "z"] scatter_matrix(df1[Numerical_attr], figsize=(12, 12)) # draw a matrix of scatter plots, with figure size of 12X12 plt.show() # Without the (x,y,z) fig, ax = plt.subplots(1, 4, figsize=(20, 6)) # Create a figure and a subplots, with size of figure 20X6 fig.subplots_adjust(wspace=0.25) j = 0 for i in ['carat', 'depth', 'table', 'cubic_volume']: sns.regplot(data=df, x=i, y='price', color="#003f5c", line_kws={'color': '#ffa600'}, ax=ax[j]) # method to plot data and a linear regression model fit. j = j + 1 fig.show() fig, ax = plt.subplots(1, 4, figsize=(20, 6)) # Create a figure and a subplots, with size of figure 20X6, n row is 1 an n column is 4 # A kernel density estimate (KDE) plot is a method for visualizing the distribution of observations in a dataset, sns.kdeplot(data=df, x="carat", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[0]) sns.kdeplot(data=df, x="depth", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[1]) sns.kdeplot(data=df, x="table", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[2]) sns.kdeplot(data=df, x="cubic_volume", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[3]) fig.show() # diaplay the figures fig = plt.figure(figsize=(12, 8)) # create a new figure, with size 12X8 sns.heatmap(df.corr(), linewidths=2, annot=True, cmap="Blues") # heatmap is plot rectangular data as a color-encoded matrix. # compute pairwise correlation of columns, excluding NA/null values. # correlation is a term that is a measure of the strength of a linear relationship between two quantitative variables # positive correlation, negative correlation,neutral correlation plt.title("Correlation", size=15, weight='bold') # set title for figure fig, ax = plt.subplots(1, 2, figsize=(15, 4)) # Create a figure and a subplots, with size of figure 15X4 sns.boxplot(data=df, x="carat", color="#003f5c", ax=ax[0]) # A box plot shows the distribution of quantitative data in a way that facilitates comparisons between variables # or across levels of a categorical variable sns.boxplot(data=df, x="depth", color="#003f5c", ax=ax[1]) fig, ax = plt.subplots(1, 2, figsize=(15, 4)) # Create a figure and a subplots, with size of figure 15X4, n row is 1 an n column is 2 sns.boxplot(data=df, x="table", color="#003f5c", ax=ax[0]) sns.boxplot(data=df, x="cubic_volume", color="#003f5c", ax=ax[1]) fig, ax = plt.subplots(1, 2, figsize=(15, 4)) sns.boxplot(data=df, x="price", color="#003f5c", ax=ax[1]) fig.show() # Data Without Outliers: fig, ax = plt.subplots(1, 2, figsize=(15, 4)) sns.boxplot(data=df_without_outliers, x="carat", color="#003f5c", ax=ax[0]) sns.boxplot(data=df_without_outliers, x="depth", color="#003f5c", ax=ax[1]) fig, ax = plt.subplots(1, 2, figsize=(15, 4)) sns.boxplot(data=df_without_outliers, x="table", color="#003f5c", ax=ax[0]) sns.boxplot(data=df_without_outliers, x="cubic_volume", color="#003f5c", ax=ax[1]) fig, ax = plt.subplots(1, 2, figsize=(15, 4)) sns.boxplot(data=df_without_outliers, x="price", color="#003f5c", ax=ax[1]) fig.show() fig, ax = plt.subplots(1, 4, figsize=(20, 6)) # Create a figure and a subplots, with size of figure 20X6, n row is 1 an n column is 4 # A kernel density estimate (KDE) plot is a method for visualizing the distribution of observations in a dataset, sns.kdeplot(data=df_without_outliers, x="carat", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[0]) sns.kdeplot(data=df_without_outliers, x="depth", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[1]) sns.kdeplot(data=df_without_outliers, x="table", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[2]) sns.kdeplot(data=df_without_outliers, x="cubic_volume", color="#003f5c", fill=True, edgecolor='red', alpha=1, ax=ax[3]) fig.show() # diaplay the figures # # Train and Test Sets: train_set, test_set = train_test_split(final_df, test_size=0.2, random_state=1) # split the data into random train and test subsets randomly diamonds_labels = train_set["price"].copy() # creating data label test_diamonds_labels = test_set["price"].copy() diamonds = train_set.drop("price", axis=1) # delete the price data, because we need the model to predict the price, so we need to delete this diamonds_testset = test_set.drop("price", axis=1) diamonds_labels = train_set["price"].copy() # creating data label test_diamonds_labels = test_set["price"].copy() diamonds = train_set.drop("price", axis=1) # delete the price data, because we need the model to predict the price, so we need to delete this diamonds_testset = test_set.drop("price", axis=1) diamonds_num = diamonds.drop(["cut", "color", "clarity"], axis=1) diamonds_num.head() # display the first 5 rows for the object based on position. # # Color ordinal encoding: diamond_color_ascending = ['J', 'I', 'H', 'G', 'F', 'E', 'D'] # color is an cateigoral data, so we need to encode this as numarical data ordinal_encoder = OrdinalEncoder(categories=[diamond_color_ascending]) # OrdinalEncoder: encode categorical features as an integer array. diamond_color_encoded = ordinal_encoder.fit_transform(diamonds[['color']]) # fit_transform joins two steps, (fit)calculates the parameters, (transform)apply the transformation to any particular diamond_color_encoded_df =
pd.DataFrame(diamond_color_encoded)
pandas.DataFrame
import numpy as np import pytest from pandas import Series import pandas._testing as tm @pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum]) def test_rolling_apply_consistency_sum( consistency_data, rolling_consistency_cases, center, f ): x, is_constant, no_nans = consistency_data window, min_periods = rolling_consistency_cases if f is np.nansum and min_periods == 0: pass elif f is np.sum and not no_nans: pass else: rolling_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).sum() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var( consistency_data, rolling_consistency_cases, center, ddof ): x, is_constant, no_nans = consistency_data window, min_periods = rolling_consistency_cases var_x = x.rolling(window=window, min_periods=min_periods, center=center).var( ddof=ddof ) assert not (var_x < 0).any().any() if ddof == 0: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x = x.rolling(window=window, min_periods=min_periods, center=center).mean() mean_x2 = ( (x * x) .rolling(window=window, min_periods=min_periods, center=center) .mean() ) tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("ddof", [0, 1]) def test_moments_consistency_var_constant( consistency_data, rolling_consistency_cases, center, ddof ): x, is_constant, no_nans = consistency_data window, min_periods = rolling_consistency_cases if is_constant: count_x = x.rolling( window=window, min_periods=min_periods, center=center ).count() var_x = x.rolling(window=window, min_periods=min_periods, center=center).var( ddof=ddof ) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if ddof == 1: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("ddof", [0, 1]) def test_rolling_consistency_var_std_cov( consistency_data, rolling_consistency_cases, center, ddof ): x, is_constant, no_nans = consistency_data window, min_periods = rolling_consistency_cases var_x = x.rolling(window=window, min_periods=min_periods, center=center).var( ddof=ddof ) assert not (var_x < 0).any().any() std_x = x.rolling(window=window, min_periods=min_periods, center=center).std( ddof=ddof ) assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) cov_x_x = x.rolling(window=window, min_periods=min_periods, center=center).cov( x, ddof=ddof ) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("ddof", [0, 1]) def test_rolling_consistency_series_cov_corr( consistency_data, rolling_consistency_cases, center, ddof ): x, is_constant, no_nans = consistency_data window, min_periods = rolling_consistency_cases if isinstance(x, Series): var_x_plus_y = ( (x + x) .rolling(window=window, min_periods=min_periods, center=center) .var(ddof=ddof) ) var_x = x.rolling(window=window, min_periods=min_periods, center=center).var( ddof=ddof ) var_y = x.rolling(window=window, min_periods=min_periods, center=center).var( ddof=ddof ) cov_x_y = x.rolling(window=window, min_periods=min_periods, center=center).cov( x, ddof=ddof ) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = x.rolling( window=window, min_periods=min_periods, center=center ).corr(x) std_x = x.rolling(window=window, min_periods=min_periods, center=center).std( ddof=ddof ) std_y = x.rolling(window=window, min_periods=min_periods, center=center).std( ddof=ddof )
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
pandas._testing.assert_equal
from collections import namedtuple import dask.array as da import dask.dataframe as dd import numpy as np import pandas as pd import pandas.testing as tm import pytest from dask.array.utils import assert_eq as assert_eq_ar from dask.dataframe.utils import assert_eq as assert_eq_df from dask_ml.datasets import make_classification from dask_ml.utils import ( _num_samples, assert_estimator_equal, check_array, check_chunks, check_consistent_length, check_matching_blocks, check_random_state, handle_zeros_in_scale, slice_columns, ) df = dd.from_pandas(pd.DataFrame(5 * [range(42)]).T, npartitions=5) s = dd.from_pandas(pd.Series([0, 1, 2, 3, 0]), npartitions=5) a = da.from_array(np.array([0, 1, 2, 3, 0]), chunks=3) X, y = make_classification(chunks=(2, 20)) Foo = namedtuple("Foo", "a_ b_ c_ d_") Bar = namedtuple("Bar", "a_ b_ d_ e_") def test_slice_columns(): columns = [2, 3] df2 = slice_columns(df, columns) X2 = slice_columns(X, columns) assert list(df2.columns) == columns assert_eq_df(df[columns].compute(), df2.compute()) assert_eq_ar(X.compute(), X2.compute()) def test_handle_zeros_in_scale(): s2 = handle_zeros_in_scale(s) a2 = handle_zeros_in_scale(a) assert list(s2.compute()) == [1, 1, 2, 3, 1] assert list(a2.compute()) == [1, 1, 2, 3, 1] x = np.array([1, 2, 3, 0], dtype="f8") expected = np.array([1, 2, 3, 1], dtype="f8") result = handle_zeros_in_scale(x) np.testing.assert_array_equal(result, expected) x = pd.Series(x) expected = pd.Series(expected) result = handle_zeros_in_scale(x) tm.assert_series_equal(result, expected) x = da.from_array(x.values, chunks=2) expected = expected.values result = handle_zeros_in_scale(x) assert_eq_ar(result, expected) x = dd.from_dask_array(x) expected = pd.Series(expected) result = handle_zeros_in_scale(x) assert_eq_df(result, expected) def test_assert_estimator_passes(): l = Foo(1, 2, 3, 4) r = Foo(1, 2, 3, 4) assert_estimator_equal(l, r) # it works! def test_assert_estimator_different_attributes(): l = Foo(1, 2, 3, 4) r = Bar(1, 2, 3, 4) with pytest.raises(AssertionError): assert_estimator_equal(l, r) def test_assert_estimator_different_scalers(): l = Foo(1, 2, 3, 4) r = Foo(1, 2, 3, 3) with pytest.raises(AssertionError): assert_estimator_equal(l, r) @pytest.mark.parametrize( "a", [np.array([1, 2]), da.from_array(np.array([1, 2]), chunks=1)] ) def test_assert_estimator_different_arrays(a): l = Foo(1, 2, 3, a) r = Foo(1, 2, 3, np.array([1, 0])) with pytest.raises(AssertionError): assert_estimator_equal(l, r) @pytest.mark.parametrize( "a", [ pd.DataFrame({"A": [1, 2]}), dd.from_pandas(pd.DataFrame({"A": [1, 2]}), npartitions=2), ], ) def test_assert_estimator_different_dataframes(a): l = Foo(1, 2, 3, a) r = Foo(1, 2, 3, pd.DataFrame({"A": [0, 1]})) with pytest.raises(AssertionError): assert_estimator_equal(l, r) def test_check_random_state(): for rs in [None, 0]: result = check_random_state(rs) assert isinstance(result, da.random.RandomState) rs = da.random.RandomState(0) result = check_random_state(rs) assert result is rs with pytest.raises(TypeError): check_random_state(np.random.RandomState(0)) @pytest.mark.parametrize("chunks", [None, 4, (2000, 4), [2000, 4]]) def test_get_chunks(chunks): from unittest import mock with mock.patch("dask_ml.utils.cpu_count", return_value=4): result = check_chunks(n_samples=8000, n_features=4, chunks=chunks) expected = (2000, 4) assert result == expected @pytest.mark.parametrize("chunks", [None, 8]) def test_get_chunks_min(chunks): result = check_chunks(n_samples=8, n_features=4, chunks=chunks) expected = (100, 4) assert result == expected def test_get_chunks_raises(): with pytest.raises(AssertionError): check_chunks(1, 1, chunks=(1, 2, 3)) with pytest.raises(AssertionError): check_chunks(1, 1, chunks=[1, 2, 3]) with pytest.raises(ValueError): check_chunks(1, 1, chunks=object()) def test_check_array_raises(): X = da.random.uniform(size=(10, 5), chunks=2) with pytest.raises(TypeError) as m: check_array(X) assert m.match("Chunking is only allowed on the first axis.") @pytest.mark.parametrize( "data", [ np.random.uniform(size=10), da.random.uniform(size=10, chunks=5), da.random.uniform(size=(10, 4), chunks=5), dd.from_pandas(pd.DataFrame({"A": range(10)}), npartitions=2), dd.from_pandas(pd.Series(range(10)), npartitions=2), ], ) def test_num_samples(data): assert _num_samples(data) == 10 def test_check_array_1d(): arr = da.random.uniform(size=(10,), chunks=5) check_array(arr, ensure_2d=False) @pytest.mark.parametrize( "arrays", [ [], [da.random.uniform(size=10, chunks=5)], [da.random.uniform(size=10, chunks=5), da.random.uniform(size=10, chunks=5)], [ dd.from_pandas(pd.Series([1, 2, 3]), 2), dd.from_pandas(pd.Series([1, 2, 3]), 2), ], [ dd.from_pandas(pd.Series([1, 2, 3]), 2), dd.from_pandas(
pd.DataFrame({"A": [1, 2, 3]})
pandas.DataFrame
import pandas as pd from io import StringIO def build_report(data, asc=None): """Return list of drivers results: [ {'driver': '<NAME>', 'car': 'FERRARI', 'start': Timestamp('2018-05-24 12:02:58.917000'), 'end': Timestamp('2018-05-24 12:04:03.332000'), 'time': Timedelta('0 days 00:01:04.415000'), 'result': '1:04.415' 'position': 1}, {'driver': '<NAME>', 'car': 'MERCEDES', 'start': Timestamp('2018-05-24 12:00:00'), 'end': Timestamp('2018-05-24 12:01:12.434000'), 'time': Timedelta('0 days 00:01:12.434000'), 'result': '1:12.434' 'position': 2},]""" # Reading data abb_df = pd.read_csv( StringIO(data['abb']), sep='_', header=None, names=['abbreviation', 'driver', 'car']) abb_df.set_index('abbreviation', inplace=True) start_df = pd.read_csv( StringIO(data['start']), sep='_', header=None, names=['abbreviation', 'data_start', 'time_start']) start_df.set_index('abbreviation', inplace=True) end_df = pd.read_csv( StringIO(data['end']), sep='_', header=None, names=['abbreviation', 'data_end', 'time_end']) end_df.set_index('abbreviation', inplace=True) # Columns filling main_df = abb_df.join(start_df).join(end_df) main_df['start'] = main_df["data_start"] + ' ' + main_df["time_start"] main_df['start'] = pd.to_datetime(main_df['start'], errors='coerce', format='') main_df['end'] = main_df["data_end"] + ' ' + main_df["time_end"] main_df['end'] = pd.to_datetime(main_df['end'], errors='coerce', format='') main_df['time'] = main_df['end'] - main_df['start'] main_df.loc[main_df['start'] >= main_df['end'], 'time'] = float('nan') main_df['result'] = main_df['time'].astype(str).str.replace('0 days 00:0', '').str.slice(stop=-3) main_df.loc[
pd.isna(main_df['time'])
pandas.isna
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Nov 20 16:00:06 2018 @author: nmei """ if __name__ == "__main__": import os import pandas as pd import numpy as np import utils import seaborn as sns sns.set_style('whitegrid') sns.set_context('poster') from matplotlib import pyplot as plt from statsmodels.formula.api import ols from statsmodels.stats.anova import anova_lm from itertools import combinations import pymc3 as pm import theano.tensor as tt # define result saving directory dir_saving = 'consective_transitions' if not os.path.exists(dir_saving): os.makedirs(dir_saving) ############################################################################################ df1 = pd.read_csv('e1.csv').iloc[:,1:] df = df1.copy() # select the columns that I need df = df[['blocks.thisN', 'trials.thisN', 'key_resp_2.keys', 'resp.corr', 'resp_mrating.keys', 'participant',]] # rename the columns df.columns = ['blocks', 'trials', 'awareness', 'correctness', 'confidence', 'participant',] # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correctness', 'awareness', 'confidence', ] target_name = 'awareness' experiment = 'e1' # for some of the variables, we need to rescale them to a more preferable range like 0-1 name_for_scale = ['awareness'] # ['ah', 'av', 'bj', 'cm', 'db', 'ddb', 'fcm', 'kf', 'kk', 'ml', 'qa','sk', 'yv'] # get one of the participants' data transition_matrix,sub = [], [] transition_count = [] for participant,df_sub in df.groupby('participant'): awareness = df_sub['awareness'].values - 1 with pm.Model() as model: a = pm.Beta('a', 0.5, 0.5) yl = pm.Bernoulli('yl', a, observed=awareness) trace = pm.sample(1000, step=pm.SMC(), random_seed=42) # for 1-back temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'), normalize=1) transition_matrix.append(temp.get_values().flatten()) temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'),) transition_count.append(temp.get_values().flatten()) sub.append(participant) df1_transition = pd.DataFrame(transition_matrix,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df1_count = pd.DataFrame(transition_count,columns=['unaware-unaware', 'aware-unaware', 'unaware-aware', 'aware-aware']) df1_transition['experiment'] = 1 df1_transition['sub'] = sub df1_count['experiment'] = 1 df1_count['sub'] = sub ############################################################################## df2 = pd.read_csv('e2.csv').iloc[:,1:] df = df2.copy() # select the columns that I need df = df[['blocks.thisN', 'trials.thisN', 'key_resp_2.keys', 'resp.corr', 'resp_mrating.keys', 'participant',]] # rename the columns df.columns = ['blocks', 'trials', 'awareness', 'correctness', 'confidence', 'participant',] # use success, awareness, and confidence as features np.random.seed(12345) # use judgement features feature_names = [ 'correctness', 'awareness', 'confidence', ] target_name = 'awareness' experiment = 'e2' # for some of the variables, we need to rescale them to a more preferable range like 0-1 name_for_scale = ['awareness'] transition_matrix,sub = [],[] transition_count = [] for participant,df_sub in df.groupby('participant'): df_sub = df_sub[df_sub['awareness'] != 3] # for 1-back temp = pd.crosstab(pd.Series(df_sub['awareness'].values[1:],name='N'), pd.Series(df_sub['awareness'].values[:-1],name='N-1'), normalize=1) transition_matrix.append(temp.get_values().flatten()) temp = pd.crosstab(
pd.Series(df_sub['awareness'].values[1:],name='N')
pandas.Series
import os import tempfile import pandas as pd import pytest from pandas.util import testing as pdt from .. import simulation as sim from ...utils.testing import assert_frames_equal def setup_function(func): sim.clear_sim() sim.enable_cache() def teardown_function(func): sim.clear_sim() sim.enable_cache() @pytest.fixture def df(): return pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6]}, index=['x', 'y', 'z']) def test_tables(df): wrapped_df = sim.add_table('test_frame', df) @sim.table() def test_func(test_frame): return test_frame.to_frame() / 2 assert set(sim.list_tables()) == {'test_frame', 'test_func'} table = sim.get_table('test_frame') assert table is wrapped_df assert table.columns == ['a', 'b'] assert table.local_columns == ['a', 'b'] assert len(table) == 3 pdt.assert_index_equal(table.index, df.index) pdt.assert_series_equal(table.get_column('a'), df.a) pdt.assert_series_equal(table.a, df.a) pdt.assert_series_equal(table['b'], df['b']) table = sim._TABLES['test_func'] assert table.index is None assert table.columns == [] assert len(table) is 0 pdt.assert_frame_equal(table.to_frame(), df / 2) pdt.assert_frame_equal(table.to_frame(columns=['a']), df[['a']] / 2) pdt.assert_index_equal(table.index, df.index) pdt.assert_series_equal(table.get_column('a'), df.a / 2) pdt.assert_series_equal(table.a, df.a / 2) pdt.assert_series_equal(table['b'], df['b'] / 2) assert len(table) == 3 assert table.columns == ['a', 'b'] def test_table_func_cache(df): sim.add_injectable('x', 2) @sim.table(cache=True) def table(variable='x'): return df * variable pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.add_injectable('x', 3) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.get_table('table').clear_cached() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.add_injectable('x', 4) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.clear_cache() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 4) sim.add_injectable('x', 5) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 4) sim.add_table('table', table) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 5) def test_table_func_cache_disabled(df): sim.add_injectable('x', 2) @sim.table('table', cache=True) def asdf(x): return df * x sim.disable_cache() pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 2) sim.add_injectable('x', 3) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) sim.enable_cache() sim.add_injectable('x', 4) pdt.assert_frame_equal(sim.get_table('table').to_frame(), df * 3) def test_table_copy(df): sim.add_table('test_frame_copied', df, copy_col=True) sim.add_table('test_frame_uncopied', df, copy_col=False) sim.add_table('test_func_copied', lambda: df, copy_col=True) sim.add_table('test_func_uncopied', lambda: df, copy_col=False) @sim.table(copy_col=True) def test_funcd_copied(): return df @sim.table(copy_col=False) def test_funcd_uncopied(): return df @sim.table(copy_col=True) def test_funcd_copied2(test_frame_copied): # local returns original, but it is copied by copy_col. return test_frame_copied.local @sim.table(copy_col=True) def test_funcd_copied3(test_frame_uncopied): # local returns original, but it is copied by copy_col. return test_frame_uncopied.local @sim.table(copy_col=False) def test_funcd_uncopied2(test_frame_copied): # local returns original. return test_frame_copied.local @sim.table(copy_col=False) def test_funcd_uncopied3(test_frame_uncopied): # local returns original. return test_frame_uncopied.local sim.add_table('test_cache_copied', lambda: df, cache=True, copy_col=True) sim.add_table( 'test_cache_uncopied', lambda: df, cache=True, copy_col=False) @sim.table(cache=True, copy_col=True) def test_cached_copied(): return df @sim.table(cache=True, copy_col=False) def test_cached_uncopied(): return df # Create tables with computed columns. sim.add_table('test_copied_columns', pd.DataFrame(index=df.index), copy_col=True) sim.add_table('test_uncopied_columns', pd.DataFrame(index=df.index), copy_col=False) for column_name in ['a', 'b']: label = "test_frame_uncopied.{}".format(column_name) func = lambda col=label: col for table_name in ['test_copied_columns', 'test_uncopied_columns']: sim.add_column(table_name, column_name, func) for name in ['test_frame_uncopied', 'test_func_uncopied', 'test_funcd_uncopied', 'test_funcd_uncopied2', 'test_funcd_uncopied3', 'test_cache_uncopied', 'test_cached_uncopied', 'test_uncopied_columns', 'test_frame_copied', 'test_func_copied', 'test_funcd_copied', 'test_funcd_copied2', 'test_funcd_copied3', 'test_cache_copied', 'test_cached_copied', 'test_copied_columns']: table = sim.get_table(name) table2 = sim.get_table(name) # to_frame will always return a copy. pdt.assert_frame_equal(table.to_frame(), df) assert table.to_frame() is not df pdt.assert_frame_equal(table.to_frame(), table.to_frame()) assert table.to_frame() is not table.to_frame() pdt.assert_series_equal(table.to_frame()['a'], df['a']) assert table.to_frame()['a'] is not df['a'] pdt.assert_series_equal(table.to_frame()['a'], table.to_frame()['a']) assert table.to_frame()['a'] is not table.to_frame()['a'] if 'uncopied' in name: pdt.assert_series_equal(table['a'], df['a']) assert table['a'] is df['a'] pdt.assert_series_equal(table['a'], table2['a']) assert table['a'] is table2['a'] else: pdt.assert_series_equal(table['a'], df['a']) assert table['a'] is not df['a'] pdt.assert_series_equal(table['a'], table2['a']) assert table['a'] is not table2['a'] def test_columns_for_table(): sim.add_column( 'table1', 'col10', pd.Series([1, 2, 3], index=['a', 'b', 'c'])) sim.add_column( 'table2', 'col20', pd.Series([10, 11, 12], index=['x', 'y', 'z'])) @sim.column('table1') def col11(): return pd.Series([4, 5, 6], index=['a', 'b', 'c']) @sim.column('table2', 'col21') def asdf(): return pd.Series([13, 14, 15], index=['x', 'y', 'z']) t1_col_names = sim._list_columns_for_table('table1') assert set(t1_col_names) == {'col10', 'col11'} t2_col_names = sim._list_columns_for_table('table2') assert set(t2_col_names) == {'col20', 'col21'} t1_cols = sim._columns_for_table('table1') assert 'col10' in t1_cols and 'col11' in t1_cols t2_cols = sim._columns_for_table('table2') assert 'col20' in t2_cols and 'col21' in t2_cols def test_columns_and_tables(df): sim.add_table('test_frame', df) @sim.table() def test_func(test_frame): return test_frame.to_frame() / 2 sim.add_column('test_frame', 'c', pd.Series([7, 8, 9], index=df.index)) @sim.column('test_func', 'd') def asdf(test_func): return test_func.to_frame(columns=['b'])['b'] * 2 @sim.column('test_func') def e(column='test_func.d'): return column + 1 test_frame = sim.get_table('test_frame') assert set(test_frame.columns) == set(['a', 'b', 'c']) assert_frames_equal( test_frame.to_frame(), pd.DataFrame( {'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])) assert_frames_equal( test_frame.to_frame(columns=['a', 'c']), pd.DataFrame( {'a': [1, 2, 3], 'c': [7, 8, 9]}, index=['x', 'y', 'z'])) test_func_df = sim._TABLES['test_func'] assert set(test_func_df.columns) == set(['d', 'e']) assert_frames_equal( test_func_df.to_frame(), pd.DataFrame( {'a': [0.5, 1, 1.5], 'b': [2, 2.5, 3], 'c': [3.5, 4, 4.5], 'd': [4., 5., 6.], 'e': [5., 6., 7.]}, index=['x', 'y', 'z'])) assert_frames_equal( test_func_df.to_frame(columns=['b', 'd']), pd.DataFrame( {'b': [2, 2.5, 3], 'd': [4., 5., 6.]}, index=['x', 'y', 'z'])) assert set(test_func_df.columns) == set(['a', 'b', 'c', 'd', 'e']) assert set(sim.list_columns()) == {('test_frame', 'c'), ('test_func', 'd'), ('test_func', 'e')} def test_column_cache(df): sim.add_injectable('x', 2) series = pd.Series([1, 2, 3], index=['x', 'y', 'z']) key = ('table', 'col') @sim.table() def table(): return df @sim.column(*key, cache=True) def column(variable='x'): return series * variable c = lambda: sim._COLUMNS[key] pdt.assert_series_equal(c()(), series * 2) sim.add_injectable('x', 3) pdt.assert_series_equal(c()(), series * 2) c().clear_cached() pdt.assert_series_equal(c()(), series * 3) sim.add_injectable('x', 4) pdt.assert_series_equal(c()(), series * 3) sim.clear_cache() pdt.assert_series_equal(c()(), series * 4) sim.add_injectable('x', 5) pdt.assert_series_equal(c()(), series * 4) sim.get_table('table').clear_cached() pdt.assert_series_equal(c()(), series * 5) sim.add_injectable('x', 6) pdt.assert_series_equal(c()(), series * 5) sim.add_column(*key, column=column, cache=True) pdt.assert_series_equal(c()(), series * 6) def test_column_cache_disabled(df): sim.add_injectable('x', 2) series = pd.Series([1, 2, 3], index=['x', 'y', 'z']) key = ('table', 'col') @sim.table() def table(): return df @sim.column(*key, cache=True) def column(x): return series * x c = lambda: sim._COLUMNS[key] sim.disable_cache() pdt.assert_series_equal(c()(), series * 2) sim.add_injectable('x', 3) pdt.assert_series_equal(c()(), series * 3) sim.enable_cache() sim.add_injectable('x', 4) pdt.assert_series_equal(c()(), series * 3) def test_update_col(df): wrapped = sim.add_table('table', df) wrapped.update_col('b', pd.Series([7, 8, 9], index=df.index)) pdt.assert_series_equal(wrapped['b'], pd.Series([7, 8, 9], index=df.index)) wrapped.update_col_from_series('a', pd.Series([])) pdt.assert_series_equal(wrapped['a'], df['a']) wrapped.update_col_from_series('a', pd.Series([99], index=['y'])) pdt.assert_series_equal( wrapped['a'], pd.Series([1, 99, 3], index=df.index)) def test_models(df): sim.add_table('test_table', df) df2 = df / 2 sim.add_table('test_table2', df2) @sim.model() def test_model(test_table, test_column='test_table2.b'): tt = test_table.to_frame() test_table['a'] = tt['a'] + tt['b'] pdt.assert_series_equal(test_column, df2['b']) with pytest.raises(KeyError): sim.get_model('asdf') model = sim.get_model('test_model') assert model._tables_used() == set(['test_table', 'test_table2']) model() table = sim.get_table('test_table') pdt.assert_frame_equal( table.to_frame(), pd.DataFrame( {'a': [5, 7, 9], 'b': [4, 5, 6]}, index=['x', 'y', 'z'])) assert sim.list_models() == ['test_model'] def test_model_run(df): sim.add_table('test_table', df) @sim.table() def table_func(test_table): tt = test_table.to_frame() tt['c'] = [7, 8, 9] return tt @sim.column('table_func') def new_col(test_table, table_func): tt = test_table.to_frame() tf = table_func.to_frame(columns=['c']) return tt['a'] + tt['b'] + tf['c'] @sim.model() def test_model1(year, test_table, table_func): tf = table_func.to_frame(columns=['new_col']) test_table[year] = tf['new_col'] + year @sim.model('test_model2') def asdf(table='test_table'): tt = table.to_frame() table['a'] = tt['a'] ** 2 sim.run(models=['test_model1', 'test_model2'], years=[2000, 3000]) test_table = sim.get_table('test_table') assert_frames_equal( test_table.to_frame(), pd.DataFrame( {'a': [1, 16, 81], 'b': [4, 5, 6], 2000: [2012, 2015, 2018], 3000: [3012, 3017, 3024]}, index=['x', 'y', 'z'])) m = sim.get_model('test_model1') assert set(m._tables_used()) == {'test_table', 'table_func'} def test_get_broadcasts(): sim.broadcast('a', 'b') sim.broadcast('b', 'c') sim.broadcast('z', 'b') sim.broadcast('f', 'g') with pytest.raises(ValueError): sim._get_broadcasts(['a', 'b', 'g']) assert set(sim._get_broadcasts(['a', 'b', 'c', 'z']).keys()) == \ {('a', 'b'), ('b', 'c'), ('z', 'b')} assert set(sim._get_broadcasts(['a', 'b', 'z']).keys()) == \ {('a', 'b'), ('z', 'b')} assert set(sim._get_broadcasts(['a', 'b', 'c']).keys()) == \ {('a', 'b'), ('b', 'c')} assert set(sim.list_broadcasts()) == \ {('a', 'b'), ('b', 'c'), ('z', 'b'), ('f', 'g')} def test_collect_variables(df): sim.add_table('df', df) @sim.table() def df_func(): return df @sim.column('df') def zzz(): return df['a'] / 2 sim.add_injectable('answer', 42) @sim.injectable() def injected(): return 'injected' @sim.table('source table', cache=True) def source(): return df with pytest.raises(KeyError): sim._collect_variables(['asdf']) with pytest.raises(KeyError): sim._collect_variables(names=['df'], expressions=['asdf']) names = ['df', 'df_func', 'answer', 'injected', 'source_label', 'df_a'] expressions = ['source table', 'df.a'] things = sim._collect_variables(names, expressions) assert set(things.keys()) == set(names) assert isinstance(things['source_label'], sim.DataFrameWrapper) pdt.assert_frame_equal(things['source_label'].to_frame(), df) assert isinstance(things['df_a'], pd.Series) pdt.assert_series_equal(things['df_a'], df['a']) def test_collect_variables_expression_only(df): @sim.table() def table(): return df vars = sim._collect_variables(['a'], ['table.a']) pdt.assert_series_equal(vars['a'], df.a) def test_injectables(): sim.add_injectable('answer', 42) @sim.injectable() def func1(answer): return answer * 2 @sim.injectable('func2', autocall=False) def asdf(variable='x'): return variable / 2 @sim.injectable() def func3(func2): return func2(4) @sim.injectable() def func4(func='func1'): return func / 2 assert sim._INJECTABLES['answer'] == 42 assert sim._INJECTABLES['func1']() == 42 * 2 assert sim._INJECTABLES['func2'](4) == 2 assert sim._INJECTABLES['func3']() == 2 assert sim._INJECTABLES['func4']() == 42 assert sim.get_injectable('answer') == 42 assert sim.get_injectable('func1') == 42 * 2 assert sim.get_injectable('func2')(4) == 2 assert sim.get_injectable('func3') == 2 assert sim.get_injectable('func4') == 42 with pytest.raises(KeyError): sim.get_injectable('asdf') assert set(sim.list_injectables()) == \ {'answer', 'func1', 'func2', 'func3', 'func4'} def test_injectables_combined(df): @sim.injectable() def column(): return pd.Series(['a', 'b', 'c'], index=df.index) @sim.table() def table(): return df @sim.model() def model(table, column): df = table.to_frame() df['new'] = column sim.add_table('table', df) sim.run(models=['model']) table_wr = sim.get_table('table').to_frame() pdt.assert_frame_equal(table_wr[['a', 'b']], df) pdt.assert_series_equal(table_wr['new'], column()) def test_injectables_cache(): x = 2 @sim.injectable(autocall=True, cache=True) def inj(): return x * x i = lambda: sim._INJECTABLES['inj'] assert i()() == 4 x = 3 assert i()() == 4 i().clear_cached() assert i()() == 9 x = 4 assert i()() == 9 sim.clear_cache() assert i()() == 16 x = 5 assert i()() == 16 sim.add_injectable('inj', inj, autocall=True, cache=True) assert i()() == 25 def test_injectables_cache_disabled(): x = 2 @sim.injectable(autocall=True, cache=True) def inj(): return x * x i = lambda: sim._INJECTABLES['inj'] sim.disable_cache() assert i()() == 4 x = 3 assert i()() == 9 sim.enable_cache() assert i()() == 9 x = 4 assert i()() == 9 sim.disable_cache() assert i()() == 16 def test_clear_cache_all(df): @sim.table(cache=True) def table(): return df @sim.column('table', cache=True) def z(table): return df.a @sim.injectable(cache=True) def x(): return 'x' sim.eval_variable('table.z') sim.eval_variable('x') assert sim._TABLE_CACHE.keys() == ['table'] assert sim._COLUMN_CACHE.keys() == [('table', 'z')] assert sim._INJECTABLE_CACHE.keys() == ['x'] sim.clear_cache() assert sim._TABLE_CACHE == {} assert sim._COLUMN_CACHE == {} assert sim._INJECTABLE_CACHE == {} def test_clear_cache_scopes(df): @sim.table(cache=True, cache_scope='forever') def table(): return df @sim.column('table', cache=True, cache_scope='iteration') def z(table): return df.a @sim.injectable(cache=True, cache_scope='step') def x(): return 'x' sim.eval_variable('table.z') sim.eval_variable('x') assert sim._TABLE_CACHE.keys() == ['table'] assert sim._COLUMN_CACHE.keys() == [('table', 'z')] assert sim._INJECTABLE_CACHE.keys() == ['x'] sim.clear_cache(scope='step') assert sim._TABLE_CACHE.keys() == ['table'] assert sim._COLUMN_CACHE.keys() == [('table', 'z')] assert sim._INJECTABLE_CACHE == {} sim.clear_cache(scope='iteration') assert sim._TABLE_CACHE.keys() == ['table'] assert sim._COLUMN_CACHE == {} assert sim._INJECTABLE_CACHE == {} sim.clear_cache(scope='forever') assert sim._TABLE_CACHE == {} assert sim._COLUMN_CACHE == {} assert sim._INJECTABLE_CACHE == {} def test_cache_scope(df): sim.add_injectable('x', 11) sim.add_injectable('y', 22) sim.add_injectable('z', 33) sim.add_injectable('iterations', 1) @sim.injectable(cache=True, cache_scope='forever') def a(x): return x @sim.injectable(cache=True, cache_scope='iteration') def b(y): return y @sim.injectable(cache=True, cache_scope='step') def c(z): return z @sim.model() def m1(year, a, b, c): sim.add_injectable('x', year + a) sim.add_injectable('y', year + b) sim.add_injectable('z', year + c) assert a == 11 @sim.model() def m2(year, a, b, c, iterations): assert a == 11 if year == 1000: assert b == 22 assert c == 1033 elif year == 2000: assert b == 1022 assert c == 3033 sim.add_injectable('iterations', iterations + 1) sim.run(['m1', 'm2'], years=[1000, 2000]) def test_table_func_local_cols(df): @sim.table() def table(): return df sim.add_column('table', 'new', pd.Series(['a', 'b', 'c'], index=df.index)) assert sim.get_table('table').local_columns == ['a', 'b'] def test_is_table(df): sim.add_table('table', df) assert sim._is_table('table') is True assert sim._is_table('asdf') is False @pytest.fixture def store_name(request): fname = tempfile.NamedTemporaryFile(suffix='.h5').name def fin(): if os.path.isfile(fname): os.remove(fname) request.addfinalizer(fin) return fname def test_write_tables(df, store_name): sim.add_table('table', df) @sim.model() def model(table): pass sim.write_tables(store_name, ['model'], None) with pd.get_store(store_name, mode='r') as store: assert 'table' in store pdt.assert_frame_equal(store['table'], df) sim.write_tables(store_name, ['model'], 1969) with pd.get_store(store_name, mode='r') as store: assert '1969/table' in store pdt.assert_frame_equal(store['1969/table'], df) def test_run_and_write_tables(df, store_name): sim.add_table('table', df) year_key = lambda y: '{}'.format(y) series_year = lambda y: pd.Series([y] * 3, index=df.index) @sim.model() def model(year, table): table[year_key(year)] = series_year(year) sim.run(['model'], years=range(11), data_out=store_name, out_interval=3) with
pd.get_store(store_name, mode='r')
pandas.get_store
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ | `@purpose`: Download raw data from apache, Box, or REDCap servers. | `@date`: Created on Sat May 1 15:12:38 2019 | `@author`: <NAME> | `@email`: <EMAIL> | `@url`: https://semeon.io/d/imhr """ # available functions __all__ = ['Download'] # required = __required__ = ['openpyxl','openpyxl'] # core from pdb import set_trace as breakpoint # local libraries from .. import settings # check if psychopy is available try: # core import os from datetime import datetime from pathlib import Path except ImportError as e: pkg = e.name x = {'psychopy':'psychopy','pandas':'pandas'} pkg = x[pkg] if pkg in x else pkg raise Exception("No module named '%s'. Please install from PyPI before continuing."%(pkg),'red') class Download(): """Download raw data from apache, Box, or REDCap servers.""" @classmethod def __init__(self, isLibrary=False): """Download raw data from apache, Box, or REDCap servers. Parameters ---------- isLibrary : :obj:`bool` Check if required libraries are available. """ #check libraries if isLibrary: settings.library(__required__) @classmethod def REDCap(cls, path, token, url, content, payload=None, **kwargs): """Download data from an Research Electronic Data Capture (REDCap) server. Parameters ---------- path : :obj:`str` Path to save data. For example:: >>> path = '/Users/mdl-admin/Desktop/r33/redcap' token : :obj:`str` The API token specific to your REDCap project and username. This is usually found on the Applications > API page. For example:: >>> token = '<PASSWORD>823032SFDMR24395298' url : :obj:`str` The URL of the REDCap project. For example:: >>> url = 'https://redcap.prc.utexas.edu/redcap/api/'. content : :obj:`str` {report, file, raw, arm, instrument, returnFormat, metadata, project, surveyLink, user, participantList} Type of export. Examples include exporting a report (`report`), file (`file`), or project info (`project`). payload_ : :obj:`dict` or :obj:`None`, optional Manually submit parameters for exporting or importing data. Can be entered within the function for convenience. **kwargs : :obj:`str` or :obj:`None`, optional Additional properties, relevent for specific content types. Here's a list of available properties: .. list-table:: :class: kwargs :widths: 25 50 :header-rows: 1 * - Property - Description * - **report_id** : :obj:`str` - (report, record) The report ID number provided next to the report name on the report list page. * - **cformat** : :obj:`str` {csv, json, xml, odm} - Format to return data, either csv, json, xml, or odm. Default is json. * - **ctype** : :obj:`str` - Shape of data. Default is flat. * - **rawOrLabel**: :obj:`str` {raw, label} - (report, record) TExport the raw coded values or labels for the options of multiple choice fields. * - **rawOrLabelHeaders**: :obj:`str` - (report, record) TExport the variable/field names (raw) or the field labels (label). * - **exportCheckboxLabel**: :obj:`str` - Specifies the format of checkbox field values specifically when exporting the data as labels (i.e., when rawOrLabel=label). * - **returnFormat** : :obj:`str` - Format to return errors. Default is `json`. Returns ------- log : :obj:`pandas.DataFrame` or :obj:`None` Pandas dataframe of each download request. content : :obj:`pandas.DataFrame` or :obj:`None` Pandas dataframe of all data downloaded. start, end : :obj:`str` Timestamp (ISO format) and name of most recent (`end`) and first (`start`) file created in folder. now : :obj:`str` Current timestamp in ISO format. """ import openpyxl, requests import pandas as pd #----constants, lists to prepare ldate = [] #list of dates file_num = 0 #file counter # bool log = None #log of events start = None #most recent file end = None #most recent file #----path # log name = Path(path).name log_path = os.path.abspath(os.path.dirname(path + "/../")) # destination path = Path(path) #----kwargs # general cformat = kwargs['cformat'] if "cformat" in kwargs else 'json' ctype = kwargs['ctype'] if "ctype" in kwargs else 'flat' rawOrLabel = kwargs['rawOrLabel'] if "rawOrLabel" in kwargs else 'raw' rawOrLabelHeaders = kwargs['rawOrLabelHeaders'] if "rawOrLabelHeaders" in kwargs else 'raw' exportCheckboxLabel = kwargs['exportCheckboxLabel'] if "exportCheckboxLabel" in kwargs else 'false' returnFormat = kwargs['returnFormat'] if "returnFormat" in kwargs else 'json' # report report_id = kwargs['report_id'] if "report_id" in kwargs else 'None' # participantList instrument = kwargs['instrument'] if "instrument" in kwargs else 'cssrs' event = kwargs['event'] if "event" in kwargs else 'online_eligibility_arm_1' #----start settings.console('connecting to REDCap', 'blue') #----make sure local path exists settings.console('local folder: %s'%(Path(path)), 'blue') if not os.path.exists(Path(path)): settings.console('creating local folder: %s'%(Path(path)), 'blue') os.makedirs(Path(path)) #----start download # prepare if payload == None: # report if content == 'report': payload = { 'token': token, 'content': content, 'format': cformat, 'type': ctype, 'returnFormat': returnFormat, 'report_id': report_id, 'rawOrLabel': rawOrLabel, 'rawOrLabelHeaders': rawOrLabelHeaders, 'exportCheckboxLabel': exportCheckboxLabel } elif content == 'participantList': payload = { 'token': token, 'content': content, 'format': cformat, 'returnFormat': returnFormat, 'instrument': instrument, 'event': event, } elif content == 'metadata': payload = { 'token': token, 'content': content, 'format': cformat, 'returnFormat': returnFormat, } elif content == 'project': payload = { 'token': token, 'content': content, 'format': cformat, 'returnFormat': returnFormat, } else: raise Exception('Not finished. Content `%s` unavailable.'%(content)) # get data response = requests.post(url, data=payload) json = response.json() # if error if 'error' in json: raise Exception('Export failed. Reason: %s.'%(json['error'])) # convert to dataframe df = pd.DataFrame(json) # save data path_= os.path.dirname(path) + "/REDCap/%s.xlsx"%(content) df.to_excel(path_, index=False) # if list isnt empty get start and end dates if ldate: ## start start = min(map(lambda x: [x[0],x[1]], ldate)) settings.console('oldest file: %s'%(start[0]), 'blue') ## end end = max(map(lambda x: [x[0],x[1]], ldate)) settings.console('newest file: %s'%(end[0]), 'blue') #----log # if new files now = datetime.now().strftime('%Y-%m-%d %H:%M:%S') #!!! add values to go into dataframe---- row = [df.shape[0],token,content,now] # log file path fpath = "%s/%s.xlsx"%(log_path, name) # if log exists, update if os.path.exists(fpath): settings.console("Log updated @: %s"%(fpath), 'blue') #load file wb = openpyxl.load_workbook(fpath) # Select First Worksheet ws = wb.worksheets[0] # add data ws.append(row) # update wb.save(fpath) # import log log =
pd.ExcelFile(fpath)
pandas.ExcelFile
import pytest from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG, _period_code_map from pandas.errors import OutOfBoundsDatetime from pandas import Period, Timestamp, offsets class TestFreqConversion: """Test frequency conversion of date objects""" @pytest.mark.parametrize("freq", ["A", "Q", "M", "W", "B", "D"]) def test_asfreq_near_zero(self, freq): # GH#19643, GH#19650 per = Period("0001-01-01", freq=freq) tup1 = (per.year, per.hour, per.day) prev = per - 1 assert prev.ordinal == per.ordinal - 1 tup2 = (prev.year, prev.month, prev.day) assert tup2 < tup1 def test_asfreq_near_zero_weekly(self): # GH#19834 per1 = Period("0001-01-01", "D") + 6 per2 = Period("0001-01-01", "D") - 6 week1 = per1.asfreq("W") week2 = per2.asfreq("W") assert week1 != week2 assert week1.asfreq("D", "E") >= per1 assert week2.asfreq("D", "S") <= per2 def test_to_timestamp_out_of_bounds(self): # GH#19643, used to incorrectly give Timestamp in 1754 per = Period("0001-01-01", freq="B") msg = "Out of bounds nanosecond timestamp" with pytest.raises(OutOfBoundsDatetime, match=msg): per.to_timestamp() def test_asfreq_corner(self): val = Period(freq="A", year=2007) result1 = val.asfreq("5t") result2 = val.asfreq("t") expected = Period("2007-12-31 23:59", freq="t") assert result1.ordinal == expected.ordinal assert result1.freqstr == "5T" assert result2.ordinal == expected.ordinal assert result2.freqstr == "T" def test_conv_annual(self): # frequency conversion tests: from Annual Frequency ival_A = Period(freq="A", year=2007) ival_AJAN = Period(freq="A-JAN", year=2007) ival_AJUN = Period(freq="A-JUN", year=2007) ival_ANOV = Period(freq="A-NOV", year=2007) ival_A_to_Q_start = Period(freq="Q", year=2007, quarter=1) ival_A_to_Q_end = Period(freq="Q", year=2007, quarter=4) ival_A_to_M_start = Period(freq="M", year=2007, month=1) ival_A_to_M_end = Period(freq="M", year=2007, month=12) ival_A_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_A_to_W_end = Period(freq="W", year=2007, month=12, day=31) ival_A_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_A_to_B_end = Period(freq="B", year=2007, month=12, day=31) ival_A_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_A_to_D_end = Period(freq="D", year=2007, month=12, day=31) ival_A_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_A_to_H_end = Period(freq="H", year=2007, month=12, day=31, hour=23) ival_A_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_A_to_T_end = Period( freq="Min", year=2007, month=12, day=31, hour=23, minute=59 ) ival_A_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_A_to_S_end = Period( freq="S", year=2007, month=12, day=31, hour=23, minute=59, second=59 ) ival_AJAN_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_AJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_AJUN_to_D_end = Period(freq="D", year=2007, month=6, day=30) ival_AJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_ANOV_to_D_end = Period(freq="D", year=2007, month=11, day=30) ival_ANOV_to_D_start = Period(freq="D", year=2006, month=12, day=1) assert ival_A.asfreq("Q", "S") == ival_A_to_Q_start assert ival_A.asfreq("Q", "e") == ival_A_to_Q_end assert ival_A.asfreq("M", "s") == ival_A_to_M_start assert ival_A.asfreq("M", "E") == ival_A_to_M_end assert ival_A.asfreq("W", "S") == ival_A_to_W_start assert ival_A.asfreq("W", "E") == ival_A_to_W_end assert ival_A.asfreq("B", "S") == ival_A_to_B_start assert ival_A.asfreq("B", "E") == ival_A_to_B_end assert ival_A.asfreq("D", "S") == ival_A_to_D_start assert ival_A.asfreq("D", "E") == ival_A_to_D_end assert ival_A.asfreq("H", "S") == ival_A_to_H_start assert ival_A.asfreq("H", "E") == ival_A_to_H_end assert ival_A.asfreq("min", "S") == ival_A_to_T_start assert ival_A.asfreq("min", "E") == ival_A_to_T_end assert ival_A.asfreq("T", "S") == ival_A_to_T_start assert ival_A.asfreq("T", "E") == ival_A_to_T_end assert ival_A.asfreq("S", "S") == ival_A_to_S_start assert ival_A.asfreq("S", "E") == ival_A_to_S_end assert ival_AJAN.asfreq("D", "S") == ival_AJAN_to_D_start assert ival_AJAN.asfreq("D", "E") == ival_AJAN_to_D_end assert ival_AJUN.asfreq("D", "S") == ival_AJUN_to_D_start assert ival_AJUN.asfreq("D", "E") == ival_AJUN_to_D_end assert ival_ANOV.asfreq("D", "S") == ival_ANOV_to_D_start assert ival_ANOV.asfreq("D", "E") == ival_ANOV_to_D_end assert ival_A.asfreq("A") == ival_A def test_conv_quarterly(self): # frequency conversion tests: from Quarterly Frequency ival_Q = Period(freq="Q", year=2007, quarter=1) ival_Q_end_of_year = Period(freq="Q", year=2007, quarter=4) ival_QEJAN = Period(freq="Q-JAN", year=2007, quarter=1) ival_QEJUN = Period(freq="Q-JUN", year=2007, quarter=1) ival_Q_to_A = Period(freq="A", year=2007) ival_Q_to_M_start = Period(freq="M", year=2007, month=1) ival_Q_to_M_end = Period(freq="M", year=2007, month=3) ival_Q_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_Q_to_W_end = Period(freq="W", year=2007, month=3, day=31) ival_Q_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_Q_to_B_end = Period(freq="B", year=2007, month=3, day=30) ival_Q_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_Q_to_D_end = Period(freq="D", year=2007, month=3, day=31) ival_Q_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_Q_to_H_end = Period(freq="H", year=2007, month=3, day=31, hour=23) ival_Q_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_Q_to_T_end = Period( freq="Min", year=2007, month=3, day=31, hour=23, minute=59 ) ival_Q_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_Q_to_S_end = Period( freq="S", year=2007, month=3, day=31, hour=23, minute=59, second=59 ) ival_QEJAN_to_D_start = Period(freq="D", year=2006, month=2, day=1) ival_QEJAN_to_D_end = Period(freq="D", year=2006, month=4, day=30) ival_QEJUN_to_D_start = Period(freq="D", year=2006, month=7, day=1) ival_QEJUN_to_D_end = Period(freq="D", year=2006, month=9, day=30) assert ival_Q.asfreq("A") == ival_Q_to_A assert ival_Q_end_of_year.asfreq("A") == ival_Q_to_A assert ival_Q.asfreq("M", "S") == ival_Q_to_M_start assert ival_Q.asfreq("M", "E") == ival_Q_to_M_end assert ival_Q.asfreq("W", "S") == ival_Q_to_W_start assert ival_Q.asfreq("W", "E") == ival_Q_to_W_end assert ival_Q.asfreq("B", "S") == ival_Q_to_B_start assert ival_Q.asfreq("B", "E") == ival_Q_to_B_end assert ival_Q.asfreq("D", "S") == ival_Q_to_D_start assert ival_Q.asfreq("D", "E") == ival_Q_to_D_end assert ival_Q.asfreq("H", "S") == ival_Q_to_H_start assert ival_Q.asfreq("H", "E") == ival_Q_to_H_end assert ival_Q.asfreq("Min", "S") == ival_Q_to_T_start assert ival_Q.asfreq("Min", "E") == ival_Q_to_T_end assert ival_Q.asfreq("S", "S") == ival_Q_to_S_start assert ival_Q.asfreq("S", "E") == ival_Q_to_S_end assert ival_QEJAN.asfreq("D", "S") == ival_QEJAN_to_D_start assert ival_QEJAN.asfreq("D", "E") == ival_QEJAN_to_D_end assert ival_QEJUN.asfreq("D", "S") == ival_QEJUN_to_D_start assert ival_QEJUN.asfreq("D", "E") == ival_QEJUN_to_D_end assert ival_Q.asfreq("Q") == ival_Q def test_conv_monthly(self): # frequency conversion tests: from Monthly Frequency ival_M = Period(freq="M", year=2007, month=1) ival_M_end_of_year = Period(freq="M", year=2007, month=12) ival_M_end_of_quarter = Period(freq="M", year=2007, month=3) ival_M_to_A = Period(freq="A", year=2007) ival_M_to_Q = Period(freq="Q", year=2007, quarter=1) ival_M_to_W_start = Period(freq="W", year=2007, month=1, day=1) ival_M_to_W_end = Period(freq="W", year=2007, month=1, day=31) ival_M_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_M_to_B_end = Period(freq="B", year=2007, month=1, day=31) ival_M_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_M_to_D_end = Period(freq="D", year=2007, month=1, day=31) ival_M_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_M_to_H_end = Period(freq="H", year=2007, month=1, day=31, hour=23) ival_M_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_M_to_T_end = Period( freq="Min", year=2007, month=1, day=31, hour=23, minute=59 ) ival_M_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_M_to_S_end = Period( freq="S", year=2007, month=1, day=31, hour=23, minute=59, second=59 ) assert ival_M.asfreq("A") == ival_M_to_A assert ival_M_end_of_year.asfreq("A") == ival_M_to_A assert ival_M.asfreq("Q") == ival_M_to_Q assert ival_M_end_of_quarter.asfreq("Q") == ival_M_to_Q assert ival_M.asfreq("W", "S") == ival_M_to_W_start assert ival_M.asfreq("W", "E") == ival_M_to_W_end assert ival_M.asfreq("B", "S") == ival_M_to_B_start assert ival_M.asfreq("B", "E") == ival_M_to_B_end assert ival_M.asfreq("D", "S") == ival_M_to_D_start assert ival_M.asfreq("D", "E") == ival_M_to_D_end assert ival_M.asfreq("H", "S") == ival_M_to_H_start assert ival_M.asfreq("H", "E") == ival_M_to_H_end assert ival_M.asfreq("Min", "S") == ival_M_to_T_start assert ival_M.asfreq("Min", "E") == ival_M_to_T_end assert ival_M.asfreq("S", "S") == ival_M_to_S_start assert ival_M.asfreq("S", "E") == ival_M_to_S_end assert ival_M.asfreq("M") == ival_M def test_conv_weekly(self): # frequency conversion tests: from Weekly Frequency ival_W = Period(freq="W", year=2007, month=1, day=1) ival_WSUN = Period(freq="W", year=2007, month=1, day=7) ival_WSAT = Period(freq="W-SAT", year=2007, month=1, day=6) ival_WFRI = Period(freq="W-FRI", year=2007, month=1, day=5) ival_WTHU = Period(freq="W-THU", year=2007, month=1, day=4) ival_WWED = Period(freq="W-WED", year=2007, month=1, day=3) ival_WTUE = Period(freq="W-TUE", year=2007, month=1, day=2) ival_WMON = Period(freq="W-MON", year=2007, month=1, day=1) ival_WSUN_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_WSUN_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_WSAT_to_D_start = Period(freq="D", year=2006, month=12, day=31) ival_WSAT_to_D_end = Period(freq="D", year=2007, month=1, day=6) ival_WFRI_to_D_start = Period(freq="D", year=2006, month=12, day=30) ival_WFRI_to_D_end = Period(freq="D", year=2007, month=1, day=5) ival_WTHU_to_D_start = Period(freq="D", year=2006, month=12, day=29) ival_WTHU_to_D_end = Period(freq="D", year=2007, month=1, day=4) ival_WWED_to_D_start = Period(freq="D", year=2006, month=12, day=28) ival_WWED_to_D_end = Period(freq="D", year=2007, month=1, day=3) ival_WTUE_to_D_start = Period(freq="D", year=2006, month=12, day=27) ival_WTUE_to_D_end = Period(freq="D", year=2007, month=1, day=2) ival_WMON_to_D_start = Period(freq="D", year=2006, month=12, day=26) ival_WMON_to_D_end = Period(freq="D", year=2007, month=1, day=1) ival_W_end_of_year = Period(freq="W", year=2007, month=12, day=31) ival_W_end_of_quarter = Period(freq="W", year=2007, month=3, day=31) ival_W_end_of_month = Period(freq="W", year=2007, month=1, day=31) ival_W_to_A = Period(freq="A", year=2007) ival_W_to_Q = Period(freq="Q", year=2007, quarter=1) ival_W_to_M = Period(freq="M", year=2007, month=1) if Period(freq="D", year=2007, month=12, day=31).weekday == 6: ival_W_to_A_end_of_year = Period(freq="A", year=2007) else: ival_W_to_A_end_of_year = Period(freq="A", year=2008) if Period(freq="D", year=2007, month=3, day=31).weekday == 6: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=1) else: ival_W_to_Q_end_of_quarter = Period(freq="Q", year=2007, quarter=2) if Period(freq="D", year=2007, month=1, day=31).weekday == 6: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=1) else: ival_W_to_M_end_of_month = Period(freq="M", year=2007, month=2) ival_W_to_B_start = Period(freq="B", year=2007, month=1, day=1) ival_W_to_B_end = Period(freq="B", year=2007, month=1, day=5) ival_W_to_D_start = Period(freq="D", year=2007, month=1, day=1) ival_W_to_D_end = Period(freq="D", year=2007, month=1, day=7) ival_W_to_H_start = Period(freq="H", year=2007, month=1, day=1, hour=0) ival_W_to_H_end = Period(freq="H", year=2007, month=1, day=7, hour=23) ival_W_to_T_start = Period( freq="Min", year=2007, month=1, day=1, hour=0, minute=0 ) ival_W_to_T_end = Period( freq="Min", year=2007, month=1, day=7, hour=23, minute=59 ) ival_W_to_S_start = Period( freq="S", year=2007, month=1, day=1, hour=0, minute=0, second=0 ) ival_W_to_S_end = Period( freq="S", year=2007, month=1, day=7, hour=23, minute=59, second=59 ) assert ival_W.asfreq("A") == ival_W_to_A assert ival_W_end_of_year.asfreq("A") == ival_W_to_A_end_of_year assert ival_W.asfreq("Q") == ival_W_to_Q assert ival_W_end_of_quarter.asfreq("Q") == ival_W_to_Q_end_of_quarter assert ival_W.asfreq("M") == ival_W_to_M assert ival_W_end_of_month.asfreq("M") == ival_W_to_M_end_of_month assert ival_W.asfreq("B", "S") == ival_W_to_B_start assert ival_W.asfreq("B", "E") == ival_W_to_B_end assert ival_W.asfreq("D", "S") == ival_W_to_D_start assert ival_W.asfreq("D", "E") == ival_W_to_D_end assert ival_WSUN.asfreq("D", "S") == ival_WSUN_to_D_start assert ival_WSUN.asfreq("D", "E") == ival_WSUN_to_D_end assert ival_WSAT.asfreq("D", "S") == ival_WSAT_to_D_start assert ival_WSAT.asfreq("D", "E") == ival_WSAT_to_D_end assert ival_WFRI.asfreq("D", "S") == ival_WFRI_to_D_start assert ival_WFRI.asfreq("D", "E") == ival_WFRI_to_D_end assert ival_WTHU.asfreq("D", "S") == ival_WTHU_to_D_start assert ival_WTHU.asfreq("D", "E") == ival_WTHU_to_D_end assert ival_WWED.asfreq("D", "S") == ival_WWED_to_D_start assert ival_WWED.asfreq("D", "E") == ival_WWED_to_D_end assert ival_WTUE.asfreq("D", "S") == ival_WTUE_to_D_start assert ival_WTUE.asfreq("D", "E") == ival_WTUE_to_D_end assert ival_WMON.asfreq("D", "S") == ival_WMON_to_D_start assert ival_WMON.asfreq("D", "E") == ival_WMON_to_D_end assert ival_W.asfreq("H", "S") == ival_W_to_H_start assert ival_W.asfreq("H", "E") == ival_W_to_H_end assert ival_W.asfreq("Min", "S") == ival_W_to_T_start assert ival_W.asfreq("Min", "E") == ival_W_to_T_end assert ival_W.asfreq("S", "S") == ival_W_to_S_start assert ival_W.asfreq("S", "E") == ival_W_to_S_end assert ival_W.asfreq("W") == ival_W msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg): ival_W.asfreq("WK") def test_conv_weekly_legacy(self): # frequency conversion tests: from Weekly Frequency msg = INVALID_FREQ_ERR_MSG with pytest.raises(ValueError, match=msg):
Period(freq="WK", year=2007, month=1, day=1)
pandas.Period
__author__ = 'jonathan' import os import numpy as np import xgboost as xgb import pandas as pd os.system("ls ../input") train = pd.read_csv('../input/train.csv') train = train.drop('id', axis=1) y = train['target'] y = y.map(lambda s: s[6:]) y = y.map(lambda s: int(s)-1) train = train.drop('target', axis=1) x = train dtrain = xgb.DMatrix(x.as_matrix(), label=y.tolist()) test = pd.read_csv('../input/test.csv') test = test.drop('id', axis=1) dtest = xgb.DMatrix(test.as_matrix()) # print(pd.unique(y.values.ravel())) params = {'max_depth': 6, 'objective': 'multi:softprob', 'eval_metric': 'mlogloss', 'num_class': 9, 'nthread': 8} # cv = xgb.cv(params, dtrain, 50, 3) # watchlist = [(dtest, 'eval'), (dtrain, 'train')] bst = xgb.train(params, dtrain, 50) # bst.dump_model('dump.raw.txt', 'featmap.txt') pred = bst.predict(dtest) # np.savetxt('result.csv', pred, delimiter=',') df =
pd.DataFrame(pred)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import re class FixedWidthVariables(object): """Represents a set of variables in a fixed width file.""" def __init__(self, variables, index_base=0): """Initializes. variables: DataFrame index_base: are the indices 0 or 1 based? Attributes: colspecs: list of (start, end) index tuples names: list of string variable names """ self.variables = variables # note: by default, subtract 1 from colspecs self.colspecs = variables[['start', 'end']] - index_base # convert colspecs to a list of pair of int self.colspecs = self.colspecs.astype(np.int).values.tolist() self.names = variables['name'] def read_fixed_width(self, filename, **options): """Reads a fixed width ASCII file. filename: string filename returns: DataFrame """ df = pd.read_fwf(filename, colspecs=self.colspecs, names=self.names, **options) return df def read_stata_dict(dct_file, **options): """Reads a Stata dictionary file. dct_file: string filename options: dict of options passed to open() returns: FixedWidthVariables object """ type_map = dict(byte=int, int=int, long=int, float=float, double=float, numeric=float) var_info = [] with open(dct_file, **options) as f: for line in f: match = re.search( r'_column\(([^)]*)\)', line) if not match: continue start = int(match.group(1)) t = line.split() vtype, name, fstring = t[1:4] name = name.lower() if vtype.startswith('str'): vtype = str else: vtype = type_map[vtype] long_desc = ' '.join(t[4:]).strip('"') var_info.append((start, vtype, name, fstring, long_desc)) columns = ['start', 'type', 'name', 'fstring', 'desc'] variables = pd.DataFrame(var_info, columns=columns) # fill in the end column by shifting the start column variables['end'] = variables.start.shift(-1) variables.loc[len(variables)-1, 'end'] = 0 dct = FixedWidthVariables(variables, index_base=1) return dct def read_stata(dct_name, dat_name, **options): """Reads Stata files from the given directory. dirname: string returns: DataFrame """ dct = read_stata_dict(dct_name) df = dct.read_fixed_width(dat_name, **options) return df def sample_rows(df, nrows, replace=False): """Choose a sample of rows from a DataFrame. df: DataFrame nrows: number of rows replace: whether to sample with replacement returns: DataDf """ indices = np.random.choice(df.index, nrows, replace=replace) sample = df.loc[indices] return sample def resample_rows(df): """Resamples rows from a DataFrame. df: DataFrame returns: DataFrame """ return sample_rows(df, len(df), replace=True) def resample_rows_weighted(df, column='finalwgt'): """Resamples a DataFrame using probabilities proportional to given column. df: DataFrame column: string column name to use as weights returns: DataFrame """ weights = df[column].copy() weights /= sum(weights) indices = np.random.choice(df.index, len(df), replace=True, p=weights) sample = df.loc[indices] return sample def resample_by_year(df, column='wtssall'): """Resample rows within each year. df: DataFrame column: string name of weight variable returns DataFrame """ grouped = df.groupby('year') samples = [resample_rows_weighted(group, column) for _, group in grouped] sample =
pd.concat(samples, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- # !/usr/bin/env python3 -u # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) """Implements trend based forecasters.""" __author__ = ["<NAME>", "mloning", "aiwalter"] __all__ = ["TrendForecaster", "PolynomialTrendForecaster", "STLForecaster"] import numpy as np import pandas as pd from sklearn.base import clone from sklearn.linear_model import LinearRegression from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures from statsmodels.tsa.seasonal import STL as _STL from sktime.forecasting.base import BaseForecaster from sktime.forecasting.base._base import DEFAULT_ALPHA from sktime.forecasting.naive import NaiveForecaster from sktime.utils.datetime import _get_duration class TrendForecaster(BaseForecaster): """Trend based forecasts of time series data. Default settings train a linear regression model. Parameters ---------- regressor : estimator object, default = None Define the regression model type. If not set, will default to sklearn.linear_model.LinearRegression Examples -------- >>> from sktime.datasets import load_airline >>> from sktime.forecasting.trend import TrendForecaster >>> y = load_airline() >>> forecaster = TrendForecaster() >>> forecaster.fit(y) TrendForecaster(...) >>> y_pred = forecaster.predict(fh=[1,2,3]) """ _tags = { "ignores-exogeneous-X": True, "requires-fh-in-fit": False, "handles-missing-data": False, } def __init__(self, regressor=None): # for default regressor, set fit_intercept=True self.regressor = regressor super(TrendForecaster, self).__init__() def _fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series with which to fit the forecaster. X : pd.DataFrame, default=None Exogenous variables are ignored fh : int, list or np.array, optional (default=None) The forecasters horizon with the steps ahead to to predict. Returns ------- self : returns an instance of self. """ self.regressor_ = self.regressor or LinearRegression(fit_intercept=True) # create a clone of self.regressor self.regressor_ = clone(self.regressor_) # transform data X = y.index.astype("int").to_numpy().reshape(-1, 1) # fit regressor self.regressor_.fit(X, y) return self def _predict(self, fh=None, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA): """Make forecasts for the given forecast horizon. Parameters ---------- fh : int, list or np.array The forecast horizon with the steps ahead to predict X : pd.DataFrame, default=None Exogenous variables (ignored) return_pred_int : bool, default=False Return the prediction intervals for the forecast. alpha : float or list, default=0.95 If alpha is iterable, multiple intervals will be calculated. Returns ------- y_pred : pd.Series Point predictions for the forecast y_pred_int : pd.DataFrame Prediction intervals for the forecast """ # use relative fh as time index to predict fh = self.fh.to_absolute_int(self._y.index[0], self.cutoff) X_pred = fh.to_numpy().reshape(-1, 1) y_pred = self.regressor_.predict(X_pred) return pd.Series(y_pred, index=self.fh.to_absolute(self.cutoff)) class PolynomialTrendForecaster(BaseForecaster): """Forecast time series data with a polynomial trend. Default settings train a linear regression model with a 1st degree polynomial transformation of the feature. Parameters ---------- regressor : estimator object, default = None Define the regression model type. If not set, will default to sklearn.linear_model.LinearRegression degree : int, default = 1 Degree of polynomial function with_intercept : bool, default=True If true, then include a feature in which all polynomial powers are zero. (i.e. a column of ones, acts as an intercept term in a linear model) Examples -------- >>> from sktime.datasets import load_airline >>> from sktime.forecasting.trend import PolynomialTrendForecaster >>> y = load_airline() >>> forecaster = PolynomialTrendForecaster(degree=1) >>> forecaster.fit(y) PolynomialTrendForecaster(...) >>> y_pred = forecaster.predict(fh=[1,2,3]) """ _tags = { "ignores-exogeneous-X": True, "requires-fh-in-fit": False, "handles-missing-data": False, } def __init__(self, regressor=None, degree=1, with_intercept=True): self.regressor = regressor self.degree = degree self.with_intercept = with_intercept self.regressor_ = self.regressor super(PolynomialTrendForecaster, self).__init__() def _fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series with which to fit the forecaster. X : pd.DataFrame, default=None Exogenous variables are ignored fh : int, list or np.array, default=None The forecasters horizon with the steps ahead to to predict. Returns ------- self : returns an instance of self. """ # for default regressor, set fit_intercept=False as we generate a # dummy variable in polynomial features if self.regressor is None: regressor = LinearRegression(fit_intercept=False) else: regressor = self.regressor # make pipeline with polynomial features self.regressor_ = make_pipeline( PolynomialFeatures(degree=self.degree, include_bias=self.with_intercept), regressor, ) # transform data n_timepoints = _get_duration(self._y.index, coerce_to_int=True) + 1 X = np.arange(n_timepoints).reshape(-1, 1) # fit regressor self.regressor_.fit(X, y) return self def _predict(self, fh=None, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA): """Make forecasts for the given forecast horizon. Parameters ---------- fh : int, list or np.array The forecast horizon with the steps ahead to predict X : pd.DataFrame, default=None Exogenous variables (ignored) return_pred_int : bool, default=False Return the prediction intervals for the forecast. alpha : float or list, default=0.95 If alpha is iterable, multiple intervals will be calculated. Returns ------- y_pred : pd.Series Point predictions for the forecast y_pred_int : pd.DataFrame Prediction intervals for the forecast """ # use relative fh as time index to predict fh = self.fh.to_absolute_int(self._y.index[0], self.cutoff) X_pred = fh.to_numpy().reshape(-1, 1) y_pred = self.regressor_.predict(X_pred) return pd.Series(y_pred, index=self.fh.to_absolute(self.cutoff)) class STLForecaster(BaseForecaster): """Implements STLForecaster based on statsmodels.tsa.seasonal.STL implementation. The STLForecaster is using an STL to decompose the given series y into the three components trend, season and residuals [1]_. Then, the forecaster_trend, forecaster_seasonal and forecaster_resid are fitted on the components individually to forecast them also individually. The final forecast is then the sum of the three component forecasts. The STL decomposition is done by means of using the package statsmodels [2]_. Parameters ---------- sp : int, optional Length of the seasonal period for STL, by default 2. It's also the default sp for the forecasters (forecaster_seasonal, forecaster_resid) that are None. The default forecaster_trend does not get sp as trend is independent to seasonality. seasonal : int, optional Length of the seasonal smoother. Must be an odd integer, and should normally be >= 7 (default). trend : {int, None}, optional Length of the trend smoother. Must be an odd integer. If not provided uses the smallest odd integer greater than 1.5 * period / (1 - 1.5 / seasonal), following the suggestion in the original implementation. low_pass : {int, None}, optional Length of the low-pass filter. Must be an odd integer >=3. If not provided, uses the smallest odd integer > period. seasonal_deg : int, optional Degree of seasonal LOESS. 0 (constant) or 1 (constant and trend). trend_deg : int, optional Degree of trend LOESS. 0 (constant) or 1 (constant and trend). low_pass_deg : int, optional Degree of low pass LOESS. 0 (constant) or 1 (constant and trend). robust : bool, optional Flag indicating whether to use a weighted version that is robust to some forms of outliers. seasonal_jump : int, optional Positive integer determining the linear interpolation step. If larger than 1, the LOESS is used every seasonal_jump points and linear interpolation is between fitted points. Higher values reduce estimation time. trend_jump : int, optional Positive integer determining the linear interpolation step. If larger than 1, the LOESS is used every trend_jump points and values between the two are linearly interpolated. Higher values reduce estimation time. low_pass_jump : int, optional Positive integer determining the linear interpolation step. If larger than 1, the LOESS is used every low_pass_jump points and values between the two are linearly interpolated. Higher values reduce estimation time. inner_iter: int, optional Number of iterations to perform in the inner loop. If not provided uses 2 if robust is True, or 5 if not. This param goes into STL.fit() from statsmodels. outer_iter: int, optional Number of iterations to perform in the outer loop. If not provided uses 15 if robust is True, or 0 if not. This param goes into STL.fit() from statsmodels. forecaster_trend : sktime forecaster, optional Forecaster to be fitted on trend_ component of the STL, by default None. If None, then a NaiveForecaster(strategy="drift") is used. forecaster_seasonal : sktime forecaster, optional Forecaster to be fitted on seasonal_ component of the STL, by default None. If None, then a NaiveForecaster(strategy="last") is used. forecaster_resid : sktime forecaster, optional Forecaster to be fitted on resid_ component of the STL, by default None. If None, then a NaiveForecaster(strategy="mean") is used. Attributes ---------- trend_ : pd.Series Trend component. seasonal_ : pd.Series Seasonal component. resid_ : pd.Series Residuals component. forecaster_trend_ : sktime forecaster Fitted trend forecaster. forecaster_seasonal_ : sktime forecaster Fitted seasonal forecaster. forecaster_resid_ : sktime forecaster Fitted residual forecaster. Examples -------- >>> from sktime.datasets import load_airline >>> from sktime.forecasting.trend import STLForecaster >>> y = load_airline() >>> forecaster = STLForecaster(sp=12) >>> forecaster.fit(y) STLForecaster(...) >>> y_pred = forecaster.predict(fh=[1,2,3]) See Also -------- Deseasonalizer Detrender References ---------- .. [1] <NAME>, <NAME>, <NAME>, and <NAME> (1990) STL: A Seasonal-Trend Decomposition Procedure Based on LOESS. Journal of Official Statistics, 6, 3-73. .. [2] https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.STL.html """ _tags = { "scitype:y": "univariate", # which y are fine? univariate/multivariate/both "ignores-exogeneous-X": False, # does estimator ignore the exogeneous X? "handles-missing-data": False, # can estimator handle missing data? "y_inner_mtype": "pd.Series", # which types do _fit, _predict, assume for y? "X_inner_mtype": "pd.DataFrame", # which types do _fit, _predict, assume for X? "requires-fh-in-fit": False, # is forecasting horizon already required in fit? } def __init__( self, sp=2, seasonal=7, trend=None, low_pass=None, seasonal_deg=1, trend_deg=1, low_pass_deg=1, robust=False, seasonal_jump=1, trend_jump=1, low_pass_jump=1, inner_iter=None, outer_iter=None, forecaster_trend=None, forecaster_seasonal=None, forecaster_resid=None, ): self.sp = sp self.seasonal = seasonal self.trend = trend self.low_pass = low_pass self.seasonal_deg = seasonal_deg self.trend_deg = trend_deg self.low_pass_deg = low_pass_deg self.robust = robust self.seasonal_jump = seasonal_jump self.trend_jump = trend_jump self.low_pass_jump = low_pass_jump self.inner_iter = inner_iter self.outer_iter = outer_iter self.forecaster_trend = forecaster_trend self.forecaster_seasonal = forecaster_seasonal self.forecaster_resid = forecaster_resid super(STLForecaster, self).__init__() def _fit(self, y, X=None, fh=None): """Fit forecaster to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list, np.array or ForecastingHorizon, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Returns ------- self : returns an instance of self. """ self._stl = _STL( y.values, period=self.sp, seasonal=self.seasonal, trend=self.trend, low_pass=self.low_pass, seasonal_deg=self.seasonal_deg, trend_deg=self.trend_deg, low_pass_deg=self.low_pass_deg, robust=self.robust, seasonal_jump=self.seasonal_jump, trend_jump=self.trend_jump, low_pass_jump=self.low_pass_jump, ).fit(inner_iter=self.inner_iter, outer_iter=self.outer_iter) self.seasonal_ =
pd.Series(self._stl.seasonal, index=y.index)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # # 06__process_mpranalyze_data # # in this notebook, i process the results that come out of running MPRAnalyze on each of the models, call significantly differentially active sequences, and merge results into one master dataframe. # In[1]: import warnings warnings.filterwarnings('ignore') import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import sys from scipy.stats import spearmanr # import utils sys.path.append("../../../utils") from plotting_utils import * from classify_utils import * get_ipython().run_line_magic('matplotlib', 'inline') # %config InlineBackend.figure_format = 'svg' # mpl.rcParams['figure.autolayout'] = False # In[2]: sns.set(**PAPER_PRESET) fontsize = PAPER_FONTSIZE # In[3]: np.random.seed(2019) # In[4]: QUANT_ALPHA = 0.05 # ## functions # ## variables # In[5]: data_dir = "../../../data/02__mpra/02__activs" alpha_f = "%s/alpha_per_elem.quantification.txt" % data_dir human_vals_f = "%s/human_TSS_vals.both_tiles.txt" % data_dir mouse_vals_f= "%s/mouse_TSS_vals.both_tiles.txt" % data_dir # In[6]: native_f = "%s/native_results.txt" % data_dir HUES64_cis_f = "%s/HUES64_cis_results.txt" % data_dir mESC_cis_f = "%s/mESC_cis_results.txt" % data_dir human_trans_f = "%s/human_trans_results.txt" % data_dir mouse_trans_f = "%s/mouse_trans_results.txt" % data_dir cis_trans_int_f = "%s/cis_trans_interaction_results.txt" % data_dir # In[7]: tss_map_f = "../../../data/01__design/01__mpra_list/mpra_tss.with_ids.RECLASSIFIED_WITH_MAX.txt" # ## 1. import data # In[8]: alpha = pd.read_table(alpha_f, sep="\t").reset_index() alpha.head() # In[9]: len(alpha) # In[10]: human_vals = pd.read_table(human_vals_f) mouse_vals = pd.read_table(mouse_vals_f) human_vals.head() # In[11]: native = pd.read_table(native_f).reset_index() native.columns = ["index", "stat_native", "pval_native", "fdr_native", "df.test_native", "df.dna_native", "df.rna.full_native", "df.rna.red_native", "logFC_native"] native["index"] = native.apply(fix_ctrl_id, axis=1) native.sample(5) # In[12]: HUES64_cis =
pd.read_table(HUES64_cis_f)
pandas.read_table
import pandas as pd df =
pd.read_csv(r'/Users/student/Dropbox/PhD/2019 Fall/Hydrologic Modeling/Onion_Creek_Full_Time.csv', index_col=0)
pandas.read_csv
"""analysis.py: module for manifolds analysis.""" __author__ = "<NAME>, <NAME>, <NAME> and <NAME>" __copyright__ = "Copyright (c) 2020, 2021, <NAME>, <NAME>, <NAME> and <NAME>" __credits__ = ["Department of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA", "Universite Libre de Bruxelles, Aero-Thermo-Mechanics Laboratory, Brussels, Belgium"] __license__ = "MIT" __version__ = "1.0.0" __maintainer__ = ["<NAME>", "<NAME>"] __email__ = ["<EMAIL>", "<EMAIL>", "<EMAIL>"] __status__ = "Production" import numpy as np import copy as cp import multiprocessing as multiproc from PCAfold import KReg from scipy.spatial import KDTree from scipy.optimize import minimize from scipy.signal import find_peaks import matplotlib.pyplot as plt import random as rnd from scipy.interpolate import CubicSpline from PCAfold.styles import * from PCAfold import preprocess from PCAfold import reduction from termcolor import colored from matplotlib.colors import ListedColormap import time ################################################################################ # # Manifold assessment # ################################################################################ class VarianceData: """ A class for storing helpful quantities in analyzing dimensionality of manifolds through normalized variance measures. This class will be returned by ``compute_normalized_variance``. :param bandwidth_values: the array of bandwidth values (Gaussian filter widths) used in computing the normalized variance for each variable :param normalized_variance: dictionary of the normalized variance computed at each of the bandwidth values for each variable :param global_variance: dictionary of the global variance for each variable :param bandwidth_10pct_rise: dictionary of the bandwidth value corresponding to a 10% rise in the normalized variance for each variable :param variable_names: list of the variable names :param normalized_variance_limit: dictionary of the normalized variance computed as the bandwidth approaches zero (numerically at :math:`10^{-16}`) for each variable """ def __init__(self, bandwidth_values, norm_var, global_var, bandwidth_10pct_rise, keys, norm_var_limit): self._bandwidth_values = bandwidth_values.copy() self._normalized_variance = norm_var.copy() self._global_variance = global_var.copy() self._bandwidth_10pct_rise = bandwidth_10pct_rise.copy() self._variable_names = keys.copy() self._normalized_variance_limit = norm_var_limit.copy() @property def bandwidth_values(self): """return the bandwidth values (Gaussian filter widths) used in computing the normalized variance for each variable""" return self._bandwidth_values.copy() @property def normalized_variance(self): """return a dictionary of the normalized variance computed at each of the bandwidth values for each variable""" return self._normalized_variance.copy() @property def global_variance(self): """return a dictionary of the global variance for each variable""" return self._global_variance.copy() @property def bandwidth_10pct_rise(self): """return a dictionary of the bandwidth value corresponding to a 10% rise in the normalized variance for each variable""" return self._bandwidth_10pct_rise.copy() @property def variable_names(self): """return a list of the variable names""" return self._variable_names.copy() @property def normalized_variance_limit(self): """return a dictionary of the normalized variance computed as the bandwidth approaches zero (numerically at 1.e-16) for each variable""" return self._normalized_variance_limit.copy() # ------------------------------------------------------------------------------ def compute_normalized_variance(indepvars, depvars, depvar_names, npts_bandwidth=25, min_bandwidth=None, max_bandwidth=None, bandwidth_values=None, scale_unit_box=True, n_threads=None): """ Compute a normalized variance (and related quantities) for analyzing manifold dimensionality. The normalized variance is computed as .. math:: \\mathcal{N}(\\sigma) = \\frac{\\sum_{i=1}^n (y_i - \\mathcal{K}(\\hat{x}_i; \\sigma))^2}{\\sum_{i=1}^n (y_i - \\bar{y} )^2} where :math:`\\bar{y}` is the average quantity over the whole manifold and :math:`\\mathcal{K}(\\hat{x}_i; \\sigma)` is the weighted average quantity calculated using kernel regression with a Gaussian kernel of bandwidth :math:`\\sigma` centered around the :math:`i^{th}` observation. :math:`n` is the number of observations. :math:`\\mathcal{N}(\\sigma)` is computed for each bandwidth in an array of bandwidth values. By default, the ``indepvars`` (:math:`x`) are centered and scaled to reside inside a unit box (resulting in :math:`\\hat{x}`) so that the bandwidths have the same meaning in each dimension. Therefore, the bandwidth and its involved calculations are applied in the normalized independent variable space. This may be turned off by setting ``scale_unit_box`` to False. The bandwidth values may be specified directly through ``bandwidth_values`` or default values will be calculated as a logspace from ``min_bandwidth`` to ``max_bandwidth`` with ``npts_bandwidth`` number of values. If left unspecified, ``min_bandwidth`` and ``max_bandwidth`` will be calculated as the minimum and maximum nonzero distance between points, respectively. More information can be found in :cite:`Armstrong2021`. **Example:** .. code:: python from PCAfold import PCA, compute_normalized_variance import numpy as np # Generate dummy data set: X = np.random.rand(100,5) # Perform PCA to obtain the low-dimensional manifold: pca_X = PCA(X, n_components=2) principal_components = pca_X.transform(X) # Compute normalized variance quantities: variance_data = compute_normalized_variance(principal_components, X, depvar_names=['A', 'B', 'C', 'D', 'E'], bandwidth_values=np.logspace(-3, 1, 20), scale_unit_box=True) # Access bandwidth values: variance_data.bandwidth_values # Access normalized variance values: variance_data.normalized_variance # Access normalized variance values for a specific variable: variance_data.normalized_variance['B'] :param indepvars: ``numpy.ndarray`` specifying the independent variable values. It should be of size ``(n_observations,n_independent_variables)``. :param depvars: ``numpy.ndarray`` specifying the dependent variable values. It should be of size ``(n_observations,n_dependent_variables)``. :param depvar_names: ``list`` of ``str`` corresponding to the names of the dependent variables (for saving values in a dictionary) :param npts_bandwidth: (optional, default 25) number of points to build a logspace of bandwidth values :param min_bandwidth: (optional, default to minimum nonzero interpoint distance) minimum bandwidth :param max_bandwidth: (optional, default to estimated maximum interpoint distance) maximum bandwidth :param bandwidth_values: (optional) array of bandwidth values, i.e. filter widths for a Gaussian filter, to loop over :param scale_unit_box: (optional, default True) center/scale the independent variables between [0,1] for computing a normalized variance so the bandwidth values have the same meaning in each dimension :param n_threads: (optional, default None) number of threads to run this computation. If None, default behavior of multiprocessing.Pool is used, which is to use all available cores on the current system. :return: - **variance_data** - an object of the ``VarianceData`` class. """ assert indepvars.ndim == 2, "independent variable array must be 2D: n_observations x n_variables." assert depvars.ndim == 2, "dependent variable array must be 2D: n_observations x n_variables." assert (indepvars.shape[0] == depvars.shape[ 0]), "The number of observations for dependent and independent variables must match." assert (len(depvar_names) == depvars.shape[ 1]), "The provided keys do not match the shape of the dependent variables yi." if scale_unit_box: xi = (indepvars - np.min(indepvars, axis=0)) / (np.max(indepvars, axis=0) - np.min(indepvars, axis=0)) else: xi = indepvars.copy() yi = depvars.copy() if bandwidth_values is None: if min_bandwidth is None: tree = KDTree(xi) min_bandwidth = np.min(tree.query(xi, k=2)[0][tree.query(xi, k=2)[0][:, 1] > 1.e-16, 1]) if max_bandwidth is None: max_bandwidth = np.linalg.norm(np.max(xi, axis=0) - np.min(xi, axis=0)) * 10. bandwidth_values = np.logspace(np.log10(min_bandwidth), np.log10(max_bandwidth), npts_bandwidth) else: if not isinstance(bandwidth_values, np.ndarray): raise ValueError("bandwidth_values must be an array.") lvar = np.zeros((bandwidth_values.size, yi.shape[1])) kregmod = KReg(xi, yi) # class for kernel regression evaluations # define a list of argments for kregmod_predict fcnArgs = [(xi, bandwidth_values[si]) for si in range(bandwidth_values.size) ] pool = multiproc.Pool(processes=n_threads) kregmodResults = pool.starmap( kregmod.predict, fcnArgs) pool.close() pool.join() for si in range(bandwidth_values.size): lvar[si, :] = np.linalg.norm(yi - kregmodResults[si], axis=0) ** 2 # saving the local variance for each yi... local_var = dict({key: lvar[:, idx] for idx, key in enumerate(depvar_names)}) # saving the global variance for each yi... global_var = dict( {key: np.linalg.norm(yi[:, idx] - np.mean(yi[:, idx])) ** 2 for idx, key in enumerate(depvar_names)}) # saving the values of the bandwidth where the normalized variance increases by 10%... bandwidth_10pct_rise = dict() for key in depvar_names: bandwidth_idx = np.argwhere(local_var[key] / global_var[key] >= 0.1) if len(bandwidth_idx) == 0.: bandwidth_10pct_rise[key] = None else: bandwidth_10pct_rise[key] = bandwidth_values[bandwidth_idx[0]][0] norm_local_var = dict({key: local_var[key] / global_var[key] for key in depvar_names}) # computing normalized variance as bandwidth approaches zero to check for non-uniqueness lvar_limit = kregmod.predict(xi, 1.e-16) nlvar_limit = np.linalg.norm(yi - lvar_limit, axis=0) ** 2 normvar_limit = dict({key: nlvar_limit[idx] for idx, key in enumerate(depvar_names)}) solution_data = VarianceData(bandwidth_values, norm_local_var, global_var, bandwidth_10pct_rise, depvar_names, normvar_limit) return solution_data # ------------------------------------------------------------------------------ def normalized_variance_derivative(variance_data): """ Compute a scaled normalized variance derivative on a logarithmic scale, :math:`\\hat{\\mathcal{D}}(\\sigma)`, from .. math:: \\mathcal{D}(\\sigma) = \\frac{\\mathrm{d}\\mathcal{N}(\\sigma)}{\\mathrm{d}\\log_{10}(\\sigma)} + \lim_{\\sigma \\to 0} \\mathcal{N}(\\sigma) and .. math:: \\hat{\\mathcal{D}}(\\sigma) = \\frac{\\mathcal{D}(\\sigma)}{\\max(\\mathcal{D}(\\sigma))} This value relays how fast the variance is changing as the bandwidth changes and captures non-uniqueness from nonzero values of :math:`\lim_{\\sigma \\to 0} \\mathcal{N}(\\sigma)`. The derivative is approximated with central finite differencing and the limit is approximated by :math:`\\mathcal{N}(\\sigma=10^{-16})` using the ``normalized_variance_limit`` attribute of the ``VarianceData`` object. More information can be found in :cite:`Armstrong2021`. **Example:** .. code:: python from PCAfold import PCA, compute_normalized_variance, normalized_variance_derivative import numpy as np # Generate dummy data set: X = np.random.rand(100,5) # Perform PCA to obtain the low-dimensional manifold: pca_X = PCA(X, n_components=2) principal_components = pca_X.transform(X) # Compute normalized variance quantities: variance_data = compute_normalized_variance(principal_components, X, depvar_names=['A', 'B', 'C', 'D', 'E'], bandwidth_values=np.logspace(-3, 1, 20), scale_unit_box=True) # Compute normalized variance derivative: (derivative, bandwidth_values, max_derivative) = normalized_variance_derivative(variance_data) # Access normalized variance derivative values for a specific variable: derivative['B'] :param variance_data: a ``VarianceData`` class returned from ``compute_normalized_variance`` :return: - **derivative_dict** - a dictionary of :math:`\\hat{\\mathcal{D}}(\\sigma)` for each variable in the provided ``VarianceData`` object - **x** - the :math:`\\sigma` values where :math:`\\hat{\\mathcal{D}}(\\sigma)` was computed - **max_derivatives_dicts** - a dictionary of :math:`\\max(\\mathcal{D}(\\sigma))` values for each variable in the provided ``VarianceData`` object. """ x_plus = variance_data.bandwidth_values[2:] x_minus = variance_data.bandwidth_values[:-2] x = variance_data.bandwidth_values[1:-1] derivative_dict = {} max_derivatives_dict = {} for key in variance_data.variable_names: y_plus = variance_data.normalized_variance[key][2:] y_minus = variance_data.normalized_variance[key][:-2] derivative = (y_plus-y_minus)/(np.log10(x_plus)-np.log10(x_minus)) + variance_data.normalized_variance_limit[key] scaled_derivative = derivative/np.max(derivative) derivative_dict[key] = scaled_derivative max_derivatives_dict[key] = np.max(derivative) return derivative_dict, x, max_derivatives_dict # ------------------------------------------------------------------------------ def find_local_maxima(dependent_values, independent_values, logscaling=True, threshold=1.e-2, show_plot=False): """ Finds and returns locations and values of local maxima in a dependent variable given a set of observations. The functional form of the dependent variable is approximated with a cubic spline for smoother approximations to local maxima. :param dependent_values: observations of a single dependent variable such as :math:`\\hat{\\mathcal{D}}` from ``normalized_variance_derivative`` (for a single variable). :param independent_values: observations of a single independent variable such as :math:`\\sigma` returned by ``normalized_variance_derivative`` :param logscaling: (optional, default True) this logarithmically scales ``independent_values`` before finding local maxima. This is needed for scaling :math:`\\sigma` appropriately before finding peaks in :math:`\\hat{\\mathcal{D}}`. :param threshold: (optional, default :math:`10^{-2}`) local maxima found below this threshold will be ignored. :param show_plot: (optional, default False) when True, a plot of the ``dependent_values`` over ``independent_values`` (logarithmically scaled if ``logscaling`` is True) with the local maxima highlighted will be shown. :return: - the locations of local maxima in ``dependent_values`` - the local maxima values """ if logscaling: independent_values = np.log10(independent_values.copy()) zero_indices = [] upslope = True npts = independent_values.size for i in range(1, npts): if upslope and dependent_values[i] - dependent_values[i - 1] <= 0: if dependent_values[i] > threshold: zero_indices.append(i - 1) upslope = False if not upslope and dependent_values[i] - dependent_values[i - 1] >= 0: upslope = True zero_locations = [] zero_Dvalues = [] for idx in zero_indices: if idx < 1: indices = [idx, idx + 1, idx + 2, idx + 3] elif idx < 2: indices = [idx - 1, idx, idx + 1, idx + 2] elif idx > npts - 1: indices = [idx - 3, idx - 2, idx - 1, idx] else: indices = [idx - 2, idx - 1, idx, idx + 1] Dspl = CubicSpline(independent_values[indices], dependent_values[indices]) sigma_max = minimize(lambda s: -Dspl(s), independent_values[idx]) zero_locations.append(sigma_max.x[0]) zero_Dvalues.append(Dspl(sigma_max.x[0])) if show_plot: plt.plot(independent_values, dependent_values, 'k-') plt.plot(zero_locations, zero_Dvalues, 'r*') plt.xlim([np.min(independent_values),np.max(independent_values)]) plt.ylim([0., 1.05]) plt.grid() if logscaling: plt.xlabel('log$_{10}$(independent variable)') else: plt.xlabel('independent variable') plt.ylabel('dependent variable') plt.show() if logscaling: zero_locations = 10. ** np.array(zero_locations) return np.array(zero_locations, dtype=float), np.array(zero_Dvalues, dtype=float) # ------------------------------------------------------------------------------ def random_sampling_normalized_variance(sampling_percentages, indepvars, depvars, depvar_names, n_sample_iterations=1, verbose=True, npts_bandwidth=25, min_bandwidth=None, max_bandwidth=None, bandwidth_values=None, scale_unit_box=True, n_threads=None): """ Compute the normalized variance derivatives :math:`\\hat{\\mathcal{D}}(\\sigma)` for random samples of the provided data specified using ``sampling_percentages``. These will be averaged over ``n_sample_iterations`` iterations. Analyzing the shift in peaks of :math:`\\hat{\\mathcal{D}}(\\sigma)` due to sampling can distinguish between characteristic features and non-uniqueness due to a transformation/reduction of manifold coordinates. True features should not show significant sensitivity to sampling while non-uniqueness/folds in the manifold will. More information can be found in :cite:`Armstrong2021`. :param sampling_percentages: list or 1D array of fractions (between 0 and 1) of the provided data to sample for computing the normalized variance :param indepvars: independent variable values (size: n_observations x n_independent variables) :param depvars: dependent variable values (size: n_observations x n_dependent variables) :param depvar_names: list of strings corresponding to the names of the dependent variables (for saving values in a dictionary) :param n_sample_iterations: (optional, default 1) how many iterations for each ``sampling_percentages`` to average the normalized variance derivative over :param verbose: (optional, default True) when True, progress statements are printed :param npts_bandwidth: (optional, default 25) number of points to build a logspace of bandwidth values :param min_bandwidth: (optional, default to minimum nonzero interpoint distance) minimum bandwidth :param max_bandwidth: (optional, default to estimated maximum interpoint distance) maximum bandwidth :param bandwidth_values: (optional) array of bandwidth values, i.e. filter widths for a Gaussian filter, to loop over :param scale_unit_box: (optional, default True) center/scale the independent variables between [0,1] for computing a normalized variance so the bandwidth values have the same meaning in each dimension :param n_threads: (optional, default None) number of threads to run this computation. If None, default behavior of multiprocessing.Pool is used, which is to use all available cores on the current system. :return: - a dictionary of the normalized variance derivative (:math:`\\hat{\\mathcal{D}}(\\sigma)`) for each sampling percentage in ``sampling_percentages`` averaged over ``n_sample_iterations`` iterations - the :math:`\\sigma` values used for computing :math:`\\hat{\\mathcal{D}}(\\sigma)` - a dictionary of the ``VarianceData`` objects for each sampling percentage and iteration in ``sampling_percentages`` and ``n_sample_iterations`` """ assert indepvars.ndim == 2, "independent variable array must be 2D: n_observations x n_variables." assert depvars.ndim == 2, "dependent variable array must be 2D: n_observations x n_variables." if isinstance(sampling_percentages, list): for p in sampling_percentages: assert p > 0., "sampling percentages must be between 0 and 1" assert p <= 1., "sampling percentages must be between 0 and 1" elif isinstance(sampling_percentages, np.ndarray): assert sampling_percentages.ndim ==1, "sampling_percentages must be given as a list or 1D array" for p in sampling_percentages: assert p > 0., "sampling percentages must be between 0 and 1" assert p <= 1., "sampling percentages must be between 0 and 1" else: raise ValueError("sampling_percentages must be given as a list or 1D array.") normvar_data = {} avg_der_data = {} for p in sampling_percentages: if verbose: print('sampling', p * 100., '% of the data') nv_data = {} avg_der = {} for it in range(n_sample_iterations): if verbose: print(' iteration', it + 1, 'of', n_sample_iterations) rnd.seed(it) idxsample = rnd.sample(list(np.arange(0, indepvars.shape[0])), int(p * indepvars.shape[0])) nv_data[it] = compute_normalized_variance(indepvars[idxsample, :], depvars[idxsample, :], depvar_names, npts_bandwidth=npts_bandwidth, min_bandwidth=min_bandwidth, max_bandwidth=max_bandwidth, bandwidth_values=bandwidth_values, scale_unit_box=scale_unit_box, n_threads=n_threads) der, xder, _ = normalized_variance_derivative(nv_data[it]) for key in der.keys(): if it == 0: avg_der[key] = der[key] / np.float(n_sample_iterations) else: avg_der[key] += der[key] / np.float(n_sample_iterations) avg_der_data[p] = avg_der normvar_data[p] = nv_data return avg_der_data, xder, normvar_data # ------------------------------------------------------------------------------ def average_knn_distance(indepvars, n_neighbors=10, verbose=False): """ Computes an average Euclidean distances to :math:`k` nearest neighbors on a manifold defined by the independent variables. **Example:** .. code:: python from PCAfold import PCA, average_knn_distance import numpy as np # Generate dummy data set: X = np.random.rand(100,20) # Instantiate PCA class object: pca_X = PCA(X, scaling='none', n_components=2, use_eigendec=True, nocenter=False) # Calculate the principal components: principal_components = pca_X.transform(X) # Compute average distances on a manifold defined by the PCs: average_distances = average_knn_distance(principal_components, n_neighbors=10, verbose=True) With ``verbose=True``, minimum, maximum and average distance will be printed: .. code-block:: text Minimum distance: 0.1388300829487847 Maximum distance: 0.4689587542132183 Average distance: 0.20824964953425693 Median distance: 0.18333873029179215 .. note:: This function requires the ``scikit-learn`` module. You can install it through: ``pip install scikit-learn`` :param indepvars: ``numpy.ndarray`` specifying the independent variable values. It should be of size ``(n_observations,n_independent_variables)``. :param n_neighbors: (optional) ``int`` specifying the number of nearest neighbors, :math:`k`. :param verbose: (optional) ``bool`` for printing verbose details. :return: - **average_distances** - ``numpy.ndarray`` specifying the vector of average distances for every observation in a data set to its :math:`k` nearest neighbors. It has size ``(n_observations,)``. """ if not isinstance(indepvars, np.ndarray): raise ValueError("Parameter `indepvars` has to be of type `numpy.ndarray`.") try: (n_observations, n_independent_variables) = np.shape(indepvars) except: raise ValueError("Parameter `indepvars` has to have size `(n_observations,n_independent_variables)`.") if not isinstance(n_neighbors, int): raise ValueError("Parameter `n_neighbors` has to be of type int.") if n_neighbors < 2: raise ValueError("Parameter `n_neighbors` cannot be smaller than 2.") if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be a boolean.") try: from sklearn.neighbors import NearestNeighbors except: raise ValueError("Nearest neighbors search requires the `sklearn` module: `pip install scikit-learn`.") (n_observations, n_independent_variables) = np.shape(indepvars) knn_model = NearestNeighbors(n_neighbors=n_neighbors+1) knn_model.fit(indepvars) average_distances = np.zeros((n_observations,)) for query_point in range(0,n_observations): (distances_neigh, idx_neigh) = knn_model.kneighbors(indepvars[query_point,:][None,:], n_neighbors=n_neighbors+1, return_distance=True) query_point_idx = np.where(idx_neigh.ravel()==query_point) distances_neigh = np.delete(distances_neigh.ravel(), np.s_[query_point_idx]) idx_neigh = np.delete(idx_neigh.ravel(), np.s_[query_point_idx]) average_distances[query_point] = np.mean(distances_neigh) if verbose: print('Minimum distance:\t' + str(np.min(average_distances))) print('Maximum distance:\t' + str(np.max(average_distances))) print('Average distance:\t' + str(np.mean(average_distances))) print('Median distance:\t' + str(np.median(average_distances))) return average_distances # ------------------------------------------------------------------------------ def cost_function_normalized_variance_derivative(variance_data, penalty_function=None, norm=None, integrate_to_peak=False): """ Defines a cost function for manifold topology optimization based on the areas, or weighted (penalized) areas, under the normalized variance derivatives curves, :math:`\\hat{\\mathcal{D}}(\\sigma)`, for the selected :math:`n_{dep}` dependent variables. An individual area, :math:`A_i`, for the :math:`i^{th}` dependent variable, is computed by directly integrating the function :math:`\\hat{\\mathcal{D}}_i(\\sigma)`` in the :math:`\\log_{10}` space of bandwidths :math:`\\sigma`. Integration is performed using the composite trapezoid rule. When ``integrate_to_peak=False``, the bounds of integration go from the minimum bandwidth, :math:`\\sigma_{min, i}`, to the maximum bandwidth, :math:`\\sigma_{max, i}`: .. math:: A_i = \\int_{\\sigma_{min, i}}^{\\sigma_{max, i}} \\hat{\\mathcal{D}}_i(\\sigma) d \\log_{10} \\sigma .. image:: ../images/cost-function-D-hat.svg :width: 600 :align: center When ``integrate_to_peak=True``, the bounds of integration go from the minimum bandwidth, :math:`\\sigma_{min, i}`, to the bandwidth for which the rightmost peak happens in :math:`\\hat{\\mathcal{D}}_i(\\sigma)``, :math:`\\sigma_{peak, i}`: .. math:: A_i = \\int_{\\sigma_{min, i}}^{\\sigma_{peak, i}} \\hat{\\mathcal{D}}_i(\\sigma) d \\log_{10} \\sigma .. image:: ../images/cost-function-D-hat-to-peak.svg :width: 600 :align: center In addition, each individual area, :math:`A_i`, can be weighted. Three weighting options are available: - If ``penalty_function='peak'``, :math:`A_i` is weighted by the inverse of the rightmost peak location: .. math:: A_i = \\frac{1}{\\sigma_{peak, i}} \\cdot \\int \\hat{\\mathcal{D}}_i(\\sigma) d(\\log_{10} \\sigma) - If ``penalty_function='sigma'``, :math:`A_i` is weighted continuously by the bandwidth: .. math:: A_i = \\int \\frac{\\hat{\\mathcal{D}}_i(\\sigma)}{\\sigma} d(\\log_{10} \\sigma) This type of weighting *strongly* penalizes the area happening at lower bandwidth values: .. image:: ../images/cost-function-sigma-penalty.svg :width: 600 :align: center - If ``penalty_function='log-sigma-over-peak'``, :math:`A_i` is weighted continuously by the :math:`\\log_{10}` -transformed bandwidth\ and takes into account information about the rightmost peak location: .. math:: A_i = \\int \\Big( \\big| \\log_{10} \\big( \\frac{\\sigma}{\\sigma_{peak, i}} \\big) \\big| + \\frac{1}{||\\sigma_{peak, i}||_{0-1}} \\Big) \\cdot \\hat{\\mathcal{D}}_i(\\sigma) d(\\log_{10} \\sigma) where :math:`||\\sigma_{peak, i}||_{0-1}` is the rightmost peak location expressed in a normalized 0-1 range. The normalization is performed so that :math:`||\\sigma_{min, i}||_{0-1} = 0.0` and :math:`||\\sigma_{max, i}||_{0-1} = 1.0`. This type of weighting creates a more gentle penalty for the area happening further from the rightmost peak location: .. image:: ../images/cost-function-log-sigma-over-peak-penalty.svg :width: 600 :align: center If ``norm=None``, a list of costs for all dependent variables is returned. Otherwise, the final cost, :math:`\\mathcal{L}`, can be computed from all :math:`A_i` in a few ways, where :math:`n_{dep}` is the number of dependent variables stored in the ``variance_data`` object: - If ``norm='average'``, :math:`\\mathcal{L} = \\frac{1}{n_{dep}} \\sum_{i = 1}^{n_{dep}} A_i`. - If ``norm='cumulative'``, :math:`\\mathcal{L} = \\sum_{i = 1}^{n_{dep}} A_i`. - If ``norm='max'``, :math:`\\mathcal{L} = \\text{max} (A_i)`. - If ``norm='median'``, :math:`\\mathcal{L} = \\text{median} (A_i)`. - If ``norm='min'``, :math:`\\mathcal{L} = \\text{min} (A_i)`. **Example:** .. code:: python from PCAfold import PCA, compute_normalized_variance, cost_function_normalized_variance_derivative import numpy as np # Generate dummy data set: X = np.random.rand(100,10) # Specify variables names variable_names = ['X_' + str(i) for i in range(0,10)] # Perform PCA to obtain the low-dimensional manifold: pca_X = PCA(X, n_components=2) principal_components = pca_X.transform(X) # Specify the bandwidth values: bandwidth_values = np.logspace(-4, 2, 50) # Compute normalized variance quantities: variance_data = compute_normalized_variance(principal_components, X, depvar_names=variable_names, bandwidth_values=bandwidth_values) # Compute the cost for the current manifold: cost = cost_function_normalized_variance_derivative(variance_data, penalty_function='peak', norm='max', integrate_to_peak=True) :param variance_data: an object of ``VarianceData`` class. :param penalty_function: (optional) ``str`` specifying the weighting (penalty) applied to each area. Set ``penalty_function='peak'`` to weight each area by the rightmost peak location, :math:`\\sigma_{peak, i}`, for the :math:`i^{th}` dependent variable. Set ``penalty_function='sigma'`` to weight each area continuously by the bandwidth. Set ``penalty_function='log-sigma-over-peak'`` to weight each area continuously by the :math:`\\log_{10}` -transformed bandwidth, normalized by the right most peak location, :math:`\\sigma_{peak, i}`. If ``penalty_function=None``, the area is not weighted. :param norm: (optional) ``str`` specifying the norm to apply for all areas :math:`A_i`. ``norm='average'`` uses an arithmetic average, ``norm='max'`` uses the :math:`L_{\\infty}` norm, ``norm='median'`` uses a median area, ``norm='cumulative'`` uses a cumulative area and ``norm='min'`` uses a minimum area. If ``norm=None``, a list of costs for all depedent variables is returned. :param integrate_to_peak: (optional) ``bool`` specifying whether an individual area for the :math:`i^{th}` dependent variable should be computed only up the the rightmost peak location. :return: - **cost** - ``float`` specifying the normalized cost, :math:`\\mathcal{L}`, or, if ``norm=None``, a list of costs, :math:`A_i`, for each dependent variable. """ __penalty_functions = ['peak', 'sigma', 'log-sigma-over-peak'] __norms = ['average', 'cumulative', 'max', 'median', 'min'] if penalty_function is not None: if not isinstance(penalty_function, str): raise ValueError("Parameter `penalty_function` has to be of type `str`.") if penalty_function not in __penalty_functions: raise ValueError("Parameter `penalty_function` has to be one of the following: 'peak', 'sigma', 'log-sigma-over-peak'.") if norm is not None: if not isinstance(norm, str): raise ValueError("Parameter `norm` has to be of type `str`.") if norm not in __norms: raise ValueError("Parameter `norm` has to be one of the following: 'average', 'cumulative', 'max', 'median', 'min'.") if not isinstance(integrate_to_peak, bool): raise ValueError("Parameter `integrate_to_peak` has to be of type `bool`.") derivative, sigma, _ = normalized_variance_derivative(variance_data) costs = [] for variable in variance_data.variable_names: idx_peaks, _ = find_peaks(derivative[variable], height=0) idx_rightmost_peak = idx_peaks[-1] rightmost_peak_location = sigma[idx_rightmost_peak] (indices_to_the_left_of_peak, ) = np.where(sigma<=rightmost_peak_location) if integrate_to_peak: if penalty_function is None: cost = np.trapz(derivative[variable][indices_to_the_left_of_peak], np.log10(sigma[indices_to_the_left_of_peak])) costs.append(cost) elif penalty_function == 'peak': cost = 1. / (rightmost_peak_location) * np.trapz(derivative[variable][indices_to_the_left_of_peak], np.log10(sigma[indices_to_the_left_of_peak])) costs.append(cost) elif penalty_function == 'sigma': penalty_sigma = 1./sigma[indices_to_the_left_of_peak] cost = np.trapz(derivative[variable][indices_to_the_left_of_peak]*penalty_sigma, np.log10(sigma[indices_to_the_left_of_peak])) costs.append(cost) elif penalty_function == 'log-sigma-over-peak': normalized_sigma, _, _ = preprocess.center_scale(np.log10(sigma[:,None]), scaling='0to1') addition = normalized_sigma[idx_rightmost_peak][0] penalty_log_sigma_peak = abs(np.log10(sigma[indices_to_the_left_of_peak]/rightmost_peak_location)) + 1./addition cost = np.trapz(derivative[variable][indices_to_the_left_of_peak]*penalty_log_sigma_peak, np.log10(sigma[indices_to_the_left_of_peak])) costs.append(cost) else: if penalty_function is None: cost = np.trapz(derivative[variable], np.log10(sigma)) costs.append(cost) elif penalty_function == 'peak': cost = 1. / (rightmost_peak_location) * np.trapz(derivative[variable], np.log10(sigma)) costs.append(cost) elif penalty_function == 'sigma': penalty_sigma = 1./sigma cost = np.trapz(derivative[variable]*penalty_sigma, np.log10(sigma)) costs.append(cost) elif penalty_function == 'log-sigma-over-peak': normalized_sigma, _, _ = preprocess.center_scale(np.log10(sigma[:,None]), scaling='0to1') addition = normalized_sigma[idx_rightmost_peak][0] penalty_log_sigma_peak = abs(np.log10(sigma/rightmost_peak_location)) + 1./addition cost = np.trapz(derivative[variable]*penalty_log_sigma_peak, np.log10(sigma)) costs.append(cost) if norm is None: return costs else: if norm == 'max': # Take L-infinity norm over all costs: normalized_cost = np.max(costs) elif norm == 'average': # Take the arithmetic average norm over all costs: normalized_cost = np.mean(costs) elif norm == 'min': # Take the minimum norm over all costs: normalized_cost = np.min(costs) elif norm == 'median': # Take the median norm over all costs: normalized_cost = np.median(costs) elif norm == 'cumulative': # Take the cumulative sum over all costs: normalized_cost = np.sum(costs) return normalized_cost # ------------------------------------------------------------------------------ def manifold_informed_feature_selection(X, X_source, variable_names, scaling, bandwidth_values, target_variables=None, add_transformed_source=True, target_manifold_dimensionality=3, bootstrap_variables=None, penalty_function=None, norm='max', integrate_to_peak=False, verbose=False): """ Manifold-informed feature selection algorithm based on forward feature addition. The goal of the algorithm is to select a meaningful subset of the original variables such that undesired behaviors on a PCA-derived manifold of a given dimensionality are minimized. The algorithm uses the cost function, :math:`\\mathcal{L}`, based on minimizing the area under the normalized variance derivatives curves, :math:`\\hat{\\mathcal{D}}(\\sigma)`, for the selected :math:`n_{dep}` dependent variables (as per ``cost_function_normalized_variance_derivative`` function). The algorithm can be bootstrapped in two ways: - Automatic bootstrap when ``bootstrap_variables=None``: the first best variable is selected automatically as the one that gives the lowest cost. - User-defined bootstrap when ``bootstrap_variables`` is set to a user-defined list of the bootstrap variables. The algorithm iterates, adding a new variable that exhibits the lowest cost at each iteration. The original variables in a data set get ordered according to their effect on the manifold topology. Assuming that the original data set is composed of :math:`Q` variables, the first output is a list of indices of the ordered original variables, :math:`\\mathbf{X} = [X_1, X_2, \\dots, X_Q]`. The second output is a list of indices of the selected subset of the original variables, :math:`\\mathbf{X}_S = [X_1, X_2, \\dots, X_n]`, that correspond to the minimum cost, :math:`\\mathcal{L}`. .. note:: The algorithm can be very expensive (for large data sets) due to multiple computations of the normalized variance derivative. Try running it on multiple cores or on a sampled data set. In case the algorithm breaks when not being able to determine the peak location, try increasing the range in the ``bandwidth_values`` parameter. **Example:** .. code:: python from PCAfold import manifold_informed_feature_selection import numpy as np # Generate dummy data set: X = np.random.rand(100,10) X_source = np.random.rand(100,10) # Define original variables to add to the optimization: target_variables = X[:,0:3] # Specify variables names variable_names = ['X_' + str(i) for i in range(0,10)] # Specify the bandwidth values to compute the optimization on: bandwidth_values = np.logspace(-4, 2, 50) # Run the subset selection algorithm: (ordered, selected, costs) = manifold_informed_feature_selection(X, X_source, variable_names, scaling='auto', bandwidth_values=bandwidth_values, target_variables=target_variables, add_transformed_source=True, target_manifold_dimensionality=2, bootstrap_variables=None, penalty_function='peak', norm='max', integrate_to_peak=True, verbose=True) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param X_source: ``numpy.ndarray`` specifying the source terms, :math:`\\mathbf{S_X}`, corresponding to the state-space variables in :math:`\\mathbf{X}`. This parameter is applicable to data sets representing reactive flows. More information can be found in :cite:`Sutherland2009`. It should be of size ``(n_observations,n_variables)``. :param variable_names: ``list`` of ``str`` specifying variables names. :param scaling: (optional) ``str`` specifying the scaling methodology. It can be one of the following: ``'none'``, ``''``, ``'auto'``, ``'std'``, ``'pareto'``, ``'vast'``, ``'range'``, ``'0to1'``, ``'-1to1'``, ``'level'``, ``'max'``, ``'poisson'``, ``'vast_2'``, ``'vast_3'``, ``'vast_4'``. :param bandwidth_values: ``numpy.ndarray`` specifying the bandwidth values, :math:`\\sigma`, for :math:`\\hat{\\mathcal{D}}(\\sigma)` computation. :param target_variables: (optional) ``numpy.ndarray`` specifying the dependent variables that should be used in :math:`\\hat{\\mathcal{D}}(\\sigma)` computation. It should be of size ``(n_observations,n_target_variables)``. :param add_transformed_source: (optional) ``bool`` specifying if the PCA-transformed source terms of the state-space variables should be added in :math:`\\hat{\\mathcal{D}}(\\sigma)` computation, alongside the user-defined dependent variables. :param target_manifold_dimensionality: (optional) ``int`` specifying the target dimensionality of the PCA manifold. :param bootstrap_variables: (optional) ``list`` specifying the user-selected variables to bootstrap the algorithm with. If set to ``None``, automatic bootstrapping is performed. :param penalty_function: (optional) ``str`` specifying the weighting applied to each area. Set ``penalty_function='peak'`` to weight each area by the rightmost peak location, :math:`\\sigma_{peak, i}`, for the :math:`i^{th}` dependent variable. Set ``penalty_function='sigma'`` to weight each area continuously by the bandwidth. Set ``penalty_function='log-sigma-over-peak'`` to weight each area continuously by the :math:`\\log_{10}` -transformed bandwidth, normalized by the right most peak location, :math:`\\sigma_{peak, i}`. If ``penalty_function=None``, the area is not weighted. :param norm: (optional) ``str`` specifying the norm to apply for all areas :math:`A_i`. ``norm='average'`` uses an arithmetic average, ``norm='max'`` uses the :math:`L_{\\infty}` norm, ``norm='median'`` uses a median area, ``norm='cumulative'`` uses a cumulative area and ``norm='min'`` uses a minimum area. :param integrate_to_peak: (optional) ``bool`` specifying whether an individual area for the :math:`i^{th}` dependent variable should be computed only up the the rightmost peak location. :param verbose: (optional) ``bool`` for printing verbose details. :return: - **ordered_variables** - ``list`` specifying the indices of the ordered variables. - **selected_variables** - ``list`` specifying the indices of the selected variables that correspond to the minimum cost :math:`\\mathcal{L}`. - **costs** - ``list`` specifying the costs, :math:`\\mathcal{L}`, from each iteration. """ __penalty_functions = ['peak', 'sigma', 'log-sigma-over-peak'] __norms = ['average', 'cumulative', 'max', 'median', 'min'] if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have shape `(n_observations,n_variables)`.") if not isinstance(X_source, np.ndarray): raise ValueError("Parameter `X_source` has to be of type `numpy.ndarray`.") try: (n_observations_source, n_variables_source) = np.shape(X_source) except: raise ValueError("Parameter `X_source` has to have shape `(n_observations,n_variables)`.") if n_variables_source != n_variables: raise ValueError("Parameter `X_source` has different number of variables than `X`.") if n_observations_source != n_observations: raise ValueError("Parameter `X_source` has different number of observations than `X`.") if not isinstance(variable_names, list): raise ValueError("Parameter `variable_names` has to be of type `list`.") if len(variable_names) != n_variables: raise ValueError("Parameter `variable_names` has different number of variables than `X`.") if not isinstance(scaling, str): raise ValueError("Parameter `scaling` has to be of type `str`.") if not isinstance(bandwidth_values, np.ndarray): raise ValueError("Parameter `bandwidth_values` has to be of type `numpy.ndarray`.") if target_variables is not None: if not isinstance(target_variables, np.ndarray): raise ValueError("Parameter `target_variables` has to be of type `numpy.ndarray`.") try: (n_d_hat_observations, n_target_variables) = np.shape(target_variables) target_variables_names = ['X' + str(i) for i in range(0,n_target_variables)] except: raise ValueError("Parameter `target_variables` has to have shape `(n_observations,n_target_variables)`.") if n_d_hat_observations != n_observations_source: raise ValueError("Parameter `target_variables` has different number of observations than `X_source`.") if not isinstance(add_transformed_source, bool): raise ValueError("Parameter `add_transformed_source` has to be of type `bool`.") if target_variables is None: if not add_transformed_source: raise ValueError("Either `target_variables` has to be specified or `add_transformed_source` has to be set to True.") if not isinstance(target_manifold_dimensionality, int): raise ValueError("Parameter `target_manifold_dimensionality` has to be of type `int`.") if bootstrap_variables is not None: if not isinstance(bootstrap_variables, list): raise ValueError("Parameter `bootstrap_variables` has to be of type `list`.") if penalty_function is not None: if not isinstance(penalty_function, str): raise ValueError("Parameter `penalty_function` has to be of type `str`.") if penalty_function not in __penalty_functions: raise ValueError("Parameter `penalty_function` has to be one of the following: 'peak', 'sigma', 'log-sigma-over-peak'.") if not isinstance(norm, str): raise ValueError("Parameter `norm` has to be of type `str`.") if norm not in __norms: raise ValueError("Parameter `norm` has to be one of the following: 'average', 'cumulative', 'max', 'median', 'min'.") if not isinstance(integrate_to_peak, bool): raise ValueError("Parameter `integrate_to_peak` has to be of type `bool`.") if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be of type `bool`.") variables_indices = [i for i in range(0,n_variables)] costs = [] # Automatic bootstrapping: ------------------------------------------------- if bootstrap_variables is None: if verbose: print('Automatic bootstrapping...\n') bootstrap_cost_function = [] bootstrap_tic = time.perf_counter() for i_variable in variables_indices: if verbose: print('\tCurrently checking variable:\t' + variable_names[i_variable]) PCs = X[:,[i_variable]] PC_sources = X_source[:,[i_variable]] if target_variables is None: depvars = cp.deepcopy(PC_sources) depvar_names = ['SZ1'] else: if add_transformed_source: depvars = np.hstack((PC_sources, target_variables)) depvar_names = ['SZ1'] + target_variables_names else: depvars = target_variables depvar_names = target_variables_names bootstrap_variance_data = compute_normalized_variance(PCs, depvars, depvar_names=depvar_names, bandwidth_values=bandwidth_values) bootstrap_area = cost_function_normalized_variance_derivative(bootstrap_variance_data, penalty_function=penalty_function, norm=norm, integrate_to_peak=integrate_to_peak) if verbose: print('\tCost:\t%.4f' % bootstrap_area) bootstrap_cost_function.append(bootstrap_area) # Find a single best variable to bootstrap with: (best_bootstrap_variable_index, ) = np.where(np.array(bootstrap_cost_function)==np.min(bootstrap_cost_function)) best_bootstrap_variable_index = int(best_bootstrap_variable_index) costs.append(np.min(bootstrap_cost_function)) bootstrap_variables = [best_bootstrap_variable_index] if verbose: print('\n\tVariable ' + variable_names[best_bootstrap_variable_index] + ' will be used as bootstrap.\n\tCost:\t%.4f' % np.min(bootstrap_cost_function) + '\n') bootstrap_toc = time.perf_counter() if verbose: print(f'Boostrapping time: {(bootstrap_toc - bootstrap_tic)/60:0.1f} minutes.' + '\n' + '-'*50) # Use user-defined bootstrapping: ----------------------------------------- else: # Manifold dimensionality needs a fix here! if verbose: print('User-defined bootstrapping...\n') bootstrap_cost_function = [] bootstrap_tic = time.perf_counter() if len(bootstrap_variables) < target_manifold_dimensionality: n_components = len(bootstrap_variables) else: n_components = cp.deepcopy(target_manifold_dimensionality) if verbose: print('\tUser-defined bootstrapping will be performed for a ' + str(n_components) + '-dimensional manifold.') bootstrap_pca = reduction.PCA(X[:,bootstrap_variables], scaling=scaling, n_components=n_components) PCs = bootstrap_pca.transform(X[:,bootstrap_variables]) PC_sources = bootstrap_pca.transform(X_source[:,bootstrap_variables], nocenter=True) if target_variables is None: depvars = cp.deepcopy(PC_sources) depvar_names = ['SZ' + str(i) for i in range(0,n_components)] else: if add_transformed_source: depvars = np.hstack((PC_sources, target_variables)) depvar_names = depvar_names = ['SZ' + str(i) for i in range(0,n_components)] + target_variables_names else: depvars = target_variables depvar_names = target_variables_names bootstrap_variance_data = compute_normalized_variance(PCs, depvars, depvar_names=depvar_names, bandwidth_values=bandwidth_values) bootstrap_area = cost_function_normalized_variance_derivative(bootstrap_variance_data, penalty_function=penalty_function, norm=norm, integrate_to_peak=integrate_to_peak) bootstrap_cost_function.append(bootstrap_area) costs.append(bootstrap_area) if verbose: print('\n\tVariable(s) ' + ', '.join([variable_names[i] for i in bootstrap_variables]) + ' will be used as bootstrap\n\tCost:\t%.4f' % np.min(bootstrap_area) + '\n') bootstrap_toc = time.perf_counter() if verbose: print(f'Boostrapping time: {(bootstrap_toc - bootstrap_tic)/60:0.1f} minutes.' + '\n' + '-'*50) # Iterate the algorithm starting from the bootstrap selection: ------------- if verbose: print('Optimizing...\n') total_tic = time.perf_counter() ordered_variables = [i for i in bootstrap_variables] remaining_variables_list = [i for i in range(0,n_variables) if i not in bootstrap_variables] previous_area = np.min(bootstrap_cost_function) loop_counter = 0 while len(remaining_variables_list) > 0: iteration_tic = time.perf_counter() loop_counter += 1 if verbose: print('Iteration No.' + str(loop_counter)) print('Currently adding variables from the following list: ') print([variable_names[i] for i in remaining_variables_list]) current_cost_function = [] for i_variable in remaining_variables_list: if len(ordered_variables) < target_manifold_dimensionality: n_components = len(ordered_variables) + 1 else: n_components = cp.deepcopy(target_manifold_dimensionality) if verbose: print('\tCurrently added variable: ' + variable_names[i_variable]) current_variables_list = ordered_variables + [i_variable] pca = reduction.PCA(X[:,current_variables_list], scaling=scaling, n_components=n_components) PCs = pca.transform(X[:,current_variables_list]) PC_sources = pca.transform(X_source[:,current_variables_list], nocenter=True) if target_variables is None: depvars = cp.deepcopy(PC_sources) depvar_names = ['SZ' + str(i) for i in range(0,n_components)] else: if add_transformed_source: depvars = np.hstack((PC_sources, target_variables)) depvar_names = depvar_names = ['SZ' + str(i) for i in range(0,n_components)] + target_variables_names else: depvars = target_variables depvar_names = target_variables_names current_variance_data = compute_normalized_variance(PCs, depvars, depvar_names=depvar_names, bandwidth_values=bandwidth_values) current_derivative, current_sigma, _ = normalized_variance_derivative(current_variance_data) current_area = cost_function_normalized_variance_derivative(current_variance_data, penalty_function=penalty_function, norm=norm, integrate_to_peak=integrate_to_peak) if verbose: print('\tCost:\t%.4f' % current_area) current_cost_function.append(current_area) if current_area <= previous_area: if verbose: print(colored('\tSAME OR BETTER', 'green')) else: if verbose: print(colored('\tWORSE', 'red')) min_area = np.min(current_cost_function) (best_variable_index, ) = np.where(np.array(current_cost_function)==min_area) try: best_variable_index = int(best_variable_index) except: best_variable_index = int(best_variable_index[0]) if verbose: print('\n\tVariable ' + variable_names[remaining_variables_list[best_variable_index]] + ' is added.\n\tCost:\t%.4f' % min_area + '\n') ordered_variables.append(remaining_variables_list[best_variable_index]) remaining_variables_list = [i for i in range(0,n_variables) if i not in ordered_variables] if min_area <= previous_area: previous_area = min_area costs.append(min_area) iteration_toc = time.perf_counter() if verbose: print(f'\tIteration time: {(iteration_toc - iteration_tic)/60:0.1f} minutes.' + '\n' + '-'*50) # Compute the optimal subset where the cost is minimized: ------------------ (min_cost_function_index, ) = np.where(costs==np.min(costs)) try: min_cost_function_index = int(min_cost_function_index) except: min_cost_function_index = int(min_cost_function_index[0]) if min_cost_function_index+1 < target_manifold_dimensionality: selected_variables = list(np.array(ordered_variables)[0:target_manifold_dimensionality]) else: selected_variables = list(np.array(ordered_variables)[0:min_cost_function_index+1]) if verbose: print('Ordered variables:') print(', '.join([variable_names[i] for i in ordered_variables])) print(ordered_variables) print('Final cost: %.4f' % min_area) print('\nSelected variables:') print(', '.join([variable_names[i] for i in selected_variables])) print(selected_variables) print('Lowest cost: %.4f' % previous_area) total_toc = time.perf_counter() if verbose: print(f'\nOptimization time: {(total_toc - total_tic)/60:0.1f} minutes.' + '\n' + '-'*50) return ordered_variables, selected_variables, costs # ------------------------------------------------------------------------------ def manifold_informed_backward_elimination(X, X_source, variable_names, scaling, bandwidth_values, target_variables=None, add_transformed_source=True, source_space=None, target_manifold_dimensionality=3, penalty_function=None, norm='max', integrate_to_peak=False, verbose=False): """ Manifold-informed feature selection algorithm based on backward elimination. The goal of the algorithm is to select a meaningful subset of the original variables such that undesired behaviors on a PCA-derived manifold of a given dimensionality are minimized. The algorithm uses the cost function, :math:`\\mathcal{L}`, based on minimizing the area under the normalized variance derivatives curves, :math:`\\hat{\\mathcal{D}}(\\sigma)`, for the selected :math:`n_{dep}` dependent variables (as per ``cost_function_normalized_variance_derivative`` function). The algorithm iterates, removing another variable that has an effect of decreasing the cost the most at each iteration. The original variables in a data set get ordered according to their effect on the manifold topology. Assuming that the original data set is composed of :math:`Q` variables, the first output is a list of indices of the ordered original variables, :math:`\\mathbf{X} = [X_1, X_2, \\dots, X_Q]`. The second output is a list of indices of the selected subset of the original variables, :math:`\\mathbf{X}_S = [X_1, X_2, \\dots, X_n]`, that correspond to the minimum cost, :math:`\\mathcal{L}`. .. note:: The algorithm can be very expensive (for large data sets) due to multiple computations of the normalized variance derivative. Try running it on multiple cores or on a sampled data set. In case the algorithm breaks when not being able to determine the peak location, try increasing the range in the ``bandwidth_values`` parameter. **Example:** .. code:: python from PCAfold import manifold_informed_backward_elimination import numpy as np # Generate dummy data set: X = np.random.rand(100,10) X_source = np.random.rand(100,10) # Define original variables to add to the optimization: target_variables = X[:,0:3] # Specify variables names variable_names = ['X_' + str(i) for i in range(0,10)] # Specify the bandwidth values to compute the optimization on: bandwidth_values = np.logspace(-4, 2, 50) # Run the subset selection algorithm: (ordered, selected, costs) = manifold_informed_backward_elimination(X, X_source, variable_names, scaling='auto', bandwidth_values=bandwidth_values, target_variables=target_variables, add_transformed_source=True, target_manifold_dimensionality=2, penalty_function='peak', norm='max', integrate_to_peak=True, verbose=True) :param X: ``numpy.ndarray`` specifying the original data set, :math:`\\mathbf{X}`. It should be of size ``(n_observations,n_variables)``. :param X_source: ``numpy.ndarray`` specifying the source terms, :math:`\\mathbf{S_X}`, corresponding to the state-space variables in :math:`\\mathbf{X}`. This parameter is applicable to data sets representing reactive flows. More information can be found in :cite:`Sutherland2009`. It should be of size ``(n_observations,n_variables)``. :param variable_names: ``list`` of ``str`` specifying variables names. Order of names in the ``variable_names`` list should match the order of variables (columns) in ``X``. :param scaling: (optional) ``str`` specifying the scaling methodology. It can be one of the following: ``'none'``, ``''``, ``'auto'``, ``'std'``, ``'pareto'``, ``'vast'``, ``'range'``, ``'0to1'``, ``'-1to1'``, ``'level'``, ``'max'``, ``'poisson'``, ``'vast_2'``, ``'vast_3'``, ``'vast_4'``. :param bandwidth_values: ``numpy.ndarray`` specifying the bandwidth values, :math:`\\sigma`, for :math:`\\hat{\\mathcal{D}}(\\sigma)` computation. :param target_variables: (optional) ``numpy.ndarray`` specifying the dependent variables that should be used in :math:`\\hat{\\mathcal{D}}(\\sigma)` computation. It should be of size ``(n_observations,n_target_variables)``. :param add_transformed_source: (optional) ``bool`` specifying if the PCA-transformed source terms of the state-space variables should be added in :math:`\\hat{\\mathcal{D}}(\\sigma)` computation, alongside the user-defined dependent variables. :param source_space: (optional) ``str`` specifying the space to which the PC source terms should be transformed before computing the cost. It can be one of the following: ``symlog``, ``continuous-symlog``, ``original-and-symlog``, ``original-and-continuous-symlog``. If set to ``None``, PC source terms are kept in their original PCA-space. :param target_manifold_dimensionality: (optional) ``int`` specifying the target dimensionality of the PCA manifold. :param penalty_function: (optional) ``str`` specifying the weighting applied to each area. Set ``penalty_function='peak'`` to weight each area by the rightmost peak location, :math:`\\sigma_{peak, i}`, for the :math:`i^{th}` dependent variable. Set ``penalty_function='sigma'`` to weight each area continuously by the bandwidth. Set ``penalty_function='log-sigma-over-peak'`` to weight each area continuously by the :math:`\\log_{10}` -transformed bandwidth, normalized by the right most peak location, :math:`\\sigma_{peak, i}`. If ``penalty_function=None``, the area is not weighted. :param norm: (optional) ``str`` specifying the norm to apply for all areas :math:`A_i`. ``norm='average'`` uses an arithmetic average, ``norm='max'`` uses the :math:`L_{\\infty}` norm, ``norm='median'`` uses a median area, ``norm='cumulative'`` uses a cumulative area and ``norm='min'`` uses a minimum area. :param integrate_to_peak: (optional) ``bool`` specifying whether an individual area for the :math:`i^{th}` dependent variable should be computed only up the the rightmost peak location. :param verbose: (optional) ``bool`` for printing verbose details. :return: - **ordered_variables** - ``list`` specifying the indices of the ordered variables. - **selected_variables** - ``list`` specifying the indices of the selected variables that correspond to the minimum cost :math:`\\mathcal{L}`. - **optimized_cost** - ``float`` specifying the cost corresponding to the optimized subset. - **costs** - ``list`` specifying the costs, :math:`\\mathcal{L}`, from each iteration. """ __penalty_functions = ['peak', 'sigma', 'log-sigma-over-peak'] __norms = ['average', 'cumulative', 'max', 'median', 'min'] __source_spaces = ['symlog', 'continuous-symlog', 'original-and-symlog', 'original-and-continuous-symlog'] if not isinstance(X, np.ndarray): raise ValueError("Parameter `X` has to be of type `numpy.ndarray`.") try: (n_observations, n_variables) = np.shape(X) except: raise ValueError("Parameter `X` has to have shape `(n_observations,n_variables)`.") if not isinstance(X_source, np.ndarray): raise ValueError("Parameter `X_source` has to be of type `numpy.ndarray`.") try: (n_observations_source, n_variables_source) = np.shape(X_source) except: raise ValueError("Parameter `X_source` has to have shape `(n_observations,n_variables)`.") if n_variables_source != n_variables: raise ValueError("Parameter `X_source` has different number of variables than `X`.") # TODO: In the future, we might want to allow different number of observations, there is no reason why they should be equal. if n_observations_source != n_observations: raise ValueError("Parameter `X_source` has different number of observations than `X`.") if not isinstance(variable_names, list): raise ValueError("Parameter `variable_names` has to be of type `list`.") if len(variable_names) != n_variables: raise ValueError("Parameter `variable_names` has different number of variables than `X`.") if not isinstance(scaling, str): raise ValueError("Parameter `scaling` has to be of type `str`.") if not isinstance(bandwidth_values, np.ndarray): raise ValueError("Parameter `bandwidth_values` has to be of type `numpy.ndarray`.") if target_variables is not None: if not isinstance(target_variables, np.ndarray): raise ValueError("Parameter `target_variables` has to be of type `numpy.ndarray`.") try: (n_d_hat_observations, n_target_variables) = np.shape(target_variables) target_variables_names = ['X' + str(i) for i in range(0,n_target_variables)] except: raise ValueError("Parameter `target_variables` has to have shape `(n_observations,n_target_variables)`.") if n_d_hat_observations != n_observations_source: raise ValueError("Parameter `target_variables` has different number of observations than `X_source`.") if not isinstance(add_transformed_source, bool): raise ValueError("Parameter `add_transformed_source` has to be of type `bool`.") if target_variables is None: if not add_transformed_source: raise ValueError("Either `target_variables` has to be specified or `add_transformed_source` has to be set to True.") if source_space is not None: if not isinstance(source_space, str): raise ValueError("Parameter `source_space` has to be of type `str`.") if source_space.lower() not in __source_spaces: raise ValueError("Parameter `source_space` has to be one of the following: symlog`, `continuous-symlog`.") if not isinstance(target_manifold_dimensionality, int): raise ValueError("Parameter `target_manifold_dimensionality` has to be of type `int`.") if penalty_function is not None: if not isinstance(penalty_function, str): raise ValueError("Parameter `penalty_function` has to be of type `str`.") if penalty_function not in __penalty_functions: raise ValueError("Parameter `penalty_function` has to be one of the following: 'peak', 'sigma', 'log-sigma-over-peak'.") if not isinstance(norm, str): raise ValueError("Parameter `norm` has to be of type `str`.") if norm not in __norms: raise ValueError("Parameter `norm` has to be one of the following: 'average', 'cumulative', 'max', 'median', 'min'.") if not isinstance(integrate_to_peak, bool): raise ValueError("Parameter `integrate_to_peak` has to be of type `bool`.") if not isinstance(verbose, bool): raise ValueError("Parameter `verbose` has to be of type `bool`.") costs = [] if verbose: print('Optimizing...\n') if verbose: if add_transformed_source is not None: if source_space is not None: print('PC source terms will be assessed in the ' + source_space + ' space.\n') total_tic = time.perf_counter() remaining_variables_list = [i for i in range(0,n_variables)] ordered_variables = [] loop_counter = 0 # Iterate the algorithm: --------------------------------------------------- while len(remaining_variables_list) > target_manifold_dimensionality: iteration_tic = time.perf_counter() loop_counter += 1 if verbose: print('Iteration No.' + str(loop_counter)) print('Currently eliminating variable from the following list: ') print([variable_names[i] for i in remaining_variables_list]) current_cost_function = [] for i_variable in remaining_variables_list: if verbose: print('\tCurrently eliminated variable: ' + variable_names[i_variable]) # Consider a subset with all variables but the currently eliminated one: current_variables_list = [i for i in remaining_variables_list if i != i_variable] if verbose: print('\tRunning PCA for a subset:') print('\t' + ', '.join([variable_names[i] for i in current_variables_list])) pca = reduction.PCA(X[:,current_variables_list], scaling=scaling, n_components=target_manifold_dimensionality) PCs = pca.transform(X[:,current_variables_list]) (PCs, _, _) = preprocess.center_scale(PCs, '-1to1') if add_transformed_source: PC_sources = pca.transform(X_source[:,current_variables_list], nocenter=True) if source_space is not None: if source_space == 'original-and-symlog': transformed_PC_sources = preprocess.log_transform(PC_sources, method='symlog', threshold=1.e-4) elif source_space == 'original-and-continuous-symlog': transformed_PC_sources = preprocess.log_transform(PC_sources, method='continuous-symlog', threshold=1.e-4) else: transformed_PC_sources = preprocess.log_transform(PC_sources, method=source_space, threshold=1.e-4) if target_variables is None: if source_space == 'original-and-symlog' or source_space == 'original-and-continuous-symlog': depvars = np.hstack((PC_sources, transformed_PC_sources)) depvar_names = ['SZ' + str(i) for i in range(0,target_manifold_dimensionality)] + ['symlog-SZ' + str(i) for i in range(0,target_manifold_dimensionality)] elif source_space == 'symlog' or source_space == 'continuous-symlog': depvars = cp.deepcopy(transformed_PC_sources) depvar_names = ['symlog-SZ' + str(i) for i in range(0,target_manifold_dimensionality)] else: depvars = cp.deepcopy(PC_sources) depvar_names = ['SZ' + str(i) for i in range(0,target_manifold_dimensionality)] else: if add_transformed_source: if source_space == 'original-and-symlog' or source_space == 'original-and-continuous-symlog': depvars = np.hstack((PC_sources, transformed_PC_sources, target_variables)) depvar_names = ['SZ' + str(i) for i in range(0,target_manifold_dimensionality)] + ['symlog-SZ' + str(i) for i in range(0,target_manifold_dimensionality)] + target_variables_names elif source_space == 'symlog' or source_space == 'continuous-symlog': depvars = np.hstack((transformed_PC_sources, target_variables)) depvar_names = ['symlog-SZ' + str(i) for i in range(0,target_manifold_dimensionality)] + target_variables_names else: depvars = np.hstack((PC_sources, target_variables)) depvar_names = ['SZ' + str(i) for i in range(0,target_manifold_dimensionality)] + target_variables_names else: depvars = cp.deepcopy(target_variables) depvar_names = cp.deepcopy(target_variables_names) current_variance_data = compute_normalized_variance(PCs, depvars, depvar_names=depvar_names, scale_unit_box = False, bandwidth_values=bandwidth_values) current_area = cost_function_normalized_variance_derivative(current_variance_data, penalty_function=penalty_function, norm=norm, integrate_to_peak=integrate_to_peak) if verbose: print('\tCost:\t%.4f' % current_area) current_cost_function.append(current_area) # Starting from the second iteration, we can make a comparison with the previous iteration's results: if loop_counter > 1: if current_area <= previous_area: if verbose: print(colored('\tSAME OR BETTER', 'green')) else: if verbose: print(colored('\tWORSE', 'red')) min_area = np.min(current_cost_function) costs.append(min_area) # Search for the variable whose removal will decrease the cost the most: (worst_variable_index, ) = np.where(np.array(current_cost_function)==min_area) # This handles cases where there are multiple minima with the same minimum cost value: try: worst_variable_index = int(worst_variable_index) except: worst_variable_index = int(worst_variable_index[0]) if verbose: print('\n\tVariable ' + variable_names[remaining_variables_list[worst_variable_index]] + ' is removed.\n\tCost:\t%.4f' % min_area + '\n') # Append removed variable in the ascending order, this list is later flipped to have variables ordered from most to least important: ordered_variables.append(remaining_variables_list[worst_variable_index]) # Create a new list of variables to loop over at the next iteration: remaining_variables_list = [i for i in range(0,n_variables) if i not in ordered_variables] if loop_counter > 1: if min_area <= previous_area: previous_area = min_area else: previous_area = min_area iteration_toc = time.perf_counter() if verbose: print(f'\tIteration time: {(iteration_toc - iteration_tic)/60:0.1f} minutes.' + '\n' + '-'*50) # Compute the optimal subset where the overal cost from all iterations is minimized: ------------------ # One last time remove the worst variable: del current_cost_function[worst_variable_index] for i in remaining_variables_list: ordered_variables.append(i) for i in range(0,len(remaining_variables_list)): costs.append(current_cost_function[i]) # Invert lists to have variables ordered from most to least important: ordered_variables = ordered_variables[::-1] costs = costs[::-1] (min_cost_function_index, ) = np.where(costs==np.min(costs)) # This handles cases where there are multiple minima with the same minimum cost value: try: min_cost_function_index = int(min_cost_function_index) except: min_cost_function_index = int(min_cost_function_index[0]) selected_variables = list(np.array(ordered_variables)[0:min_cost_function_index]) optimized_cost = costs[min_cost_function_index] if verbose: print('Ordered variables:') print(', '.join([variable_names[i] for i in ordered_variables])) print(ordered_variables) print('Final cost: %.4f' % min_area) print('\nSelected variables:') print(', '.join([variable_names[i] for i in selected_variables])) print(selected_variables) print('Lowest cost: %.4f' % optimized_cost) total_toc = time.perf_counter() if verbose: print(f'\nOptimization time: {(total_toc - total_tic)/60:0.1f} minutes.' + '\n' + '-'*50) return ordered_variables, selected_variables, optimized_cost, costs ################################################################################ # # Regression assessment # ################################################################################ class RegressionAssessment: """ Wrapper class for storing all regression assessment metrics for a given regression solution given by the observed dependent variables, :math:`\\pmb{\\phi}_o`, and the predicted dependent variables, :math:`\\pmb{\\phi}_p`. **Example:** .. code:: python from PCAfold import PCA, RegressionAssessment import numpy as np # Generate dummy data set: X = np.random.rand(100,3) # Instantiate PCA class object: pca_X = PCA(X, scaling='auto', n_components=2) # Approximate the data set: X_rec = pca_X.reconstruct(pca_X.transform(X)) # Instantiate RegressionAssessment class object: regression_metrics = RegressionAssessment(X, X_rec) # Access mean absolute error values: MAE = regression_metrics.mean_absolute_error In addition, all stratified regression metrics can be computed on a single variable: .. code:: python from PCAfold import variable_bins # Generate bins: (idx, bins_borders) = variable_bins(X[:,0], k=5, verbose=False) # Instantiate RegressionAssessment class object: stratified_regression_metrics = RegressionAssessment(X[:,0], X_rec[:,0], idx=idx) # Access stratified mean absolute error values: stratified_MAE = stratified_regression_metrics.stratified_mean_absolute_error :param observed: ``numpy.ndarray`` specifying the observed values of dependent variables, :math:`\\pmb{\\phi}_o`. It should be of size ``(n_observations,)`` or ``(n_observations,n_variables)``. :param predicted: ``numpy.ndarray`` specifying the predicted values of dependent variables, :math:`\\pmb{\\phi}_p`. It should be of size ``(n_observations,)`` or ``(n_observations,n_variables)``. :param idx: ``numpy.ndarray`` of cluster classifications. It should be of size ``(n_observations,)`` or ``(n_observations,1)``. :param variable_names: (optional) ``list`` of ``str`` specifying variable names. :param use_global_mean: (optional) ``bool`` specifying if global mean of the observed variable should be used as a reference in :math:`R^2` calculation. :param norm: ``str`` specifying the normalization, :math:`d_{norm}`, for NRMSE computation. It can be one of the following: ``std``, ``range``, ``root_square_mean``, ``root_square_range``, ``root_square_std``, ``abs_mean``. :param use_global_norm: (optional) ``bool`` specifying if global norm of the observed variable should be used in NRMSE calculation. :param tolerance: ``float`` specifying the tolerance for GDE computation. **Attributes:** - **coefficient_of_determination** - (read only) ``numpy.ndarray`` specifying the coefficient of determination, :math:`R^2`, values. It has size ``(1,n_variables)``. - **mean_absolute_error** - (read only) ``numpy.ndarray`` specifying the mean absolute error (MAE) values. It has size ``(1,n_variables)``. - **mean_squared_error** - (read only) ``numpy.ndarray`` specifying the mean squared error (MSE) values. It has size ``(1,n_variables)``. - **root_mean_squared_error** - (read only) ``numpy.ndarray`` specifying the root mean squared error (RMSE) values. It has size ``(1,n_variables)``. - **normalized_root_mean_squared_error** - (read only) ``numpy.ndarray`` specifying the normalized root mean squared error (NRMSE) values. It has size ``(1,n_variables)``. - **good_direction_estimate** - (read only) ``float`` specifying the good direction estimate (GDE) value, treating the entire :math:`\\pmb{\\phi}_o` and :math:`\\pmb{\\phi}_p` as vectors. Note that if a single dependent variable is passed, GDE cannot be computed and is set to ``NaN``. If ``idx`` has been specified: - **stratified_coefficient_of_determination** - (read only) ``numpy.ndarray`` specifying the coefficient of determination, :math:`R^2`, values. It has size ``(1,n_variables)``. - **stratified_mean_absolute_error** - (read only) ``numpy.ndarray`` specifying the mean absolute error (MAE) values. It has size ``(1,n_variables)``. - **stratified_mean_squared_error** - (read only) ``numpy.ndarray`` specifying the mean squared error (MSE) values. It has size ``(1,n_variables)``. - **stratified_root_mean_squared_error** - (read only) ``numpy.ndarray`` specifying the root mean squared error (RMSE) values. It has size ``(1,n_variables)``. - **stratified_normalized_root_mean_squared_error** - (read only) ``numpy.ndarray`` specifying the normalized root mean squared error (NRMSE) values. It has size ``(1,n_variables)``. """ def __init__(self, observed, predicted, idx=None, variable_names=None, use_global_mean=False, norm='std', use_global_norm=False, tolerance=0.05): if not isinstance(observed, np.ndarray): raise ValueError("Parameter `observed` has to be of type `numpy.ndarray`.") try: (n_observed,) = np.shape(observed) n_var_observed = 1 observed = observed[:,None] except: (n_observed, n_var_observed) = np.shape(observed) if not isinstance(predicted, np.ndarray): raise ValueError("Parameter `predicted` has to be of type `numpy.ndarray`.") try: (n_predicted,) = np.shape(predicted) n_var_predicted = 1 predicted = predicted[:,None] except: (n_predicted, n_var_predicted) = np.shape(predicted) if n_observed != n_predicted: raise ValueError("Parameter `observed` has different number of elements than `predicted`.") if n_var_observed != n_var_predicted: raise ValueError("Parameter `observed` has different number of elements than `predicted`.") self.__n_variables = n_var_observed if idx is not None: if isinstance(idx, np.ndarray): if not all(isinstance(i, np.integer) for i in idx.ravel()): raise ValueError("Parameter `idx` can only contain integers.") else: raise ValueError("Parameter `idx` has to be of type `numpy.ndarray`.") try: (n_observations_idx, ) = np.shape(idx) n_idx = 1 except: (n_observations_idx, n_idx) = np.shape(idx) if n_idx != 1: raise ValueError("Parameter `idx` has to have size `(n_observations,)` or `(n_observations,1)`.") if n_observations_idx != n_observed: raise ValueError('Vector of cluster classifications `idx` has different number of observations than the original data set `X`.') if n_var_observed != 1: raise ValueError('Stratified regression metrics can only be computed on a single vector.') self.__n_clusters = len(np.unique(idx)) self.__cluster_populations = preprocess.get_populations(idx) self.__cluster_min = [] self.__cluster_max = [] for i in range(0,self.__n_clusters): (cluster_indices, ) = np.where(idx==i) self.__cluster_min.append(np.min(observed[cluster_indices,:])) self.__cluster_max.append(np.max(observed[cluster_indices,:])) if not isinstance(use_global_mean, bool): raise ValueError("Parameter `use_global_mean` has to be a boolean.") if variable_names is not None: if not isinstance(variable_names, list): raise ValueError("Parameter `variable_names` has to be of type `list`.") else: if self.__n_variables != len(variable_names): raise ValueError("Parameter `variable_names` has different number of variables than `observed` and `predicted`.") else: variable_names = [] for i in range(0,self.__n_variables): variable_names.append('X' + str(i+1)) self.__variable_names = variable_names self.__coefficient_of_determination_matrix = np.ones((1,self.__n_variables)) self.__mean_absolute_error_matrix = np.ones((1,self.__n_variables)) self.__mean_squared_error_matrix = np.ones((1,self.__n_variables)) self.__root_mean_squared_error_matrix = np.ones((1,self.__n_variables)) self.__normalized_root_mean_squared_error_matrix = np.ones((1,self.__n_variables)) if n_var_observed > 1: _, self.__good_direction_estimate_value = good_direction_estimate(observed, predicted, tolerance=tolerance) self.__good_direction_estimate_matrix = self.__good_direction_estimate_value * np.ones((1,self.__n_variables)) else: self.__good_direction_estimate_value = np.NAN self.__good_direction_estimate_matrix = self.__good_direction_estimate_value * np.ones((1,self.__n_variables)) for i in range(0,self.__n_variables): self.__coefficient_of_determination_matrix[0,i] = coefficient_of_determination(observed[:,i], predicted[:,i]) self.__mean_absolute_error_matrix[0,i] = mean_absolute_error(observed[:,i], predicted[:,i]) self.__mean_squared_error_matrix[0,i] = mean_squared_error(observed[:,i], predicted[:,i]) self.__root_mean_squared_error_matrix[0,i] = root_mean_squared_error(observed[:,i], predicted[:,i]) self.__normalized_root_mean_squared_error_matrix[0,i] = normalized_root_mean_squared_error(observed[:,i], predicted[:,i], norm=norm) if idx is not None: self.__stratified_coefficient_of_determination = stratified_coefficient_of_determination(observed, predicted, idx=idx, use_global_mean=use_global_mean) self.__stratified_mean_absolute_error = stratified_mean_absolute_error(observed, predicted, idx=idx) self.__stratified_mean_squared_error = stratified_mean_squared_error(observed, predicted, idx=idx) self.__stratified_root_mean_squared_error = stratified_root_mean_squared_error(observed, predicted, idx=idx) self.__stratified_normalized_root_mean_squared_error = stratified_normalized_root_mean_squared_error(observed, predicted, idx=idx, norm=norm, use_global_norm=use_global_norm) else: self.__stratified_coefficient_of_determination = None self.__stratified_mean_absolute_error = None self.__stratified_mean_squared_error = None self.__stratified_root_mean_squared_error = None self.__stratified_normalized_root_mean_squared_error = None @property def coefficient_of_determination(self): return self.__coefficient_of_determination_matrix @property def mean_absolute_error(self): return self.__mean_absolute_error_matrix @property def mean_squared_error(self): return self.__mean_squared_error_matrix @property def root_mean_squared_error(self): return self.__root_mean_squared_error_matrix @property def normalized_root_mean_squared_error(self): return self.__normalized_root_mean_squared_error_matrix @property def good_direction_estimate(self): return self.__good_direction_estimate_value @property def stratified_coefficient_of_determination(self): return self.__stratified_coefficient_of_determination @property def stratified_mean_absolute_error(self): return self.__stratified_mean_absolute_error @property def stratified_mean_squared_error(self): return self.__stratified_mean_squared_error @property def stratified_root_mean_squared_error(self): return self.__stratified_root_mean_squared_error @property def stratified_normalized_root_mean_squared_error(self): return self.__stratified_normalized_root_mean_squared_error # ------------------------------------------------------------------------------ def print_metrics(self, table_format=['raw'], float_format='.4f', metrics=None, comparison=None): """ Prints regression assessment metrics as raw text, in ``tex`` format and/or as ``pandas.DataFrame``. **Example:** .. code:: python from PCAfold import PCA, RegressionAssessment import numpy as np # Generate dummy data set: X = np.random.rand(100,3) # Instantiate PCA class object: pca_X = PCA(X, scaling='auto', n_components=2) # Approximate the data set: X_rec = pca_X.reconstruct(pca_X.transform(X)) # Instantiate RegressionAssessment class object: regression_metrics = RegressionAssessment(X, X_rec) # Print regression metrics: regression_metrics.print_metrics(table_format=['raw', 'tex', 'pandas'], float_format='.4f', metrics=['R2', 'NRMSE', 'GDE']) .. note:: Adding ``'raw'`` to the ``table_format`` list will result in printing: .. code-block:: text ------------------------- X1 R2: 0.9900 NRMSE: 0.0999 GDE: 70.0000 ------------------------- X2 R2: 0.6126 NRMSE: 0.6224 GDE: 70.0000 ------------------------- X3 R2: 0.6368 NRMSE: 0.6026 GDE: 70.0000 Adding ``'tex'`` to the ``table_format`` list will result in printing: .. code-block:: text \\begin{table}[h!] \\begin{center} \\begin{tabular}{llll} \\toprule & \\textit{X1} & \\textit{X2} & \\textit{X3} \\\\ \\midrule R2 & 0.9900 & 0.6126 & 0.6368 \\\\ NRMSE & 0.0999 & 0.6224 & 0.6026 \\\\ GDE & 70.0000 & 70.0000 & 70.0000 \\\\ \\end{tabular} \\caption{}\\label{} \\end{center} \\end{table} Adding ``'pandas'`` to the ``table_format`` list (works well in Jupyter notebooks) will result in printing: .. image:: ../images/generate-pandas-table.png :width: 300 :align: center Additionally, the current object of ``RegressionAssessment`` class can be compared with another object: .. code:: python from PCAfold import PCA, RegressionAssessment import numpy as np # Generate dummy data set: X = np.random.rand(100,3) Y = np.random.rand(100,3) # Instantiate PCA class object: pca_X = PCA(X, scaling='auto', n_components=2) pca_Y = PCA(Y, scaling='auto', n_components=2) # Approximate the data set: X_rec = pca_X.reconstruct(pca_X.transform(X)) Y_rec = pca_Y.reconstruct(pca_Y.transform(Y)) # Instantiate RegressionAssessment class object: regression_metrics_X = RegressionAssessment(X, X_rec) regression_metrics_Y = RegressionAssessment(Y, Y_rec) # Print regression metrics: regression_metrics_X.print_metrics(table_format=['raw', 'pandas'], float_format='.4f', metrics=['R2', 'NRMSE', 'GDE'], comparison=regression_metrics_Y) .. note:: Adding ``'raw'`` to the ``table_format`` list will result in printing: .. code-block:: text ------------------------- X1 R2: 0.9133 BETTER NRMSE: 0.2944 BETTER GDE: 67.0000 WORSE ------------------------- X2 R2: 0.5969 WORSE NRMSE: 0.6349 WORSE GDE: 67.0000 WORSE ------------------------- X3 R2: 0.6175 WORSE NRMSE: 0.6185 WORSE GDE: 67.0000 WORSE Adding ``'pandas'`` to the ``table_format`` list (works well in Jupyter notebooks) will result in printing: .. image:: ../images/generate-pandas-table-comparison.png :width: 300 :align: center :param table_format: (optional) ``list`` of ``str`` specifying the format(s) in which the table should be printed. Strings can only be ``'raw'``, ``'tex'`` and/or ``'pandas'``. :param float_format: (optional) ``str`` specifying the display format for the numerical entries inside the table. By default it is set to ``'.4f'``. :param metrics: (optional) ``list`` of ``str`` specifying which metrics should be printed. Strings can only be ``'R2'``, ``'MAE'``, ``'MSE'``, ``'RMSE'``, ``'NRMSE'``, ``'GDE'``. If metrics is set to ``None``, all available metrics will be printed. :param comparison: (optional) object of ``RegressionAssessment`` class specifying the metrics that should be compared with the current regression metrics. """ __table_formats = ['raw', 'tex', 'pandas'] __metrics_names = ['R2', 'MAE', 'MSE', 'RMSE', 'NRMSE', 'GDE'] __metrics_dict = {'R2': self.__coefficient_of_determination_matrix, 'MAE': self.__mean_absolute_error_matrix, 'MSE': self.__mean_squared_error_matrix, 'RMSE': self.__root_mean_squared_error_matrix, 'NRMSE': self.__normalized_root_mean_squared_error_matrix, 'GDE': self.__good_direction_estimate_matrix} if comparison is not None: __comparison_metrics_dict = {'R2': comparison.coefficient_of_determination, 'MAE': comparison.mean_absolute_error, 'MSE': comparison.mean_squared_error, 'RMSE': comparison.root_mean_squared_error, 'NRMSE': comparison.normalized_root_mean_squared_error, 'GDE': comparison.good_direction_estimate * np.ones_like(comparison.coefficient_of_determination)} if not isinstance(table_format, list): raise ValueError("Parameter `table_format` has to be of type `list`.") for item in table_format: if item not in __table_formats: raise ValueError("Parameter `table_format` can only contain 'raw', 'tex' and/or 'pandas'.") if not isinstance(float_format, str): raise ValueError("Parameter `float_format` has to be of type `str`.") if metrics is not None: if not isinstance(metrics, list): raise ValueError("Parameter `metrics` has to be of type `list`.") for item in metrics: if item not in __metrics_names: raise ValueError("Parameter `metrics` can only be: 'R2', 'MAE', 'MSE', 'RMSE', 'NRMSE', 'GDE'.") else: metrics = __metrics_names if comparison is None: for item in set(table_format): if item=='raw': for i in range(0,self.__n_variables): print('-'*25 + '\n' + self.__variable_names[i]) metrics_to_print = [] for metric in metrics: metrics_to_print.append(__metrics_dict[metric][0,i]) for j in range(0,len(metrics)): print(metrics[j] + ':\t' + ('%' + float_format) % metrics_to_print[j]) if item=='tex': import pandas as pd metrics_to_print = np.zeros_like(self.__coefficient_of_determination_matrix) for metric in metrics: metrics_to_print = np.vstack((metrics_to_print, __metrics_dict[metric])) metrics_to_print = metrics_to_print[1::,:] metrics_table =
pd.DataFrame(metrics_to_print, columns=self.__variable_names, index=metrics)
pandas.DataFrame
import json import numpy as np import pytest from pandas import DataFrame, Index, json_normalize import pandas._testing as tm from pandas.io.json._normalize import nested_to_record @pytest.fixture def deep_nested(): # deeply nested data return [ { "country": "USA", "states": [ { "name": "California", "cities": [ {"name": "San Francisco", "pop": 12345}, {"name": "Los Angeles", "pop": 12346}, ], }, { "name": "Ohio", "cities": [ {"name": "Columbus", "pop": 1234}, {"name": "Cleveland", "pop": 1236}, ], }, ], }, { "country": "Germany", "states": [ {"name": "Bayern", "cities": [{"name": "Munich", "pop": 12347}]}, { "name": "Nordrhein-Westfalen", "cities": [ {"name": "Duesseldorf", "pop": 1238}, {"name": "Koeln", "pop": 1239}, ], }, ], }, ] @pytest.fixture def state_data(): return [ { "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], "info": {"governor": "<NAME>"}, "shortname": "FL", "state": "Florida", }, { "counties": [ {"name": "Summit", "population": 1234}, {"name": "Cuyahoga", "population": 1337}, ], "info": {"governor": "<NAME>"}, "shortname": "OH", "state": "Ohio", }, ] @pytest.fixture def author_missing_data(): return [ {"info": None}, { "info": {"created_at": "11/08/1993", "last_updated": "26/05/2012"}, "author_name": {"first": "Jane", "last_name": "Doe"}, }, ] @pytest.fixture def missing_metadata(): return [ { "name": "Alice", "addresses": [ { "number": 9562, "street": "Morris St.", "city": "Massillon", "state": "OH", "zip": 44646, } ], }, { "addresses": [ { "number": 8449, "street": "Spring St.", "city": "Elizabethton", "state": "TN", "zip": 37643, } ] }, ] @pytest.fixture def max_level_test_input_data(): """ input data to test json_normalize with max_level param """ return [ { "CreatedBy": {"Name": "User001"}, "Lookup": { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, "Image": {"a": "b"}, } ] class TestJSONNormalize: def test_simple_records(self): recs = [ {"a": 1, "b": 2, "c": 3}, {"a": 4, "b": 5, "c": 6}, {"a": 7, "b": 8, "c": 9}, {"a": 10, "b": 11, "c": 12}, ] result = json_normalize(recs) expected = DataFrame(recs) tm.assert_frame_equal(result, expected) def test_simple_normalize(self, state_data): result = json_normalize(state_data[0], "counties") expected = DataFrame(state_data[0]["counties"]) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties") expected = [] for rec in state_data: expected.extend(rec["counties"]) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) result = json_normalize(state_data, "counties", meta="state") expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_empty_array(self): result = json_normalize([]) expected = DataFrame() tm.assert_frame_equal(result, expected) def test_simple_normalize_with_separator(self, deep_nested): # GH 14883 result = json_normalize({"A": {"A": 1, "B": 2}}) expected = DataFrame([[1, 2]], columns=["A.A", "A.B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize({"A": {"A": 1, "B": 2}}, sep="_") expected = DataFrame([[1, 2]], columns=["A_A", "A_B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize({"A": {"A": 1, "B": 2}}, sep="\u03c3") expected = DataFrame([[1, 2]], columns=["A\u03c3A", "A\u03c3B"]) tm.assert_frame_equal(result.reindex_like(expected), expected) result = json_normalize( deep_nested, ["states", "cities"], meta=["country", ["states", "name"]], sep="_", ) expected = Index(["name", "pop", "country", "states_name"]).sort_values() assert result.columns.sort_values().equals(expected) def test_value_array_record_prefix(self): # GH 21536 result = json_normalize({"A": [1, 2]}, "A", record_prefix="Prefix.") expected = DataFrame([[1], [2]], columns=["Prefix.0"]) tm.assert_frame_equal(result, expected) def test_nested_object_record_path(self): # GH 22706 data = { "state": "Florida", "info": { "governor": "<NAME>", "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], }, } result = json_normalize(data, record_path=["info", "counties"]) expected = DataFrame( [["Dade", 12345], ["Broward", 40000], ["<NAME>", 60000]], columns=["name", "population"], ) tm.assert_frame_equal(result, expected) def test_more_deeply_nested(self, deep_nested): result = json_normalize( deep_nested, ["states", "cities"], meta=["country", ["states", "name"]] ) ex_data = { "country": ["USA"] * 4 + ["Germany"] * 3, "states.name": [ "California", "California", "Ohio", "Ohio", "Bayern", "Nordrhein-Westfalen", "Nordrhein-Westfalen", ], "name": [ "<NAME>", "Los Angeles", "Columbus", "Cleveland", "Munich", "Duesseldorf", "Koeln", ], "pop": [12345, 12346, 1234, 1236, 12347, 1238, 1239], } expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_shallow_nested(self): data = [ { "state": "Florida", "shortname": "FL", "info": {"governor": "<NAME>"}, "counties": [ {"name": "Dade", "population": 12345}, {"name": "Broward", "population": 40000}, {"name": "<NAME>", "population": 60000}, ], }, { "state": "Ohio", "shortname": "OH", "info": {"governor": "<NAME>"}, "counties": [ {"name": "Summit", "population": 1234}, {"name": "Cuyahoga", "population": 1337}, ], }, ] result = json_normalize( data, "counties", ["state", "shortname", ["info", "governor"]] ) ex_data = { "name": ["Dade", "Broward", "<NAME>", "Summit", "Cuyahoga"], "state": ["Florida"] * 3 + ["Ohio"] * 2, "shortname": ["FL", "FL", "FL", "OH", "OH"], "info.governor": ["<NAME>"] * 3 + ["<NAME>"] * 2, "population": [12345, 40000, 60000, 1234, 1337], } expected = DataFrame(ex_data, columns=result.columns) tm.assert_frame_equal(result, expected) def test_meta_name_conflict(self): data = [ { "foo": "hello", "bar": "there", "data": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] msg = r"Conflicting metadata name (foo|bar), need distinguishing prefix" with pytest.raises(ValueError, match=msg): json_normalize(data, "data", meta=["foo", "bar"]) result = json_normalize(data, "data", meta=["foo", "bar"], meta_prefix="meta") for val in ["metafoo", "metabar", "foo", "bar"]: assert val in result def test_meta_parameter_not_modified(self): # GH 18610 data = [ { "foo": "hello", "bar": "there", "data": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] COLUMNS = ["foo", "bar"] result = json_normalize(data, "data", meta=COLUMNS, meta_prefix="meta") assert COLUMNS == ["foo", "bar"] for val in ["metafoo", "metabar", "foo", "bar"]: assert val in result def test_record_prefix(self, state_data): result = json_normalize(state_data[0], "counties") expected = DataFrame(state_data[0]["counties"]) tm.assert_frame_equal(result, expected) result = json_normalize( state_data, "counties", meta="state", record_prefix="county_" ) expected = [] for rec in state_data: expected.extend(rec["counties"]) expected = DataFrame(expected) expected = expected.rename(columns=lambda x: "county_" + x) expected["state"] = np.array(["Florida", "Ohio"]).repeat([3, 2]) tm.assert_frame_equal(result, expected) def test_non_ascii_key(self): testjson = ( b'[{"\xc3\x9cnic\xc3\xb8de":0,"sub":{"A":1, "B":2}},' + b'{"\xc3\x9cnic\xc3\xb8de":1,"sub":{"A":3, "B":4}}]' ).decode("utf8") testdata = { b"\xc3\x9cnic\xc3\xb8de".decode("utf8"): [0, 1], "sub.A": [1, 3], "sub.B": [2, 4], } expected = DataFrame(testdata) result = json_normalize(json.loads(testjson)) tm.assert_frame_equal(result, expected) def test_missing_field(self, author_missing_data): # GH20030: result = json_normalize(author_missing_data) ex_data = [ { "info": np.nan, "info.created_at": np.nan, "info.last_updated": np.nan, "author_name.first": np.nan, "author_name.last_name": np.nan, }, { "info": None, "info.created_at": "11/08/1993", "info.last_updated": "26/05/2012", "author_name.first": "Jane", "author_name.last_name": "Doe", }, ] expected = DataFrame(ex_data) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "max_level,expected", [ ( 0, [ { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, ], ), ( 1, [ { "TextField": "Some text", "UserField.Id": "ID001", "UserField.Name": "Name001", "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, { "TextField": "Some text", "UserField.Id": "ID001", "UserField.Name": "Name001", "CreatedBy": {"Name": "User001"}, "Image": {"a": "b"}, }, ], ), ], ) def test_max_level_with_records_path(self, max_level, expected): # GH23843: Enhanced JSON normalize test_input = [ { "CreatedBy": {"Name": "User001"}, "Lookup": [ { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, { "TextField": "Some text", "UserField": {"Id": "ID001", "Name": "Name001"}, }, ], "Image": {"a": "b"}, "tags": [ {"foo": "something", "bar": "else"}, {"foo": "something2", "bar": "else2"}, ], } ] result = json_normalize( test_input, record_path=["Lookup"], meta=[["CreatedBy"], ["Image"]], max_level=max_level, ) expected_df = DataFrame(data=expected, columns=result.columns.values) tm.assert_equal(expected_df, result) def test_nested_flattening_consistent(self): # see gh-21537 df1 = json_normalize([{"A": {"B": 1}}]) df2 = json_normalize({"dummy": [{"A": {"B": 1}}]}, "dummy") # They should be the same. tm.assert_frame_equal(df1, df2) def test_nonetype_record_path(self, nulls_fixture): # see gh-30148 # should not raise TypeError result = json_normalize( [ {"state": "Texas", "info": nulls_fixture}, {"state": "Florida", "info": [{"i": 2}]}, ], record_path=["info"], ) expected = DataFrame({"i": 2}, index=[0]) tm.assert_equal(result, expected) def test_non_interable_record_path_errors(self): # see gh-30148 test_input = {"state": "Texas", "info": 1} test_path = "info" msg = ( f"{test_input} has non iterable value 1 for path {test_path}. " "Must be iterable or null." ) with pytest.raises(TypeError, match=msg): json_normalize([test_input], record_path=[test_path]) def test_meta_non_iterable(self): # GH 31507 data = """[{"id": 99, "data": [{"one": 1, "two": 2}]}]""" result = json_normalize(json.loads(data), record_path=["data"], meta=["id"]) expected = DataFrame( {"one": [1], "two": [2], "id": np.array([99], dtype=object)} ) tm.assert_frame_equal(result, expected) class TestNestedToRecord: def test_flat_stays_flat(self): recs = [dict(flat1=1, flat2=2), dict(flat1=3, flat2=4)] result = nested_to_record(recs) expected = recs assert result == expected def test_one_level_deep_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2)) result = nested_to_record(data) expected = {"dict1.c": 1, "dict1.d": 2, "flat1": 1} assert result == expected def test_nested_flattens(self): data = dict(flat1=1, dict1=dict(c=1, d=2), nested=dict(e=dict(c=1, d=2), d=2)) result = nested_to_record(data) expected = { "dict1.c": 1, "dict1.d": 2, "flat1": 1, "nested.d": 2, "nested.e.c": 1, "nested.e.d": 2, } assert result == expected def test_json_normalize_errors(self, missing_metadata): # GH14583: # If meta keys are not always present a new option to set # errors='ignore' has been implemented msg = "Try running with errors='ignore' as key 'name' is not always present" with pytest.raises(KeyError, match=msg): json_normalize( data=missing_metadata, record_path="addresses", meta="name", errors="raise", ) def test_missing_meta(self, missing_metadata): # GH25468 # If metadata is nullable with errors set to ignore, the null values # should be numpy.nan values result = json_normalize( data=missing_metadata, record_path="addresses", meta="name", errors="ignore" ) ex_data = [ [9562, "Morris St.", "Massillon", "OH", 44646, "Alice"], [8449, "Spring St.", "Elizabethton", "TN", 37643, np.nan], ] columns = ["city", "number", "state", "street", "zip", "name"] columns = ["number", "street", "city", "state", "zip", "name"] expected =
DataFrame(ex_data, columns=columns)
pandas.DataFrame
""" Collection of functions used for the stitching. IMPORTANT: The identification of the organization of the fovs in the composite image can be simplified if the (0,0) coords of the stage/camera will be set to the same position for all machine used in the analysis. In our case we started running experiments with the coords not adjusted so the position of (0,0) is different for all the machine that are used to generate the data. """ from typing import * import logging import shutil import copy import itertools import math import pickle import zarr import sys import operator import numpy as np import pandas as pd from matplotlib import pyplot as plt from itertools import groupby from pathlib import Path from sklearn.neighbors import NearestNeighbors import sklearn.linear_model as linmod from skimage.feature import register_translation from skimage import measure from scipy.optimize import minimize from pynndescent import NNDescent from pysmFISH.logger_utils import selected_logger from pysmFISH.fovs_registration import create_fake_image from pysmFISH.data_models import Dataset from pysmFISH import io class organize_square_tiles(): """Class designed to determine the tile organization and identify the coords of the overlapping regions between the tiles. IMPORTANT: The normalize_coords method should be adjusted according to the setup of the microscope. """ def __init__(self, experiment_fpath:str,dataset: pd.DataFrame, metadata:Dict,round_num:int): """Class initialization Args: experiment_fpath (str): Path to the experiment to process dataset (pd.DataFrame): Properties of the images of the experiment metadata (Dict): Metadata describing the experiment round_num (int): Reference acquisition round number """ self.logger = selected_logger() self.experiment_fpath = Path(experiment_fpath) self.dataset = dataset self.metadata = metadata self.round_num = round_num self.experiment_name = self.metadata['experiment_name'] self.stitching_channel = self.metadata['stitching_channel'] self.overlapping_percentage = int(self.metadata['overlapping_percentage']) / 100 self.pixel_size = self.metadata['pixel_microns'] self.img_width = self.metadata['img_width'] self.img_height = self.metadata['img_height'] logging.getLogger('matplotlib.font_manager').disabled = True if self.img_width == self.img_height: self.img_size = self.img_width else: self.logger.error(f'the images to stitch are not square') sys.exit(f'the images to stitch are not square') def extract_microscope_coords(self): """Method to extract images coords in the stage reference system""" selected = self.dataset.loc[self.dataset.round_num == self.round_num, ['round_num','fov_num','fov_acquisition_coords_x','fov_acquisition_coords_y']] selected.drop_duplicates(subset=['fov_num'],inplace=True) selected.sort_values(by='fov_num', ascending=True, inplace=True) self.x_coords = selected.loc[:,'fov_acquisition_coords_x'].to_numpy() self.y_coords = selected.loc[:,'fov_acquisition_coords_y'].to_numpy() def normalize_coords(self): """ Normalize the coords according to how the stage/camera are set. This function must be modified according to the stage/camera setup. ROBOFISH1 has stage with x increasing left-> right and y top->bottom ------> (x) | | V (y) ROBOFISH2 has stage with x increasing right-> left and y top->bottom (x) <------ | | V (y) ROBOFISH3 has stage with x increasing left-> right and y bottom->top ^ (y) | | ------> (x) Axis modifications steps: (1) The reference system will be first converted to image style: ------> (x) | | V (y) This step will cause a change in the position of the reference corner for each fov. After image acquisition the reference corner is top-left however after converting the axis direction to image-style the reference corner will change postion: ROBOFISH1: top-left --> top-left ROBOFISH2: top-left --> top-right ROBOFISH3: top-left --> bottom-left (2) The coords will be translated to (0,0) (3) then to matrix (python) notation ------> (columns) | | V (rows) """ # port the coords to image type coords if self.metadata['machine'] == 'ROBOFISH2': self.x_coords = - self.x_coords self.reference_corner_fov_position = 'top-right' elif self.metadata['machine'] == 'ROBOFISH3': self.x_coords = - self.x_coords self.y_coords = - self.y_coords self.reference_corner_fov_position = 'bottom-left' elif self.metadata['machine'] == 'ROBOFISH1': self.reference_corner_fov_position = 'top-left' elif self.metadata['machine'] == 'NOT_DEFINED': self.logger.error(f'Need to define the specs for stitching NOT_DEFINED machine') sys.exit(f'Need to define the specs for stitching NOT_DEFINED machine') else: self.logger.error(f'define the right machine used to collected the data') sys.exit(f'define the right machine used to collected the data') # shift the coords to reference point (0,0) # consider that we get the top-right corner of the image as well y_min = np.amin(self.y_coords) x_min = np.amin(self.x_coords) x_max = np.amax(self.x_coords) y_max = np.amax(self.y_coords) # Put the coords to zero if x_min >=0 : self.x_coords = self.x_coords - x_min else: self.x_coords = self.x_coords + np.abs(x_min) if y_min>0: self.y_coords = self.y_coords - y_min else: self.y_coords = self.y_coords + np.abs(y_min) # if x_max >=0 : # self.x_coords = self.x_coords - x_min # else: # self.x_coords = self.x_coords + np.abs(x_min) # if y_max>0: # self.y_coords = self.y_coords - y_min # else: # self.y_coords = self.y_coords + np.abs(y_min) # change the coords from x,y to r,c adjusted_coords = np.zeros([self.x_coords.shape[0],2]) adjusted_coords[:,0] = self.y_coords adjusted_coords[:,1] = self.x_coords # move coords to pxl space self.tile_corners_coords_pxl = adjusted_coords / self.pixel_size # def save_graph_original_coords(self): # to correct because I already converted the coords to image # # Turn interactive plotting off # saving_fpath = self.experiment_fpath / 'output_figures' / 'microscope_space_tiles_organization.png' # plt.ioff() # # Create image type axes # labels = [str(nr) for nr in np.arange(self.x_coords.shape[0])] # fig = plt.figure(figsize=(20,10)) # plt.plot(self.x_coords,self.y_coords,'or') # for label, x, y in zip(labels, self.x_coords,self.y_coords): # plt.annotate( # label, # xy=(x,y), xytext=(-2, 2), # textcoords='offset points', ha='center', va='bottom',fontsize=12) # plt.tight_layout() # plt.savefig(saving_fpath) def save_graph_image_space_coords(self): """Method used to save the organization of the tiles """ # Turn interactive plotting off saving_fpath = self.experiment_fpath / 'output_figures' / 'image_space_tiles_organization.png' plt.ioff() # Create image type axes labels = [str(nr) for nr in np.arange(self.tile_corners_coords_pxl.shape[0])] fig = plt.figure(figsize=(20,10)) plt.gca().invert_yaxis() plt.plot(self.tile_corners_coords_pxl[:,1],self.tile_corners_coords_pxl[:,0],'or') for label, x, y in zip(labels, self.tile_corners_coords_pxl[:,1],self.tile_corners_coords_pxl[:,0]): plt.annotate( label, xy=(x,y), xytext=(-2, 2), textcoords='offset points', ha='center', va='bottom',fontsize=12) plt.tight_layout() plt.savefig(saving_fpath) def identify_adjacent_tiles(self): """Method that use Nearest neighbors to identify the beighbouring tiles """ shift_percent_tolerance = 0.05 searching_radius = self.img_size - (self.img_size*self.overlapping_percentage) + (self.img_size*shift_percent_tolerance) nn = NearestNeighbors(n_neighbors=5,radius=searching_radius, metric='euclidean') nn.fit(self.tile_corners_coords_pxl) self.dists, self.indices = nn.kneighbors(self.tile_corners_coords_pxl, return_distance=True) def determine_overlapping_regions(self): """Method used to calculate the coords of the overlapping regions between the tiles. """ # remember that overlapping region can be an empty dictionary self.overlapping_regions = {} self.overlapping_order ={} for idx in np.arange(self.indices.shape[0]): self.overlapping_regions[idx] = {} self.overlapping_order[idx] = {} for idx in np.arange(self.indices.shape[0]): # Determine the indices that identify the correct adjacent processing_indices = self.indices[idx,:] processing_dists = self.dists[idx,:] ref_tile = processing_indices[0] self.overlapping_regions[ref_tile] = {} self.overlapping_order[ref_tile] = {} trimmed_indices = processing_indices[1:] trimmed_dists = processing_dists[1:] idx_adj = np.where(trimmed_dists < self.img_size) adj_tiles_id = trimmed_indices[idx_adj] adj_cpls = [(ref_tile, adj_tile) for adj_tile in adj_tiles_id] # remove pairs that are already selected only_new_cpls = [cpl for cpl in adj_cpls if (cpl[1],cpl[0]) not in self.overlapping_regions[cpl[1]].keys()] # only_new_cpls = [cpl for cpl in adj_cpls] if self.reference_corner_fov_position == 'top-left': for cpl in only_new_cpls: tile1_r_coords = self.tile_corners_coords_pxl[cpl[0]][0] tile2_r_coords = self.tile_corners_coords_pxl[cpl[1]][0] tile1_c_coords = self.tile_corners_coords_pxl[cpl[0]][1] tile2_c_coords = self.tile_corners_coords_pxl[cpl[1]][1] if tile1_r_coords > tile2_r_coords: r_tl = tile1_r_coords r_br = tile2_r_coords + self.img_height row_order = ('bottom','top') else: r_tl = tile2_r_coords r_br = tile1_r_coords + self.img_height row_order = ('top','bottom') if tile1_c_coords > tile2_c_coords: c_tl = tile1_c_coords c_br = tile2_c_coords + self.img_width col_order = ('right','left') else: c_tl = tile2_c_coords c_br = tile1_c_coords + self.img_width col_order = ('left','right') self.overlapping_regions[ref_tile][cpl] = [r_tl, r_br, c_tl, c_br] self.overlapping_order[ref_tile][cpl] = {'row_order':row_order,'column_order':col_order} elif self.reference_corner_fov_position == 'top-right': for cpl in only_new_cpls: tile1_r_coords = self.tile_corners_coords_pxl[cpl[0]][0] tile2_r_coords = self.tile_corners_coords_pxl[cpl[1]][0] tile1_c_coords = self.tile_corners_coords_pxl[cpl[0]][1] tile2_c_coords = self.tile_corners_coords_pxl[cpl[1]][1] if tile1_r_coords > tile2_r_coords: r_tl = tile1_r_coords r_br = tile2_r_coords + self.img_height row_order = ('bottom','top') else: r_tl = tile2_r_coords r_br = tile1_r_coords + self.img_height row_order = ('top','bottom') if tile1_c_coords > tile2_c_coords: c_tl = tile1_c_coords - self.img_width c_br = tile2_c_coords col_order = ('right','left') else: c_tl = tile2_c_coords - self.img_width c_br = tile1_c_coords col_order = ('left','right') self.overlapping_regions[ref_tile][cpl] = [r_tl, r_br, c_tl, c_br] self.overlapping_order[ref_tile][cpl] = {'row_order':row_order,'column_order':col_order} elif self.reference_corner_fov_position == 'bottom-left': for cpl in only_new_cpls: tile1_r_coords = self.tile_corners_coords_pxl[cpl[0]][0] tile2_r_coords = self.tile_corners_coords_pxl[cpl[1]][0] tile1_c_coords = self.tile_corners_coords_pxl[cpl[0]][1] tile2_c_coords = self.tile_corners_coords_pxl[cpl[1]][1] if tile1_r_coords > tile2_r_coords: r_tl = tile1_r_coords - self.img_height r_br = tile2_r_coords row_order = ('bottom','top') else: r_tl = tile2_r_coords - self.img_height r_br = tile1_r_coords row_order = ('top','bottom') if tile1_c_coords > tile2_c_coords: c_tl = tile1_c_coords c_br = tile2_c_coords + self.img_width col_order = ('right','left') else: c_tl = tile2_c_coords c_br = tile1_c_coords + self.img_width col_order = ('left','right') self.overlapping_regions[ref_tile][cpl] = [r_tl, r_br, c_tl, c_br] self.overlapping_order[ref_tile][cpl] = {'row_order':row_order,'column_order':col_order} def run_tiles_organization(self): """Method used to run all the methods """ self.extract_microscope_coords() # self.save_graph_original_coords() self.normalize_coords() self.save_graph_image_space_coords() self.identify_adjacent_tiles() self.determine_overlapping_regions() fname = self.experiment_fpath / 'results' / 'microscope_tile_corners_coords_pxl.npy' np.save(fname,self.tile_corners_coords_pxl) class organize_square_tiles_old_room(): """ Class used to identify the orgabnization of the tiles before the reorganization of the Robofish room of April 2021 when Robofish3 was assembled. """ def __init__(self, experiment_fpath:str,dataset, metadata:Dict,round_num:int): """ round_num = int reference channel """ self.logger = selected_logger() self.experiment_fpath = Path(experiment_fpath) self.dataset = dataset self.metadata = metadata self.round_num = round_num self.experiment_name = self.metadata['experiment_name'] self.stitching_channel = self.metadata['stitching_channel'] self.overlapping_percentage = int(self.metadata['overlapping_percentage']) / 100 self.pixel_size = self.metadata['pixel_microns'] self.img_width = self.metadata['img_width'] self.img_height = self.metadata['img_height'] logging.getLogger('matplotlib.font_manager').disabled = True if self.img_width == self.img_height: self.img_size = self.img_width else: self.logger.error(f'the images to stitch are not square') sys.exit(f'the images to stitch are not square') def extract_microscope_coords(self): selected = self.dataset.loc[self.dataset.round_num == self.round_num, ['round_num','fov_num','fov_acquisition_coords_x','fov_acquisition_coords_y']] selected.drop_duplicates(subset=['fov_num'],inplace=True) selected.sort_values(by='fov_num', ascending=True, inplace=True) self.x_coords = selected.loc[:,'fov_acquisition_coords_x'].to_numpy() self.y_coords = selected.loc[:,'fov_acquisition_coords_y'].to_numpy() def normalize_coords(self): if self.metadata['machine'] == 'ROBOFISH2': # RobofishII has stage with reference point # in the center (0,0) # consider that we get the top-right corner of the image as well self.reference_corner_fov_position = 'old-room-robofish2' # Not sure (i don't remember) # consider that we get the top-right corner of the image as well y_min = np.amin(self.y_coords) x_min = np.amin(self.x_coords) x_max = np.amax(self.x_coords) y_max = np.amax(self.y_coords) # Put the coords to zero if x_max >=0 : self.x_coords = self.x_coords - x_min else: self.x_coords = self.x_coords + np.abs(x_min) if y_max>0: self.y_coords = self.y_coords - y_min else: self.y_coords = self.y_coords + np.abs(y_min) # flip y_axis self.y_coords = self.y_coords - self.y_coords.max() self.y_coords = - self.y_coords # change the coords from x,y to r,c adjusted_coords = np.zeros([self.x_coords.shape[0],2]) adjusted_coords[:,0] = self.y_coords adjusted_coords[:,1] = self.x_coords elif self.metadata['machine'] == 'ROBOFISH1': # The current system has stage ref coords top-left self.reference_corner_fov_position = 'top-left' # Normalize to (0,0) still BOTTOM-RIGHT y_min = np.amin(self.y_coords) x_min = np.amin(self.x_coords) self.x_coords = self.x_coords - x_min self.y_coords = self.y_coords - y_min # flip axis to move (0,0) on TOP-LEF self.x_coords = self.x_coords - self.x_coords.max() self.x_coords = - self.x_coords self.y_coords = self.y_coords - self.y_coords.max() self.y_coords = - self.y_coords # change the coords from x,y to r,c adjusted_coords = np.zeros([self.x_coords.shape[0],2]) adjusted_coords[:,0] = self.y_coords adjusted_coords[:,1] = self.x_coords elif self.metadata['machine'] == 'NOT_DEFINED': self.logger.error(f'Need to define the specs for stitching NOT_DEFINED machine') sys.exit(f'Need to define the specs for stitching NOT_DEFINED machine') else: self.logger.error(f'define the right machine used to collected the data') sys.exit(f'define the right machine used to collected the data') self.tile_corners_coords_pxl = adjusted_coords / self.pixel_size def save_graph_original_coords(self): # Turn interactive plotting off saving_fpath = self.experiment_fpath / 'output_figures' / 'microscope_space_tiles_organization.png' plt.ioff() # Create image type axes labels = [str(nr) for nr in np.arange(self.x_coords.shape[0])] fig = plt.figure(figsize=(20,10)) plt.plot(self.x_coords,self.y_coords,'or') for label, x, y in zip(labels, self.x_coords,self.y_coords): plt.annotate( label, xy=(x,y), xytext=(-2, 2), textcoords='offset points', ha='center', va='bottom',fontsize=12) plt.tight_layout() plt.savefig(saving_fpath) def save_graph_image_space_coords(self): # Turn interactive plotting off saving_fpath = self.experiment_fpath / 'output_figures' / 'image_space_tiles_organization.png' plt.ioff() # Create image type axes labels = [str(nr) for nr in np.arange(self.tile_corners_coords_pxl.shape[0])] fig = plt.figure(figsize=(20,10)) plt.gca().invert_yaxis() plt.plot(self.tile_corners_coords_pxl[:,1],self.tile_corners_coords_pxl[:,0],'or') for label, x, y in zip(labels, self.tile_corners_coords_pxl[:,1],self.tile_corners_coords_pxl[:,0]): plt.annotate( label, xy=(x,y), xytext=(-2, 2), textcoords='offset points', ha='center', va='bottom',fontsize=12) plt.tight_layout() plt.savefig(saving_fpath) def identify_adjacent_tiles(self): shift_percent_tolerance = 0.05 searching_radius = self.img_size - (self.img_size*self.overlapping_percentage) + (self.img_size*shift_percent_tolerance) nn = NearestNeighbors(n_neighbors=5,radius=searching_radius, metric='euclidean') nn.fit(self.tile_corners_coords_pxl) self.dists, self.indices = nn.kneighbors(self.tile_corners_coords_pxl, return_distance=True) def determine_overlapping_regions(self): # remember that overlapping region can be an empty dictionary self.overlapping_regions = {} self.overlapping_order ={} for idx in np.arange(self.indices.shape[0]): self.overlapping_regions[idx] = {} self.overlapping_order[idx] = {} for idx in np.arange(self.indices.shape[0]): # Determine the indices that identify the correct adjacent processing_indices = self.indices[idx,:] processing_dists = self.dists[idx,:] ref_tile = processing_indices[0] self.overlapping_regions[ref_tile] = {} self.overlapping_order[ref_tile] = {} trimmed_indices = processing_indices[1:] trimmed_dists = processing_dists[1:] idx_adj = np.where(trimmed_dists < self.img_size) adj_tiles_id = trimmed_indices[idx_adj] adj_cpls = [(ref_tile, adj_tile) for adj_tile in adj_tiles_id] # remove pairs that are already selected only_new_cpls = [cpl for cpl in adj_cpls if (cpl[1],cpl[0]) not in self.overlapping_regions[cpl[1]].keys()] # only_new_cpls = [cpl for cpl in adj_cpls] if self.metadata['machine'] == 'ROBOFISH2': # If tile coords are top left for cpl in only_new_cpls: tile1_r_coords = self.tile_corners_coords_pxl[cpl[0]][0] tile2_r_coords = self.tile_corners_coords_pxl[cpl[1]][0] tile1_c_coords = self.tile_corners_coords_pxl[cpl[0]][1] tile2_c_coords = self.tile_corners_coords_pxl[cpl[1]][1] if tile1_r_coords > tile2_r_coords: r_tl = tile1_r_coords r_br = tile2_r_coords + self.img_size r_bl = tile2_c_coords + self.img_size r_tr = tile1_c_coords row_order = ('bottom','top') else: r_tl = tile2_r_coords r_br = tile1_r_coords + self.img_size r_bl = tile1_r_coords + self.img_size r_tr = tile2_r_coords row_order = ('top','bottom') if tile1_c_coords > tile2_c_coords: c_tl = tile1_c_coords c_br = tile2_c_coords + self.img_size c_tr = tile2_c_coords + self.img_size c_bl = tile1_c_coords col_order = ('right','left') else: c_tl = tile2_c_coords c_br = tile1_c_coords + self.img_size c_bl = tile2_c_coords c_tr = tile1_c_coords + self.img_size col_order = ('left','right') elif self.metadata['machine'] == 'ROBOFISH1': # If tile coords are bottom right for cpl in only_new_cpls: tile1_r_coords = self.tile_corners_coords_pxl[cpl[0]][0] tile2_r_coords = self.tile_corners_coords_pxl[cpl[1]][0] tile1_c_coords = self.tile_corners_coords_pxl[cpl[0]][1] tile2_c_coords = self.tile_corners_coords_pxl[cpl[1]][1] if tile1_r_coords > tile2_r_coords: r_tl = tile1_r_coords - self.img_size r_br = tile2_r_coords r_bl = tile2_c_coords r_tr = tile1_c_coords - self.img_size row_order = ('bottom','top') else: r_tl = tile2_r_coords - self.img_size r_br = tile1_r_coords r_bl = tile1_r_coords r_tr = tile2_r_coords - self.img_size row_order = ('top','bottom') if tile1_c_coords > tile2_c_coords: c_tl = tile1_c_coords - self.img_size c_br = tile2_c_coords c_tr = tile2_c_coords c_bl = tile1_c_coords - self.img_size col_order = ('right','left') else: c_tl = tile2_c_coords - self.img_size c_br = tile1_c_coords c_bl = tile2_c_coords - self.img_size c_tr = tile1_c_coords col_order = ('left','right') else: pass self.overlapping_regions[ref_tile][cpl] = [r_tl, r_br, c_tl, c_br] self.overlapping_order[ref_tile][cpl] = {'row_order':row_order,'column_order':col_order} def run_tiles_organization(self): self.extract_microscope_coords() self.save_graph_original_coords() self.normalize_coords() self.save_graph_image_space_coords() self.identify_adjacent_tiles() self.determine_overlapping_regions() fname = self.experiment_fpath / 'results' / 'microscope_tile_corners_coords_pxl.npy' np.save(fname,self.tile_corners_coords_pxl) def stitch_using_coords_general(decoded_df: pd.DataFrame, tile_corners_coords_pxl: np.ndarray, reference_corner_fov_position: str, metadata: Dict, tag: str): """Function to create a stitched image using the fov coords of the stage. Args: decoded_df (pd.DataFrame): Counts after decoding tile_corners_coords_pxl (np.ndarray): Coords of the fovs according to the stage reference_corner_fov_position (str): Position of the reference corner determine by the organization stage/camera. In our setup can be: - top-left - top-right - bottom_left metadata (Dict): [description] tag (str): [description] Returns: [type]: Decoded counts with coords of the dots adjusted to the stage reference point """ logger = selected_logger() was_file = 0 if not isinstance(decoded_df, pd.DataFrame): was_file = 1 decoded_df_fpath = copy.deepcopy(decoded_df) decoded_df = pd.read_parquet(decoded_df) if decoded_df['r_px_registered'].empty: decoded_df['r_px_'+tag] = np.nan decoded_df['c_px_'+tag] = np.nan else: #fov = decoded_df.iloc[0]['fov_num'] fov = int(decoded_df.fov_num.unique()[0]) r_microscope_coords = tile_corners_coords_pxl[fov,0] c_microscope_coords = tile_corners_coords_pxl[fov,1] if reference_corner_fov_position == 'top-left': decoded_df['r_px_'+tag] = r_microscope_coords + decoded_df['r_px_registered'] decoded_df['c_px_'+tag] = c_microscope_coords + decoded_df['c_px_registered'] elif reference_corner_fov_position == 'top-right': decoded_df['r_px_'+tag] = r_microscope_coords + decoded_df['r_px_registered'] decoded_df['c_px_'+tag] = c_microscope_coords - (metadata['img_width'] - decoded_df['c_px_registered']) elif reference_corner_fov_position == 'bottom-left': decoded_df['r_px_'+tag] = r_microscope_coords + (metadata['img_height'] - decoded_df['r_px_registered']) decoded_df['c_px_'+tag] = c_microscope_coords + decoded_df['c_px_registered'] elif reference_corner_fov_position == 'bottom-right': decoded_df['r_px_'+tag] = r_microscope_coords + (metadata['img_height'] - decoded_df['r_px_registered']) decoded_df['c_px_'+tag] = c_microscope_coords - (metadata['img_width'] - decoded_df['c_px_registered']) elif reference_corner_fov_position == 'old-room-robofish2': decoded_df['r_px_'+tag] = r_microscope_coords - decoded_df['r_px_registered'] decoded_df['c_px_'+tag] = c_microscope_coords - decoded_df['c_px_registered'] else: logger.error(f"the referernce corner fov position name is wrong") sys.exit(f"the referernce corner fov position name is wrong") # decoded_df['r_px_'+tag] = r_microscope_coords - decoded_df['r_px_registered'] # decoded_df['c_px_'+tag] = c_microscope_coords - decoded_df['c_px_registered'] if was_file: decoded_df.to_parquet(decoded_df_fpath,index=False) else: return decoded_df def stitch_using_coords_general_segmented_objects(fov,obj_dict,tile_corners_coords_pxl,reference_corner_fov_position, metadata): """ Function used to stitch the segmented object used for defining the cells. """ r_microscope_coords = tile_corners_coords_pxl[fov,0] c_microscope_coords = tile_corners_coords_pxl[fov,1] if obj_dict: if reference_corner_fov_position == 'top-left': for el,coords_dict in obj_dict.items(): coords_dict['stitched_coords'] = np.vstack([r_microscope_coords + coords_dict['original_coords'][:,0], c_microscope_coords + coords_dict['original_coords'][:,1]]).T elif reference_corner_fov_position == 'top-right': for el,coords_dict in obj_dict.items(): coords_dict['stitched_coords'] = np.vstack([r_microscope_coords + coords_dict['original_coords'][:,0], c_microscope_coords - (metadata['img_width'] -coords_dict['original_coords'][:,1])]).T elif reference_corner_fov_position == 'bottom_left': for el,coords_dict in obj_dict.items(): coords_dict['stitched_coords'] = np.vstack([r_microscope_coords + (metadata['img_height'] -coords_dict['original_coords'][:,0]), c_microscope_coords + coords_dict['original_coords'][:,1]]).T return obj_dict def register_coords_obj(fov,segmentation_output_path, stitching_parameters, reference_corner_fov_position, metadata): """Function used to register the coords of the segmented object to th Args: fov ([type]): [description] segmentation_output_path ([type]): [description] """ segmented_output = pickle.load(open(segmentation_output_path / ('preprocessed_data_fov_' + str(fov) + '_mask.pkl'), 'rb')) segmented_regions = measure.regionprops(segmented_output) segmented_regions_dict = {} for prop in segmented_regions: segmented_regions_dict[str(fov)+'-'+str(prop.label)] = {} segmented_regions_dict[str(fov)+'-'+str(prop.label)]['original_coords']=prop.coords segmented_regions_dict[str(fov)+'-'+str(prop.label)]['stitched_coords']= np.nan segmented_regions_dict = stitch_using_coords_general_segmented_objects(fov,segmented_regions_dict, stitching_parameters,reference_corner_fov_position, metadata) pickle.dump(segmented_regions_dict,open(segmentation_output_path / ('registered_objs_dict_fov_' + str(fov) + '.pkl'), 'wb')) def get_all_dots_in_overlapping_regions(counts_df, chunk_coords, stitching_selected='microscope_stitched'): r_tag = 'r_px_' + stitching_selected c_tag = 'c_px_' + stitching_selected r_tl = chunk_coords[0] r_br = chunk_coords[1] c_tl = chunk_coords[2] c_br = chunk_coords[3] overlapping_ref_df = counts_df.loc[(counts_df[r_tag] > r_tl) & (counts_df[r_tag] < r_br) & (counts_df[c_tag] > c_tl) & (counts_df[c_tag] < c_br),:] return overlapping_ref_df # TODO adjust the registration with dots (triangulation) def register_cpl(cpl, chunk_coords, experiment_fpath, stitching_channel, reference_round): logger = selected_logger() registration = {} experiment_fpath = Path(experiment_fpath) try: counts1_fpath = list((experiment_fpath / 'results').glob('*decoded_fov_' + str(cpl[0]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[0]}') else: try: counts2_fpath = list((experiment_fpath / 'results').glob('*decoded_fov_' + str(cpl[1]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[1]}') else: counts1_df = pd.read_parquet(counts1_fpath) counts2_df = pd.read_parquet(counts2_fpath) count1_grp = counts1_df.loc[(counts1_df.channel == stitching_channel) & (counts1_df.round_num == reference_round),:] count2_grp = counts2_df.loc[(counts2_df.channel == stitching_channel) & (counts2_df.round_num == reference_round),:] count1_grp = counts1_df.loc[counts1_df.channel == stitching_channel,:] count2_grp = counts2_df.loc[counts2_df.channel == stitching_channel,:] overlap_count1 = get_all_dots_in_overlapping_regions(count1_grp, chunk_coords,stitching_selected='microscope_stitched') overlap_count2 = get_all_dots_in_overlapping_regions(count2_grp, chunk_coords,stitching_selected='microscope_stitched') if overlap_count1.empty or overlap_count2.empty: shift = np.array([1000,1000]) registration[cpl] = [shift, np.nan] else: # TODO # Maybe add a selction step where if the number of beads is below X the beads based registration will be run or fft based # registration if the number of beads is high enough r_tl = chunk_coords[0] c_tl = chunk_coords[2] img_shape = np.array([np.abs(chunk_coords[1]-chunk_coords[0]),np.abs(chunk_coords[3]-chunk_coords[2])]).astype('int') + 1 norm_ref_coords = overlap_count1.loc[:,['r_px_microscope_stitched','c_px_microscope_stitched']].to_numpy() -[r_tl, c_tl] norm_comp_coords = overlap_count2.loc[:,['r_px_microscope_stitched','c_px_microscope_stitched']].to_numpy() -[r_tl, c_tl] img_ref = create_fake_image(img_shape, norm_ref_coords) img_tran = create_fake_image(img_shape, norm_comp_coords) shift, error, diffphase = register_translation(img_ref, img_tran) registration[cpl] = [shift, error] return registration def register_cpl_fresh_nuclei(cpl: Tuple, chunk_coords: np.ndarray, order: dict, metadata:dict, experiment_fpath:str): """Function to register orverlapping regions of nuclear staining for stitching Args: cpl (Tuple): overlapping tiles chunk_coords (np.ndarray): coords of the overlapping region [r_tl,r_br,c_tl,c_br] order (dict): description of the position of the tiles metadata (dict): dictionary with the general experiment data experiment_fpath (str): path to the experiment to process Returns: dict: registration output [shift, error] """ logger = selected_logger() registration = {} experiment_fpath = Path(experiment_fpath) img_width = metadata['img_width'] img_height = metadata['img_height'] experiment_name = metadata['experiment_name'] error = 0 filtered_nuclei_fpath = experiment_fpath / 'fresh_tissue' / 'fresh_tissue_nuclei_preprocessed_img_data.zarr' try: st = zarr.DirectoryStore(filtered_nuclei_fpath) root = zarr.group(store=st, overwrite=False) except: logger.error(f'cannot load the zarr files with filtered nuclei') else: try: img1 = root[experiment_name + '_fresh_tissue_nuclei_fov_' + str(cpl[0])]['preprocessed_data_fov_'+str(cpl[0])][...] except: logger.error(f'image file cannot be loaded for nuclei of fov {cpl[0]}') else: try: img2 = root[experiment_name + '_fresh_tissue_nuclei_fov_' + str(cpl[1])]['preprocessed_data_fov_'+str(cpl[1])][...] except: logger.error(f'image file cannot be loaded for nuclei of fov {cpl[1]}') else: img_shape = np.array([np.abs(chunk_coords[1]-chunk_coords[0]),np.abs(chunk_coords[3]-chunk_coords[2])]).astype('int') if order == {'row_order': ('top', 'bottom'), 'column_order': ('right', 'left')}: img1_slice = img1[(img_height-img_shape[0]):img_height,0:img_shape[1]] img2_slice = img2[0:img_shape[0],(img_width-img_shape[1]):img_width] elif order == {'row_order': ('top', 'bottom'), 'column_order': ('left', 'right')}: img1_slice = img1[img_height-img_shape[0]:img_height,img_width-img_shape[1]:img_width] img2_slice = img2[0:img_shape[0],0:img_shape[1]] elif order == {'row_order': ('bottom', 'top'), 'column_order': ('left', 'right')}: img1_slice = img1[0:img_shape[0],img_width-img_shape[1]:img_width] img2_slice = img2[img_height-img_shape[0]:img_height,0:img_shape[1]] elif order == {'row_order': ('bottom', 'top'), 'column_order': ('right', 'left')}: img1_slice = img1[0:img_shape[0],0:img_shape[1]] img2_slice = img2[img_height-img_shape[0]:img_height,img_width-img_shape[1]:img_width] else: logger.error(f'unknown fovs order') error = 1 if error: shift = np.array([1000,1000]) registration[cpl] = [shift, np.nan] else: shift, error, diffphase = register_translation(img1_slice, img2_slice) registration[cpl] = [shift, error] return registration def stitching_graph(experiment_fpath, stitching_channel,tiles_org, metadata, reference_round, client, nr_dim = 2): logger = selected_logger() unfolded_overlapping_regions_dict = {key:value for (k,v) in tiles_org.overlapping_regions.items() for (key,value) in v.items()} futures = [] for cpl, chunk_coords in unfolded_overlapping_regions_dict.items(): future = client.submit(register_cpl,cpl, chunk_coords, experiment_fpath,stitching_channel, reference_round) futures.append(future) all_registrations = client.gather(futures) all_registrations = [reg for reg in all_registrations if reg ] all_registrations_dict = {} for output_dict in all_registrations: all_registrations_dict.update(output_dict) # Run registration only if there are not too many overlappig regions without # dots # counts_cpls_missing_overlapping_dots = 0 # cpls_missing_overlapping_dots = [] # for cpl, registration_output in all_registrations_dict.items(): # if np.isnan(registration_output[1]): # cpls_missing_overlapping_dots.append(cpl) # counts_cpls_missing_overlapping_dots += 1 # global_stitching_done = 0 # if len(cpls_missing_overlapping_dots) > 10: # logger.error(f"Too many cpl of fovs without overlapping reference dots") # pickle.dump([cpls_missing_overlapping_dots,counts_cpls_missing_overlapping_dots ], # open(experiment_fpath / 'results' / 'fovs_without_overlapping_reference_dots_no_global_stitching.pkl','rb')) # global_stitching_done = 0 # return tiles_org.tile_corners_coords_pxl, global_stitching_done # else: # global_stitching_done = 1 # logger.error(f"The number of cpls of fovs without overlapping reference dots is low, test global stitching") # pickle.dump([cpls_missing_overlapping_dots,counts_cpls_missing_overlapping_dots ], # open(experiment_fpath / 'results' / 'fovs_without_overlapping_reference_dots_yes_global_stitching.pkl','wb')) overlapping_coords_reorganized = {} for idx, cpl_dict in tiles_org.overlapping_regions.items(): overlapping_coords_reorganized.update(cpl_dict) all_registrations_removed_large_shift = {k:v for (k,v) in all_registrations_dict.items() if np.all(np.abs(v[0]) < 20)} cpls = all_registrations_removed_large_shift.keys() # cpls = list(unfolded_overlapping_regions_dict.keys()) total_cpls = len(cpls) nr_tiles = tiles_org.tile_corners_coords_pxl.shape[0] weights_err1 = np.zeros((total_cpls * nr_dim)) weights_err2 = np.zeros((total_cpls * nr_dim)) P = np.zeros(total_cpls * nr_dim) ZQ = np.zeros((total_cpls * nr_dim,nr_tiles * nr_dim)) weights_err = np.zeros((total_cpls * nr_dim)) for i, (a, b) in enumerate(cpls): shift = all_registrations_removed_large_shift[(a,b)][0] dr = shift[0] dc = shift[1] P[i * nr_dim] = dr P[i * nr_dim +1 ] = dc weights_err[i * nr_dim:i * nr_dim + nr_dim] = all_registrations_removed_large_shift[(a,b)][1] for i, (a, b) in enumerate(cpls): # Y row: Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a:nr_dim * a + 1] = -1 Z[nr_dim * b:nr_dim * b + 1] = 1 ZQ[i * nr_dim, :] = Z # X row Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a + 1:nr_dim * a + 2] = -1 Z[nr_dim * b + 1:nr_dim * b + 2] = 1 ZQ[i * nr_dim + 1, :] = Z lrg = linmod.LinearRegression(fit_intercept=False) lrg.fit(ZQ,P) global_translrg = lrg.coef_.reshape(nr_tiles, nr_dim) gb = -1 * (-lrg.coef_.reshape((nr_tiles, nr_dim)) \ + lrg.coef_.reshape((nr_tiles, nr_dim))[0:1, :]) global_shift = gb.astype(int) adjusted_coords = tiles_org.tile_corners_coords_pxl + global_shift # Determine shift of missing tiles out_level = 1000 low = np.where(global_shift< -out_level)[0] high = np.where(global_shift> out_level)[0] low_high = np.hstack((low,high)) missing_tiles_id = np.unique(low_high) missing_tiles_coords = tiles_org.tile_corners_coords_pxl[missing_tiles_id,:] if missing_tiles_coords.shape[0] >0: coords_cl = np.delete(tiles_org.tile_corners_coords_pxl, missing_tiles_id, 0) ad_coords_cl = np.delete(adjusted_coords, missing_tiles_id, 0 ) tst = linmod.LinearRegression(fit_intercept=False) tst.fit(coords_cl,ad_coords_cl) corrected_missing = tst.predict(missing_tiles_coords) for idx, tile_id in enumerate(missing_tiles_id): adjusted_coords[tile_id] = corrected_missing[idx] dec_fpath = (experiment_fpath / 'results').glob('*_decoded_fov*') for fpath in dec_fpath: global_stitched_decoded_df = stitch_using_coords_general(fpath, adjusted_coords, tiles_org.reference_corner_fov_position, metadata, 'global_stitched') if isinstance(global_stitched_decoded_df,pd.DataFrame): global_stitched_decoded_df.to_parquet(fpath) global_shift = tiles_org.tile_corners_coords_pxl - adjusted_coords pickle.dump(global_shift,open(experiment_fpath / 'results'/ 'stitching_global_shift.pkl','wb')) pickle.dump(adjusted_coords,open(experiment_fpath / 'results'/ 'global_stitched_coords.pkl','wb')) return adjusted_coords # return adjusted_coords, global_stitching_done def stitching_graph_fresh_nuclei(experiment_fpath,tiles_org, metadata, client, nr_dim = 2): logger = selected_logger() unfolded_overlapping_regions_dict = {key:value for (k,v) in tiles_org.overlapping_regions.items() for (key,value) in v.items()} unfolded_overlapping_order_dict = {key:value for (k,v) in tiles_org.overlapping_order.items() for (key,value) in v.items()} futures = [] for cpl, chunk_coords in unfolded_overlapping_regions_dict.items(): future = client.submit(register_cpl_fresh_nuclei,cpl, chunk_coords, unfolded_overlapping_order_dict[cpl], metadata, experiment_fpath) futures.append(future) all_registrations = client.gather(futures) all_registrations = [reg for reg in all_registrations if reg ] all_registrations_dict = {} for output_dict in all_registrations: all_registrations_dict.update(output_dict) overlapping_coords_reorganized = {} for idx, cpl_dict in tiles_org.overlapping_regions.items(): overlapping_coords_reorganized.update(cpl_dict) all_registrations_removed_large_shift = {k:v for (k,v) in all_registrations_dict.items() if np.all(np.abs(v[0]) < 20)} cpls = all_registrations_removed_large_shift.keys() # cpls = list(unfolded_overlapping_regions_dict.keys()) total_cpls = len(cpls) nr_tiles = tiles_org.tile_corners_coords_pxl.shape[0] weights_err1 = np.zeros((total_cpls * nr_dim)) weights_err2 = np.zeros((total_cpls * nr_dim)) P = np.zeros(total_cpls * nr_dim) ZQ = np.zeros((total_cpls * nr_dim,nr_tiles * nr_dim)) weights_err = np.zeros((total_cpls * nr_dim)) for i, (a, b) in enumerate(cpls): shift = all_registrations_removed_large_shift[(a,b)][0] dr = shift[0] dc = shift[1] P[i * nr_dim] = dr P[i * nr_dim +1 ] = dc weights_err[i * nr_dim:i * nr_dim + nr_dim] = all_registrations_removed_large_shift[(a,b)][1] for i, (a, b) in enumerate(cpls): # Y row: Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a:nr_dim * a + 1] = -1 Z[nr_dim * b:nr_dim * b + 1] = 1 ZQ[i * nr_dim, :] = Z # X row Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a + 1:nr_dim * a + 2] = -1 Z[nr_dim * b + 1:nr_dim * b + 2] = 1 ZQ[i * nr_dim + 1, :] = Z lrg = linmod.LinearRegression(fit_intercept=False) lrg.fit(ZQ,P) global_translrg = lrg.coef_.reshape(nr_tiles, nr_dim) gb = -1 * (-lrg.coef_.reshape((nr_tiles, nr_dim)) \ + lrg.coef_.reshape((nr_tiles, nr_dim))[0:1, :]) global_shift = gb.astype(int) adjusted_coords = tiles_org.tile_corners_coords_pxl + global_shift # Determine shift of missing tiles out_level = 1000 low = np.where(global_shift< -out_level)[0] high = np.where(global_shift> out_level)[0] low_high = np.hstack((low,high)) missing_tiles_id = np.unique(low_high) missing_tiles_coords = tiles_org.tile_corners_coords_pxl[missing_tiles_id,:] if missing_tiles_coords.shape[0] >0: coords_cl = np.delete(tiles_org.tile_corners_coords_pxl, missing_tiles_id, 0) ad_coords_cl = np.delete(adjusted_coords, missing_tiles_id, 0 ) tst = linmod.LinearRegression(fit_intercept=False) tst.fit(coords_cl,ad_coords_cl) corrected_missing = tst.predict(missing_tiles_coords) for idx, tile_id in enumerate(missing_tiles_id): adjusted_coords[tile_id] = corrected_missing[idx] dec_fpath = (experiment_fpath / 'fresh_tissue'/ 'results').glob('*_decoded_fov*') for fpath in dec_fpath: global_stitched_decoded_df = stitch_using_coords_general(fpath, adjusted_coords, tiles_org.reference_corner_fov_position, metadata, 'global_stitched_nuclei') if isinstance(global_stitched_decoded_df,pd.DataFrame): global_stitched_decoded_df.to_parquet(fpath) global_shift = tiles_org.tile_corners_coords_pxl - adjusted_coords pickle.dump(global_shift,open(experiment_fpath / 'fresh_tissue' / 'results'/ 'stitching_global_shift.pkl','wb')) pickle.dump(adjusted_coords,open(experiment_fpath / 'fresh_tissue' / 'results'/ 'global_stitched_coords.pkl','wb')) return adjusted_coords # return adjusted_coords, global_stitching_done def stitching_graph_serial_nuclei(experiment_fpath,tiles_org, metadata, registration_reference_hybridization, client, nr_dim = 2): logger = selected_logger() unfolded_overlapping_regions_dict = {key:value for (k,v) in tiles_org.overlapping_regions.items() for (key,value) in v.items()} unfolded_overlapping_order_dict = {key:value for (k,v) in tiles_org.overlapping_order.items() for (key,value) in v.items()} futures = [] for cpl, chunk_coords in unfolded_overlapping_regions_dict.items(): future = client.submit(register_cpl_fresh_nuclei,cpl, chunk_coords, unfolded_overlapping_order_dict[cpl], metadata, experiment_fpath) futures.append(future) all_registrations = client.gather(futures) all_registrations = [reg for reg in all_registrations if reg ] all_registrations_dict = {} for output_dict in all_registrations: all_registrations_dict.update(output_dict) overlapping_coords_reorganized = {} for idx, cpl_dict in tiles_org.overlapping_regions.items(): overlapping_coords_reorganized.update(cpl_dict) all_registrations_removed_large_shift = {k:v for (k,v) in all_registrations_dict.items() if np.all(np.abs(v[0]) < 20)} cpls = all_registrations_removed_large_shift.keys() # cpls = list(unfolded_overlapping_regions_dict.keys()) total_cpls = len(cpls) nr_tiles = tiles_org.tile_corners_coords_pxl.shape[0] weights_err1 = np.zeros((total_cpls * nr_dim)) weights_err2 = np.zeros((total_cpls * nr_dim)) P = np.zeros(total_cpls * nr_dim) ZQ = np.zeros((total_cpls * nr_dim,nr_tiles * nr_dim)) weights_err = np.zeros((total_cpls * nr_dim)) for i, (a, b) in enumerate(cpls): shift = all_registrations_removed_large_shift[(a,b)][0] dr = shift[0] dc = shift[1] P[i * nr_dim] = dr P[i * nr_dim +1 ] = dc weights_err[i * nr_dim:i * nr_dim + nr_dim] = all_registrations_removed_large_shift[(a,b)][1] for i, (a, b) in enumerate(cpls): # Y row: Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a:nr_dim * a + 1] = -1 Z[nr_dim * b:nr_dim * b + 1] = 1 ZQ[i * nr_dim, :] = Z # X row Z = np.zeros((nr_tiles * nr_dim)) Z[nr_dim * a + 1:nr_dim * a + 2] = -1 Z[nr_dim * b + 1:nr_dim * b + 2] = 1 ZQ[i * nr_dim + 1, :] = Z lrg = linmod.LinearRegression(fit_intercept=False) lrg.fit(ZQ,P) global_translrg = lrg.coef_.reshape(nr_tiles, nr_dim) gb = -1 * (-lrg.coef_.reshape((nr_tiles, nr_dim)) \ + lrg.coef_.reshape((nr_tiles, nr_dim))[0:1, :]) global_shift = gb.astype(int) adjusted_coords = tiles_org.tile_corners_coords_pxl + global_shift # Determine shift of missing tiles out_level = 1000 low = np.where(global_shift< -out_level)[0] high = np.where(global_shift> out_level)[0] low_high = np.hstack((low,high)) missing_tiles_id = np.unique(low_high) missing_tiles_coords = tiles_org.tile_corners_coords_pxl[missing_tiles_id,:] if missing_tiles_coords.shape[0] >0: coords_cl = np.delete(tiles_org.tile_corners_coords_pxl, missing_tiles_id, 0) ad_coords_cl = np.delete(adjusted_coords, missing_tiles_id, 0 ) tst = linmod.LinearRegression(fit_intercept=False) tst.fit(coords_cl,ad_coords_cl) corrected_missing = tst.predict(missing_tiles_coords) for idx, tile_id in enumerate(missing_tiles_id): adjusted_coords[tile_id] = corrected_missing[idx] dec_fpath = (experiment_fpath / 'results').glob('*_decoded_fov*') for fpath in dec_fpath: global_stitched_decoded_df = stitch_using_coords_general(fpath, adjusted_coords, tiles_org.reference_corner_fov_position, metadata, 'global_stitched_nuclei') if isinstance(global_stitched_decoded_df,pd.DataFrame): global_stitched_decoded_df.to_parquet(fpath) global_shift = tiles_org.tile_corners_coords_pxl - adjusted_coords pickle.dump(global_shift,open(experiment_fpath / 'results'/ 'stitching_global_shift.pkl','wb')) pickle.dump(adjusted_coords,open(experiment_fpath / 'results'/ 'global_stitched_coords.pkl','wb')) return adjusted_coords # return adjusted_coords, global_stitching_done def stitched_beads_on_nuclei_fresh_tissue(experiment_fpath:str, client, nuclei_tag:str='_ChannelCy3_Nuclei_', beads_tag:str='_ChannelEuropium_Cy3_', round_num:int = 1, overlapping_percentage:int=5, machine:str='ROBOFISH2' ): """Function tun run the stitching of the dots in the fresh images using the nuclei images as reference Args: experiment_fpath (str): path of the experiment to process client ([type]): dask client for parallel processing nuclei_tag (str, optional): Tag to identify the nuclei dataset. Defaults to '_ChannelCy3_Nuclei_'. beads_tag (str, optional): Tag to identify the beads dataset. Defaults to '_ChannelEuropium_Cy3_'. round_num (int, optional): Reference round,for the fresh tissue there is only one. Defaults to 1. overlapping_percentage (int, optional): Overlapping between the different tiles. Defaults to 5. machine (str, optional): machine running the experiment. Defaults to 'ROBOFISH2'. """ experiment_fpath = Path(experiment_fpath) fresh_tissue_path = experiment_fpath / 'fresh_tissue' beads_dataset_fpath = list(fresh_tissue_path.glob('*'+ beads_tag +'*.parquet'))[0] nuclei_dataset_fpath = list(fresh_tissue_path.glob('*'+ nuclei_tag +'*.parquet'))[0] # Collect and adjust beads dataset with missing values beads_data = Dataset() beads_data.load_dataset(beads_dataset_fpath) beads_data.dataset['processing_type'] = 'undefined' beads_data.dataset['overlapping_percentage'] = overlapping_percentage / 100 beads_data.dataset['machine'] = machine metadata_beads = beads_data.collect_metadata(beads_data.dataset) beads_org_tiles = organize_square_tiles(experiment_fpath,beads_data.dataset,metadata_beads,round_num) beads_org_tiles.run_tiles_organization() flist = list((fresh_tissue_path / 'results').glob('*decoded_fov*.parquet')) # duplicate registered for fpath in flist: data = pd.read_parquet(fpath) data['r_px_registered'] = data['r_px_original'] data['c_px_registered'] = data['c_px_original'] data['hamming_distance'] = 0 data['decoded_genes'] = 'beads' data.to_parquet(fpath) all_futures = [] for fpath in flist: future = client.submit(stitch_using_coords_general, fpath, beads_org_tiles.tile_corners_coords_pxl, beads_org_tiles.reference_corner_fov_position, metadata_beads,tag='microscope_stitched') all_futures.append(future) _ = client.gather(all_futures) io.simple_output_plotting(fresh_tissue_path, stitching_selected= 'microscope_stitched', selected_Hdistance=0, client = client, input_file_tag = 'decoded_fov', file_tag = 'stitched_microscope') # Collect and adjust nuclei dataset with missing values nuclei_data = Dataset() nuclei_data.load_dataset(nuclei_dataset_fpath) nuclei_data.dataset['processing_type'] = 'undefined' nuclei_data.dataset['overlapping_percentage'] = overlapping_percentage / 100 nuclei_data.dataset['machine'] = machine metadata_nuclei = nuclei_data.collect_metadata(nuclei_data.dataset) nuclei_org_tiles = organize_square_tiles(experiment_fpath,nuclei_data.dataset,metadata_nuclei,round_num) nuclei_org_tiles.run_tiles_organization() adjusted_coords =stitching_graph_fresh_nuclei(experiment_fpath,nuclei_org_tiles, metadata_nuclei, client, nr_dim = 2) io.simple_output_plotting(fresh_tissue_path, stitching_selected= 'global_stitched_nuclei', selected_Hdistance=0, client = client, input_file_tag = 'decoded_fov', file_tag = 'global_stitched_nuclei') # REMOVED OVERLAPPING DOTS ACCORDING TO FOV (MUCH FASTER THAN FOR GENE) # EXPECIALLY FOR LARGE AREAS WITH A LOT OF COUNTS def identify_duplicated_dots_NNDescend(ref_tiles_df: pd.DataFrame,comp_tiles_df: pd.DataFrame, stitching_selected: str,same_dot_radius: int)-> list: """Function used to identify duplicated dots for a gene in the overlapping regions. This version of the function uses the fast nearest neighbor coded in NNDescend Args: ref_tiles_df (pd.DataFrame): Counts of the reference tiles comp_tiles_df (pd.DataFrame): Counts in the comparing tiles stitching_selected (str): String that identify the coords of the pixels according to the stitching used to process the data same_dot_radius (int): searching radius used to define if two dots are the same Returns: list: dot ids to remove """ r_tag = 'r_px_' + stitching_selected c_tag = 'c_px_' + stitching_selected overlapping_ref_coords = ref_tiles_df.loc[:, [r_tag,c_tag]].to_numpy() overlapping_comp_coords = comp_tiles_df.loc[:, [r_tag,c_tag]].to_numpy() dots_ids = comp_tiles_df.loc[:, ['dot_id']].to_numpy() index = NNDescent(overlapping_ref_coords,metric='euclidean',n_neighbors=1) indices, dists = index.query(overlapping_comp_coords,k=1) idx_dists = np.where(dists < same_dot_radius)[0] dots_id_to_remove = dots_ids[idx_dists] dots_id_to_remove = list(dots_id_to_remove.reshape(dots_id_to_remove.shape[0],)) return dots_id_to_remove def identify_duplicated_dots_sklearn(ref_tiles_df: pd.DataFrame,comp_tiles_df: pd.DataFrame, stitching_selected: str,same_dot_radius: int)-> list: """Function used to identify duplicated dots for a gene in the overlapping regions. This version of the function uses the fast nearest neighbor coded in NNDescend Args: ref_tiles_df (pd.DataFrame): Counts of the reference tiles comp_tiles_df (pd.DataFrame): Counts in the comparing tiles stitching_selected (str): String that identify the coords of the pixels according to the stitching used to process the data same_dot_radius (int): searching radius used to define if two dots are the same Returns: list: dot ids to remove """ nn = NearestNeighbors(n_neighbors=1,radius=same_dot_radius, metric='euclidean',algorithm='kd_tree') r_tag = 'r_px_' + stitching_selected c_tag = 'c_px_' + stitching_selected overlapping_ref_coords = ref_tiles_df.loc[:, [r_tag,c_tag]].to_numpy() overlapping_comp_coords = comp_tiles_df.loc[:, [r_tag,c_tag]].to_numpy() dots_ids = comp_tiles_df.loc[:, ['dot_id']].to_numpy() nn.fit(overlapping_ref_coords) dists, indices = nn.kneighbors(overlapping_comp_coords, return_distance=True) idx_dists = np.where(dists <= same_dot_radius)[0] dots_id_to_remove = dots_ids[idx_dists] dots_id_to_remove = list(dots_id_to_remove.reshape(dots_id_to_remove.shape[0],)) return dots_id_to_remove def remove_overlapping_dots_fov(cpl: Tuple[int,int], chunk_coords: np.ndarray, experiment_fpath: str, stitching_selected:str, hamming_distance: float, same_dot_radius: int)-> Dict[Tuple[int,int],List[str]]: """Function that identify the overlapping dots between two different tiles. The duplicated dots for all genes are identified Args: cpl (Tuple[int,int]): Adjacent tiles to compare chunk_coords (np.ndarray): Coords of the overlapping regions between the two tiles to compare experiment_fpath (str): Path to the experiment to process stitching_selected (str): String that identify the coords of the pixels according to the stitching used to process the data hamming_distance (float): Selected distance from the code same_dot_radius (int): searching radius used to define if two dots are the same Returns: Dict[Tuple[int,int],List[str]]: {cpl:all_dots_id_to_remove} """ logger = selected_logger() all_dots_id_to_remove = [] experiment_fpath = Path(experiment_fpath) try: counts1_fpath = list((experiment_fpath / 'results').glob('*decoded*_fov_' + str(cpl[0]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[0]}') else: try: counts2_fpath = list((experiment_fpath / 'results').glob('*decoded*_fov_' + str(cpl[1]) + '.parquet'))[0] except: logger.error(f'count file missing for fov {cpl[1]}') else: counts1_df = pd.read_parquet(counts1_fpath) counts2_df =
pd.read_parquet(counts2_fpath)
pandas.read_parquet
import pandas as pd import numpy as np from typing import Union, List, Optional, Iterable import h5py ####################### ## Loading metadata ## ####################### def _load_samples_metadata(model): samples_metadata = pd.DataFrame( [ [cell, group] for group, cell_list in model.samples.items() for cell in cell_list ], columns=["sample", "group"], ) if "samples_metadata" in model.model: if len(list(model.model["samples_metadata"][model.groups[0]].keys())) > 0: _samples_metadata = pd.concat( [ pd.concat( [ pd.Series(model.model["samples_metadata"][g][k]) for k in model.model["samples_metadata"][g].keys() ], axis=1, ) for g in model.groups ], axis=0, ) _samples_metadata.columns = list( model.model["samples_metadata"][model.groups[0]].keys() ) if "group" in _samples_metadata.columns: del _samples_metadata["group"] if "sample" in _samples_metadata.columns: del _samples_metadata["sample"] samples_metadata = pd.concat( [ samples_metadata.reset_index(drop=True), _samples_metadata.reset_index(drop=True), ], axis=1, ) # Decode objects as UTF-8 strings for column in samples_metadata.columns: if samples_metadata[column].dtype == "object": try: samples_metadata[column] = [ i.decode() for i in samples_metadata[column].values ] except (UnicodeDecodeError, AttributeError): pass samples_metadata = samples_metadata.set_index("sample") return samples_metadata def _load_features_metadata(model): features_metadata = pd.DataFrame( [ [feature, view] for view, feature_list in model.features.items() for feature in feature_list ], columns=["feature", "view"], ) if "features_metadata" in model.model: if len(list(model.model["features_metadata"][model.views[0]].keys())) > 0: features_metadata_dict = { m: pd.concat( [ pd.Series(model.model["features_metadata"][m][k]) for k in model.model["features_metadata"][m].keys() ], axis=1, ) for m in model.views } for m in features_metadata_dict.keys(): features_metadata_dict[m].columns = list( model.model["features_metadata"][m].keys() ) _features_metadata =
pd.concat(features_metadata_dict, axis=0)
pandas.concat
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) error_mask = ( (oc2['4th_bday'] > collection_end) & oc2[['SDQ_SCORE', 'SDQ_REASON']].notna().any(axis=1) ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_190(): error = ErrorDefinition( code='190', description="Child has not been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been completed.", affected_fields=['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] , # AD1 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_blank = ['CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] mask = ~oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_blank].notna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_191(): error = ErrorDefinition( code='191', description="Child has been looked after continuously for at least 12 months at 31 March but one or more " "data items relating to children looked after for 12 months have been left blank.", affected_fields=['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], # OC2 ) def _validate(dfs): if ( 'OC2' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column oc2 = add_CLA_column(dfs, 'OC2') should_be_present = ['IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'] mask = oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2[should_be_present].isna().any(axis=1) error_locs = oc2[mask].index.to_list() return {'OC2': error_locs} return error, _validate def validate_607(): error = ErrorDefinition( code='607', description='Child ceased to be looked after in the year, but mother field has not been completed.', affected_fields=['DEC', 'REC', 'MOTHER', 'LS', 'SEX'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] code_list = ['V3', 'V4'] # convert to datetiime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # CEASED_TO_BE_LOOKED_AFTER = DEC is not null and REC is filled but not equal to X1 CEASED_TO_BE_LOOKED_AFTER = merged['DEC'].notna() & ((merged['REC'] != 'X1') & merged['REC'].notna()) # and <LS> not = ‘V3’ or ‘V4’ check_LS = ~(merged['LS'].isin(code_list)) # and <DEC> is in <CURRENT_COLLECTION_YEAR check_DEC = (collection_start <= merged['DEC']) & (merged['DEC'] <= collection_end) # Where <CEASED_TO_BE_LOOKED_AFTER> = ‘Y’, and <LS> not = ‘V3’ or ‘V4’ and <DEC> is in <CURRENT_COLLECTION_YEAR> and <SEX> = ‘2’ then <MOTHER> should be provided. mask = CEASED_TO_BE_LOOKED_AFTER & check_LS & check_DEC & (merged['SEX'] == '2') & (merged['MOTHER'].isna()) header_error_locs = merged.loc[mask, 'index_er'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_210(): error = ErrorDefinition( code='210', description='Children looked after for more than a week at 31 March should not have an unknown Unique Pupil Number (UPN) code of UN4.', affected_fields=['UPN', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] collection_end = dfs['metadata']['collection_end'] # convert to datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') yr = collection_end.year reference_date = ref_date = pd.to_datetime('24/03/' + str(yr), format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) # the logical way is to merge left on UPN but that will be a one to many merge and may not go as well as a many to one merge that we've been doing. merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <UPN> = 'UN4' then no episode <DECOM> must be >` = 24/03/YYYY Note: YYYY refers to the current collection year. mask = (merged['UPN'] == 'UN4') & (merged['DECOM'] >= reference_date) # error locations error_locs_header = merged.loc[mask, 'index_er'] error_locs_eps = merged.loc[mask, 'index_eps'] return {'Episodes': error_locs_eps.tolist(), 'Header': error_locs_header.unique().tolist()} return error, _validate def validate_1010(): error = ErrorDefinition( code='1010', description='This child has no episodes loaded for current year even though there was an open episode of ' + 'care at the end of the previous year, and care leaver data has been entered.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'Episodes_last' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] oc3 = dfs['OC3'] # convert DECOM to datetime, drop missing/invalid sort by CHILD then DECOM, episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last = episodes_last.dropna(subset=['DECOM']).sort_values(['CHILD', 'DECOM'], ascending=True) # Keep only the final episode for each child (ie where the following row has a different CHILD value) episodes_last = episodes_last[ episodes_last['CHILD'].shift(-1) != episodes_last['CHILD'] ] # Keep only the final episodes that were still open episodes_last = episodes_last[episodes_last['DEC'].isna()] # The remaining children ought to have episode data in the current year if they are in OC3 has_current_episodes = oc3['CHILD'].isin(episodes['CHILD']) has_open_episode_last = oc3['CHILD'].isin(episodes_last['CHILD']) error_mask = ~has_current_episodes & has_open_episode_last validation_error_locations = oc3.index[error_mask] return {'OC3': validation_error_locations.tolist()} return error, _validate def validate_525(): error = ErrorDefinition( code='525', description='A child for whom the decision to be placed for adoption has been reversed cannot be adopted during the year.', affected_fields=['DATE_PLACED_CEASED', 'DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs or 'AD1' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] ad1 = dfs['AD1'] # prepare to merge placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = placed_adoption.merge(ad1, on='CHILD', how='left', suffixes=['_placed', '_ad1']) # If <DATE_PLACED_CEASED> not Null, then <DATE_INT>; <DATE_MATCH>; <FOSTER_CARE>; <NB_ADOPTR>; <SEX_ADOPTR>; and <LS_ADOPTR> should not be provided mask = merged['DATE_PLACED_CEASED'].notna() & ( merged['DATE_INT'].notna() | merged['DATE_MATCH'].notna() | merged['FOSTER_CARE'].notna() | merged['NB_ADOPTR'].notna() | merged['SEX_ADOPTR'].notna() | merged['LS_ADOPTR'].notna()) # error locations pa_error_locs = merged.loc[mask, 'index_placed'] ad_error_locs = merged.loc[mask, 'index_ad1'] # return result return {'PlacedAdoption': pa_error_locs.tolist(), 'AD1': ad_error_locs.tolist()} return error, _validate def validate_335(): error = ErrorDefinition( code='335', description='The current foster value (0) suggests that child is not adopted by current foster carer, but last placement is A2, A3, or A5. Or the current foster value (1) suggests that child is adopted by current foster carer, but last placement is A1, A4 or A6.', affected_fields=['PLACE', 'FOSTER_CARE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'AD1' not in dfs: return {} else: episodes = dfs['Episodes'] ad1 = dfs['AD1'] # prepare to merge episodes.reset_index(inplace=True) ad1.reset_index(inplace=True) merged = episodes.merge(ad1, on='CHILD', how='left', suffixes=['_eps', '_ad1']) # Where <PL> = 'A2', 'A3' or 'A5' and <DEC> = 'E1', 'E11', 'E12' <FOSTER_CARE> should not be '0'; Where <PL> = ‘A1’, ‘A4’ or ‘A6’ and <REC> = ‘E1’, ‘E11’, ‘E12’ <FOSTER_CARE> should not be ‘1’. mask = ( merged['REC'].isin(['E1', 'E11', 'E12']) & ( (merged['PLACE'].isin(['A2', 'A3', 'A5']) & (merged['FOSTER_CARE'].astype(str) == '0')) | (merged['PLACE'].isin(['A1', 'A4', 'A6']) & (merged['FOSTER_CARE'].astype(str) == '1')) ) ) eps_error_locs = merged.loc[mask, 'index_eps'] ad1_error_locs = merged.loc[mask, 'index_ad1'] # use .unique since join is many to one return {'Episodes': eps_error_locs.tolist(), 'AD1': ad1_error_locs.unique().tolist()} return error, _validate def validate_215(): error = ErrorDefinition( code='215', description='Child has care leaver information but one or more data items relating to children looked after for 12 months have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM', 'CONVICTED', 'HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE', 'INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'] ) def _validate(dfs): if 'OC3' not in dfs or 'OC2' not in dfs: return {} else: oc3 = dfs['OC3'] oc2 = dfs['OC2'] # prepare to merge oc3.reset_index(inplace=True) oc2.reset_index(inplace=True) merged = oc3.merge(oc2, on='CHILD', how='left', suffixes=['_3', '_2']) # If any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided then <CONVICTED>; <HEALTH_CHECK>; <IMMUNISATIONS>; <TEETH_CHECK>; <HEALTH_ASSESSMENT>; <SUBSTANCE MISUSE>; <INTERVENTION_RECEIVED>; <INTERVENTION_OFFERED>; should not be provided mask = (merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) & ( merged['CONVICTED'].notna() | merged['HEALTH_CHECK'].notna() | merged['IMMUNISATIONS'].notna() | merged['TEETH_CHECK'].notna() | merged['HEALTH_ASSESSMENT'].notna() | merged[ 'SUBSTANCE_MISUSE'].notna() | merged['INTERVENTION_RECEIVED'].notna() | merged[ 'INTERVENTION_OFFERED'].notna()) # error locations oc3_error_locs = merged.loc[mask, 'index_3'] oc2_error_locs = merged.loc[mask, 'index_2'] return {'OC3': oc3_error_locs.tolist(), 'OC2': oc2_error_locs.tolist()} return error, _validate def validate_399(): error = ErrorDefinition( code='399', description='Mother field, review field or participation field are completed but ' + 'child is looked after under legal status V3 or V4.', affected_fields=['MOTHER', 'LS', 'REVIEW', 'REVIEW_CODE'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs or 'Reviews' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] reviews = dfs['Reviews'] code_list = ['V3', 'V4'] # prepare to merge episodes['index_eps'] = episodes.index header['index_hdr'] = header.index reviews['index_revs'] = reviews.index # merge merged = (episodes.merge(header, on='CHILD', how='left') .merge(reviews, on='CHILD', how='left')) # If <LS> = 'V3' or 'V4' then <MOTHER>, <REVIEW> and <REVIEW_CODE> should not be provided mask = merged['LS'].isin(code_list) & ( merged['MOTHER'].notna() | merged['REVIEW'].notna() | merged['REVIEW_CODE'].notna()) # Error locations eps_errors = merged.loc[mask, 'index_eps'] header_errors = merged.loc[mask, 'index_hdr'].unique() revs_errors = merged.loc[mask, 'index_revs'].unique() return {'Episodes': eps_errors.tolist(), 'Header': header_errors.tolist(), 'Reviews': revs_errors.tolist()} return error, _validate def validate_189(): error = ErrorDefinition( code='189', description='Child is aged 17 years or over at the beginning of the year, but an Strengths and Difficulties ' + '(SDQ) score or a reason for no Strengths and Difficulties (SDQ) score has been completed.', affected_fields=['DOB', 'SDQ_SCORE', 'SDQ_REASON'] ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] collection_start = dfs['metadata']['collection_start'] # datetime format allows appropriate comparison between dates oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # If <DOB> >17 years prior to <COLLECTION_START_DATE> then <SDQ_SCORE> and <SDQ_REASON> should not be provided mask = ((oc2['DOB'] + pd.offsets.DateOffset(years=17)) <= collection_start) & ( oc2['SDQ_REASON'].notna() | oc2['SDQ_SCORE'].notna()) # That is, raise error if collection_start > DOB + 17years oc_error_locs = oc2.index[mask] return {'OC2': oc_error_locs.tolist()} return error, _validate def validate_226(): error = ErrorDefinition( code='226', description='Reason for placement change is not required.', affected_fields=['REASON_PLACE_CHANGE', 'PLACE'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] code_list = ['T0', 'T1', 'T2', 'T3', 'T4'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # create column to see previous REASON_PLACE_CHANGE episodes = episodes.sort_values(['CHILD', 'DECOM']) episodes['PREVIOUS_REASON'] = episodes.groupby('CHILD')['REASON_PLACE_CHANGE'].shift(1) # If <PL> = 'T0'; 'T1'; 'T2'; 'T3' or 'T4' then <REASON_PLACE_CHANGE> should be null in current episode and current episode - 1 mask = episodes['PLACE'].isin(code_list) & ( episodes['REASON_PLACE_CHANGE'].notna() | episodes['PREVIOUS_REASON'].notna()) # error locations error_locs = episodes.index[mask] return {'Episodes': error_locs.tolist()} return error, _validate def validate_358(): error = ErrorDefinition( code='358', description='Child with this legal status should not be under 10.', affected_fields=['DECOM', 'DOB', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['J1', 'J2', 'J3'] # convert dates to datetime format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # Where <LS> = ‘J1’ or ‘J2’ or ‘J3’ then <DOB> should <= to 10 years prior to <DECOM> mask = merged['LS'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=10) < merged['DECOM']) # That is, raise error if DECOM > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_407(): error = ErrorDefinition( code='407', description='Reason episode ceased is Special Guardianship Order, but child has reached age 18.', affected_fields=['DEC', 'DOB', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs or 'Header' not in dfs: return {} else: episodes = dfs['Episodes'] header = dfs['Header'] code_list = ['E45', 'E46', 'E47', 'E48'] # convert dates to datetime format episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) header.reset_index(inplace=True) merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']) # If <REC> = ‘E45’ or ‘E46’ or ‘E47’ or ‘E48’ then <DOB> must be < 18 years prior to <DEC> mask = merged['REC'].isin(code_list) & (merged['DOB'] + pd.offsets.DateOffset(years=18) < merged['DEC']) # That is, raise error if DEC > DOB + 10years # error locations header_error_locs = merged.loc[mask, 'index_er'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'Header': header_error_locs.unique().tolist()} return error, _validate def validate_1007(): error = ErrorDefinition( code='1007', description='Care leaver information is not required for 17- or 18-year olds who are still looked after.', affected_fields=['DEC', 'REC', 'DOB', 'IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_end = dfs['metadata']['collection_end'] # convert dates to datetime format oc3['DOB'] = pd.to_datetime(oc3['DOB'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') # prepare to merge episodes.reset_index(inplace=True) oc3.reset_index(inplace=True) merged = episodes.merge(oc3, on='CHILD', how='left', suffixes=['_eps', '_oc3']) # If <DOB> < 19 and >= to 17 years prior to <COLLECTION_END_DATE> and current episode <DEC> and or <REC> not provided then <IN_TOUCH>, <ACTIV> and <ACCOM> should not be provided check_age = (merged['DOB'] + pd.offsets.DateOffset(years=17) <= collection_end) & ( merged['DOB'] + pd.offsets.DateOffset(years=19) > collection_end) # That is, check that 17<=age<19 check_dec_rec = merged['REC'].isna() | merged['DEC'].isna() # if either DEC or REC are absent mask = check_age & check_dec_rec & ( merged['IN_TOUCH'].notna() | merged['ACTIV'].notna() | merged['ACCOM'].notna()) # Then raise an error if either IN_TOUCH, ACTIV, or ACCOM have been provided too # error locations oc3_error_locs = merged.loc[mask, 'index_oc3'] episode_error_locs = merged.loc[mask, 'index_eps'] # one to many join implies use .unique on the 'one' return {'Episodes': episode_error_locs.tolist(), 'OC3': oc3_error_locs.unique().tolist()} return error, _validate def validate_442(): error = ErrorDefinition( code='442', description='Unique Pupil Number (UPN) field is not completed.', affected_fields=['UPN', 'LS'] ) def _validate(dfs): if ('Episodes' not in dfs) or ('Header' not in dfs): return {} else: episodes = dfs['Episodes'] header = dfs['Header'] episodes.reset_index(inplace=True) header.reset_index(inplace=True) code_list = ['V3', 'V4'] # merge left on episodes to get all children for which episodes have been recorded even if they do not exist on the header. merged = episodes.merge(header, on=['CHILD'], how='left', suffixes=['_eps', '_er']) # Where any episode present, with an <LS> not = 'V3' or 'V4' then <UPN> must be provided mask = (~merged['LS'].isin(code_list)) & merged['UPN'].isna() episode_error_locs = merged.loc[mask, 'index_eps'] header_error_locs = merged.loc[mask, 'index_er'] return {'Episodes': episode_error_locs.tolist(), # Select unique values since many episodes are joined to one header # and multiple errors will be raised for the same index. 'Header': header_error_locs.dropna().unique().tolist()} return error, _validate def validate_344(): error = ErrorDefinition( code='344', description='The record shows the young person has died or returned home to live with parent(s) or someone with parental responsibility for a continuous period of 6 months or more, but activity and/or accommodation on leaving care have been completed.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'DIED' or 'RHOM' then <ACTIV> and <ACCOM> should not be provided mask = ((oc3['IN_TOUCH'] == 'DIED') | (oc3['IN_TOUCH'] == 'RHOM')) & ( oc3['ACTIV'].notna() | oc3['ACCOM'].notna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_345(): error = ErrorDefinition( code='345', description='The data collection record shows the local authority is in touch with this young person, but activity and/or accommodation data items are zero.', affected_fields=['IN_TOUCH', 'ACTIV', 'ACCOM'] ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] # If <IN_TOUCH> = 'Yes' then <ACTIV> and <ACCOM> must be provided mask = (oc3['IN_TOUCH'] == 'YES') & (oc3['ACTIV'].isna() | oc3['ACCOM'].isna()) error_locations = oc3.index[mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_384(): error = ErrorDefinition( code='384', description='A child receiving respite care cannot be in a long-term foster placement ', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # Where <LS> = 'V3' or 'V4' then <PL> must not be 'U1' or 'U4' mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( (episodes['PLACE'] == 'U1') | (episodes['PLACE'] == 'U4')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_390(): error = ErrorDefinition( code='390', description='Reason episode ceased is adopted but child has not been previously placed for adoption.', affected_fields=['PLACE', 'REC'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # If <REC> = 'E11' or 'E12' then <PL> must be one of 'A3', 'A4', 'A5' or 'A6' mask = ((episodes['REC'] == 'E11') | (episodes['REC'] == 'E12')) & ~( (episodes['PLACE'] == 'A3') | (episodes['PLACE'] == 'A4') | (episodes['PLACE'] == 'A5') | ( episodes['PLACE'] == 'A6')) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_378(): error = ErrorDefinition( code='378', description='A child who is placed with parent(s) cannot be looked after under a single period of accommodation under Section 20 of the Children Act 1989.', affected_fields=['PLACE', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] # the & sign supercedes the ==, so brackets are necessary here mask = (episodes['PLACE'] == 'P1') & (episodes['LS'] == 'V2') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_398(): error = ErrorDefinition( code='398', description='Distance field completed but child looked after under legal status V3 or V4.', affected_fields=['LS', 'HOME_POST', 'PL_POST'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = ((episodes['LS'] == 'V3') | (episodes['LS'] == 'V4')) & ( episodes['HOME_POST'].notna() | episodes['PL_POST'].notna()) error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_451(): error = ErrorDefinition( code='451', description='Child is still freed for adoption, but freeing orders could not be applied for since 30 December 2005.', affected_fields=['DEC', 'REC', 'LS'] ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = episodes['DEC'].isna() & episodes['REC'].isna() & (episodes['LS'] == 'D1') error_locations = episodes.index[mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_519(): error = ErrorDefinition( code='519', description='Data entered on the legal status of adopters shows civil partnership couple, but data entered on genders of adopters does not show it as a couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] mask = (ad1['LS_ADOPTR'] == 'L2') & ( (ad1['SEX_ADOPTR'] != 'MM') & (ad1['SEX_ADOPTR'] != 'FF') & (ad1['SEX_ADOPTR'] != 'MF')) error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_520(): error = ErrorDefinition( code='520', description='Data entry on the legal status of adopters shows different gender married couple but data entry on genders of adopters shows it as a same gender couple.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'] ) def _validate(dfs): if 'AD1' not in dfs: return {} else: ad1 = dfs['AD1'] # check condition mask = (ad1['LS_ADOPTR'] == 'L11') & (ad1['SEX_ADOPTR'] != 'MF') error_locations = ad1.index[mask] return {'AD1': error_locations.to_list()} return error, _validate def validate_522(): error = ErrorDefinition( code='522', description='Date of decision that the child should be placed for adoption must be on or before the date that a child should no longer be placed for adoption.', affected_fields=['DATE_PLACED', 'DATE_PLACED_CEASED'] ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] # Convert to datetimes placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # Boolean mask mask = placed_adoption['DATE_PLACED_CEASED'] > placed_adoption['DATE_PLACED'] error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_563(): error = ErrorDefinition( code='563', description='The child should no longer be placed for adoption but the date of the decision that the child should be placed for adoption is blank', affected_fields=['DATE_PLACED', 'REASON_PLACED_CEASED', 'DATE_PLACED_CEASED'], ) def _validate(dfs): if 'PlacedAdoption' not in dfs: return {} else: placed_adoption = dfs['PlacedAdoption'] mask = placed_adoption['REASON_PLACED_CEASED'].notna() & placed_adoption['DATE_PLACED_CEASED'].notna() & \ placed_adoption['DATE_PLACED'].isna() error_locations = placed_adoption.index[mask] return {'PlacedAdoption': error_locations.to_list()} return error, _validate def validate_544(): error = ErrorDefinition( code='544', description="Any child who has conviction information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['CONVICTED', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] convict = oc2['CONVICTED'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = convict & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_634(): error = ErrorDefinition( code='634', description='There are entries for previous permanence options, but child has not started to be looked after from 1 April 2016 onwards.', affected_fields=['LA_PERM', 'PREV_PERM', 'DATE_PERM', 'DECOM'] ) def _validate(dfs): if 'Episodes' not in dfs or 'PrevPerm' not in dfs: return {} else: episodes = dfs['Episodes'] prevperm = dfs['PrevPerm'] collection_start = dfs['metadata']['collection_start'] # convert date field to appropriate format episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # the maximum date has the highest possibility of satisfying the condition episodes['LAST_DECOM'] = episodes.groupby('CHILD')['DECOM'].transform('max') # prepare to merge episodes.reset_index(inplace=True) prevperm.reset_index(inplace=True) merged = prevperm.merge(episodes, on='CHILD', how='left', suffixes=['_prev', '_eps']) # If <PREV_PERM> or <LA_PERM> or <DATE_PERM> provided, then at least 1 episode must have a <DECOM> later than 01/04/2016 mask = (merged['PREV_PERM'].notna() | merged['DATE_PERM'].notna() | merged['LA_PERM'].notna()) & ( merged['LAST_DECOM'] < collection_start) eps_error_locs = merged.loc[mask, 'index_eps'] prevperm_error_locs = merged.loc[mask, 'index_prev'] # return {'PrevPerm':prevperm_error_locs} return {'Episodes': eps_error_locs.unique().tolist(), 'PrevPerm': prevperm_error_locs.unique().tolist()} return error, _validate def validate_158(): error = ErrorDefinition( code='158', description='If a child has been recorded as receiving an intervention for their substance misuse problem, then the additional item on whether an intervention was offered should be left blank.', affected_fields=['INTERVENTION_RECEIVED', 'INTERVENTION_OFFERED'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] error_mask = oc2['INTERVENTION_RECEIVED'].astype(str).eq('1') & oc2['INTERVENTION_OFFERED'].notna() error_locations = oc2.index[error_mask] return {'OC2': error_locations.tolist()} return error, _validate def validate_133(): error = ErrorDefinition( code='133', description='Data entry for accommodation after leaving care is invalid. If reporting on a childs accommodation after leaving care the data entry must be valid', affected_fields=['ACCOM'], ) def _validate(dfs): if 'OC3' not in dfs: return {} else: oc3 = dfs['OC3'] valid_codes = ['B1', 'B2', 'C1', 'C2', 'D1', 'D2', 'E1', 'E2', 'G1', 'G2', 'H1', 'H2', 'K1', 'K2', 'R1', 'R2', 'S2', 'T1', 'T2', 'U1', 'U2', 'V1', 'V2', 'W1', 'W2', 'X2', 'Y1', 'Y2', 'Z1', 'Z2', '0'] error_mask = ~oc3['ACCOM'].isna() & ~oc3['ACCOM'].isin(valid_codes) error_locations = oc3.index[error_mask] return {'OC3': error_locations.tolist()} return error, _validate def validate_565(): error = ErrorDefinition( code='565', description='The date that the child started to be missing or away from placement without authorisation has been completed but whether the child was missing or away from placement without authorisation has not been completed.', affected_fields=['MISSING', 'MIS_START'] ) def _validate(dfs): if 'Missing' not in dfs: return {} else: missing = dfs['Missing'] mask = missing['MIS_START'].notna() & missing['MISSING'].isna() error_locations = missing.index[mask] return {'Missing': error_locations.to_list()} return error, _validate def validate_433(): error = ErrorDefinition( code='433', description='The reason for new episode suggests that this is a continuation episode, but the episode does not start on the same day as the last episode finished.', affected_fields=['RNE', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['original_index'] = episodes.index episodes.sort_values(['CHILD', 'DECOM', 'DEC'], inplace=True) episodes[['PREVIOUS_DEC', 'PREVIOUS_CHILD']] = episodes[['DEC', 'CHILD']].shift(1) rne_is_ongoing = episodes['RNE'].str.upper().astype(str).isin(['P', 'L', 'T', 'U', 'B']) date_mismatch = episodes['PREVIOUS_DEC'] != episodes['DECOM'] missing_date = episodes['PREVIOUS_DEC'].isna() | episodes['DECOM'].isna() same_child = episodes['PREVIOUS_CHILD'] == episodes['CHILD'] error_mask = rne_is_ongoing & (date_mismatch | missing_date) & same_child error_locations = episodes['original_index'].loc[error_mask].sort_values() return {'Episodes': error_locations.to_list()} return error, _validate def validate_437(): error = ErrorDefinition( code='437', description='Reason episode ceased is child has died or is aged 18 or over but there are further episodes.', affected_fields=['REC'], ) # !# potential false negatives, as this only operates on the current year's data def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes.sort_values(['CHILD', 'DECOM'], inplace=True) episodes[['NEXT_DECOM', 'NEXT_CHILD']] = episodes[['DECOM', 'CHILD']].shift(-1) # drop rows with missing DECOM as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) ceased_e2_e15 = episodes['REC'].str.upper().astype(str).isin(['E2', 'E15']) has_later_episode = episodes['CHILD'] == episodes['NEXT_CHILD'] error_mask = ceased_e2_e15 & has_later_episode error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_547(): error = ErrorDefinition( code='547', description="Any child who has health promotion information completed must also have immunisation, teeth check, health assessment and substance misuse problem identified fields completed.", affected_fields=['HEALTH_CHECK', 'IMMUNISATIONS', 'TEETH_CHECK', 'HEALTH_ASSESSMENT', 'SUBSTANCE_MISUSE'], ) def _validate(dfs): if 'OC2' not in dfs: return {} else: oc2 = dfs['OC2'] healthck = oc2['HEALTH_CHECK'].astype(str) == '1' immunisations = oc2['IMMUNISATIONS'].isna() teeth_ck = oc2['TEETH_CHECK'].isna() health_ass = oc2['HEALTH_ASSESSMENT'].isna() sub_misuse = oc2['SUBSTANCE_MISUSE'].isna() error_mask = healthck & (immunisations | teeth_ck | health_ass | sub_misuse) validation_error_locations = oc2.index[error_mask] return {'OC2': validation_error_locations.to_list()} return error, _validate def validate_635(): error = ErrorDefinition( code='635', description='There are entries for date of order and local authority code where previous permanence option was arranged but previous permanence code is Z1', affected_fields=['LA_PERM', 'DATE_PERM', 'PREV_PERM'] ) def _validate(dfs): if 'PrevPerm' not in dfs: return {} else: prev_perm = dfs['PrevPerm'] # raise and error if either LA_PERM or DATE_PERM are present, yet PREV_PERM is absent. mask = ((prev_perm['LA_PERM'].notna() | prev_perm['DATE_PERM'].notna()) & prev_perm['PREV_PERM'].isna()) error_locations = prev_perm.index[mask] return {'PrevPerm': error_locations.to_list()} return error, _validate def validate_550(): error = ErrorDefinition( code='550', description='A placement provider code of PR0 can only be associated with placement P1.', affected_fields=['PLACE', 'PLACE_PROVIDER'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] mask = (episodes['PLACE'] != 'P1') & episodes['PLACE_PROVIDER'].eq('PR0') validation_error_locations = episodes.index[mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_217(): error = ErrorDefinition( code='217', description='Children who are placed for adoption with current foster carers (placement types A3 or A5) must have a reason for new episode of S, T or U.', affected_fields=['PLACE', 'DECOM', 'RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') max_decom_allowed = pd.to_datetime('01/04/2015', format='%d/%m/%Y', errors='coerce') reason_new_ep = ['S', 'T', 'U'] place_codes = ['A3', 'A5'] mask = (episodes['PLACE'].isin(place_codes) & (episodes['DECOM'] >= max_decom_allowed)) & ~episodes[ 'RNE'].isin(reason_new_ep) validation_error_mask = mask validation_error_locations = episodes.index[validation_error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_518(): error = ErrorDefinition( code='518', description='If reporting legal status of adopters is L4 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L4') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_517(): error = ErrorDefinition( code='517', description='If reporting legal status of adopters is L3 then the genders of adopters should be coded as MF. MF = the adopting couple are male and female.', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L3') & ~AD1['SEX_ADOPTR'].isin(['MF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_558(): error = ErrorDefinition( code='558', description='If a child has been adopted, then the decision to place them for adoption has not been disrupted and the date of the decision that a child should no longer be placed for adoption should be left blank. if the REC code is either E11 or E12 then the DATE PLACED CEASED date should not be provided', affected_fields=['DATE_PLACED_CEASED', 'REC'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() rec_codes = ['E11', 'E12'] placeEpisodes = episodes[episodes['REC'].isin(rec_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED_CEASED'].notna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_453(): error = ErrorDefinition( code='453', description='Contradiction between placement distance in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_DISTANCE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['PL_DISTANCE'] = pd.to_numeric(episodes['PL_DISTANCE'], errors='coerce') episodes_last['PL_DISTANCE'] = pd.to_numeric(episodes_last['PL_DISTANCE'], errors='coerce') # drop rows with missing DECOM before finding idxmin/max, as invalid/missing values can lead to errors episodes = episodes.dropna(subset=['DECOM']) episodes_last = episodes_last.dropna(subset=['DECOM']) episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_dist = abs(episodes_merged['PL_DISTANCE'] - episodes_merged['PL_DISTANCE_last']) >= 0.2 error_mask = in_both_years & same_rne & last_year_open & different_pl_dist validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_516(): error = ErrorDefinition( code='516', description='The episode data submitted for this child does not show that he/she was with their former foster carer(s) during the year.If the code in the reason episode ceased is E45 or E46 the child must have a placement code of U1 to U6.', affected_fields=['REC', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} else: episodes = dfs['Episodes'] place_codes = ['U1', 'U2', 'U3', 'U4', 'U5', 'U6'] rec_codes = ['E45', 'E46'] error_mask = episodes['REC'].isin(rec_codes) & ~episodes['PLACE'].isin(place_codes) validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_511(): error = ErrorDefinition( code='511', description='If reporting that the number of person(s) adopting the looked after child is two adopters then the code should only be MM, FF or MF. MM = the adopting couple are both males; FF = the adopting couple are both females; MF = The adopting couple are male and female.', affected_fields=['NB_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] mask = AD1['NB_ADOPTR'].astype(str).eq('2') & AD1['SEX_ADOPTR'].isin(['M1', 'F1']) validation_error_mask = mask validation_error_locations = AD1.index[validation_error_mask] return {'AD1': validation_error_locations.tolist()} return error, _validate def validate_524(): error = ErrorDefinition( code='524', description='If reporting legal status of adopters is L12 then the genders of adopters should be coded as MM or FF. MM = the adopting couple are both males. FF = the adopting couple are both females', affected_fields=['LS_ADOPTR', 'SEX_ADOPTR'], ) def _validate(dfs): if 'AD1' not in dfs: return {} else: AD1 = dfs['AD1'] error_mask = AD1['LS_ADOPTR'].eq('L12') & ~AD1['SEX_ADOPTR'].isin(['MM', 'FF']) error_locations = AD1.index[error_mask] return {'AD1': error_locations.tolist()} return error, _validate def validate_441(): error = ErrorDefinition( code='441', description='Participation method indicates child was 4 years old or over at the time of the review, but the date of birth and review date indicates the child was under 4 years old.', affected_fields=['DOB', 'REVIEW', 'REVIEW_CODE'], ) def _validate(dfs): if 'Reviews' not in dfs: return {} else: reviews = dfs['Reviews'] reviews['DOB'] = pd.to_datetime(reviews['DOB'], format='%d/%m/%Y', errors='coerce') reviews['REVIEW'] = pd.to_datetime(reviews['REVIEW'], format='%d/%m/%Y', errors='coerce') reviews = reviews.dropna(subset=['REVIEW', 'DOB']) mask = reviews['REVIEW_CODE'].isin(['PN1', 'PN2', 'PN3', 'PN4', 'PN5', 'PN6', 'PN7']) & ( reviews['REVIEW'] < reviews['DOB'] + pd.offsets.DateOffset(years=4)) validation_error_mask = mask validation_error_locations = reviews.index[validation_error_mask] return {'Reviews': validation_error_locations.tolist()} return error, _validate def validate_184(): error = ErrorDefinition( code='184', description='Date of decision that a child should be placed for adoption is before the child was born.', affected_fields=['DATE_PLACED', # PlacedAdoptino 'DOB'], # Header ) def _validate(dfs): if 'Header' not in dfs or 'PlacedAdoption' not in dfs: return {} else: child_record = dfs['Header'] placed_for_adoption = dfs['PlacedAdoption'] all_data = (placed_for_adoption .reset_index() .merge(child_record, how='left', on='CHILD', suffixes=[None, '_P4A'])) all_data['DATE_PLACED'] = pd.to_datetime(all_data['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') all_data['DOB'] = pd.to_datetime(all_data['DOB'], format='%d/%m/%Y', errors='coerce') mask = (all_data['DATE_PLACED'] >= all_data['DOB']) | all_data['DATE_PLACED'].isna() validation_error = ~mask validation_error_locations = all_data[validation_error]['index'].unique() return {'PlacedAdoption': validation_error_locations.tolist()} return error, _validate def validate_612(): error = ErrorDefinition( code='612', description="Date of birth field has been completed but mother field indicates child is not a mother.", affected_fields=['SEX', 'MOTHER', 'MC_DOB'], ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] error_mask = ( ((header['MOTHER'].astype(str) == '0') | header['MOTHER'].isna()) & (header['SEX'].astype(str) == '2') & header['MC_DOB'].notna() ) validation_error_locations = header.index[error_mask] return {'Header': validation_error_locations.tolist()} return error, _validate def validate_552(): """ This error checks that the first adoption episode is after the last decision ! If there are multiple of either there may be unexpected results ! """ error = ErrorDefinition( code="552", description="Date of Decision to place a child for adoption should be on or prior to the date that the child was placed for adoption.", # Field that defines date of decision to place a child for adoption is DATE_PLACED and the start of adoption is defined by DECOM with 'A' placement types. affected_fields=['DATE_PLACED', 'DECOM'], ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: # get the required datasets placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] # keep index values so that they stay the same when needed later on for error locations placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) adoption_eps = episodes[episodes['PLACE'].isin(['A3', 'A4', 'A5', 'A6'])].copy() # find most recent adoption decision placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') # remove rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption['DATE_PLACED'].notna()] placed_adoption_inds = placed_adoption.groupby('CHILD')['DATE_PLACED'].idxmax(skipna=True) last_decision = placed_adoption.loc[placed_adoption_inds] # first time child started adoption adoption_eps["DECOM"] = pd.to_datetime(adoption_eps['DECOM'], format='%d/%m/%Y', errors='coerce') adoption_eps = adoption_eps[adoption_eps['DECOM'].notna()] adoption_eps_inds = adoption_eps.groupby('CHILD')['DECOM'].idxmin(skipna=True) # full information of first adoption first_adoption = adoption_eps.loc[adoption_eps_inds] # date of decision and date of start of adoption (DECOM) have to be put in one table merged = first_adoption.merge(last_decision, on=['CHILD'], how='left', suffixes=['_EP', '_PA']) # check to see if date of decision to place is less than or equal to date placed. decided_after_placed = merged["DECOM"] < merged["DATE_PLACED"] # find the corresponding location of error values per file. episode_error_locs = merged.loc[decided_after_placed, 'index_EP'] placedadoption_error_locs = merged.loc[decided_after_placed, 'index_PA'] return {"PlacedAdoption": placedadoption_error_locs.to_list(), "Episodes": episode_error_locs.to_list()} return error, _validate def validate_551(): error = ErrorDefinition( code='551', description='Child has been placed for adoption but there is no date of the decision that the child should be placed for adoption.', affected_fields=['DATE_PLACED', 'PLACE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placedAdoptions = dfs['PlacedAdoption'] episodes = episodes.reset_index() place_codes = ['A3', 'A4', 'A5', 'A6'] placeEpisodes = episodes[episodes['PLACE'].isin(place_codes)] merged = placeEpisodes.merge(placedAdoptions, how='left', on='CHILD').set_index('index') episodes_with_errors = merged[merged['DATE_PLACED'].isna()] error_mask = episodes.index.isin(episodes_with_errors.index) error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_557(): error = ErrorDefinition( code='557', description="Child for whom the decision was made that they should be placed for adoption has left care " + "but was not adopted and information on the decision that they should no longer be placed for " + "adoption items has not been completed.", affected_fields=['DATE_PLACED_CEASED', 'REASON_PLACED_CEASED', # PlacedAdoption 'PLACE', 'LS', 'REC'], # Episodes ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'PlacedAdoption' not in dfs: return {} else: eps = dfs['Episodes'] placed = dfs['PlacedAdoption'] eps = eps.reset_index() placed = placed.reset_index() child_placed = eps['PLACE'].isin(['A3', 'A4', 'A5', 'A6']) order_granted = eps['LS'].isin(['D1', 'E1']) not_adopted = ~eps['REC'].isin(['E11', 'E12']) & eps['REC'].notna() placed['ceased_incomplete'] = ( placed['DATE_PLACED_CEASED'].isna() | placed['REASON_PLACED_CEASED'].isna() ) eps = eps[(child_placed | order_granted) & not_adopted] eps = eps.merge(placed, on='CHILD', how='left', suffixes=['_EP', '_PA'], indicator=True) eps = eps[(eps['_merge'] == 'left_only') | eps['ceased_incomplete']] EP_errors = eps['index_EP'] PA_errors = eps['index_PA'].dropna() return { 'Episodes': EP_errors.to_list(), 'PlacedAdoption': PA_errors.to_list(), } return error, _validate def validate_207(): error = ErrorDefinition( code='207', description='Mother status for the current year disagrees with the mother status already recorded for this child.', affected_fields=['MOTHER'], ) def _validate(dfs): if 'Header' not in dfs or 'Header_last' not in dfs: return {} else: header = dfs['Header'] header_last = dfs['Header_last'] header_merged = header.reset_index().merge(header_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = header_merged['_merge'] == 'both' mother_is_different = header_merged['MOTHER'].astype(str) != header_merged['MOTHER_last'].astype(str) mother_was_true = header_merged['MOTHER_last'].astype(str) == '1' error_mask = in_both_years & mother_is_different & mother_was_true error_locations = header.index[error_mask] return {'Header': error_locations.to_list()} return error, _validate def validate_523(): error = ErrorDefinition( code='523', description="Date of decision that the child should be placed for adoption should be the same date as the decision that adoption is in the best interest (date should be placed).", affected_fields=['DATE_PLACED', 'DATE_INT'], ) def _validate(dfs): if ("AD1" not in dfs) or ("PlacedAdoption" not in dfs): return {} else: placed_adoption = dfs["PlacedAdoption"] ad1 = dfs["AD1"] # keep initial index values to be reused for locating errors later on. placed_adoption.reset_index(inplace=True) ad1.reset_index(inplace=True) # convert to datetime to enable comparison placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format="%d/%m/%Y", errors='coerce') ad1["DATE_INT"] = pd.to_datetime(ad1['DATE_INT'], format='%d/%m/%Y', errors='coerce') # drop rows where either of the required values have not been filled. placed_adoption = placed_adoption[placed_adoption["DATE_PLACED"].notna()] ad1 = ad1[ad1["DATE_INT"].notna()] # bring corresponding values together from both dataframes merged_df = placed_adoption.merge(ad1, on=['CHILD'], how='inner', suffixes=["_AD", "_PA"]) # find error values different_dates = merged_df['DATE_INT'] != merged_df['DATE_PLACED'] # map error locations to corresponding indices pa_error_locations = merged_df.loc[different_dates, 'index_PA'] ad1_error_locations = merged_df.loc[different_dates, 'index_AD'] return {"PlacedAdoption": pa_error_locations.to_list(), "AD1": ad1_error_locations.to_list()} return error, _validate def validate_3001(): error = ErrorDefinition( code='3001', description='Where care leavers information is being returned for a young person around their 17th birthday, the accommodation cannot be with their former foster carer(s).', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'OC3' not in dfs: return {} else: header = dfs['Header'] oc3 = dfs['OC3'] collection_start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') header['DOB17'] = header['DOB'] + pd.DateOffset(years=17) oc3_merged = oc3.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') accom_foster = oc3_merged['ACCOM'].str.upper().astype(str).isin(['Z1', 'Z2']) age_17_in_year = (oc3_merged['DOB17'] <= collection_end) & (oc3_merged['DOB17'] >= collection_start) error_mask = accom_foster & age_17_in_year error_locations = oc3.index[error_mask] return {'OC3': error_locations.to_list()} return error, _validate def validate_389(): error = ErrorDefinition( code='389', description='Reason episode ceased is that child transferred to care of adult social care services, but child is aged under 16.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB16'] = header['DOB'] + pd.DateOffset(years=16) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_asc = episodes_merged['REC'].str.upper().astype(str).isin(['E7']) ceased_over_16 = episodes_merged['DOB16'] <= episodes_merged['DEC'] error_mask = ceased_asc & ~ceased_over_16 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_387(): error = ErrorDefinition( code='387', description='Reason episode ceased is child moved into independent living arrangement, but the child is aged under 14.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') header['DOB14'] = header['DOB'] + pd.DateOffset(years=14) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') ceased_indep = episodes_merged['REC'].str.upper().astype(str).isin(['E5', 'E6']) ceased_over_14 = episodes_merged['DOB14'] <= episodes_merged['DEC'] dec_present = episodes_merged['DEC'].notna() error_mask = ceased_indep & ~ceased_over_14 & dec_present error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_452(): error = ErrorDefinition( code='452', description='Contradiction between local authority of placement code in the last episode of the previous year and in the first episode of the current year.', affected_fields=['PL_LA'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} if 'Episodes_last' not in dfs: return {} else: episodes = dfs['Episodes'] episodes_last = dfs['Episodes_last'] episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_last['DECOM'] = pd.to_datetime(episodes_last['DECOM'], format='%d/%m/%Y', errors='coerce') episodes_min = episodes.groupby('CHILD')['DECOM'].idxmin() episodes_last_max = episodes_last.groupby('CHILD')['DECOM'].idxmax() episodes = episodes[episodes.index.isin(episodes_min)] episodes_last = episodes_last[episodes_last.index.isin(episodes_last_max)] episodes_merged = episodes.reset_index().merge(episodes_last, how='left', on=['CHILD'], suffixes=('', '_last'), indicator=True).set_index('index') in_both_years = episodes_merged['_merge'] == 'both' same_rne = episodes_merged['RNE'] == episodes_merged['RNE_last'] last_year_open = episodes_merged['DEC_last'].isna() different_pl_la = episodes_merged['PL_LA'].astype(str) != episodes_merged['PL_LA_last'].astype(str) error_mask = in_both_years & same_rne & last_year_open & different_pl_la validation_error_locations = episodes.index[error_mask] return {'Episodes': validation_error_locations.tolist()} return error, _validate def validate_386(): error = ErrorDefinition( code='386', description='Reason episode ceased is adopted but child has reached age 18.', affected_fields=['REC'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] =
pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce')
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 29 16:27:56 2019 @author: skoebric """ import pandas as pd import numpy as np import json xl =
pd.ExcelFile('/Users/skoebric/Documents/NREL-GitHub/dGen/new_mexican_tariffs.xlsx')
pandas.ExcelFile
try: from models import DNN_CV # from sklego.metrics import p_percent_score except: from project2.api.models import DNN_CV # from project2.sklego.metrics import p_percent_score from sklearn.model_selection import RandomizedSearchCV from sklearn.ensemble import RandomForestClassifier from sklearn.pipeline import Pipeline from sklearn.utils import resample import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt class Policy: """ A policy for treatment/vaccination. """ def __init__(self, n_actions, action_set, plot_fairness=False, num_top_features=10, seed=1, n_jobs=-1, fairness=False): """ Initialise. Args: n_actions (int): the number of actions action_set (list): the set of actions """ self.n_actions = n_actions self.action_set = action_set print("Initialising policy with ", n_actions, "actions") print("A = {", action_set, "}") self.vaccines = [f'Vaccine{i}' for i in range(1, n_actions + 1)] self.symptoms = ['Covid-Recovered', 'Covid-Positive', 'No_Taste/Smell', 'Fever', 'Headache', 'Pneumonia', 'Stomach', 'Myocarditis', 'Blood-Clots'] self.comorbidities = ['Asthma', 'Obesity', 'Smoking', 'Diabetes', 'Heart-disease', 'Hypertension'] self.full_training_idxs = ['Age', 'Gender', 'Income'] + \ [f'g{i}' for i in range(1, 128 + 1)] + \ self.comorbidities + self.vaccines self.vaccination_stage = 0 self.response_parameter = "Death" self.search_pipeline = None self.seed = seed self.n_jobs = n_jobs # from get_action step self.not_vaccinated = None self.saved_vaccinated = pd.DataFrame() self.saved_dead_individuals = pd.DataFrame() # random expected utility estimations self.random_expected_utilities = [] # from observe step self.observed_utilities = [] self.observed_expected_utilities = [] self.observed_expected_utility = None # from get_utility step self.ML_expected_utilities = [] self.ML_expected_utility = None # step checker self.was_observed = 0 # list containing the policy decision self.policy_decisions = [] self.last_policy = None # Fairness self.plot_fairness = plot_fairness self.fairness = fairness # for sensitivity study self.num_top_features = num_top_features # saved values for plotting self.le30_v1 = [] self.le30_v2 = [] self.le30_v3 = [] self.bt3060_v1 = [] self.bt3060_v2 = [] self.bt3060_v3 = [] self.geq60_v1 = [] self.geq60_v2 = [] self.geq60_v3 = [] self.female_v1 = [] self.female_v2 = [] self.female_v3 = [] self.male_v1 = [] self.male_v2 = [] self.male_v3 = [] self.bt0k10k_v1 = [] self.geq10k_v1 = [] self.bt0k10k_v2 = [] self.geq10k_v2 = [] self.bt0k10k_v3 = [] self.geq10k_v3 = [] self.pa_v1 = [] self.pa_v2 = [] self.pa_v3 = [] self.py_a_v1 = [] self.py_a_v2 = [] self.py_a_v3 = [] self.pav1_y = [] self.pav2_y = [] self.pav3_y = [] self.pa_z_bt3060_v1 = [] self.pa_z_geq60_v1 = [] self.pa_z_leq30_v1 = [] self.pa_z_bt3060_v2 = [] self.pa_z_geq60_v2 = [] self.pa_z_leq30_v2 = [] self.pa_z_bt3060_v3 = [] self.pa_z_geq60_v3 = [] self.pa_z_leq30_v3 = [] self.pa_z_female_v1 = [] self.pa_z_female_v2 = [] self.pa_z_female_v3 = [] self.pa_z_male_v1 = [] self.pa_z_male_v2 = [] self.pa_z_male_v3 = [] self.pa_z_bt0k10k_v1 = [] self.pa_z_geq10k_v1 = [] self.pa_z_bt0k10k_v2 = [] self.pa_z_geq10k_v2 = [] self.pa_z_bt0k10k_v3 = [] self.pa_z_geq10k_v3 = [] # TODO: in test for development self.num_dead = [] self.num_vaccinated = [] self.save_df_not_vaccinated = [] self.save_df_vaccinated = [] def vstack_all(self): all_not_vaccinated = [] all_vaccinated = [] all_ = [] for df1, df2 in zip( self.save_df_not_vaccinated, self.save_df_vaccinated ): all_not_vaccinated.append(df1.values) all_vaccinated.append(df2.values) all_.append(np.vstack([df1.values, df2.values])) all_not_vaccinated = np.vstack(all_not_vaccinated) df1 = pd.DataFrame( all_not_vaccinated, columns=[self.symptoms+['Death']+self.full_training_idxs] ) all_vaccinated = np.vstack(all_vaccinated) df2 = pd.DataFrame( all_vaccinated, columns=[self.symptoms+['Death']+self.full_training_idxs] ) all_ = np.vstack(all_) df3 = pd.DataFrame( all_, columns=[self.symptoms + ['Death'] + self.full_training_idxs] ) return df1, df2, df3 def fairness_study(self): # #################### Creating df for fairness computations ages = [] for a in self.not_vaccinated['Age']: if a <= 30.: ages.append('leq30') elif (a > 30) and (a < 60): ages.append('bt3060') else: ages.append('geq60') incomes = [] for a in self.not_vaccinated['Income']: if a < 10000: incomes.append('bt0k10k') else: incomes.append('geq10k') df = pd.DataFrame(ages, columns=['Age']) df['Gender'] = self.not_vaccinated['Gender'].to_list() df['Income'] = incomes df['Vaccine1'] = self.not_vaccinated['Vaccine1'].to_list() df['Vaccine2'] = self.not_vaccinated['Vaccine2'].to_list() df['Vaccine3'] = self.not_vaccinated['Vaccine3'].to_list() df['Death'] = self.not_vaccinated['Death'].to_list() crosstable = pd.crosstab( index=df['Death'], columns=df['Vaccine1'], margins=True ) # P_\theta^\pi(a='Vaccines') # P_\theta^\pi(a='Vaccines') for v, pa, py_a, pa_y in zip( self.vaccines, [self.pa_v1, self.pa_v2, self.pa_v3], [self.py_a_v1, self.py_a_v2, self.py_a_v3], [self.pav1_y, self.pav2_y, self.pav3_y] ): # P_\theta^\pi(a='Vaccines') # for fairness computations pa.append( self.not_vaccinated[v].sum() / self.not_vaccinated.shape[0] ) crosstable = pd.crosstab( index=df['Death'], columns=df[v], margins=True ) # P_\theta^\pi(y='Death' | a='Vaccines') # for fairness calibration computations py_a.append( crosstable[1.0][1] / crosstable[1.0][2] ) crosstable = pd.crosstab( index=df[v], columns=df['Death'], margins=True ) # P_\theta^\pi(a='Vaccines' | y='Death') # for fairness balance computations pa_y.append( crosstable[1.0][1] / crosstable[1.0][2] ) # P_\theta^\pi(a='Vaccines' | z="Ages") for v, a, l in zip( self.vaccines, [ [self.pa_z_bt3060_v1, self.pa_z_geq60_v1, self.pa_z_leq30_v1], [self.pa_z_bt3060_v2, self.pa_z_geq60_v2, self.pa_z_leq30_v2], [self.pa_z_bt3060_v3, self.pa_z_geq60_v3, self.pa_z_leq30_v3], ], [ ['bt3060', 'geq60', 'leq30'], ['bt3060', 'geq60', 'leq30'], ['bt3060', 'geq60', 'leq30'], ] ): crosstable = pd.crosstab( index=df[v], columns=df['Age'], margins=True ) a[0].append(crosstable[l[0]][1] / crosstable[l[0]][2]) a[1].append(crosstable[l[1]][1] / crosstable[l[1]][2]) a[2].append(crosstable[l[2]][1] / crosstable[l[2]][2]) # P_\theta^\pi(a='Vaccines' | z="Genders") for v, a, l in zip( self.vaccines, [ [self.pa_z_female_v1, self.pa_z_male_v1], [self.pa_z_female_v2, self.pa_z_male_v2], [self.pa_z_female_v3, self.pa_z_male_v3], ], [ [0.0, 1.0], # 0.0 = female, 1.0 = male [0.0, 1.0], [0.0, 1.0], ] ): crosstable = pd.crosstab( index=df[v], columns=df['Gender'], margins=True ) a[0].append(crosstable[l[0]][1] / crosstable[l[0]][2]) a[1].append(crosstable[l[1]][1] / crosstable[l[1]][2]) # P_\theta^\pi(a='Vaccines' | z="Incomes") for v, a, l in zip( self.vaccines, [ [self.pa_z_bt0k10k_v1, self.pa_z_geq10k_v1], [self.pa_z_bt0k10k_v2, self.pa_z_geq10k_v2], [self.pa_z_bt0k10k_v3, self.pa_z_geq10k_v3], ], [ ['bt0k10k', 'geq10k'], ['bt0k10k', 'geq10k'], ['bt0k10k', 'geq10k'], ] ): crosstable = pd.crosstab( index=df[v], columns=df['Income'], margins=True ) a[0].append(crosstable[l[0]][1] / crosstable[l[0]][2]) a[1].append(crosstable[l[1]][1] / crosstable[l[1]][2]) def save_fairness_age(self, df): le30 = df[df["Age"] <= 30] bt3060 = df[(df["Age"] > 30) & (df["Age"] < 60)] geq60 = df[df["Age"] >= 60] self.le30_v1.append(le30.groupby("Vaccine1").size().iloc[1]) self.le30_v2.append(le30.groupby("Vaccine2").size().iloc[1]) self.le30_v3.append(le30.groupby("Vaccine3").size().iloc[1]) self.bt3060_v1.append(bt3060.groupby("Vaccine1").size().iloc[1]) self.bt3060_v2.append(bt3060.groupby("Vaccine2").size().iloc[1]) self.bt3060_v3.append(bt3060.groupby("Vaccine3").size().iloc[1]) self.geq60_v1.append(geq60.groupby("Vaccine1").size().iloc[1]) self.geq60_v2.append(geq60.groupby("Vaccine2").size().iloc[1]) self.geq60_v3.append(geq60.groupby("Vaccine3").size().iloc[1]) def save_fairness_gender(self, df): self.female_v1.append( df.groupby(["Gender", "Vaccine1"]).size().iloc[1]) self.female_v2.append( df.groupby(["Gender", "Vaccine2"]).size().iloc[1]) self.female_v3.append( df.groupby(["Gender", "Vaccine3"]).size().iloc[1]) self.male_v1.append(df.groupby(["Gender", "Vaccine1"]).size().iloc[3]) self.male_v2.append(df.groupby(["Gender", "Vaccine2"]).size().iloc[3]) self.male_v3.append(df.groupby(["Gender", "Vaccine3"]).size().iloc[3]) def save_fairness_income(self, df): bt0k10k = df[df["Income"] < 10000] geq10k = df[df["Income"] >= 10000] self.bt0k10k_v1.append(bt0k10k.groupby("Vaccine1").size().iloc[1]) self.geq10k_v1.append(geq10k.groupby("Vaccine1").size().iloc[1]) self.bt0k10k_v2.append(bt0k10k.groupby("Vaccine2").size().iloc[1]) self.geq10k_v2.append(geq10k.groupby("Vaccine2").size().iloc[1]) self.bt0k10k_v3.append(bt0k10k.groupby("Vaccine3").size().iloc[1]) self.geq10k_v3.append(geq10k.groupby("Vaccine3").size().iloc[1]) def create_new_ml_pipeline(self): """Create a pipeline with a randomized search CV and random forest classifier.""" steps = [ ('rf', RandomForestClassifier( random_state=self.seed, n_jobs=self.n_jobs, verbose=False )) ] pipeline = Pipeline(steps) param_dist = { 'rf__n_estimators': [25, 50, 100, 500, 1000], 'rf__criterion': ['gini', 'entropy'], 'rf__bootstrap': [True, False], } self.search_pipeline = RandomizedSearchCV( estimator=pipeline, param_distributions=param_dist, n_iter=20, scoring="accuracy", refit=True, cv=5, random_state=self.seed ) def save_database_and_filter_outcomes(self, A, Y): """Store dead individual who will be object of our study, because we want to understand why they come to die after have taken a vaccine and been infected by the covid-19. Also, filter outcomes to only return vaccinated individuals who got Covid-19 after vaccination.""" idx = A.index.to_list() Y.index = idx X_ = self.not_vaccinated[self.not_vaccinated.index.isin(idx)] X_ = X_.drop( self.symptoms + ["Death"] + self.vaccines, axis=1 ) # dropping old features # concatenating applied actions and observed outcomes. filtered_outcomes = pd.concat([Y, X_, A], axis=1) # saving the ones who survived. self.saved_vaccinated = pd.concat( [filtered_outcomes, self.saved_vaccinated], axis=0 ) # resetting indexes self.saved_vaccinated.index = \ [i for i in range(len(self.saved_vaccinated))] # filtering only covid-positive ones. filtered_outcomes = \ filtered_outcomes[filtered_outcomes["Covid-Positive"] == 1] # saving the ones who came to die. self.saved_dead_individuals = pd.concat( [filtered_outcomes[filtered_outcomes["Death"] == 1], self.saved_dead_individuals], axis=0 ) # resetting indexes self.saved_dead_individuals.index = \ [i for i in range(len(self.saved_dead_individuals))] self.num_vaccinated.append(self.saved_vaccinated.shape[0]) self.num_dead.append(self.saved_dead_individuals.shape[0]) return filtered_outcomes def balance_data(self): """Balance target labels in order to properly train a machine learning model.""" df_dead = self.saved_dead_individuals df_dead = resample( df_dead, replace=True, n_samples=(3 * len(df_dead)), random_state=self.seed, stratify=None ) df_not_dead = self.saved_vaccinated[ self.saved_vaccinated[self.response_parameter] == 0.0] df_not_dead = df_not_dead[df_not_dead["Covid-Positive"] == 1] df_not_dead = df_not_dead.sample( n=df_dead.shape[0], replace=True, # try False random_state=self.seed, ) df_balanced = pd.concat([df_dead, df_not_dead]) return df_balanced def sensitivity_study(self, df, num_top_features): """Sensitivity study for the correlations between features and 'Death'.""" real_base_corr = df.drop(self.symptoms, axis=1).corr() if self.fairness: real_base_corr = df.drop( self.symptoms + ["Age", "Gender", "Income"], axis=1 ).corr() real_base_neg_corr = \ real_base_corr[self.response_parameter].sort_values().head(50) real_base_pos_corr = \ real_base_corr[self.response_parameter].sort_values().tail(50) top_pos = \ real_base_pos_corr.index[(-1 - num_top_features):-1].to_list() top_neg = \ real_base_neg_corr.index[:num_top_features].to_list() relevant_features = top_neg + top_pos # always include vaccines as feature for v in self.vaccines: if v not in relevant_features: relevant_features += [v] self.relevant_features = relevant_features return relevant_features # Observe the features, treatments and outcomes of one or more individuals def observe(self, actions, outcomes): """Observe features, actions and outcomes. Args: features (t*|X| array) actions (t*|A| array) outcomes (t*|Y| array) The function is used to adapt a model to the observed outcomes, given the actions and features. I suggest you create a model that estimates P(y | x,a) and fit it as appropriate. If the model cannot be updated incrementally, you can save all observed x,a,y triplets in a database and retrain whenever you obtain new data. Pseudocode: self.data.append(features, actions, outcomes) self.model.fit(data) """ A = actions Y = outcomes # accumulating and storing database of vaccinated and dead people # and return filtered outcomes, i.e., the individuals that received # the vaccines and got covid. filtered_outcomes = self.save_database_and_filter_outcomes(A, Y) # save baseline statistics in order to be compared with # future utilities: # P_hat(D|V1 or V2 or V3): observed_P_D_given_v123 = \ sum(filtered_outcomes["Death"]) / len(self.not_vaccinated) self.observed_utilities.append(observed_P_D_given_v123) # E(Num of deaths | V1 or V2 or V3): self.observed_expected_utility = \ len(self.not_vaccinated) * observed_P_D_given_v123 self.observed_expected_utilities.append( self.observed_expected_utility) # step check self.was_observed = 1 # saving baseline for the first vaccination round if self.last_policy == "Random": self.random_expected_utilities.append( self.observed_expected_utility) print(f"Observed Expected Utility: " f"{self.observed_expected_utility}") # saving data for plotting - fairness part self.fairness_study() self.save_fairness_age(df=self.not_vaccinated) self.save_fairness_gender(df=self.not_vaccinated) self.save_fairness_income(df=self.not_vaccinated) self.save_df_not_vaccinated.append(self.not_vaccinated) def get_utility(self): """ Obtain the empirical utility of the policy on a set of one or more people. If there are t individuals with x features, and the action Args: features (t*|X| array) actions (t*|A| array) outcomes (t*|Y| array) Returns: Empirical utility of the policy on this data. """ # balance target labels in order to properly fit the ML model. df_balanced = self.balance_data() # call a new pipeline to perform a randomized CV search. self.create_new_ml_pipeline() # perform a sensitivity study (correlation study) between # features and 'Death' in order to pick up the most predictive # top 10 negative and top 10 positive features, plus actions. relevant_features = self.sensitivity_study( df=df_balanced, num_top_features=self.num_top_features ) # fit the pipeline self.search_pipeline.fit( df_balanced[relevant_features], df_balanced["Death"] ) print(f'Best Cross-Validated mean score: ' f'{self.search_pipeline.best_score_}') # pick the best fitted model model = self.search_pipeline.best_estimator_ # predict probabilities for not vaccinated individuals actions_true = np.ones(shape=(self.not_vaccinated.shape[0], 1)) actions_false = np.zeros(shape=(self.not_vaccinated.shape[0], 1)) steps = [ [actions_true, actions_false, actions_false], [actions_false, actions_true, actions_false], [actions_false, actions_false, actions_true], ] self.saved_pred = [] self.saved_pob = [] for s in steps: self.not_vaccinated['Vaccine1'] = s[0] self.not_vaccinated['Vaccine2'] = s[1] self.not_vaccinated['Vaccine3'] = s[2] self.saved_pred.append( model.predict(self.not_vaccinated[relevant_features])) self.saved_pob.append( model.predict_proba(self.not_vaccinated[relevant_features])) self.not_vaccinated['Vaccine3'] = actions_false A = np.zeros(shape=self.not_vaccinated.iloc[:, -3:].shape) A = pd.DataFrame(A, columns=self.vaccines) A.index = self.not_vaccinated.index # pick the vaccine with higher probability of survival, # and count the number of predicted death E(D|V1orV2orV3). self.ML_expected_utility = 0 for indx, indv in enumerate(self.not_vaccinated.index): decision = np.argmax( np.array([ self.saved_pob[0][indx][0], self.saved_pob[1][indx][0], self.saved_pob[2][indx][0] ]) ) self.ML_expected_utility += self.saved_pred[decision][indx] if decision == 0: A["Vaccine1"][indv] = 1 elif decision == 1: A["Vaccine2"][indv] = 1 elif decision == 2: A["Vaccine3"][indv] = 1 self.ML_expected_utilities.append(self.ML_expected_utility) print(f"ML Expected Utility: {self.ML_expected_utility}") return A, self.ML_expected_utility def get_actions(self, features): """Get actions for one or more people. Args: features (t*|X| array) Returns: actions (t*|A| array) Here you should take the action maximising expected utility according to your model. This model can be arbitrary, but should be adapted using the observe() method. Pseudocode: for action in appropriate_action_set: p = self.model.get_probabilities(features, action) u[action] = self.get_expected_utility(action, p) return argmax(u) You are expected to create whatever helper functions you need. """ # step check if (self.was_observed == 1) or (self.vaccination_stage == 0): self.was_observed = 0 else: raise ValueError("ERROR: Observe step was not applied before " "a new get_action.") # vide docstrings in this function. self.split_groups(features) # For 1st vaccination round: random decisions. # We vaccinate everybody, assuming that the vaccines are already # approved by authorities, and secure for any type (age, gender) # of people. if self.vaccination_stage == 0: for indv in self.not_vaccinated.index: self.not_vaccinated[np.random.choice(self.vaccines)][indv] = 1 A = self.not_vaccinated.iloc[:, -3:] self.vaccination_stage += 1 self.last_policy = "Random" self.policy_decisions.append(self.last_policy) return A if self.vaccination_stage > 0: # get actions based on our utility A, ML_expected_utility = self.get_utility() # security threshold to use our ML's action recommendations. if ML_expected_utility <= \ np.mean(self.random_expected_utilities): self.not_vaccinated["Vaccine1"] = A["Vaccine1"] self.not_vaccinated["Vaccine2"] = A["Vaccine2"] self.not_vaccinated["Vaccine3"] = A["Vaccine3"] self.vaccination_stage += 1 self.last_policy = "ML" self.policy_decisions.append(self.last_policy) return self.not_vaccinated.iloc[:, -3:] # if our ML model does not hit our security threshold, # then apply random decisions. else: for indv in self.not_vaccinated.index: self.not_vaccinated[np.random.choice(self.vaccines)][ indv] = 1 A = self.not_vaccinated.iloc[:, -3:] self.vaccination_stage += 1 self.last_policy = "Random" self.policy_decisions.append(self.last_policy) return A def split_groups(self, X): """From a raw sample space, we split the data in 3 groups. 1st. the not vaccinated individuals that will be object to our recommendations. 2nd. the vaccinated people that will be object to study the influences of the vaccines. 3rd. the dead individuals who we will have in order to adapt and fit a machine learning, and understand why those individuals come to die after vaccination.""" # ~Vaccine1 and ~Vaccine2 and ~Vaccine3 # goal: minimize the number of death between vaccinated people not_vaccinated = X[X['Vaccine1'] == 0] not_vaccinated = not_vaccinated[not_vaccinated['Vaccine2'] == 0] self.not_vaccinated = not_vaccinated[not_vaccinated['Vaccine3'] == 0] # Vaccine1 or Vaccine2 or Vaccine3 # goal: use this data to get a policy under an utility vaccinated = X[X['Vaccine1'] == 1] vaccinated = pd.concat([vaccinated, X[X['Vaccine2'] == 1]], axis=0) vaccinated =
pd.concat([vaccinated, X[X['Vaccine3'] == 1]], axis=0)
pandas.concat
# module for processing adjacency matrices in various ways import pandas as pd import numpy as np import csv from tqdm import tqdm import matplotlib.pyplot as plt import seaborn as sns import pymaid from tqdm import tqdm from joblib import Parallel, delayed class Adjacency_matrix(): def __init__(self, adj, input_counts, mat_type): self.skids = list(adj.index) self.pairs = Promat.get_pairs() self.input_counts = input_counts self.mat_type = mat_type # 'ad', 'aa', 'dd', 'da', 'summed' self.adj = pd.DataFrame(adj, index = self.skids, columns = self.skids) self.adj_fract = self.fraction_input_matrix() self.adj_inter = self.interlaced_matrix() self.adj_pairwise = self.average_pairwise_matrix() def fraction_input_matrix(self): adj_fract = self.adj.copy() for column in adj_fract.columns: if((self.mat_type=='aa') | (self.mat_type=='da')): axon_input = self.input_counts.loc[column].axon_input if(axon_input == 0): adj_fract.loc[:, column] = 0 if(axon_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/axon_input if((self.mat_type=='ad') | (self.mat_type=='dd')): dendrite_input = self.input_counts.loc[column].dendrite_input if(dendrite_input == 0): adj_fract.loc[:, column] = 0 if(dendrite_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/dendrite_input if((self.mat_type=='summed') | (self.mat_type not in ['aa', 'da', 'ad', 'dd']) ): all_input = self.input_counts.loc[column].dendrite_input + self.input_counts.loc[column].axon_input if(all_input == 0): adj_fract.loc[:, column] = 0 if(all_input > 0): adj_fract.loc[:, column] = adj_fract.loc[:, column]/all_input return(adj_fract) def interlaced_matrix(self, fract=True): if(fract): adj_mat = self.adj_fract.copy() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(adj_mat, self.pairs) if(fract==False): adj_mat = self.adj.copy() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(adj_mat, self.pairs) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_pairs)): brain_pair_order.append(brain_pairs.iloc[i].leftid) brain_pair_order.append(brain_pairs.iloc[i].rightid) order = brain_pair_order + list(brain_nonpaired.nonpaired) interlaced_mat = adj_mat.loc[order, order] index_df = pd.DataFrame([['pairs', Promat.get_paired_skids(skid, self.pairs)[0], skid] for skid in brain_pair_order] + [['nonpaired', skid, skid] for skid in list(brain_nonpaired.nonpaired)], columns = ['pair_status', 'pair_id', 'skid']) index = pd.MultiIndex.from_frame(index_df) interlaced_mat.index = index interlaced_mat.columns = index return(interlaced_mat) def average_pairwise_matrix(self): adj = self.adj_inter.copy() adj = adj.groupby('pair_id', axis = 'index').sum().groupby('pair_id', axis='columns').sum() order = [x[1] for x in self.adj_inter.index] # remove duplicates (in pair_ids) order_unique = [] for x in order: if (order_unique.count(x) == 0): order_unique.append(x) # order as before adj = adj.loc[order_unique, order_unique] # regenerate multiindex index = [x[0:2] for x in self.adj_inter.index] # remove skid ids from index # remove duplicates (in pair_ids) index_unique = [] for x in index: if (index_unique.count(x) == 0): index_unique.append(x) # add back appropriate multiindex index_df = pd.DataFrame(index_unique, columns = ['pair_status', 'pair_id']) index_df = pd.MultiIndex.from_frame(index_df) adj.index = index_df adj.columns = index_df # convert to average (from sum) for paired neurons adj.loc['pairs'] = adj.loc['pairs'].values/2 adj.loc['nonpaired', 'pairs'] = adj.loc['nonpaired', 'pairs'].values/2 return(adj) def downstream(self, source, threshold, exclude=[], by_group=False, exclude_unpaired = False): adj = self.adj_pairwise source_pair_id = np.unique([x[1] for x in self.adj_inter.loc[(slice(None), slice(None), source), :].index]) if(by_group): bin_mat = adj.loc[(slice(None), source_pair_id), :].sum(axis=0) > threshold bin_column = np.where(bin_mat)[0] ds_neurons = bin_mat.index[bin_column] ds_neurons_skids = [] for pair in ds_neurons: if((pair[0] == 'pairs') & (pair[1] not in exclude)): ds_neurons_skids.append(pair[1]) ds_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude) & (exclude_unpaired==False)): ds_neurons_skids.append(pair[1]) return(ds_neurons_skids) if(by_group==False): bin_mat = adj.loc[(slice(None), source_pair_id), :] > threshold bin_column = np.where(bin_mat.sum(axis = 0) > 0)[0] ds_neurons = bin_mat.columns[bin_column] bin_row = np.where(bin_mat.sum(axis = 1) > 0)[0] us_neurons = bin_mat.index[bin_row] ds_neurons_skids = [] for pair in ds_neurons: if((pair[0] == 'pairs') & (pair[1] not in exclude)): ds_neurons_skids.append(pair[1]) ds_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude) & (exclude_unpaired==False)): ds_neurons_skids.append(pair[1]) source_skids = [] for pair in us_neurons: if(pair[0] == 'pairs'): source_skids.append(pair[1]) source_skids.append(Promat.identify_pair(pair[1], self.pairs)) if(pair[0] == 'nonpaired'): source_skids.append(pair[1]) edges = [] for pair in us_neurons: if(pair[0] == 'pairs'): specific_ds = adj.loc[('pairs', pair[1]), bin_mat.loc[('pairs', pair[1]), :]].index if(exclude_unpaired): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[0]=='pairs') & (x[1] not in exclude)] if(exclude_unpaired==False): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[1] not in exclude)] for edge in specific_ds_edges: edges.append(edge) if(pair[0] == 'nonpaired'): specific_ds = adj.loc[('nonpaired', pair[1]), bin_mat.loc[('nonpaired', pair[1]), :]].index if(exclude_unpaired): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[0]=='pairs') & (x[1] not in exclude)] if(exclude_unpaired==False): specific_ds_edges = [[pair[1], x[1]] for x in specific_ds if (x[1] not in exclude)] for edge in specific_ds_edges: edges.append(edge) return(source_skids, ds_neurons_skids, edges) def upstream(self, source, threshold, exclude = []): adj = self.adj_pairwise source_pair_id = np.unique([x[1] for x in self.adj_inter.loc[(slice(None), slice(None), source), :].index]) bin_mat = adj.loc[:, (slice(None), source_pair_id)] > threshold bin_row = np.where(bin_mat.sum(axis = 1) > 0)[0] us_neuron_pair_ids = bin_mat.index[bin_row] us_neurons_skids = [] for pair in us_neuron_pair_ids: if((pair[0] == 'pairs') & (pair[1] not in exclude)): us_neurons_skids.append(pair[1]) us_neurons_skids.append(Promat.identify_pair(pair[1], self.pairs)) if((pair[0] == 'nonpaired') & (pair[1] not in exclude)): us_neurons_skids.append(pair[1]) us_neuron_pair_ids = Promat.extract_pairs_from_list(us_neurons_skids, self.pairs) us_neuron_pair_ids = list(us_neuron_pair_ids[0].leftid) + list(us_neuron_pair_ids[2].nonpaired) edges = [] for pair in us_neuron_pair_ids: specific_ds = bin_mat.loc[(slice(None), pair), bin_mat.loc[(slice(None), pair), :].values[0]].columns specific_ds_edges = [[pair, x[1]] for x in specific_ds] for edge in specific_ds_edges: edges.append(edge) return(us_neurons_skids, edges) def downstream_multihop(self, source, threshold, min_members=0, hops=10, exclude=[], strict=False, allow_source_ds=False): if(allow_source_ds==False): _, ds, edges = self.downstream(source, threshold, exclude=(source + exclude)) if(allow_source_ds): _, ds, edges = self.downstream(source, threshold, exclude=(exclude)) left = Promat.get_hemis('left') right = Promat.get_hemis('right') _, ds = self.edge_threshold(edges, threshold, direction='downstream', strict=strict, left=left, right=right) if(allow_source_ds==False): before = source + ds if(allow_source_ds): before = ds layers = [] layers.append(ds) for i in range(0,(hops-1)): source = ds _, ds, edges = self.downstream(source, threshold, exclude=before) _, ds = self.edge_threshold(edges, threshold, direction='downstream', strict=strict, left=left, right=right) if((len(ds)!=0) & (len(ds)>=min_members)): layers.append(ds) before = before + ds return(layers) def upstream_multihop(self, source, threshold, min_members=10, hops=10, exclude=[], strict=False, allow_source_us=False): if(allow_source_us==False): us, edges = self.upstream(source, threshold, exclude=(source + exclude)) if(allow_source_us): us, edges = self.upstream(source, threshold, exclude=(exclude)) _, us = self.edge_threshold(edges, threshold, direction='upstream', strict=strict) if(allow_source_us==False): before = source + us if(allow_source_us): before = us layers = [] layers.append(us) for i in range(0,(hops-1)): source = us us, edges = self.upstream(source, threshold, exclude = before) _, us = self.edge_threshold(edges, threshold, direction='upstream', strict=strict) if((len(us)!=0) & (len(us)>=min_members)): layers.append(us) before = before + us return(layers) # checking additional threshold criteria after identifying neurons over summed threshold # left and right are only necessary when nonpaired neurons are included def edge_threshold(self, edges, threshold, direction, strict=False, include_nonpaired=True, left=[], right=[]): adj = self.adj_inter.copy() all_edges = [] for edge in edges: print(edge) specific_edges = adj.loc[(slice(None), edge[0]), (slice(None), edge[1])] us_pair_status = adj.loc[(slice(None), slice(None), edge[0]), :].index[0][0] ds_pair_status = adj.loc[(slice(None), slice(None), edge[1]), :].index[0][0] # note that edge weights in 'left', 'right' columns refer to %input onto the dendrite of the left or right hemisphere downstream neuron # the 'type' column indicates whether the edge is contralateral/ipsilateral (this can allow one to determine whether the signal originated on the left or right side if that's important) # note: the split_paired_edges() method takes the output of threshold_edge_list() and splits these paired edges so that it becomes more explicit which hemisphere the upstream neuron belongs to # check for paired connections if((us_pair_status == 'pairs') & (ds_pair_status == 'pairs')): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0,0], specific_edges.iloc[1,1], False, 'ipsilateral', 'paired','paired'], [edge[0], edge[1], specific_edges.iloc[1,0], specific_edges.iloc[0,1], False, 'contralateral', 'paired','paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(strict==True): # is each edge weight over threshold? for index in specific_edges.index: if((specific_edges.loc[index].left>threshold) & (specific_edges.loc[index].right>threshold)): specific_edges.loc[index, 'overthres'] = True if(strict==False): # is average edge weight over threshold for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)/2) > threshold): specific_edges.loc[index, 'overthres'] = True # are both edges present? for index in specific_edges.index: if((specific_edges.loc[index].left==0) | (specific_edges.loc[index].right==0)): specific_edges.loc[index, 'overthres'] = False all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges to downstream nonpaired neurons if((us_pair_status == 'pairs') & (ds_pair_status == 'nonpaired') & (include_nonpaired==True)): if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0].values[0], 0, False, 'ipsilateral', 'paired', 'nonpaired'], [edge[0], edge[1], specific_edges.iloc[1].values[0], 0, False, 'contralateral', 'paired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, specific_edges.iloc[0].values[0], False, 'contralateral', 'paired', 'nonpaired'], [edge[0], edge[1], 0, specific_edges.iloc[1].values[0], False, 'ipsilateral', 'paired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # don't check both because one will be missing # strict==True/False doesn't apply for the same reason for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)>threshold)): specific_edges.loc[index, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges from upstream nonpaired neurons if((us_pair_status == 'nonpaired') & (ds_pair_status == 'pairs') & (include_nonpaired==True)): if(edge[0] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0, 0], 0, False, 'ipsilateral', 'nonpaired', 'paired'], [edge[0], edge[1], 0, specific_edges.iloc[0, 1], False, 'contralateral', 'nonpaired', 'paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[0] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], specific_edges.iloc[0, 0], 0, False, 'contralateral', 'nonpaired', 'paired'], [edge[0], edge[1], 0, specific_edges.iloc[0, 1], False, 'ipsilateral', 'nonpaired', 'paired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # don't check both because one will be missing # strict==True/False doesn't apply for the same reason for index in specific_edges.index: if(((specific_edges.loc[index].left + specific_edges.loc[index].right)>threshold)): specific_edges.loc[index, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges.append(specific_edges.values[1]) # check for edges between two nonpaired neurons if((us_pair_status == 'nonpaired') & (ds_pair_status == 'nonpaired') & (include_nonpaired==True)): edge_weight = specific_edges.values[0][0] if(edge[0] in left): if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, edge_weight, False, 'contralateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], edge_weight, 0, False, 'ipsilateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[0] in right): if(edge[1] in left): specific_edges = pd.DataFrame([[edge[0], edge[1], edge_weight, 0, False, 'contralateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(edge[1] in right): specific_edges = pd.DataFrame([[edge[0], edge[1], 0, edge_weight, False, 'ipsilateral', 'nonpaired', 'nonpaired']], columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) # is edge over threshold? # only one edge so strict==True/False doesn't apply if(edge_weight>threshold): specific_edges.loc[:, 'overthres'] = True all_edges.append(specific_edges.values[0]) all_edges = pd.DataFrame(all_edges, columns = ['upstream_pair_id', 'downstream_pair_id', 'left', 'right', 'overthres', 'type', 'upstream_status', 'downstream_status']) if(direction=='downstream'): partner_skids = np.unique(all_edges[all_edges.overthres==True].downstream_pair_id) # identify downstream pairs if(direction=='upstream'): partner_skids = np.unique(all_edges[all_edges.overthres==True].upstream_pair_id) # identify upstream pairs partner_skids = [x[2] for x in adj.loc[(slice(None), partner_skids), :].index] # convert from pair_id to skids return(all_edges, partner_skids) # select edges from results of edge_threshold that are over threshold; include non_paired edges as specified by user def select_edges(self, pair_id, threshold, edges_only=False, include_nonpaired=[], exclude_nonpaired=[], left=[], right=[]): _, ds, ds_edges = self.downstream(pair_id, threshold) ds_edges, _ = self.edge_threshold(ds_edges, threshold, 'downstream', include_nonpaired=include_nonpaired, left=left, right=right) overthres_ds_edges = ds_edges[ds_edges.overthres==True] overthres_ds_edges.reset_index(inplace=True) overthres_ds_edges.drop(labels=['index', 'overthres'], axis=1, inplace=True) if(edges_only==False): return(overthres_ds_edges, np.unique(overthres_ds_edges.downstream_pair_id)) if(edges_only): return(overthres_ds_edges) # generate edge list for whole matrix with some threshold def threshold_edge_list(self, all_sources, matrix_nonpaired, threshold, left, right): all_edges = Parallel(n_jobs=-1)(delayed(self.select_edges)(pair, threshold, edges_only=True, include_nonpaired=matrix_nonpaired, left=left, right=right) for pair in tqdm(all_sources)) all_edges_combined = [x for x in all_edges if type(x)==pd.DataFrame] all_edges_combined = pd.concat(all_edges_combined, axis=0) all_edges_combined.reset_index(inplace=True, drop=True) return(all_edges_combined) # convert paired edge list with pair-wise threshold back to normal edge list, input from threshold_edge_list() # note that neurons with bilateral dendrites aren't treated in any special way, so they may be indicated as contralateral edges even if that's inaccurate/complicated def split_paired_edges(self, all_edges_combined, left, right, flip_weirdos=True): pairs = self.pairs # note that edge_weights are from the perspective of the downstream neuron, i.e. %input onto their dendrite all_edges_combined_split = [] for i in range(len(all_edges_combined.index)): row = all_edges_combined.iloc[i] if((row.upstream_status=='paired') & (row.downstream_status=='paired')): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), Promat.identify_pair(row.downstream_pair_id, pairs), 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) # note that pair_ids are really skeleton IDs for nonpaired neurons; this allows one to compare to left/right annotations # this comparison is required because the location of nonpaired -> pair edges depends on whether the nonpaired is left or right if((row.upstream_status=='nonpaired') & (row.downstream_status=='paired')): if(row.upstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.upstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, Promat.identify_pair(row.downstream_pair_id, pairs), 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) # use the downstream_pair_id because this is really just skeleton ID for nonpaired neurons # therefore one can compare to left/right annotations to determine which hemisphere it belongs to if((row.upstream_status=='paired') & (row.downstream_status=='nonpaired')): if(row.downstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.downstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([Promat.identify_pair(row.upstream_pair_id, pairs), row.downstream_pair_id, 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) # use the downstream_pair_id because this is really just skeleton ID for nonpaired neurons # therefore one can compare to left/right annotations to determine which hemisphere it belongs to if((row.upstream_status=='nonpaired') & (row.downstream_status=='nonpaired')): if(row.downstream_pair_id in left): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'left', row.left, row.type, row.upstream_status, row.downstream_status]) if(row.downstream_pair_id in right): if(row.type=='ipsilateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'right', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) if(row.type=='contralateral'): all_edges_combined_split.append([row.upstream_pair_id, row.downstream_pair_id, 'left', 'right', row.right, row.type, row.upstream_status, row.downstream_status]) all_edges_combined_split = pd.DataFrame(all_edges_combined_split, columns = ['upstream_skid', 'downstream_skid', 'upstream_side', 'downstream_side', 'edge_weight', 'type', 'upstream_status', 'downstream_status']) return(all_edges_combined_split) # generate edge list for whole matrix def edge_list(self, exclude_loops=False): edges = [] for i in range(len(self.adj.index)): for j in range(len(self.adj.columns)): if(exclude_loops): if((self.adj.iloc[i, j]>0) & (i!=j)): edges.append([self.adj.index[i], self.adj.columns[j]]) if(exclude_loops==False): if(self.adj.iloc[i, j]>0): edges.append([self.adj.index[i], self.adj.columns[j]]) edges = pd.DataFrame(edges, columns = ['upstream_pair_id', 'downstream_pair_id']) return(edges) # generate a binary connectivity matrix that displays number of hops between neuron types def hop_matrix(self, layer_id_skids, source_leftid, destination_leftid, include_start=False): mat = pd.DataFrame(np.zeros(shape = (len(source_leftid), len(destination_leftid))), index = source_leftid, columns = destination_leftid) for index in mat.index: data = layer_id_skids.loc[index, :] for i, hop in enumerate(data): for column in mat.columns: if(column in hop): if(include_start==True): # if the source of the hop signal is the first layer mat.loc[index, column] = i if(include_start==False): # if the first layer is the first layer downstream of source mat.loc[index, column] = i+1 max_value = mat.values.max() mat_plotting = mat.copy() for index in mat_plotting.index: for column in mat_plotting.columns: if(mat_plotting.loc[index, column]>0): mat_plotting.loc[index, column] = 1 - (mat_plotting.loc[index, column] - max_value) return(mat, mat_plotting) class Promat(): # default method to import pair list and process it to deal with duplicated neurons @staticmethod def get_pairs(pairs_path='data/pairs/pairs-2021-04-06.csv', flip_weirdos=True): print(f'Path to pairs list is: {pairs_path}') pairs = pd.read_csv(pairs_path, header = 0) # import pairs, manually determined with help from <NAME> and <NAME>'s scripts pairs = pairs.loc[:, ['leftid', 'rightid']] # only include useful columns # duplicated right-side neurons to throw out for simplicity duplicated = pymaid.get_skids_by_annotation('mw duplicated neurons to delete') duplicated_index = np.where(sum([pairs.rightid==x for x in duplicated])==1)[0] pairs = pairs.drop(duplicated_index) # change left/right ids of contra-contra neurons so they behave properly in downstream analysis # these neurons have somas on one brain hemisphere and dendrites/axons on the other # and so they functionally all completely contralateral and can therefore be considered ipsilateral neurons if(flip_weirdos): # identify contra-contra neurons contra_contra = np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite')) contra_contra_pairs = Promat.extract_pairs_from_list(contra_contra, pairs)[0] if(len(contra_contra_pairs)>0): # flip left/right neurons in contra-contra neurons for index in contra_contra_pairs.index: cc_left = contra_contra_pairs.loc[index, 'leftid'] cc_right = contra_contra_pairs.loc[index, 'rightid'] pairs.loc[pairs[pairs.leftid==cc_left].index, 'rightid'] = cc_left pairs.loc[pairs[pairs.leftid==cc_left].index, 'leftid'] = cc_right return(pairs) # returns all skids in left or right side of the brain, depending on whether side = 'left' or 'right' def get_hemis(side=None, flip_weirdos=True): left = pymaid.get_skids_by_annotation('mw left') right = pymaid.get_skids_by_annotation('mw right') if(flip_weirdos): # identifying contra-contra neurons so they can be flipped to opposite side of brain neurons_to_flip = np.intersect1d(pymaid.get_skids_by_annotation('mw contralateral axon'), pymaid.get_skids_by_annotation('mw contralateral dendrite')) neurons_to_flip_left = [skid for skid in neurons_to_flip if skid in left] neurons_to_flip_right = [skid for skid in neurons_to_flip if skid in right] # removing neurons_to_flip and adding to the other side left = list(np.setdiff1d(left, neurons_to_flip_left)) + neurons_to_flip_right right = list(np.setdiff1d(right, neurons_to_flip_right)) + neurons_to_flip_left if(side=='left'): return(left) if(side=='right'): return(right) if(side==None): return([left, right]) # converts any df with df.index = list of skids to a multiindex with ['pair_status', 'pair_id', 'skid'] # 'pair_status': pairs / nonpaired # 'pair_id': left skid of a pair or simply the skid of a nonpaired neuron @staticmethod def convert_df_to_pairwise(df, pairs=None): if(pairs==None): pairs = Promat.get_pairs() brain_pairs, brain_unpaired, brain_nonpaired = Promat.extract_pairs_from_list(df.index, pairList = pairs) # left_right interlaced order for brain matrix brain_pair_order = [] for i in range(0, len(brain_pairs)): brain_pair_order.append(brain_pairs.iloc[i].leftid) brain_pair_order.append(brain_pairs.iloc[i].rightid) order = brain_pair_order + list(brain_nonpaired.nonpaired) interlaced = df.loc[order, :] index_df = pd.DataFrame([['pairs', Promat.get_paired_skids(skid, pairs)[0], skid] for skid in brain_pair_order] + [['nonpaired', skid, skid] for skid in list(brain_nonpaired.nonpaired)], columns = ['pair_status', 'pair_id', 'skid']) index = pd.MultiIndex.from_frame(index_df) interlaced.index = index return(interlaced) # trim out neurons not currently in the brain matrix @staticmethod def trim_missing(skidList, brainMatrix): trimmedList = [] for i in skidList: if(i in brainMatrix.index): trimmedList.append(i) else: print("*WARNING* skid: %i is not in whole brain matrix" % (i)) return(trimmedList) # identify skeleton ID of hemilateral neuron pair, based on CSV pair list @staticmethod def identify_pair(skid, pairList): pair_skid = [] if(skid in pairList["leftid"].values): pair_skid = pairList["rightid"][pairList["leftid"]==skid].iloc[0] if(skid in pairList["rightid"].values): pair_skid = pairList["leftid"][pairList["rightid"]==skid].iloc[0] if((skid not in pairList['rightid'].values) & (skid not in pairList['leftid'].values)): print(f'skid {skid} is not in paired list') pair_skid = skid return(pair_skid) # returns paired skids in array [left, right]; can input either left or right skid of a pair to identify @staticmethod def get_paired_skids(skid, pairList): if(type(skid)!=list): if(skid in pairList["leftid"].values): pair_right = pairList["rightid"][pairList["leftid"]==skid].iloc[0] pair_left = skid if(skid in pairList["rightid"].values): pair_left = pairList["leftid"][pairList["rightid"]==skid].iloc[0] pair_right = skid if((skid in pairList["leftid"].values) == False and (skid in pairList["rightid"].values) == False): print(f"skid {skid} is not in paired list") return([skid]) return([pair_left, pair_right]) if(type(skid)==list): data = [Promat.get_paired_skids(x, pairList) for x in skid] df = pd.DataFrame(data, columns = ['leftid', 'rightid']) return(df) # converts array of skids into left-right pairs in separate columns # puts unpaired and nonpaired neurons in different lists @staticmethod def extract_pairs_from_list(skids, pairList): pairs = pd.DataFrame([], columns = ['leftid', 'rightid']) unpaired = pd.DataFrame([], columns = ['unpaired']) nonpaired = pd.DataFrame([], columns = ['nonpaired']) for i in skids: if((int(i) not in pairList.leftid.values) & (int(i) not in pairList.rightid.values)): nonpaired = nonpaired.append({'nonpaired': int(i)}, ignore_index=True) continue if((int(i) in pairList["leftid"].values) & (Promat.get_paired_skids(int(i), pairList)[1] in skids)): pair = Promat.get_paired_skids(int(i), pairList) pairs = pairs.append({'leftid': pair[0], 'rightid': pair[1]}, ignore_index=True) if(((int(i) in pairList["leftid"].values) & (Promat.get_paired_skids(int(i), pairList)[1] not in skids)| (int(i) in pairList["rightid"].values) & (Promat.get_paired_skids(int(i), pairList)[0] not in skids))): unpaired = unpaired.append({'unpaired': int(i)}, ignore_index=True) pairs = pd.DataFrame(pairs) unpaired = pd.DataFrame(unpaired) nonpaired =
pd.DataFrame(nonpaired)
pandas.DataFrame
import datetime import hashlib import os import time from warnings import ( catch_warnings, simplefilter, ) import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, concat, date_range, timedelta_range, ) import pandas._testing as tm from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, safe_close, ) _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) from pandas.io.pytables import ( HDFStore, read_hdf, ) pytestmark = pytest.mark.single_cpu def test_context(setup_path): with tm.ensure_clean(setup_path) as path: try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass with tm.ensure_clean(setup_path) as path: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame def test_no_track_times(setup_path): # GH 32682 # enables to set track_times (see `pytables` `create_table` documentation) def checksum(filename, hash_factory=hashlib.md5, chunk_num_blocks=128): h = hash_factory() with open(filename, "rb") as f: for chunk in iter(lambda: f.read(chunk_num_blocks * h.block_size), b""): h.update(chunk) return h.digest() def create_h5_and_return_checksum(track_times): with ensure_clean_path(setup_path) as path: df = DataFrame({"a": [1]}) with HDFStore(path, mode="w") as hdf: hdf.put( "table", df, format="table", data_columns=True, index=None, track_times=track_times, ) return checksum(path) checksum_0_tt_false = create_h5_and_return_checksum(track_times=False) checksum_0_tt_true = create_h5_and_return_checksum(track_times=True) # sleep is necessary to create h5 with different creation time time.sleep(1) checksum_1_tt_false = create_h5_and_return_checksum(track_times=False) checksum_1_tt_true = create_h5_and_return_checksum(track_times=True) # checksums are the same if track_time = False assert checksum_0_tt_false == checksum_1_tt_false # checksums are NOT same if track_time = True assert checksum_0_tt_true != checksum_1_tt_true def test_iter_empty(setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @pytest.mark.filterwarnings("ignore:object name:tables.exceptions.NaturalNameWarning") def test_contains(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None msg = "'NoneType' object has no attribute 'startswith'" with pytest.raises(Exception, match=msg): store.select("df2") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(where, expected): # GH10143 objs = { "df1": DataFrame([1, 2, 3]), "df2": DataFrame([4, 5, 6]), "df3": DataFrame([6, 7, 8]), "df4": DataFrame([9, 10, 11]), "s1": Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: msg = f"'HDFStore' object has no attribute '{x}'" with pytest.raises(AttributeError, match=msg): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, f"_{x}") def test_store_dropna(setup_path): df_with_missing = DataFrame( {"col1": [0.0, np.nan, 2.0], "col2": [1.0, np.nan, np.nan]}, index=list("abc"), ) df_without_missing = DataFrame( {"col1": [0.0, 2.0], "col2": [1.0, np.nan]}, index=list("ac") ) # # Test to make sure defaults are to not drop. # # Corresponding to Issue 9382 with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table") reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=False) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_with_missing, reloaded) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df", format="table", dropna=True) reloaded = read_hdf(path, "df") tm.assert_frame_equal(df_without_missing, reloaded) def test_to_hdf_with_min_itemsize(setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "ss3"), concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal(read_hdf(path, "ss4"), concat([df["B"], df2["B"]])) @pytest.mark.parametrize("format", ["fixed", "table"]) def test_to_hdf_errors(format, setup_path): data = ["\ud800foo"] ser = Series(data, index=Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_create_table_index(setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append("f2", df, index=["string"], data_columns=["string", "string2"]) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) msg = "cannot create table index on a Fixed format store" with pytest.raises(TypeError, match=msg): store.create_table_index("f2") def test_create_table_index_data_columns_argument(setup_path): # GH 28156 with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True msg = "'Cols' object has no attribute 'string2'" with pytest.raises(AttributeError, match=msg): col("f", "string2").is_indexed # try to index a col which isn't a data_column msg = ( "column string2 is not a data_column.\n" "In order to read column string2 you must reload the dataframe \n" "into HDFStore and include string2 with the data_columns argument." ) with pytest.raises(AttributeError, match=msg): store.create_table_index("f", columns=["string2"]) def test_mi_data_columns(setup_path): # GH 14435 idx = MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_table_mixed_dtypes(setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[df.index[3:6], ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_calendar_roundtrip_issue(setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_remove(setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_same_name_scoping(setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(20, 2), index=date_range("20130101", periods=20)) store.put("df", df, format="table") expected = df[df.index > Timestamp("20130105")] result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) # changes what 'datetime' points to in the namespace where # 'select' does the lookup from datetime import datetime # noqa:F401 # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_store_index_name(setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(table_format, setup_path): # GH #13492 idx = Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @pytest.mark.filterwarnings("ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning") def test_overwrite_node(setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_coordinates(setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append("df", df) # all c = store.select_as_coordinates("df") assert (c.values == np.arange(len(df.index))).all() # get coordinates back & test vs frame _maybe_remove(store, "df") df = DataFrame({"A": range(5), "B": range(5)}) store.append("df", df) c = store.select_as_coordinates("df", ["index<3"]) assert (c.values == np.arange(3)).all() result = store.select("df", where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates("df", ["index>=3", "index<=4"]) assert (c.values == np.arange(2) + 3).all() result = store.select("df", where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables
_maybe_remove(store, "df1")
pandas.tests.io.pytables.common._maybe_remove
import inspect from PySide import QtCore, QtGui import pandas class Recorder(QtCore.QObject): """ Takes incoming frame dicts, stores them, and records them to csv file on command """ recordingChanged = QtCore.Signal(bool) def __init__(self, statusLabel): super().__init__() self._statusLabel = statusLabel self.data = [] # Save data as list of frame dicts, for now self.extraData = {} self.pathData = {} self.recording = False self._desktopWidget = QtGui.QDesktopWidget() self.clear() def _flatten(self, d, parent_key=''): """ Flatten a dict like {'avg':{'x':42, 'y':0}} into {'avg_x':42, 'avg_y':0} """ import collections items = [] for k, v in d.items(): new_key = parent_key + '_' + k if parent_key else k if isinstance(v, collections.MutableMapping): items.extend(self._flatten(v, new_key).items()) else: items.append((new_key, v)) return dict(items) def handleFrame(self, frame): """ Save the gaze frame to memory, along with mouse position """ if self.recording: # Flatten frame dict to one level datapoint = self._flatten(frame) # Add to memory self.data.append(datapoint) self._statusLabel.setText('Recorded {} frames'.format(len(self.data))) def setRecording(self, rec): if self.recording != rec: self.recording = rec self.recordingChanged.emit(rec) def saveStim(self, stimItem, stimPos): """ Keep track of what function was used to draw a stimulus, and it's position (QPoint) """ if stimItem is None: self.extraData.clear() else: self.extraData.update({'stim_item': stimItem.__name__, 'stim_module': stimItem.__module__, 'stim_x': stimPos.x(), 'stim_y': stimPos.y()}) def savePath(self, points): """ Similar to saveStim, save the drawn path (currently only one) points = array of QPointF """ if points is None: self.pathData.clear() else: self.pathData.update({'x': [p.x() for p in points], 'y': [p.y() for p in points]}) def clear(self): self.data.clear() self._statusLabel.setText('Recorder ready') def toDataFrame(self): """ Return a pandas.DataFrame with all data in memory up to this point """ df = pandas.DataFrame(self.data) if len(df) > 0: df.set_index('timestamp', inplace=True) df.index.name = None return df def saveToFile(self): """ Save data to csv file, after opening a file dialog """ filename, _ = QtGui.QFileDialog.getSaveFileName(self.parent(), 'Save File', '', 'Excel Workbook (*.xlsx);; Excel 97-2003 Workbook (*.xls)') if filename: writer = pandas.ExcelWriter(filename) self.toDataFrame().to_excel(writer, 'GazeData') pandas.DataFrame.from_dict(self.extraData, orient='index').to_excel(writer, 'Extra')
pandas.DataFrame.from_dict(self.pathData)
pandas.DataFrame.from_dict
import queue import random import threading import itertools from functools import reduce, partial from pathlib import Path from time import perf_counter import sys import os #from numba import jit #from numba.experimental import jitclass #import panel as pn import bokeh.layouts import datashader import numpy as np from bokeh.models import ColumnDataSource, CustomJS, Button, Select, Div from bokeh.plotting import curdoc from holoviews.plotting.util import process_cmap from holoviews.streams import Selection1D from numpy import log from pyopenms import MSExperiment, PeakMap, MzMLFile, PeakFileOptions, SignalToNoiseEstimatorMedian, PeakSpectrum, DRange1, \ DPosition1, FeatureMap, Feature, PeptideIdentification, PeptideHit, FeatureXMLFile import pandas as pd import holoviews as hv import holoviews.operation.datashader as hd from holoviews import opts, dim from tornado import gen class FeatureMapDF(FeatureMap): def __init__(self): super().__init__() def get_df(self): def gen(fmap: FeatureMap, fun): for f in fmap: yield from fun(f) def extractMetaData(f: Feature): # subfeatures = f.getFeatureList() # type: list[FeatureHandle] pep = f.getPeptideIdentifications() # type: list[PeptideIdentification] bb = f.getConvexHull().getBoundingBox2D() if len(pep) != 0: hits = pep[0].getHits() if len(hits) != 0: besthit = hits[0] # type: PeptideHit # TODO what else yield f.getUniqueId(), besthit.getSequence().toString(), f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity() else: yield f.getUniqueId(), None, f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity() else: yield f.getUniqueId(), None, f.getCharge(), f.getRT(), f.getMZ(), bb[0][0], bb[1][0], bb[0][1], bb[1][1], f.getOverallQuality(), f.getIntensity() cnt = self.size() mddtypes = [('id', np.dtype('uint64')), ('sequence', 'U200'), ('charge', 'i4'), ('RT', 'f'), ('mz', 'f'), ('RTstart', 'f'), ('RTend', 'f'), ('mzstart', 'f'), ('mzend', 'f'), ('quality', 'f'), ('intensity', 'f')] mdarr = np.fromiter(iter=gen(self, extractMetaData), dtype=mddtypes, count=cnt) return pd.DataFrame(mdarr).set_index('id') def SpectrumGenerator(file_path): q = queue.Queue(maxsize=1) JOB_DONE = object() TIMEOUT = 30 def task(): loader = MzMLFile() loadopts = loader.getOptions() # type: PeakFileOptions loadopts.setMSLevels([1]) loadopts.setSkipXMLChecks(True) loadopts.setIntensity32Bit(True) loadopts.setIntensityRange(DRange1(DPosition1(10000), DPosition1(sys.maxsize))) loader.setOptions(loadopts) loader.transform(file_path, MSCallback(q), True, True) q.put(JOB_DONE) t = threading.Thread(target=task) t.start() while True: # better set a timeout, or if task in sub-threading fails, it will result in a deadlock chunk = q.get(timeout=TIMEOUT) if chunk is JOB_DONE: break yield from chunk t.join() #@jit(nopython=True) def unpack(rt, mzs, intys): return [(rt, point[0], point[1]) for point in zip(mzs, intys)] class MSCallback: def __init__(self, q): self.q = q def setExperimentalSettings(self, s): pass def setExpectedSize(self, a, b): pass def consumeChromatogram(self, c): pass def consumeSpectrum(self, s: PeakSpectrum): #if s.getMSLevel() == 2: self.q.put((s.getRT(), point[0], point[1]) for point in zip(*s.get_peaks())) #pn.extension() hv.extension('bokeh') renderer = hv.renderer('bokeh').instance(mode='server') spectradf =
pd.DataFrame()
pandas.DataFrame
from django.contrib.auth import authenticate, login from django.contrib.auth import logout from django.shortcuts import render,get_object_or_404,redirect from django.db.models import Q from django.http import Http404 from .models import Movie,Myrating,Movielens from django.contrib import messages from .forms import UserForm from django.db.models import Case, When import numpy as np import pandas as pd from collections import defaultdict from surprise.model_selection import train_test_split from surprise.model_selection import RandomizedSearchCV from surprise import accuracy from surprise.model_selection.validation import cross_validate from surprise import KNNBasic from surprise import KNNWithMeans from surprise import Reader from surprise import dataset #------------------------------------------------------------------------------------------------------------------------------------------------------- #------------------------------------------------------------------------------------------------------------------------------------------------------- def get_pred(predictions, n=10): top_pred = defaultdict(list) for uid, iid, true_r, est, _ in predictions: top_pred[uid].append((iid, est)) #Mapping list of (movieid, predicted rating) to each userid for uid, user_ratings in top_pred.items(): user_ratings.sort(key=lambda x: x[1], reverse=True) top_pred[uid] = user_ratings[:n] #Sorting and displaying the top 'n' predictions print(top_pred) return top_pred class collab_filtering_based_recommender_model(): def __init__(self, model, trainset, testset, data): self.model = model self.trainset = trainset self.testset = testset self.data = data self.pred_test = None self.recommendations = None self.top_pred = None self.recommenddf = None def fit_and_predict(self): #print('-------Fitting the train data-------') self.model.fit(self.trainset) #print('-------Predicting the test data-------') self.pred_test = self.model.test(self.testset) rmse = accuracy.rmse(self.pred_test) #print('-------RMSE for the predicted result is ' + str(rmse) + '-------') self.top_pred = get_pred(self.pred_test) self.recommenddf = pd.DataFrame(columns=['userId', 'MovieId', 'Rating']) for item in self.top_pred: subdf =
pd.DataFrame(self.top_pred[item], columns=['MovieId', 'Rating'])
pandas.DataFrame
''' BSD 3-Clause License Copyright (c) 2021, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import geopandas as gpd import pandas as pd import numpy as np from .grids import GPS_to_grid from .preprocess import id_reindex, clean_same def plot_activity(data, col=['stime', 'etime', 'LONCOL', 'LATCOL'], figsize=(10, 5), dpi=250): ''' Plot the activity plot of individual Parameters ---------------- data : DataFrame activity information of one person col : List The column name.[starttime,endtime,LONCOL,LATCOL] of activities ''' stime, etime, LONCOL, LATCOL = col activity = data.copy() activity['date'] = activity[stime].dt.date dates = list(activity['date'].astype(str).drop_duplicates()) dates_all = [] minday = min(dates) maxday = max(dates) import datetime thisdate = minday while thisdate != maxday: dates_all.append(thisdate) thisdate = str((pd.to_datetime(thisdate+' 00:00:00') + datetime.timedelta(days=1)).date()) dates = dates_all import matplotlib.pyplot as plt import numpy as np activity['duration'] = (activity[etime]-activity[stime]).dt.total_seconds() activity = activity[-activity['duration'].isnull()] import time activity['ststmp'] = activity[stime].astype(str).apply( lambda x: time.mktime( time.strptime(x, '%Y-%m-%d %H:%M:%S'))).astype('int64') activity['etstmp'] = activity[etime].astype(str).apply( lambda x: time.mktime( time.strptime(x, '%Y-%m-%d %H:%M:%S'))).astype('int64') activityinfo = activity[[LONCOL, LATCOL]].drop_duplicates() indexs = list(range(1, len(activityinfo)+1)) np.random.shuffle(indexs) activityinfo['index'] = indexs import matplotlib as mpl norm = mpl.colors.Normalize(vmin=0, vmax=len(activityinfo)) from matplotlib.colors import ListedColormap import seaborn as sns cmap = ListedColormap(sns.hls_palette( n_colors=len(activityinfo), l=.5, s=0.8)) plt.figure(1, figsize, dpi) ax = plt.subplot(111) plt.sca(ax) for day in range(len(dates)): plt.bar(day, height=24*3600, bottom=0, width=0.4, color=(0, 0, 0, 0.1)) stime = dates[day]+' 00:00:00' etime = dates[day]+' 23:59:59' bars = activity[(activity['stime'] < etime) & (activity['etime'] > stime)].copy() bars['ststmp'] = bars['ststmp'] - \ time.mktime(time.strptime(stime, '%Y-%m-%d %H:%M:%S')) bars['etstmp'] = bars['etstmp'] - \ time.mktime(time.strptime(stime, '%Y-%m-%d %H:%M:%S')) for row in range(len(bars)): plt.bar(day, height=bars['etstmp'].iloc[row]-bars['ststmp'].iloc[row], bottom=bars['ststmp'].iloc[row], color=cmap( norm( activityinfo[ (activityinfo[LONCOL] == bars[LONCOL]. iloc[row]) & (activityinfo[LATCOL] == bars[LATCOL].iloc[row]) ]['index'].iloc[0]))) plt.xlim(-0.5, len(dates)) plt.ylim(0, 24*3600) plt.xticks(range(len(dates)), [i[-5:] for i in dates]) plt.yticks(range(0, 24*3600+1, 3600), pd.DataFrame({'t': range(0, 25)})['t'].astype('str')+':00') plt.show() def traj_stay_move(data, params, col=['ID', 'dataTime', 'longitude', 'latitude'], activitytime=1800): ''' Input trajectory data and gridding parameters, identify stay and move Parameters ---------------- data : DataFrame trajectory data params : List gridding parameters col : List The column name, in the order of ['ID','dataTime','longitude', 'latitude'] activitytime : Number How much time to regard as activity Returns ---------------- stay : DataFrame stay information move : DataFrame move information ''' uid, timecol, lon, lat = col trajdata = data.copy() trajdata[timecol] = pd.to_datetime(trajdata[timecol]) trajdata['LONCOL'], trajdata['LATCOL'] = GPS_to_grid( trajdata[lon], trajdata[lat], params) trajdata = clean_same(trajdata, col=[uid, timecol, 'LONCOL', 'LATCOL']) trajdata['stime'] = trajdata[timecol] trajdata['etime'] = trajdata[timecol].shift(-1) trajdata[uid+'_next'] = trajdata[uid].shift(-1) trajdata = trajdata[trajdata[uid+'_next'] == trajdata[uid]] trajdata['duration'] = ( trajdata['etime'] - trajdata['stime']).dt.total_seconds() activity = trajdata[[uid, lon, lat, 'stime', 'etime', 'duration', 'LONCOL', 'LATCOL']] activity = activity[activity['duration'] >= activitytime].rename( columns={lon: 'lon', lat: 'lat'}) stay = activity.copy() activity['stime_next'] = activity['stime'].shift(-1) activity['elon'] = activity['lon'].shift(-1) activity['elat'] = activity['lat'].shift(-1) activity['ELONCOL'] = activity['LONCOL'].shift(-1) activity['ELATCOL'] = activity['LATCOL'].shift(-1) activity[uid+'_next'] = activity[uid].shift(-1) activity = activity[activity[uid+'_next'] == activity[uid] ].drop(['stime', 'duration', uid+'_next'], axis=1) activity = activity.rename(columns={'lon': 'slon', 'lat': 'slat', 'etime': 'stime', 'stime_next': 'etime', 'LONCOL': 'SLONCOL', 'LATCOL': 'SLATCOL', }) activity['duration'] = ( activity['etime'] - activity['stime']).dt.total_seconds() move = activity.copy() return stay, move def traj_densify(data, col=['Vehicleid', 'Time', 'Lng', 'Lat'], timegap=15): ''' Trajectory densification, ensure that there is a trajectory point each timegap seconds Parameters ------- data : DataFrame Data col : List The column name, in the sequence of [Vehicleid, Time, lng, lat] timegap : number The sampling interval (second) Returns ------- data1 : DataFrame The processed data ''' Vehicleid, Time, Lng, Lat = col data[Time] = pd.to_datetime(data[Time]) data1 = data.copy() data1 = data1.drop_duplicates([Vehicleid, Time]) data1 = id_reindex(data1, Vehicleid) data1 = data1.sort_values(by=[Vehicleid+'_new', Time]) data1['utctime'] = data1[Time].apply(lambda r: int(r.value/1000000000)) data1['utctime_new'] = data1[Vehicleid+'_new']*10000000000+data1['utctime'] a = data1.groupby([Vehicleid+'_new'] )['utctime'].min().rename('mintime').reset_index() b = data1.groupby([Vehicleid+'_new'] )['utctime'].max().rename('maxtime').reset_index() minmaxtime = pd.merge(a, b) mintime = data1['utctime'].min() maxtime = data1['utctime'].max() timedata = pd.DataFrame(range(mintime, maxtime, timegap), columns=[Time]) timedata['tmp'] = 1 minmaxtime['tmp'] = 1 minmaxtime = pd.merge(minmaxtime, timedata) minmaxtime = minmaxtime[(minmaxtime['mintime'] <= minmaxtime[Time]) & ( minmaxtime['maxtime'] >= minmaxtime[Time])] minmaxtime['utctime_new'] = minmaxtime[Vehicleid+'_new'] * \ 10000000000+minmaxtime[Time] minmaxtime[Time] = pd.to_datetime(minmaxtime[Time], unit='s') data1 = pd.concat([data1, minmaxtime[['utctime_new', Time]]] ).sort_values(by=['utctime_new']) data1 = data1.drop_duplicates(['utctime_new']) data1[Lng] = data1.set_index('utctime_new')[ Lng].interpolate(method='index').values data1[Lat] = data1.set_index('utctime_new')[ Lat].interpolate(method='index').values data1[Vehicleid] = data1[Vehicleid].ffill() data1[Vehicleid] = data1[Vehicleid].bfill() data1 = data1.drop([Vehicleid+'_new', 'utctime', 'utctime_new'], axis=1) return data1 def traj_sparsify(data, col=['Vehicleid', 'Time', 'Lng', 'Lat'], timegap=15, method='subsample'): ''' Trajectory sparsify. When the sampling frequency of trajectory data is too high, the amount of data is too large, which is not convenient for the analysis of some studies that require less data frequency. This function can expand the sampling interval and reduce the amount of data. Parameters ------- data : DataFrame Data col : List The column name, in the sequence of [Vehicleid, Time, lng, lat] timegap : number Time gap between trajectory point method : str 'interpolate' or 'subsample' Returns ------- data1 : DataFrame Sparsified trajectory data ''' Vehicleid, Time, Lng, Lat = col data[Time] = pd.to_datetime(data[Time], unit='s') data1 = data.copy() data1 = data1.drop_duplicates([Vehicleid, Time]) data1 = id_reindex(data1, Vehicleid) data1 = data1.sort_values(by=[Vehicleid+'_new', Time]) data1['utctime'] = data1[Time].apply(lambda r: int(r.value/1000000000)) data1['utctime_new'] = data1[Vehicleid+'_new']*10000000000+data1['utctime'] if method == 'interpolate': a = data1.groupby([Vehicleid+'_new'] )['utctime'].min().rename('mintime').reset_index() b = data1.groupby([Vehicleid+'_new'] )['utctime'].max().rename('maxtime').reset_index() minmaxtime = pd.merge(a, b) mintime = data1['utctime'].min() maxtime = data1['utctime'].max() timedata = pd.DataFrame( range(mintime, maxtime, timegap), columns=[Time]) timedata['tmp'] = 1 minmaxtime['tmp'] = 1 minmaxtime = pd.merge(minmaxtime, timedata) minmaxtime = minmaxtime[(minmaxtime['mintime'] <= minmaxtime[Time]) & ( minmaxtime['maxtime'] >= minmaxtime[Time])] minmaxtime['utctime_new'] = minmaxtime[Vehicleid+'_new'] * \ 10000000000+minmaxtime[Time] minmaxtime[Time] =
pd.to_datetime(minmaxtime[Time], unit='s')
pandas.to_datetime
from linearmodels.compat.statsmodels import Summary from itertools import product import struct from typing import Optional import numpy as np from numpy.testing import assert_allclose, assert_array_equal import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal import pytest import scipy.sparse as sp from scipy.sparse import csc_matrix from linearmodels.iv._utility import annihilate from linearmodels.iv.absorbing import ( _VARIABLE_CACHE, AbsorbingLS, AbsorbingRegressor, Interaction, category_continuous_interaction, category_interaction, category_product, clear_cache, ) from linearmodels.iv.model import _OLS from linearmodels.iv.results import AbsorbingLSResults, OLSResults from linearmodels.panel.utility import ( AbsorbingEffectError, AbsorbingEffectWarning, dummy_matrix, ) from linearmodels.shared.exceptions import MissingValueWarning from linearmodels.shared.utility import AttrDict NOBS = 100 pytestmark = pytest.mark.filterwarnings( "ignore:the matrix subclass:PendingDeprecationWarning" ) class Hasher(object): @property def hash_func(self): try: import xxhash return xxhash.xxh64() except ImportError: import hashlib return hashlib.sha256() def single(self, value): h = self.hash_func h.update(np.ascontiguousarray(value)) return h.hexdigest() hasher = Hasher() @pytest.fixture(scope="function") def random_gen(request): return np.random.RandomState(12345678) def random_cat(ncat, size, frame=False, rs=None): if rs is None: rs = np.random.RandomState() series = pd.Series(pd.Categorical(rs.randint(0, ncat, size))) if frame: return pd.DataFrame(series) return series def random_cont(size, rs=None): if rs is None: rs = np.random.RandomState() series = pd.Series(rs.standard_normal(size)) return pd.DataFrame(series) @pytest.fixture(scope="module", params=[1, 2, 3]) def cat(request): rs = np.random.RandomState(0) return pd.DataFrame( {str(i): random_cat(4, NOBS, rs=rs) for i in range(request.param)} ) @pytest.fixture(scope="module", params=[1, 2]) def cont(request): rs = np.random.RandomState(0) return pd.DataFrame( { "cont" + str(i): pd.Series(rs.standard_normal(NOBS)) for i in range(request.param) } ) @pytest.fixture(scope="module", params=[True, False]) def weights(request): if not request.param: return None rs = np.random.RandomState(0) return rs.chisquare(10, NOBS) / 10.0 @pytest.fixture(scope="module", params=[0, 1, 2]) def interact(request): if not request.param: return None rs = np.random.RandomState(0) interactions = [] for _ in range(request.param): cat = random_cat(4, 100, frame=True, rs=rs) cont = random_cont(100, rs=rs) interactions.append(Interaction(cat, cont)) return interactions def generate_data( k=3, const=True, nfactors=1, factor_density=10, nobs=2000, cont_interactions=1, factor_format="interaction", singleton_interaction=False, weighted=False, ncont=0, ): rs = np.random.RandomState(1234567890) density = [factor_density] * max(nfactors, cont_interactions) x = rs.standard_normal((nobs, k)) if const: x = np.column_stack([np.ones(nobs), x]) e = rs.standard_normal(nobs) y = x.sum(1) + e factors = [] for i in range(nfactors): ncat = nobs // density[min(i, len(density) - 1)] fact = rs.randint(ncat, size=nobs) effects = rs.standard_normal(ncat) y += effects[fact] factors.append(pd.Series(pd.Categorical(fact))) for i in range(ncont): cont = rs.standard_normal(size=nobs) factors.append(pd.Series(cont)) if factors: factors = pd.concat(factors, axis=1) if factor_format == "interaction": if nfactors and ncont: factors = Interaction( factors.iloc[:, :nfactors], factors.iloc[:, nfactors:] ) elif nfactors: factors = Interaction(factors, None) else: factors = Interaction(None, factors) else: factors = None interactions = [] for i in range(cont_interactions): ncat = nobs // density[min(i, len(density) - 1)] fact = rs.randint(ncat, size=nobs) effects = rs.standard_normal(nobs) y += effects df = pd.DataFrame( pd.Series(pd.Categorical(fact)), columns=["fact{0}".format(i)] ) df_eff = pd.DataFrame(effects[:, None], columns=["effect_{0}".format(i)]) interactions.append(Interaction(df, df_eff)) if factor_format == "pandas": for i, interact in enumerate(interactions): interactions[i] = pd.concat([interact.cat, interact.cont], axis=1) interactions = interactions if interactions else None if interactions and singleton_interaction: interactions = interactions[0] if weighted: weights = pd.DataFrame(rs.chisquare(10, size=(nobs, 1)) / 10) else: weights = None return AttrDict( y=y, x=x, absorb=factors, interactions=interactions, weights=weights ) # Permutations, k in (0,3), const in (True,False), factors=(0,1,2), interactions in (0,1) # k=3, const=True, nfactors=1, factor_density=10, nobs=2000, cont_interactions=1, # format='interaction', singleton_interaction=False configs = product( [0, 3], # k [False, True], # constant [1, 2, 0], # factors [10], # density [2000], # nobs [0, 1], # cont interactions ["interaction", "pandas"], # format [False, True], # singleton [False, True], # weighted [0, 1], # ncont ) data_configs = [c for c in configs if (c[2] or c[5] or c[9])] id_str = ( "k: {0}, const: {1}, nfactors: {2}, density: {3}, nobs: {4}, " "cont_interacts: {5}, format:{6}, singleton:{7}, weighted: {8}, ncont: {9}" ) data_ids = [id_str.format(*config) for config in configs] @pytest.fixture(scope="module", params=data_configs, ids=data_ids) def data(request): return generate_data(*request.param) configs_ols = product( [0, 3], # k [False, True], # constant [1, 2, 0], # factors [50], # density [500], # nobs [0, 1], # cont interactions ["interaction"], # format [False], # singleton [False, True], # weighted [0, 1], # ncont ) configs_ols_data = [c for c in configs_ols if (c[0] or c[1])] id_str = ( "k: {0}, const: {1}, nfactors: {2}, density: {3}, nobs: {4}, " "cont_interacts: {5}, format:{6}, singleton:{7}, weighted: {8}, ncont: {9}" ) ids_ols_data = [id_str.format(*config) for config in configs_ols] @pytest.fixture(scope="module", params=configs_ols_data, ids=ids_ols_data) def ols_data(request): return generate_data(*request.param) @pytest.mark.smoke def test_smoke(data): mod = AbsorbingLS( data.y, data.x, absorb=data.absorb, interactions=data.interactions, weights=data.weights, ) res = mod.fit() assert isinstance(res.summary, Summary) assert isinstance(str(res.summary), str) def test_absorbing_exceptions(random_gen): with pytest.raises(TypeError): absorbed = random_gen.standard_normal((NOBS, 2)) assert isinstance(absorbed, np.ndarray) AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS, 2)), absorb=absorbed, ) with pytest.raises(ValueError): AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS - 1, 2)) ) with pytest.raises(ValueError): AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS, 2)), absorb=pd.DataFrame(random_gen.standard_normal((NOBS - 1, 1))), ) with pytest.raises(ValueError): AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS, 2)), interactions=random_cat(10, NOBS - 1, frame=True, rs=random_gen), ) mod = AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS, 2)), interactions=random_cat(10, NOBS, frame=True, rs=random_gen), ) with pytest.raises(RuntimeError): assert isinstance(mod.absorbed_dependent, pd.DataFrame) with pytest.raises(RuntimeError): assert isinstance(mod.absorbed_exog, pd.DataFrame) with pytest.raises(TypeError): interactions = random_gen.randint(0, 10, size=(NOBS, 2)) assert isinstance(interactions, np.ndarray) AbsorbingLS( random_gen.standard_normal(NOBS), random_gen.standard_normal((NOBS, 2)), interactions=interactions, ) def test_clear_cache(): _VARIABLE_CACHE["key"] = {"a": np.empty(100)} clear_cache() assert len(_VARIABLE_CACHE) == 0 def test_category_product(cat): prod = category_product(cat) if cat.shape[1] == 1: assert_series_equal(prod, cat.iloc[:, 0], check_names=False) else: alt = cat.iloc[:, 0].astype("int64") for i in range(1, cat.shape[1]): alt += 10 ** (4 * i) * cat.iloc[:, i].astype("int64") alt = pd.Categorical(alt) alt = pd.Series(alt) df = pd.DataFrame([prod.cat.codes, alt.cat.codes], index=["cat_prod", "alt"]).T g = df.groupby("cat_prod").alt assert (g.nunique() == 1).all() g = df.groupby("alt").cat_prod assert (g.nunique() == 1).all() def test_category_product_too_large(random_gen): dfc = {} for i in range(20): dfc[str(i)] = random_cat(10, 1000) cat = pd.DataFrame(dfc) with pytest.raises(ValueError): category_product(cat) def test_category_product_not_cat(random_gen): cat = pd.DataFrame( {str(i): pd.Series(random_gen.randint(0, 10, 1000)) for i in range(3)} ) with pytest.raises(TypeError): category_product(cat) def test_category_interaction(): c = pd.Series(pd.Categorical([0, 0, 0, 1, 1, 1])) actual = category_interaction(c, precondition=False).A expected = np.zeros((6, 2)) expected[:3, 0] = 1.0 expected[3:, 1] = 1.0 assert_allclose(actual, expected) actual = category_interaction(c, precondition=True).A cond = np.sqrt((expected**2).sum(0)) expected /= cond assert_allclose(actual, expected) def test_category_continuous_interaction(): c = pd.Series(pd.Categorical([0, 0, 0, 1, 1, 1])) v = pd.Series(np.arange(6.0)) actual = category_continuous_interaction(c, v, precondition=False) expected = np.zeros((6, 2)) expected[:3, 0] = v[:3] expected[3:, 1] = v[3:] assert_allclose(actual.A, expected) actual = category_continuous_interaction(c, v, precondition=True) cond = np.sqrt((expected**2).sum(0)) expected /= cond assert_allclose(actual.A, expected) def test_category_continuous_interaction_interwoven(): c = pd.Series(pd.Categorical([0, 1, 0, 1, 0, 1])) v = pd.Series(np.arange(6.0)) actual = category_continuous_interaction(c, v, precondition=False) expected = np.zeros((6, 2)) expected[::2, 0] = v[::2] expected[1::2, 1] = v[1::2] assert_allclose(actual.A, expected) def test_interaction_cat_only(cat): interact = Interaction(cat=cat) assert interact.nobs == cat.shape[0]
assert_frame_equal(cat, interact.cat)
pandas.testing.assert_frame_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 4 10:09:21 2019 @author: nmei """ from autoreject import (AutoReject,get_rejection_threshold) import mne from glob import glob import re import os import numpy as np import pandas as pd import pickle #import faster # https://gist.github.com/wmvanvliet/d883c3fe1402c7ced6fc from sklearn.metrics import roc_auc_score,roc_curve from sklearn.metrics import ( classification_report, matthews_corrcoef, confusion_matrix, f1_score, log_loss, r2_score ) from sklearn.preprocessing import (MinMaxScaler, OneHotEncoder, FunctionTransformer, StandardScaler) from sklearn.pipeline import make_pipeline from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.utils import shuffle from sklearn.svm import SVC,LinearSVC from sklearn.calibration import CalibratedClassifierCV from sklearn.decomposition import PCA from sklearn.dummy import DummyClassifier from sklearn.feature_selection import (SelectFromModel, SelectPercentile, VarianceThreshold, mutual_info_classif, f_classif, chi2, f_regression, GenericUnivariateSelect) from sklearn.model_selection import (StratifiedShuffleSplit, cross_val_score) from sklearn.ensemble import RandomForestClassifier,BaggingClassifier,VotingClassifier from sklearn.neural_network import MLPClassifier from xgboost import XGBClassifier from itertools import product,combinations from sklearn.base import clone from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from collections import OrderedDict from scipy import stats from collections import Counter from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import pyplot as plt from matplotlib.pyplot import cm from nilearn.plotting.img_plotting import (_load_anat, _utils, _plot_img_with_bg, _get_colorbar_and_data_ranges, _safe_get_data) import matplotlib.patches as patches try: #from mvpa2.datasets.base import Dataset from mvpa2.mappers.fx import mean_group_sample #from mvpa2.measures import rsa #from mvpa2.measures.searchlight import sphere_searchlight #from mvpa2.base.learner import ChainLearner #from mvpa2.mappers.shape import TransposeMapper #from mvpa2.generators.partition import NFoldPartitioner except: pass#print('pymvpa is not installed') try: # from tqdm import tqdm_notebook as tqdm from tqdm.auto import tqdm except: print('why is tqdm not installed?') def preprocessing_conscious(raw, events, session, tmin = -0, tmax = 1, notch_filter = 50, event_id = {'living':1,'nonliving':2}, baseline = (None,None), perform_ICA = False, lowpass = None, interpolate_bad_channels = True,): """ 0. re-reference - explicitly """ raw_ref ,_ = mne.set_eeg_reference(raw, ref_channels = 'average', projection = True,) raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = perform_ICA, # depends on ICA ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter), picks = picks) if lowpass is not None: raw_ref.filter(None,lowpass,) epochs = mne.Epochs(raw_ref, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # detrend preload = True # must be true if we want to do further processing ) """ 1. if necessary, perform ICA """ if perform_ICA: picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) if interpolate_bad_channels: interpolation_list = faster_bad_channels(epochs,picks=picks) for ch_name in interpolation_list: epochs.info['bads'].append(ch_name) epochs = epochs.interpolate_bads() # ar = AutoReject( # picks = picks, # random_state = 12345, # ) # ar.fit(epochs) # _,reject_log = ar.transform(epochs,return_log=True) # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs], tmin = baseline[0], tmax = baseline[1], method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs,#[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs,#[~reject_log.bad_epochs], eog_ch = ['FT9','FT10','TP9','TP10'], eog_criterion = 0.4, # arbitary choice skew_criterion = 1, # arbitary choice kurt_criterion = 1, # arbitary choice var_criterion = 1, # arbitary choice ) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) epochs = epochs_ica.copy() else: picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) if interpolate_bad_channels: interpolation_list = faster_bad_channels(epochs,picks=picks) for ch_name in interpolation_list: epochs.info['bads'].append(ch_name) epochs = epochs.interpolate_bads() # pick the EEG channels for later use clean_epochs = epochs.pick_types(eeg = True, eog = False) return clean_epochs def preprocessing_unconscious(raw, events, session, tmin = -0, tmax = 1, notch_filter = 50, event_id = {'living':1,'nonliving':2}, baseline = (None,None), perform_ICA = False, eog_chs = [], ecg_chs = [],): # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw.info, meg = True, # No MEG eeg = False, # NO EEG eog = True, # YES EOG ecg = True, # YES ECG ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations if type(notch_filter) is list: for item in notch_filter: raw.notch_filter(np.arange(item,301,item), picks = picks) else: raw.notch_filter(np.arange(notch_filter,301,notch_filter), picks = picks) # filter EOG and ECG channels picks = mne.pick_types(raw.info, meg = False, eeg = False, eog = True, ecg = True,) raw.filter(1,12,picks = picks,) # epoch the data picks = mne.pick_types(raw.info, meg = True, eog = True, ecg = True, ) epochs = mne.Epochs(raw, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # detrend preload = True # must be true if we want to do further processing ) """ 1. if necessary, perform ICA """ if perform_ICA: picks = mne.pick_types(epochs.info, meg = True, # YES MEG eeg = False, # NO EEG eog = False, # NO EOG ecg = False, # NO ECG ) # ar = AutoReject( # picks = picks, # random_state = 12345, # ) # ar.fit(epochs) # _,reject_log = ar.transform(epochs,return_log=True) # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs], tmin = tmin, tmax = 0, method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'extended-infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs,#[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs,#[~reject_log.bad_epochs], eog_ch = eog_chs, ecg_ch = ecg_chs[0], eog_criterion = 0.4, # arbitary choice ecg_criterion = 0.1, # arbitary choice skew_criterion = 1, # arbitary choice kurt_criterion = 1, # arbitary choice var_criterion = 1, # arbitary choice ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) epochs = epochs_ica.copy() # pick the EEG channels for later use clean_epochs = epochs.pick_types(meg = True, eeg = True, eog = False) return clean_epochs def _preprocessing_conscious( raw,events,session, n_interpolates = np.arange(1,32,4), consensus_pers = np.linspace(0,1.0,11), event_id = {'living':1,'nonliving':2}, tmin = -0.15, tmax = 0.15 * 6, high_pass = 0.001, low_pass = 30, notch_filter = 50, fix = False, ICA = False, logging = None, filtering = False,): """ Preprocessing pipeline for conscious trials Inputs ------------------- raw: MNE Raw object, contineous EEG raw data events: Numpy array with 3 columns, where the first column indicates time and the last column indicates event code n_interpolates: list of values 1 <= N <= max number of channels consensus_pers: ?? autoreject hyperparameter search grid event_id: MNE argument, to control for epochs tmin: first time stamp of the epoch tmax: last time stamp of the epoch high_pass: low cutoff of the bandpass filter low_pass: high cutoff of the bandpass filter notch_filter: frequency of the notch filter, 60 in US and 50 in Europe fix : when "True", apply autoReject algorithm to remove artifacts that was not identifed in the ICA procedure Output ICA : when "True", apply ICA artifact correction in ICA space logging: when not "None", output some log files for us to track the process ------------------- Epochs: MNE Epochs object, segmented and cleaned EEG data (n_trials x n_channels x n_times) """ """ 0. re-reference - explicitly """ raw_ref ,_ = mne.set_eeg_reference(raw, ref_channels = 'average', projection = True,) raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway """ 1. highpass filter by a 4th order zero-phase Butterworth filter """ # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = True, # YES EOG ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter), picks = picks) # high pass filtering picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = False, # No EOG ) if filtering: raw_ref.filter(high_pass, None, picks = picks, filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) l_trans_bandwidth= high_pass, method = 'fir', # overlap-add FIR filtering phase = 'zero', # the delay of this filter is compensated for fir_window = 'hamming', # The window to use in FIR design fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” ) """ 2. epoch the data """ picks = mne.pick_types(raw_ref.info, eeg = True, # YES EEG eog = True, # YES EOG ) epochs = mne.Epochs(raw_ref, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = (tmin,- (1 / 60 * 20)), # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # linear detrend preload = True # must be true if we want to do further processing ) """ 4. ica on epoch data """ if ICA: """ 3. apply autoreject """ picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ar = AutoReject( # n_interpolate = n_interpolates, # consensus = consensus_pers, # thresh_method = 'bayesian_optimization', picks = picks, random_state = 12345, # n_jobs = 1, # verbose = 'progressbar', ) ar.fit(epochs) _,reject_log = ar.transform(epochs,return_log=True) if logging is not None: fig = plot_EEG_autoreject_log(ar) fig.savefig(logging,bbox_inches = 'tight') for key in epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_pre.png'), bbox_inches = 'tight') plt.close('all') # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs[~reject_log.bad_epochs], tmin = tmin, tmax = tmax, method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'extended-infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) # # search for a global rejection threshold globally # reject = get_rejection_threshold(epochs[~reject_log.bad_epochs], # decim = 1, # random_state = 12345) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, # reject = reject, # if some data in a window has values that exceed the rejection threshold, this window will be ignored when computing the ICA decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs[~reject_log.bad_epochs], eog_ch = ['FT9','FT10','TP9','TP10'], eog_criterion = 0.4, # arbitary choice skew_criterion = 2, # arbitary choice kurt_criterion = 2, # arbitary choice var_criterion = 2, # arbitary choice ) # # explicitly search for eog ICAs # eog_idx,scores = ica.find_bads_eog(raw_ref, # start = tmin, # stop = tmax, # l_freq = 2, # h_freq = 10, # ) # ica.exclude += eog_idx picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) else: picks = mne.pick_types(epochs.info, eeg = True, eog = False,) # epochs.filter(None, # low_pass, # picks = picks, # filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) # method = 'fir', # overlap-add FIR filtering # phase = 'zero', # the delay of this filter is compensated for # fir_window = 'hamming', # The window to use in FIR design # fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” # ) if logging is not None: for key in epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_post.png'), bbox_inches = 'tight') plt.close('all') return epochs if fix: """ """ ar = AutoReject( # n_interpolate = n_interpolates, # consensus = consensus_pers, # thresh_method = 'bayesian_optimization', picks = picks, random_state = 12345, # n_jobs = 1, # verbose = 'progressbar', ) epochs_clean = ar.fit_transform(epochs_ica, ) return epochs_clean.pick_types(eeg=True,eog=False) else: clean_epochs = epochs_ica.pick_types(eeg = True, eog = False) picks = mne.pick_types(clean_epochs.info, eeg = True, eog = False,) # clean_epochs.filter(None, # low_pass, # picks = picks, # filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) # method = 'fir', # overlap-add FIR filtering # phase = 'zero', # the delay of this filter is compensated for # fir_window = 'hamming', # The window to use in FIR design # fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” # ) if logging is not None: for key in clean_epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_post.png'), bbox_inches = 'tight') plt.close('all') return clean_epochs def plot_temporal_decoding(times, scores, frames, ii, conscious_state, plscores, n_splits, ylim = (0.2,0.8)): scores_mean = scores.mean(0) scores_se = scores.std(0) / np.sqrt(n_splits) fig,ax = plt.subplots(figsize = (16,8)) ax.plot(times,scores_mean, color = 'k', alpha = .9, label = f'Average across {n_splits} folds', ) ax.fill_between(times, scores_mean + scores_se, scores_mean - scores_se, color = 'red', alpha = 0.4, label = 'Standard Error',) ax.axhline(0.5, linestyle = '--', color = 'k', alpha = 0.7, label = 'Chance level') ax.axvline(0, linestyle = '--', color = 'blue', alpha = 0.7, label = 'Probe onset',) if ii is not None: ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'blue', alpha = 0.3, label = 'probe offset ave +/- std',) ax.set(xlim = (times.min(), times.max()), ylim = ylim,#(0.4,0.6), title = f'Temporal decoding of {conscious_state} = {plscores.mean():.3f}+/-{plscores.std():.3f}', ) ax.legend() return fig,ax def plot_temporal_generalization(scores_gen_, times, ii, conscious_state, frames, vmin = 0.4, vmax = 0.6): fig, ax = plt.subplots(figsize = (10,10)) if len(scores_gen_.shape) > 2: scores_gen_ = scores_gen_.mean(0) im = ax.imshow( scores_gen_, interpolation = 'hamming', origin = 'lower', cmap = 'RdBu_r', extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, ) ax.set_xlabel('Testing Time (s)') ax.set_ylabel('Training Time (s)') ax.set_title(f'Temporal generalization of {conscious_state}') ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) plt.colorbar(im, ax = ax) ax.legend() return fig,ax def plot_t_stats(T_obs, clusters, cluster_p_values, times, ii, conscious_state, frames,): # since the p values of each cluster is corrected for multiple comparison, # we could directly use 0.05 as the threshold to filter clusters T_obs_plot = 0 * np.ones_like(T_obs) k = np.array([np.sum(c) for c in clusters]) if np.max(k) > 1000: c_thresh = 1000 elif 1000 > np.max(k) > 500: c_thresh = 500 elif 500 > np.max(k) > 100: c_thresh = 100 elif 100 > np.max(k) > 10: c_thresh = 10 else: c_thresh = 0 for c, p_val in zip(clusters, cluster_p_values): if (p_val <= 0.01) and (np.sum(c) >= c_thresh):# and (distance.cdist(np.where(c == True)[0].reshape(1,-1),np.where(c == True)[1].reshape(1,-1))[0][0] < 200):# and (np.sum(c) >= c_thresh): T_obs_plot[c] = T_obs[c] # defind the range of the colorbar vmax = np.max(np.abs(T_obs)) vmin = -vmax# - 2 * t_threshold plt.close('all') fig,ax = plt.subplots(figsize=(10,10)) im = ax.imshow(T_obs_plot, origin = 'lower', cmap = plt.cm.RdBu_r,# to emphasize the clusters extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, interpolation = 'lanczos', ) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size = "5%", pad = 0.2) cb = plt.colorbar(im, cax = cax, ticks = np.linspace(vmin,vmax,3)) cb.ax.set(title = 'T Statistics') ax.plot([times[0],times[-1]],[times[0],times[-1]], linestyle = '--', color = 'black', alpha = 0.7, ) ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) ax.set(xlabel = 'Test time', ylabel = 'Train time', title = f'nonparametric t test of {conscious_state}') ax.legend() return fig,ax def plot_p_values(times, clusters, cluster_p_values, ii, conscious_state, frames): width = len(times) p_clust = np.ones((width, width))# * np.nan k = np.array([np.sum(c) for c in clusters]) if np.max(k) > 1000: c_thresh = 1000 elif 1000 > np.max(k) > 500: c_thresh = 500 elif 500 > np.max(k) > 100: c_thresh = 100 elif 100 > np.max(k) > 10: c_thresh = 10 else: c_thresh = 0 for c, p_val in zip(clusters, cluster_p_values): if (np.sum(c) >= c_thresh): p_val_ = p_val.copy() if p_val_ > 0.05: p_val_ = 1. p_clust[c] = p_val_ # defind the range of the colorbar vmax = 1. vmin = 0. plt.close('all') fig,ax = plt.subplots(figsize = (10,10)) im = ax.imshow(p_clust, origin = 'lower', cmap = plt.cm.RdBu_r,# to emphasize the clusters extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, interpolation = 'hanning', ) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size = "5%", pad = 0.2) cb = plt.colorbar(im, cax = cax, ticks = [0,0.05,1]) cb.ax.set(title = 'P values') ax.plot([times[0],times[-1]],[times[0],times[-1]], linestyle = '--', color = 'black', alpha = 0.7, ) ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) ax.set(xlabel = 'Test time', ylabel = 'Train time', title = f'p value map of {conscious_state}') ax.legend() return fig,ax def plot_EEG_autoreject_log(autoreject_object,): ar = autoreject_object loss = ar.loss_['eeg'].mean(axis=-1) # losses are stored by channel type. fig,ax = plt.subplots(figsize=(10,6)) im = ax.matshow(loss.T * 1e6, cmap=plt.get_cmap('viridis')) ax.set(xticks = range(len(ar.consensus)), xticklabels = ar.consensus.round(2), yticks = range(len(ar.n_interpolate)), yticklabels = ar.n_interpolate) # Draw rectangle at location of best parameters idx, jdx = np.unravel_index(loss.argmin(), loss.shape) rect = patches.Rectangle((idx - 0.5, jdx - 0.5), 1, 1, linewidth=2, edgecolor='r', facecolor='none') ax.add_patch(rect) ax.xaxis.set_ticks_position('bottom') ax.set(xlabel = r'Consensus percentage $\kappa$', ylabel = r'Max sensors interpolated $\rho$', title = 'Mean cross validation error (x 1e6)') plt.colorbar(im) return fig def str2int(x): if type(x) is str: return float(re.findall(r'\d+',x)[0]) else: return x def simple_load(f,idx): df = pd.read_csv(f) df['run'] = idx return df def get_frames(directory,new = True,EEG = True): if EEG: files = glob(os.path.join(directory,'*trials.csv')) # elif EEG == 'fMRI': # files = glob(os.path.join(directory,'*trials.csv')) else: files = glob(os.path.join(directory,'*','*.csv')) empty_temp = '' for ii,f in enumerate(files): df = pd.read_csv(f).dropna() for vis,df_sub in df.groupby(['visible.keys_raw']): try: print(f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}') empty_temp += f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}' empty_temp += '\n' except: print('session {}, vis = {}, n_trials = {}'.format(ii+1, vis,df_sub.shape[0])) df = pd.concat([simple_load(f,ii).dropna() for ii,f in enumerate(files)]) try: for col in ['probeFrames_raw', 'response.keys_raw', 'visible.keys_raw']: # print(df[col]) df[col] = df[col].apply(str2int) except: for col in ['probe_Frames_raw', 'response.keys_raw', 'visible.keys_raw']: # print(df[col]) df[col] = df[col].apply(str2int) df["probeFrames_raw"] = df["probe_Frames_raw"] df = df[df['probeFrames_raw'] != 999] df = df.sort_values(['run','order']) for vis,df_sub in df.groupby(['visible.keys_raw']): df_press1 = df_sub[df_sub['response.keys_raw'] == 1] df_press2 = df_sub[df_sub['response.keys_raw'] == 2] prob1 = df_press1.shape[0] / df_sub.shape[0] prob2 = df_press2.shape[0] / df_sub.shape[0] try: print(f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}") print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}") empty_temp += f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}\n" empty_temp += f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}\n" except: print("\nvis = {},mean frames = {:.5f}".format( vis,np.median(df_sub['probeFrames_raw']))) print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}") if new: df = [] for f in files: temp = pd.read_csv(f).dropna() try: temp[['probeFrames_raw','visible.keys_raw']] except: temp['probeFrames_raw'] = temp['probe_Frames_raw'] probeFrame = [] for ii,row in temp.iterrows(): if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4: probeFrame.append(row['probeFrames_raw']) temp['probeFrames'] = probeFrame df.append(temp) df = pd.concat(df) else: df = [] for f in files: temp = pd.read_csv(f).dropna() temp[['probeFrames_raw','visible.keys_raw']] probeFrame = [] for ii,row in temp.iterrows(): if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1: probeFrame.append(row['probeFrames_raw'] - 2) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2: probeFrame.append(row['probeFrames_raw'] - 1) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3: probeFrame.append(row['probeFrames_raw'] + 1) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4: probeFrame.append(row['probeFrames_raw'] + 2) temp['probeFrames'] = probeFrame df.append(temp) df = pd.concat(df) df['probeFrames'] = df['probeFrames'].apply(str2int) df = df[df['probeFrames'] != 999] results = [] for vis,df_sub in df.groupby(['visible.keys_raw']): corrects = df_sub['response.corr_raw'].sum() / df_sub.shape[0] try: print(f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}") empty_temp += f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}\n" empty_temp += f"RT = {np.mean(df_sub['visible.rt_raw']):.3f} +/- {np.std(df_sub['visible.rt_raw']):.3f}\n" except: print("vis = {},mean frames = {:.2f} +/- {:.2f}".format( vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames']))) results.append([vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames'])]) return results,empty_temp def preprocess_behavioral_file(f): df = read_behavorial_file(f) for col in ['probeFrames_raw', 'response.keys_raw', 'visible.keys_raw']: df[col] = df[col].apply(str2int) df = df.sort_values(['order']) return df def read_behavorial_file(f): temp = pd.read_csv(f).iloc[:-12,:] return temp def preload(f): temp = pd.read_csv(f).iloc[-12:,:2] return temp def extract(x): try: return int(re.findall(r'\d',x)[0]) except: return int(99) #def extract_session_run_from_MRI(x): # temp = re.findall(r'\d+',x) # session = temp[1] # if int(session) == 7: # session = '1' # run = temp[-1] # return session,run #def check_behaviral_data_session_block(x): # temp = preload(x) # temp.index = temp['category'] # temp = temp.T # session = int(temp['session'].values[-1]) # block = int(temp['block'].values[-1]) # return session,block #def compare_match(behavorial_file_name,session,block): # behav_session,behav_block = check_behaviral_data_session_block(behavorial_file_name) # if np.logical_and(behav_session == session, behav_block == block): # return True # else: # return False def add_track(df_sub): n_rows = df_sub.shape[0] if len(df_sub.index.values) > 1: temp = '+'.join(str(item + 10) for item in df_sub.index.values) else: temp = str(df_sub.index.values[0]) df_sub = df_sub.iloc[0,:].to_frame().T # why did I use 1 instead of 0? df_sub['n_volume'] = n_rows df_sub['time_indices'] = temp return df_sub def groupby_average(fmri,df,groupby = ['trials']): BOLD_average = np.array([np.mean(fmri[df_sub.index],0) for _,df_sub in df.groupby(groupby)]) df_average = pd.concat([add_track(df_sub) for ii,df_sub in df.groupby(groupby)]) return BOLD_average,df_average def get_brightness_threshold(thresh): return [0.75 * val for val in thresh] def get_brightness_threshold_double(thresh): return [2 * 0.75 * val for val in thresh] def cartesian_product(fwhms, in_files, usans, btthresh): from nipype.utils.filemanip import ensure_list # ensure all inputs are lists in_files = ensure_list(in_files) fwhms = [fwhms] if isinstance(fwhms, (int, float)) else fwhms # create cartesian product lists (s_<name> = single element of list) cart_in_file = [ s_in_file for s_in_file in in_files for s_fwhm in fwhms ] cart_fwhm = [ s_fwhm for s_in_file in in_files for s_fwhm in fwhms ] cart_usans = [ s_usans for s_usans in usans for s_fwhm in fwhms ] cart_btthresh = [ s_btthresh for s_btthresh in btthresh for s_fwhm in fwhms ] return cart_in_file, cart_fwhm, cart_usans, cart_btthresh def getusans(x): return [[tuple([val[0], 0.5 * val[1]])] for val in x] def create_fsl_FEAT_workflow_func(whichrun = 0, whichvol = 'middle', workflow_name = 'nipype_mimic_FEAT', first_run = True, func_data_file = 'temp', fwhm = 3): """ Works with fsl-5.0.9 and fsl-5.0.11, but not fsl-6.0.0 """ from nipype.workflows.fmri.fsl import preprocess from nipype.interfaces import fsl from nipype.interfaces import utility as util from nipype.pipeline import engine as pe """ Setup some functions and hyperparameters """ fsl.FSLCommand.set_default_output_type('NIFTI_GZ') pickrun = preprocess.pickrun pickvol = preprocess.pickvol getthreshop = preprocess.getthreshop getmeanscale = preprocess.getmeanscale # chooseindex = preprocess.chooseindex """ Start constructing the workflow graph """ preproc = pe.Workflow(name = workflow_name) """ Initialize the input and output spaces """ inputnode = pe.Node( interface = util.IdentityInterface(fields = ['func', 'fwhm', 'anat']), name = 'inputspec') outputnode = pe.Node( interface = util.IdentityInterface(fields = ['reference', 'motion_parameters', 'realigned_files', 'motion_plots', 'mask', 'smoothed_files', 'mean']), name = 'outputspec') """ first step: convert Images to float values """ img2float = pe.MapNode( interface = fsl.ImageMaths( out_data_type = 'float', op_string = '', suffix = '_dtype'), iterfield = ['in_file'], name = 'img2float') preproc.connect(inputnode,'func', img2float,'in_file') """ delete first 10 volumes """ develVolume = pe.MapNode( interface = fsl.ExtractROI(t_min = 10, t_size = 508), iterfield = ['in_file'], name = 'remove_volumes') preproc.connect(img2float, 'out_file', develVolume, 'in_file') if first_run == True: """ extract example fMRI volume: middle one """ extract_ref = pe.MapNode( interface = fsl.ExtractROI(t_size = 1,), iterfield = ['in_file'], name = 'extractref') # connect to the deleteVolume node to get the data preproc.connect(develVolume,'roi_file', extract_ref,'in_file') # connect to the deleteVolume node again to perform the extraction preproc.connect(develVolume,('roi_file',pickvol,0,whichvol), extract_ref,'t_min') # connect to the output node to save the reference volume preproc.connect(extract_ref,'roi_file', outputnode, 'reference') if first_run == True: """ Realign the functional runs to the reference (`whichvol` volume of first run) """ motion_correct = pe.MapNode( interface = fsl.MCFLIRT(save_mats = True, save_plots = True, save_rms = True, stats_imgs = True, interpolation = 'spline'), iterfield = ['in_file','ref_file'], name = 'MCFlirt', ) # connect to the develVolume node to get the input data preproc.connect(develVolume, 'roi_file', motion_correct, 'in_file',) ###################################################################################### ################# the part where we replace the actual reference image if exists #### ###################################################################################### # connect to the develVolume node to get the reference preproc.connect(extract_ref, 'roi_file', motion_correct, 'ref_file') ###################################################################################### # connect to the output node to save the motion correction parameters preproc.connect(motion_correct, 'par_file', outputnode, 'motion_parameters') # connect to the output node to save the other files preproc.connect(motion_correct, 'out_file', outputnode, 'realigned_files') else: """ Realign the functional runs to the reference (`whichvol` volume of first run) """ motion_correct = pe.MapNode( interface = fsl.MCFLIRT(ref_file = first_run, save_mats = True, save_plots = True, save_rms = True, stats_imgs = True, interpolation = 'spline'), iterfield = ['in_file','ref_file'], name = 'MCFlirt', ) # connect to the develVolume node to get the input data preproc.connect(develVolume, 'roi_file', motion_correct, 'in_file',) # connect to the output node to save the motion correction parameters preproc.connect(motion_correct, 'par_file', outputnode, 'motion_parameters') # connect to the output node to save the other files preproc.connect(motion_correct, 'out_file', outputnode, 'realigned_files') """ plot the estimated motion parameters """ plot_motion = pe.MapNode( interface = fsl.PlotMotionParams(in_source = 'fsl'), iterfield = ['in_file'], name = 'plot_motion', ) plot_motion.iterables = ('plot_type',['rotations', 'translations', 'displacement']) preproc.connect(motion_correct, 'par_file', plot_motion, 'in_file') preproc.connect(plot_motion, 'out_file', outputnode, 'motion_plots') """ extract the mean volume of the first functional run """ meanfunc = pe.Node( interface = fsl.ImageMaths(op_string = '-Tmean', suffix = '_mean',), name = 'meanfunc') preproc.connect(motion_correct, ('out_file',pickrun,whichrun), meanfunc, 'in_file') """ strip the skull from the mean functional to generate a mask """ meanfuncmask = pe.Node( interface = fsl.BET(mask = True, no_output = True, frac = 0.3, surfaces = True,), name = 'bet2_mean_func') preproc.connect(meanfunc, 'out_file', meanfuncmask, 'in_file') """ Mask the motion corrected functional data with the mask to create the masked (bet) motion corrected functional data """ maskfunc = pe.MapNode( interface = fsl.ImageMaths(suffix = '_bet', op_string = '-mas'), iterfield = ['in_file'], name = 'maskfunc') preproc.connect(motion_correct, 'out_file', maskfunc, 'in_file') preproc.connect(meanfuncmask, 'mask_file', maskfunc, 'in_file2') """ determine the 2nd and 98th percentiles of each functional run """ getthreshold = pe.MapNode( interface = fsl.ImageStats(op_string = '-p 2 -p 98'), iterfield = ['in_file'], name = 'getthreshold') preproc.connect(maskfunc, 'out_file', getthreshold, 'in_file') """ threshold the functional data at 10% of the 98th percentile """ threshold = pe.MapNode( interface = fsl.ImageMaths(out_data_type = 'char', suffix = '_thresh', op_string = '-Tmin -bin'), iterfield = ['in_file','op_string'], name = 'tresholding') preproc.connect(maskfunc, 'out_file', threshold,'in_file') """ define a function to get 10% of the intensity """ preproc.connect(getthreshold,('out_stat',getthreshop), threshold, 'op_string') """ Determine the median value of the functional runs using the mask """ medianval = pe.MapNode( interface = fsl.ImageStats(op_string = '-k %s -p 50'), iterfield = ['in_file','mask_file'], name = 'cal_intensity_scale_factor') preproc.connect(motion_correct, 'out_file', medianval, 'in_file') preproc.connect(threshold, 'out_file', medianval, 'mask_file') """ dilate the mask """ dilatemask = pe.MapNode( interface = fsl.ImageMaths(suffix = '_dil', op_string = '-dilF'), iterfield = ['in_file'], name = 'dilatemask') preproc.connect(threshold, 'out_file', dilatemask, 'in_file') preproc.connect(dilatemask, 'out_file', outputnode, 'mask') """ mask the motion corrected functional runs with the dilated mask """ dilateMask_MCed = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'dilateMask_MCed') preproc.connect(motion_correct, 'out_file', dilateMask_MCed, 'in_file',) preproc.connect(dilatemask, 'out_file', dilateMask_MCed, 'in_file2') """ We now take this functional data that is motion corrected, high pass filtered, and create a "mean_func" image that is the mean across time (Tmean) """ meanfunc2 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean',), iterfield = ['in_file'], name = 'meanfunc2') preproc.connect(dilateMask_MCed, 'out_file', meanfunc2, 'in_file') """ smooth each run using SUSAN with the brightness threshold set to 75% of the median value for each run and a mask constituing the mean functional """ merge = pe.Node( interface = util.Merge(2, axis = 'hstack'), name = 'merge') preproc.connect(meanfunc2, 'out_file', merge, 'in1') preproc.connect(medianval,('out_stat',get_brightness_threshold_double), merge, 'in2') smooth = pe.MapNode( interface = fsl.SUSAN(dimension = 3, use_median = True), iterfield = ['in_file', 'brightness_threshold', 'fwhm', 'usans'], name = 'susan_smooth') preproc.connect(dilateMask_MCed, 'out_file', smooth, 'in_file') preproc.connect(medianval, ('out_stat',get_brightness_threshold), smooth, 'brightness_threshold') preproc.connect(inputnode, 'fwhm', smooth, 'fwhm') preproc.connect(merge, ('out',getusans), smooth, 'usans') """ mask the smoothed data with the dilated mask """ maskfunc3 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'dilateMask_smoothed') # connect the output of the susam smooth component to the maskfunc3 node preproc.connect(smooth, 'smoothed_file', maskfunc3, 'in_file') # connect the output of the dilated mask to the maskfunc3 node preproc.connect(dilatemask, 'out_file', maskfunc3, 'in_file2') """ scale the median value of the run is set to 10000 """ meanscale = pe.MapNode( interface = fsl.ImageMaths(suffix = '_intnorm'), iterfield = ['in_file','op_string'], name = 'meanscale') preproc.connect(maskfunc3, 'out_file', meanscale, 'in_file') preproc.connect(meanscale, 'out_file', outputnode,'smoothed_files') """ define a function to get the scaling factor for intensity normalization """ preproc.connect(medianval,('out_stat',getmeanscale), meanscale,'op_string') """ generate a mean functional image from the first run should this be the 'mean.nii.gz' we will use in the future? """ meanfunc3 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean',), iterfield = ['in_file'], name = 'gen_mean_func_img') preproc.connect(meanscale, 'out_file', meanfunc3, 'in_file') preproc.connect(meanfunc3, 'out_file', outputnode,'mean') # initialize some of the input files preproc.inputs.inputspec.func = os.path.abspath(func_data_file) preproc.inputs.inputspec.fwhm = 3 preproc.base_dir = os.path.abspath('/'.join( func_data_file.split('/')[:-1])) output_dir = os.path.abspath(os.path.join( preproc.base_dir, 'outputs', 'func')) MC_dir = os.path.join(output_dir,'MC') for directories in [output_dir,MC_dir]: if not os.path.exists(directories): os.makedirs(directories) # initialize all the output files if first_run == True: preproc.inputs.extractref.roi_file = os.path.abspath(os.path.join( output_dir,'example_func.nii.gz')) preproc.inputs.dilatemask.out_file = os.path.abspath(os.path.join( output_dir,'mask.nii.gz')) preproc.inputs.meanscale.out_file = os.path.abspath(os.path.join( output_dir,'prefiltered_func.nii.gz')) preproc.inputs.gen_mean_func_img.out_file = os.path.abspath(os.path.join( output_dir,'mean_func.nii.gz')) return preproc,MC_dir,output_dir def create_registration_workflow( anat_brain, anat_head, example_func, standard_brain, standard_head, standard_mask, workflow_name = 'registration', output_dir = 'temp'): from nipype.interfaces import fsl from nipype.interfaces import utility as util from nipype.pipeline import engine as pe fsl.FSLCommand.set_default_output_type('NIFTI_GZ') registration = pe.Workflow(name = 'registration') inputnode = pe.Node( interface = util.IdentityInterface( fields = [ 'highres', # anat_brain 'highres_head', # anat_head 'example_func', 'standard', # standard_brain 'standard_head', 'standard_mask' ]), name = 'inputspec') outputnode = pe.Node( interface = util.IdentityInterface( fields = ['example_func2highres_nii_gz', 'example_func2highres_mat', 'linear_example_func2highres_log', 'highres2example_func_mat', 'highres2standard_linear_nii_gz', 'highres2standard_mat', 'linear_highres2standard_log', 'highres2standard_nii_gz', 'highres2standard_warp_nii_gz', 'highres2standard_head_nii_gz', # 'highres2standard_apply_warp_nii_gz', 'highres2highres_jac_nii_gz', 'nonlinear_highres2standard_log', 'highres2standard_nii_gz', 'standard2highres_mat', 'example_func2standard_mat', 'example_func2standard_warp_nii_gz', 'example_func2standard_nii_gz', 'standard2example_func_mat', ]), name = 'outputspec') """ fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask """ # skip """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in example_func -ref highres -out example_func2highres -omat example_func2highres.mat -cost corratio -dof 7 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ linear_example_func2highres = pe.MapNode( interface = fsl.FLIRT(cost = 'corratio', interp = 'trilinear', dof = 7, save_log = True, searchr_x = [-180, 180], searchr_y = [-180, 180], searchr_z = [-180, 180],), iterfield = ['in_file','reference'], name = 'linear_example_func2highres') registration.connect(inputnode, 'example_func', linear_example_func2highres, 'in_file') registration.connect(inputnode, 'highres', linear_example_func2highres, 'reference') registration.connect(linear_example_func2highres, 'out_file', outputnode, 'example_func2highres_nii_gz') registration.connect(linear_example_func2highres, 'out_matrix_file', outputnode, 'example_func2highres_mat') registration.connect(linear_example_func2highres, 'out_log', outputnode, 'linear_example_func2highres_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat highres2example_func.mat example_func2highres.mat """ get_highres2example_func = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_highres2example_func') registration.connect(linear_example_func2highres,'out_matrix_file', get_highres2example_func,'in_file') registration.connect(get_highres2example_func,'out_file', outputnode,'highres2example_func_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in highres -ref standard -out highres2standard -omat highres2standard.mat -cost corratio -dof 12 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ linear_highres2standard = pe.MapNode( interface = fsl.FLIRT(cost = 'corratio', interp = 'trilinear', dof = 12, save_log = True, searchr_x = [-180, 180], searchr_y = [-180, 180], searchr_z = [-180, 180],), iterfield = ['in_file','reference'], name = 'linear_highres2standard') registration.connect(inputnode,'highres', linear_highres2standard,'in_file') registration.connect(inputnode,'standard', linear_highres2standard,'reference',) registration.connect(linear_highres2standard,'out_file', outputnode,'highres2standard_linear_nii_gz') registration.connect(linear_highres2standard,'out_matrix_file', outputnode,'highres2standard_mat') registration.connect(linear_highres2standard,'out_log', outputnode,'linear_highres2standard_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/fnirt --iout=highres2standard_head --in=highres_head --aff=highres2standard.mat --cout=highres2standard_warp --iout=highres2standard --jout=highres2highres_jac --config=T1_2_MNI152_2mm --ref=standard_head --refmask=standard_mask --warpres=10,10,10 """ nonlinear_highres2standard = pe.MapNode( interface = fsl.FNIRT(warp_resolution = (10,10,10), config_file = "T1_2_MNI152_2mm"), iterfield = ['in_file','ref_file','affine_file','refmask_file'], name = 'nonlinear_highres2standard') # -- iout registration.connect(nonlinear_highres2standard,'warped_file', outputnode,'highres2standard_head_nii_gz') # --in registration.connect(inputnode,'highres', nonlinear_highres2standard,'in_file') # --aff registration.connect(linear_highres2standard,'out_matrix_file', nonlinear_highres2standard,'affine_file') # --cout registration.connect(nonlinear_highres2standard,'fieldcoeff_file', outputnode,'highres2standard_warp_nii_gz') # --jout registration.connect(nonlinear_highres2standard,'jacobian_file', outputnode,'highres2highres_jac_nii_gz') # --ref registration.connect(inputnode,'standard_head', nonlinear_highres2standard,'ref_file',) # --refmask registration.connect(inputnode,'standard_mask', nonlinear_highres2standard,'refmask_file') # log registration.connect(nonlinear_highres2standard,'log_file', outputnode,'nonlinear_highres2standard_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp -i highres -r standard -o highres2standard -w highres2standard_warp """ warp_highres2standard = pe.MapNode( interface = fsl.ApplyWarp(), iterfield = ['in_file','ref_file','field_file'], name = 'warp_highres2standard') registration.connect(inputnode,'highres', warp_highres2standard,'in_file') registration.connect(inputnode,'standard', warp_highres2standard,'ref_file') registration.connect(warp_highres2standard,'out_file', outputnode,'highres2standard_nii_gz') registration.connect(nonlinear_highres2standard,'fieldcoeff_file', warp_highres2standard,'field_file') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2highres.mat highres2standard.mat """ get_standard2highres = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_standard2highres') registration.connect(linear_highres2standard,'out_matrix_file', get_standard2highres,'in_file') registration.connect(get_standard2highres,'out_file', outputnode,'standard2highres_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat """ get_exmaple_func2standard = pe.MapNode( interface = fsl.ConvertXFM(concat_xfm = True), iterfield = ['in_file','in_file2'], name = 'get_exmaple_func2standard') registration.connect(linear_example_func2highres, 'out_matrix_file', get_exmaple_func2standard,'in_file') registration.connect(linear_highres2standard,'out_matrix_file', get_exmaple_func2standard,'in_file2') registration.connect(get_exmaple_func2standard,'out_file', outputnode,'example_func2standard_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/convertwarp --ref=standard --premat=example_func2highres.mat --warp1=highres2standard_warp --out=example_func2standard_warp """ convertwarp_example2standard = pe.MapNode( interface = fsl.ConvertWarp(), iterfield = ['reference','premat','warp1'], name = 'convertwarp_example2standard') registration.connect(inputnode,'standard', convertwarp_example2standard,'reference') registration.connect(linear_example_func2highres,'out_matrix_file', convertwarp_example2standard,'premat') registration.connect(nonlinear_highres2standard,'fieldcoeff_file', convertwarp_example2standard,'warp1') registration.connect(convertwarp_example2standard,'out_file', outputnode,'example_func2standard_warp_nii_gz') """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp --ref=standard --in=example_func --out=example_func2standard --warp=example_func2standard_warp """ warp_example2stand = pe.MapNode( interface = fsl.ApplyWarp(), iterfield = ['ref_file','in_file','field_file'], name = 'warp_example2stand') registration.connect(inputnode,'standard', warp_example2stand,'ref_file') registration.connect(inputnode,'example_func', warp_example2stand,'in_file') registration.connect(warp_example2stand,'out_file', outputnode,'example_func2standard_nii_gz') registration.connect(convertwarp_example2standard,'out_file', warp_example2stand,'field_file') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2example_func.mat example_func2standard.mat """ get_standard2example_func = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_standard2example_func') registration.connect(get_exmaple_func2standard,'out_file', get_standard2example_func,'in_file') registration.connect(get_standard2example_func,'out_file', outputnode,'standard2example_func_mat') registration.base_dir = output_dir registration.inputs.inputspec.highres = anat_brain registration.inputs.inputspec.highres_head= anat_head registration.inputs.inputspec.example_func = example_func registration.inputs.inputspec.standard = standard_brain registration.inputs.inputspec.standard_head = standard_head registration.inputs.inputspec.standard_mask = standard_mask # define all the oupput file names with the directory registration.inputs.linear_example_func2highres.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2highres.nii.gz')) registration.inputs.linear_example_func2highres.out_matrix_file = os.path.abspath(os.path.join(output_dir, 'example_func2highres.mat')) registration.inputs.linear_example_func2highres.out_log = os.path.abspath(os.path.join(output_dir, 'linear_example_func2highres.log')) registration.inputs.get_highres2example_func.out_file = os.path.abspath(os.path.join(output_dir, 'highres2example_func.mat')) registration.inputs.linear_highres2standard.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_linear.nii.gz')) registration.inputs.linear_highres2standard.out_matrix_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.mat')) registration.inputs.linear_highres2standard.out_log = os.path.abspath(os.path.join(output_dir, 'linear_highres2standard.log')) # --iout registration.inputs.nonlinear_highres2standard.warped_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) # --cout registration.inputs.nonlinear_highres2standard.fieldcoeff_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) # --jout registration.inputs.nonlinear_highres2standard.jacobian_file = os.path.abspath(os.path.join(output_dir, 'highres2highres_jac.nii.gz')) registration.inputs.nonlinear_highres2standard.log_file = os.path.abspath(os.path.join(output_dir, 'nonlinear_highres2standard.log')) registration.inputs.warp_highres2standard.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) registration.inputs.get_standard2highres.out_file = os.path.abspath(os.path.join(output_dir, 'standard2highres.mat')) registration.inputs.get_exmaple_func2standard.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard.mat')) registration.inputs.convertwarp_example2standard.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard_warp.nii.gz')) registration.inputs.warp_example2stand.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard.nii.gz')) registration.inputs.get_standard2example_func.out_file = os.path.abspath(os.path.join(output_dir, 'standard2example_func.mat')) return registration def _create_registration_workflow(anat_brain, anat_head, func_ref, standard_brain, standard_head, standard_mask, output_dir = 'temp'): from nipype.interfaces import fsl """ fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask """ fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = anat_brain fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = anat_head fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres_head.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_brain fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_head fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_head.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_mask fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_mask.nii.gz')) fslmaths.cmdline fslmaths.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in example_func -ref highres -out example_func2highres -omat example_func2highres.mat -cost corratio -dof 7 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ flt = fsl.FLIRT() flt.inputs.in_file = func_ref flt.inputs.reference = anat_brain flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.nii.gz')) flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.mat')) flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'example_func2highres.log')) flt.inputs.cost = 'corratio' flt.inputs.interp = 'trilinear' flt.inputs.searchr_x = [-180, 180] flt.inputs.searchr_y = [-180, 180] flt.inputs.searchr_z = [-180, 180] flt.inputs.dof = 7 flt.inputs.save_log = True flt.cmdline flt.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat highres2example_func.mat example_func2highres.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"example_func2highres.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2example_func.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in highres -ref standard -out highres2standard -omat highres2standard.mat -cost corratio -dof 12 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ flt = fsl.FLIRT() flt.inputs.in_file = anat_brain flt.inputs.reference = standard_brain flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2standard_linear.nii.gz')) flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'highres2standard.mat')) flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'highres2standard.log')) flt.inputs.cost = 'corratio' flt.inputs.interp = 'trilinear' flt.inputs.searchr_x = [-180, 180] flt.inputs.searchr_y = [-180, 180] flt.inputs.searchr_z = [-180, 180] flt.inputs.dof = 12 flt.inputs.save_log = True flt.cmdline flt.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/fnirt --iout=highres2standard_head --in=highres_head --aff=highres2standard.mat --cout=highres2standard_warp --iout=highres2standard --jout=highres2highres_jac --config=T1_2_MNI152_2mm --ref=standard_head --refmask=standard_mask --warpres=10,10,10 """ fnirt_mprage = fsl.FNIRT() fnirt_mprage.inputs.warp_resolution = (10, 10, 10) # --iout name of output image fnirt_mprage.inputs.warped_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) # --in input image fnirt_mprage.inputs.in_file = anat_head # --aff affine transform fnirt_mprage.inputs.affine_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.mat')) # --cout output file with field coefficients fnirt_mprage.inputs.fieldcoeff_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) # --jout fnirt_mprage.inputs.jacobian_file = os.path.abspath(os.path.join(output_dir, 'highres2highres_jac.nii.gz')) # --config fnirt_mprage.inputs.config_file = 'T1_2_MNI152_2mm' # --ref fnirt_mprage.inputs.ref_file = os.path.abspath(standard_head) # --refmask fnirt_mprage.inputs.refmask_file = os.path.abspath(standard_mask) # --warpres fnirt_mprage.inputs.log_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.log')) fnirt_mprage.cmdline fnirt_mprage.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp -i highres -r standard -o highres2standard -w highres2standard_warp """ aw = fsl.ApplyWarp() aw.inputs.in_file = anat_brain aw.inputs.ref_file = os.path.abspath(standard_brain) aw.inputs.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) aw.inputs.field_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) aw.cmdline aw.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2highres.mat highres2standard.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"highres2standard.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard2highres.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file2 = os.path.abspath(os.path.join(output_dir,"highres2standard.mat")) inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir, "example_func2highres.mat")) inverse_transformer.inputs.concat_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2standard.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convertwarp --ref=standard --premat=example_func2highres.mat --warp1=highres2standard_warp --out=example_func2standard_warp """ warputils = fsl.ConvertWarp() warputils.inputs.reference = os.path.abspath(standard_brain) warputils.inputs.premat = os.path.abspath(os.path.join(output_dir, "example_func2highres.mat")) warputils.inputs.warp1 = os.path.abspath(os.path.join(output_dir, "highres2standard_warp.nii.gz")) warputils.inputs.out_file = os.path.abspath(os.path.join(output_dir, "example_func2standard_warp.nii.gz")) warputils.cmdline warputils.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp --ref=standard --in=example_func --out=example_func2standard --warp=example_func2standard_warp """ aw = fsl.ApplyWarp() aw.inputs.ref_file = os.path.abspath(standard_brain) aw.inputs.in_file = os.path.abspath(func_ref) aw.inputs.out_file = os.path.abspath(os.path.join(output_dir, "example_func2standard.nii.gz")) aw.inputs.field_file = os.path.abspath(os.path.join(output_dir, "example_func2standard_warp.nii.gz")) aw.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2example_func.mat example_func2standard.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir, "example_func2standard.mat")) inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir, "standard2example_func.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.cmdline inverse_transformer.run() ###################### ###### plotting ###### example_func2highres = os.path.abspath(os.path.join(output_dir, 'example_func2highres')) example_func2standard = os.path.abspath(os.path.join(output_dir, "example_func2standard")) highres2standard = os.path.abspath(os.path.join(output_dir, 'highres2standard')) highres = os.path.abspath(anat_brain) standard = os.path.abspath(standard_brain) plot_example_func2highres = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png; /bin/rm -f sl?.png {example_func2highres}2.png /bin/rm {example_func2highres}1.png """.replace("\n"," ") plot_highres2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png; /bin/rm -f sl?.png {highres2standard}2.png /bin/rm {highres2standard}1.png """.replace("\n"," ") plot_example_func2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png; /bin/rm -f sl?.png {example_func2standard}2.png """.replace("\n"," ") for cmdline in [plot_example_func2highres,plot_example_func2standard,plot_highres2standard]: os.system(cmdline) def create_simple_struc2BOLD(roi, roi_name, preprocessed_functional_dir, output_dir): from nipype.interfaces import fsl from nipype.pipeline import engine as pe from nipype.interfaces import utility as util fsl.FSLCommand.set_default_output_type('NIFTI_GZ') simple_workflow = pe.Workflow(name = 'struc2BOLD') inputnode = pe.Node(interface = util.IdentityInterface( fields = ['flt_in_file', 'flt_in_matrix', 'flt_reference', 'mask']), name = 'inputspec') outputnode = pe.Node(interface = util.IdentityInterface( fields = ['BODL_mask']), name = 'outputspec') """ flirt -in /export/home/dsoto/dsoto/fmri/$s/sess2/label/$i -ref /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/example_func.nii.gz -applyxfm -init /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/reg/highres2example_func.mat -out /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} """ flirt_convert = pe.MapNode( interface = fsl.FLIRT(apply_xfm = True), iterfield = ['in_file', 'reference', 'in_matrix_file'], name = 'flirt_convert') simple_workflow.connect(inputnode, 'flt_in_file', flirt_convert, 'in_file') simple_workflow.connect(inputnode, 'flt_reference', flirt_convert, 'reference') simple_workflow.connect(inputnode, 'flt_in_matrix', flirt_convert, 'in_matrix_file') """ fslmaths /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -mul 2 -thr `fslstats /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -p 99.6` -bin /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} """ def getthreshop(thresh): return ['-mul 2 -thr %.10f -bin' % (val) for val in thresh] getthreshold = pe.MapNode( interface = fsl.ImageStats(op_string='-p 99.6'), iterfield = ['in_file','mask_file'], name = 'getthreshold') simple_workflow.connect(flirt_convert, 'out_file', getthreshold, 'in_file') simple_workflow.connect(inputnode, 'mask', getthreshold, 'mask_file') threshold = pe.MapNode( interface = fsl.ImageMaths( suffix = '_thresh', op_string = '-mul 2 -bin'), iterfield = ['in_file','op_string'], name = 'thresholding') simple_workflow.connect(flirt_convert, 'out_file', threshold, 'in_file') simple_workflow.connect(getthreshold, ('out_stat',getthreshop), threshold, 'op_string') # simple_workflow.connect(threshold,'out_file',outputnode,'BOLD_mask') bound_by_mask = pe.MapNode( interface = fsl.ImageMaths( suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'bound_by_mask') simple_workflow.connect(threshold, 'out_file', bound_by_mask, 'in_file') simple_workflow.connect(inputnode, 'mask', bound_by_mask, 'in_file2') simple_workflow.connect(bound_by_mask, 'out_file', outputnode, 'BOLD_mask') # setup inputspecs simple_workflow.inputs.inputspec.flt_in_file = roi simple_workflow.inputs.inputspec.flt_in_matrix = os.path.abspath(os.path.join(preprocessed_functional_dir, 'reg', 'highres2example_func.mat')) simple_workflow.inputs.inputspec.flt_reference = os.path.abspath(os.path.join(preprocessed_functional_dir, 'func', 'example_func.nii.gz')) simple_workflow.inputs.inputspec.mask = os.path.abspath(os.path.join(preprocessed_functional_dir, 'func', 'mask.nii.gz')) simple_workflow.inputs.bound_by_mask.out_file = os.path.abspath(os.path.join(output_dir, roi_name.replace('_fsl.nii.gz', '_BOLD.nii.gz'))) return simple_workflow def registration_plotting(output_dir, anat_brain, standard_brain): ###################### ###### plotting ###### try: example_func2highres = os.path.abspath(os.path.join(output_dir, 'example_func2highres')) example_func2standard = os.path.abspath(os.path.join(output_dir, 'example_func2standard_warp')) highres2standard = os.path.abspath(os.path.join(output_dir, 'highres2standard')) highres = os.path.abspath(anat_brain) standard = os.path.abspath(standard_brain) plot_example_func2highres = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png; /bin/rm -f sl?.png {example_func2highres}2.png /bin/rm {example_func2highres}1.png """.replace("\n"," ") plot_highres2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png; /bin/rm -f sl?.png {highres2standard}2.png /bin/rm {highres2standard}1.png """.replace("\n"," ") plot_example_func2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png; /bin/rm -f sl?.png {example_func2standard}2.png """.replace("\n"," ") for cmdline in [plot_example_func2highres, plot_example_func2standard, plot_highres2standard]: os.system(cmdline) except: print('you should not use python 2.7, update your python!!') def create_highpass_filter_workflow(workflow_name = 'highpassfiler', HP_freq = 60, TR = 0.85): from nipype.workflows.fmri.fsl import preprocess from nipype.interfaces import fsl from nipype.pipeline import engine as pe from nipype.interfaces import utility as util fsl.FSLCommand.set_default_output_type('NIFTI_GZ') getthreshop = preprocess.getthreshop getmeanscale = preprocess.getmeanscale highpass_workflow = pe.Workflow(name = workflow_name) inputnode = pe.Node(interface = util.IdentityInterface( fields = ['ICAed_file',]), name = 'inputspec') outputnode = pe.Node(interface = util.IdentityInterface( fields = ['filtered_file']), name = 'outputspec') img2float = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'float', op_string = '', suffix = '_dtype'), iterfield = ['in_file'], name = 'img2float') highpass_workflow.connect(inputnode,'ICAed_file', img2float,'in_file') getthreshold = pe.MapNode(interface = fsl.ImageStats(op_string = '-p 2 -p 98'), iterfield = ['in_file'], name = 'getthreshold') highpass_workflow.connect(img2float, 'out_file', getthreshold, 'in_file') thresholding = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'char', suffix = '_thresh', op_string = '-Tmin -bin'), iterfield = ['in_file','op_string'], name = 'thresholding') highpass_workflow.connect(img2float, 'out_file', thresholding, 'in_file') highpass_workflow.connect(getthreshold,('out_stat',getthreshop), thresholding,'op_string') dilatemask = pe.MapNode(interface = fsl.ImageMaths(suffix = '_dil', op_string = '-dilF'), iterfield = ['in_file'], name = 'dilatemask') highpass_workflow.connect(thresholding,'out_file', dilatemask,'in_file') maskfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'apply_dilatemask') highpass_workflow.connect(img2float, 'out_file', maskfunc, 'in_file') highpass_workflow.connect(dilatemask, 'out_file', maskfunc, 'in_file2') medianval = pe.MapNode(interface = fsl.ImageStats(op_string = '-k %s -p 50'), iterfield = ['in_file','mask_file'], name = 'cal_intensity_scale_factor') highpass_workflow.connect(img2float, 'out_file', medianval, 'in_file') highpass_workflow.connect(thresholding, 'out_file', medianval, 'mask_file') meanscale = pe.MapNode(interface = fsl.ImageMaths(suffix = '_intnorm'), iterfield = ['in_file','op_string'], name = 'meanscale') highpass_workflow.connect(maskfunc, 'out_file', meanscale, 'in_file') highpass_workflow.connect(medianval, ('out_stat',getmeanscale), meanscale, 'op_string') meanfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean'), iterfield = ['in_file'], name = 'meanfunc') highpass_workflow.connect(meanscale, 'out_file', meanfunc, 'in_file') hpf = pe.MapNode(interface = fsl.ImageMaths(suffix = '_tempfilt', op_string = '-bptf %.10f -1' % (HP_freq/2/TR)), iterfield = ['in_file'], name = 'highpass_filering') highpass_workflow.connect(meanscale,'out_file', hpf, 'in_file',) addMean = pe.MapNode(interface = fsl.BinaryMaths(operation = 'add'), iterfield = ['in_file','operand_file'], name = 'addmean') highpass_workflow.connect(hpf, 'out_file', addMean, 'in_file') highpass_workflow.connect(meanfunc, 'out_file', addMean, 'operand_file') highpass_workflow.connect(addMean, 'out_file', outputnode,'filtered_file') return highpass_workflow def load_csv(f,print_ = False): temp = re.findall(r'\d+',f) n_session = int(temp[-2]) n_run = int(temp[-1]) if print_: print(n_session,n_run) df = pd.read_csv(f) df['session'] = n_session df['run'] = n_run df['id'] = df['session'] * 1000 + df['run'] * 100 + df['trials'] return df def build_model_dictionary(print_train = False, class_weight = 'balanced', remove_invariant = True, n_jobs = 1): np.random.seed(12345) svm = LinearSVC(penalty = 'l2', # default dual = True, # default tol = 1e-3, # not default random_state = 12345, # not default max_iter = int(1e3), # default class_weight = class_weight, # not default ) svm = CalibratedClassifierCV(base_estimator = svm, method = 'sigmoid', cv = 8) xgb = XGBClassifier( learning_rate = 1e-3, # not default max_depth = 10, # not default n_estimators = 100, # not default objective = 'binary:logistic', # default booster = 'gbtree', # default subsample = 0.9, # not default colsample_bytree = 0.9, # not default reg_alpha = 0, # default reg_lambda = 1, # default random_state = 12345, # not default importance_type = 'gain', # default n_jobs = n_jobs,# default to be 1 ) bagging = BaggingClassifier(base_estimator = svm, n_estimators = 30, # not default max_features = 0.9, # not default max_samples = 0.9, # not default bootstrap = True, # default bootstrap_features = True, # default random_state = 12345, # not default ) RF = SelectFromModel(xgb, prefit = False, threshold = 'median' # induce sparsity ) uni = SelectPercentile(mutual_info_classif,50) # so annoying that I cannot control the random state knn = KNeighborsClassifier() tree = DecisionTreeClassifier(random_state = 12345, class_weight = class_weight) dummy = DummyClassifier(strategy = 'uniform',random_state = 12345,) if remove_invariant: RI = VarianceThreshold() models = OrderedDict([ ['None + Dummy', make_pipeline(RI,MinMaxScaler(), dummy,)], ['None + Linear-SVM', make_pipeline(RI,MinMaxScaler(), svm,)], ['None + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), bagging,)], ['None + KNN', make_pipeline(RI,MinMaxScaler(), knn,)], ['None + Tree', make_pipeline(RI,MinMaxScaler(), tree,)], ['PCA + Dummy', make_pipeline(RI,MinMaxScaler(), PCA(), dummy,)], ['PCA + Linear-SVM', make_pipeline(RI,MinMaxScaler(), PCA(), svm,)], ['PCA + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), PCA(), bagging,)], ['PCA + KNN', make_pipeline(RI,MinMaxScaler(), PCA(), knn,)], ['PCA + Tree', make_pipeline(RI,MinMaxScaler(), PCA(), tree,)], ['Mutual + Dummy', make_pipeline(RI,MinMaxScaler(), uni, dummy,)], ['Mutual + Linear-SVM', make_pipeline(RI,MinMaxScaler(), uni, svm,)], ['Mutual + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), uni, bagging,)], ['Mutual + KNN', make_pipeline(RI,MinMaxScaler(), uni, knn,)], ['Mutual + Tree', make_pipeline(RI,MinMaxScaler(), uni, tree,)], ['RandomForest + Dummy', make_pipeline(RI,MinMaxScaler(), RF, dummy,)], ['RandomForest + Linear-SVM', make_pipeline(RI,MinMaxScaler(), RF, svm,)], ['RandomForest + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), RF, bagging,)], ['RandomForest + KNN', make_pipeline(RI,MinMaxScaler(), RF, knn,)], ['RandomForest + Tree', make_pipeline(RI,MinMaxScaler(), RF, tree,)],] ) else: models = OrderedDict([ ['None + Dummy', make_pipeline(MinMaxScaler(), dummy,)], ['None + Linear-SVM', make_pipeline(MinMaxScaler(), svm,)], ['None + Ensemble-SVMs', make_pipeline(MinMaxScaler(), bagging,)], ['None + KNN', make_pipeline(MinMaxScaler(), knn,)], ['None + Tree', make_pipeline(MinMaxScaler(), tree,)], ['PCA + Dummy', make_pipeline(MinMaxScaler(), PCA(), dummy,)], ['PCA + Linear-SVM', make_pipeline(MinMaxScaler(), PCA(), svm,)], ['PCA + Ensemble-SVMs', make_pipeline(MinMaxScaler(), PCA(), bagging,)], ['PCA + KNN', make_pipeline(MinMaxScaler(), PCA(), knn,)], ['PCA + Tree', make_pipeline(MinMaxScaler(), PCA(), tree,)], ['Mutual + Dummy', make_pipeline(MinMaxScaler(), uni, dummy,)], ['Mutual + Linear-SVM', make_pipeline(MinMaxScaler(), uni, svm,)], ['Mutual + Ensemble-SVMs', make_pipeline(MinMaxScaler(), uni, bagging,)], ['Mutual + KNN', make_pipeline(MinMaxScaler(), uni, knn,)], ['Mutual + Tree', make_pipeline(MinMaxScaler(), uni, tree,)], ['RandomForest + Dummy', make_pipeline(MinMaxScaler(), RF, dummy,)], ['RandomForest + Linear-SVM', make_pipeline(MinMaxScaler(), RF, svm,)], ['RandomForest + Ensemble-SVMs', make_pipeline(MinMaxScaler(), RF, bagging,)], ['RandomForest + KNN', make_pipeline(MinMaxScaler(), RF, knn,)], ['RandomForest + Tree', make_pipeline(MinMaxScaler(), RF, tree,)],] ) return models def get_blocks(df__,label_map,): ids = df__['id'].values chunks = df__['session'].values words = df__['labels'].values labels = np.array([label_map[item] for item in df__['targets'].values])[:,-1] sample_indecies = np.arange(len(labels)) blocks = [np.array([ids[ids == target], chunks[ids == target], words[ids == target], labels[ids == target], sample_indecies[ids == target] ]) for target in np.unique(ids) ] block_labels = np.array([np.unique(ll[-2]) for ll in blocks]).ravel() return blocks,block_labels def make_unique_class_target(df_data): make_class = {name:[] for name in pd.unique(df_data['targets'])} for ii,df_sub in df_data.groupby(['labels']): target = pd.unique(df_sub['targets']) label = pd.unique(df_sub['labels']) make_class[target[0]].append(label[0]) return make_class def Find_Optimal_Cutoff(target, predicted): """ Find the optimal probability cutoff point for a classification model related to event rate Parameters ---------- target : Matrix with dependent or target data, where rows are observations predicted : Matrix with predicted data, where rows are observations Returns ------- list type, with optimal cutoff value """ fpr, tpr, threshold = roc_curve(target, predicted) i = np.arange(len(tpr)) roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 'threshold' : pd.Series(threshold, index=i)}) roc_t = roc.iloc[(roc.tf-0).abs().argsort()[:1]] return list(roc_t['threshold']) def customized_partition(df_data,groupby_column = ['id','labels'],n_splits = 100,): """ modified for unaveraged volumes """ idx_object = dict(ids = [],idx = [],labels = []) for label,df_sub in df_data.groupby(groupby_column): idx_object['ids'].append(label[0]) idx_object['idx'].append(df_sub.index.tolist()) idx_object['labels'].append(label[-1]) df_object = pd.DataFrame(idx_object) idxs_test = [] for counter in range(int(1e4)): idx_test = [np.random.choice(item['idx'].values) for ii,item in df_object.groupby(groupby_column[-1])] if counter >= n_splits: return [np.concatenate(item) for item in idxs_test] break if counter > 0: temp = [] for used in idxs_test: used_temp = [','.join(str(ii) for ii in item) for item in used] idx_test_temp = [','.join(str(ii) for ii in item) for item in idx_test] a = set(used_temp) b = set(idx_test_temp) temp.append(len(a.intersection(b)) != len(idx_test)) if all(temp) == True: idxs_test.append(idx_test) else: idxs_test.append(idx_test) def check_train_test_splits(idxs_test): """ check if we get repeated test sets """ temp = [] for ii,item1 in enumerate(idxs_test): for jj,item2 in enumerate(idxs_test): if not ii == jj: if len(item1) == len(item2): sample1 = np.sort(item1) sample2 = np.sort(item2) temp.append(len(set(sample1).intersection(set(sample2))) == len(sample1)) temp = np.array(temp) return any(temp) def check_train_balance(df,idx_train,keys): """ check the balance of the training set. if only one of the classes has more 2 instances than the other we will randomly take out those 'extra instances' from the major class """ Counts = dict(Counter(df.iloc[idx_train]['targets'].values)) if np.abs(Counts[keys[0]] - Counts[keys[1]]) > 2: if Counts[keys[0]] > Counts[keys[1]]: key_major = keys[0] key_minor = keys[1] else: key_major = keys[1] key_minor = keys[0] ids_major = df.iloc[idx_train]['id'][df.iloc[idx_train]['targets'] == key_major] idx_train_new = idx_train.copy() for n in range(len(idx_train_new)): random_pick = np.random.choice(np.unique(ids_major),size = 1)[0] # print(random_pick,np.unique(ids_major)) idx_train_new = np.array([item for item,id_temp in zip(idx_train_new,df.iloc[idx_train_new]['id']) if (id_temp != random_pick)]) ids_major = np.array([item for item in ids_major if (item != random_pick)]) new_counts = dict(Counter(df.iloc[idx_train_new]['targets'])) if np.abs(new_counts[keys[0]] - new_counts[keys[1]]) > 3: if new_counts[keys[0]] > new_counts[keys[1]]: key_major = keys[0] key_minor = keys[1] else: key_major = keys[1] key_minor = keys[0] ids_major = df.iloc[idx_train_new]['id'][df.iloc[idx_train_new]['targets'] == key_major] elif np.abs(new_counts[keys[0]] - new_counts[keys[1]]) < 3: break return idx_train_new else: return idx_train def LOO_partition(df_data,target_column = 'labels'): temp = {'targets':[],target_column:[]} for (targets,labels),df_sub in df_data.groupby(['targets',target_column]): temp['targets'].append(targets) temp[target_column].append(labels) temp = pd.DataFrame(temp) temp = temp.sort_values(['targets',target_column]) living = temp[temp['targets'] == 'Living_Things'][target_column].values nonliving = temp[temp['targets'] == 'Nonliving_Things'][target_column].values test_pairs = [[a,b] for a in living for b in nonliving] idxs_train,idxs_test = [],[] for test_pair in test_pairs: idx_test = np.logical_or(df_data[target_column] == test_pair[0], df_data[target_column] == test_pair[1]) idx_train = np.invert(idx_test) idxs_train.append(np.where(idx_train == True)[0]) idxs_test.append(np.where(idx_test == True)[0]) return idxs_train,idxs_test def resample_ttest(x, baseline = 0.5, n_ps = 100, n_permutation = 10000, one_tail = False, n_jobs = 12, verbose = 0, full_size = True ): """ http://www.stat.ucla.edu/~rgould/110as02/bshypothesis.pdf https://www.tau.ac.il/~saharon/StatisticsSeminar_files/Hypothesis.pdf Inputs: ---------- x: numpy array vector, the data that is to be compared baseline: the single point that we compare the data with n_ps: number of p values we want to estimate one_tail: whether to perform one-tailed comparison """ import numpy as np import gc from joblib import Parallel,delayed # statistics with the original data distribution t_experiment = np.mean(x) null = x - np.mean(x) + baseline # shift the mean to the baseline but keep the distribution if null.shape[0] > int(1e4): # catch for big data full_size = False if not full_size: size = int(1e3) else: size = null.shape[0] gc.collect() def t_statistics(null,size,): """ null: shifted data distribution size: tuple of 2 integers (n_for_averaging,n_permutation) """ null_dist = np.random.choice(null,size = size,replace = True) t_null = np.mean(null_dist,0) if one_tail: return ((np.sum(t_null >= t_experiment)) + 1) / (size[1] + 1) else: return ((np.sum(np.abs(t_null) >= np.abs(t_experiment))) + 1) / (size[1] + 1) /2 ps = Parallel(n_jobs = n_jobs,verbose = verbose)(delayed(t_statistics)(**{ 'null':null, 'size':(size,int(n_permutation)),}) for i in range(n_ps)) return np.array(ps) def resample_ttest_2sample(a,b, n_ps = 100, n_permutation = 10000, one_tail = False, match_sample_size = True, n_jobs = 6, verbose = 0): from joblib import Parallel,delayed import gc # when the samples are dependent just simply test the pairwise difference against 0 # which is a one sample comparison problem if match_sample_size: difference = a - b ps = resample_ttest(difference, baseline = 0, n_ps = n_ps, n_permutation = n_permutation, one_tail = one_tail, n_jobs = n_jobs, verbose = verbose,) return ps else: # when the samples are independent t_experiment = np.mean(a) - np.mean(b) if not one_tail: t_experiment = np.abs(t_experiment) def t_statistics(a,b): group = np.concatenate([a,b]) np.random.shuffle(group) new_a = group[:a.shape[0]] new_b = group[a.shape[0]:] t_null = np.mean(new_a) - np.mean(new_b) if not one_tail: t_null = np.abs(t_null) return t_null gc.collect() ps = np.zeros(n_ps) for ii in range(n_ps): t_null_null = Parallel(n_jobs = n_jobs,verbose = verbose)(delayed(t_statistics)(**{ 'a':a, 'b':b}) for i in range(n_permutation)) if one_tail: ps[ii] = ((np.sum(t_null_null >= t_experiment)) + 1) / (n_permutation + 1) else: ps[ii] = ((np.sum(np.abs(t_null_null) >= np.abs(t_experiment))) + 1) / (n_permutation + 1) / 2 return ps class MCPConverter(object): import statsmodels as sms """ https://gist.github.com/naturale0/3915e2def589553e91dce99e69d138cc https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method input: array of p-values. * convert p-value into adjusted p-value (or q-value) """ def __init__(self, pvals, zscores = None): self.pvals = pvals self.zscores = zscores self.len = len(pvals) if zscores is not None: srted = np.array(sorted(zip(pvals.copy(), zscores.copy()))) self.sorted_pvals = srted[:, 0] self.sorted_zscores = srted[:, 1] else: self.sorted_pvals = np.array(sorted(pvals.copy())) self.order = sorted(range(len(pvals)), key=lambda x: pvals[x]) def adjust(self, method = "holm"): import statsmodels as sms """ methods = ["bonferroni", "holm", "bh", "lfdr"] (local FDR method needs 'statsmodels' package) """ if method == "bonferroni": return [np.min([1, i]) for i in self.sorted_pvals * self.len] elif method == "holm": return [np.min([1, i]) for i in (self.sorted_pvals * (self.len - np.arange(1, self.len+1) + 1))] elif method == "bh": p_times_m_i = self.sorted_pvals * self.len / np.arange(1, self.len+1) return [np.min([p, p_times_m_i[i+1]]) if i < self.len-1 else p for i, p in enumerate(p_times_m_i)] elif method == "lfdr": if self.zscores is None: raise ValueError("Z-scores were not provided.") return sms.stats.multitest.local_fdr(abs(self.sorted_zscores)) else: raise ValueError("invalid method entered: '{}'".format(method)) def adjust_many(self, methods = ["bonferroni", "holm", "bh", "lfdr"]): if self.zscores is not None: df = pd.DataFrame(np.c_[self.sorted_pvals, self.sorted_zscores], columns=["p_values", "z_scores"]) for method in methods: df[method] = self.adjust(method) else: df = pd.DataFrame(self.sorted_pvals, columns=["p_values"]) for method in methods: if method != "lfdr": df[method] = self.adjust(method) return df def define_roi_category(): roi_dict = {'fusiform':'Visual', 'parahippocampal':'Visual', 'pericalcarine':'Visual', 'precuneus':'Visual', 'superiorparietal':'Working Memory', 'inferiortemporal':'Visual', 'lateraloccipital':'Visual', 'lingual':'Visual', 'rostralmiddlefrontal':'Working Memory', 'superiorfrontal':'Working Memory', 'ventrolateralPFC':'Working Memory', 'inferiorparietal':'Visual', } return roi_dict def stars(x): if x < 0.001: return '***' elif x < 0.01: return '**' elif x < 0.05: return '*' else: return 'n.s.' def get_fs(x): return x.split(' + ')[0] def get_clf(x): return x.split(' + ')[1] def rename_roi(x): return x.split('-')[-1] + '-' + x.split('-')[1] def strip_interaction_names(df_corrected): results = [] for ii,row in df_corrected.iterrows(): row['window'] = row['level1'].split('_')[0] try: row['attribute1']= row['level1'].split('_')[1] row['attribute2']= row['level2'].split('_')[1] except: row['attr1']= row['level1'].split('_')[1] row['attr2']= row['level2'].split('_')[1] results.append(row.to_frame().T) results = pd.concat(results) return results def compute_xy(df_sub,position_map,hue_map): df_add = [] for ii,row in df_sub.iterrows(): xtick = int(row['window']) - 1 attribute1_x = xtick + position_map[hue_map[row['attribute1']]] attribute2_x = xtick + position_map[hue_map[row['attribute2']]] row['x1'] = attribute1_x row['x2'] = attribute2_x df_add.append(row.to_frame().T) df_add =
pd.concat(df_add)
pandas.concat
""" Implementation of different statistical analysis tools that are used to compare the significant difference between two trajectories. (1) Splinectomy longitudinal statistical analysis tools References: - https://github.com/RRShieldsCutler/splinectomeR - https://www.frontiersin.org/articles/10.3389/fmicb.2018.00785/full The following 3 methods below are translated from R to Python and acomodated for our project. Original package is called splinectomeR, implemented in R. For more details please use the reference links. In short, the test compares whether the area between two polynomial lines is significantly different. Our trajectory lines are the plynomial lines with degree 2 or 3. (2) Linear regression statistical analysis tools After the 3 methods from splinectomeR, we have the other one, based on comparing the two linear lines (line y=k*x+n). To compare two linear lines, we compare the significant difference in the two coefficients that represent the line k and n. In the microbiome trajectory, the only linear part is the part where infant is younger than 2 years. After that, the trajectory plateaus, therefore, this test can be used only before 2 years. """ import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import numpy as np import statsmodels.api as sm def permuspliner( data, xvar, yvar, category, degree, cases, groups=None, perms=999, test_direction="more", ints=1000, quiet=False, cut_sparse=4, ): """Permuspliner tests for a significant difference between two groups overall. Permutation to test whether there is a non-zero trend among a set of individuals/samples over a continuous variable -- such as time. So, there does not need to be two groups in this test. The x variable datapoints are permuated within each case/individual, thus maintaining the distribution in the y component but shuffling the hypothesized trend. Note: the description is taken from splinectomeR Parameters ---------- data: pd.DataFrame A dataframe object containing your data. xvar: str The independent variable; is continuous, e.g. y. yvar: str The dependent variable; is continuous, e.g. y_pred. category: str The column name of the category to be tested, e.g. country. cases: The column name defining the individual cases, e.g. subjectID. groups: dict If more than two groups, the two groups to compare as character vector, e.g. ["RUS", "FIN"]. perms: int The number of permutations to generate cut_sparse: int Minimum number of total observations necessary per group to fit a spline (default 4) ints: int Number of x intervals over which to measure area quiet: bool Silence all text outputs Returns ------- result: dict Returns a bunc of stuff, but the most important for you is pval. """ perm_output = {} equation = lambda a, b: np.polyval(a, b) if test_direction not in ["more", "less"]: raise Exception( "Error in test direction option: must be either 'more' or 'less'" ) in_df = data.copy() # Determine the two groups to compare if groups is None: if len(in_df.category.unique()) > 2: raise Exception( 'More than two groups in category column. Define groups with (groups = c("Name1","Name2"))' ) else: cats = in_df.category.unique() v1 = cats[0] v2 = cats[1] else: v1 = groups[0] v2 = groups[1] if quiet == False: print(f"\nGroups detected:", v1, "and", v2, ".\n") print( f"\nNow testing between variables", v1, "and", v2, "for a difference in the response labeled", yvar, "\n", ) print( f"\nScalpel please: performing permusplinectomy with", perms, "permutations...\n", ) # The experimentally reported response df_v1 = in_df[(in_df[category] == v1) & (~in_df[xvar].isna())] df_v2 = in_df[(in_df[category] == v2) & (~in_df[xvar].isna())] if len(df_v1[xvar]) < cut_sparse or len(df_v2[xvar]) < cut_sparse: raise Exception("Not enough data in each group to fit spline") # Prevent issues arising from identical case labels across groups if len(list(set(df_v1[cases]).intersection(set(df_v2[cases])))) > 0: raise Exception( "\nIt appears there may be identically labeled cases in both groups.\n...Please ensure that the cases are uniquely labeled between the two groups\n" ) # Fit the splines for each group p_v1, _ = np.polyfit( df_v1[xvar], df_v1[yvar], degree, cov=True ) # parameters and covariance from of the fit of 1-D polynom. p_v2, _ = np.polyfit( df_v2[xvar], df_v2[yvar], degree, cov=True ) # parameters and covariance from of the fit of 1-D polynom. x0 = max(min(df_v1[xvar]), min(df_v2[xvar])) x1 = min(max(df_v1[xvar]), max(df_v2[xvar])) x0 = x0 + ( (x1 - x0) * 0.1 ) # Trim the first and last 10% to avoid low-density artifacts x1 = x1 - ((x1 - x0) * 0.1) xby = (x1 - x0) / (ints - 1) xx = np.arange(x0, x1, xby) # Set the interval range # var1 , x v1_spl_f = pd.DataFrame(data={"var1": equation(p_v1, xx), "x": xx}) v2_spl_f = pd.DataFrame(data={"var2": equation(p_v2, xx), "x": xx}) real_spl_dist = ( v1_spl_f.set_index("x").join(v2_spl_f.set_index("x"), on="x").reset_index() ) real_spl_dist["abs_dist"] = np.abs( real_spl_dist.var1 - real_spl_dist.var2 ) # Measure the real group distance real_area = ( np.sum(real_spl_dist.abs_dist) / ints ) # Calculate the area between the groups if quiet == False: print( "\nArea between groups successfully calculated, now spinning up permutations...\n" ) # Define the permutation function case_shuff = "case_shuff" # Dummy label def spline_permute(randy, ix, perm_output): randy_meta = randy.drop_duplicates(subset=cases, keep="first").copy( deep=False ) # Pull out the individual IDs randy_meta[case_shuff] = np.random.choice( randy_meta[category].values, size=len(randy_meta[category].values), replace=True, p=None, ) randy_meta = randy_meta[[cases, case_shuff]] randy = ( randy.set_index(cases) .join(randy_meta.set_index(cases), on=cases) .reset_index() ) randy_v1 = randy[(randy[case_shuff] == v1) & (~randy[xvar].isna())] randy_v2 = randy[(randy[case_shuff] == v2) & (~randy[xvar].isna())] # Fit the splines for the permuted groups p_randy_v1, _ = np.polyfit(randy_v1[xvar], randy_v1[yvar], degree, cov=True) p_randy_v2, _ = np.polyfit(randy_v2[xvar], randy_v2[yvar], degree, cov=True) # var1 , x randy_v1_fit = pd.DataFrame(data={"var1": equation(p_randy_v1, xx), "x": xx}) randy_v2_fit = pd.DataFrame(data={"var2": equation(p_randy_v2, xx), "x": xx}) spl_dist = ( randy_v1_fit.set_index("x") .join(randy_v2_fit.set_index("x"), on="x") .reset_index() ) spl_dist["abs_dist"] = np.abs( spl_dist.var1 - spl_dist.var2 ) # Measure the real group distance real_area = ( np.sum(real_spl_dist.abs_dist) / ints ) # Calculate the area between the groups transfer_perms = spl_dist[["var1", "var2", "abs_dist"]] transfer_perms = transfer_perms.rename( columns={ "var1": f"v1perm_{ix}", "var2": f"v2perm_{ix}", "abs_dist": f"pdistance_{ix}", } ) if ix > 0: perm_retainer = perm_output["perm_retainer"] else: perm_retainer = pd.DataFrame({"x": xx}) perm_retainer = pd.concat([perm_retainer, transfer_perms], axis=1) perm_output["perm_retainer"] = perm_retainer perm_area = [ np.nansum(spl_dist["abs_dist"]) / np.sum(~spl_dist["abs_dist"].isna()) ] # Calculate the area between permuted groups if ix > 0: permuted = perm_output["permuted"] else: permuted = [] permuted = np.concatenate([permuted, perm_area]) perm_output["permuted"] = permuted return perm_output # Run the permutation over desired number of iterations in_rand = pd.concat([df_v1, df_v2]) pval = None for ix in range(perms): perm_output = spline_permute(in_rand, ix, perm_output) if quiet == False: print("...permutations completed...\n") if test_direction == "more": pval = (np.sum(perm_output["permuted"] >= real_area) + 1) / (perms + 1) elif test_direction == "less": pval = (sum(perm_output["permuted"] <= real_area) + 1) / (perms + 1) if quiet == False: print("p-value: ", pval) result = { "pval": pval, "category_1": v1, "category_2": v2, "v1_interpolated": v1_spl_f, "v2_interpolated": v2_spl_f, # "v1_spline": df_v1_spl, "v2_spline": df_v2_spl, "permuted_splines": perm_output["perm_retainer"], "true_distance": real_spl_dist, "v1_data": df_v1, "v2_data": df_v2, } return result def permuspliner_plot_permdistance(data, xlabel=None, ylabel=""): """Plot permuted distance distribution Compare the permuted distances to the true distance. Requires permuspliner run with the "retain_perm" option. Parameters ---------- data: pd.DataFrame The results object from the permuspliner function xlabel: str Name for the x axis in the plot ylabel: str Name for the y axis in the plot """ sns.set_style("whitegrid") if xlabel is None: xlabel = "longitudinal parameter" dists = data["permuted_splines"] cols = dists.columns[dists.columns.str.startswith("pdistance_")] dists = dists.set_index("x") dists = dists[cols] num_perms = dists.shape[1] dists = dists.reset_index() dists = pd.melt( dists, id_vars="x", var_name="permutation", value_name="permuted_distance" ) if num_perms > 1000: alpha_level = 0.002 elif num_perms >= 100: alpha_level = 0.02 elif num_perms < 100: alpha_level = 0.25 fig, ax = plt.subplots(figsize=(10, 7)) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) for p in dists.permutation.unique(): ax.plot( dists[dists.permutation == p]["x"].values, dists[dists.permutation == p]["permuted_distance"].values, alpha=alpha_level, solid_capstyle="butt", c="k", ) true_dist = data["true_distance"] ax.plot(true_dist["x"].values, true_dist["abs_dist"].values, color="r") plt.show() def permuspliner_plot_permsplines( data=None, xvar=None, yvar=None, xlabel="", ylabel="" ): """Plot permuted splines along the real data Compare how the permuted splines fit with the real data. Provides visual support for p values. Parameters ---------- data: pd.DataFrame The results object from the permuspliner function xvar: str Name (as string) of the longitudinal x variable in the data yvar: str Name (as string) of the response/y variable in the data xlabel: str Name for the x axis in the plot ylabel: str Name for the y axis in the plot """ sns.set_style("whitegrid") permsplines = data["permuted_splines"] cols = permsplines.columns[permsplines.columns.str.contains("perm")] permsplines = permsplines.set_index("x") permsplines = permsplines[cols] permsplines = permsplines.reset_index() num_perms = permsplines.shape[1] / 2 permsplines = pd.melt( permsplines, id_vars="x", var_name="permutation", value_name="y.par" ) var_1 = data["category_1"] var_2 = data["category_2"] true_v1 = data["v1_interpolated"] true_v1["Group"] = var_1 true_v2 = data["v2_interpolated"] true_v2["Group"] = var_2 true_data =
pd.concat([true_v1, true_v2], axis=0)
pandas.concat
""" "Stacking: LGB, XGB, Cat with and without imputation (old & new LGBs),tsne,logistic" """ import os from timeit import default_timer as timer from datetime import datetime from functools import reduce import pandas as pd import src.common as common import src.config.constants as constants import src.munging as process_data import src.modeling as model from sklearn.model_selection import KFold from sklearn.calibration import CalibratedClassifierCV from sklearn.linear_model import RidgeClassifier from sklearn.linear_model import LogisticRegression common.set_timezone() start = timer() # Create RUN_ID RUN_ID = datetime.now().strftime("%m%d_%H%M") MODEL_NAME = os.path.basename(__file__).split(".")[0] SEED = 42 EXP_DETAILS = "Stacking: LGB, XGB, Cat with and without imputation (old & new LGBs),tsne,logistic" IS_TEST = False PLOT_FEATURE_IMPORTANCE = False TARGET = "claim" MODEL_TYPE = "Ranking" LOGGER_NAME = "ranking" logger = common.get_logger(LOGGER_NAME, MODEL_NAME, RUN_ID, constants.LOG_DIR) common.set_seed(SEED) logger.info(f"Running for Model Number [{MODEL_NAME}] & [{RUN_ID}]") common.update_tracking(RUN_ID, "model_number", MODEL_NAME, drop_incomplete_rows=True) common.update_tracking(RUN_ID, "model_type", MODEL_TYPE) common.update_tracking(RUN_ID, "metric", "roc_auc") train_df, test_df, sample_submission_df = process_data.read_processed_data( logger, constants.PROCESSED_DATA_DIR, train=True, test=True, sample_submission=True ) # Read different submission files and merge them to create dataset # for level 2 sub_1_predition_name = ( "sub_lgb_K5_nonull_mean_sum_max_no_imp_no_scaler_params_K_0924_1159_0.81605.gz" ) sub_1_oof_name = ( "oof_lgb_K5_nonull_mean_sum_max_no_imp_no_scaler_params_K_0924_1159_0.81605.csv" ) sub_1_test_pred = pd.read_csv(f"{constants.SUBMISSION_DIR}/{sub_1_predition_name}") sub_1_oof_pred = pd.read_csv(f"{constants.OOF_DIR}/{sub_1_oof_name}") logger.info( f"Shape of submission and oof file {sub_1_test_pred.shape}, {sub_1_oof_pred.shape}" ) sub_2_predition_name = ( "sub_lgb_K10_nonull_mean_sum_max_mean_imp_no_scaler_params_K_0924_1406_0.81633.gz" ) sub_2_oof_name = ( "oof_lgb_K10_nonull_mean_sum_max_mean_imp_no_scaler_params_K_0924_1406_0.81633.csv" ) sub_2_test_pred =
pd.read_csv(f"{constants.SUBMISSION_DIR}/{sub_2_predition_name}")
pandas.read_csv
from urllib.request import urlopen from bs4 import BeautifulSoup import pandas as pd import re import os import time import wget timestr = time.strftime("%Y%m%d") listaFinal = [] def rasparArtigo(itemFinal, pasta, nomeRevista, linkIssues): ''' função para baixar PDF e dados do artigo ''' item = itemFinal.find_all('td') timestr = time.strftime("%Y-%m-%d") # Acessa e itera em cada edição da revista for issue in item: try: linkissue = issue.find('a')['href'] print('Acessando a edição: ' + linkissue +'\n') req = urlopen(linkissue) bs = BeautifulSoup(req.read(), 'lxml') try: em = bs.find('em').parent.parent em = em.text start = em.find('versão impressa ISSN ') + len('versão impressa ISSN ') end = em.find('On-line') ISSN1 = em[start:end - 7] ISSN2 = em[end + len('On-line ISSN '):] except: ISSN1 = '' ISSN2 = '' tabelaGeral = bs.find(class_='content') pdfArtigos = tabelaGeral.find_all('a',href=re.compile(r'/pdf/[a-z]*/')) # Itera na lista de PDF de cada edição for artigo in pdfArtigos: link = artigo['href'] idArtigo = link.replace('/pdf/', '') linkFinal = 'http://www.scielo.br' + link fullName = idArtigo.replace('/','_') path = os.path.join(pasta, fullName) listaInterna = [nomeRevista, ISSN1, ISSN2, linkIssues, fullName] listaFinal.append(listaInterna) df =
pd.DataFrame(listaFinal, columns=['Nome da Revista', 'ISSN - impresso', 'ISSN - digital', 'Link', 'ID do artigo'])
pandas.DataFrame
""" Copyright (C) 2016 <NAME>. Licensed under the Apache 2.0 License. functions.py ~~~~~~~ Subfunctions definitions to allow overall analysis. """ import os import shutil import time import yaml import calliope import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd from calliope import utils def clean_temp(path): """Deletes allchanged and new files and copies the raw data.""" if os.path.exists(path + '/example_model'): shutil.rmtree(path + '/example_model') if os.path.exists(path + '/temp'): shutil.rmtree(path + '/temp') shutil.copytree(path+'/paste-folder/example_model', path + '/example_model') def get_time(t_start): """Returns the runtime since the input time.""" t_end = time.time() t_running = t_end - t_start time_string = 'Process executed after ' + str(round(t_running, 1)) \ + ' seconds (i.e. ' + str(int(t_running/60)) + ':' \ + str(int(round(t_running % 60, 0))).zfill(2) + ').' return time_string def get_stuff(solution): """ Gets used information from calliope.solution into more handy form. Returns calliope.utils.AttrDict with information. """ info_attrdict = utils.AttrDict() # Get model config (nodes, edges, capacities, ...) info_attrdict['nodepower'] = solution['node']['e:power'] # Node_power info_attrdict['e_cap'] = solution['parameters']['e_cap'] # Parameter_e_cap info_attrdict['config_model'] = solution['config_model'] # Locations & metadata info_attrdict['costs'] = solution['costs'] # Costs for each y in each x info_attrdict['node_power'] = solution['node']['e:power'] # Node power for all times info_attrdict['totals'] = solution['totals'] # Totals frame_index = info_attrdict['costs'] location_list = list(frame_index.axes[1]) techs_list = list(frame_index.axes[2]) i = 0 for each_link in info_attrdict['config_model']['links'].keys(): for each_tech in \ info_attrdict['config_model']['links'][each_link].keys(): i += 1 frame_index = frame_index.to_frame() info_attrdict['labels'] = {'frame': {'index': frame_index.axes, 'shape': frame_index.shape}, 'techs': techs_list, 'locations': location_list, 'connections': i} return info_attrdict def get_stuff_from_hdf(path_to_solution): """ Gets used information from calliope solution.hdf into more handy form. Returns calliope.utils.AttrDict with information. """ info_attrdict = utils.AttrDict() info_compleate = calliope.read.read_hdf(path_to_solution) # Get model config (nodes, edges, capacities, ...) info_attrdict['nodepower'] = info_compleate['node']['e:power'] # Node_power info_attrdict['e_cap'] = info_compleate['parameters']['e_cap'] # Parameter_e_cap info_attrdict['config_model'] = info_compleate['config_model'] # Locations & metadata info_attrdict['costs'] = info_compleate['costs'] # Costs for each y in each x info_attrdict['node_power'] = info_compleate['node']['e:power'] # Node power for all times info_attrdict['totals'] = info_compleate['totals'] # Totals frame_index = info_attrdict['costs'] location_list = list(frame_index.axes[1]) techs_list = list(frame_index.axes[2]) frame_index = frame_index.to_frame() i = 0 for each_link in info_attrdict['config_model']['links'].keys(): for each_tech in \ info_attrdict['config_model']['links'][each_link].keys(): i += 1 info_attrdict['labels'] = {'frame': {'index': frame_index.axes, 'shape': frame_index.shape}, 'techs': techs_list, 'locations': location_list, 'connections': i} return info_attrdict def run_model(path): """Runs the model. Returns the calliope.solution.""" model = calliope.Model(config_run=path) model.run() solution = model.solution return solution def get_original_caps(modelinfo): """ Reforms the capacity pd.Dataframe to be used consistently. Returns pd.Series that is reformed. """ e_cap = modelinfo['e_cap'].transpose() original_cap_frame = e_cap.unstack() return original_cap_frame def copy_models_frame_based(modelinfos, initial_constraints, create_parallel_script=False): """ Prepare copy run files with all needed overrides. Returns dict with pd.Frame capacities and the folder name. """ with open('example_model/model_config/locations.yaml') as loc_reader: locations_dict = yaml.load(loc_reader) with open('example_model/model_config/techs.yaml') as tec_reader: techs_dict = yaml.load(tec_reader) # Force settings per override cost_frame = modelinfos.costs.to_frame() caps_frame = pd.DataFrame({ 'max_caps': np.full(cost_frame.shape[0], np.nan), 'min_caps(original_model)': np.zeros(cost_frame.shape[0]) }, cost_frame.axes[0]) override_list = list() for x in list(modelinfos.e_cap.index): # Locations and links for y in list(pd.DataFrame(modelinfos. e_cap, index=[x])): # Techs per location and link if modelinfos['config_model']['locations'][x]['level'] != 0: caps_frame.loc[x, y]['min_caps(original_model)'] = \ modelinfos.e_cap.ix[x][y] else: if ':' in y: if int(str(x).split('r')[1]) < int(str(y).split(':r')[1]): # Link overrides split_link = str(x) + ',' + str(y).split(':')[1] # Recreate link by location & destination # ATTENTION: # override structure in nested dict must already exist! locations_dict['links'][split_link][ str(y).split(':')[0] ]['constraints']['e_cap.min'] = \ float(modelinfos.e_cap.loc[x][y]) caps_frame.loc[x, y]['min_caps(original_model)'] = \ modelinfos.e_cap.loc[x][y] caps_frame.loc[x, y]['max_caps'] = np.inf new_override_dict = { 'override.links.' + str(split_link) + '.' + str(y).split(':')[0] + '.constraints.e_cap.max': 0, 'override.links.' + str(split_link) + '.' + str(y).split(':')[0] + '.constraints.e_cap.min': 0 } total_override_dict = {**new_override_dict, **initial_constraints} override_list.append(total_override_dict) elif int(str(x).split('r')[1]) != \ int(str(y).split(':r')[1]): # Necessary? see loop above caps_frame.loc[x, y]['min_caps(original_model)'] = \ modelinfos.e_cap.loc[x][y] else: if techs_dict['techs'][y]['parent'] == 'supply' \ and y in locations_dict['locations'][x]['techs']: locations_dict['locations'][ x ]['override'][y]['constraints']['e_cap.min'] = \ float(modelinfos.e_cap.loc[x][y]) caps_frame.loc[x, y][ 'min_caps(original_model)' ] = modelinfos.e_cap.loc[x][y] caps_frame.loc[x, y]['max_caps'] = \ techs_dict['techs'][ y ]['constraints']['e_cap.max'] else: caps_frame.loc[x, y]['min_caps(original_model)'] = \ modelinfos.e_cap.loc[x][y] # At this point all settings for the operate setting # should be ready to create the exact copy with open('example_model/model_config/copy_locations.yaml', 'w') \ as loc_override: loc_override.write(yaml.dump(locations_dict)) # Set up copy_model to run copy settings with open('example_model/model_config/model.yaml') as model_reader: model_dict = yaml.load(model_reader) model_dict['import'] = [item.replace('locations', 'copy_locations') for item in model_dict['import']] model_dict['name'] = 'copy '+model_dict['name'] with open('example_model/model_config/copy_model.yaml', 'w') \ as model_writer: model_writer.write(yaml.dump(model_dict)) with open('example_model/run.yaml') as run_reader: run_dict = yaml.load(run_reader) cut_number = run_dict['model'].find('model.yaml') run_dict['model'] = run_dict['model'][:cut_number] + 'copy_' \ + run_dict['model'][cut_number:] run_dict['output']['path'] += '/copy_runs' run_dict['parallel']['iterations'] = override_list folder_name = run_dict['parallel']['name'] with open('example_model/copy_run.yaml', 'w') as run_writer: run_writer.write(yaml.dump(run_dict)) if create_parallel_script is True: path_extension = os.path.abspath('') parallel_sh = '#!/bin/bash\ncalliope generate '\ + path_extension\ + '/example_model/copy_run.yaml '\ + path_extension \ + '/example_model\n' # local paths!! with open('example_model/parallel.sh', 'w') as create_shell: create_shell.write(parallel_sh) return_dict = {'caps': caps_frame, 'name': folder_name} return return_dict def read_results(model_info, run): """ Reads the costs and capacities from one run. Returns a dict with pd.Dataframe of costs and capacities. """ if not type(run) == str: run = str(run).zfill(4) # else: # run = run.zfill(4) frame_index = model_info['labels']['frame']['index'][0] cost_dict = {run+'_cost': list()} for item in list(model_info['costs'].items): for major in list(model_info['costs'].major_axis): for minor in list(model_info['costs'].minor_axis): cost_dict[run + '_cost'] += \ [model_info['costs'].loc[item, major, minor]] cost_frame = pd.DataFrame(cost_dict, frame_index) caps_dict = {run + '_caps': list()} for x in model_info['labels']['locations']: for y in model_info['labels']['techs']: caps_dict[run + '_caps'] += [model_info['e_cap'].loc[x, y]] caps_frame = pd.DataFrame(caps_dict, frame_index) return_dict = {'costs': cost_frame, 'caps': caps_frame} return return_dict def create_parallel_sh(path_to_run, model_info, folder_name, folder_name_2): """ Creates, prepares and runs a bash script with the according folder structure for the parallel run with calliope. """ # I need to add an intermediate step to give parallel script output # and run read_results(see above) with consistent input os.system('bash ' + path_to_run + 'parallel.sh') os.mkdir(path_to_run + folder_name + '/Runs/model_config') shutil.copytree(path_to_run + '/model_config/data', path_to_run + '/' + folder_name + '/Runs/model_config/data') for i in range(model_info['labels']['connections']): # number of all connections cmd_base = 'cd '+os.path.abspath('') + '/' + folder_name_2 + '/' \ + folder_name + ' && ' cmd_special = './run.sh ' + str(i+1) cmd = cmd_base + cmd_special os.system(cmd) def create_parallel_sequentially(path_to_run, model_info): """Runs all calliope.Models sequencially instead of parallel.""" # Some problems and not necessary/usefull in most cases with open(path_to_run + 'copy_run.yaml') as run_reader: run_dict = yaml.load(run_reader) folder_name = run_dict['parallel']['name'] if not os.path.exists(path_to_run + '/' + folder_name + '/Output'): os.makedirs(path_to_run + '/' + folder_name + '/Output') initial_override = run_dict['override'] initial_path = run_dict['output']['path'] for i in range(model_info['labels']['connections']): if initial_override is None: temp_dict = run_dict['parallel']['iterations'][i] new_dict = dict() for key in temp_dict: new_dict[key] = temp_dict[key] run_dict['override'] = new_dict del new_dict del temp_dict else: for keys in run_dict['parallel']['iterations'][i].keys(): run_dict['override'][keys] = \ run_dict['parallel']['iterations'][i][keys] run_dict['output']['path'] = \ path_to_run + folder_name + '/Output/'+str(i+1).zfill(4) if not os.path.exists( path_to_run + '/' + folder_name + '/Output/'+str(i+1).zfill(4) ): os.makedirs( path_to_run + '/' + folder_name + '/Output/'+str(i+1).zfill(4) ) with open(path_to_run + 'copy_run.yaml', 'w') as run_writer: run_writer.write(yaml.dump(run_dict)) temp_model = calliope.Model(config_run=path_to_run + 'copy_run.yaml') temp_model.run() temp_model.save_solution('hdf') run_dict['output']['path'] = initial_path run_dict['override'] = initial_override with open(path_to_run + 'copy_run.yaml', 'w') as run_writer: run_writer.write(yaml.dump(run_dict)) def concat_frames(model_info, folder_name, path_name): """ Takes informations of all runs. Returns dict with pd.Dataframes of costs and capacities. """ cap_dict = dict() cost_dict = dict() tot_list = list() for i in range(1, model_info['labels']['connections']+1): # i runs from first to last Model (starting with 1) temp_copy_info = get_stuff_from_hdf(path_name + '/' + folder_name + '/Output/' + str(i).zfill(4) + '/solution.hdf') answer_dict = read_results(temp_copy_info, i) tot_list = tot_list + [answer_dict] cap_dict[str(i).zfill(4)] = answer_dict['caps'] cost_dict[str(i).zfill(4)] = answer_dict['costs'] cap_frame = pd.concat(cap_dict, axis=1) cost_frame = pd.concat(cost_dict, axis=1) max_cap_list = list() for i in range(int(cap_frame.shape[0])): max_cap_list = max_cap_list + [max(cap_frame.iloc[i][:])] cap_frame['max'] = max_cap_list max_cost_list = list() for i in range(cost_frame.shape[0]): max_cost_list = max_cost_list + [max(cost_frame.iloc[i][:])] cost_frame['max'] = max_cost_list frame_dict = {'costs': cost_frame, 'caps': cap_frame} return frame_dict def analyse_results(cap_cost_dict, folder_name): """ Adds a column with the maximal values of each row. Saves the tables of costs and capacities as csv. Returns pd.Dataframe with capacities. """ path_extension = os.path.abspath('') cost = cap_cost_dict['costs'] caps = cap_cost_dict['caps'] max_list = list() for i in range(len(cost)): max_list += [max(cost.iloc[i][:])] cost['max_cost'] = pd.Series(max_list, index=cost.index) cost.to_csv(path_extension + '/example_model/' + folder_name + '/Overview/cost.csv') max_list = list() for i in range(len(caps)): max_list += [max(caps.iloc[i][:])] caps['max_caps'] = pd.Series(max_list, index=caps.index) caps.to_csv(path_extension + '/example_model/' + folder_name + '/Overview/caps.csv') return caps def plot_bars(frame, content='caps', fixed_scale=False): """Creates bar plots and saves them in respective directories.""" max_list = list() for i in range(frame.shape[0]): temp_frame = frame.iloc[i][:] if not temp_frame[-1] == 0 and not temp_frame.eq(temp_frame[0]).all(): max_list.append(max(temp_frame)) if content == 'caps': y_pos = list(range(frame.shape[1]-2)) x_label = [str(i) for i in range(len(y_pos))] x_label[0] = 'original' x_label[-1] = 'safe' for i in range(frame.shape[0]): if not frame.iloc[i][-1] < abs(10**-10) \ and not frame.iloc[i][1:].eq(frame.iloc[i][1]).all(): temp_fig = plt.figure() plt.bar(y_pos[0], frame.iloc[i][1], align='center', alpha=0.75, color='red') plt.bar(y_pos[1:-1], frame.iloc[i][2:-2], align='center', alpha=0.75, color='black') plt.bar(y_pos[-1], frame.iloc[i][-1], align='center', alpha=0.75, color='blue') plt.xticks(y_pos, x_label) plt.xticks(rotation=30) plt.xlim(-2, 23) plt.ylabel('installed capacity') plt.title('Capacity comparison for ' + str(frame.axes[0][i][1]) + ' at ' + str(frame.axes[0][i][0])) if os.path.exists('temp/figures/caps') is False: os.makedirs('temp/figures/caps/') if os.path.exists('temp/figures/cost') is False: os.makedirs('temp/figures/cost/') if os.path.exists('temp/figures/load') is False: os.makedirs('temp/figures/load/') if fixed_scale is True: plt.ylim((0, max(max_list))) temp_fig.savefig('temp/figures/caps/cap_fig_' + str(frame.axes[0][i][0]) + '_' + str(frame.axes[0][i][1]) + '_fixed_scale.png') else: temp_fig.savefig('temp/figures/caps/cap_fig_' + str(frame.axes[0][i][0]) + '_' + str(frame.axes[0][i][1])+'.png') elif content == 'costs': y_pos = list(range(frame.shape[1]-1)) x_label = [str(i) for i in range(len(y_pos))] x_label[0] = 'original' x_label[-1] = 'safe' for i in range(frame.shape[0]): if not frame.iloc[i][-1] == 0 \ and not frame.iloc[i][:].eq(frame.iloc[i][0]).all(): temp_fig = plt.figure() plt.bar(y_pos[0], frame.iloc[i][0], align='center', alpha=0.75, color='red') plt.bar(y_pos[1:-1], frame.iloc[i][1:-2], align='center', alpha=0.75, color='black') plt.bar(y_pos[-1], frame.iloc[i][-1], align='center', alpha=0.75, color='blue') plt.xticks(y_pos, x_label) plt.xticks(rotation=30) plt.ylabel('costs') plt.title('Costs comparison for ' + str(frame.axes[0][i][1]) + ' at ' + str(frame.axes[0][i][0])) if fixed_scale is True: plt.ylim((0, max(max_list))) temp_fig.savefig('temp/figures/cost/cost_fig_' + str(frame.axes[0][i][0]) + '_' + str(frame.axes[0][i][1]) + '_fixed_scale.png') else: temp_fig.savefig('temp/figures/cost/cost_fig_' + str(frame.axes[0][i][0]) + '_' + str(frame.axes[0][i][1]) + '.png') def plot_lines(model_info, frame, cost_frame, safe_info=False, bars=False, fixed_scale=False): """ Creates line plots and pie plots and saves them in the respective directories. """ loc_dict = dict() for i in range(model_info['node_power'].shape[2]): if model_info['config_model']['locations'][ model_info['node_power'].axes[2][i] ]['level'] == 0: loc_dict[model_info['node_power'].axes[2][i]] = dict() for j in range(model_info['node_power'].shape[0]): if model_info['config_model']['techs'][ model_info['node_power'].axes[0][j].split(':')[0] ]['parent'] == 'transmission' \ and not model_info[ 'node_power' ].axes[0][j].split(':')[1] == \ model_info['node_power'].axes[2][i]: if model_info['node_power'].axes[0][j].split(':')[-1] \ not in loc_dict[ model_info['node_power'].axes[2][i] ].keys(): loc_dict[model_info['node_power'].axes[2][i]][ model_info['node_power'].axes[0][j].split(':')[-1] ] = list() loc_dict[model_info['node_power'].axes[2][i]][ model_info['node_power'].axes[0][j].split(':')[-1] ].append(model_info['node_power'].axes[0][j]) font = {'weight': 'light', 'size': 12} matplotlib.rc('font', **font) if fixed_scale is True: max_list = list() for l in range(frame.shape[0]): temp_frame = frame.iloc[l][:] if not temp_frame[-1] == 0 \ and not temp_frame.eq(temp_frame[0]).all(): max_list.append(max(temp_frame)) key_list = list(loc_dict.keys()) for i in range(len(key_list)-1): for j in range(i+1, len(key_list)): connections = len(loc_dict[key_list[i]][key_list[j]]) sub_plot = plt.figure(figsize=(12, 10), dpi=300) for k in range(connections): if bars is True: plt.subplot(int(str(connections) + '2' + str(2*k+1))) else: plt.subplot(int(str(connections) + '1' + str(k+1))) plt.plot(abs(model_info['node_power'].ix[ loc_dict[key_list[i]][key_list[j]][k], :, key_list[i] ]), 'r') if safe_info: plt.plot(abs(safe_info['node_power'].ix[ loc_dict[key_list[i]][key_list[j]][k], :, key_list[i] ]), 'b') tmp = safe_info['node_power'].to_frame() tmp.to_csv('safe_nodepower.csv') tmp2 = model_info['node_power'].to_frame() tmp2.to_csv('orig_nodepower.csv') caps_origin = frame.ix[(key_list[i], loc_dict[key_list[i]][key_list[j]][k]), 1] caps_safe = frame.ix[(key_list[i], loc_dict[key_list[i]][key_list[j]][k]), -1] origin_series = \ pd.Series(caps_origin, model_info['node_power'].axes[1]) safe_series = \
pd.Series(caps_safe, model_info['node_power'].axes[1])
pandas.Series
# Copyright 2016 <NAME> and The Novo Nordisk Foundation Center for Biosustainability, DTU. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import combinations from pandas import melt, DataFrame from bokeh.charts import Bar from bokeh.io import show def summary_plot(summary, dbs=['chebi', 'kegg', 'drugbank', 'pubchem']): data =
DataFrame(summary)
pandas.DataFrame
import numpy as np import pandas as pd ####################################################################################################################### def stringify_tuple(tup, sep=","): """ Takes in a tuple and concatante its elements as string seperated by a given char. Parameters ---------- tup: tuple Tuple to make string sep: str, default "," Seperator between tuple elements in the concataned string """ return str(sep.join([str(e) for e in tup])) ####################################################################################################################### def to_utc(self, time_col="raw_time", reindex=False, drop=False): """ Parameters ---------- self : pandas DataFrame Dataframe with raw time column time_col : str, default 'raw_time' Column name that holds raw time data reindex : bool, default False If True, use UTC time as index drop : bool, default False If true, original raw time column will be dropped for DataFrame Returns ------- self : pandas DataFrame Dataframe with time as index """ if time_col in self.columns: df = self.copy() utc_col = pd.to_datetime(df[time_col], unit="ms") if reindex: df.index = utc_col df.index.name = "utc" else: df["utc"] = utc_col else: raise KeyError("There's no time column in your dataframe!") if drop: df = df.drop([time_col], axis=1) return df pd.DataFrame.to_utc = to_utc ####################################################################################################################### def count_na(self): """ Count nan values in self on every column """ num_of_values = self.count().rename("count") # number of values (not NaN) in each column num_of_nan = self.isna().sum().rename("na_count") # number of NaN values in each column nan_pct = self.isna().mean().rename("na_pct") return
pd.concat([num_of_values, num_of_nan, nan_pct], axis=1)
pandas.concat
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import subprocess import argparse from argparse import ArgumentParser import re import glob import collections import time import os import pysam import pandas as pd class parseError(Exception): pass def get_option(): argparser = ArgumentParser(formatter_class=argparse.RawTextHelpFormatter) argparser.add_argument('-sam', '--sam', type=str,required=True,help="Sam file with MD-tag (by samtools calmd)") # argparser.add_argument('-ref', '--needleReference', type=str,required=True,help="Reference fasta file for needle alignment") argparser.add_argument('-annot', '--annotation', type=str,required=True,help="Reference annotation which include cut site") argparser.add_argument('-idenrate', '--idenrate', type=float,default=0.85,help="Hit ratio in aligned region between query and reference") argparser.add_argument('-identity', '--identity', type=int,default=90,help="Minimum number of matches between query and reference") argparser.add_argument('-trim5prime', '--trim5prime', type=int,default=19,help="Trim sequence from 5prime end") argparser.add_argument('-primer5', '--primer5', type=int,default=17,help="Primer binding site length started from 5' end (after trimmed)") argparser.add_argument('-primer5ed', '--primer5ed', type=int,default=2,help="Maximum edit distance allowed at the 5' primer binding site") argparser.add_argument('-noRemoveFiles', '--noRemoveFiles', action="store_true",help="Don't remove intermediate files") argparser.add_argument('-no_annot', '--no_annot', action="store_true",help="Don't use cut site selection") argparser.add_argument('-o', '--outname', type=str,default="gestalt",help='output file name prefix') argparser.add_argument('-d', '--outdir', type=str, default=".", help='output directory') argparser.add_argument('-extend', '--extend', type=int,default=0,help="Additional N bp upstream of cut site") argparser.add_argument('-amplicon_length', '--amplicon_length', type=int,default=255,help="Amplicon size") return argparser.parse_args() def parseSam(sam): # outParsedFile=outdir+outname+".mutationpattern" samfile=pysam.AlignmentFile(sam,mode="r") parsedMutationPattern={} for line in samfile: mut_temp={} query=line.query_name cigar=line.cigarstring # cigar_tup=line.cigartuples # md_tag=line.tags seq=line.query_sequence #parse cigar string parsed_cigar="" n="" for c in cigar: if re.search("[0-9]",c): n+=c else: parsed_cigar+=c*int(n) n="" #parse seq parsed_seq="" d_len=0 for cnt,c in enumerate(parsed_cigar): if c=="D": d_len+=1 parsed_seq+="D" else: parsed_seq+=seq[cnt-d_len] parsed_cigar=re.sub("D+$","",parsed_cigar) parsed_seq=re.sub("D+$","",parsed_seq) mut_temp={"cigar":parsed_cigar,"seq":parsed_seq} parsedMutationPattern[query]=mut_temp return parsedMutationPattern def alignmentQC(parsedMutationPattern,ref_annot,primer5ed,idenrate,identity): cigar_now=parsedMutationPattern.split(";")[0] seq_now=parsedMutationPattern.split(";")[1] primer5_matching=seq_now[ref_annot["primer_5prime"][0]:ref_annot["primer_5prime"][1]] editDist=0 for c in primer5_matching: if not c=="=": editDist+=1 seq_match=0 seq_ident=0 for pos,cigar_c in enumerate(cigar_now): if cigar_c=="M": seq_match+=1 if seq_now[pos]=="=": seq_ident+=1 seq_idenrate=seq_ident/seq_match if seq_idenrate<=idenrate or seq_ident<=identity or editDist>primer5ed: return None else: return parsedMutationPattern def generateMutationTable(parsedMutationPattern): detectedPatternList=[] delflag=False insflag=False subflag=False n_ins=0 mut_index=0 cigar_now=parsedMutationPattern.split(";")[0] seq_now=parsedMutationPattern.split(";")[1] for cnt,cigstr in enumerate(cigar_now): if cigstr=="I": n_ins+=1 pos=cnt-n_ins if cigstr=="M": delflag=False insflag=False if not seq_now[cnt]=="=": if not subflag: mut_index+=1 subflag=True pat_now="_".join(["S",str(pos),seq_now[cnt]]) detectedPatternList.append(pat_now) else: detectedPatternList[mut_index-1]+=seq_now[cnt] else: subflag=False if cigstr=="I": delflag=False subflag=False if not insflag: mut_index+=1 insflag=True pat_now="_".join(["I",str(pos+0.5),seq_now[cnt]]) detectedPatternList.append(pat_now) else: detectedPatternList[mut_index-1]+=seq_now[cnt] if cigstr=="D": insflag=False subflag=False if not delflag: mut_index+=1 delflag=True pat_now="_".join(["D",str(pos),str(pos)]) detectedPatternList.append(pat_now) else: detectedPatternList[mut_index-1]=re.sub("[0-9]+$",str(pos),detectedPatternList[mut_index-1]) for pos,pat in enumerate(detectedPatternList): pat_split=pat.split("_") if pat_split[0]=="I" or pat_split[0]=="S": insertion=pat_split[2] if re.search("^N+$",insertion): del detectedPatternList[pos] return ";".join(detectedPatternList) def judge_in_cutsite(pos,cutsite): for each_cut in cutsite: if pos>=each_cut[0] and pos<=each_cut[1]: return True return False def judge_include_cutsite(pos1,pos2,cutsite): for each_cut in cutsite: if pos1<=each_cut[0] and pos2>=each_cut[1]: return True return False def return_cutsite_edit(pats,cutsite): pats=pats.split(";") return_list=[] for p in pats: p_split=p.split("_") if p_split[0]=="I": pos=float(p_split[1]) if judge_in_cutsite(pos,cutsite): return_list.append(p) elif p_split[0]=="S": pos=int(p_split[1])+len(p_split[2])-1 if judge_in_cutsite(pos,cutsite): return_list.append(p) elif p_split[0]=="D": pos_1=int(p_split[1]) pos_2=int(p_split[2]) if judge_in_cutsite(pos_1,cutsite) or judge_in_cutsite(pos_2,cutsite) or judge_include_cutsite(pos_1,pos_2,cutsite): return_list.append(p) return ";".join(return_list) def extract_valid_edits(table,cutsite,outfile): table_df = pd.read_csv(table,sep="\t",header=None) table_df[1]=table_df[1].apply(return_cutsite_edit,cutsite=cutsite) table_df.to_csv(outfile,sep="\t",index=False,header=False) return table_df def generate_ins_set(extracted_pattern): ins_set=set() for row in extracted_pattern: pat_split=row.split(";") for each_pat in pat_split: indelsub=each_pat.split("_")[0] if indelsub=="I": ins_set.add(each_pat) return ins_set def generate_ins_series(extracted_pattern): ins_string="" pat_split=extracted_pattern.split(";") for each_pat in pat_split: indelsub=each_pat.split("_")[0] if indelsub=="I": ins_string+=";"+each_pat ins_string=re.sub("^;","",ins_string) return ins_string def generate_delsub(extracted_pattern,amplicon_length): pat_split=extracted_pattern.split(";") pointer=-1 matching_string="" for each_pat in pat_split: indelsub=each_pat.split("_")[0] if indelsub=="I": continue pos=int(each_pat.split("_")[1]) additional=each_pat.split("_")[2] if indelsub=="D": additional=int(additional) if additional>=amplicon_length: additional=amplicon_length-1 matching_string+="=;"*(pos-pointer-1) matching_string+="D;"*(additional-pos+1) pointer=additional elif indelsub=="S": matching_string+="=;"*(pos-pointer-1) p=[i for i in additional] p=";".join(p)+";" matching_string+=p pointer=pos+len(additional)-1 if pointer < amplicon_length-1: #if scGST(sequence read length is fixed and end deletion is regarded as failure to reach) matching_string+="=;"*((amplicon_length-1)-pointer) #if PRESUME(all amplicaon length is covered) #matching_string+="D;"*((amplicon_length-1)-pointer) matching_string=re.sub(";$","",matching_string) return matching_string def generate_ins_table(insertion_pattern,list_ins): insertion_pattern=insertion_pattern.split(";") binary_list=[] for ref_ins in list_ins: if ref_ins in insertion_pattern: binary_list.append("1") else: binary_list.append("0") return ";".join(binary_list) if __name__ == "__main__": opt=get_option() sam=opt.sam annotation=opt.annotation idenrate=opt.idenrate identity=opt.identity trim5prime=opt.trim5prime primer5=opt.primer5 primer5ed=opt.primer5ed noremove=opt.noRemoveFiles outname=opt.outname extend=opt.extend amplicon_length=opt.amplicon_length no_annot=opt.no_annot outdir=re.sub("/$","",opt.outdir)+"/" outfile=outdir+"/"+outname+".MUTATIONTABLE.tsv" ref_annot={} with open(annotation,mode="rt") as r: for nrow,line in enumerate(r): if nrow>0: line=line.split(",") ref_annot[line[0]]=list(map(int,line[1:])) parsedMutationPattern=parseSam(sam) df_parsed_from_sam=pd.DataFrame.from_dict(parsedMutationPattern,orient="index") ser_concat_parsedSam=df_parsed_from_sam["cigar"].str.cat(df_parsed_from_sam["seq"],sep=";") ser_concat_parsedSam=ser_concat_parsedSam.map(lambda x:alignmentQC(x,ref_annot,primer5ed,idenrate,identity)) concat_df=
pd.DataFrame(ser_concat_parsedSam)
pandas.DataFrame
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (pd.Index(["red", "white", "yellow"]), "color", None), ([(1, "red"), (3, "red")], None, None), (((1, "red"), (3, "red")), None, None), ( pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color"), ), None, None, ), ( pd.MultiIndex.from_arrays([[], []], names=("number", "color")), None, None, ), ( pd.MultiIndex.from_arrays( [ [1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"], ], names=("number", "color"), ), None, None, ), ], ) def test_isin_multiindex(data, values, level, err): pmdx = data gmdx = cudf.from_pandas(data) if err is None: expected = pmdx.isin(values, level=level) if isinstance(values, pd.MultiIndex): values = cudf.from_pandas(values) got = gmdx.isin(values, level=level) assert_eq(got, expected) else: assert_exceptions_equal( lfunc=pmdx.isin, rfunc=gmdx.isin, lfunc_args_and_kwargs=([values], {"level": level}), rfunc_args_and_kwargs=([values], {"level": level}), check_exception_type=False, expected_error_message=re.escape( "values need to be a Multi-Index or set/list-like tuple " "squences when `level=None`." ), ) @pytest.mark.parametrize( "data", [ pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [8, 2, 1, 0, 2, 4, 5], "num_wings": [2, 0, 2, 1, 2, 4, -1], } ), ], ) @pytest.mark.parametrize( "values", [ [0, 2], {"num_wings": [0, 3]}, pd.DataFrame( {"num_legs": [8, 2], "num_wings": [0, 2]}, index=["spider", "falcon"], ), pd.DataFrame( { "num_legs": [2, 4], "num_wings": [2, 0], "bird_cats": pd.Series( ["sparrow", "pigeon"], dtype="category", index=["falcon", "dog"], ), }, index=["falcon", "dog"], ), ["sparrow", "pigeon"], pd.Series(["sparrow", "pigeon"], dtype="category"), pd.Series([1, 2, 3, 4, 5]), "abc", 123, ], ) def test_isin_dataframe(data, values): pdf = data gdf = cudf.from_pandas(pdf) if cudf.utils.dtypes.is_scalar(values): assert_exceptions_equal( lfunc=pdf.isin, rfunc=gdf.isin, lfunc_args_and_kwargs=([values],), rfunc_args_and_kwargs=([values],), ) else: try: expected = pdf.isin(values) except ValueError as e: if str(e) == "Lengths must match.": pytest.xfail( not PANDAS_GE_110, "https://github.com/pandas-dev/pandas/issues/34256", ) if isinstance(values, (pd.DataFrame, pd.Series)): values = cudf.from_pandas(values) got = gdf.isin(values) assert_eq(got, expected) def test_constructor_properties(): df = cudf.DataFrame() key1 = "a" key2 = "b" val1 = np.array([123], dtype=np.float64) val2 = np.array([321], dtype=np.float64) df[key1] = val1 df[key2] = val2 # Correct use of _constructor (for DataFrame) assert_eq(df, df._constructor({key1: val1, key2: val2})) # Correct use of _constructor (for cudf.Series) assert_eq(df[key1], df[key2]._constructor(val1, name=key1)) # Correct use of _constructor_sliced (for DataFrame) assert_eq(df[key1], df._constructor_sliced(val1, name=key1)) # Correct use of _constructor_expanddim (for cudf.Series) assert_eq(df, df[key2]._constructor_expanddim({key1: val1, key2: val2})) # Incorrect use of _constructor_sliced (Raises for cudf.Series) with pytest.raises(NotImplementedError): df[key1]._constructor_sliced # Incorrect use of _constructor_expanddim (Raises for DataFrame) with pytest.raises(NotImplementedError): df._constructor_expanddim @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", ALL_TYPES) def test_df_astype_numeric_to_all(dtype, as_dtype): if "uint" in dtype: data = [1, 2, None, 4, 7] elif "int" in dtype or "longlong" in dtype: data = [1, 2, None, 4, -7] elif "float" in dtype: data = [1.0, 2.0, None, 4.0, np.nan, -7.0] gdf = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype=dtype) gdf["bar"] = cudf.Series(data, dtype=dtype) insert_data = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = insert_data.astype(as_dtype) expect["bar"] = insert_data.astype(as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_df_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: # change None to "NaT" after this issue is fixed: # https://github.com/rapidsai/cudf/issues/5117 data = ["2001-01-01", "2002-02-02", "2000-01-05", None] elif as_dtype == "int32": data = [1, 2, 3] elif as_dtype == "category": data = ["1", "2", "3", None] elif "float" in as_dtype: data = [1.0, 2.0, 3.0, np.nan] insert_data = cudf.Series.from_pandas(pd.Series(data, dtype="str")) expect_data = cudf.Series(data, dtype=as_dtype) gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = insert_data gdf["bar"] = insert_data expect["foo"] = expect_data expect["bar"] = expect_data got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int64", "datetime64[s]", "datetime64[us]", "datetime64[ns]", "str", "category", ], ) def test_df_astype_datetime_to_other(as_dtype): data = [ "1991-11-20 00:00:00.000", "2004-12-04 00:00:00.000", "2016-09-13 00:00:00.000", None, ] gdf = cudf.DataFrame() expect = cudf.DataFrame() gdf["foo"] = cudf.Series(data, dtype="datetime64[ms]") gdf["bar"] = cudf.Series(data, dtype="datetime64[ms]") if as_dtype == "int64": expect["foo"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) expect["bar"] = cudf.Series( [690595200000, 1102118400000, 1473724800000, None], dtype="int64" ) elif as_dtype == "str": expect["foo"] = cudf.Series(data, dtype="str") expect["bar"] = cudf.Series(data, dtype="str") elif as_dtype == "category": expect["foo"] = cudf.Series(gdf["foo"], dtype="category") expect["bar"] = cudf.Series(gdf["bar"], dtype="category") else: expect["foo"] = cudf.Series(data, dtype=as_dtype) expect["bar"] = cudf.Series(data, dtype=as_dtype) got = gdf.astype(as_dtype) assert_eq(expect, got) @pytest.mark.parametrize( "as_dtype", [ "int32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_df_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf.astype(as_dtype), gdf.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_df_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") pdf = pd.DataFrame() pdf["foo"] = psr pdf["bar"] = psr gdf = cudf.DataFrame.from_pandas(pdf) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( pdf.astype(ordered_dtype_pd).astype("int32"), gdf.astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize( "dtype,args", [(dtype, {}) for dtype in ALL_TYPES] + [("category", {"ordered": True}), ("category", {"ordered": False})], ) def test_empty_df_astype(dtype, args): df = cudf.DataFrame() kwargs = {} kwargs.update(args) assert_eq(df, df.astype(dtype=dtype, **kwargs)) @pytest.mark.parametrize( "errors", [ pytest.param( "raise", marks=pytest.mark.xfail(reason="should raise error here") ), pytest.param("other", marks=pytest.mark.xfail(raises=ValueError)), "ignore", pytest.param( "warn", marks=pytest.mark.filterwarnings("ignore:Traceback") ), ], ) def test_series_astype_error_handling(errors): sr = cudf.Series(["random", "words"]) got = sr.astype("datetime64", errors=errors) assert_eq(sr, got) @pytest.mark.parametrize("dtype", ALL_TYPES) def test_df_constructor_dtype(dtype): if "datetime" in dtype: data = ["1991-11-20", "2004-12-04", "2016-09-13", None] elif dtype == "str": data = ["a", "b", "c", None] elif "float" in dtype: data = [1.0, 0.5, -1.1, np.nan, None] elif "bool" in dtype: data = [True, False, None] else: data = [1, 2, 3, None] sr = cudf.Series(data, dtype=dtype) expect = cudf.DataFrame() expect["foo"] = sr expect["bar"] = sr got = cudf.DataFrame({"foo": data, "bar": data}, dtype=dtype) assert_eq(expect, got) @pytest.mark.parametrize( "data", [ cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": int} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": "category", "b": int, "c": float, "d": str} ), cudf.datasets.randomdata( nrows=10, dtypes={"a": bool, "b": int, "c": float, "d": str} ), cudf.DataFrame(), cudf.DataFrame({"a": [0, 1, 2], "b": [1, None, 3]}), cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ), cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False ), } ), ], ) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops(data, op, skipna): gdf = data pdf = gdf.to_pandas() if op in ("var", "std"): expected = getattr(pdf, op)(axis=1, ddof=0, skipna=skipna) got = getattr(gdf, op)(axis=1, ddof=0, skipna=skipna) else: expected = getattr(pdf, op)(axis=1, skipna=skipna) got = getattr(gdf, op)(axis=1, skipna=skipna) assert_eq(expected, got, check_exact=False) @pytest.mark.parametrize( "op", ["max", "min", "sum", "product", "mean", "var", "std"] ) def test_rowwise_ops_nullable_dtypes_all_null(op): gdf = cudf.DataFrame( { "a": [1, 2, 3, 4], "b": [7, np.NaN, 9, 10], "c": [np.NaN, np.NaN, np.NaN, np.NaN], "d": cudf.Series([None, None, None, None], dtype="int64"), "e": [100, None, 200, None], "f": cudf.Series([10, None, np.NaN, 11], nan_as_null=False), } ) expected = cudf.Series([None, None, None, None], dtype="float64") if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series( [10.0, None, np.NaN, 2234.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "min", cudf.Series( [10.0, None, np.NaN, 13.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "sum", cudf.Series( [20.0, None, np.NaN, 2247.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "product", cudf.Series( [100.0, None, np.NaN, 29042.0, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "mean", cudf.Series( [10.0, None, np.NaN, 1123.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "var", cudf.Series( [0.0, None, np.NaN, 1233210.25, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ( "std", cudf.Series( [0.0, None, np.NaN, 1110.5, None, np.NaN], dtype="float64", nan_as_null=False, ), ), ], ) def test_rowwise_ops_nullable_dtypes_partial_null(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, 12, 13, 14, 15], "b": cudf.Series( [10, None, np.NaN, 2234, None, np.NaN], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "op,expected", [ ( "max", cudf.Series([10, None, None, 2234, None, 453], dtype="int64",), ), ("min", cudf.Series([10, None, None, 13, None, 15], dtype="int64",),), ( "sum", cudf.Series([20, None, None, 2247, None, 468], dtype="int64",), ), ( "product", cudf.Series([100, None, None, 29042, None, 6795], dtype="int64",), ), ( "mean", cudf.Series( [10.0, None, None, 1123.5, None, 234.0], dtype="float32", ), ), ( "var", cudf.Series( [0.0, None, None, 1233210.25, None, 47961.0], dtype="float32", ), ), ( "std", cudf.Series( [0.0, None, None, 1110.5, None, 219.0], dtype="float32", ), ), ], ) def test_rowwise_ops_nullable_int_dtypes(op, expected): gdf = cudf.DataFrame( { "a": [10, 11, None, 13, None, 15], "b": cudf.Series( [10, None, 323, 2234, None, 453], nan_as_null=False, ), } ) if op in ("var", "std"): got = getattr(gdf, op)(axis=1, ddof=0, skipna=False) else: got = getattr(gdf, op)(axis=1, skipna=False) assert_eq(got.null_count, expected.null_count) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ns]" ), "t3": cudf.Series( ["1960-08-31 06:00:00", "2030-08-02 10:00:00"], dtype="<M8[s]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[us]" ), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series( ["1940-08-31 06:00:00", "2020-08-02 10:00:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "t2": cudf.Series(["1940-08-31 06:00:00", None], dtype="<M8[ms]"), "i1": cudf.Series([1001, 2002], dtype="int64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), }, { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]" ), "i1": cudf.Series([1001, 2002], dtype="int64"), "f1": cudf.Series([-100.001, 123.456], dtype="float64"), "b1": cudf.Series([True, False], dtype="bool"), }, ], ) @pytest.mark.parametrize("op", ["max", "min"]) @pytest.mark.parametrize("skipna", [True, False]) def test_rowwise_ops_datetime_dtypes(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data,op,skipna", [ ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "max", True, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", False, ), ( { "t1": cudf.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ms]", ), "t2": cudf.Series( ["1940-08-31 06:00:00", None], dtype="<M8[ms]" ), }, "min", True, ), ], ) def test_rowwise_ops_datetime_dtypes_2(data, op, skipna): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() got = getattr(gdf, op)(axis=1, skipna=skipna) expected = getattr(pdf, op)(axis=1, skipna=skipna) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ ( { "t1": pd.Series( ["2020-08-01 09:00:00", "1920-05-01 10:30:00"], dtype="<M8[ns]", ), "t2": pd.Series( ["1940-08-31 06:00:00", pd.NaT], dtype="<M8[ns]" ), } ) ], ) def test_rowwise_ops_datetime_dtypes_pdbug(data): pdf = pd.DataFrame(data) gdf = cudf.from_pandas(pdf) expected = pdf.max(axis=1, skipna=False) got = gdf.max(axis=1, skipna=False) if PANDAS_GE_120: assert_eq(got, expected) else: # PANDAS BUG: https://github.com/pandas-dev/pandas/issues/36907 with pytest.raises(AssertionError, match="numpy array are different"): assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [5.0, 6.0, 7.0], "single value", np.array(1, dtype="int64"), np.array(0.6273643, dtype="float64"), ], ) def test_insert(data): pdf = pd.DataFrame.from_dict({"A": [1, 2, 3], "B": ["a", "b", "c"]}) gdf = cudf.DataFrame.from_pandas(pdf) # insertion by index pdf.insert(0, "foo", data) gdf.insert(0, "foo", data) assert_eq(pdf, gdf) pdf.insert(3, "bar", data) gdf.insert(3, "bar", data) assert_eq(pdf, gdf) pdf.insert(1, "baz", data) gdf.insert(1, "baz", data) assert_eq(pdf, gdf) # pandas insert doesn't support negative indexing pdf.insert(len(pdf.columns), "qux", data) gdf.insert(-1, "qux", data) assert_eq(pdf, gdf) def test_cov(): gdf = cudf.datasets.randomdata(10) pdf = gdf.to_pandas() assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.xfail(reason="cupy-based cov does not support nulls") def test_cov_nans(): pdf = pd.DataFrame() pdf["a"] = [None, None, None, 2.00758632, None] pdf["b"] = [0.36403686, None, None, None, None] pdf["c"] = [None, None, None, 0.64882227, None] pdf["d"] = [None, -1.46863125, None, 1.22477948, -0.06031689] gdf = cudf.from_pandas(pdf) assert_eq(pdf.cov(), gdf.cov()) @pytest.mark.parametrize( "gsr", [ cudf.Series([4, 2, 3]), cudf.Series([4, 2, 3], index=["a", "b", "c"]), cudf.Series([4, 2, 3], index=["a", "b", "d"]), cudf.Series([4, 2], index=["a", "b"]), cudf.Series([4, 2, 3], index=cudf.core.index.RangeIndex(0, 3)), pytest.param( cudf.Series([4, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"]), marks=pytest.mark.xfail, ), ], ) @pytest.mark.parametrize("colnames", [["a", "b", "c"], [0, 1, 2]]) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_df_sr_binop(gsr, colnames, op): data = [[3.0, 2.0, 5.0], [3.0, None, 5.0], [6.0, 7.0, np.nan]] data = dict(zip(colnames, data)) gsr = gsr.astype("float64") gdf = cudf.DataFrame(data) pdf = gdf.to_pandas(nullable=True) psr = gsr.to_pandas(nullable=True) expect = op(pdf, psr) got = op(gdf, gsr).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) expect = op(psr, pdf) got = op(gsr, gdf).to_pandas(nullable=True) assert_eq(expect, got, check_dtype=False) @pytest.mark.parametrize( "op", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, # comparison ops will temporarily XFAIL # see PR https://github.com/rapidsai/cudf/pull/7491 pytest.param(operator.eq, marks=pytest.mark.xfail()), pytest.param(operator.lt, marks=pytest.mark.xfail()), pytest.param(operator.le, marks=pytest.mark.xfail()), pytest.param(operator.gt, marks=pytest.mark.xfail()), pytest.param(operator.ge, marks=pytest.mark.xfail()), pytest.param(operator.ne, marks=pytest.mark.xfail()), ], ) @pytest.mark.parametrize( "gsr", [cudf.Series([1, 2, 3, 4, 5], index=["a", "b", "d", "0", "12"])] ) def test_df_sr_binop_col_order(gsr, op): colnames = [0, 1, 2] data = [[0, 2, 5], [3, None, 5], [6, 7, np.nan]] data = dict(zip(colnames, data)) gdf = cudf.DataFrame(data) pdf = pd.DataFrame.from_dict(data) psr = gsr.to_pandas() expect = op(pdf, psr).astype("float") out = op(gdf, gsr).astype("float") got = out[expect.columns] assert_eq(expect, got) @pytest.mark.parametrize("set_index", [None, "A", "C", "D"]) @pytest.mark.parametrize("index", [True, False]) @pytest.mark.parametrize("deep", [True, False]) def test_memory_usage(deep, index, set_index): # Testing numerical/datetime by comparing with pandas # (string and categorical columns will be different) rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int64"), "B": np.arange(rows, dtype="int32"), "C": np.arange(rows, dtype="float64"), } ) df["D"] = pd.to_datetime(df.A) if set_index: df = df.set_index(set_index) gdf = cudf.from_pandas(df) if index and set_index is None: # Special Case: Assume RangeIndex size == 0 assert gdf.index.memory_usage(deep=deep) == 0 else: # Check for Series only assert df["B"].memory_usage(index=index, deep=deep) == gdf[ "B" ].memory_usage(index=index, deep=deep) # Check for entire DataFrame assert_eq( df.memory_usage(index=index, deep=deep).sort_index(), gdf.memory_usage(index=index, deep=deep).sort_index(), ) @pytest.mark.xfail def test_memory_usage_string(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) gdf = cudf.from_pandas(df) # Check deep=False (should match pandas) assert gdf.B.memory_usage(deep=False, index=False) == df.B.memory_usage( deep=False, index=False ) # Check string column assert gdf.B.memory_usage(deep=True, index=False) == df.B.memory_usage( deep=True, index=False ) # Check string index assert gdf.set_index("B").index.memory_usage( deep=True ) == df.B.memory_usage(deep=True, index=False) def test_memory_usage_cat(): rows = int(100) df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(["apple", "banana", "orange"], rows), } ) df["B"] = df.B.astype("category") gdf = cudf.from_pandas(df) expected = ( gdf.B._column.cat().categories.__sizeof__() + gdf.B._column.cat().codes.__sizeof__() ) # Check cat column assert gdf.B.memory_usage(deep=True, index=False) == expected # Check cat index assert gdf.set_index("B").index.memory_usage(deep=True) == expected def test_memory_usage_list(): df = cudf.DataFrame({"A": [[0, 1, 2, 3], [4, 5, 6], [7, 8], [9]]}) expected = ( df.A._column.offsets._memory_usage() + df.A._column.elements._memory_usage() ) assert expected == df.A.memory_usage() @pytest.mark.xfail def test_memory_usage_multi(): rows = int(100) deep = True df = pd.DataFrame( { "A": np.arange(rows, dtype="int32"), "B": np.random.choice(np.arange(3, dtype="int64"), rows), "C": np.random.choice(np.arange(3, dtype="float64"), rows), } ).set_index(["B", "C"]) gdf = cudf.from_pandas(df) # Assume MultiIndex memory footprint is just that # of the underlying columns, levels, and codes expect = rows * 16 # Source Columns expect += rows * 16 # Codes expect += 3 * 8 # Level 0 expect += 3 * 8 # Level 1 assert expect == gdf.index.memory_usage(deep=deep) @pytest.mark.parametrize( "list_input", [ pytest.param([1, 2, 3, 4], id="smaller"), pytest.param([1, 2, 3, 4, 5, 6], id="larger"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_list(list_input, key): gdf = cudf.datasets.randomdata(5) with pytest.raises( ValueError, match=("All columns must be of equal length") ): gdf[key] = list_input @pytest.mark.parametrize( "series_input", [ pytest.param(cudf.Series([1, 2, 3, 4]), id="smaller_cudf"), pytest.param(cudf.Series([1, 2, 3, 4, 5, 6]), id="larger_cudf"), pytest.param(cudf.Series([1, 2, 3], index=[4, 5, 6]), id="index_cudf"), pytest.param(pd.Series([1, 2, 3, 4]), id="smaller_pandas"), pytest.param(pd.Series([1, 2, 3, 4, 5, 6]), id="larger_pandas"), pytest.param(pd.Series([1, 2, 3], index=[4, 5, 6]), id="index_pandas"), ], ) @pytest.mark.parametrize( "key", [ pytest.param("list_test", id="new_column"), pytest.param("id", id="existing_column"), ], ) def test_setitem_diff_size_series(series_input, key): gdf = cudf.datasets.randomdata(5) pdf = gdf.to_pandas() pandas_input = series_input if isinstance(pandas_input, cudf.Series): pandas_input = pandas_input.to_pandas() expect = pdf expect[key] = pandas_input got = gdf got[key] = series_input # Pandas uses NaN and typecasts to float64 if there's missing values on # alignment, so need to typecast to float64 for equality comparison expect = expect.astype("float64") got = got.astype("float64") assert_eq(expect, got) def test_tupleize_cols_False_set(): pdf = pd.DataFrame() gdf = cudf.DataFrame() pdf[("a", "b")] = [1] gdf[("a", "b")] = [1] assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_init_multiindex_from_dict(): pdf = pd.DataFrame({("a", "b"): [1]}) gdf = cudf.DataFrame({("a", "b"): [1]}) assert_eq(pdf, gdf) assert_eq(pdf.columns, gdf.columns) def test_change_column_dtype_in_empty(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) assert_eq(pdf, gdf) pdf["b"] = pdf["b"].astype("int64") gdf["b"] = gdf["b"].astype("int64") assert_eq(pdf, gdf) def test_dataframe_from_table_empty_index(): df = cudf.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) odict = df._data tbl = cudf._lib.table.Table(odict) result = cudf.DataFrame._from_table(tbl) # noqa: F841 @pytest.mark.parametrize("dtype", ["int64", "str"]) def test_dataframe_from_dictionary_series_same_name_index(dtype): pd_idx1 = pd.Index([1, 2, 0], name="test_index").astype(dtype) pd_idx2 = pd.Index([2, 0, 1], name="test_index").astype(dtype) pd_series1 = pd.Series([1, 2, 3], index=pd_idx1) pd_series2 = pd.Series([1, 2, 3], index=pd_idx2) gd_idx1 = cudf.from_pandas(pd_idx1) gd_idx2 = cudf.from_pandas(pd_idx2) gd_series1 = cudf.Series([1, 2, 3], index=gd_idx1) gd_series2 = cudf.Series([1, 2, 3], index=gd_idx2) expect = pd.DataFrame({"a": pd_series1, "b": pd_series2}) got = cudf.DataFrame({"a": gd_series1, "b": gd_series2}) if dtype == "str": # Pandas actually loses its index name erroneously here... expect.index.name = "test_index" assert_eq(expect, got) assert expect.index.names == got.index.names @pytest.mark.parametrize( "arg", [slice(2, 8, 3), slice(1, 20, 4), slice(-2, -6, -2)] ) def test_dataframe_strided_slice(arg): mul = pd.DataFrame( { "Index": [1, 2, 3, 4, 5, 6, 7, 8, 9], "AlphaIndex": ["a", "b", "c", "d", "e", "f", "g", "h", "i"], } ) pdf = pd.DataFrame( {"Val": [10, 9, 8, 7, 6, 5, 4, 3, 2]}, index=pd.MultiIndex.from_frame(mul), ) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf[arg] got = gdf[arg] assert_eq(expect, got) @pytest.mark.parametrize( "data,condition,other,error", [ (pd.Series(range(5)), pd.Series(range(5)) > 0, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, None, None), (pd.Series(range(5)), pd.Series(range(5)) > 1, 10, None), ( pd.Series(range(5)), pd.Series(range(5)) > 1, pd.Series(range(5, 10)), None, ), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), ( pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) % 3 ) == 0, -pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]), None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) == 4, None, None, ), ( pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}), pd.DataFrame({"a": [1, 2, np.nan], "b": [4, np.nan, 6]}) != 4, None, None, ), (
pd.DataFrame({"p": [-2, 3, -4, -79], "k": [9, 10, 11, 12]})
pandas.DataFrame
import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np import math import time import ruptures as rpt from datetime import datetime data = pd.read_csv("test_anom2.csv") print(data.head()) data.set_index(np.arange(len(data.index)), inplace=True) def check_if_shift_v0(data, column_name, start_index, end_index, check_period): """ using median to see if it changes significantly in shift """ period_before = data[column_name][start_index - check_period: start_index] period_in_the_middle = data[column_name][start_index:end_index] period_after = data[column_name][end_index: end_index + check_period] period_before_median = abs(np.nanmedian(period_before)) period_in_the_middle_median = abs(np.nanmedian(period_in_the_middle)) period_after_median = abs(np.nanmedian(period_after)) upper_threshold = period_in_the_middle_median * 2 down_threshold = period_in_the_middle_median / 2 if (upper_threshold < period_before_median and upper_threshold < period_after_median) or\ (down_threshold > period_before_median and down_threshold > period_after_median): return True else: return False def prepare_data_to_test(data, data_name: str): """ datetime type """ data["time"] = pd.to_datetime(data.time) """ sort values """ data.sort_values(by=['time'], inplace=True) """ set index """ data.set_index("time", inplace=True) """ drop duplicate time""" data = data[~data.index.duplicated(keep='first')] """ resample """ data = data.resample('5T').pad() """ reset index """ data.reset_index("time", inplace=True) """ rename column names """ data.columns = ['time', data_name] data.drop_duplicates(subset="time", inplace=True) return data def prepare_data_dp(data, column_to_fix): data['time'] = pd.to_datetime(data['time']) data['hour'] = pd.to_datetime(data.time, unit='m').dt.strftime('%H:%M') daily_pattern = data[column_to_fix].groupby(by=[data.time.map(lambda x: (x.hour, x.minute))]).mean() daily_pattern = daily_pattern.reset_index() daily_pattern['hour'] = pd.date_range('00:00:00', periods=len(daily_pattern), freq='5min') daily_pattern['hour'] = pd.to_datetime(daily_pattern.hour, unit='m').dt.strftime('%H:%M') daily_pattern = daily_pattern[['hour', column_to_fix]] data['dp'] = data['hour'] mapping = dict(daily_pattern[['hour', column_to_fix]].values) final_ = dict(data[['dp', column_to_fix]].values) z = {**final_, **mapping} data.index = np.arange(len(data)) data['daily_pattern_flow'] = data['dp'].map(z) return data class DpMissingValuesV0: def __init__(self, df_data, fit_data): self.data = df_data self.fit_period = fit_data @staticmethod def prepare_data_dp(data, column_to_fix): data['time'] = pd.to_datetime(data['time']) data['hour'] =
pd.to_datetime(data.time, unit='m')
pandas.to_datetime
import pandas as pd import numpy as np import os try: rows, columns = os.popen('stty size', 'r').read().split() pd.set_option('display.width', int(columns)) pd.set_option('display.max_columns', 600) pd.set_option('display.max_rows', 1000) except: print("running on server, otherwise please investigate") read_public = pd.read_csv('tmp/READ_useful_final_public_merge_cnv_purity.csv', sep='\t') read_protected = pd.read_csv('tmp/READ_useful_final_qc_merge_cnv_purity.csv', sep='\t') coad_public = pd.read_csv('tmp/COAD_useful_final_public_merge_cnv_purity.csv', sep='\t') coad_protected =
pd.read_csv('tmp/COAD_useful_final_qc_merge_cnv_purity.csv', sep='\t')
pandas.read_csv
import warnings warnings.filterwarnings("ignore") import os import math import numpy as np import tensorflow as tf import pandas as pd import argparse import json from sklearn.model_selection import StratifiedKFold from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE from scipy.stats import spearmanr, pearsonr import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import matplotlib.patches as mpatches plt.rcParams["figure.figsize"] = (8,8) import seaborn as sns from umap import UMAP import configparser as cp os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' ################################################### # Read in configuration file for network parameters ################################################### config = cp.ConfigParser() config.read('config.py') rna_hidden_dim_1 = int(config.get('AE', 'RNA_Layer1')) rna_hidden_dim_2 = int(config.get('AE', 'RNA_Layer2')) rna_latent_dim = int(config.get('AE', 'RNA_Latent')) translate_hidden_dim = int(config.get('AE', 'Translate_Layer1')) l2_norm_dec = float(config.get('AE', 'L2_Norm_AE')) l2_norm_kl = float(config.get('AE', 'L2_Norm_KL')) learning_rate_kl = float(config.get('AE', 'Learning_Rate_KL')) learning_rate_ae = float(config.get('AE', 'Learning_Rate_AE')) Z_dim = int(config.get('CGAN', 'Z_dim')) gen_dim1 = int(config.get('CGAN', 'Gen_Layer1')) gen_dim2 = int(config.get('CGAN', 'Gen_Layer2')) det_dim = int(config.get('CGAN', 'Det_Layer1')) learning_rate_cgan = float(config.get('CGAN', 'Learning_Rate')) l2_norm_cgan = float(config.get('CGAN', 'L2_Lambda')) epoch_cgan = int(config.get('CGAN', 'Max_Epoch')) ################################################### # Read in command line arguments ################################################### parser = argparse.ArgumentParser(description='Perform Pseudocell Tracer Algorithm') parser.add_argument('-d', '--data', help='Tab delimited file representing matrix of samples by genes', required=True) parser.add_argument('-s', '--side_data', help= 'Tab delimited file for side information to be used', required=True) parser.add_argument('-o', '--output', help='Output directory', required=True) parser.add_argument('-p', '--plot_style', help= 'Plotting style to be used (UMAP or tSNE)', default="UMAP") parser.add_argument('-n', '--num_cells_gen', help='Number of pseudocells to generate at each step', default=100, type=int) parser.add_argument('-k', '--num_steps', help='Number of pseudocell states', default=100, type=int) parser.add_argument('-a', '--start_states', help='Number of pseudocell states', nargs="+", required=True) parser.add_argument('-b', '--end_states', help='Number of pseudocell states', nargs="+", required=True) parser.add_argument('-g', '--genes_to_plot', help='Genes to plot in pseudocell trajectory', nargs="+") args = parser.parse_args() dset = args.data sset = args.side_data out = args.output plot_method = args.plot_style num_cells_gen = args.num_cells_gen num_steps = args.num_steps start_states = args.start_states end_states = args.end_states genes_to_plot = args.genes_to_plot ################################################### # Function to plot ################################################### def plot_data(rna, side): if plot_method == "tSNE": tsne = TSNE() results = np.array(tsne.fit_transform(rna.values)) if plot_method == "UMAP": umap = UMAP() results = np.array(umap.fit_transform(rna.values)) plot_df = pd.DataFrame(data=results, columns=["X","Y"]) cl = np.argmax(side.values, axis=1) plot_df["subtype"] = [side.columns[x] for x in cl] return sns.scatterplot(x="X", y="Y", hue="subtype", data=plot_df) ################################################### # Load Data ################################################### rna_data = pd.read_csv(dset, header=0, index_col=0, sep="\t") side_data = pd.read_csv(sset, index_col=0, header=0, sep="\t") ################################################### # Filter common samples ################################################### sample_list = np.intersect1d(rna_data.columns.values, side_data.columns.values) gene_list = rna_data.index.values side_data = side_data.filter(sample_list, axis=1) rna_data = rna_data.filter(sample_list, axis=1) rna_data = rna_data.transpose() side_data = side_data.transpose() print("Loaded Data...") ################################################### # Create output directory ################################################### print("Creating output directory...") try: os.mkdir("results") except: pass out_dir = "results/" + out try: os.mkdir(out_dir) print("Directory " , out_dir , " Created...") except FileExistsError: print("Warning: Directory " , out , " already exists...") with open(out_dir + '/run_parameters.txt', 'w') as f: json.dump(args.__dict__, f, indent=2) with open(out_dir + '/run_network_config.txt', 'w') as f: config.write(f) ################################################### # Plot input data ################################################### scatter = plot_data(rna_data, side_data) plt.title("Input Data (" + str(plot_method) + ")") plt.savefig(out_dir + "/input_scatter.png") plt.clf() ################################################### # Train supervised encoder ################################################### print("Training supervised encoder...") scaler = StandardScaler().fit(rna_data.values) norm_rna_data = np.clip(scaler.transform(rna_data.values),-3,3) reg_kl = tf.keras.regularizers.l2(l2_norm_kl) kl_model = tf.keras.Sequential([ tf.keras.layers.Dense(rna_hidden_dim_1, activation='relu', kernel_regularizer=reg_kl, input_shape=(len(gene_list),)), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(rna_hidden_dim_2, activation='relu', kernel_regularizer=reg_kl), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(rna_latent_dim, activation='sigmoid', name='latent_layer', kernel_regularizer=reg_kl), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(translate_hidden_dim, activation='relu', kernel_regularizer=reg_kl), tf.keras.layers.Dropout(0.3), tf.keras.layers.Dense(side_data.values.shape[1], activation=tf.nn.softmax, kernel_regularizer=reg_kl, name='relative_prediction') ]) es_cb_kl = tf.keras.callbacks.EarlyStopping('val_kullback_leibler_divergence', patience=100, restore_best_weights=True) kl_model.compile(optimizer=tf.train.AdamOptimizer(learning_rate_kl), loss=tf.keras.losses.KLD, metrics=['kullback_leibler_divergence']) kl_model.fit(norm_rna_data, side_data.values, epochs=10000, callbacks=[es_cb_kl], validation_split=0.1, verbose=0, batch_size=1024) kl_model.fit(norm_rna_data, side_data.values, epochs=5, verbose=0, batch_size=1024) kl_model.save(out_dir + "/encoder.h5") ################################################### # Get latent data ################################################### print("Getting latent data...") latent_model = tf.keras.Model(inputs=kl_model.input, outputs=kl_model.get_layer('latent_layer').output) latent = latent_model.predict(norm_rna_data) latent_df = pd.DataFrame(data=latent, index=sample_list) latent_df.to_csv("latent_values.tsv", sep="\t") scatter = plot_data(latent_df, side_data) plt.title("Latent Data (" + str(plot_method) + ")") plt.savefig(out_dir + "/latent_scatter.png") plt.clf() ################################################### # Train decoder ################################################### print("Training decoder...") reg_dec = tf.keras.regularizers.l2(l2_norm_dec) dec_model = tf.keras.Sequential([ tf.keras.layers.Dense(rna_hidden_dim_2, activation='relu', input_shape=(rna_latent_dim,), kernel_regularizer=reg_dec, bias_regularizer=reg_dec), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(rna_hidden_dim_1, activation='relu', kernel_regularizer=reg_dec, bias_regularizer=reg_dec), tf.keras.layers.BatchNormalization(), tf.keras.layers.Dense(len(gene_list), activation=None, name='rna_reconstruction', kernel_regularizer=reg_dec, bias_regularizer=reg_dec) ]) es_cb_dec = tf.keras.callbacks.EarlyStopping('val_mean_squared_error', patience=100, restore_best_weights=True) dec_model.compile(optimizer=tf.train.AdamOptimizer(learning_rate_ae), loss=tf.keras.losses.MSE, metrics=['mse']) dec_model.fit(latent, norm_rna_data, epochs=100000, callbacks=[es_cb_dec], validation_split=0.1, verbose=0, batch_size=1024) dec_model.fit(latent, norm_rna_data, epochs=5, verbose=0, batch_size=1024) dec_model.save(out_dir + "/decoder.h5") ################################################### # Get reconstructed values ################################################### decoded = dec_model.predict(latent) decoded_df =
pd.DataFrame(data=decoded, index=sample_list, columns=gene_list)
pandas.DataFrame
"""Extended DataFrame functionality.""" from typing import Any, Iterator, Optional, Sequence, Text, Tuple, Union, cast import numpy as np import pandas as pd from snmp_fetch.utils import cuint8_to_int from .types import ip_address as ip def column_names( n: Optional[int] = None, alphabet: Sequence[Text] = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' ) -> Iterator[Text]: """Generate unique temporary column names.""" base_gen = column_names(alphabet=alphabet) base = '' letters = alphabet while True: if n is not None: if n <= 0: return n = n - 1 if not letters: base = next(base_gen) # pylint: disable=stop-iteration-return # infinite generator letters = alphabet column, letters = letters[0], letters[1:] yield base + column @pd.api.extensions.register_dataframe_accessor('inet') class InetDataFrameAccessor: # pylint: disable=too-few-public-methods """Inet DataFrame accessor.""" obj: Any def __init__(self, obj: Any) -> None: """Initialize the pandas extension.""" self.obj = obj def to_interface_address(self) -> Any: """Return a composable function to convert an IP address and mask/prefix to a network.""" def _to_int_address( objs: Tuple[ip.IP_ADDRESS_T, Union[int, ip.IP_ADDRESS_T]] ) -> ip.IP_INTERFACE_T: ip_address, cidr_or_mask = objs if isinstance(cidr_or_mask, ip.IPv4Address): cidr_or_mask = ip.IPV4_PREFIX_LOOKUP_TABLE[int(cidr_or_mask)] if isinstance(cidr_or_mask, ip.IPv6Address): cidr_or_mask = ip.IPV6_PREFIX_LOOKUP_TABLE[int(cidr_or_mask)] return cast( ip.IP_INTERFACE_T, ip.ip_interface((ip_address, cidr_or_mask)) ) if self.obj.empty: return pd.Series([]) return self.obj.apply(_to_int_address, axis=1) def to_cidr_address(self, strict: bool = False) -> Any: """Return a composable function to convert an IP address and mask/prefix to a network.""" def _to_cidr_address( objs: Tuple[ip.IP_ADDRESS_T, Union[int, ip.IP_ADDRESS_T]] ) -> ip.IP_NETWORK_T: ip_address, cidr_or_mask = objs if isinstance(cidr_or_mask, ip.IPv4Address): cidr_or_mask = ip.IPV4_PREFIX_LOOKUP_TABLE[int(cidr_or_mask)] if isinstance(cidr_or_mask, ip.IPv6Address): cidr_or_mask = ip.IPV6_PREFIX_LOOKUP_TABLE[int(cidr_or_mask)] return cast( ip.IP_NETWORK_T, ip.ip_network((ip_address, cidr_or_mask), strict=strict) ) if self.obj.empty: return pd.Series([]) return self.obj.apply(_to_cidr_address, axis=1) @pd.api.extensions.register_series_accessor('inet') class InetSeriesAccessor: # pylint: disable=too-few-public-methods """Inet Series accessor.""" obj: Any buffer: 'InetSeriesAccessor.InetSeriesBufferAccessor' class InetSeriesBufferAccessor: """Inet Series buffer accessor.""" obj: Any def __init__(self, obj: Any) -> None: """Initialize the pandas extension.""" self.obj = obj def __getitem__(self, ss: Union[int, slice, Tuple[Union[int, slice], ...]]) -> Any: """Slice the buffer.""" if isinstance(ss, (int, slice)): return self.obj.apply(lambda x: x[ss]) if isinstance(ss, tuple): return pd.DataFrame( self.obj.apply(lambda x: [x[s] for s in ss]).tolist(), columns=list(column_names(len(ss))), index=self.obj.index ) raise RuntimeError(f'Not a valid input slice: {ss}') def chunk(self) -> Any: """Slice the buffer by a sized parameter.""" return pd.DataFrame( self.obj.apply(lambda x: (x[1:int(x[0])+1], x[int(x[0])+1:])).tolist(), columns=list(column_names(2)), index=self.obj.index ) def __init__(self, obj: Any) -> None: """Initialize the pandas extension.""" self.obj = obj self.buffer = self.InetSeriesBufferAccessor(obj) def to_inet_address(self, default_zone: Any = None) -> Any: """Extract an inet address with leading address size and possible zone.""" def _to_inet_address(buffer: np.ndarray) -> Tuple[ip.IP_ADDRESS_T, Any]: if len(buffer) == 4: return ( ip.IPv4Address(cuint8_to_int(buffer)), default_zone ) if len(buffer) == 16: return ( ip.IPv6Address(cuint8_to_int(buffer)), default_zone ) if len(buffer) == 8: return ( ip.IPv4Address(cuint8_to_int(buffer[:4])), cuint8_to_int(buffer[4:]) ) if len(buffer) == 20: return ( ip.IPv6Address(cuint8_to_int(buffer[:16])), cuint8_to_int(buffer[16:]) ) raise TypeError(f'INET Address size not understood: {buffer}') return pd.DataFrame( self.obj.apply(_to_inet_address).tolist(), columns=list(column_names(2)), index=self.obj.index ) def to_object_identifier(self) -> Any: """Extract an object identifier buffer as a string.""" def _to_object_identifier(buffer: np.ndarray) -> Text: return '.'+'.'.join(buffer.astype(str)) return self.obj.apply(_to_object_identifier) def to_timedelta( self, denominator: int = 1, unit: Text = 'seconds' ) -> Any: """Return a composable function to convert to a time delta.""" return
pd.to_timedelta(self.obj // denominator, unit=unit)
pandas.to_timedelta
import numpy as np import pandas as pd import matplotlib.pyplot as plt from datetime import timedelta, datetime plt.style.use('seaborn') # # download the new datasheet form JH # url ="https://s3-us-west-1.amazonaws.com/starschema.covid/JHU_COVID-19.csv" # url ="https://covid.ourworldindata.org/data/ecdc/full_data.csv" # output_directory = "." printimage = 'on' # on ou off # read a csv to DataFrame with pandas data = pd.read_csv("https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/jhu/full_data.csv") # data = pd.read_csv('/home/claudio/Documents/profissao_DS/projetos/corona/JHU_COVID-19.csv') # data = pd.read_csv('/home/claudio/Documents/profissao_DS/projetos/corona/full_data.csv') data.index = pd.to_datetime(data.date) ## sel data form Brazil ctry = data[data["location"] == 'Brazil'] tested = ctry.copy() dateCase = [] # do fiting3 ydata = tested.last("60W").resample('1W').mean().total_cases.values # ydata = tested.last("3W").total_cases.values xdata = np.arange(len(ydata)) ndate = tested.last("1D").index[0] for i in range(5): dateCase.append((ndate + timedelta(days=i)).date()) dateCase =
pd.to_datetime(dateCase)
pandas.to_datetime
# -*- coding: utf-8 -*- from __future__ import annotations import typing import warnings import numpy as np import pandas as pd import scipy.signal from endaq.calc import utils def _np_histogram_nd(array, bins=10, weights=None, axis=-1, **kwargs): """Compute histograms over a specified axis.""" array = np.asarray(array) bins = np.asarray(bins) weights = np.asarray(weights) if weights is not None else None # Collect all ND inputs nd_params = {} (nd_params if array.ndim > 1 else kwargs)["a"] = array (nd_params if bins.ndim > 1 else kwargs)["bins"] = bins if weights is not None: (nd_params if weights.ndim > 1 else kwargs)["weights"] = weights if len(nd_params) == 0: return np.histogram(**kwargs)[0] # Move the desired axes to the back for k, v in nd_params.items(): nd_params[k] = np.moveaxis(v, axis, -1) # Broadcast ND arrays to the same shape ks, vs = zip(*nd_params.items()) vs_broadcasted = np.broadcast_arrays(*vs) for k, v in zip(ks, vs_broadcasted): nd_params[k] = v # Generate output bins = nd_params.get("bins", bins) result_shape = () if len(nd_params) != 0: result_shape = v.shape[:-1] if bins.ndim >= 1: result_shape = result_shape + (bins.shape[-1] - 1,) else: result_shape = result_shape + (bins,) result = np.empty( result_shape, dtype=(weights.dtype if weights is not None else int), ) loop_shape = v.shape[:-1] for nd_i in np.ndindex(*loop_shape): nd_kwargs = {k: v[nd_i] for k, v in nd_params.items()} result[nd_i], edges = np.histogram(**nd_kwargs, **kwargs) result = np.moveaxis(result, -1, axis) return result def welch( df: pd.DataFrame, bin_width: float = 1, scaling: typing.Literal[None, "density", "spectrum", "parseval"] = None, **kwargs, ) -> pd.DataFrame: """ Perform `scipy.signal.welch` with a specified frequency spacing. :param df: the input data :param bin_width: the desired width of the resulting frequency bins, in Hz; defaults to 1 Hz :param scaling: the scaling of the output; `"density"` & `"spectrum"` correspond to the same options in `scipy.signal.welch`; `"parseval"` will maintain the "energy" between the input & output, s.t. `welch(df, scaling="parseval").sum(axis="rows")` is roughly equal to `df.abs().pow(2).sum(axis="rows")` :param kwargs: other parameters to pass directly to `scipy.signal.welch` :return: a periodogram .. seealso:: `SciPy Welch's method <https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html>`_ Documentation for the periodogram function wrapped internally. `Parseval's Theorem <https://en.wikipedia.org/wiki/Parseval's_theorem>_` - the theorem relating the RMS of a time-domain signal to that of its frequency spectrum """ dt = utils.sample_spacing(df) fs = 1 / dt if scaling == "parseval": kwargs["scaling"] = "density" elif scaling is not None: kwargs["scaling"] = scaling freqs, psd = scipy.signal.welch( df.values, fs=fs, nperseg=int(fs / bin_width), **kwargs, axis=0 ) if scaling == "parseval": psd = psd * freqs[1] return pd.DataFrame( psd, index=pd.Series(freqs, name="frequency (Hz)"), columns=df.columns ) def differentiate(df: pd.DataFrame, n: float = 1) -> pd.DataFrame: """ Perform time-domain differentiation on periodogram data. :param df: a periodogram :param n: the time derivative order; negative orders represent integration :return: a periodogram of the time-derivated data """ # Involves a division by zero for n < 0 with warnings.catch_warnings(): warnings.simplefilter("ignore", RuntimeWarning) factor = (2 * np.pi * df.index.values) ** (2 * n) # divide by zero if n < 0: factor[df.index == 0] = 0 return df * factor[..., np.newaxis] def to_jagged( df: pd.DataFrame, freq_splits: np.array, agg: typing.Union[ typing.Literal["mean", "sum"], typing.Callable[[np.ndarray, int], float], ] = "mean", ) -> pd.DataFrame: """ Calculate a periodogram over non-uniformly spaced frequency bins. :param df: the returned values from `endaq.calc.psd.welch` :param freq_splits: the boundaries of the frequency bins; must be strictly increasing :param agg: the method for aggregating values into bins; 'mean' preserves the PSD's area-under-the-curve, 'sum' preserves the PSD's "energy" :return: a periodogram with the given frequency spacing """ freq_splits = np.asarray(freq_splits) if len(freq_splits) < 2: raise ValueError("need at least two frequency bounds") if not np.all(freq_splits[:-1] <= freq_splits[1:]): raise ValueError("frequency bounds must be strictly increasing") # Check that PSD samples do not skip any frequency bins spacing_test = np.diff(np.searchsorted(freq_splits, df.index)) if np.any(spacing_test < 1): warnings.warn( "empty frequency bins in re-binned PSD; " "original PSD's frequency spacing is too coarse", RuntimeWarning, ) if isinstance(agg, str): if agg not in ("sum", "mean"): raise ValueError(f'invalid aggregation mode "{agg}"') # Reshape frequencies for histogram function f_ndim = np.broadcast_to(df.index.to_numpy()[..., np.newaxis], df.shape) # Calculate sum via histogram function psd_jagged = _np_histogram_nd(f_ndim, bins=freq_splits, weights=df, axis=0) # Adjust values for mean calculation if agg == "mean": with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) # x/0 psd_jagged = np.nan_to_num( # <- fix divisions by zero psd_jagged / np.histogram(df.index, bins=freq_splits)[0][..., np.newaxis] ) else: psd_binned = np.split(df, np.searchsorted(df.index, freq_splits), axis=0)[1:-1] psd_jagged = np.stack([agg(a, axis=0) for a in psd_binned], axis=0) return pd.DataFrame( psd_jagged, index=pd.Series((freq_splits[1:] + freq_splits[:-1]) / 2, name=df.index.name), columns=df.columns, ) def to_octave( df: pd.DataFrame, fstart: float = 1, octave_bins: float = 12, **kwargs ) -> pd.DataFrame: """ Calculate a periodogram over log-spaced frequency bins. :param df: the returned values from `endaq.calc.psd.welch` :param fstart: the first frequency bin, in Hz; defaults to 1 Hz :param octave_bins: the number of frequency bins in each octave; defaults to 12 :param kwargs: other parameters to pass directly to `to_jagged` :return: a periodogram with the given logarithmic frequency spacing """ max_f = df.index.max() octave_step = 1 / octave_bins center_freqs = 2 ** np.arange( np.log2(fstart), np.log2(max_f) + octave_step / 2, octave_step, ) freq_splits = 2 ** np.arange( np.log2(fstart) - octave_step / 2, np.log2(max_f) + octave_step, octave_step, ) assert len(center_freqs) + 1 == len(freq_splits) result = to_jagged(df, freq_splits=freq_splits, **kwargs) result.index =
pd.Series(center_freqs, name=df.index.name)
pandas.Series
""" Evaluates the estimated results of the Segmentation dataset against the ground truth (human annotated data). .. autosummary:: :toctree: generated/ process """ import jams from joblib import Parallel, delayed import logging import mir_eval import numpy as np import os import pandas as pd import six # Local stuff import msaf from msaf.exceptions import NoReferencesError import msaf.input_output as io from msaf import utils def print_results(results): """Print all the results. Parameters ---------- results: pd.DataFrame Dataframe with all the results """ if len(results) == 0: logging.warning("No results to print!") return res = results.mean() logging.info("Results:\n%s" % res) def compute_results(ann_inter, est_inter, ann_labels, est_labels, bins, est_file, weight=0.58): """Compute the results using all the available evaluations. Parameters ---------- ann_inter : np.array Annotated intervals in seconds. est_inter : np.array Estimated intervals in seconds. ann_labels : np.array Annotated labels. est_labels : np.array Estimated labels bins : int Number of bins for the information gain. est_file : str Path to the output file to store results. weight: float Weight the Precision and Recall values of the hit rate boundaries differently (<1 will weight Precision higher, >1 will weight Recall higher). The default parameter (0.58) is the one proposed in (Nieto et al. 2014) Return ------ results : dict Contains the results of all the evaluations for the given file. Keys are the following: track_id: Name of the track HitRate_3F: F-measure of hit rate at 3 seconds HitRate_3P: Precision of hit rate at 3 seconds HitRate_3R: Recall of hit rate at 3 seconds HitRate_0.5F: F-measure of hit rate at 0.5 seconds HitRate_0.5P: Precision of hit rate at 0.5 seconds HitRate_0.5R: Recall of hit rate at 0.5 seconds HitRate_w3F: F-measure of hit rate at 3 seconds weighted HitRate_w0.5F: F-measure of hit rate at 0.5 seconds weighted HitRate_wt3F: F-measure of hit rate at 3 seconds weighted and trimmed HitRate_wt0.5F: F-measure of hit rate at 0.5 seconds weighted and trimmed HitRate_t3F: F-measure of hit rate at 3 seconds (trimmed) HitRate_t3P: Precision of hit rate at 3 seconds (trimmed) HitRate_t3F: Recall of hit rate at 3 seconds (trimmed) HitRate_t0.5F: F-measure of hit rate at 0.5 seconds (trimmed) HitRate_t0.5P: Precision of hit rate at 0.5 seconds (trimmed) HitRate_t0.5R: Recall of hit rate at 0.5 seconds (trimmed) DevA2E: Median deviation of annotation to estimation DevE2A: Median deviation of estimation to annotation D: Information gain PWF: F-measure of pair-wise frame clustering PWP: Precision of pair-wise frame clustering PWR: Recall of pair-wise frame clustering Sf: F-measure normalized entropy score So: Oversegmentation normalized entropy score Su: Undersegmentation normalized entropy score """ res = {} # --Boundaries-- # # Hit Rate standard res["HitRate_3P"], res["HitRate_3R"], res["HitRate_3F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=False) res["HitRate_0.5P"], res["HitRate_0.5R"], res["HitRate_0.5F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=False) # Hit rate trimmed res["HitRate_t3P"], res["HitRate_t3R"], res["HitRate_t3F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=True) res["HitRate_t0.5P"], res["HitRate_t0.5R"], res["HitRate_t0.5F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=True) # Hit rate weighted _, _, res["HitRate_w3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=False, beta=weight) _, _, res["HitRate_w0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=False, beta=weight) # Hit rate weighted and trimmed _, _, res["HitRate_wt3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=True, beta=weight) _, _, res["HitRate_wt0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=True, beta=weight) # Information gain res["D"] = compute_information_gain(ann_inter, est_inter, est_file, bins=bins) # Median Deviations res["DevR2E"], res["DevE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=False) res["DevtR2E"], res["DevtE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=True) # --Labels-- # if est_labels is not None and ("-1" in est_labels or "@" in est_labels): est_labels = None if est_labels is not None and len(est_labels) != 0: # Align labels with intervals ann_labels = list(ann_labels) est_labels = list(est_labels) ann_inter, ann_labels = mir_eval.util.adjust_intervals(ann_inter, ann_labels) est_inter, est_labels = mir_eval.util.adjust_intervals( est_inter, est_labels, t_min=0.0, t_max=ann_inter.max()) # Pair-wise frame clustering res["PWP"], res["PWR"], res["PWF"] = mir_eval.segment.pairwise( ann_inter, ann_labels, est_inter, est_labels) # Normalized Conditional Entropies res["So"], res["Su"], res["Sf"] = mir_eval.segment.nce( ann_inter, ann_labels, est_inter, est_labels) # Names base = os.path.basename(est_file) res["track_id"] = base[:-5] res["ds_name"] = base.split("_")[0] return res def compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, bins=251, annotator_id=0): """Computes the results by using the ground truth dataset identified by the annotator parameter. Return ------ results : dict Dictionary of the results (see function compute_results). """ if config["hier"]: ref_times, ref_labels, ref_levels = \ msaf.io.read_hier_references( ref_file, annotation_id=annotator_id, exclude_levels=["segment_salami_function"]) else: jam = jams.load(ref_file, validate=False) ann = jam.search(namespace='segment_.*')[annotator_id] ref_inter, ref_labels = ann.to_interval_values() # Read estimations with correct configuration est_inter, est_labels = io.read_estimations(est_file, boundaries_id, labels_id, **config) # Compute the results and return logging.info("Evaluating %s" % os.path.basename(est_file)) if config["hier"]: # Hierarchical assert len(est_inter) == len(est_labels), "Same number of levels " \ "are required in the boundaries and labels for the hierarchical " \ "evaluation." est_times = [] est_labels = [] # Sort based on how many segments per level est_inter = sorted(est_inter, key=lambda level: len(level)) for inter in est_inter: est_times.append(msaf.utils.intervals_to_times(inter)) # Add fake labels (hierarchical eval does not use labels --yet--) est_labels.append(np.ones(len(est_times[-1]) - 1) * -1) # Align the times utils.align_end_hierarchies(est_times, ref_times, thres=1) # To intervals est_hier = [utils.times_to_intervals(times) for times in est_times] ref_hier = [utils.times_to_intervals(times) for times in ref_times] # Compute evaluations res = {} res["t_recall10"], res["t_precision10"], res["t_measure10"] = \ mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=10) res["t_recall15"], res["t_precision15"], res["t_measure15"] = \ mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=15) res["track_id"] = os.path.basename(est_file)[:-5] return res else: # Flat return compute_results(ref_inter, est_inter, ref_labels, est_labels, bins, est_file) def compute_information_gain(ann_inter, est_inter, est_file, bins): """Computes the information gain of the est_file from the annotated intervals and the estimated intervals.""" ann_times = utils.intervals_to_times(ann_inter) est_times = utils.intervals_to_times(est_inter) return mir_eval.beat.information_gain(ann_times, est_times, bins=bins) def process_track(file_struct, boundaries_id, labels_id, config, annotator_id=0): """Processes a single track. Parameters ---------- file_struct : object (FileStruct) or str File struct or full path of the audio file to be evaluated. boundaries_id : str Identifier of the boundaries algorithm. labels_id : str Identifier of the labels algorithm. config : dict Configuration of the algorithms to be evaluated. annotator_id : int Number identifiying the annotator. Returns ------- one_res : dict Dictionary of the results (see function compute_results). """ # Convert to file_struct if string is passed if isinstance(file_struct, six.string_types): file_struct = io.FileStruct(file_struct) est_file = file_struct.est_file ref_file = file_struct.ref_file # Sanity check assert os.path.basename(est_file)[:-4] == \ os.path.basename(ref_file)[:-4], "File names are different %s --- %s" \ % (os.path.basename(est_file)[:-4], os.path.basename(ref_file)[:-4]) if not os.path.isfile(ref_file): raise NoReferencesError("Reference file %s does not exist. You must " "have annotated references to run " "evaluations." % ref_file) one_res = compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, annotator_id=annotator_id) return one_res def get_results_file_name(boundaries_id, labels_id, config, annotator_id): """Based on the config and the dataset, get the file name to store the results.""" utils.ensure_dir(msaf.config.results_dir) file_name = os.path.join(msaf.config.results_dir, "results") file_name += "_boundsE%s_labelsE%s" % (boundaries_id, labels_id) file_name += "_annotatorE%d" % (annotator_id) sorted_keys = sorted(config.keys(), key=str.lower) for key in sorted_keys: file_name += "_%sE%s" % (key, str(config[key]).replace("/", "_")) # Check for max file length if len(file_name) > 255 - len(msaf.config.results_ext): file_name = file_name[:255 - len(msaf.config.results_ext)] return file_name + msaf.config.results_ext def process(in_path, boundaries_id=msaf.config.default_bound_id, labels_id=msaf.config.default_label_id, annot_beats=False, framesync=False, feature="pcp", hier=False, save=False, out_file=None, n_jobs=4, annotator_id=0, config=None, feat_def=None): """Main process to evaluate algorithms' results. Parameters ---------- in_path : str Path to the dataset root folder. boundaries_id : str Boundaries algorithm identifier (e.g. siplca, cnmf) labels_id : str Labels algorithm identifier (e.g. siplca, cnmf) ds_name : str Name of the dataset to be evaluated (e.g. SALAMI). * stands for all. annot_beats : boolean Whether to use the annotated beats or not. framesync: str Whether to use framesync features or not (default: False -> beatsync) feature: str String representing the feature to be used (e.g. pcp, mfcc, tonnetz) hier : bool Whether to compute a hierarchical or flat segmentation. save: boolean Whether to save the results into the `out_file` csv file. out_file: str Path to the csv file to save the results (if `None` and `save = True` it will save the results in the default file name obtained by calling `get_results_file_name`). n_jobs: int Number of processes to run in parallel. Only available in collection mode. annotator_id : int Number identifiying the annotator. config: dict Dictionary containing custom configuration parameters for the algorithms. If None, the default parameters are used. Return ------ results : pd.DataFrame DataFrame containing the evaluations for each file. """ # Set up configuration based on algorithms parameters if config is None: config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id, feat_def) if isinstance(feature, list): feature.sort() # Hierarchical segmentation config["hier"] = hier # Remove actual features config.pop("features", None) # Get out file in case we want to save results if out_file is None: out_file = get_results_file_name(boundaries_id, labels_id, config, annotator_id) # If out_file already exists, read and return them if os.path.exists(out_file): logging.warning("Results already exists, reading from file %s" % out_file) results =
pd.read_csv(out_file)
pandas.read_csv
import pandas as pd import numpy as np import pickle import os import configparser import argparse from sklearn.model_selection import StratifiedKFold, KFold from sklearn.preprocessing import QuantileTransformer from sklearn.linear_model import LinearRegression, LogisticRegression from keras.models import model_from_json from utils import evaluate_clf, evaluate_reg, roc_cutoff def load_lgb(path): if 'LGB' in path: with open(path, 'rb') as f: model = pickle.load(f) return model def load_xgb(path): if 'XGB' in path: with open(path, 'rb') as f: model = pickle.load(f) return model def load_nn(path_json, path_h5, path_transformer): if 'NN' in path_json: with open(path_json, 'r') as f: json_string = f.read() model = model_from_json(json_string) model.load_weights(path_h5) if os.path.exists(path_transformer): with open(path_transformer, 'rb') as f: transformer = pickle.load(f) else: transformer = None return model, transformer def sort_preds(PREDS, IDXES): va_idxes = np.concatenate(IDXES) order = np.argsort(va_idxes) va_preds = np.concatenate(PREDS) return va_preds[order] def gen_stk_features(models_dict, models_dir, task, X_train, y_train, X_test, n_splits, random_state): # settings of cross validation if task == 'clf': cv = StratifiedKFold(n_splits=n_splits, random_state=random_state, shuffle=True) elif task == 'reg': cv = KFold(n_splits=n_splits, random_state=random_state, shuffle=True) # generate prediction features DF_PRED_VA = [] DF_PRED_TE = [] for model_name, use_this_model in models_dict.items(): if use_this_model: VA_IDXES = [] VA_PREDS = [] TE_PREDS = [] # cross validation for i, (_, va_idx) in enumerate(cv.split(X_train, y_train)): if model_name == 'LGB': if task == 'clf': path_model = os.path.join(models_dir, f'LGBMClassifier_{i}_trainedmodel.pkl') model = load_lgb(path_model) y_pred_va = model.predict_proba( X_train[va_idx], num_iterations=model.best_iteration_ )[:, 1] y_pred_te = model.predict_proba( X_test, num_iterations=model.best_iteration_ )[:, 1] elif task == 'reg': path_model = os.path.join(models_dir, f'LGBMRegressor_{i}_trainedmodel.pkl') model = load_lgb(path_model) y_pred_va = model.predict( X_train[va_idx], num_iterations=model.best_iteration_ ) y_pred_te = model.predict( X_test, num_iterations=model.best_iteration_ ) elif model_name == 'XGB': if task == 'clf': path_model = os.path.join(models_dir, f'XGBClassifier_{i}_trainedmodel.pkl') model = load_xgb(path_model) y_pred_va = model.predict_proba( X_train[va_idx], ntree_limit=model.best_iteration )[:, 1] y_pred_te = model.predict( X_test, ntree_limit=model.best_iteration )[:, 1] elif task == 'reg': path_model = os.path.join(models_dir, f'XGBRegressor_{i}_trainedmodel.pkl') model = load_xgb(path_model) y_pred_va = model.predict( X_train[va_idx], ntree_limit=model.best_iteration ) y_pred_te = model.predict( X_test, ntree_limit=model.best_iteration ) elif model_name == 'NN': if task == 'clf': path_json = os.path.join(models_dir, 'NNClassifier_architecture.json') path_h5 = os.path.join(models_dir, f'NNClassifier_{i}_trainedweight.h5') path_transformer = os.path.join(models_dir, f'NNClassifier_{i}_transformer.pkl') elif task == 'reg': path_json = os.path.join(models_dir, 'NNRegressor_architecture.json') path_h5 = os.path.join(models_dir, f'NNRegressor_{i}_trainedweight.h5') path_transformer = os.path.join(models_dir, f'NNRegressor_{i}_transformer.pkl') model, transformer = load_nn(path_json, path_h5, path_transformer) if transformer: x_va = transformer.transform(np.nan_to_num(X_train[va_idx])) x_te = transformer.transform(np.nan_to_num(X_test)) else: x_va = np.nan_to_num(X_train[va_idx]) x_te = np.nan_to_num(X_test) y_pred_va = model.predict(x_va).astype("float64") y_pred_va = y_pred_va.flatten() y_pred_te = model.predict(x_te).astype("float64") y_pred_te = y_pred_te.flatten() # stack prediction features VA_IDXES.append(va_idx) VA_PREDS.append(y_pred_va) TE_PREDS.append(y_pred_te) # sort prediction features va_preds = sort_preds(VA_PREDS, VA_IDXES) te_preds = np.mean(TE_PREDS, axis=0) # convert prediction features to dataframe df_pred_va = pd.DataFrame(va_preds, columns=[model_name]) df_pred_te = pd.DataFrame(te_preds, columns=[model_name]) DF_PRED_VA.append(df_pred_va) DF_PRED_TE.append(df_pred_te) return pd.concat(DF_PRED_VA, axis=1), pd.concat(DF_PRED_TE, axis=1) if __name__ == '__main__': # argments settings parser = argparse.ArgumentParser() parser.add_argument('conf') args = parser.parse_args() # load config config = configparser.ConfigParser() config.read(f'{args.conf}') use_lgb = config.getboolean('stacking', 'LGB') use_xgb = config.getboolean('stacking', 'XGB') use_nn = config.getboolean('stacking', 'NN') models_dir = config.get('stacking', 'models_dir') train_data = config.get('general', 'train_data') test_data = config.get('stacking', 'test_data') # load logging config = configparser.ConfigParser() config.read('../results/logging/logging.ini') n_splits = int(config.get('logging_trainer', 'n_splits')) random_state = int(config.get('logging_trainer', 'random_state')) # load datasets df_train, df_test = pd.read_csv(train_data), pd.read_csv(test_data) X_train, y_train = np.array(df_train.iloc[:, 2:]), np.array(df_train.iloc[:, 1]) X_test = np.array(df_test.iloc[:, 2:]) # task declaration if len(set(y_train)) <= 2: task = 'clf' elif len(set(y_train)) > 2: task = 'reg' # generate prediction feaures models_dict = {'LGB': use_lgb, 'XGB': use_xgb, "NN": use_nn} df_pred_va, df_pred_te = gen_stk_features( models_dict, models_dir, task, X_train, y_train, X_test, n_splits, random_state ) df_pred_va.to_csv('../results/stk_feature/prediction_features_valid.csv') df_pred_te.to_csv('../results/stk_feature/prediction_features_test.csv') # load features to create stacking model X_train = np.array(
pd.read_csv('../results/stk_feature/prediction_features_valid.csv')
pandas.read_csv
import os import sys from numpy.core.numeric import zeros_like import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-poster') # I hate this too but it allows everything to use the same helper functions. sys.path.insert(0, 'model') from helper_functions import read_in_NNDSS from Reff_constants import * from params import alpha_start_date, delta_start_date, omicron_start_date, vaccination_start_date def read_in_posterior(date): """ read in samples from posterior from inference """ df = pd.read_hdf("results/soc_mob_posterior"+date+".h5", key='samples') return df def read_in_google(Aus_only=True, local=False, moving=False): """ Read in the Google data set """ if local: if type(local) == str: df =
pd.read_csv(local, parse_dates=['date'])
pandas.read_csv
''' We will create an ANN to output the class of a wheat seed based on 7 numerical inputs, there is a total of 3 classes on the wheat-seeds.csv dataset, and our ANN with fully connected Dense layers, will predict the class of the inputs. Data src: https://raw.githubusercontent.com/jbrownlee/Datasets/master/wheat-seeds.csv Our ANN is made with the tensorflow 2.0 keras API. Input example: 15.26,14.84,0.871,5.763,3.312,2.221,5.22 Output example: 1 Our model will predict the class, as its seen on the input and output example. ''' #We read the libraries import pandas as pd import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.callbacks import EarlyStopping from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler,LabelEncoder from sklearn.metrics import confusion_matrix, classification_report from tensorflow.keras.utils import to_categorical import matplotlib.pyplot as plt #We read the csv file dataset = pd.read_csv('wheat-seeds.csv') #CHANGE THE FILE PATH TO wheat-seeds.csv TO READ THE FILE CORRECTLY dataset.columns = ['t1','t2','t3','t4','t5','t6','t7','class'] X = dataset.drop(['class'],axis=1) Y = dataset['class'] #We encode Y encoder = LabelEncoder() encoder.fit(Y) encoded_labels = encoder.transform(Y) cat_y = to_categorical(encoded_labels,dtype='float64') #We create the model X_train, X_test, y_train, y_test = train_test_split(X, cat_y, test_size=0.2, random_state=10) model = Sequential() model.add(Dense(7,activation='relu')) model.add(Dense(6,activation='relu')) model.add(Dense(6,activation='relu')) model.add(Dense(3,activation='softmax')) model.compile(loss='categorical_crossentropy',optimizer='adam') #We create an early stop call early_stop = EarlyStopping(monitor='val_loss',mode='min',patience=20) #We train the model for 50 epochs model.fit(X_train,y_train,epochs=500,batch_size=32,callbacks=[early_stop],validation_data=(X_test,y_test)) #We plot the model's loss history history =
pd.DataFrame(model.history.history)
pandas.DataFrame
import itertools import numpy as np import pandas as pd import random import time from overlappingspheres.functionality import advance from overlappingspheres.functionality import fractional from overlappingspheres.functionality import metricpoints from overlappingspheres.functionality import shift from typing import List Vector = List[float] def perform_experiment(relax: bool, spring_constant: Vector, random_strength: Vector, seed: Vector): """ A function that takes potential values of parameters and returns a dataframe with experiment results for all possible combinations of these parameters. Parameters ---------- relax : bool Whether we implement Lloyd's algorithm before the mechanical descriptions of cell-cell interactions are derived spring_constant : list[float] List of values of the spring constant parameter to test random_strength : list[float] List of values of the random force strength parameter to test seed : list[float] List of values of the state of random functions to observe varying behaviour Returns ------- pandas.DataFrame The dataframe with experiment results """ d = [] # choosing the maximum number of iterations we want performed in the experiment iterations = int(1e3) # We want to loop through all possible combinations of parameter values for iterator in itertools.product(spring_constant, random_strength, seed): seconds = time.time() test = shift(205, iterator[2]) for i in range(iterations): if i == int(1e1): test10 = advance(test, 0.015, "news", i, iterator[0], iterator[1]) if i == int(1e2): test100 = advance(test, 0.015, "news", i, iterator[0], iterator[1]) test = advance(test, 0.015, "news", i, iterator[0], iterator[1]) metric1 = metricpoints(test) metric2 = fractional(test) m10etric1 = metricpoints(test10) m10etric2 = fractional(test10) m100etric1 = metricpoints(test100) m100etric2 = fractional(test100) runningtime = (time.time() - seconds) filter0 = np.asarray([0]) filter1 = np.asarray([1]) filterd0 = test[np.in1d(test[:, 2], filter0)] filterd1 = test[np.in1d(test[:, 2], filter1)] f10ilterd0 = test10[np.in1d(test10[:, 2], filter0)] f10ilterd1 = test10[np.in1d(test10[:, 2], filter1)] f100ilterd0 = test100[np.in1d(test100[:, 2], filter0)] f100ilterd1 = test100[np.in1d(test100[:, 2], filter1)] d.append( { 'relax': relax, 'spring_constant': iterator[0], 'random_strength': iterator[1], 'seed': iterator[2], 'iterations': iterations, 'runningtime': runningtime, 'Distance metric': metric1, 'Fractional length': metric2, '0 points': np.delete(filterd0, np.s_[2:3], axis=1), '1 points': np.delete(filterd1, np.s_[2:3], axis=1) } ) d.append( { 'relax': relax, 'spring_constant': iterator[0], 'random_strength': iterator[1], 'seed': iterator[2], 'iterations': 101, 'runningtime': runningtime, 'Distance metric': m100etric1, 'Fractional length': m100etric2, '0 points': np.delete(f100ilterd0, np.s_[2:3], axis=1), '1 points': np.delete(f100ilterd1, np.s_[2:3], axis=1) } ) d.append( { 'relax': relax, 'spring_constant': iterator[0], 'random_strength': iterator[1], 'seed': iterator[2], 'iterations': 11, 'runningtime': runningtime, 'Distance metric': m10etric1, 'Fractional length': m10etric2, '0 points': np.delete(f10ilterd0, np.s_[2:3], axis=1), '1 points': np.delete(f10ilterd1, np.s_[2:3], axis=1) } ) df1 =
pd.DataFrame(d)
pandas.DataFrame
from pyspark.sql.types import ArrayType, DoubleType import glow.gwas.log_reg as lr import glow.gwas.functions as gwas_fx import statsmodels.api as sm import pandas as pd import numpy as np import pytest def run_score_test(genotype_df, phenotype_df, covariate_df, correction=lr.correction_none, add_intercept=True): C = covariate_df.to_numpy(copy=True) if add_intercept: C = gwas_fx._add_intercept(C, phenotype_df.shape[0]) Y = phenotype_df.to_numpy(copy=True) Y_mask = ~np.isnan(Y) Y[~Y_mask] = 0 state_rows = [ lr._prepare_one_phenotype(C, pd.Series({ 'label': p, 'values': phenotype_df[p] }), correction, add_intercept) for p in phenotype_df ] phenotype_names = phenotype_df.columns.to_series().astype('str') state = lr._pdf_to_log_reg_state(pd.DataFrame(state_rows), phenotype_names, C.shape[1]) values_df = pd.DataFrame({gwas_fx._VALUES_COLUMN_NAME: list(genotype_df.to_numpy().T)}) return lr._logistic_regression_inner(values_df, state, C, Y, Y_mask, None, lr.correction_none, 0.05, phenotype_df.columns.to_series().astype('str'), None) def statsmodels_baseline(genotype_df, phenotype_df, covariate_df, offset_dfs=None, add_intercept=True): if add_intercept: covariate_df = sm.add_constant(covariate_df) p_values = [] chisq = [] for phenotype in phenotype_df: for genotype_idx in range(genotype_df.shape[1]): mask = ~np.isnan(phenotype_df[phenotype].to_numpy()) if offset_dfs is not None: offset = offset_dfs[genotype_idx][phenotype] else: offset = None model = sm.GLM(phenotype_df[phenotype], covariate_df, offset=offset, family=sm.families.Binomial(), missing='drop') params = model.fit().params results = model.score_test(params, exog_extra=genotype_df.iloc[:, genotype_idx].array[mask]) chisq.append(results[0]) p_values.append(results[1]) return pd.DataFrame({ 'chisq': np.concatenate(chisq), 'pvalue': np.concatenate(p_values), 'phenotype': phenotype_df.columns.to_series().astype('str').repeat(genotype_df.shape[1]) }) def run_logistic_regression_spark(spark, genotype_df, phenotype_df, covariate_df=pd.DataFrame({}), extra_cols=pd.DataFrame({}), values_column='values', **kwargs): pdf = pd.DataFrame({values_column: genotype_df.to_numpy().T.tolist()}) if not extra_cols.empty: pdf = pd.concat([pdf, extra_cols], axis=1) pdf['idx'] = pdf.index results = (lr.logistic_regression(spark.createDataFrame(pdf), phenotype_df, covariate_df, correction=lr.correction_none, values_column=values_column, **kwargs).toPandas().sort_values(['phenotype', 'idx']).drop('idx', axis=1)) return results def regression_results_equal(df1, df2, rtol=1e-5): df1 = df1.sort_values('phenotype', kind='mergesort') df2 = df2.sort_values('phenotype', kind='mergesort') strings_equal = np.array_equal(df1.phenotype.array, df2.phenotype.array) numerics_equal = np.allclose(df1.select_dtypes(exclude=['object']), df2.select_dtypes(exclude=['object']), rtol=rtol) return strings_equal and numerics_equal def assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df, add_intercept=True): glow = run_score_test(genotype_df, phenotype_df, covariate_df, add_intercept=add_intercept) golden = statsmodels_baseline(genotype_df, phenotype_df, covariate_df, add_intercept=add_intercept) assert regression_results_equal(glow, golden) def random_phenotypes(shape, rg): return rg.integers(low=0, high=2, size=shape).astype(np.float64) def test_spector_non_missing(): ds = sm.datasets.spector.load_pandas() phenotype_df = pd.DataFrame({ds.endog.name: ds.endog}) genotype_df = ds.exog.loc[:, ['GPA']] covariate_df = ds.exog.drop('GPA', axis=1) assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df) def test_spector_missing(): ds = sm.datasets.spector.load_pandas() phenotype_df = pd.DataFrame({ds.endog.name: ds.endog}) phenotype_df.iloc[[0, 3, 10, 25], 0] = np.nan genotype_df = ds.exog.loc[:, ['GPA']] covariate_df = ds.exog.drop('GPA', axis=1) assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df) def test_spector_no_intercept(): ds = sm.datasets.spector.load_pandas() phenotype_df = pd.DataFrame({ds.endog.name: ds.endog}) phenotype_df.iloc[[0, 3, 10, 25], 0] = np.nan genotype_df = ds.exog.loc[:, ['GPA']] covariate_df = ds.exog.drop('GPA', axis=1) assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df, add_intercept=False) def test_multiple(rg): n_sample = 50 n_cov = 10 n_pheno = 25 phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg)) covariate_df = pd.DataFrame(rg.random((n_sample, n_cov))) genotype_df = pd.DataFrame(rg.random((n_sample, 1))) assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df) def test_multiple_missing(rg): n_sample = 50 n_cov = 2 n_pheno = 31 phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg)) Y = phenotype_df.to_numpy() Y[np.tril_indices_from(Y, k=-20)] = np.nan assert phenotype_df.isna().sum().sum() > 0 covariate_df = pd.DataFrame(rg.random((n_sample, n_cov))) genotype_df = pd.DataFrame(rg.random((n_sample, 1))) assert_glow_equals_golden(genotype_df, phenotype_df, covariate_df) @pytest.mark.min_spark('3') def test_multiple_spark(spark, rg): n_sample = 40 n_cov = 5 n_pheno = 5 phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg)) covariate_df = pd.DataFrame(rg.random((n_sample, n_cov))) genotype_df = pd.DataFrame(rg.random((n_sample, 1))) run_score_test(genotype_df, phenotype_df, covariate_df) glow = run_logistic_regression_spark(spark, genotype_df, phenotype_df, covariate_df) golden = statsmodels_baseline(genotype_df, phenotype_df, covariate_df) assert regression_results_equal(glow, golden) def random_mask(size, missing_per_column, rg): base = np.ones(size[0], dtype=bool) base[:missing_per_column] = False return np.column_stack([rg.permutation(base) for _ in range(size[1])]) @pytest.mark.min_spark('3') def test_multiple_spark_missing(spark, rg): n_sample = 50 n_cov = 5 n_pheno = 5 phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg)) Y = phenotype_df.to_numpy() Y[~random_mask(Y.shape, 10, rg)] = np.nan assert phenotype_df.isna().sum().sum() > 0 covariate_df = pd.DataFrame(rg.random((n_sample, n_cov))) genotype_df = pd.DataFrame(rg.random((n_sample, 1))) glow = run_logistic_regression_spark(spark, genotype_df, phenotype_df, covariate_df) golden = statsmodels_baseline(genotype_df, phenotype_df, covariate_df) assert regression_results_equal(glow, golden) @pytest.mark.min_spark('3') def test_missing_and_intersect_samples_spark(spark, rg): n_sample = 50 n_cov = 5 n_pheno = 5 genotype_df = pd.DataFrame(rg.random((n_sample, 1))) #here we're simulating dropping a sample from phenotypes and covariates phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg))[1:] phenotype_df.loc[[1, 3, 5], 1] = np.nan covariate_df = pd.DataFrame(rg.random((n_sample, n_cov)))[1:] glow = run_logistic_regression_spark( spark, genotype_df, phenotype_df, covariate_df, intersect_samples=True, genotype_sample_ids=genotype_df.index.values.astype(str).tolist()) #drop sample from genotypes so that input samples are aligned baseline = statsmodels_baseline(genotype_df[1:], phenotype_df, covariate_df) assert regression_results_equal(glow, baseline) @pytest.mark.min_spark('3') def test_spark_no_intercept(spark, rg): n_sample = 50 n_cov = 5 n_pheno = 5 phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg)) Y = phenotype_df.to_numpy() Y[~random_mask(Y.shape, 15, rg)] = np.nan assert phenotype_df.isna().sum().sum() > 0 covariate_df = pd.DataFrame(rg.random((n_sample, n_cov))) genotype_df = pd.DataFrame(rg.random((n_sample, 1))) glow = run_logistic_regression_spark(spark, genotype_df, phenotype_df, covariate_df, add_intercept=False) golden = statsmodels_baseline(genotype_df, phenotype_df, covariate_df, add_intercept=False) assert regression_results_equal(glow, golden) @pytest.mark.min_spark('3') def test_simple_offset(spark, rg): num_samples = 25 num_pheno = 6 num_geno = 10 genotype_df = pd.DataFrame(rg.random((num_samples, num_geno))) phenotype_df = pd.DataFrame(random_phenotypes((num_samples, num_pheno), rg)) covariate_df = pd.DataFrame(rg.random((num_samples, 2))) offset_df = pd.DataFrame(rg.random((num_samples, num_pheno))) results = run_logistic_regression_spark(spark, genotype_df, phenotype_df, covariate_df, offset_df=offset_df) baseline = statsmodels_baseline(genotype_df, phenotype_df, covariate_df, [offset_df] * num_geno) assert regression_results_equal(results, baseline) @pytest.mark.min_spark('3') def test_missing_and_simple_offset_out_of_order_with_intersect(spark, rg): n_sample = 50 n_cov = 5 n_pheno = 5 num_geno = 10 genotype_df = pd.DataFrame(rg.random((n_sample, num_geno))) #here we're simulating dropping samples from phenotypes and covariates phenotype_df = pd.DataFrame(random_phenotypes((n_sample, n_pheno), rg))[0:-2] phenotype_df.loc[[1, 3, 5], 1] = np.nan covariate_df = pd.DataFrame(rg.random((n_sample, n_cov)))[0:-2] offset_df = pd.DataFrame(rg.random((n_sample, n_pheno))) glow = run_logistic_regression_spark( spark, genotype_df, phenotype_df, covariate_df, offset_df=offset_df.sample(frac=1), intersect_samples=True, genotype_sample_ids=genotype_df.index.values.astype(str).tolist()) #drop samples from genotypes so that input samples are aligned baseline = statsmodels_baseline(genotype_df[0:-2], phenotype_df, covariate_df, [offset_df[0:-2]] * num_geno) assert regression_results_equal(glow, baseline) @pytest.mark.min_spark('3') def test_multi_offset(spark, rg): num_samples = 50 num_pheno = 25 num_geno = 10 genotype_df = pd.DataFrame(rg.random((num_samples, num_geno))) phenotype_df = pd.DataFrame(random_phenotypes((num_samples, num_pheno), rg)) covariate_df = pd.DataFrame(rg.random((num_samples, 10))) offset_index = pd.MultiIndex.from_product([phenotype_df.index, ['chr1', 'chr2']]) offset_df = pd.DataFrame(rg.random((num_samples * 2, num_pheno)), index=offset_index) extra_cols =
pd.DataFrame({'contigName': ['chr1', 'chr2'] * 5})
pandas.DataFrame
""" """ __version__='192.168.3.11.dev1' import sys import os import logging import pandas as pd import re import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages logger = logging.getLogger('PT3S') try: from PT3S import Rm except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Rm - trying import Rm instead ... maybe pip install -e . is active ...')) import Rm try: from PT3S import Lx except ImportError: logger.debug("{0:s}{1:s}".format('ImportError: ','from PT3S import Lx - trying import Lx instead ... maybe pip install -e . is active ...')) import Lx def addResVecToDfAlarmEreignisse( dfAlarmEreignisse ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=pd.DataFrame() ): """ dfAlarmEreignisse: Nr: lfd. Nr (gebildet gem. NrBy und NrAsc) tA: Anfangszeit tE: Endezeit tD: Dauer des Alarms ZHKNR: ZHKNR (die zeitlich 1., wenn der Alarm sich über mehrere ZHKNRn erstreckt) tD_ZHKNR: Lebenszeit der ZHKNR; x-Annotationen am Anfang/Ende, wenn ZHK beginnt bei Res12-Anfang / andauert bei Res12-Ende; '-1', wenn Lebenszeit nicht ermittelt werden konnte ZHKNRn: sortierte Liste der ZHKNRn des Alarms; eine davon ist ZHKNR; typischerweise die 1. der Liste LDSResBaseType: SEG oder Druck OrteIDs: OrteIDs des Alarms Orte: Kurzform von OrteIDs des Alarms Ort: der 1. Ort von Orte SEGName: Segment zu dem der 1. Ort des Alarms gehört DIVPipelineName: Voralarm: ermittelter Vorlalarm des Alarms; -1, wenn kein Voralarm in Res12 gefunden werden konnte Type: Typ des Kontrollraumns; z.B. p-p für vollständige Flussbilanzen; '', wenn kein Typ gefunden werden konnte Name: Name des Bilanzraumes NrSD: lfd. Nr Alarm BaseType NrName: lfd. Nr Alarm Name NrSEGName: lfd. Nr Alarm SEGName AlarmEvent: AlarmEvent-Objekt BZKat: Betriebszustandskategorie des Alarms Returns: dfAlarmEreignisse with 2 Cols added: resIDBase: die 1. OrtID von OrteIDs dfResVec: der resVec des Alarms """ logStr = "{0:s}.{1:s}: ".format(__name__, sys._getframe().f_code.co_name) logger.debug("{0:s}{1:s}".format(logStr,'Start.')) try: dfAlarmEreignisse['resIDBase']=dfAlarmEreignisse['OrteIDs'].apply(lambda x: x[0]) ### Ergebnisvektor fuer alle Orte bestimmen dfResVecs={} dfResVecsLst=[] for indexAlarm, rowAlarm in dfAlarmEreignisse.iterrows(): resIDBase=rowAlarm['resIDBase'] if resIDBase in dfResVecs.keys(): # resIDBase schon behandelt dfResVecsLst.append(dfResVecs[resIDBase]) continue # Spalten basierend auf resIDBase bestimmen ErgIDs=[resIDBase+ext for ext in Rm.ResChannelTypesAll] IMDIErgIDs=['IMDI.'+ID for ID in ErgIDs] # jede Spalte koennte anstatt "normal" als IMDI. vorhanden sein ErgIDsAll=[*ErgIDs,*IMDIErgIDs] # Ergebnisspalten if rowAlarm['LDSResBaseType']=='SEG': dfFiltered=TCsLDSRes1.filter(items=ErgIDsAll,axis=1) else: dfFiltered=TCsLDSRes2.filter(items=ErgIDsAll,axis=1) # Ergebnisspalten umbenennen colDct={} for col in dfFiltered.columns: m=re.search(Lx.pID,col) colDct[col]=m.group('E') dfFiltered.name=resIDBase dfResVec=dfFiltered.rename(columns=colDct) # Ergebnisvektor merken dfResVecs[resIDBase]=dfResVec dfResVecsLst.append(dfResVec) logger.debug("{:s}resIDBase: {:50s} Anzahl gefundener Spalten in TCsLDSRes: {:d}".format(logStr, resIDBase, len(dfResVec.columns.to_list()))) dfAlarmEreignisse['dfResVec']=dfResVecsLst except Exception as e: logStrFinal="{:s}Exception: Line: {:d}: {!s:s}: {:s}".format(logStr,sys.exc_info()[-1].tb_lineno,type(e),str(e)) logger.error(logStrFinal) raise e finally: logger.debug("{0:s}{1:s}".format(logStr,'_Done.')) return dfAlarmEreignisse def fGenAlarmVisTimeSpan( tA ,tE # alle nachfolgenden Werte sollten dieselbe Einheit haben und in dieser Einheit ganzzahlig sein ,timeSpan=pd.Timedelta('25 Minutes') ,timeRoundStr='1T' ,timeBoundaryMin=pd.Timedelta('3 Minutes') ,timeRef='A' # Alarme die laenger sind: Anfang oder Ende werden mit timeSpan dargestellt ): """ erzeugt eine Zeitspanne in welcher ein Alarm Zwecks Analyse dargestellt wird tA, tE sind Anfang und Ende des Alarms diese werden ab- (tA) bzw. aufgerundet (tE) mit timeRoundStr zwischen den gerundeten Zeiten und tA/tE soll mindestens timeBoundaryMin liegen wenn nicht, wird timeBoundaryMin auf tA/tE angewendet und dann wird gerundet timeSpan ist die gewuenschte minimale Zeitspanne Alarme die kuerzer sind werden mit timeSpan dargestellt Alarme die laenger sind: Anfang oder Ende wird mit timeSpan dargestellt """ # Zeiten ab- und aufrunden timeStart=tA.floor(freq=timeRoundStr) timeEnd=tE.ceil(freq=timeRoundStr) # gerundete Zeiten auf Mindestabstand pruefen if tA-timeStart < timeBoundaryMin: timeStart=tA-timeBoundaryMin timeStart= timeStart.floor(freq=timeRoundStr) if timeEnd-tE < timeBoundaryMin: timeEnd=tE+timeBoundaryMin timeEnd= timeEnd.ceil(freq=timeRoundStr) # gerundete Zeiten auf Zeitspanne pruefen timeLeft=timeSpan-(timeEnd-timeStart) if timeLeft > pd.Timedelta('0 Seconds'): # die aufgerundete Alarmzeit ist kuerzer als timeSpan; timeSpan wird dargestellt timeStart=timeStart-timeLeft/2 timeStart= timeStart.floor(freq=timeRoundStr) timeEnd=timeEnd+timeLeft/2 timeEnd= timeEnd.ceil(freq=timeRoundStr) else: # die aufgerundete Alarmzeit ist laenger als timeSpan; A oder E wird mit timeSpan wird dargestellt if timeRef=='A': timeM=tA.floor(freq=timeRoundStr) else: timeM=tE.ceil(freq=timeRoundStr) timeStart=timeM-timeSpan/2 timeEnd=timeM+timeSpan/2 if timeEnd-timeStart > timeSpan: timeEnd=timeStart+timeSpan ZeitbereichSel=timeEnd-timeStart if ZeitbereichSel <= pd.Timedelta('1 Minutes'): bysecond=list(np.arange(0,60,1)) byminute=None elif ZeitbereichSel <= pd.Timedelta('3 Minutes'): bysecond=list(np.arange(0,60,5)) byminute=None elif ZeitbereichSel > pd.Timedelta('3 Minutes') and ZeitbereichSel <= pd.Timedelta('5 Minutes'): bysecond=list(np.arange(0,60,15)) byminute=None elif ZeitbereichSel > pd.Timedelta('5 Minutes') and ZeitbereichSel <= pd.Timedelta('20 Minutes'): bysecond=list(np.arange(0,60,30)) byminute=None elif ZeitbereichSel > pd.Timedelta('20 Minutes') and ZeitbereichSel <= pd.Timedelta('30 Minutes'): bysecond=None byminute=list(np.arange(0,60,1)) else: bysecond=None byminute=list(np.arange(0,60,3)) return timeStart, timeEnd, byminute, bysecond def rptAlarms( pdfErgFile='rptAlarms.pdf' ,figsize=Rm.DINA2q ,dpi=Rm.dpiSize ,dfAlarmStatistik=pd.DataFrame() # 1 Zeile pro SEG; Spalten mit Alarm-Informationen zum SEG ,dfAlarmEreignisse=pd.DataFrame() # 1 Zeile pro Alarm; Spalten mit Informationen zum Alarm ,TCsLDSRes1=pd.DataFrame() ,TCsLDSRes2=
pd.DataFrame()
pandas.DataFrame
# -*- coding:utf-8 -*- import trdb2py.trading2_pb2 from trdb2py.utils import str2asset, asset2str from datetime import datetime import time import pandas as pd import numpy as np import math from trdb2py.timeutils import str2timestamp, getDayInYear, getYearDays, calcYears CtrlTypeStr = [ 'INIT', 'BUY', 'SELL', 'STOPLOSS', 'TAKEPROFIT', 'WITHDRAW', 'DEPOSIT', ] def buildPNLReport(lstpnl: list) -> pd.DataFrame: """ buildPNLReport - 将PNL列表转换为pandas.DataFrame,方便计算 """ fv0 = { 'title': [], 'asset': [], 'maxDrawdown': [], 'maxDrawdownStart': [], 'maxDrawdownEnd': [], 'maxDrawup': [], 'maxDrawupStart': [], 'maxDrawupEnd': [], 'sharpe': [], 'annualizedReturns': [], 'annualizedVolatility': [], 'totalReturns': [], 'variance': [], 'buyTimes': [], 'sellTimes': [], 'stoplossTimes': [], 'maxUpDay': [], 'maxPerUpDay': [], 'maxDownDay': [], 'maxPerDownDay': [], 'maxUpWeek': [], 'maxPerUpWeek': [], 'maxDownWeek': [], 'maxPerDownWeek': [], 'maxUpMonth': [], 'maxPerUpMonth': [], 'maxDownMonth': [], 'maxPerDownMonth': [], 'maxUpYear': [], 'maxPerUpYear': [], 'maxDownYear': [], 'maxPerDownYear': [], 'perWinRate': [], 'values': [], } for v in lstpnl: fv0['title'].append(v['title']) fv0['asset'].append(asset2str(v['pnl'].asset)) fv0['maxDrawdown'].append(v['pnl'].maxDrawdown) fv0['maxDrawdownStart'].append(datetime.fromtimestamp( v['pnl'].maxDrawdownStartTs).strftime('%Y-%m-%d')) fv0['maxDrawdownEnd'].append(datetime.fromtimestamp( v['pnl'].maxDrawdownEndTs).strftime('%Y-%m-%d')) fv0['maxDrawup'].append(v['pnl'].maxDrawup) fv0['maxDrawupStart'].append(datetime.fromtimestamp( v['pnl'].maxDrawupStartTs).strftime('%Y-%m-%d')) fv0['maxDrawupEnd'].append(datetime.fromtimestamp( v['pnl'].maxDrawupEndTs).strftime('%Y-%m-%d')) fv0['sharpe'].append(v['pnl'].sharpe) fv0['annualizedReturns'].append(v['pnl'].annualizedReturns) fv0['annualizedVolatility'].append(v['pnl'].annualizedVolatility) fv0['totalReturns'].append(v['pnl'].totalReturns) fv0['variance'].append(v['pnl'].variance) fv0['buyTimes'].append(v['pnl'].buyTimes) fv0['sellTimes'].append(v['pnl'].sellTimes) fv0['stoplossTimes'].append(v['pnl'].stoplossTimes) fv0['maxUpDay'].append(datetime.fromtimestamp( v['pnl'].maxUpDayTs).strftime('%Y-%m-%d')) fv0['maxPerUpDay'].append(v['pnl'].maxPerUpDay) fv0['maxDownDay'].append(datetime.fromtimestamp( v['pnl'].maxDownDayTs).strftime('%Y-%m-%d')) fv0['maxPerDownDay'].append(v['pnl'].maxPerDownDay) fv0['maxUpWeek'].append(datetime.fromtimestamp( v['pnl'].maxUpWeekTs).strftime('%Y-%m-%d')) fv0['maxPerUpWeek'].append(v['pnl'].maxPerUpWeek) fv0['maxDownWeek'].append(datetime.fromtimestamp( v['pnl'].maxDownWeekTs).strftime('%Y-%m-%d')) fv0['maxPerDownWeek'].append(v['pnl'].maxPerDownWeek) fv0['maxUpMonth'].append(datetime.fromtimestamp( v['pnl'].maxUpMonthTs).strftime('%Y-%m-%d')) fv0['maxPerUpMonth'].append(v['pnl'].maxPerUpMonth) fv0['maxDownMonth'].append(datetime.fromtimestamp( v['pnl'].maxDownMonthTs).strftime('%Y-%m-%d')) fv0['maxPerDownMonth'].append(v['pnl'].maxPerDownMonth) fv0['maxUpYear'].append(datetime.fromtimestamp( v['pnl'].maxUpYearTs).strftime('%Y-%m-%d')) fv0['maxPerUpYear'].append(v['pnl'].maxPerUpYear) fv0['maxDownYear'].append(datetime.fromtimestamp( v['pnl'].maxDownYearTs).strftime('%Y-%m-%d')) fv0['maxPerDownYear'].append(v['pnl'].maxPerDownYear) fv0['values'].append(len(v['pnl'].values)) if v['pnl'].sellTimes + v['pnl'].stoplossTimes == 0: fv0['perWinRate'].append(0) else: fv0['perWinRate'].append( v['pnl'].winTimes * 1.0 / (v['pnl'].sellTimes + v['pnl'].stoplossTimes)) return
pd.DataFrame(fv0)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Jul 3 10:06:21 2018 @author: rucsa """ import pandas as pd import datetime import numpy as np import tables import check_data_and_prices_helpers as help def add_returns(): #fundamentals_2016 = pd.read_hdf("../sources/fundamentals_2016_msci_regions.hdf5", "dataset1/x") fundamentals_2017 = pd.read_hdf("../sources/fundamentals_2017_msci_regions.hdf5", "dataset1/x") print ("Uploaded from: ../sources/fundamentals_2017_msci_regions.hdf5 ") common_tickers = fundamentals_2017.T.columns.tolist() st_2017 = datetime.datetime(2017, 1, 3, 0, 0) en_2017 = datetime.datetime(2017, 12, 29, 0, 0) prices_2017 = pd.read_hdf("../sources/Prices_nasdaq_allmydata_total_data.hdf5")[st_2017:en_2017]#.dropna(axis = 1, how = 'any') print ("Uploaded from: ../sources/Prices_nasdaq_allmydata_total_data.hdf5") prices_2017 = prices_2017[common_tickers] # parse IRX prices prices_irx = pd.read_csv("../sources/IRX_prices_2017.csv")[['Date', 'Adj Close']].rename(columns = {'Adj Close':'IRX'}) rf_date = prices_irx.Date prices_irx = prices_irx.drop('Date', axis = 1) prices_irx['Date'] = help.parse_date(rf_date) prices_irx = prices_irx.set_index('Date') prices_irx = prices_irx[st_2017:en_2017] # parse S&P prices prices_snp =
pd.read_csv("../sources/GSPC_prices_2017.csv")
pandas.read_csv
import numpy as np from scipy import signal import math import matplotlib.pyplot as plt import pandas as pd from peakutils.peak import indexes class DataExtractor: """Provides functions to extract relevant features (i.e. breathing or heartbeat features) from the wirelessly acuired data (from GNU Radio).""" def __init__(self, t, y, samp_rate): """ :param t: (Array) Timestamps of phase values :param y: (Array) Phase values :param samp_rate: sampling rate """ self.t = t self.y = y self.samp_rate = int(samp_rate) def raw_windowing_breathing(self, window_size, step, highpass_beat_f=5): """Return breathing features across the signal, according to the given window size, step and cutoff freq :param window_size: (int) Sliding time window length (in seconds) :param step: (int) Sliding time window step (in seconds) :param highpass_beat_f: Cutoff frequency to remove slow drift noise. :return: Dataframe of features for each time window. """ pd_df = pd.DataFrame() times = [] for i in range(min(window_size*self.samp_rate, len(self.t)-1), len(self.t), step*self.samp_rate): end_ind = min(len(self.t)-1, window_size*self.samp_rate) win_t = self.t[i-end_ind:i] win_y = self.y[i-end_ind:i] curr_df = self.extract_from_breathing_time(win_t, win_y) times = np.append(times, win_t[-1]) pd_df = pd_df.append(curr_df, ignore_index=True) pd_df['times'] = times return pd_df def raw_windowing_heartrate(self, window_size, step, bandpass_beat_fs=[60, 150]): """Return heartbeat features across the signal, according to the given window size, step and cutoff freq :param window_size: (int) Sliding time window length (in seconds) :param step: (int) Sliding time window step (in seconds) :param bandpass_beat_fs: Array with two values. Bandpass frequency values (low and high). :return: Dataframe of features for each time window. """ pd_df =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd import jaydebeapi import sys import requests import jks import base64, textwrap import time import warnings import json from jpype import JException from xml.etree import ElementTree from jolokia import JolokiaClient class H2Tools(object): def get_latest_version(self): """Returns the latest version string for the h2 database""" r = requests.get('http://h2database.com/m2-repo/com/h2database/h2/maven-metadata.xml') tree = ElementTree.fromstring(r.content) return tree.find('versioning').find('release').text def get_h2jar_url(self,version): url = "https://mvnrepository.com/artifact/com.h2database/h2/" url += version + "/h2-" + version + ".jar" return url def download_h2jar(self,filepath='./h2.jar', version=None): """Downloads h2 jar and copies it to a file in filepath""" if version is None: version = self.get_latest_version() r = requests.get(self.get_h2jar_url(version)) with open(filepath, 'wb') as jarfile: jarfile.write(r.content) class Node(object): """Node object for connecting to H2 database and getting table dataframes Use get_tbname methods to get dataframe for table TBNAME. For example, calling node.get_vault_states() will return the dataframe for VAULT_STATES. After using the node, call the close() method to close the connection. """ # --- Notes for future support of PostgreSQL clients --- # To support pg clients, url must be parsed into psycopg2.connect arguments # and the password must not be empty # After parsing, use "self._conn = psycopg2.connect(...)" # --- Notes regarding get methods --- # If table names will change often, it may be worth to # dynamically generate methods with some careful metaprogramming path_to_jar = None def __init__(self, url, username, password, path_to_jar='./h2.jar',node_root=None,web_server_url=None,name=''): """ Parameters ---------- url : str JDBC url to be connected username : str username of database user passowrd : str password of <PASSWORD> user path_to_jar : str path to h2 jar file """ if self.path_to_jar: warnings.warn("Node constructor has already been called, causing the JVM to start.") warnings.warn("The JVM cannot be restarted, so the original path to jar " + self.path_to_jar + " will be used.") else: self.path_to_jar = path_to_jar self.set_name(name) try: self._conn = jaydebeapi.connect( "org.h2.Driver", url, [username, password], self.path_to_jar, ) except TypeError as e: raise OSError('path to jar is invalid') except JException as e: raise OSError('cannot connect to ' + url) self._curs = self._conn.cursor() if node_root != None: self.set_node_root(node_root) if web_server_url != None: self.set_web_server_url(web_server_url) self.rpc_server_nid = 'org.apache.activemq.artemis:broker="RPC",component=addresses,address="rpc.server",subcomponent=queues,routing-type="multicast",queue="rpc.server"' def set_name(self,name): self._name = name def send_api_get_request(self, api_path): if self._web_server_url != None: request_url = self._web_server_url + api_path resp = requests.get(request_url) return resp.text else: return "No web_server set i.e. http://localhost:10007. Call set_web_server_url()" def send_api_post_request(self, api_path, data): if self._web_server_url != None: request_url = self._web_server_url + api_path try: resp = requests.post(request_url, json=data, timeout=3) return resp.json() except requests.exceptions.ConnectionError as e: raise OSError('cannot connect to ' + request_url) except json.decoder.JSONDecodeError as e: raise OSError('request fails with response status ' + str(resp.status_code)) else: return "No web_server set i.e. http://localhost:10007. Call set_web_server_url()" def set_web_server_url(self,web_server_url): self._web_server_url = web_server_url def set_node_root(self,node_root): self._node_root = node_root self._node_cert = node_root + '/certificates' self._node_cert_jks = self._node_cert + '/nodekeystore.jks' def display_keys_from_jks(self,password='<PASSWORD>'): ks = jks.KeyStore.load(self._node_cert_jks,password) columns = ['ALIAS','PRIVATE_KEY'] keys =
pd.DataFrame([],columns=columns)
pandas.DataFrame
import sys import pandas as pd import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from popsyntools import plotstyle try: from astropy.timeseries import LombScargle except ModuleNotFoundError: # the timeserie module moved at astropy 3.1 -> 3.2 from astropy.stats import LombScargle # plt.ion() activityFile = 'data/TIC237913194_activity.dat' plot_dir = 'plots/' transit_per = 15.168914 def plot_periodograms(activityFile, plot_dir, results): """ Produce periodograms of RV and activity indices @author: <NAME> adapted by <NAME> Parameters ------------ activityFile : string file containing the reduced time series plot_dir : string directory for the created plots results : results object a results object returned by juliet.fit() Returns -------- fig : matplotlib figure figure containing the plot ax : matplotlib axis axis object with the plot """ font = {'size' : 15} mpl.rc('font', **font) bbox_props = {'boxstyle':"round", 'fc':"w", 'edgecolor':"w", # 'ec':0.5, 'alpha':0.9 } # ============================================================================= # Read data in # FEROS data feros_dat = np.genfromtxt(activityFile, names=True) feros_dat =
pd.DataFrame(feros_dat)
pandas.DataFrame
from __future__ import annotations import numpy as np import pandas as pd from sklearn import datasets from IMLearn.metrics import mean_square_error from IMLearn.utils import split_train_test from IMLearn.model_selection import cross_validate from IMLearn.learners.regressors import PolynomialFitting, LinearRegression, RidgeRegression from sklearn.linear_model import Lasso from utils import * pio.templates.default = "simple_white" pio.renderers.default = "browser" import plotly.graph_objects as go from plotly.subplots import make_subplots def select_polynomial_degree(n_samples: int = 100, noise: float = 5): """ Simulate data from a polynomial model and use cross-validation to select the best fitting degree Parameters ---------- n_samples: int, default=100 Number of samples to generate noise: float, default = 5 Noise level to simulate in responses """ # Question 1 - Generate dataset for model f(x)=(x+3)(x+2)(x+1)(x-1)(x-2) + eps for eps Gaussian noise # and split into training- and testing portions X = np.random.uniform(low=-1.2,high=2,size=n_samples) eps = np.random.normal(0, noise, n_samples) f= lambda x: (x+3)*(x+2)*(x+1)*(x-1)*(x-2) y_noiseless = f(X) y = y_noiseless + eps x_train, y_train, x_test, y_test = split_train_test(pd.DataFrame(X),
pd.Series(y)
pandas.Series
# -*- coding: utf-8 -*- """ Consensus non-negative matrix factorization (cNMF) adapted from (Kotliar, et al. 2019) """ import numpy as np import pandas as pd import os, errno import glob import shutil import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp import warnings from scipy.spatial.distance import squareform from sklearn.decomposition import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from sklearn.preprocessing import normalize from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc from ._version import get_versions def save_df_to_npz(obj, filename): """ Saves numpy array to `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") np.savez_compressed( filename, data=obj.values, index=obj.index.values, columns=obj.columns.values, ) def save_df_to_text(obj, filename): """ Saves numpy array to tab-delimited text file """ obj.to_csv(filename, sep="\t") def load_df_from_npz(filename): """ Loads numpy array from `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return ( p for i, p in enumerate(iterable) if (i - worker_index) % total_workers == 0 ) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1, 1)) D += squared_norms.reshape((1, -1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return beta def fast_ols_all_cols_df(X, Y): beta = fast_ols_all_cols(X, Y) beta = pd.DataFrame(beta, index=X.columns, columns=Y.columns) return beta def var_sparse_matrix(X): mean = np.array(X.mean(axis=0)).reshape(-1) Xcopy = X.copy() Xcopy.data **= 2 var = np.array(Xcopy.mean(axis=0)).reshape(-1) - (mean ** 2) return var def get_highvar_genes_sparse( expression, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_mean = np.array(expression.mean(axis=0)).astype(float).reshape(-1) E2 = expression.copy() E2.data **= 2 gene2_mean = np.array(E2.mean(axis=0)).reshape(-1) gene_var = pd.Series(gene2_mean - (gene_mean ** 2)) del E2 gene_mean = pd.Series(gene_mean) gene_fano = gene_var / gene_mean # Find parameters for expected fano line top_genes = gene_mean.sort_values(ascending=False)[:20].index A = (np.sqrt(gene_var) / gene_mean)[top_genes].min() w_mean_low, w_mean_high = gene_mean.quantile([0.10, 0.90]) w_fano_low, w_fano_high = gene_fano.quantile([0.10, 0.90]) winsor_box = ( (gene_fano > w_fano_low) & (gene_fano < w_fano_high) & (gene_mean > w_mean_low) & (gene_mean < w_mean_high) ) fano_median = gene_fano[winsor_box].median() B = np.sqrt(fano_median) gene_expected_fano = (A ** 2) * gene_mean + (B ** 2) fano_ratio = gene_fano / gene_expected_fano # Identify high var genes if numgenes is not None: highvargenes = fano_ratio.sort_values(ascending=False).index[:numgenes] high_var_genes_ind = fano_ratio.index.isin(highvargenes) T = None else: if not expected_fano_threshold: T = 1.0 + gene_counts_fano[winsor_box].std() else: T = expected_fano_threshold high_var_genes_ind = (fano_ratio > T) & (gene_counts_mean > minimal_mean) gene_counts_stats = pd.DataFrame( { "mean": gene_mean, "var": gene_var, "fano": gene_fano, "expected_fano": gene_expected_fano, "high_var": high_var_genes_ind, "fano_ratio": fano_ratio, } ) gene_fano_parameters = { "A": A, "B": B, "T": T, "minimal_mean": minimal_mean, } return (gene_counts_stats, gene_fano_parameters) def get_highvar_genes( input_counts, expected_fano_threshold=None, minimal_mean=0.01, numgenes=None ): # Find high variance genes within those cells gene_counts_mean = pd.Series(input_counts.mean(axis=0).astype(float)) gene_counts_var = pd.Series(input_counts.var(ddof=0, axis=0).astype(float)) gene_counts_fano =
pd.Series(gene_counts_var / gene_counts_mean)
pandas.Series
# INSERT LICENSE from collections import Counter from typing import List, Optional import navis import navis.interfaces.neuprint as nvneu import pandas as pd from neuroboom import morphoelectro as nbm # Create an adjacency matrix from synapse connections (neuprint) def adjx_from_syn_conn( x: List[int], presyn_postsyn: str = "pre", roi: Optional = None, ct: tuple = (0.0, 0.0), rename_index: bool = False, ): """ Creates an adjacency matrix from synapse connections Parameters ---------- presyn_postsyn: x : list a list of bodyIds of which you want to find their synaptic (pre/post) connections presyn_postsyn : str a string of either 'pre' or 'post' If 'pre', the function will search for the presynaptic connections / downstream neurons of x If 'post', the function will search for the postsynaptic connections / upstream neurons of x roi : navis.Volume A region of interest within which you are filtering the connections for ct : tuple Confidence threshold tuple containing the confidence value to filter above The first value is presynaptic confidence and the second value postsynaptic confidence e.g. (0.9, 0.8) will filter for connections where the presynaptic confidence > 0.9 and the postsynaptic confidence > 0.8 rename_index : bool Whether to rename the index using the type of the connected neuron Returns ------- df : a DataFrame where x are the columns, the connection type (pre/post) are the rows and the values the number of connections partner_type_dict : a dictionary where the keys are bodyIds of the upstream/downstream neurons and the values are their types Examples -------- """ if presyn_postsyn == "pre": con = nvneu.fetch_synapse_connections(source_criteria=x) if roi: tt = navis.in_volume(con[["x_pre", "y_pre", "z_pre"]].values, roi) con = con[tt].copy() if ct[0] or ct[1] > 0.0: con = con[(con.confidence_pre > ct[0]) & (con.confidence_post > ct[1])].copy() neurons = con.bodyId_post.unique() n, _ = nvneu.fetch_neurons(neurons) partner_type_dict = dict(zip(n.bodyId.tolist(), n.type.tolist())) count = Counter(con.bodyId_post) count = count.most_common() count_dict = dict(count) df = pd.DataFrame(columns=[x], index=[i for i, j in count], data=[count_dict[i] for i, j in count]) elif presyn_postsyn == "post": con = nvneu.fetch_synapse_connections(target_criteria=x) if roi: tt = navis.in_volume(con[["x_post", "y_post", "z_post"]].values, roi) con = con[tt].copy() if ct[0] or ct[1] > 0.0: con = con[(con.confidence_pre > ct[0]) & (con.confidence_post > ct[1])].copy() neurons = con.bodyId_pre.unique() n, _ = nvneu.fetch_neurons(neurons) partner_type_dict = dict(zip(n.bodyId.tolist(), n.type.tolist())) count = Counter(con.bodyId_pre) count = count.most_common() count_dict = dict(count) df =
pd.DataFrame(index=[i for i, j in count], columns=[x], data=[count_dict[i] for i, j in count])
pandas.DataFrame
from rdkit import Chem from .utils import * from rdkit.Chem.MolStandardize import rdMolStandardize import os import pandas as pd #========================================================== # process SMILES of chemotypes def normChemotypes(compounds, getChemotypes=False, getChemotypesIdx=False, normalizeChemotypes=False, printlogs=True): #------------------------ if getChemotypesIdx: if getChemotypes == False: print("!!!ERROR: 'getChemotypesIdx=True' argument goes with 'getChemotypes=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonChemotypesList, ChemotypesList, ChemotypesIdxList = [], [], [] Chemotype_count = 0 idx = 0 for compound in compounds_: Premol = Chem.MolFromSmiles(compound) canonicalized_mol = rdMolStandardize.Normalize(Premol) canonicalized_SMILES = Chem.MolToSmiles(canonicalized_mol) if canonicalized_SMILES == compound: NonChemotypesList.append(canonicalized_SMILES) else: Chemotype_count +=1 if normalizeChemotypes: NonChemotypesList.append(canonicalized_SMILES) ChemotypesList.append(compound) ChemotypesIdxList.append(idx) else: ChemotypesList.append(compound) ChemotypesIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Chemotype_count > 0: if normalizeChemotypes: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList)-Chemotype_count, len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were normalized".format(Chemotype_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Chemotype normalization has been applied!!!!!") else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were NOT normalized".format(Chemotype_count, len(compounds))) else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Chemotype_count > 0: if normalizeChemotypes: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList)-Chemotype_count, len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were normalized".format(Chemotype_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Chemotype normalization has been applied!!!!!") else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("{}/{} structure(s) is/are chemotype(s) BUT was/were NOT normalized".format(Chemotype_count, len(compounds))) else: print("{}/{} structures are NOT chemotypes".format(len(NonChemotypesList), len(compounds))) print("=======================================================") if getChemotypes: if getChemotypesIdx: return ChemotypesList, ChemotypesIdxList else: return ChemotypesList else: return NonChemotypesList #========================================================== # process SMILES of tautomers def normTautomers(compounds, getTautomers=False, getTautomersIdx=False, deTautomerize=False, printlogs=True): #------------------------ if getTautomersIdx: if getTautomers == False: print("!!!ERROR: 'getTautomersIdx=True' argument goes with 'getTautomers=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonTautomersList, TautomersList, TautomersIdxList = [], [], [] enumerator = rdMolStandardize.TautomerEnumerator() Tautomer_count = 0 idx = 0 for compound in compounds_: Premol = Chem.MolFromSmiles(compound) canonicalized_mol = enumerator.Canonicalize(Premol) canonicalized_SMILES = Chem.MolToSmiles(canonicalized_mol) if canonicalized_SMILES == compound: NonTautomersList.append(canonicalized_SMILES) else: Tautomer_count +=1 if deTautomerize: NonTautomersList.append(canonicalized_SMILES) TautomersList.append(compound) TautomersIdxList.append(idx) else: TautomersList.append(compound) TautomersIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Tautomer_count > 0: if deTautomerize: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList)-Tautomer_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were detautomerized".format(Tautomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Detautomerizing has been applied!!!!!") else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were NOT detautomerized".format(Tautomer_count, len(compounds))) else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Tautomer_count > 0: if deTautomerize: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList)-Tautomer_count, len(compounds))) print("{}/{} structure(s) í/are tautomer(s) BUT was/were detautomerized".format(Tautomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Detautomerizing has been applied!!!!!") else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were NOT detautomerized".format(Tautomer_count, len(compounds))) else: print("{}/{} structures are NOT tautomers".format(len(NonTautomersList), len(compounds))) print("=======================================================") if getTautomers: if getTautomersIdx: return TautomersList, TautomersIdxList else: return TautomersList else: return NonTautomersList #========================================================== # process SMILES of stereoisomers def normStereoisomers(compounds, getStereoisomers=False, getStereoisomersIdx=False, deSterioisomerize=False, printlogs=True): #------------------------ if getStereoisomersIdx: if getStereoisomers == False: print("!!!ERROR: 'getStereoisomersIdx=True' argument goes with 'getStereoisomers=True'!!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_ = molStructVerify(compounds, printlogs=False) Unverified_count = len(molStructVerify(compounds, getFailedStruct=True, printlogs=False)) NonStereoisomersList, StereoisomersList, StereoisomersIdxList = [], [], [] Stereoisomer_count = 0 idx = 0 for compound in compounds_: if compound.find("@") == -1 and compound.find("/") == -1 and compound.find("\\") == -1: NonStereoisomersList.append(compound) else: Stereoisomer_count +=1 if deSterioisomerize: NonStereoisomersList.append(compound.replace("@", "").replace("/","").replace("\\","")) StereoisomersList.append(compound) StereoisomersIdxList.append(idx) else: StereoisomersList.append(compound) StereoisomersIdxList.append(idx) idx += 1 if printlogs: print("=======================================================") if Unverified_count > 0: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) print("Failed to verify {}/{} structures".format(Unverified_count, len(compounds))) print("Use function 'utils.molValidate' and set 'getFailedStruct=True' to get the list of unverified structures") if Stereoisomer_count > 0: if deSterioisomerize: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList)-Stereoisomer_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized".format(Stereoisomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Destereoisomerization has been applied!!!!!") else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized".format(Stereoisomer_count, len(compounds))) else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) else: print("Succeeded to verify {}/{} structures".format(len(compounds_), len(compounds))) if Stereoisomer_count > 0: if deSterioisomerize: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList)-Stereoisomer_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized".format(Stereoisomer_count, len(compounds))) print("=======================================================") print("!!!!!Notice: Destereoisomerization has been applied!!!!!") else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized".format(Stereoisomer_count, len(compounds))) else: print("{}/{} structures are NOT stereoisomers".format(len(NonStereoisomersList), len(compounds))) print("=======================================================") if getStereoisomers: if getStereoisomersIdx: return StereoisomersList, StereoisomersIdxList else: return StereoisomersList else: return NonStereoisomersList #========================================================== # Complete normalization def normalizeComplete(compounds, getUnnormalizedStruct=False, normalizeChemotypes=True, deTautomerize=True, deSterioisomerize=True, removeDuplicates=False, getDuplicatedIdx=False, exportCSV=False, outputPath=None, printlogs=True): #------------------------ if getUnnormalizedStruct: if removeDuplicates: print("!!!ERROR: 'removeDuplicates=True' argument goes with 'getUnnormalizedStruct=False' only !!!") return None if getDuplicatedIdx: print("!!!ERROR: 'getDuplicatedIdx=True' argument goes with 'getUnnormalizedStruct=False' only !!!") if getDuplicatedIdx: if removeDuplicates == False: print("!!!ERROR: 'getDuplicatedIdx=True' argument goes with 'removeDuplicates=True'!!!") return None if exportCSV: if outputPath == None: print("!!!ERROR 'exportCSV=True' needs 'outputPath=<Directory>' to be filled !!!") return None if outputPath: if exportCSV == False: print("!!!ERROR 'outputPath=<Directory>' needs to set 'exportCSV=True' !!!") return None #------------------------ if isinstance(compounds, pd.core.series.Series): compounds = compounds.tolist() if isinstance(compounds, pd.core.frame.DataFrame): compounds = compounds.iloc[:,0].tolist() if isinstance(compounds, str): compounds = [compounds] if isinstance(compounds, list): compounds = compounds #------------------------ compounds_r1 = molStructVerify(compounds, printlogs=False) UnverifiedList, UnverifiedIdxList = molStructVerify(compounds, getFailedStruct=True, getFailedStructIdx=True, printlogs=False) Unverified_count = len(UnverifiedList) #------------------------ if deSterioisomerize: compounds_r2 = normStereoisomers(compounds_r1, deSterioisomerize=True, printlogs=False) else: compounds_r2 = normStereoisomers(compounds_r1, deSterioisomerize=False, printlogs=False) StereoisomersList, StereoisomersIdxList = normStereoisomers(compounds_r1, getStereoisomers=True, getStereoisomersIdx=True, printlogs=False) Stereoisomers_count = len(StereoisomersList) #------------------------ if normalizeChemotypes: compounds_r3 = normChemotypes(compounds_r2, normalizeChemotypes=True, printlogs=False) else: compounds_r3 = normChemotypes(compounds_r2, normalizeChemotypes=False, printlogs=False) ChemotypesList, ChemotypesIdxList = normChemotypes(compounds_r1, getChemotypes=True, getChemotypesIdx=True, printlogs=False) Chemotypes_count = len(ChemotypesList) #------------------------ if deTautomerize: compounds_r4 = normTautomers(compounds_r3, deTautomerize=True, printlogs=False) else: compounds_r4 = normTautomers(compounds_r3, deTautomerize=False, printlogs=False) TautomersList, TautomersIdxList = normTautomers(compounds_r1, getTautomers=True, getTautomersIdx=True, printlogs=False) Tautomers_count = len(TautomersList) #------------------------ if printlogs: if Unverified_count > 0: print("=======================================================") print("Succeeded to verify {}/{} structures".format(len(compounds_r1), len(compounds))) print("Failed to verify {} structures \n".format(Unverified_count)) else: print("=======================================================") print("Succeeded to validate {}/{} structures \n".format(len(compounds_r1), len(compounds))) if Stereoisomers_count > 0: if deSterioisomerize: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2)-Stereoisomers_count, len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were destereoisomerized \n".format(Stereoisomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2), len(compounds))) print("{}/{} structure(s) is/are stereoisomer(s) BUT was/were NOT destereoisomerized \n".format(Stereoisomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT stereoisomers".format(len(compounds_r2), len(compounds))) if Chemotypes_count > 0: if normalizeChemotypes: print("=======================================================") compounds_r3_ = normChemotypes(compounds_r2, normalizeChemotypes=True, printlogs=False) print("{}/{} structures are NOT chemotypes".format(len(compounds_r3_)-Chemotypes_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were normalized \n".format(Chemotypes_count, len(compounds))) else: print("=======================================================") compounds_r3_ = normChemotypes(compounds_r2, normalizeChemotypes=False, printlogs=False) print("{}/{} structures are NOT chemotypes".format(len(compounds_r3_), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) but was/were NOT normalized \n".format(Chemotypes_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT chemotypes \n".format(len(compounds_r2), len(compounds))) if Tautomers_count > 0: if deTautomerize: print("=======================================================") compounds_r4_ = normTautomers(compounds_r2, deTautomerize=True, printlogs=False) print("{}/{} structures are NOT tautomers".format(len(compounds_r4_)-Tautomers_count, len(compounds))) print("{}/{} structure(s) is/are tautomer(s) BUT was/were detautomerized \n".format(Tautomers_count, len(compounds))) else: print("=======================================================") compounds_r4_ = normTautomers(compounds_r2, deTautomerize=False, printlogs=False) print("{}/{} structures are NOT tautomers".format(len(compounds_r4_), len(compounds))) print("{}/{} structure(s) is/are tautomer(s) but was/were NOT detautomerized \n".format(Tautomers_count, len(compounds))) else: print("=======================================================") print("{}/{} structures are NOT tautomers \n".format(len(compounds_r2), len(compounds))) #------------------------ NormalizedList = compounds_r4 UnNormalizedList = UnverifiedList + TautomersList + StereoisomersList UnNormalizedLabel = len(UnverifiedList)*["UnverifiedStruct"] + len(ChemotypesList)*["Chemotype"] + len(TautomersList)*["Tautomer"] + len(StereoisomersList)*["Stereoisomer"] FunctionLabel = len(UnverifiedList)*["molStructVerify()"] + len(ChemotypesList)*["normChemotypes()"] + len(TautomersList)*["normTautomers()"] + len(StereoisomersList)*["normStereoisomers()"] IdxLabel = UnverifiedIdxList + ChemotypesIdxList + TautomersIdxList + StereoisomersIdxList df1 = pd.DataFrame(zip(UnNormalizedList, UnNormalizedLabel, FunctionLabel, IdxLabel), columns=['SMILES', 'errorTag', 'fromFunction', 'idx']) #------------------------ if printlogs: print("=======================================================") print("SUMMARY:") if len(UnverifiedList) > 0: print("{}/{} structures were successfully verfied".format(len(compounds_r1), len(compounds))) print("{}/{} structure(s) was/were unsuccessfully verfied and need to be rechecked".format(len(UnverifiedList), len(compounds))) else: print("{}/{} structure were successfully verfied".format(len(compounds_r1), len(compounds))) if len(UnNormalizedList) > 0: print("{}/{} structures were successfully normalized".format(len(NormalizedList), len(compounds))) if len(compounds_r1) > len(NormalizedList): print("{}/{} structure(s) was/were unsuccessfully normalized and need to be rechecked".format(len(compounds_r1)-len(NormalizedList), len(compounds))) print("=======================================================") else: print("{}/{} structures were successfully normalized".format(len(NormalizedList), len(compounds))) print("-------------------------------------------------------") if len(UnNormalizedList) > 0: if getUnnormalizedStruct == False: print("set 'getUnnormalizedStruct=True' to get the list of all unnormalized structures. \n") #------------------------ if getUnnormalizedStruct: if exportCSV: filePath = outputPath + "UnnormalizedList.csv" if os.path.isdir(outputPath): df1.to_csv(filePath, index=False) else: os.makedirs(outputPath) df1.to_csv(filePath, index=False) else: return df1 else: if removeDuplicates: DeduplicatedNormalizedList = molDeduplicate(NormalizedList, printlogs=False) _, DuplicatedNormalizedIdxList = molDeduplicate(NormalizedList, getDuplicates=True, getDuplicatesIdx=True, printlogs=False) if len(DeduplicatedNormalizedList) == len(NormalizedList): if printlogs: print("No duplicate was found (in {} normalized structures)".format(len(NormalizedList))) if getDuplicatedIdx: df0 = pd.DataFrame(DuplicatedNormalizedIdxList) df0.columns = ['idx', 'matchedIdx'] df0['fromFunction'] = 'normalizeComplete()' if exportCSV: filePath = outputPath + "DuplicatedNormalizedIdxList.csv" if os.path.isdir(outputPath): df0.to_csv(filePath, index=False) else: os.makedirs(outputPath) df0.to_csv(filePath, index=False) else: return df0 else: df0 = pd.DataFrame(DeduplicatedNormalizedList) df0.columns = ['SMILES'] if exportCSV: filePath = outputPath + "NoDuplicatedNormalizedIdxList.csv" if os.path.isdir(outputPath): df0.to_csv(filePath, index=False) else: os.makedirs(outputPath) df0.to_csv(filePath, index=False) else: return df0 else: if printlogs: print("=============================================================================") print("There are {} unique structures filtered from {} initial normalized structures".format(len(DeduplicatedNormalizedList), len(NormalizedList))) print("=============================================================================") print("To get detailed information, please follow steps below:") print("(1) Rerun normalizeComplete() with setting 'removeDuplicates=False' to get the list of all normalized structures") print("(2) Run ultils.molDeduplicate() with setting 'getDuplicates=True'to get the list of duplicated structures \n") print("--OR--") print("Rerun normalizeComplete() with setting 'getDuplicates=True', 'exportCSV'=True, and 'outputPath=<Directory>' to export a csv file containing the list of duplicated structures \n") print("--OR--") print("Run ultils.molDeduplicate() with settings 'getDuplicates=True' and 'getDuplicatesIndex=True' to get the list of duplicated structures with detailed indices") if getDuplicatedIdx: df2 = pd.DataFrame(DuplicatedNormalizedIdxList) df2.columns = ['idx', 'matchedIdx'] df2['fromFunction'] = 'normalizeComplete()' if exportCSV: filePath = outputPath + "DuplicatedNormalizedIdxList.csv" if os.path.isdir(outputPath): df2.to_csv(filePath, index=False) else: os.makedirs(outputPath) df2.to_csv(filePath, index=False) else: return df2 else: df2 =
pd.DataFrame(DeduplicatedNormalizedList)
pandas.DataFrame
import itertools from collections import OrderedDict, Counter import os import numpy as np import pandas as pd import matplotlib.pyplot as plt # necessary? # import seaborn as sns import scipy.spatial.distance as sdist import scipy.stats as stats import scipy.sparse as sparse from sklearn.neighbors import NearestNeighbors, kneighbors_graph import fastcluster import networkx from networkx.drawing.nx_agraph import graphviz_layout import plotly import plotly.graph_objs as go import common import sparse_dataframe import matplotlib.figure import matplotlib.colors from matplotlib.patches import Circle from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.legend_handler import HandlerPatch class HandlerCircle(HandlerPatch): def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans): center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent p = Circle(xy=center, radius=width / 4.0, alpha=0.4) self.update_prop(p, orig_handle, legend) p.set_transform(trans) return [p] def plot_labelprop_mpl(coords, communities, file_name=None, title=''): u_community = np.unique(communities) cmap = matplotlib.cm.tab20 cmap.set_over('black') ix = np.random.permutation(np.arange(coords.shape[0], dtype=int)) x = coords[ix, 0] y = coords[ix, 1] fig = matplotlib.figure.Figure(figsize=(12, 12)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.scatter(x, y, s=60, alpha=0.8, linewidth=0, color=cmap(communities[ix])) ax.tick_params(left='off', labelleft='off', bottom='off', labelbottom='off') ax.set_title(title) lbl_rects = [(Circle((0, 0), 1, color=cmap(c)), c) for c in u_community] fig.legend(*zip(*lbl_rects), **{'handler_map': {Circle: HandlerCircle()}, 'loc': 7, 'fontsize': 'large'}) if file_name: FigureCanvasAgg(fig).print_figure(file_name) def plot_labelprop_mpl_tissues(coords, tissue_list, file_name=None, title=''): u_tissue = set(tissue_list) tissue_d = {t:i for i,t in enumerate(u_tissue)} cmap = matplotlib.cm.tab20 cmap.set_over('black') ix = np.random.permutation(np.arange(coords.shape[0], dtype=int)) x = coords[ix, 0] y = coords[ix, 1] fig = matplotlib.figure.Figure(figsize=(12, 12)) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) ax.scatter(x, y, s=60, alpha=0.8, linewidth=0, color=[cmap(tissue_d[tissue_list[i]]) for i in ix]) ax.tick_params(left='off', labelleft='off', bottom='off', labelbottom='off') ax.set_title(title) lbl_rects = [(Circle((0, 0), 1, color=cmap(tissue_d[t])), t) for t in u_tissue] fig.legend(*zip(*lbl_rects), **{'handler_map': {Circle: HandlerCircle()}, 'loc': 7, 'fontsize': 'large'}) if file_name: FigureCanvasAgg(fig).print_figure(file_name) def label_propagation(G, verbose=False): node_labels = {node: i for i, node in enumerate(G.nodes())} n_changes = 1 while n_changes: n_changes = 0 for node in G.nodes(): neighbor_labels = Counter([node_labels[n] for n in G.neighbors(node)]) pop_label = neighbor_labels.most_common(1)[0][0] if node_labels[node] != pop_label: node_labels[node] = pop_label n_changes += 1 if (verbose): print("Round with ", n_changes, " to labels.") labels = list(set(node_labels.values())) label_renames = {label: i for i, (label, c) in enumerate(Counter(node_labels.values()).most_common())} for node in node_labels: node_labels[node] = label_renames[node_labels[node]] if (verbose): print("Most common labels, in the form label, frequency") print(Counter(node_labels.values()).most_common()) return node_labels def network_layout(matrix, k=30): nbrs = NearestNeighbors(k, algorithm='brute', metric='cosine').fit(matrix) G = networkx.from_scipy_sparse_matrix(nbrs.kneighbors_graph(matrix)) node_labels = label_propagation(G, verbose=True) communities_labelprop = np.array([node_labels[i] for i in range(matrix.shape[0])]) pos = graphviz_layout(G, prog="sfdp") coords = np.array([pos[i] for i in range(len(pos))]) print(coords.shape) return coords, communities_labelprop def plot_labelprop(coords, communities, filename=None, title=''): scatters = [] n_communities = len(np.unique(communities)) scatter = go.Scatter(x=coords[0], y=coords[1], mode='markers', name=communities, hoverinfo='text', text=communities, marker=dict(color=communities, cmin=0.0, cmax=n_communities - 1, colorscale='Viridis' )) fig = { 'data': [scatter], "layout": go.Layout(title=f'Graph layout of cell type clusters: {title}', xaxis={'showticklabels': False}, yaxis={'showticklabels': False}, hovermode='closest', dragmode='select', show_legend=True) } if filename is None: plotly.offline.iplot(fig) else: plotly.offline.plot(fig, filename=filename, image='png') def tenx_diff_exp(matrix, columns, communities): diff_expr_dfs = [] for c in np.unique(communities): group1 = (communities == c) group2 = (communities != c) diff_expr_df = sparse_diff_exp(matrix, group1, group2, columns).sort_values('p') diff_expr_df['community'] = c diff_expr_dfs.append(diff_expr_df) diff_expr = pd.concat(diff_expr_dfs) print(diff_expr.shape) print(diff_expr.head()) return diff_expr def tenx_diff_exp_all(tenx_data, communities): diff_expr_dfs = [] for c1, c2 in itertools.combinations(np.unique(communities), 2): group1 = (communities == c1) group2 = (communities == c2) diff_expr_df = sparse_diff_exp(tenx_data.genes.matrix, group1, group2, tenx_data.genes.columns).sort_values('p') diff_expr_df['community1'] = c1 diff_expr_df['community2'] = c2 diff_expr_dfs.append(diff_expr_df) diff_expr = pd.concat(diff_expr_dfs) print(diff_expr.shape) print(diff_expr.head()) return diff_expr def diff_exp(counts, group1, group2): """Computes differential expression between group 1 and group 2 for each column in the dataframe counts. Returns a dataframe of Z-scores and p-values.""" mean_diff = counts.loc[group1].mean() - counts.loc[group2].mean() pooled_sd = np.sqrt(counts.loc[group1].var() / len(group1) + counts.loc[group2].var() / len(group2)) z_scores = mean_diff / pooled_sd z_scores = z_scores.fillna(0) # t-test p_vals = (1 - stats.norm.cdf(np.abs(z_scores))) * 2 df = pd.DataFrame({'z': z_scores}) df['p'] = p_vals return df def sparse_diff_exp(matrix, group1, group2, index): """Computes differential expression between group 1 and group 2 for each column in the dataframe counts. Returns a dataframe of Z-scores and p-values.""" g1 = matrix[group1, :] g2 = matrix[group2, :] g1mu = np.asarray(g1.mean(0)).flatten() g2mu = np.asarray(g2.mean(0)).flatten() mean_diff = g1mu - g2mu # E[X^2] - (E[X])^2 pooled_sd = np.sqrt(((g1.power(2)).mean(0) - g1mu ** 2) / len(group1) + ((g2.power(2)).mean(0) - g2mu ** 2) / len(group2)) pooled_sd = np.asarray(pooled_sd).flatten() z_scores = np.zeros_like(pooled_sd) nz = pooled_sd > 0 z_scores[nz] = np.nan_to_num(mean_diff[nz] / pooled_sd[nz]) # t-test p_vals = np.clip((1 - stats.norm.cdf(np.abs(z_scores))) * 2 * matrix.shape[1], 0, 1) df = pd.DataFrame(OrderedDict([('z', z_scores), ('p', p_vals), ('mean1', g1mu), ('mean2', g2mu)]), index=index) return df def run_tissue(tissue, data_folder, samples, k, channels_to_drop = []): genes_to_drop = 'Malat1|Rn45s|Rpl10|Rpl10a|Rpl10l|Rpl11|Rpl12|Rpl13|Rpl13a|Rpl14|Rpl15|Rpl17|Rpl18|Rpl18a|Rpl19|Rpl21|Rpl22|Rpl22l1|Rpl23|Rpl23a|Rpl24|Rpl26|Rpl27|Rpl27a|Rpl28|Rpl29|Rpl3|Rpl30|Rpl31|Rpl31-ps12|Rpl32|Rpl34|Rpl34-ps1|Rpl35|Rpl35a|Rpl36|Rpl36a|Rpl36al|Rpl37|Rpl37a|Rpl38|Rpl39|Rpl39l|Rpl3l|Rpl4|Rpl41|Rpl5|Rpl6|Rpl7|Rpl7a|Rpl7l1|Rpl8|Rpl9|Rplp0|Rplp1|Rplp2|Rplp2-ps1|Rps10|Rps11|Rps12|Rps13|Rps14|Rps15|Rps15a|Rps15a-ps4|Rps15a-ps6|Rps16|Rps17|Rps18|Rps19|Rps19-ps3|Rps19bp1|Rps2|Rps20|Rps21|Rps23|Rps24|Rps25|Rps26|Rps27|Rps27a|Rps27l|Rps28|Rps29|Rps3|Rps3a|Rps4x|Rps4y2|Rps5|Rps6|Rps6ka1|Rps6ka2|Rps6ka3|Rps6ka4|Rps6ka5|Rps6ka6|Rps6kb1|Rps6kb2|Rps6kc1|Rps6kl1|Rps7|Rps8|Rps9|Rpsa'.split( '|') file_prefix = data_folder + '/10x_data/tissues/' file_suffix = f'-{tissue}-{samples}-{k}' tenx = common.TenX_Runs(data_folder, tissue=tissue, verbose=True, genes_to_drop=genes_to_drop, channels_to_drop=channels_to_drop) skip = tenx.genes.matrix.shape[0] // samples skip = max(skip, 1) top_genes = pd.DataFrame(index=tenx.genes.columns, data=np.asarray(tenx.genes.matrix.mean(axis=0)).flatten())[ 0].nlargest(10) top_genes = pd.DataFrame(top_genes) top_genes.columns = ['Mean UMIs'] top_genes.to_csv(f'{tissue} top genes') coords, communities_labelprop = network_layout(tenx.genes.matrix[::skip], k=k) coords_df = pd.DataFrame({'0': coords[:, 0], '1': coords[:, 1], 'cluster': communities_labelprop}, index=tenx.genes.rows[::skip]) coords_df.to_csv(file_prefix + 'smushed' + file_suffix + '.csv') plot_labelprop_mpl(coords, communities_labelprop, title=f'{tissue}: Graph layout of clusters', file_name=file_prefix + 'embedding' + file_suffix + '.png') diff_expr_df = tenx_diff_exp(tenx.genes[::skip, :], tenx.genes.columns, communities_labelprop) de = diff_expr_df[diff_expr_df['p'] < 0.001] de = de[de['z'] > 0] de['scale'] = np.abs(de['mean1'] - de['mean2']) bigten = de.groupby('community')['mean1'].nlargest(50) bigten =
pd.DataFrame(bigten)
pandas.DataFrame
import pandas as pd def row_to_tex(row): if 'good_cand_ibata' in row.index: flag = '' if pd.isnull(row['good_cand_ibata']) else row['good_cand_ibata'] else: flag = '' string = str(row['source_id']) + ' & ' string += "${0:.3f}$ & ".format(row['ra']) string += "${0:.3f}$ & ".format(row['dec']) string += "{0:.3f} & ".format(row['g0']) string += "{0:.3f} & ".format(row['bp_rp0']) string += "${0:.2f} \pm {1:.2f}$ & ".format(row['parallax'], row['parallax_error']) string += "${0:.2f} \pm {1:.2f}$ & ".format(row['pmra'], row['pmra_error']) string += "${0:.2f} \pm {1:.2f}$ & ".format(row['pmdec'], row['pmdec_error']) if 'v_hel' in row.index: if pd.isnull(row['v_hel']): string += '' else: string += "${0:.2f} \pm {1:.2f}$".format(row['v_hel'], row['v_hel_error']) if ~
pd.isnull(row['other_id'])
pandas.isnull
from datetime import datetime, timedelta import operator import pickle import unittest import numpy as np from pandas.core.index import Index, Factor, MultiIndex, NULL_INDEX from pandas.util.testing import assert_almost_equal import pandas.util.testing as tm import pandas._tseries as tseries class TestIndex(unittest.TestCase): def setUp(self): self.strIndex = tm.makeStringIndex(100) self.dateIndex = tm.makeDateIndex(100) self.intIndex = tm.makeIntIndex(100) self.empty = Index([]) self.tuples = Index(zip(['foo', 'bar', 'baz'], [1, 2, 3])) def test_hash_error(self): self.assertRaises(TypeError, hash, self.strIndex) def test_deepcopy(self): from copy import deepcopy copy = deepcopy(self.strIndex) self.assert_(copy is self.strIndex) def test_duplicates(self): idx = Index([0, 0, 0]) self.assertRaises(Exception, idx._verify_integrity) def test_sort(self): self.assertRaises(Exception, self.strIndex.sort) def test_mutability(self): self.assertRaises(Exception, self.strIndex.__setitem__, 5, 0) self.assertRaises(Exception, self.strIndex.__setitem__, slice(1,5), 0) def test_constructor(self): # regular instance creation tm.assert_contains_all(self.strIndex, self.strIndex) tm.assert_contains_all(self.dateIndex, self.dateIndex) # casting arr = np.array(self.strIndex) index = arr.view(Index) tm.assert_contains_all(arr, index) self.assert_(np.array_equal(self.strIndex, index)) # what to do here? # arr = np.array(5.) # self.assertRaises(Exception, arr.view, Index) def test_constructor_corner(self): # corner case self.assertRaises(Exception, Index, 0) def test_compat(self): self.strIndex.tolist() def test_equals(self): # same self.assert_(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'c']))) # different length self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b']))) # same length, different values self.assertFalse(Index(['a', 'b', 'c']).equals(Index(['a', 'b', 'd']))) # Must also be an Index self.assertFalse(Index(['a', 'b', 'c']).equals(['a', 'b', 'c'])) def test_asOfDate(self): d = self.dateIndex[0] self.assert_(self.dateIndex.asOfDate(d) is d) self.assert_(self.dateIndex.asOfDate(d - timedelta(1)) is None) d = self.dateIndex[-1] self.assert_(self.dateIndex.asOfDate(d + timedelta(1)) is d) def test_argsort(self): result = self.strIndex.argsort() expected = np.array(self.strIndex).argsort() self.assert_(np.array_equal(result, expected)) def test_comparators(self): index = self.dateIndex element = index[len(index) // 2] arr = np.array(index) def _check(op): arr_result = op(arr, element) index_result = op(index, element) self.assert_(isinstance(index_result, np.ndarray)) self.assert_(not isinstance(index_result, Index)) self.assert_(np.array_equal(arr_result, index_result)) _check(operator.eq) _check(operator.ne) _check(operator.gt) _check(operator.lt) _check(operator.ge) _check(operator.le) def test_booleanindex(self): boolIdx = np.repeat(True, len(self.strIndex)).astype(bool) boolIdx[5:30:2] = False subIndex = self.strIndex[boolIdx] tm.assert_dict_equal(tseries.map_indices(subIndex), subIndex.indexMap) subIndex = self.strIndex[list(boolIdx)] tm.assert_dict_equal(tseries.map_indices(subIndex), subIndex.indexMap) def test_fancy(self): sl = self.strIndex[[1,2,3]] for i in sl: self.assertEqual(i, sl[sl.indexMap[i]]) def test_getitem(self): arr = np.array(self.dateIndex) self.assertEquals(self.dateIndex[5], arr[5]) def test_shift(self): shifted = self.dateIndex.shift(0, timedelta(1)) self.assert_(shifted is self.dateIndex) shifted = self.dateIndex.shift(5, timedelta(1)) self.assert_(np.array_equal(shifted, self.dateIndex + timedelta(5))) def test_intersection(self): first = self.strIndex[:20] second = self.strIndex[:10] intersect = first.intersection(second) self.assert_(tm.equalContents(intersect, second)) # Corner cases inter = first.intersection(first) self.assert_(inter is first) # non-iterable input self.assertRaises(Exception, first.intersection, 0.5) def test_union(self): first = self.strIndex[5:20] second = self.strIndex[:10] everything = self.strIndex[:20] union = first.union(second) self.assert_(tm.equalContents(union, everything)) # Corner cases union = first.union(first) self.assert_(union is first) union = first.union([]) self.assert_(union is first) # non-iterable input self.assertRaises(Exception, first.union, 0.5) def test_add(self): firstCat = self.strIndex + self.dateIndex secondCat = self.strIndex + self.strIndex self.assert_(tm.equalContents(np.append(self.strIndex, self.dateIndex), firstCat)) self.assert_(tm.equalContents(secondCat, self.strIndex)) tm.assert_contains_all(self.strIndex, firstCat.indexMap) tm.assert_contains_all(self.strIndex, secondCat.indexMap) tm.assert_contains_all(self.dateIndex, firstCat.indexMap) # this is valid too shifted = self.dateIndex + timedelta(1) def test_add_string(self): # from bug report index = Index(['a', 'b', 'c']) index2 = index + 'foo' self.assert_('a' not in index2.indexMap) self.assert_('afoo' in index2.indexMap) def test_diff(self): first = self.strIndex[5:20] second = self.strIndex[:10] answer = self.strIndex[10:20] result = first - second self.assert_(tm.equalContents(result, answer)) diff = first.diff(first) self.assert_(len(diff) == 0) # non-iterable input self.assertRaises(Exception, first.diff, 0.5) def test_pickle(self): def testit(index): pickled = pickle.dumps(index) unpickled = pickle.loads(pickled) self.assert_(isinstance(unpickled, Index)) self.assert_(np.array_equal(unpickled, index)) tm.assert_dict_equal(unpickled.indexMap, index.indexMap) testit(self.strIndex) testit(self.dateIndex) # def test_always_get_null_index(self): # empty = Index([]) # self.assert_(empty is NULL_INDEX) # self.assert_(self.dateIndex[15:15] is NULL_INDEX) def test_is_all_dates(self): self.assert_(self.dateIndex.is_all_dates()) self.assert_(not self.strIndex.is_all_dates()) self.assert_(not self.intIndex.is_all_dates()) def test_summary(self): self._check_method_works(Index.summary) def test_format(self): self._check_method_works(Index.format) index = Index([datetime.now()]) formatted = index.format() expected = str(index[0]) self.assertEquals(formatted, expected) def test_take(self): indexer = [4, 3, 0, 2] result = self.dateIndex.take(indexer) expected = self.dateIndex[indexer] self.assert_(result.equals(expected)) def _check_method_works(self, method): method(self.empty) method(self.dateIndex) method(self.strIndex) method(self.intIndex) method(self.tuples) def test_get_indexer(self): idx1 = Index([1, 2, 3, 4, 5]) idx2 = Index([2, 4, 6]) r1, r2 = idx1.get_indexer(idx2) assert_almost_equal(r1, [1, 3, -1]) assert_almost_equal(r2, [True, True, False]) r1, r2 = idx2.get_indexer(idx1, method='pad') assert_almost_equal(r1, [-1, 0, 0, 1, 1]) assert_almost_equal(r2, [False, True, True, True, True]) rffill1, rffill2 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) assert_almost_equal(r2, rffill2) r1, r2 = idx2.get_indexer(idx1, method='backfill') assert_almost_equal(r1, [0, 0, 1, 1, 2]) assert_almost_equal(r2, [True, True, True, True, True]) rbfill1, rbfill2 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) assert_almost_equal(r2, rbfill2) def test_slice_locs(self): idx =
Index([0, 1, 2, 5, 6, 7, 9, 10])
pandas.core.index.Index
from PySDDP.dessem.script.templates.dadger import DadgerTemplate import pandas as pd import os from typing import IO COMENTARIO = '&' class Dadger(DadgerTemplate): """ Classe que contem todos os elementos comuns a qualquer versao do arquivo Entdados do Dessem. Esta classe tem como intuito fornecer duck typing para a classe Dessem e ainda adicionar um nivel de especificacao dentro da fabrica. Alem disso esta classe deve passar adiante a responsabilidade da implementacao dos metodos de leitura e escrita """ def __init__(self): super().__init__() self.comentarios = list() self.tm = dict() self.sist = dict() self.ree = dict() self.uh = dict() self.tviag = dict() self.ut = dict() self.usie = dict() self.dp = dict() self.de = dict() self.cd = dict() self.ri = dict() self.ia = dict() self.rd = dict() self.rivar = dict() self.it = dict() self.gp = dict() self.ni = dict() self.ve = dict() self.ci_ce = dict() self.re = dict() self.lu = dict() self.fh = dict() self.ft = dict() self.fi = dict() self.fe = dict() self.fr = dict() self.fc = dict() self.ac = dict() self.da = dict() self.fp = dict() self.ez = dict() self.ag = dict() self.mh = dict() self.mt = dict() self.tx = dict() self.pq = dict() self.secr = dict() self.cr = dict() self.r11 = dict() self.vr = dict() self.pd = dict() self.vm = dict() self.df = dict() self.me = dict() self.meta_cjsist = dict() self.meta_sist = dict() self.meta_usit = dict() self.sh = dict() self.tf = dict() self.rs = dict() self.sp = dict() self.ps = dict() self.pp = dict() def ler(self, file_name: str) -> None: self.entdados = list() # listas referentes ao dicionário TM self.tm['mne'] = list() self.tm['dd'] = list() self.tm['hr'] = list() self.tm['mh'] = list() self.tm['durac'] = list() self.tm['rede'] = list() self.tm['patamar'] = list() # listas referentes ao dicionário SIST self.sist['mne'] = list() self.sist['num'] = list() self.sist['mne_iden'] = list() self.sist['flag'] = list() self.sist['nome'] = list() # listas referentes ao dicionário REE self.ree['mne'] = list() self.ree['num_ree'] = list() self.ree['num_sub'] = list() self.ree['nome'] = list() # listas referentes ao dicionário UH self.uh['mne'] = list() self.uh['ind'] = list() self.uh['nome'] = list() self.uh['ss'] = list() self.uh['vinic'] = list() self.uh['evap'] = list() self.uh['di'] = list() self.uh['hi'] = list() self.uh['m'] = list() self.uh['vmor'] = list() self.uh['prod'] = list() self.uh['rest'] = list() # listas referentes ao dicionário TVIAG self.tviag['mne'] = list() self.tviag['mont'] = list() self.tviag['jus'] = list() self.tviag['tp'] = list() self.tviag['hr'] = list() self.tviag['tpTviag'] = list() # listas referentes ao dicionário UT self.ut['mne'] = list() self.ut['num'] = list() self.ut['nome'] = list() self.ut['ss'] = list() self.ut['flag'] = list() self.ut['di'] = list() self.ut['hi'] = list() self.ut['mi'] = list() self.ut['df'] = list() self.ut['hf'] = list() self.ut['mf'] = list() self.ut['rest'] = list() self.ut['gmin'] = list() self.ut['gmax'] = list() self.ut['g_anterior'] = list() # listas referentes ao dicionário USIE self.usie['mne'] = list() self.usie['num'] = list() self.usie['ss'] = list() self.usie['nome'] = list() self.usie['mont'] = list() self.usie['jus'] = list() self.usie['qmin'] = list() self.usie['qmax'] = list() self.usie['taxa_consumo'] = list() # listas referentes ao dicionário DP self.dp['mne'] = list() self.dp['ss'] = list() self.dp['di'] = list() self.dp['hi'] = list() self.dp['mi'] = list() self.dp['df'] = list() self.dp['hf'] = list() self.dp['mf'] = list() self.dp['demanda'] = list() # listas referentes ao dicionário DE self.de['mne'] = list() self.de['nde'] = list() self.de['di'] = list() self.de['hi'] = list() self.de['mi'] = list() self.de['df'] = list() self.de['hf'] = list() self.de['mf'] = list() self.de['demanda'] = list() self.de['justific'] = list() # listas referentes ao dicionário CD self.cd['mne'] = list() self.cd['is'] = list() self.cd['cd'] = list() self.cd['di'] = list() self.cd['hi'] = list() self.cd['mi'] = list() self.cd['df'] = list() self.cd['hf'] = list() self.cd['mf'] = list() self.cd['custo'] = list() self.cd['limsup'] = list() # listas referentes ao dicionário RI self.ri['mne'] = list() self.ri['di'] = list() self.ri['hi'] = list() self.ri['mi'] = list() self.ri['df'] = list() self.ri['hf'] = list() self.ri['mf'] = list() self.ri['gh50min'] = list() self.ri['gh50max'] = list() self.ri['gh60min'] = list() self.ri['gh60max'] = list() self.ri['ande'] = list() # listas referentes ao dicionário IA self.ia['mne'] = list() self.ia['ss1'] = list() self.ia['ss2'] = list() self.ia['di'] = list() self.ia['hi'] = list() self.ia['mi'] = list() self.ia['df'] = list() self.ia['hf'] = list() self.ia['mf'] = list() self.ia['ss1_ss2'] = list() self.ia['ss2_ss1'] = list() # listas referentes ao dicionário RD self.rd['mne'] = list() self.rd['flag_fol'] = list() self.rd['ncirc'] = list() self.rd['dbar'] = list() self.rd['lim'] = list() self.rd['dlin'] = list() self.rd['perd'] = list() self.rd['formato'] = list() # listas referentes ao dicionário RIVAR self.rivar['mne'] = list() self.rivar['num'] = list() self.rivar['ss'] = list() self.rivar['cod'] = list() self.rivar['penalidade'] = list() # listas referentes ao dicionário IT self.it['mne'] = list() self.it['num'] = list() self.it['coef'] = list() # listas referentes ao dicionário GP self.gp['mne'] = list() self.gp['tol_conv'] = list() self.gp['tol_prob'] = list() # listas referentes ao dicionário NI self.ni['mne'] = list() self.ni['flag'] = list() self.ni['nmax'] = list() # listas referentes ao dicionário VE self.ve['mne'] = list() self.ve['ind'] = list() self.ve['di'] = list() self.ve['hi'] = list() self.ve['mi'] = list() self.ve['df'] = list() self.ve['hf'] = list() self.ve['mf'] = list() self.ve['vol'] = list() # listas referentes ao dicionário CI/CE self.ci_ce['mne'] = list() self.ci_ce['num'] = list() self.ci_ce['nome'] = list() self.ci_ce['ss_busf'] = list() self.ci_ce['flag'] = list() self.ci_ce['di'] = list() self.ci_ce['hi'] = list() self.ci_ce['mi'] = list() self.ci_ce['df'] = list() self.ci_ce['hf'] = list() self.ci_ce['mf'] = list() self.ci_ce['unid'] = list() self.ci_ce['linf'] = list() self.ci_ce['lsup'] = list() self.ci_ce['custo'] = list() self.ci_ce['energia'] = list() # listas referentes ao dicionário RE self.re['mne'] = list() self.re['ind'] = list() self.re['di'] = list() self.re['hi'] = list() self.re['mi'] = list() self.re['df'] = list() self.re['hf'] = list() self.re['mf'] = list() # listas referentes ao dicionário LU self.lu['mne'] = list() self.lu['ind'] = list() self.lu['di'] = list() self.lu['hi'] = list() self.lu['mi'] = list() self.lu['df'] = list() self.lu['hf'] = list() self.lu['mf'] = list() self.lu['linf'] = list() self.lu['lsup'] = list() # listas referentes ao dicionário FH self.fh['mne'] = list() self.fh['ind'] = list() self.fh['di'] = list() self.fh['hi'] = list() self.fh['mi'] = list() self.fh['df'] = list() self.fh['hf'] = list() self.fh['mf'] = list() self.fh['ush'] = list() self.fh['unh'] = list() self.fh['fator'] = list() # listas referentes ao dicionário FT self.ft['mne'] = list() self.ft['ind'] = list() self.ft['di'] = list() self.ft['hi'] = list() self.ft['mi'] = list() self.ft['df'] = list() self.ft['hf'] = list() self.ft['mf'] = list() self.ft['ust'] = list() self.ft['fator'] = list() # listas referentes ao dicionário FI self.fi['mne'] = list() self.fi['ind'] = list() self.fi['di'] = list() self.fi['hi'] = list() self.fi['mi'] = list() self.fi['df'] = list() self.fi['hf'] = list() self.fi['mf'] = list() self.fi['ss1'] = list() self.fi['ss2'] = list() self.fi['fator'] = list() # listas referentes ao dicionário FE self.fe['mne'] = list() self.fe['ind'] = list() self.fe['di'] = list() self.fe['hi'] = list() self.fe['mi'] = list() self.fe['df'] = list() self.fe['hf'] = list() self.fe['mf'] = list() self.fe['num_contrato'] = list() self.fe['fator'] = list() # listas referentes ao dicionário FR self.fr['mne'] = list() self.fr['ind'] = list() self.fr['di'] = list() self.fr['hi'] = list() self.fr['mi'] = list() self.fr['df'] = list() self.fr['hf'] = list() self.fr['mf'] = list() self.fr['useol'] = list() self.fr['fator'] = list() # listas referentes ao dicionário FC self.fc['mne'] = list() self.fc['ind'] = list() self.fc['di'] = list() self.fc['hi'] = list() self.fc['mi'] = list() self.fc['df'] = list() self.fc['hf'] = list() self.fc['mf'] = list() self.fc['demanda'] = list() self.fc['fator'] = list() # listas referentes ao dicionário AC self.ac['mne'] = list() self.ac['usi'] = list() self.ac['mneumonico'] = list() self.ac['ind'] = list() self.ac['valor'] = list() # listas referentes ao dicionário DA self.da['mne'] = list() self.da['ind'] = list() self.da['di'] = list() self.da['hi'] = list() self.da['mi'] = list() self.da['df'] = list() self.da['hf'] = list() self.da['mf'] = list() self.da['taxa'] = list() self.da['obs'] = list() # listas referentes ao dicionário FP self.fp['mne'] = list() self.fp['usi'] = list() self.fp['f'] = list() self.fp['nptQ'] = list() self.fp['nptV'] = list() self.fp['concavidade'] = list() self.fp['min_quadraticos'] = list() self.fp['deltaV'] = list() self.fp['tr'] = list() # listas referentes ao dicionário EZ self.ez['mne'] = list() self.ez['usi'] = list() self.ez['perc_vol'] = list() # listas referentes ao dicionário AG self.ag['mne'] = list() self.ag['num_estagios'] = list() # listas referentes ao dicionário MH self.mh['mne'] = list() self.mh['num'] = list() self.mh['gr'] = list() self.mh['id'] = list() self.mh['di'] = list() self.mh['hi'] = list() self.mh['mi'] = list() self.mh['df'] = list() self.mh['hf'] = list() self.mh['mf'] = list() self.mh['f'] = list() # listas referentes ao dicionário MT self.mt['mne'] = list() self.mt['ute'] = list() self.mt['ug'] = list() self.mt['di'] = list() self.mt['hi'] = list() self.mt['mi'] = list() self.mt['df'] = list() self.mt['hf'] = list() self.mt['mf'] = list() self.mt['f'] = list() # listas referentes ao dicionário TX self.tx['mne'] = list() self.tx['taxa_fcf'] = list() # listas referentes ao dicionário PQ self.pq['mne'] = list() self.pq['ind'] = list() self.pq['nome'] = list() self.pq['ss/b'] = list() self.pq['di'] = list() self.pq['hi'] = list() self.pq['mi'] = list() self.pq['df'] = list() self.pq['hf'] = list() self.pq['mf'] = list() self.pq['geracao'] = list() # listas referentes ao dicionário SECR self.secr['mne'] = list() self.secr['num'] = list() self.secr['nome'] = list() self.secr['usi_1'] = list() self.secr['fator_1'] = list() self.secr['usi_2'] = list() self.secr['fator_2'] = list() self.secr['usi_3'] = list() self.secr['fator_3'] = list() self.secr['usi_4'] = list() self.secr['fator_4'] = list() self.secr['usi_5'] = list() self.secr['fator_5'] = list() # listas referentes ao dicionário CR self.cr['mne'] = list() self.cr['num'] = list() self.cr['nome'] = list() self.cr['gr'] = list() self.cr['A0'] = list() self.cr['A1'] = list() self.cr['A2'] = list() self.cr['A3'] = list() self.cr['A4'] = list() self.cr['A5'] = list() self.cr['A6'] = list() # listas referentes ao dicionário R11 self.r11['mne'] = list() self.r11['di'] = list() self.r11['hi'] = list() self.r11['mi'] = list() self.r11['df'] = list() self.r11['hf'] = list() self.r11['mf'] = list() self.r11['cotaIni'] = list() self.r11['varhora'] = list() self.r11['vardia'] = list() self.r11['coef'] = list() # listas referentes ao dicionário VR self.vr['mne'] = list() self.vr['dia'] = list() self.vr['mneumo_verao'] = list() # listas referentes ao dicionário PD self.pd['mne'] = list() self.pd['tol_perc'] = list() self.pd['tol_MW'] = list() # listas referentes ao dicionário VM self.vm['mne'] = list() self.vm['ind'] = list() self.vm['di'] = list() self.vm['hi'] = list() self.vm['mi'] = list() self.vm['df'] = list() self.vm['hf'] = list() self.vm['mf'] = list() self.vm['taxa_enchimento'] = list() # listas referentes ao dicionário DF self.df['mne'] = list() self.df['ind'] = list() self.df['di'] = list() self.df['hi'] = list() self.df['mi'] = list() self.df['df'] = list() self.df['hf'] = list() self.df['mf'] = list() self.df['taxa_descarga'] = list() # listas referentes ao dicionário ME self.me['mne'] = list() self.me['ind'] = list() self.me['di'] = list() self.me['hi'] = list() self.me['mi'] = list() self.me['df'] = list() self.me['hf'] = list() self.me['mf'] = list() self.me['fator'] = list() # listas referentes ao dicionário META CJSIST self.meta_cjsist['mneumo'] = list() self.meta_cjsist['ind'] = list() self.meta_cjsist['nome'] = list() # listas referentes ao dicionário META SIST self.meta_sist['mne'] = list() self.meta_sist['ind'] = list() self.meta_sist['tp'] = list() self.meta_sist['num'] = list() self.meta_sist['meta'] = list() self.meta_sist['tol_MW'] = list() self.meta_sist['tol_perc'] = list() # listas referentes ao dicionário META USIT self.meta_usit['mne'] = list() self.meta_usit['ind'] = list() self.meta_usit['tp'] = list() self.meta_usit['num'] = list() self.meta_usit['meta'] = list() self.meta_usit['tol_MW'] = list() self.meta_usit['tol_perc'] = list() # listas referentes ao dicionário SH self.sh['mne'] = list() self.sh['flag_simul'] = list() self.sh['flag_pl'] = list() self.sh['num_min'] = list() self.sh['num_max'] = list() self.sh['flag_quebra'] = list() self.sh['ind_1'] = list() self.sh['ind_2'] = list() self.sh['ind_3'] = list() self.sh['ind_4'] = list() self.sh['ind_5'] = list() # listas referentes ao dicionário TF self.tf['mne'] = list() self.tf['custo'] = list() # listas referentes ao dicionário RS self.rs['mne'] = list() self.rs['cod'] = list() self.rs['ind'] = list() self.rs['subs'] = list() self.rs['tp'] = list() self.rs['comentario'] = list() # listas referentes ao dicionário SP self.sp['mne'] = list() self.sp['flag'] = list() # listas referentes ao dicionário PS self.ps['mne'] = list() self.ps['flag'] = list() # listas referentes ao dicionário PP self.pp['mne'] = list() self.pp['flag'] = list() self.pp['iteracoes'] = list() self.pp['num'] = list() self.pp['tp'] = list() try: with open(file_name, 'r', encoding='latin-1') as f: # type: IO[str] continua = True while continua: self.next_line(f) linha = self.linha if linha[0] == COMENTARIO: self.comentarios.append(linha) self.entdados.append(linha) continue mne = linha[:6].strip().lower() mne_sigla = linha[:3].strip().lower() mneumo = linha[:13].strip().lower() self.entdados.append(linha[:6]) # Leitura dos dados de acordo com o mneumo correspondente if mne_sigla == 'tm': self.tm['mne'].append(self.linha[:2]) self.tm['dd'].append(self.linha[4:6]) self.tm['hr'].append(self.linha[9:11]) self.tm['mh'].append(self.linha[14:15]) self.tm['durac'].append(self.linha[19:24]) self.tm['rede'].append(self.linha[29:30]) self.tm['patamar'].append(self.linha[33:39]) continue if mne == 'sist': self.sist['mne'].append(self.linha[:6]) self.sist['num'].append(self.linha[7:9]) self.sist['mne_iden'].append(self.linha[10:12]) self.sist['flag'].append(self.linha[13:15]) self.sist['nome'].append(self.linha[16:26]) continue if mne == 'ree': self.ree['mne'].append(self.linha[:3]) self.ree['num_ree'].append(self.linha[6:8]) self.ree['num_sub'].append(self.linha[9:11]) self.ree['nome'].append(self.linha[12:22]) continue if mne_sigla == 'uh': self.uh['mne'].append(self.linha[:2]) self.uh['ind'].append(self.linha[4:7]) self.uh['nome'].append(self.linha[9:21]) self.uh['ss'].append(self.linha[24:26]) self.uh['vinic'].append(self.linha[29:39]) self.uh['evap'].append(self.linha[39:40]) self.uh['di'].append(self.linha[41:43]) self.uh['hi'].append(self.linha[44:46]) self.uh['m'].append(self.linha[47:48]) self.uh['vmor'].append(self.linha[49:59]) self.uh['prod'].append(self.linha[64:65]) self.uh['rest'].append(self.linha[69:70]) continue if mne == 'tviag': self.tviag['mne'].append(self.linha[:6]) self.tviag['mont'].append(self.linha[6:9]) self.tviag['jus'].append(self.linha[10:13]) self.tviag['tp'].append(self.linha[14:15]) self.tviag['hr'].append(self.linha[19:22]) self.tviag['tpTviag'].append(self.linha[24:25]) continue if mne_sigla == 'ut': self.ut['mne'].append(self.linha[:2]) self.ut['num'].append(self.linha[4:7]) self.ut['nome'].append(self.linha[9:21]) self.ut['ss'].append(self.linha[22:24]) self.ut['flag'].append(self.linha[25:26]) self.ut['di'].append(self.linha[27:29]) self.ut['hi'].append(self.linha[30:32]) self.ut['mi'].append(self.linha[33:34]) self.ut['df'].append(self.linha[35:37]) self.ut['hf'].append(self.linha[38:40]) self.ut['mf'].append(self.linha[41:42]) self.ut['rest'].append(self.linha[46:47]) self.ut['gmin'].append(self.linha[47:57]) self.ut['gmax'].append(self.linha[57:67]) self.ut['g_anterior'].append(self.linha[67:77]) continue if mne == 'usie': self.usie['mne'].append(self.linha[:4]) self.usie['num'].append(self.linha[5:8]) self.usie['ss'].append(self.linha[9:11]) self.usie['nome'].append(self.linha[14:26]) self.usie['mont'].append(self.linha[29:32]) self.usie['jus'].append(self.linha[34:37]) self.usie['qmin'].append(self.linha[39:49]) self.usie['qmax'].append(self.linha[49:59]) self.usie['taxa_consumo'].append(self.linha[59:69]) continue if mne_sigla == 'dp': self.dp['mne'].append(self.linha[:2]) self.dp['ss'].append(self.linha[4:6]) self.dp['di'].append(self.linha[8:10]) self.dp['hi'].append(self.linha[11:13]) self.dp['mi'].append(self.linha[14:15]) self.dp['df'].append(self.linha[16:18]) self.dp['hf'].append(self.linha[19:21]) self.dp['mf'].append(self.linha[22:23]) self.dp['demanda'].append(self.linha[24:34]) continue if mne_sigla == 'de': self.de['mne'].append(self.linha[:2]) self.de['nde'].append(self.linha[4:7]) self.de['di'].append(self.linha[8:10]) self.de['hi'].append(self.linha[11:13]) self.de['mi'].append(self.linha[14:15]) self.de['df'].append(self.linha[16:18]) self.de['hf'].append(self.linha[19:21]) self.de['mf'].append(self.linha[22:23]) self.de['demanda'].append(self.linha[24:34]) self.de['justific'].append(self.linha[35:45]) continue if mne_sigla == 'cd': self.cd['mne'].append(self.linha[:2]) self.cd['is'].append(self.linha[3:5]) self.cd['cd'].append(self.linha[6:8]) self.cd['di'].append(self.linha[9:11]) self.cd['hi'].append(self.linha[12:14]) self.cd['mi'].append(self.linha[15:16]) self.cd['df'].append(self.linha[17:19]) self.cd['hf'].append(self.linha[20:22]) self.cd['mf'].append(self.linha[23:24]) self.cd['custo'].append(self.linha[25:35]) self.cd['limsup'].append(self.linha[35:45]) continue if mne_sigla == 'ri': self.ri['mne'].append(self.linha[:2]) self.ri['di'].append(self.linha[8:10]) self.ri['hi'].append(self.linha[11:13]) self.ri['mi'].append(self.linha[14:15]) self.ri['df'].append(self.linha[16:18]) self.ri['hf'].append(self.linha[19:21]) self.ri['mf'].append(self.linha[22:23]) self.ri['gh50min'].append(self.linha[26:36]) self.ri['gh50max'].append(self.linha[36:46]) self.ri['gh60min'].append(self.linha[46:56]) self.ri['gh60max'].append(self.linha[56:66]) self.ri['ande'].append(self.linha[66:76]) continue if mne_sigla == 'ia': self.ia['mne'].append(self.linha[:2]) self.ia['ss1'].append(self.linha[4:6]) self.ia['ss2'].append(self.linha[9:11]) self.ia['di'].append(self.linha[13:15]) self.ia['hi'].append(self.linha[16:18]) self.ia['mi'].append(self.linha[19:20]) self.ia['df'].append(self.linha[21:23]) self.ia['hf'].append(self.linha[24:26]) self.ia['mf'].append(self.linha[27:28]) self.ia['ss1_ss2'].append(self.linha[29:39]) self.ia['ss2_ss1'].append(self.linha[39:49]) continue if mne_sigla == 'rd': self.rd['mne'].append(self.linha[:2]) self.rd['flag_fol'].append(self.linha[4:5]) self.rd['ncirc'].append(self.linha[8:12]) self.rd['dbar'].append(self.linha[14:15]) self.rd['lim'].append(self.linha[16:17]) self.rd['dlin'].append(self.linha[18:19]) self.rd['perd'].append(self.linha[20:21]) self.rd['formato'].append(self.linha[22:23]) continue if mne == 'rivar': self.rivar['mne'].append(self.linha[:5]) self.rivar['num'].append(self.linha[7:10]) self.rivar['ss'].append(self.linha[11:14]) self.rivar['cod'].append(self.linha[15:17]) self.rivar['penalidade'].append(self.linha[19:29]) continue if mne_sigla == 'it': self.it['mne'].append(self.linha[:2]) self.it['num'].append(self.linha[4:6]) self.it['coef'].append(self.linha[9:84]) continue if mne_sigla == 'gp': self.gp['mne'].append(self.linha[:2]) self.gp['tol_conv'].append(self.linha[4:14]) self.gp['tol_prob'].append(self.linha[15:25]) continue if mne_sigla == 'ni': self.ni['mne'].append(self.linha[:2]) self.ni['flag'].append(self.linha[4:5]) self.ni['nmax'].append(self.linha[9:12]) continue if mne_sigla == 've': self.ve['mne'].append(self.linha[:2]) self.ve['ind'].append(self.linha[4:7]) self.ve['di'].append(self.linha[8:10]) self.ve['hi'].append(self.linha[11:13]) self.ve['mi'].append(self.linha[14:15]) self.ve['df'].append(self.linha[16:18]) self.ve['hf'].append(self.linha[19:21]) self.ve['mf'].append(self.linha[22:23]) self.ve['vol'].append(self.linha[24:34]) continue if mne_sigla == 'ci' or mne_sigla == 'ce': self.ci_ce['mne'].append(self.linha[:2]) self.ci_ce['num'].append(self.linha[3:6]) self.ci_ce['nome'].append(self.linha[7:17]) self.ci_ce['ss_busf'].append(self.linha[18:23]) self.ci_ce['flag'].append(self.linha[23:24]) self.ci_ce['di'].append(self.linha[25:27]) self.ci_ce['hi'].append(self.linha[28:30]) self.ci_ce['mi'].append(self.linha[31:32]) self.ci_ce['df'].append(self.linha[33:35]) self.ci_ce['hf'].append(self.linha[36:38]) self.ci_ce['mf'].append(self.linha[39:40]) self.ci_ce['unid'].append(self.linha[41:42]) self.ci_ce['linf'].append(self.linha[43:53]) self.ci_ce['lsup'].append(self.linha[53:63]) self.ci_ce['custo'].append(self.linha[63:73]) self.ci_ce['energia'].append(self.linha[73:83]) continue if mne_sigla == 're': self.re['mne'].append(self.linha[:2]) self.re['ind'].append(self.linha[4:7]) self.re['di'].append(self.linha[9:11]) self.re['hi'].append(self.linha[12:14]) self.re['mi'].append(self.linha[15:16]) self.re['df'].append(self.linha[17:19]) self.re['hf'].append(self.linha[20:22]) self.re['mf'].append(self.linha[23:24]) continue if mne_sigla == 'lu': self.lu['mne'].append(self.linha[:2]) self.lu['ind'].append(self.linha[4:7]) self.lu['di'].append(self.linha[8:10]) self.lu['hi'].append(self.linha[11:13]) self.lu['mi'].append(self.linha[14:15]) self.lu['df'].append(self.linha[16:18]) self.lu['hf'].append(self.linha[19:21]) self.lu['mf'].append(self.linha[22:23]) self.lu['linf'].append(self.linha[24:34]) self.lu['lsup'].append(self.linha[34:44]) continue if mne_sigla == 'fh': self.fh['mne'].append(self.linha[:2]) self.fh['ind'].append(self.linha[4:7]) self.fh['di'].append(self.linha[8:10]) self.fh['hi'].append(self.linha[11:13]) self.fh['mi'].append(self.linha[14:15]) self.fh['df'].append(self.linha[16:18]) self.fh['hf'].append(self.linha[19:21]) self.fh['mf'].append(self.linha[22:23]) self.fh['ush'].append(self.linha[24:27]) self.fh['unh'].append(self.linha[27:29]) self.fh['fator'].append(self.linha[34:44]) continue if mne_sigla == 'ft': self.ft['mne'].append(self.linha[:2]) self.ft['ind'].append(self.linha[4:7]) self.ft['di'].append(self.linha[8:10]) self.ft['hi'].append(self.linha[11:13]) self.ft['mi'].append(self.linha[14:15]) self.ft['df'].append(self.linha[16:18]) self.ft['hf'].append(self.linha[19:21]) self.ft['mf'].append(self.linha[22:23]) self.ft['ust'].append(self.linha[24:27]) self.ft['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fi': self.fi['mne'].append(self.linha[:2]) self.fi['ind'].append(self.linha[4:7]) self.fi['di'].append(self.linha[8:10]) self.fi['hi'].append(self.linha[11:13]) self.fi['mi'].append(self.linha[14:15]) self.fi['df'].append(self.linha[16:18]) self.fi['hf'].append(self.linha[19:21]) self.fi['mf'].append(self.linha[22:23]) self.fi['ss1'].append(self.linha[24:26]) self.fi['ss2'].append(self.linha[29:31]) self.fi['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fe': self.fe['mne'].append(self.linha[:2]) self.fe['ind'].append(self.linha[4:7]) self.fe['di'].append(self.linha[8:10]) self.fe['hi'].append(self.linha[11:13]) self.fe['mi'].append(self.linha[14:15]) self.fe['df'].append(self.linha[16:18]) self.fe['hf'].append(self.linha[19:21]) self.fe['mf'].append(self.linha[22:23]) self.fe['num_contrato'].append(self.linha[24:27]) self.fe['fator'].append(self.linha[34:44]) continue if mne_sigla == 'fr': self.fr['mne'].append(self.linha[:2]) self.fr['ind'].append(self.linha[4:9]) self.fr['di'].append(self.linha[10:12]) self.fr['hi'].append(self.linha[13:15]) self.fr['mi'].append(self.linha[16:17]) self.fr['df'].append(self.linha[18:20]) self.fr['hf'].append(self.linha[21:23]) self.fr['mf'].append(self.linha[24:25]) self.fr['useol'].append(self.linha[26:31]) self.fr['fator'].append(self.linha[36:46]) continue if mne_sigla == 'fc': self.fc['mne'].append(self.linha[:2]) self.fc['ind'].append(self.linha[4:7]) self.fc['di'].append(self.linha[10:12]) self.fc['hi'].append(self.linha[13:15]) self.fc['mi'].append(self.linha[16:17]) self.fc['df'].append(self.linha[18:20]) self.fc['hf'].append(self.linha[21:23]) self.fc['mf'].append(self.linha[24:25]) self.fc['demanda'].append(self.linha[26:29]) self.fc['fator'].append(self.linha[36:46]) continue if mne_sigla == 'ac': self.ac['mne'].append(self.linha[:2]) self.ac['usi'].append(self.linha[4:7]) self.ac['mneumonico'].append(self.linha[9:15]) self.ac['ind'].append(self.linha[15:19]) self.ac['valor'].append(self.linha[19:]) continue if mne_sigla == 'da': self.da['mne'].append(self.linha[:2]) self.da['ind'].append(self.linha[4:7]) self.da['di'].append(self.linha[8:10]) self.da['hi'].append(self.linha[11:13]) self.da['mi'].append(self.linha[14:15]) self.da['df'].append(self.linha[16:18]) self.da['hf'].append(self.linha[19:21]) self.da['mf'].append(self.linha[22:23]) self.da['taxa'].append(self.linha[24:34]) self.da['obs'].append(self.linha[35:47]) continue if mne_sigla == 'fp': self.fp['mne'].append(self.linha[:2]) self.fp['usi'].append(self.linha[3:6]) self.fp['f'].append(self.linha[7:8]) self.fp['nptQ'].append(self.linha[10:13]) self.fp['nptV'].append(self.linha[15:18]) self.fp['concavidade'].append(self.linha[20:21]) self.fp['min_quadraticos'].append(self.linha[24:25]) self.fp['deltaV'].append(self.linha[29:39]) self.fp['tr'].append(self.linha[39:49]) continue if mne_sigla == 'ez': self.ez['mne'].append(self.linha[:2]) self.ez['usi'].append(self.linha[4:7]) self.ez['perc_vol'].append(self.linha[9:14]) continue if mne_sigla == 'ag': self.ag['mne'].append(self.linha[:2]) self.ag['num_estagios'].append(self.linha[3:6]) continue if mne_sigla == 'mh': self.mh['mne'].append(self.linha[:2]) self.mh['num'].append(self.linha[4:7]) self.mh['gr'].append(self.linha[9:11]) self.mh['id'].append(self.linha[12:14]) self.mh['di'].append(self.linha[14:16]) self.mh['hi'].append(self.linha[17:19]) self.mh['mi'].append(self.linha[20:21]) self.mh['df'].append(self.linha[22:24]) self.mh['hf'].append(self.linha[25:27]) self.mh['mf'].append(self.linha[28:29]) self.mh['f'].append(self.linha[30:31]) continue if mne_sigla == 'mt': self.mt['mne'].append(self.linha[:2]) self.mt['ute'].append(self.linha[4:7]) self.mt['ug'].append(self.linha[8:11]) self.mt['di'].append(self.linha[13:15]) self.mt['hi'].append(self.linha[16:18]) self.mt['mi'].append(self.linha[19:20]) self.mt['df'].append(self.linha[21:23]) self.mt['hf'].append(self.linha[24:26]) self.mt['mf'].append(self.linha[27:28]) self.mt['f'].append(self.linha[29:30]) continue if mne_sigla == 'tx': self.tx['mne'].append(self.linha[:2]) self.tx['taxa_fcf'].append(self.linha[4:14]) continue if mne_sigla == 'pq': self.pq['mne'].append(self.linha[:2]) self.pq['ind'].append(self.linha[4:7]) self.pq['nome'].append(self.linha[9:19]) self.pq['ss/b'].append(self.linha[19:24]) self.pq['di'].append(self.linha[24:26]) self.pq['hi'].append(self.linha[27:29]) self.pq['mi'].append(self.linha[30:31]) self.pq['df'].append(self.linha[32:34]) self.pq['hf'].append(self.linha[35:37]) self.pq['mf'].append(self.linha[38:39]) self.pq['geracao'].append(self.linha[40:50]) continue if mne == 'secr': self.secr['mne'].append(self.linha[:4]) self.secr['num'].append(self.linha[5:8]) self.secr['nome'].append(self.linha[9:21]) self.secr['usi_1'].append(self.linha[24:27]) self.secr['fator_1'].append(self.linha[28:33]) self.secr['usi_2'].append(self.linha[34:37]) self.secr['fator_2'].append(self.linha[38:43]) self.secr['usi_3'].append(self.linha[44:47]) self.secr['fator_3'].append(self.linha[48:53]) self.secr['usi_4'].append(self.linha[54:57]) self.secr['fator_4'].append(self.linha[58:63]) self.secr['usi_5'].append(self.linha[64:67]) self.secr['fator_5'].append(self.linha[68:73]) continue if mne_sigla == 'cr': self.cr['mne'].append(self.linha[:2]) self.cr['num'].append(self.linha[4:7]) self.cr['nome'].append(self.linha[9:21]) self.cr['gr'].append(self.linha[24:26]) self.cr['A0'].append(self.linha[27:42]) self.cr['A1'].append(self.linha[43:58]) self.cr['A2'].append(self.linha[59:74]) self.cr['A3'].append(self.linha[75:90]) self.cr['A4'].append(self.linha[91:106]) self.cr['A5'].append(self.linha[107:122]) self.cr['A6'].append(self.linha[123:138]) continue if mne_sigla == 'r11': self.r11['mne'].append(self.linha[:3]) self.r11['di'].append(self.linha[4:6]) self.r11['hi'].append(self.linha[7:9]) self.r11['mi'].append(self.linha[10:11]) self.r11['df'].append(self.linha[12:14]) self.r11['hf'].append(self.linha[15:17]) self.r11['mf'].append(self.linha[18:19]) self.r11['cotaIni'].append(self.linha[20:30]) self.r11['varhora'].append(self.linha[30:40]) self.r11['vardia'].append(self.linha[40:50]) self.r11['coef'].append(self.linha[59:164]) continue if mne_sigla == 'vr': self.vr['mne'].append(self.linha[:2]) self.vr['dia'].append(self.linha[4:6]) self.vr['mneumo_verao'].append(self.linha[9:12]) continue if mne_sigla == 'pd': self.pd['mne'].append(self.linha[:2]) self.pd['tol_perc'].append(self.linha[3:9]) self.pd['tol_MW'].append(self.linha[12:22]) continue if mne_sigla == 'vm': self.vm['mne'].append(self.linha[:2]) self.vm['ind'].append(self.linha[4:7]) self.vm['di'].append(self.linha[8:10]) self.vm['hi'].append(self.linha[11:13]) self.vm['mi'].append(self.linha[14:15]) self.vm['df'].append(self.linha[16:18]) self.vm['hf'].append(self.linha[19:21]) self.vm['mf'].append(self.linha[22:23]) self.vm['taxa_enchimento'].append(self.linha[24:34]) continue if mne_sigla == 'df': self.df['mne'].append(self.linha[:2]) self.df['ind'].append(self.linha[4:7]) self.df['di'].append(self.linha[8:10]) self.df['hi'].append(self.linha[11:13]) self.df['mi'].append(self.linha[14:15]) self.df['df'].append(self.linha[16:18]) self.df['hf'].append(self.linha[19:21]) self.df['mf'].append(self.linha[22:23]) self.df['taxa_descarga'].append(self.linha[24:34]) continue if mne_sigla == 'me': self.me['mne'].append(self.linha[:2]) self.me['ind'].append(self.linha[4:7]) self.me['di'].append(self.linha[8:10]) self.me['hi'].append(self.linha[11:13]) self.me['mi'].append(self.linha[14:15]) self.me['df'].append(self.linha[16:18]) self.me['hf'].append(self.linha[19:21]) self.me['mf'].append(self.linha[22:23]) self.me['fator'].append(self.linha[24:34]) continue if mneumo == 'meta cjsist': self.meta_cjsist['mneumo'].append(self.linha[:13]) self.meta_cjsist['ind'].append(self.linha[14:17]) self.meta_cjsist['nome'].append(self.linha[18:20]) continue if mneumo == 'meta receb': self.meta_sist['mne'].append(self.linha[:13]) self.meta_sist['ind'].append(self.linha[14:17]) self.meta_sist['tp'].append(self.linha[19:21]) self.meta_sist['num'].append(self.linha[22:23]) self.meta_sist['meta'].append(self.linha[24:34]) self.meta_sist['tol_MW'].append(self.linha[34:44]) self.meta_sist['tol_perc'].append(self.linha[44:54]) continue if mneumo == 'meta gter': self.meta_usit['mne'].append(self.linha[:13]) self.meta_usit['ind'].append(self.linha[14:17]) self.meta_usit['tp'].append(self.linha[19:21]) self.meta_usit['num'].append(self.linha[22:23]) self.meta_usit['meta'].append(self.linha[24:34]) self.meta_usit['tol_MW'].append(self.linha[34:44]) self.meta_usit['tol_perc'].append(self.linha[44:54]) continue if mne_sigla == 'sh': self.sh['mne'].append(self.linha[:2]) self.sh['flag_simul'].append(self.linha[4:5]) self.sh['flag_pl'].append(self.linha[9:10]) self.sh['num_min'].append(self.linha[14:17]) self.sh['num_max'].append(self.linha[19:22]) self.sh['flag_quebra'].append(self.linha[24:25]) self.sh['ind_1'].append(self.linha[29:32]) self.sh['ind_2'].append(self.linha[34:37]) self.sh['ind_3'].append(self.linha[39:42]) self.sh['ind_4'].append(self.linha[44:47]) self.sh['ind_5'].append(self.linha[49:52]) continue if mne_sigla == 'tf': self.tf['mne'].append(self.linha[:2]) self.tf['custo'].append(self.linha[4:14]) continue if mne_sigla == 'rs': self.rs['mne'].append(self.linha[:2]) self.rs['cod'].append(self.linha[3:6]) self.rs['ind'].append(self.linha[7:11]) self.rs['subs'].append(self.linha[12:16]) self.rs['tp'].append(self.linha[22:26]) self.rs['comentario'].append(self.linha[27:39]) continue if mne_sigla == 'sp': self.sp['mne'].append(self.linha[:2]) self.sp['flag'].append(self.linha[4:5]) continue if mne_sigla == 'ps': self.ps['mne'].append(self.linha[:2]) self.ps['flag'].append(self.linha[4:5]) continue if mne_sigla == 'pp': self.pp['mne'].append(self.linha[:2]) self.pp['flag'].append(self.linha[3:4]) self.pp['iteracoes'].append(self.linha[5:8]) self.pp['num'].append(self.linha[9:12]) self.pp['tp'].append(self.linha[13:14]) continue except Exception as err: if isinstance(err, StopIteration): self.bloco_tm['df'] = pd.DataFrame(self.tm) self.bloco_sist['df'] = pd.DataFrame(self.sist) self.bloco_ree['df'] = pd.DataFrame(self.ree) self.bloco_uh['df'] = pd.DataFrame(self.uh) self.bloco_tviag['df'] = pd.DataFrame(self.tviag) self.bloco_ut['df'] = pd.DataFrame(self.ut) self.bloco_usie['df'] = pd.DataFrame(self.usie) self.bloco_dp['df'] = pd.DataFrame(self.dp) self.bloco_de['df'] = pd.DataFrame(self.de) self.bloco_cd['df'] = pd.DataFrame(self.cd) self.bloco_ri['df'] = pd.DataFrame(self.ri) self.bloco_ia['df'] = pd.DataFrame(self.ia) self.bloco_rd['df'] = pd.DataFrame(self.rd) self.bloco_rivar['df'] = pd.DataFrame(self.rivar) self.bloco_it['df'] = pd.DataFrame(self.it) self.bloco_gp['df'] = pd.DataFrame(self.gp) self.bloco_ni['df'] = pd.DataFrame(self.ni) self.bloco_ve['df'] = pd.DataFrame(self.ve) self.bloco_ci_ce['df'] = pd.DataFrame(self.ci_ce) self.bloco_re['df'] = pd.DataFrame(self.re) self.bloco_lu['df'] = pd.DataFrame(self.lu) self.bloco_fh['df'] = pd.DataFrame(self.fh) self.bloco_ft['df'] = pd.DataFrame(self.ft) self.bloco_fi['df'] = pd.DataFrame(self.fi) self.bloco_fe['df'] = pd.DataFrame(self.fe) self.bloco_fr['df'] = pd.DataFrame(self.fr) self.bloco_fc['df'] = pd.DataFrame(self.fc) self.bloco_ac['df'] = pd.DataFrame(self.ac) self.bloco_da['df'] = pd.DataFrame(self.da) self.bloco_fp['df'] = pd.DataFrame(self.fp) self.bloco_ez['df'] = pd.DataFrame(self.ez) self.bloco_ag['df'] = pd.DataFrame(self.ag) self.bloco_mh['df'] = pd.DataFrame(self.mh) self.bloco_mt['df'] = pd.DataFrame(self.mt) self.bloco_tx['df'] =
pd.DataFrame(self.tx)
pandas.DataFrame
import numpy as np import pandas as pd import streamlit as st import os from datetime import datetime from brother_ql.conversion import convert from brother_ql.backends.helpers import send from brother_ql.raster import BrotherQLRaster from PIL import Image, ImageFont, ImageDraw def search_families(df_people, lastname): """ Return a DataFrame of all families with 'lastname'. """ # Get all people with lastname lastnames = df_people[df_people['Last Name'].str.lower() == lastname.lower()] # Get unique families unique_families = lastnames['Family Members'].drop_duplicates() return [ df_people[df_people['Family Members'] == unique_family] for unique_family in unique_families ] def display_family(family, df_people): """ For a given family, list each each member as well as check in box. When check in box clicked, record in df_people and show print button. When print clicked, print label. """ for person in family['First Name']: left, centre, right = st.columns(3) left.write(person) member_id = family[family['First Name']==person]['Member ID'] member_row = member_id.index[0] checked_in_already =
pd.to_datetime(df_people.loc[member_row, "Checked In"])
pandas.to_datetime
from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd companies = ['AAPL', 'GOOG', 'GOOGL', 'AMZN', 'TSLA', 'MSFT'] DATA_DIR = "./data/regression" # TODO feature engineering for ticker in companies: print(f"regression: {ticker}") data =
pd.read_csv(f"{DATA_DIR}/public-sentiment-{ticker}.csv")
pandas.read_csv
""" """ from lists_and_dicts import * from methods_and_classes import * import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import ticker import seaborn as sns # global parameters pd.options.display.float_format = '{:,.2f}'.format plt.style.use('my_style') stock = pd.read_csv('data/stock_transactions.csv') new = stock['alt_product_group & cc'].str.split(n=0, expand=True) stock['cc'] = new[0] stock['alternate_product_group'] = new[1] stock['cost_value'] = stock['unit_cost'] * stock['quantity'] stock = stock.drop(columns=['alt_product_group & cc']) num_invalid_apg = pd.isnull(stock['alternate_product_group']).sum() print(f'You have {num_invalid_apg} records after the preprocessing where you find invalid "alternate_product_group"') num_invalid_cc = pd.isnull(pd.to_numeric(stock['cc'], errors='coerce')).sum() print(f'You have {num_invalid_cc} records after the preprocessing where you find invalid "cc"') # transaction type 1: debit raw materials chemical_sum = summarise_stock(stock, 1, 48, '50', 'quantity', np.sum) oil_sum = summarise_stock(stock, 1, 40, '55', 'quantity', np.sum) plastics_sum = summarise_stock(stock, 1, 60, '60', 'quantity', np.sum) paper_sum = summarise_stock(stock, 1, 41, '80', 'quantity', np.sum) tuffa_sum = summarise_stock(stock, 1, 51, '85', 'quantity', np.sum) # concatenate raw_mats_one = pd.DataFrame() raw_mats_one = pd.concat([raw_mats_one, chemical_sum], axis=1).rename(columns={'value': 'chemical'}) raw_mats_one = pd.concat([raw_mats_one, oil_sum], axis=1).rename(columns={'value': 'oil'}) raw_mats_one = pd.concat([raw_mats_one, plastics_sum], axis=1).rename(columns={'value': 'plastics'}) raw_mats_one = pd.concat([raw_mats_one, paper_sum], axis=1).rename(columns={'value': 'paper'}) raw_mats_one = pd.concat([raw_mats_one, tuffa_sum], axis=1).rename(columns={'value': 'tuffa'}) # plot ax = raw_mats_one.plot(kind='bar', stacked=True, title='Factory Raw Material Use', xlabel='Months', ylabel='Units') # set the y ticks to display correctly ax.get_yaxis().set_major_formatter(ticker.StrMethodFormatter('{x:,.0f}')) plt.savefig('plots/all_factories_raw_material_use.png') plt.show() # todo: invert, legend problem, value or volume? # there are a couple of odd values but in general it passes the common sense test. # the spike in chemical in april 20 is an error in the data related to the product 'blue era' # transaction type 0: credit finished goods chemical_sum = summarise_stock(stock, 0, 48, '50', 'quantity', np.sum) oil_sum = summarise_stock(stock, 0, 40, '55', 'quantity', np.sum) plastics_sum = summarise_stock(stock, 0, 60, '60', 'quantity', np.sum) paper_sum = summarise_stock(stock, 0, 41, '80', 'quantity', np.sum) tuffa_sum = summarise_stock(stock, 0, 51, '85', 'quantity', np.sum) # concatenate finished_goods = pd.DataFrame() finished_goods = pd.concat([finished_goods, chemical_sum], axis=1).rename(columns={'value': 'chemical'}) finished_goods =
pd.concat([finished_goods, oil_sum], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 import pandas as pd # Question 1 def filter_employment(df, mask_ls): ''' INPUT df - a dataframe holding the Employment column mask_ls - a list holding the emplyment values to filter for OUTPUT df - a dataframe with the filtered rows as per the values defined in the mask ''' mask = df['Employment'].isin(mask_ls) return df[mask] def expand_cat_column(df, column): ''' INPUT df - a dataframe holding at least one categorical column column - a string holding the name of the categorical column to expand OUTPUT df - the original dataframe with the expanded categorical column df_cat - the dataframe containing only the expanded columns ''' df[column] = df[column].str.split(';') df_cat = pd.get_dummies(df[column].apply(pd.Series).stack()).sum(level=0) df = pd.concat([df.drop(column, axis=1), df_cat], axis=1) return df, df_cat def map_salary(df_salary, df_ones): ''' INPUT df_salary - a dataframe containing a column with salary data df_ones - a column with 0 or 1s, indicating whether salary information shall be mapped or not in the given row OUTPUT df - a dataframe with the mapped salary values ''' mul = lambda col: col * df_salary df = df_ones.apply(mul) return df def convert_to_fulltime(df_workhours, df_filtered_cols): ''' INPUT df_workhours - a dataframe with the column WorkWeekHrs df_filtered_cols - a dataframe containing only columns with salary data OUTPUT df - a dataframe with the converted salary to 40hrs/week ''' df = 40 *df_filtered_cols.div(df_workhours, axis=0) return df def create_df_with_agg_values(df): ''' INPUT df - a dataframe with columns containing salary values OUTPUT df_agg - a new dataframe containing mean, standard deviation and number of counts for each column of the input dataframe ''' mask = df != 0 df_agg_mean = df[mask].median() df_agg_std = df[mask].std() df_agg_counts = df[mask].count() df_agg =
pd.concat([df_agg_mean, df_agg_std, df_agg_counts], axis=1)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Fri Nov 13 14:38:59 2020 This script plots the co-occurence rates @author: acn980 """ import calendar import pandas as pd from datetime import date import matplotlib.pyplot as plt import numpy as np import os,sys,glob sys.path.insert(0,r'E:\github\seasonality_risk\Functions') from Functions_HCMC import detrend_fft, remove_NaN_skew, ax_joint_mm, extract_MM, joint_mm_all_cooc, plot_cooc_CI np.set_printoptions(precision=15) #%% save = False fn_trunk = 'E:/surfdrive/Documents' fn = os.path.join(fn_trunk, 'Master2019\Thomas\data\matlab_csv') fn_files = 'Master2019/Thomas/data' fn2 = os.path.join(fn_trunk,fn_files) lag_joint = 0 #days #%% We import the monthly data AND the dates fn_tide = os.path.join(fn,'Tide_WACC_VungTau_Cleaned_Detrended_Strict_sel_const.csv') date_parser = lambda x: pd.datetime.strptime(x, "%d-%m-%Y %H:%M:%S") tide = pd.read_csv(fn_tide, parse_dates = True, date_parser= date_parser, index_col = 'Date') tide.rename(columns = {tide.columns[0]:'tide'}, inplace = True) all_tide = tide.resample('M').max() tide_day = tide.resample('D').max() # Importing monthly data - rainfall allfiles = glob.glob(os.path.join(fn2, 'NewRain\TRENDS\MONTH_CORRECTED', 'Thiessen_*.csv')) all_rain =
pd.DataFrame(data=None)
pandas.DataFrame
import datetime as dt import os import shutil import unittest import numpy as np import pandas as pd import sys sys.path.insert(0, '/home/jost/DHC/devicely') import devicely class ShimmerTestCase(unittest.TestCase): READ_PATH = 'tests/Shimmer_test_data/read_test_data.csv' WRITE_PATH = 'tests/Shimmer_test_data/write_test_data.csv' def setUp(self): self.expected_delimiter = ';' self.expected_head = pd.DataFrame( {"Shimmer_40AC_Accel_LN_X_CAL": [-1.434782608695652, -1.4021739130434783, -1.434782608695652, -1.4130434782608696, -1.4456521739130435], "Shimmer_40AC_Accel_LN_Y_CAL": [10.0, 10.0, 10.0, 10.0, 10.0], "Shimmer_40AC_Accel_LN_Z_CAL": [0.5543478260869565, 0.5543478260869565, 0.5543478260869565, 0.5217391304347826, 0.5108695652173912], "Shimmer_40AC_Accel_WR_X_CAL": [-3.9305804907241173, -3.9233991621783364, -3.897067624177139, -3.932974266906044, -3.944943147815679], "Shimmer_40AC_Accel_WR_Y_CAL": [8.42130460801915, 8.442848593656493, 8.42848593656493, 8.42130460801915, 8.42848593656493], "Shimmer_40AC_Accel_WR_Z_CAL": [-1.620586475164572, -1.5990424895272293, -1.6038300418910831, -1.589467384799521, -1.6612806702573308], "Shimmer_40AC_Battery_CAL": [4139.194139194139, 4137.728937728937, 4111.355311355311, 4140.65934065934, 4134.798534798534], "Shimmer_40AC_Ext_Exp_A15_CAL": [1684.9816849816848, 1673.260073260073, 1901.098901098901, 1722.3443223443223, 1678.3882783882782], "Shimmer_40AC_GSR_Range_CAL": [2.0, 2.0, 2.0, 2.0, 2.0], "Shimmer_40AC_GSR_Skin_Conductance_CAL": [2.493040293040293, 2.4915750915750916, 2.49010989010989, 2.4886446886446887, 2.4886446886446887], "Shimmer_40AC_GSR_Skin_Resistance_CAL": [401.1166617690273, 401.3525433695972, 401.58870255957635, 401.8251398292611, 401.8251398292611], "Shimmer_40AC_Gyro_X_CAL": [0.13740458015267176, 0.183206106870229, 0.2748091603053435, 0.22900763358778625, 0.13740458015267176], "Shimmer_40AC_Gyro_Y_CAL": [1.8778625954198473, 1.3282442748091603, 1.282442748091603, 1.450381679389313, 1.5114503816793892], "Shimmer_40AC_Gyro_Z_CAL": [-0.183206106870229, -0.41221374045801523, -0.1984732824427481, -0.12213740458015267, -0.47328244274809156], "Shimmer_40AC_Int_Exp_A12_CAL": [1680.5860805860805, 1703.296703296703, 1687.179487179487, 1650.5494505494505, 1701.8315018315018], "Shimmer_40AC_Mag_X_CAL": [-0.11244377811094453, -0.10944527736131934, -0.10794602698650674, -0.10644677661169415, -0.11394302848575712], "Shimmer_40AC_Mag_Y_CAL": [-0.9160419790104948, -0.9130434782608695, -0.9100449775112444, -0.9010494752623688, -0.9040479760119939], "Shimmer_40AC_Mag_Z_CAL": [-0.047976011994003, -0.047976011994003, -0.04947526236881559, -0.050974512743628186, -0.037481259370314844], "Shimmer_40AC_Pressure_BMP280_CAL": [100.43537920858897, 100.4297311006671, 100.44102732749235, 100.44102732749235, 100.43820326666797], "Shimmer_40AC_Temperature_BMP280_CAL": [33.365877509029815, 33.365877509029815, 33.365877509029815, 33.365877509029815, 33.365877509029815], 'acc_mag': [10.1176036 , 10.11303086, 10.1176036 , 10.11280889, 10.11686206]}, index=pd.to_datetime(["2020-07-28 10:56:50.034", "2020-07-28 10:56:50.057", "2020-07-28 10:56:50.074", "2020-07-28 10:56:50.099", "2020-07-28 10:56:50.111"]) ) self.expected_head.index.name = 'time' self.expected_units = pd.Series( {'Shimmer_40AC_Timestamp_Unix_CAL': 'ms', 'Shimmer_40AC_Accel_LN_X_CAL': 'm/(s^2)', 'Shimmer_40AC_Accel_LN_Y_CAL': 'm/(s^2)', 'Shimmer_40AC_Accel_LN_Z_CAL': 'm/(s^2)', 'Shimmer_40AC_Accel_WR_X_CAL': 'm/(s^2)', 'Shimmer_40AC_Accel_WR_Y_CAL': 'm/(s^2)', 'Shimmer_40AC_Accel_WR_Z_CAL': 'm/(s^2)', 'Shimmer_40AC_Battery_CAL': 'mV', 'Shimmer_40AC_Ext_Exp_A15_CAL': 'mV', 'Shimmer_40AC_GSR_Range_CAL': 'no_units', 'Shimmer_40AC_GSR_Skin_Conductance_CAL': 'uS', 'Shimmer_40AC_GSR_Skin_Resistance_CAL': 'kOhms', 'Shimmer_40AC_Gyro_X_CAL': 'deg/s', 'Shimmer_40AC_Gyro_Y_CAL': 'deg/s', 'Shimmer_40AC_Gyro_Z_CAL': 'deg/s', 'Shimmer_40AC_Int_Exp_A12_CAL': 'mV', 'Shimmer_40AC_Mag_X_CAL': 'local_flux', 'Shimmer_40AC_Mag_Y_CAL': 'local_flux', 'Shimmer_40AC_Mag_Z_CAL': 'local_flux', 'Shimmer_40AC_Pressure_BMP280_CAL': 'kPa', 'Shimmer_40AC_Temperature_BMP280_CAL': 'Degrees Celsius', 'acc_mag': 'm/(s^2)'} ) self.reader = devicely.ShimmerPlusReader(self.READ_PATH) def test_basic_read(self): self.assertEqual(self.reader.delimiter, self.expected_delimiter) pd.testing.assert_frame_equal(self.reader.data.head().reset_index(drop=True), self.expected_head.reset_index(drop=True)) pd.testing.assert_index_equal(self.reader.data.head().index.round('ms'), self.expected_head.index.round('ms'))
pd.testing.assert_series_equal(self.reader.units, self.expected_units, check_names=False)
pandas.testing.assert_series_equal
import numpy as np from moviepy.editor import VideoFileClip from ImageSequenceClip import ImageSequenceClip import utils from timeit import default_timer as timer from SrtTextHandler import SrtTextHandler from DatEmotionHandler import DatEmotionHandler from collections import defaultdict from scipy.io import wavfile import pandas as pd from video2splice import splice_video, splice_audio import glob import csv """ DEAP scale: valence, arousal (continuous 1-9) - Russell's scale ( <NAME>, “A circumplex model of affect,” Journal of Personality and Social Psychology, vol. 39, no. 6, pp. 1161–1178, 1980) "Arousal can range from inactive (e.g. uninterested, bored) to active (e.g. alert, excited), whereas valence ranges from unpleasant (e.g. sad, stressed) to pleasant (e.g. happy, elated)" Source: http://www.eecs.qmul.ac.uk/mmv/datasets/deap/doc/tac_special_issue_2011.pdf A dummy text csv is also generated here but it's not used (generated so we can use splices2npz.py) Splice video into 3 seconds each -> video, emotion (1D), audio Start splicing video from the beginning (if more than 1 time is shown, it means we ran the code more than once) Test: Vid 1-16, 19-40 (3 splices each) Em 1: 28 * 3 -> 84 Em 0: 10 * 3 -> 30 Program ran for 221.39 seconds Train (highlights): Vid 1-16, 19-40 (20 splices each) Em 1: 1-7, 9-13, 15, 20, 22-25, 27, 29-32, 34-38 (7+5+2+4+1+4+5=28 -> 560 splices) Em 0: 8, 14, 16, 19, 21, 26, 28, 33, 39, 40 (10 -> 200 splices) Program ran for 1209.07 seconds Train (raw videos): same emotion as above, but number of splices per video is different: Em 1 (total=2,069): Vid 1 (46), 2 (67), 3 (77), 4 (92), 5 (40), 6 (70), 7 (48), 9 (90), -> 530 10 (83), 11 (76), 12 (72), 13 (61), 15 (23), 20 (78), 22 (78), -> 471 23 (78), 24 (79), 25 (89), 27 (112), 29 (90), 30 (69), 31 (95), -> 612 32 (75), 34 (79), 35 (59), 36 (66), 37 (104), 38 (73) -> 456 Em 0 (total=781): Vid 8 (70), 14 (73), 16 (74), 19 (55), 21 (94), -> 366 26 (82), 28 (63), 33 (60), 39 (124), 40 (86) -> 415 P.S.: Raw 21, 23 have compromised frames and splicing doesn't work. Solved by converting to .mov and back to .mp4 """ __author__ = "<NAME>" is_test = False if is_test: ROOT = utils.project_dir_name() + 'data/deap/test_data/' else: ROOT = utils.project_dir_name() + 'data/deap_raw/mp4/' params = { 'root': ROOT, 'emotion_root': utils.project_dir_name() + 'data/deap_raw/', 'sr': 16000, 'seconds': 3, 'num_samples': -1 # default = -1 for all samples. Use different to test code } def get_num_video_splices(video_splices_dir): return len(glob.glob(video_splices_dir+'*.mp4')) def splice_emotion(video_name_int, csv_filename='participant_ratings_1D.csv'): n_splices = get_num_video_splices(params['root'] + 'video_splices_{}secs/'.format(params['seconds'])) # Extract emotion with open(csv_filename, newline='') as csvfile: reader = csv.DictReader(csvfile) dict = {'video_id': []} for row in reader: dict['video_id'].append(row['emotion']) # DEAP dataset is annotated for each video, not per time in video. # This means that the emotion score will be the same for every splice in 'video_name'. emotion_csv_data = defaultdict(lambda: []) text_csv_data = defaultdict(lambda: []) emotion_counter = defaultdict(lambda: 0) emotion = dict['video_id'][video_name_int-1] for e in range(0, n_splices): emotion_csv_data['splice'].append(e) emotion_csv_data['emotion'] = emotion text_csv_data['splice'].append(e) text_csv_data['text'].append("") emotion_counter[emotion] += 1 # Save emotion splices in csv file df =
pd.DataFrame(emotion_csv_data, columns=['splice', 'emotion'])
pandas.DataFrame
# Some utilities to cluster and name vectors import logging from collections import Counter from itertools import chain, combinations import altair as alt import networkx as nx import numpy as np import pandas as pd from community import community_louvain from scipy.spatial.distance import cityblock, cosine from sklearn.cluster import KMeans from sklearn.feature_extraction.text import TfidfTransformer, TfidfVectorizer from eurito_indicators.pipeline.processing_utils import clean_table_names, make_lq def build_cluster_graph( vectors: pd.DataFrame, clustering_algorithms: list, n_runs: int = 10, sample: int = None, ): """Builds a cluster network based on observation co-occurrences in a clustering output Args: vector: vectors to cluster clustering_algorithms: a list where the first element is the clustering algorithm and the second element are the parameter names and sets n_runs: number of times to run a clustering algorithm sample: size of the vector to sample. Returns: A network where the nodes are observations and their edges number of co-occurrences in the clustering """ clustering_edges = [] index_to_id_lookup = {n: ind for n, ind in enumerate(vectors.index)} logging.info("Running cluster ensemble") for cl in clustering_algorithms: logging.info(cl[0]) algo = cl[0] parametres = [{cl[1][0]: v} for v in cl[1][1]] for par in parametres: logging.info(f"running {par}") for _ in range(n_runs): cl_assignments = algo(**par).fit_predict(vectors) index_cluster_pair = {n: c for n, c in enumerate(cl_assignments)} indices = range(0, len(cl_assignments)) pairs = combinations(indices, 2) for p in pairs: if index_cluster_pair[p[0]] == index_cluster_pair[p[1]]: clustering_edges.append(frozenset(p)) edges_weighted = Counter(clustering_edges) logging.info("Building cluster graph") edge_list = [(list(fs)[0], list(fs)[1]) for fs in edges_weighted.keys()] cluster_graph = nx.Graph() cluster_graph.add_edges_from(edge_list) for ed in cluster_graph.edges(): cluster_graph[ed[0]][ed[1]]["weight"] = edges_weighted[ frozenset([ed[0], ed[1]]) ] return cluster_graph, index_to_id_lookup def name_categories_tokenised(table, category, tokenised, top_terms=3000, top_words=10): """Analyses a tokenised variable to extract salient terms""" docterm_matrix = ( table.groupby(category)[tokenised] .apply(lambda x: pd.Series(chain(*list(x))).value_counts()) .unstack(level=1) .fillna(0) ) pop_words = ( docterm_matrix.sum().sort_values(ascending=False)[:top_terms].index.tolist() ) docterm_popular = docterm_matrix[pop_words] tf = TfidfTransformer() tfidf_df = pd.DataFrame( tf.fit_transform(docterm_popular).todense(), columns=docterm_popular.columns, index=docterm_popular.index, ) names = {} for _id, row in tfidf_df.iterrows(): salient = "_".join( tfidf_df.loc[_id].sort_values(ascending=False)[:top_words].index.tolist() ) names[_id] = salient return names def extract_name_communities( cluster_graph: nx.Graph, resolution: float, index_lookup: dict, text_table: pd.DataFrame, doc_id: str = "project_id", doc_text: str = "title", ) -> list: """Extracts community from the cluster graph and names them Args: cluster_graph: network object resolution: resolution for community detection index_lookup: lookup between integer indices and project ids text_table: table with variable names doc_id: document id in the text table doc_text: text variable in the text table Returns: a lookup between communities and the projects that belong to them a lookup between community indices and names """ logging.info("Extracting communities") comms = community_louvain.best_partition(cluster_graph, resolution=resolution) ids_to_comms = {index_lookup[k]: v for k, v in comms.items()} comm_assignments = { comm: [index_lookup[k] for k, v in comms.items() if v == comm] for comm in set(comms.values()) } logging.info("Naming communities") comm_names = name_category( (text_table.assign(community=lambda df: df[doc_id].map(ids_to_comms))), text_var=doc_text, ) return comm_assignments, comm_names def name_category( text_table: pd.DataFrame, cat_var: str = "community", text_var: str = "title", top_words: int = 15, max_features: int = 5000, max_df: float = 0.8, ) -> dict: """Names the clusters with their highest tfidf tokens Args: text_table: a dataframe with category to name cat_var: category to name text_var: text to use in naming top_words: top words to keep in name Returns: lookup between category indices and names """ grouped_names = text_table.groupby(cat_var)[text_var].apply( lambda x: " ".join(list(x)) ) tfidf = TfidfVectorizer( stop_words="english", ngram_range=[2, 3], max_features=max_features, max_df=max_df, ) tfidf_fit = tfidf.fit_transform(grouped_names) tfidf_df = pd.DataFrame(tfidf_fit.todense(), columns=tfidf.vocabulary_) cluster_salient = {} for ind, _ in tfidf_df.iterrows(): salient_words = tfidf_df.loc[ind].sort_values(ascending=False).index[:top_words] cluster_salient[ind] = "_".join(salient_words) return cluster_salient def make_distance_to_clusters( vectors_df: pd.DataFrame, distance, cluster_ids: dict, ) -> pd.DataFrame: """Calculates distances between all vectors in a table and the centroids of identified clusters Args: vectors_df: table with all vectors cluster_id: lookup between cluster indices and vector indices Returns: A table with distance between each vector and the cluster categories """ logging.info("Calculating cluster centroids") cluster_centroids_df = pd.concat( [ vectors_df.loc[vectors_df.index.isin(set(v))].median() for v in cluster_ids.values() ], axis=1, ).T cluster_centroids_df.index = cluster_ids.keys() cluster_centroids_array = np.array(cluster_centroids_df) vectors_array = np.array(vectors_df) dists = [] logging.info("Calculating vector distances to clusters") for v in vectors_array: vect_dist = [] for cl_centr in cluster_centroids_array: vect_dist.append(distance(v, cl_centr)) dists.append(vect_dist) dist_df = pd.DataFrame( dists, index=vectors_df.index, columns=sorted(set(cluster_ids.keys())) # columns=[cluster_names[comm] for comm in sorted(set(cluster_ids.keys()))], ) return dist_df def check_community_consensus(doc_ids: list, communities: list) -> pd.DataFrame: """Checks if project ids are allocated to the same communities by our approach Args: doc_ids: list of doc ids communities: list of community assignments Returns: A dataframe with pairs of projects and the number of times they are assigned together """ id_consensus = [] doc_pairs = combinations(doc_ids, 2) for c in doc_pairs: match = [1 if comm[c[0]] == comm[c[1]] else 0 for comm in communities] matches_id = pd.Series( list(c) + match, index=["doc1", "doc2"] + list(range(len(communities))) ) id_consensus.append(matches_id) id_consensus_df = pd.DataFrame(id_consensus).set_index(["doc1", "doc2"]) return id_consensus_df def make_doc_comm_lookup(comm_doc_lookup: dict, method: str = "single") -> dict: """Creates doc to comm lookup from a comm to list of docs lookup Args: comm_doc_lookup: lookup between clusters and their related vectors method: if single, assign one element to each cluster. If multiple, many clusters can be assigned to the same document """ if method == "single": return {el: k for k, v in comm_doc_lookup.items() for el in v} elif method == "multiple": assign_dict = dict() for cl, assignments in comm_doc_lookup.items(): for _id in assignments: if _id not in assign_dict.keys(): assign_dict[_id] = [] assign_dict[_id].append(cl) else: assign_dict[_id].append(cl) return assign_dict def get_closest_documents( dist_df: pd.DataFrame, cluster: int, cluster_assignments: dict, sd_scale: float = 2, exclude_in_cluster: bool = True, ) -> list: """Returns closest documents to a cluster Args: dist_df: dataframe with distances cluster: cluster we are interested in cluster assignments: lookup between cluster ids and project ids sd_scale: standard deviation to define proximity exclude_in_cluster: whether we want to exclude docs already in a cluster from the results Returns: A list of project ids """ dist_copy = dist_df.copy() if exclude_in_cluster is True: dist_copy = dist_copy.loc[~dist_copy.index.isin(cluster_assignments[cluster])] sd = np.std(dist_copy[cluster]) selected = ( dist_copy.sort_values(cluster, ascending=True) .loc[dist_copy[cluster] < (np.mean(dist_copy[cluster]) - sd_scale * sd)] .index.tolist() ) logging.info(cluster) logging.info(len(selected)) return selected def tag_clusters(docs, cluster_assignment, cluster_name="cluster_covid"): """Tag clusters with an assignment""" docs_copy = docs.copy() docs_copy[cluster_name] = docs_copy["project_id"].map(cluster_assignment) docs_copy[cluster_name] = docs_copy[cluster_name].fillna("non_covid") return docs_copy def make_activity( table: pd.DataFrame, reg_var: str = "coordinator_country", cat_var: str = "cluster_covid", funding_var: str = "ec_max_contribution", ) -> pd.DataFrame: """Counts activity, funding and LQs in a project activity table""" if reg_var == "participant_country": table = process_participant(table) table_wide = table.groupby([reg_var, cat_var]).size().unstack().fillna(0) table_funding = ( table.groupby([reg_var, cat_var])[funding_var].sum().unstack().fillna(0) ) table_lq, table_funding_lq = [make_lq(t) for t in [table_wide, table_funding]] stacked_tables = [ t.stack().reset_index(name="value").assign(variable=v) for t, v in zip( [table_wide, table_lq, table_funding, table_funding_lq], ["project_total", "project_lq", "funding_total", "funding_lq"], ) ] return pd.concat(stacked_tables, axis=0) def process_participant(table): """Creates a participant table (requires exploding a combined variable in the projects table) """ docs = table.copy() docs["participant_country"] = docs["participant_countries"].apply( lambda x: x.split(";") if type(x) == str else np.nan ) docs_expl = docs.dropna(axis=0, subset=["participant_country"]).explode( "participant_country" ) return docs_expl def specialisation_robust( doc_distances, sd_thres, projects, cluster_assignments, pre_covid_date="2019/01/01", reg_var="coordinator_country", ): """Extract activity levels based on different thresholds of "distance" from a cluster centroid """ docs = projects.copy().query(f"start_date<'{pre_covid_date}'") # Get project lists under different threshold close_to_clusters = [ make_doc_comm_lookup( { cl: get_closest_documents( doc_distances, cl, cluster_assignments, sd_scale=sd ) for cl in doc_distances.columns }, method="multiple", ) for sd in sd_thres ] # Assign projects to categories results = [] for thres, assign in zip(["low", "high"], close_to_clusters): docs_ = docs.copy() docs_["cluster_covid"] = docs_["project_id"].map(assign) docs_["cluster_covid"] = docs_["cluster_covid"].fillna("non_covid") docs_expl = docs_.explode("cluster_covid") if reg_var == "participant_country": docs_part = process_participant(docs_expl) act = make_activity(docs_part, reg_var="participant_country") else: act = make_activity(docs_expl) act = act.rename(columns={"value": f"value_{str(thres)}"}) results.append(act) if len(results) > 1: merged = results[0].merge(results[1], on=[reg_var, "cluster_covid", "variable"]) return merged else: return results[0] def plot_specialisation_robust( reg_var, activity_var, dist_to_clusters, cluster_assignments, projs, focus_countries, clean_var_lookup, thres=[1.5, 2.5], ): """Plot level of preparedness in a covid cluster""" specialisation_related = specialisation_robust( dist_to_clusters, [1.5, 2.5], projects=projs, reg_var=reg_var, cluster_assignments=cluster_assignments, ) specialisation_long = ( specialisation_related.loc[ specialisation_related[reg_var].isin(focus_countries) ] .query(f"variable=='{activity_var}'") .reset_index(drop=True) .melt(id_vars=[reg_var, "variable", "cluster_covid"], var_name="position") .reset_index(drop=True) ) specialisation_long_clean = clean_table_names( specialisation_long, [reg_var, "cluster_covid"], clean_var_lookup ).query("cluster_covid!='non_covid'") spec_comp = ( alt.Chart() .mark_line() .encode( x=alt.X("value", title=activity_var), detail="cluster_covid", y=alt.Y( "cluster_covid", title=None, axis=alt.Axis(ticks=False, labels=False), sort="descending", ), color="cluster_covid_clean:N", ) ).properties(height=20, width=200) ruler = ( alt.Chart() .transform_calculate(v="1") .mark_rule(color="black", strokeDash=[1, 1]) .encode(x="v:Q") ) comp_chart = alt.layer(spec_comp, ruler, data=specialisation_long_clean).facet( row=alt.Row( f"{reg_var}_clean", sort=alt.EncodingSortField("value", "median", order="descending"), header=alt.Header(labelAngle=360, labelAlign="left"), ) ) return comp_chart def make_pre_post_table( projs, cluster_groups, distance_to_clusters, reg_var="coordinator_country", sd=1.5, ): """Extracts activity levels before and after covid-19""" # NB there is some confusion between the two types of lookups we use # one that maps one project id to one cluster # one that maps one cluster to a list of project ids # Should find a clearer way to organise this response = make_activity( projs.query("start_date>'2019/01/01'").assign( cluster_covid=lambda df: df["project_id"].map( make_doc_comm_lookup(cluster_groups) ) ), reg_var=reg_var, ) print(response.head()) sp_related = specialisation_robust( distance_to_clusters, [sd], projects=projs, reg_var=reg_var, cluster_assignments=cluster_groups, ).rename(columns={"value_low": "value_pre"}) print(sp_related.head()) combi = response.merge(sp_related, on=[reg_var, "cluster_covid", "variable"]) logging.info( combi.groupby(["variable", "cluster_covid"]).apply( lambda df: df[["value", "value_pre"]].corr(method="spearman").iloc[0, 1] ) ) return combi def filter_pre_post_table( combi_table, focus_countries, reg_var="coordinator_country", focus_var="project_lq", volume_var="project_total", ): """Filters an activity table to focus on particular variables and countries""" combined_table_focus = combi_table.loc[ combi_table[reg_var].isin(focus_countries) ].query(f"variable=='{focus_var}'") size_lookup = combi_table.query(f"variable=='{volume_var}'")[ [reg_var, "cluster_covid", "value"] ].rename(columns={"value": "volume"}) combined_table_focus = combined_table_focus.merge( size_lookup, on=[reg_var, "cluster_covid"] ) return combined_table_focus def plot_preparedness_response(data, clean_var_lookup, reg_var): """Plots a comparison between preparedness and response""" data_clean = clean_table_names(data, [reg_var, "cluster_covid"], clean_var_lookup) clean_country_name = reg_var + "_clean" data_clean["cluster_covid_clean"] = [x for x in data_clean["cluster_covid_clean"]] comp_ch = ( alt.Chart() .mark_point(filled=True, stroke="black", strokeWidth=0.5) .encode( x=alt.X( "value_pre", title="Related activity pre 2020", scale=alt.Scale(zero=False), ), size=alt.Size("volume",title='Number of projects'), y=alt.Y("value", title="Activity post-2020", scale=alt.Scale(zero=False)), color=alt.Color(clean_country_name, scale=alt.Scale(scheme="tableau20"), title='Coordinator country'), tooltip=[clean_country_name, "volume"], ) ).properties(height=200, width=300) hor = ( alt.Chart() .transform_calculate(y="1") .mark_rule(strokeDash=[2, 2]) .encode(y="y:Q") ) vert = ( alt.Chart() .transform_calculate(x="1") .mark_rule(strokeDash=[2, 2]) .encode(x="x:Q") ) lay = alt.layer(comp_ch, hor, vert, data=data_clean).facet( facet=alt.Facet("cluster_covid_clean", title="Covid research cluster"), columns=3) return lay def calculate_pairwise_distances(df_1: pd.DataFrame, df_2: pd.DataFrame): """Calculate pairwise distances between two groups of vectors Args: """ df_1_array = np.array(df_1) df_2_array = np.array(df_2) distances = [] for v_1 in df_1_array: vect_dist = [] for v_2 in df_2_array: vect_dist.append(cityblock(v_1, v_2)) distances.append(vect_dist) dist_df = pd.DataFrame(distances, index=df_1.index, columns=df_2.index) return dist_df def rank_org_distances(org_cluster_dist, cluster, orgs_in_cluster, cluster_labels): """Ranks distances between organisations a covid-related corpus of research and adds extra variables to aggregate results later Args: org_cluster_dist: semantic distance between an organisation and a cluster cluster: cluster we are focusing on orgs_in_cluster: lookup between cluster and organisations that participated in its projects cluster_labels: clean cluster names """ dist_copy = org_cluster_dist.copy() dist_copy["ranking"] = pd.qcut( dist_copy[cluster], q=np.arange(0, 1.1, 0.1), labels=False ) dist_copy["is_participant"] = dist_copy.index.get_level_values(level=0).isin( orgs_in_cluster[cluster] ) dist_copy["cluster"] = cluster_labels[cluster] return dist_copy.rename(columns={cluster: "distance"})[ ["cluster", "ranking", "is_participant", "country"] ] def plot_participation_distance(org_distances, focus_countries, clean_variable_lookup): """Plots level of participation by country and cluster at different levels of distance""" org_distances_mean = ( org_distances.groupby(["country", "cluster", "ranking"])["is_participant"] .mean() .loc[focus_countries] .reset_index(drop=False) .rename(columns={"is_participant": "share"}) ) org_distances_sum = ( org_distances.groupby(["country", "cluster", "ranking"])["is_participant"] .sum() .loc[focus_countries] .reset_index(drop=False) .rename(columns={"is_participant": "total"}) ) org_distances_aggregate = pd.concat( [org_distances_mean, org_distances_sum["total"]], axis=1 ) org_distances_aggregate['country_clean'] = org_distances_aggregate['country'].map(clean_variable_lookup) distances_chart = ( alt.Chart(org_distances_aggregate) .mark_point(filled=True, stroke="black", strokeWidth=0.5) .encode( y=alt.Y( "country_clean",title='Country', sort=alt.EncodingSortField("share", op="median", order="descending"), ), x=alt.X("share", axis=alt.Axis(format="%"), title="Share of participation"), tooltip=["country_clean", "share", "total", "ranking"], size=alt.Size("total", title="Volume of participation"), color=alt.Color( "ranking:O", scale=alt.Scale(scheme="redblue"), title="Distance to cluster", ), facet=alt.Facet("cluster", columns=3, title='Covid research cluster'), ) ) return distances_chart def k_check_clusters(vectors, cluster_assignments, n_clust=25, sample_size=1000): """Checks the robustness of a cluster assignment using a Kmeans baseline Args: vectors: docs to assess cluster_assignment: lookup between clusters and document lists that we are validating n_cluster: number of clusters to use in the test sample_size: sample_size for comparing pairs Returns: a df with number of cluster co-occurrences and a df with cluster distribution co-occurrences """ doc_cluster_lookup = make_doc_comm_lookup(cluster_assignments) logging.info("fitting cluster") k = KMeans(n_clusters=n_clust) fit = k.fit_predict(vectors) k_labs = {i: k for i, k in zip(vectors.index, fit)} samp = vectors.sample(n=1000).index.tolist() pairs = combinations(samp, 2) matches = [] logging.info("Calculating co-occurrences") for p in pairs: if k_labs[p[0]] == k_labs[p[1]]: matches.append([doc_cluster_lookup[p[0]], doc_cluster_lookup[p[1]]]) co_occ_df = ( pd.DataFrame(matches, columns=["c1", "c2"]) .pivot_table(index="c1", columns="c2", aggfunc="size") .fillna(0) .stack() ) logging.info("Calculating share similarities") reclassify = { clust: pd.Series( [v for k, v in k_labs.items() if k in cluster_assignments[clust]] ).value_counts(normalize=True) for clust in cluster_assignments.keys() } corrs = [] for p in combinations(reclassify.keys(), 2): comb =
pd.concat([reclassify[p[0]], reclassify[p[1]]], axis=1)
pandas.concat
# pylint: disable-msg=W0612,E1101,W0141 import nose from numpy.random import randn import numpy as np from pandas.core.index import Index, MultiIndex from pandas import Panel, DataFrame, Series, notnull, isnull from pandas.util.testing import (assert_almost_equal, assert_series_equal, assert_frame_equal, assertRaisesRegexp) import pandas.core.common as com import pandas.util.testing as tm from pandas.compat import (range, lrange, StringIO, lzip, u, cPickle, product as cart_product, zip) import pandas as pd import pandas.index as _index class TestMultiLevel(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) index = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux'], ['one', 'two', 'three']], labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=['first', 'second']) self.frame = DataFrame(np.random.randn(10, 3), index=index, columns=Index(['A', 'B', 'C'], name='exp')) self.single_level = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) # create test series object arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index = MultiIndex.from_tuples(tuples) s = Series(randn(8), index=index) s[3] = np.NaN self.series = s tm.N = 100 self.tdf = tm.makeTimeDataFrame() self.ymd = self.tdf.groupby([lambda x: x.year, lambda x: x.month, lambda x: x.day]).sum() # use Int64Index, to make sure things work self.ymd.index.set_levels([lev.astype('i8') for lev in self.ymd.index.levels], inplace=True) self.ymd.index.set_names(['year', 'month', 'day'], inplace=True) def test_append(self): a, b = self.frame[:5], self.frame[5:] result = a.append(b) tm.assert_frame_equal(result, self.frame) result = a['A'].append(b['A']) tm.assert_series_equal(result, self.frame['A']) def test_dataframe_constructor(self): multi = DataFrame(np.random.randn(4, 4), index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) self.assertNotIsInstance(multi.columns, MultiIndex) multi = DataFrame(np.random.randn(4, 4), columns=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.columns, MultiIndex) def test_series_constructor(self): multi = Series(1., index=[np.array(['a', 'a', 'b', 'b']), np.array(['x', 'y', 'x', 'y'])]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(1., index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) multi = Series(lrange(4), index=[['a', 'a', 'b', 'b'], ['x', 'y', 'x', 'y']]) tm.assert_isinstance(multi.index, MultiIndex) def test_reindex_level(self): # axis=0 month_sums = self.ymd.sum(level='month') result = month_sums.reindex(self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum) assert_frame_equal(result, expected) # Series result = month_sums['A'].reindex(self.ymd.index, level=1) expected = self.ymd['A'].groupby(level='month').transform(np.sum) assert_series_equal(result, expected) # axis=1 month_sums = self.ymd.T.sum(axis=1, level='month') result = month_sums.reindex(columns=self.ymd.index, level=1) expected = self.ymd.groupby(level='month').transform(np.sum).T assert_frame_equal(result, expected) def test_binops_level(self): def _check_op(opname): op = getattr(DataFrame, opname) month_sums = self.ymd.sum(level='month') result = op(self.ymd, month_sums, level='month') broadcasted = self.ymd.groupby(level='month').transform(np.sum) expected = op(self.ymd, broadcasted) assert_frame_equal(result, expected) # Series op = getattr(Series, opname) result = op(self.ymd['A'], month_sums['A'], level='month') broadcasted = self.ymd['A'].groupby( level='month').transform(np.sum) expected = op(self.ymd['A'], broadcasted) assert_series_equal(result, expected) _check_op('sub') _check_op('add') _check_op('mul') _check_op('div') def test_pickle(self): def _test_roundtrip(frame): pickled = cPickle.dumps(frame) unpickled = cPickle.loads(pickled) assert_frame_equal(frame, unpickled) _test_roundtrip(self.frame) _test_roundtrip(self.frame.T) _test_roundtrip(self.ymd) _test_roundtrip(self.ymd.T) def test_reindex(self): reindexed = self.frame.ix[[('foo', 'one'), ('bar', 'one')]] expected = self.frame.ix[[0, 3]] assert_frame_equal(reindexed, expected) def test_reindex_preserve_levels(self): new_index = self.ymd.index[::10] chunk = self.ymd.reindex(new_index) self.assertIs(chunk.index, new_index) chunk = self.ymd.ix[new_index] self.assertIs(chunk.index, new_index) ymdT = self.ymd.T chunk = ymdT.reindex(columns=new_index) self.assertIs(chunk.columns, new_index) chunk = ymdT.ix[:, new_index] self.assertIs(chunk.columns, new_index) def test_sort_index_preserve_levels(self): result = self.frame.sort_index() self.assertEquals(result.index.names, self.frame.index.names) def test_repr_to_string(self): repr(self.frame) repr(self.ymd) repr(self.frame.T) repr(self.ymd.T) buf = StringIO() self.frame.to_string(buf=buf) self.ymd.to_string(buf=buf) self.frame.T.to_string(buf=buf) self.ymd.T.to_string(buf=buf) def test_repr_name_coincide(self): index = MultiIndex.from_tuples([('a', 0, 'foo'), ('b', 1, 'bar')], names=['a', 'b', 'c']) df = DataFrame({'value': [0, 1]}, index=index) lines = repr(df).split('\n') self.assert_(lines[2].startswith('a 0 foo')) def test_getitem_simple(self): df = self.frame.T col = df['foo', 'one'] assert_almost_equal(col.values, df.values[:, 0]) self.assertRaises(KeyError, df.__getitem__, ('foo', 'four')) self.assertRaises(KeyError, df.__getitem__, 'foobar') def test_series_getitem(self): s = self.ymd['A'] result = s[2000, 3] result2 = s.ix[2000, 3] expected = s.reindex(s.index[42:65]) expected.index = expected.index.droplevel(0).droplevel(0) assert_series_equal(result, expected) result = s[2000, 3, 10] expected = s[49] self.assertEquals(result, expected) # fancy result = s.ix[[(2000, 3, 10), (2000, 3, 13)]] expected = s.reindex(s.index[49:51]) assert_series_equal(result, expected) # key error self.assertRaises(KeyError, s.__getitem__, (2000, 3, 4)) def test_series_getitem_corner(self): s = self.ymd['A'] # don't segfault, GH #495 # out of bounds access self.assertRaises(IndexError, s.__getitem__, len(self.ymd)) # generator result = s[(x > 0 for x in s)] expected = s[s > 0] assert_series_equal(result, expected) def test_series_setitem(self): s = self.ymd['A'] s[2000, 3] = np.nan self.assert_(isnull(s.values[42:65]).all()) self.assert_(notnull(s.values[:42]).all()) self.assert_(notnull(s.values[65:]).all()) s[2000, 3, 10] = np.nan self.assert_(isnull(s[49])) def test_series_slice_partial(self): pass def test_frame_getitem_setitem_boolean(self): df = self.frame.T.copy() values = df.values result = df[df > 0] expected = df.where(df > 0) assert_frame_equal(result, expected) df[df > 0] = 5 values[values > 0] = 5 assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) assert_almost_equal(df.values, values) with assertRaisesRegexp(TypeError, 'boolean values only'): df[df * 0] = 2 def test_frame_getitem_setitem_slice(self): # getitem result = self.frame.ix[:4] expected = self.frame[:4] assert_frame_equal(result, expected) # setitem cp = self.frame.copy() cp.ix[:4] = 0 self.assert_((cp.values[:4] == 0).all()) self.assert_((cp.values[4:] != 0).all()) def test_frame_getitem_setitem_multislice(self): levels = [['t1', 't2'], ['a', 'b', 'c']] labels = [[0, 0, 0, 1, 1], [0, 1, 2, 0, 1]] midx = MultiIndex(labels=labels, levels=levels, names=[None, 'id']) df = DataFrame({'value': [1, 2, 3, 7, 8]}, index=midx) result = df.ix[:, 'value'] assert_series_equal(df['value'], result) result = df.ix[1:3, 'value'] assert_series_equal(df['value'][1:3], result) result = df.ix[:, :] assert_frame_equal(df, result) result = df df.ix[:, 'value'] = 10 result['value'] = 10 assert_frame_equal(df, result) df.ix[:, :] = 10 assert_frame_equal(df, result) def test_frame_getitem_multicolumn_empty_level(self): f = DataFrame({'a': ['1', '2', '3'], 'b': ['2', '3', '4']}) f.columns = [['level1 item1', 'level1 item2'], ['', 'level2 item2'], ['level3 item1', 'level3 item2']] result = f['level1 item1'] expected = DataFrame([['1'], ['2'], ['3']], index=f.index, columns=['level3 item1']) assert_frame_equal(result, expected) def test_frame_setitem_multi_column(self): df = DataFrame(randn(10, 4), columns=[['a', 'a', 'b', 'b'], [0, 1, 0, 1]]) cp = df.copy() cp['a'] = cp['b'] assert_frame_equal(cp['a'], cp['b']) # set with ndarray cp = df.copy() cp['a'] = cp['b'].values assert_frame_equal(cp['a'], cp['b']) #---------------------------------------- # #1803 columns = MultiIndex.from_tuples([('A', '1'), ('A', '2'), ('B', '1')]) df = DataFrame(index=[1, 3, 5], columns=columns) # Works, but adds a column instead of updating the two existing ones df['A'] = 0.0 # Doesn't work self.assertTrue((df['A'].values == 0).all()) # it broadcasts df['B', '1'] = [1, 2, 3] df['A'] = df['B', '1'] assert_series_equal(df['A', '1'], df['B', '1']) assert_series_equal(df['A', '2'], df['B', '1']) def test_getitem_tuple_plus_slice(self): # GH #671 df = DataFrame({'a': lrange(10), 'b': lrange(10), 'c': np.random.randn(10), 'd': np.random.randn(10)}) idf = df.set_index(['a', 'b']) result = idf.ix[(0, 0), :] expected = idf.ix[0, 0] expected2 = idf.xs((0, 0)) assert_series_equal(result, expected) assert_series_equal(result, expected2) def test_getitem_setitem_tuple_plus_columns(self): # GH #1013 df = self.ymd[:5] result = df.ix[(2000, 1, 6), ['A', 'B', 'C']] expected = df.ix[2000, 1, 6][['A', 'B', 'C']] assert_series_equal(result, expected) def test_getitem_multilevel_index_tuple_unsorted(self): index_columns = list("abc") df = DataFrame([[0, 1, 0, "x"], [0, 0, 1, "y"]], columns=index_columns + ["data"]) df = df.set_index(index_columns) query_index = df.index[:1] rs = df.ix[query_index, "data"] xp = Series(['x'], index=MultiIndex.from_tuples([(0, 1, 0)])) assert_series_equal(rs, xp) def test_xs(self): xs = self.frame.xs(('bar', 'two')) xs2 = self.frame.ix[('bar', 'two')] assert_series_equal(xs, xs2) assert_almost_equal(xs.values, self.frame.values[4]) # GH 6574 # missing values in returned index should be preserrved acc = [ ('a','abcde',1), ('b','bbcde',2), ('y','yzcde',25), ('z','xbcde',24), ('z',None,26), ('z','zbcde',25), ('z','ybcde',26), ] df = DataFrame(acc, columns=['a1','a2','cnt']).set_index(['a1','a2']) expected = DataFrame({ 'cnt' : [24,26,25,26] }, index=Index(['xbcde',np.nan,'zbcde','ybcde'],name='a2')) result = df.xs('z',level='a1') assert_frame_equal(result, expected) def test_xs_partial(self): result = self.frame.xs('foo') result2 = self.frame.ix['foo'] expected = self.frame.T['foo'].T assert_frame_equal(result, expected) assert_frame_equal(result, result2) result = self.ymd.xs((2000, 4)) expected = self.ymd.ix[2000, 4] assert_frame_equal(result, expected) # ex from #1796 index = MultiIndex(levels=[['foo', 'bar'], ['one', 'two'], [-1, 1]], labels=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(8, 4), index=index, columns=list('abcd')) result = df.xs(['foo', 'one']) expected = df.ix['foo', 'one'] assert_frame_equal(result, expected) def test_xs_level(self): result = self.frame.xs('two', level='second') expected = self.frame[self.frame.index.get_level_values(1) == 'two'] expected.index = expected.index.droplevel(1) assert_frame_equal(result, expected) index = MultiIndex.from_tuples([('x', 'y', 'z'), ('a', 'b', 'c'), ('p', 'q', 'r')]) df = DataFrame(np.random.randn(3, 5), index=index) result = df.xs('c', level=2) expected = df[1:2] expected.index = expected.index.droplevel(2) assert_frame_equal(result, expected) # this is a copy in 0.14 result = self.frame.xs('two', level='second') # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) def test_xs_level_multiple(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs(('a', 4), level=['one', 'four']) expected = df.xs('a').xs(4, level='four') assert_frame_equal(result, expected) # this is a copy in 0.14 result = df.xs(('a', 4), level=['one', 'four']) # setting this will give a SettingWithCopyError # as we are trying to write a view def f(x): x[:] = 10 self.assertRaises(com.SettingWithCopyError, f, result) # GH2107 dates = lrange(20111201, 20111205) ids = 'abcde' idx = MultiIndex.from_tuples([x for x in cart_product(dates, ids)]) idx.names = ['date', 'secid'] df = DataFrame(np.random.randn(len(idx), 3), idx, ['X', 'Y', 'Z']) rs = df.xs(20111201, level='date') xp = df.ix[20111201, :] assert_frame_equal(rs, xp) def test_xs_level0(self): from pandas import read_table text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" df = read_table(StringIO(text), sep='\s+', engine='python') result = df.xs('a', level=0) expected = df.xs('a') self.assertEqual(len(result), 2) assert_frame_equal(result, expected) def test_xs_level_series(self): s = self.frame['A'] result = s[:, 'two'] expected = self.frame.xs('two', level=1)['A'] assert_series_equal(result, expected) s = self.ymd['A'] result = s[2000, 5] expected = self.ymd.ix[2000, 5]['A'] assert_series_equal(result, expected) # not implementing this for now self.assertRaises(TypeError, s.__getitem__, (2000, slice(3, 4))) # result = s[2000, 3:4] # lv =s.index.get_level_values(1) # expected = s[(lv == 3) | (lv == 4)] # expected.index = expected.index.droplevel(0) # assert_series_equal(result, expected) # can do this though def test_get_loc_single_level(self): s = Series(np.random.randn(len(self.single_level)), index=self.single_level) for k in self.single_level.values: s[k] def test_getitem_toplevel(self): df = self.frame.T result = df['foo'] expected = df.reindex(columns=df.columns[:3]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) result = df['bar'] result2 = df.ix[:, 'bar'] expected = df.reindex(columns=df.columns[3:5]) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result, result2) def test_getitem_setitem_slice_integers(self): index = MultiIndex(levels=[[0, 1, 2], [0, 2]], labels=[[0, 0, 1, 1, 2, 2], [0, 1, 0, 1, 0, 1]]) frame = DataFrame(np.random.randn(len(index), 4), index=index, columns=['a', 'b', 'c', 'd']) res = frame.ix[1:2] exp = frame.reindex(frame.index[2:]) assert_frame_equal(res, exp) frame.ix[1:2] = 7 self.assert_((frame.ix[1:2] == 7).values.all()) series = Series(np.random.randn(len(index)), index=index) res = series.ix[1:2] exp = series.reindex(series.index[2:]) assert_series_equal(res, exp) series.ix[1:2] = 7 self.assert_((series.ix[1:2] == 7).values.all()) def test_getitem_int(self): levels = [[0, 1], [0, 1, 2]] labels = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]] index = MultiIndex(levels=levels, labels=labels) frame = DataFrame(np.random.randn(6, 2), index=index) result = frame.ix[1] expected = frame[-3:] expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) # raises exception self.assertRaises(KeyError, frame.ix.__getitem__, 3) # however this will work result = self.frame.ix[2] expected = self.frame.xs(self.frame.index[2]) assert_series_equal(result, expected) def test_getitem_partial(self): ymd = self.ymd.T result = ymd[2000, 2] expected = ymd.reindex(columns=ymd.columns[ymd.columns.labels[1] == 1]) expected.columns = expected.columns.droplevel(0).droplevel(0) assert_frame_equal(result, expected) def test_getitem_slice_not_sorted(self): df = self.frame.sortlevel(1).T # buglet with int typechecking result = df.ix[:, :np.int32(3)] expected = df.reindex(columns=df.columns[:3]) assert_frame_equal(result, expected) def test_setitem_change_dtype(self): dft = self.frame.T s = dft['foo', 'two'] dft['foo', 'two'] = s > s.median() assert_series_equal(dft['foo', 'two'], s > s.median()) # tm.assert_isinstance(dft._data.blocks[1].items, MultiIndex) reindexed = dft.reindex(columns=[('foo', 'two')]) assert_series_equal(reindexed['foo', 'two'], s > s.median()) def test_frame_setitem_ix(self): self.frame.ix[('bar', 'two'), 'B'] = 5 self.assertEquals(self.frame.ix[('bar', 'two'), 'B'], 5) # with integer labels df = self.frame.copy() df.columns = lrange(3) df.ix[('bar', 'two'), 1] = 7 self.assertEquals(df.ix[('bar', 'two'), 1], 7) def test_fancy_slice_partial(self): result = self.frame.ix['bar':'baz'] expected = self.frame[3:7] assert_frame_equal(result, expected) result = self.ymd.ix[(2000, 2):(2000, 4)] lev = self.ymd.index.labels[1] expected = self.ymd[(lev >= 1) & (lev <= 3)] assert_frame_equal(result, expected) def test_getitem_partial_column_select(self): idx = MultiIndex(labels=[[0, 0, 0], [0, 1, 1], [1, 0, 1]], levels=[['a', 'b'], ['x', 'y'], ['p', 'q']]) df = DataFrame(np.random.rand(3, 2), index=idx) result = df.ix[('a', 'y'), :] expected = df.ix[('a', 'y')] assert_frame_equal(result, expected) result = df.ix[('a', 'y'), [1, 0]] expected = df.ix[('a', 'y')][[1, 0]] assert_frame_equal(result, expected) self.assertRaises(KeyError, df.ix.__getitem__, (('a', 'foo'), slice(None, None))) def test_sortlevel(self): df = self.frame.copy() df.index = np.arange(len(df)) assertRaisesRegexp(TypeError, 'hierarchical index', df.sortlevel, 0) # axis=1 # series a_sorted = self.frame['A'].sortlevel(0) with assertRaisesRegexp(TypeError, 'hierarchical index'): self.frame.reset_index()['A'].sortlevel() # preserve names self.assertEquals(a_sorted.index.names, self.frame.index.names) # inplace rs = self.frame.copy() rs.sortlevel(0, inplace=True) assert_frame_equal(rs, self.frame.sortlevel(0)) def test_sortlevel_large_cardinality(self): # #2684 (int64) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int64) # it works! result = df.sortlevel(0) self.assertTrue(result.index.lexsort_depth == 3) # #2684 (int32) index = MultiIndex.from_arrays([np.arange(4000)]*3) df = DataFrame(np.random.randn(4000), index=index, dtype = np.int32) # it works! result = df.sortlevel(0) self.assert_((result.dtypes.values == df.dtypes.values).all() == True) self.assertTrue(result.index.lexsort_depth == 3) def test_delevel_infer_dtype(self): tuples = [tuple for tuple in cart_product(['foo', 'bar'], [10, 20], [1.0, 1.1])] index = MultiIndex.from_tuples(tuples, names=['prm0', 'prm1', 'prm2']) df = DataFrame(np.random.randn(8, 3), columns=['A', 'B', 'C'], index=index) deleveled = df.reset_index() self.assert_(com.is_integer_dtype(deleveled['prm1'])) self.assert_(com.is_float_dtype(deleveled['prm2'])) def test_reset_index_with_drop(self): deleveled = self.ymd.reset_index(drop=True) self.assertEquals(len(deleveled.columns), len(self.ymd.columns)) deleveled = self.series.reset_index() tm.assert_isinstance(deleveled, DataFrame) self.assertEqual(len(deleveled.columns), len(self.series.index.levels) + 1) deleveled = self.series.reset_index(drop=True) tm.assert_isinstance(deleveled, Series) def test_sortlevel_by_name(self): self.frame.index.names = ['first', 'second'] result = self.frame.sortlevel(level='second') expected = self.frame.sortlevel(level=1) assert_frame_equal(result, expected) def test_sortlevel_mixed(self): sorted_before = self.frame.sortlevel(1) df = self.frame.copy() df['foo'] = 'bar' sorted_after = df.sortlevel(1) assert_frame_equal(sorted_before, sorted_after.drop(['foo'], axis=1)) dft = self.frame.T sorted_before = dft.sortlevel(1, axis=1) dft['foo', 'three'] = 'bar' sorted_after = dft.sortlevel(1, axis=1) assert_frame_equal(sorted_before.drop([('foo', 'three')], axis=1), sorted_after.drop([('foo', 'three')], axis=1)) def test_count_level(self): def _check_counts(frame, axis=0): index = frame._get_axis(axis) for i in range(index.nlevels): result = frame.count(axis=axis, level=i) expected = frame.groupby(axis=axis, level=i).count(axis=axis) expected = expected.reindex_like(result).astype('i8') assert_frame_equal(result, expected) self.frame.ix[1, [1, 2]] = np.nan self.frame.ix[7, [0, 1]] = np.nan self.ymd.ix[1, [1, 2]] = np.nan self.ymd.ix[7, [0, 1]] = np.nan _check_counts(self.frame) _check_counts(self.ymd) _check_counts(self.frame.T, axis=1) _check_counts(self.ymd.T, axis=1) # can't call with level on regular DataFrame df = tm.makeTimeDataFrame() assertRaisesRegexp(TypeError, 'hierarchical', df.count, level=0) self.frame['D'] = 'foo' result = self.frame.count(level=0, numeric_only=True) assert_almost_equal(result.columns, ['A', 'B', 'C']) def test_count_level_series(self): index = MultiIndex(levels=[['foo', 'bar', 'baz'], ['one', 'two', 'three', 'four']], labels=[[0, 0, 0, 2, 2], [2, 0, 1, 1, 2]]) s = Series(np.random.randn(len(index)), index=index) result = s.count(level=0) expected = s.groupby(level=0).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) result = s.count(level=1) expected = s.groupby(level=1).count() assert_series_equal(result.astype('f8'), expected.reindex(result.index).fillna(0)) def test_count_level_corner(self): s = self.frame['A'][:0] result = s.count(level=0) expected = Series(0, index=s.index.levels[0]) assert_series_equal(result, expected) df = self.frame[:0] result = df.count(level=0) expected = DataFrame({}, index=s.index.levels[0], columns=df.columns).fillna(0).astype(np.int64) assert_frame_equal(result, expected) def test_unstack(self): # just check that it works for now unstacked = self.ymd.unstack() unstacked2 = unstacked.unstack() # test that ints work unstacked = self.ymd.astype(int).unstack() # test that int32 work unstacked = self.ymd.astype(np.int32).unstack() def test_unstack_multiple_no_empty_columns(self): index = MultiIndex.from_tuples([(0, 'foo', 0), (0, 'bar', 0), (1, 'baz', 1), (1, 'qux', 1)]) s = Series(np.random.randn(4), index=index) unstacked = s.unstack([1, 2]) expected = unstacked.dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) def test_stack(self): # regular roundtrip unstacked = self.ymd.unstack() restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) unlexsorted = self.ymd.sortlevel(2) unstacked = unlexsorted.unstack(2) restacked = unstacked.stack() assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted[::-1] unstacked = unlexsorted.unstack(1) restacked = unstacked.stack().swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) unlexsorted = unlexsorted.swaplevel(0, 1) unstacked = unlexsorted.unstack(0).swaplevel(0, 1, axis=1) restacked = unstacked.stack(0).swaplevel(1, 2) assert_frame_equal(restacked.sortlevel(0), self.ymd) # columns unsorted unstacked = self.ymd.unstack() unstacked = unstacked.sort(axis=1, ascending=False) restacked = unstacked.stack() assert_frame_equal(restacked, self.ymd) # more than 2 levels in the columns unstacked = self.ymd.unstack(1).unstack(1) result = unstacked.stack(1) expected = self.ymd.unstack() assert_frame_equal(result, expected) result = unstacked.stack(2) expected = self.ymd.unstack(1) assert_frame_equal(result, expected) result = unstacked.stack(0) expected = self.ymd.stack().unstack(1).unstack(1) assert_frame_equal(result, expected) # not all levels present in each echelon unstacked = self.ymd.unstack(2).ix[:, ::3] stacked = unstacked.stack().stack() ymd_stacked = self.ymd.stack() assert_series_equal(stacked, ymd_stacked.reindex(stacked.index)) # stack with negative number result = self.ymd.unstack(0).stack(-2) expected = self.ymd.unstack(0).stack(0) def test_unstack_odd_failure(self): data = """day,time,smoker,sum,len Fri,Dinner,No,8.25,3. Fri,Dinner,Yes,27.03,9 Fri,Lunch,No,3.0,1 Fri,Lunch,Yes,13.68,6 Sat,Dinner,No,139.63,45 Sat,Dinner,Yes,120.77,42 Sun,Dinner,No,180.57,57 Sun,Dinner,Yes,66.82,19 Thur,Dinner,No,3.0,1 Thur,Lunch,No,117.32,44 Thur,Lunch,Yes,51.51,17""" df = pd.read_csv(StringIO(data)).set_index(['day', 'time', 'smoker']) # it works, #2100 result = df.unstack(2) recons = result.stack() assert_frame_equal(recons, df) def test_stack_mixed_dtype(self): df = self.frame.T df['foo', 'four'] = 'foo' df = df.sortlevel(1, axis=1) stacked = df.stack() assert_series_equal(stacked['foo'], df['foo'].stack()) self.assertEqual(stacked['bar'].dtype, np.float_) def test_unstack_bug(self): df = DataFrame({'state': ['naive', 'naive', 'naive', 'activ', 'activ', 'activ'], 'exp': ['a', 'b', 'b', 'b', 'a', 'a'], 'barcode': [1, 2, 3, 4, 1, 3], 'v': ['hi', 'hi', 'bye', 'bye', 'bye', 'peace'], 'extra': np.arange(6.)}) result = df.groupby(['state', 'exp', 'barcode', 'v']).apply(len) unstacked = result.unstack() restacked = unstacked.stack() assert_series_equal(restacked, result.reindex(restacked.index).astype(float)) def test_stack_unstack_preserve_names(self): unstacked = self.frame.unstack() self.assertEquals(unstacked.index.name, 'first') self.assertEquals(unstacked.columns.names, ['exp', 'second']) restacked = unstacked.stack() self.assertEquals(restacked.index.names, self.frame.index.names) def test_unstack_level_name(self): result = self.frame.unstack('second') expected = self.frame.unstack(level=1) assert_frame_equal(result, expected) def test_stack_level_name(self): unstacked = self.frame.unstack('second') result = unstacked.stack('exp') expected = self.frame.unstack().stack(0) assert_frame_equal(result, expected) result = self.frame.stack('exp') expected = self.frame.stack() assert_series_equal(result, expected) def test_stack_unstack_multiple(self): unstacked = self.ymd.unstack(['year', 'month']) expected = self.ymd.unstack('year').unstack('month') assert_frame_equal(unstacked, expected) self.assertEquals(unstacked.columns.names, expected.columns.names) # series s = self.ymd['A'] s_unstacked = s.unstack(['year', 'month']) assert_frame_equal(s_unstacked, expected['A']) restacked = unstacked.stack(['year', 'month']) restacked = restacked.swaplevel(0, 1).swaplevel(1, 2) restacked = restacked.sortlevel(0) assert_frame_equal(restacked, self.ymd) self.assertEquals(restacked.index.names, self.ymd.index.names) # GH #451 unstacked = self.ymd.unstack([1, 2]) expected = self.ymd.unstack(1).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected) unstacked = self.ymd.unstack([2, 1]) expected = self.ymd.unstack(2).unstack(1).dropna(axis=1, how='all') assert_frame_equal(unstacked, expected.ix[:, unstacked.columns]) def test_unstack_period_series(self): # GH 4342 idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period') idx2 = Index(['A', 'B'] * 3, name='str') value = [1, 2, 3, 4, 5, 6] idx = MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period') expected = DataFrame({'A': [1, 3, 5], 'B': [2, 4, 6]}, index=e_idx, columns=['A', 'B']) expected.columns.name = 'str' assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) idx1 = pd.PeriodIndex(['2013-01', '2013-01', '2013-02', '2013-02', '2013-03', '2013-03'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07'], freq='M', name='period2') idx = pd.MultiIndex.from_arrays([idx1, idx2]) s = Series(value, index=idx) result1 = s.unstack() result2 = s.unstack(level=1) result3 = s.unstack(level=0) e_idx = pd.PeriodIndex(['2013-01', '2013-02', '2013-03'], freq='M', name='period1') e_cols = pd.PeriodIndex(['2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M', name='period2') expected = DataFrame([[np.nan, np.nan, np.nan, np.nan, 2, 1], [np.nan, np.nan, 4, 3, np.nan, np.nan], [6, 5, np.nan, np.nan, np.nan, np.nan]], index=e_idx, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) assert_frame_equal(result3, expected.T) def test_unstack_period_frame(self): # GH 4342 idx1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-02', '2014-02', '2014-01', '2014-01'], freq='M', name='period1') idx2 = pd.PeriodIndex(['2013-12', '2013-12', '2014-02', '2013-10', '2013-10', '2014-02'], freq='M', name='period2') value = {'A': [1, 2, 3, 4, 5, 6], 'B': [6, 5, 4, 3, 2, 1]} idx = pd.MultiIndex.from_arrays([idx1, idx2]) df = pd.DataFrame(value, index=idx) result1 = df.unstack() result2 = df.unstack(level=1) result3 = df.unstack(level=0) e_1 = pd.PeriodIndex(['2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02', '2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A A B B B'.split(), e_2]) expected = DataFrame([[5, 1, 6, 2, 6, 1], [4, 2, 3, 3, 5, 4]], index=e_1, columns=e_cols) assert_frame_equal(result1, expected) assert_frame_equal(result2, expected) e_1 = pd.PeriodIndex(['2014-01', '2014-02', '2014-01', '2014-02'], freq='M', name='period1') e_2 = pd.PeriodIndex(['2013-10', '2013-12', '2014-02'], freq='M', name='period2') e_cols = pd.MultiIndex.from_arrays(['A A B B'.split(), e_1]) expected = DataFrame([[5, 4, 2, 3], [1, 2, 6, 5], [6, 3, 1, 4]], index=e_2, columns=e_cols) assert_frame_equal(result3, expected) def test_stack_multiple_bug(self): """ bug when some uniques are not present in the data #3170""" id_col = ([1] * 3) + ([2] * 3) name = (['a'] * 3) + (['b'] * 3) date = pd.to_datetime(['2013-01-03', '2013-01-04', '2013-01-05'] * 2) var1 = np.random.randint(0, 100, 6) df = DataFrame(dict(ID=id_col, NAME=name, DATE=date, VAR1=var1)) multi = df.set_index(['DATE', 'ID']) multi.columns.name = 'Params' unst = multi.unstack('ID') down = unst.resample('W-THU') rs = down.stack('ID') xp = unst.ix[:, ['VAR1']].resample('W-THU').stack('ID') xp.columns.name = 'Params' assert_frame_equal(rs, xp) def test_stack_dropna(self): # GH #3997 df = pd.DataFrame({'A': ['a1', 'a2'], 'B': ['b1', 'b2'], 'C': [1, 1]}) df = df.set_index(['A', 'B']) stacked = df.unstack().stack(dropna=False) self.assertTrue(len(stacked) > len(stacked.dropna())) stacked = df.unstack().stack(dropna=True) assert_frame_equal(stacked, stacked.dropna()) def test_unstack_multiple_hierarchical(self): df = DataFrame(index=[[0, 0, 0, 0, 1, 1, 1, 1], [0, 0, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 0, 1, 0, 1]], columns=[[0, 0, 1, 1], [0, 1, 0, 1]]) df.index.names = ['a', 'b', 'c'] df.columns.names = ['d', 'e'] # it works! df.unstack(['b', 'c']) def test_groupby_transform(self): s = self.frame['A'] grouper = s.index.get_level_values(0) grouped = s.groupby(grouper) applied = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) assert_series_equal(applied.reindex(expected.index), expected) def test_unstack_sparse_keyspace(self): # memory problems with naive impl #2278 # Generate Long File & Test Pivot NUM_ROWS = 1000 df = DataFrame({'A': np.random.randint(100, size=NUM_ROWS), 'B': np.random.randint(300, size=NUM_ROWS), 'C': np.random.randint(-7, 7, size=NUM_ROWS), 'D': np.random.randint(-19, 19, size=NUM_ROWS), 'E': np.random.randint(3000, size=NUM_ROWS), 'F': np.random.randn(NUM_ROWS)}) idf = df.set_index(['A', 'B', 'C', 'D', 'E']) # it works! is sufficient idf.unstack('E') def test_unstack_unobserved_keys(self): # related to #2278 refactoring levels = [[0, 1], [0, 1, 2, 3]] labels = [[0, 0, 1, 1], [0, 2, 0, 2]] index = MultiIndex(levels, labels) df = DataFrame(np.random.randn(4, 2), index=index) result = df.unstack() self.assertEquals(len(result.columns), 4) recons = result.stack() assert_frame_equal(recons, df) def test_groupby_corner(self): midx = MultiIndex(levels=[['foo'], ['bar'], ['baz']], labels=[[0], [0], [0]], names=['one', 'two', 'three']) df = DataFrame([np.random.rand(4)], columns=['a', 'b', 'c', 'd'], index=midx) # should work df.groupby(level='three') def test_groupby_level_no_obs(self): # #1697 midx = MultiIndex.from_tuples([('f1', 's1'), ('f1', 's2'), ('f2', 's1'), ('f2', 's2'), ('f3', 's1'), ('f3', 's2')]) df = DataFrame( [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], columns=midx) df1 = df.select(lambda u: u[0] in ['f2', 'f3'], axis=1) grouped = df1.groupby(axis=1, level=0) result = grouped.sum() self.assert_((result.columns == ['f2', 'f3']).all()) def test_join(self): a = self.frame.ix[:5, ['A']] b = self.frame.ix[2:, ['B', 'C']] joined = a.join(b, how='outer').reindex(self.frame.index) expected = self.frame.copy() expected.values[np.isnan(joined.values)] = np.nan self.assert_(not np.isnan(joined.values).all()) assert_frame_equal(joined, expected, check_names=False) # TODO what should join do with names ? def test_swaplevel(self): swapped = self.frame['A'].swaplevel(0, 1) swapped2 = self.frame['A'].swaplevel('first', 'second') self.assert_(not swapped.index.equals(self.frame.index)) assert_series_equal(swapped, swapped2) back = swapped.swaplevel(0, 1) back2 = swapped.swaplevel('second', 'first') self.assert_(back.index.equals(self.frame.index)) assert_series_equal(back, back2) ft = self.frame.T swapped = ft.swaplevel('first', 'second', axis=1) exp = self.frame.swaplevel('first', 'second').T assert_frame_equal(swapped, exp) def test_swaplevel_panel(self): panel = Panel({'ItemA': self.frame, 'ItemB': self.frame * 2}) result = panel.swaplevel(0, 1, axis='major') expected = panel.copy() expected.major_axis = expected.major_axis.swaplevel(0, 1) tm.assert_panel_equal(result, expected) def test_reorder_levels(self): result = self.ymd.reorder_levels(['month', 'day', 'year']) expected = self.ymd.swaplevel(0, 1).swaplevel(1, 2) assert_frame_equal(result, expected) result = self.ymd['A'].reorder_levels(['month', 'day', 'year']) expected = self.ymd['A'].swaplevel(0, 1).swaplevel(1, 2) assert_series_equal(result, expected) result = self.ymd.T.reorder_levels(['month', 'day', 'year'], axis=1) expected = self.ymd.T.swaplevel(0, 1, axis=1).swaplevel(1, 2, axis=1) assert_frame_equal(result, expected) with assertRaisesRegexp(TypeError, 'hierarchical axis'): self.ymd.reorder_levels([1, 2], axis=1) with assertRaisesRegexp(IndexError, 'Too many levels'): self.ymd.index.reorder_levels([1, 2, 3]) def test_insert_index(self): df = self.ymd[:5].T df[2000, 1, 10] = df[2000, 1, 7] tm.assert_isinstance(df.columns, MultiIndex) self.assert_((df[2000, 1, 10] == df[2000, 1, 7]).all()) def test_alignment(self): x = Series(data=[1, 2, 3], index=MultiIndex.from_tuples([("A", 1), ("A", 2), ("B", 3)])) y = Series(data=[4, 5, 6], index=MultiIndex.from_tuples([("Z", 1), ("Z", 2), ("B", 3)])) res = x - y exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) # hit non-monotonic code path res = x[::-1] - y[::-1] exp_index = x.index.union(y.index) exp = x.reindex(exp_index) - y.reindex(exp_index) assert_series_equal(res, exp) def test_is_lexsorted(self): levels = [[0, 1], [0, 1, 2]] index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) self.assert_(index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 2, 1]]) self.assert_(not index.is_lexsorted()) index = MultiIndex(levels=levels, labels=[[0, 0, 1, 0, 1, 1], [0, 1, 0, 2, 2, 1]]) self.assert_(not index.is_lexsorted()) self.assertEqual(index.lexsort_depth, 0) def test_frame_getitem_view(self): df = self.frame.T.copy() # this works because we are modifying the underlying array # really a no-no df['foo'].values[:] = 0 self.assert_((df['foo'].values == 0).all()) # but not if it's mixed-type df['foo', 'four'] = 'foo' df = df.sortlevel(0, axis=1) # this will work, but will raise/warn as its chained assignment def f(): df['foo']['one'] = 2 return df self.assertRaises(com.SettingWithCopyError, f) try: df = f() except: pass self.assert_((df['foo', 'one'] == 0).all()) def test_frame_getitem_not_sorted(self): df = self.frame.T df['foo', 'four'] = 'foo' arrays = [np.array(x) for x in zip(*df.columns._tuple_index)] result = df['foo'] result2 = df.ix[:, 'foo'] expected = df.reindex(columns=df.columns[arrays[0] == 'foo']) expected.columns = expected.columns.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) df = df.T result = df.xs('foo') result2 = df.ix['foo'] expected = df.reindex(df.index[arrays[0] == 'foo']) expected.index = expected.index.droplevel(0) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) def test_series_getitem_not_sorted(self): arrays = [['bar', 'bar', 'baz', 'baz', 'qux', 'qux', 'foo', 'foo'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']] tuples = lzip(*arrays) index =
MultiIndex.from_tuples(tuples)
pandas.core.index.MultiIndex.from_tuples
from unittest import TestCase import sklearn_pmml_model from sklearn_pmml_model.tree import PMMLTreeClassifier from sklearn2pmml.pipeline import PMMLPipeline from sklearn2pmml import sklearn2pmml from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from io import StringIO import pandas as pd import numpy as np from os import path, remove from sklearn.datasets import load_digits BASE_DIR = path.dirname(sklearn_pmml_model.__file__) class TestTree(TestCase): def test_invalid_tree(self): with self.assertRaises(Exception) as cm: PMMLTreeClassifier(pmml=StringIO(""" <PMML xmlns="http://www.dmg.org/PMML-4_3" version="4.3"> <DataDictionary> <DataField name="Class" optype="categorical" dataType="string"> <Value value="setosa"/> <Value value="versicolor"/> <Value value="virginica"/> </DataField> </DataDictionary> <MiningSchema> <MiningField name="Class" usageType="target"/> </MiningSchema> </PMML> """)) assert str(cm.exception) == 'PMML model does not contain TreeModel.' def test_fit_exception(self): with self.assertRaises(Exception) as cm: pmml = path.join(BASE_DIR, '../models/decisionTree.pmml') clf = PMMLTreeClassifier(pmml=pmml) clf.fit(np.array([[]]), np.array([])) assert str(cm.exception) == 'Not supported.' def test_incomplete_node(self): with self.assertRaises(Exception) as cm: PMMLTreeClassifier(pmml=StringIO(""" <PMML xmlns="http://www.dmg.org/PMML-4_3" version="4.3"> <DataDictionary> <DataField name="Class" optype="categorical" dataType="string"> <Value value="setosa"/> <Value value="versicolor"/> <Value value="virginica"/> </DataField> </DataDictionary> <MiningSchema> <MiningField name="Class" usageType="target"/> </MiningSchema> <TreeModel splitCharacteristic="binarySplit"> <Node id="1"> <True/> <Node id="2"/> </Node> </TreeModel> </PMML> """)) assert str(cm.exception) == 'Node has insufficient information to ' \ 'determine output: recordCount or score ' \ 'attributes expected' def test_unsupported_predicate(self): with self.assertRaises(Exception) as cm: PMMLTreeClassifier(pmml=StringIO(""" <PMML xmlns="http://www.dmg.org/PMML-4_3" version="4.3"> <DataDictionary> <DataField name="Class" optype="categorical" dataType="string"> <Value value="setosa"/> <Value value="versicolor"/> <Value value="virginica"/> </DataField> </DataDictionary> <MiningSchema> <MiningField name="Class" usageType="target"/> </MiningSchema> <TreeModel splitCharacteristic="binarySplit"> <Node id="1"> <True/> <Node id="2" score="setosa"> <UnsupportedPredicate/> </Node> <Node id="3" score="versicolor"> <UnsupportedPredicate/> </Node> </Node> </TreeModel> </PMML> """)) assert str(cm.exception) == 'Unsupported tree format: unknown predicate' \ ' structure in Node 2' def test_tree_threshold_value(self): clf = PMMLTreeClassifier(path.join(BASE_DIR, '../models/categorical.pmml')) assert clf.tree_.threshold == [[0, 4], 25.18735, -2, 125.5, -2, -2, 20.02033, -2, -2] class TestIrisTreeIntegration(TestCase): def setUp(self): pair = [0, 1] data = load_iris() X = pd.DataFrame(data.data[:, pair]) X.columns = np.array(data.feature_names)[pair] y = pd.Series(np.array(data.target_names)[data.target]) y.name = "Class" X, Xte, y, yte = train_test_split(X, y, test_size=0.33, random_state=123) self.test = (Xte, yte) self.train = (X, y) pmml = path.join(BASE_DIR, '../models/decisionTree.pmml') self.clf = PMMLTreeClassifier(pmml=pmml) self.ref = DecisionTreeClassifier(random_state=1).fit(X, y) def test_predict(self): Xte, _ = self.test assert np.array_equal(self.ref.predict(Xte), self.clf.predict(Xte)) def test_predict_proba(self): Xte, _ = self.test assert np.array_equal( self.ref.predict_proba(Xte), self.clf.predict_proba(Xte) ) def test_score(self): Xte, yte = self.test assert self.ref.score(Xte, yte) == self.clf.score(Xte, yte) def test_sklearn2pmml(self): # Export to PMML pipeline = PMMLPipeline([ ("classifier", self.ref) ]) pipeline.fit(self.train[0], self.train[1]) sklearn2pmml(pipeline, "tree_sklearn2pmml.pmml", with_repr = True) try: # Import PMML model = PMMLTreeClassifier(pmml='tree_sklearn2pmml.pmml') # Verify classification Xte, _ = self.test assert np.array_equal( self.ref.predict_proba(Xte), model.predict_proba(Xte) ) finally: remove("tree_sklearn2pmml.pmml") class TestDigitsTreeIntegration(TestCase): def setUp(self): data = load_digits() self.columns = [2, 3, 4, 5, 6, 7, 9, 10, 13, 14, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 38, 41, 42, 43, 45, 46, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63] X = pd.DataFrame(data.data) y = pd.Series(np.array(data.target_names)[data.target]) y.name = "Class" X, Xte, y, yte = train_test_split(X, y, test_size=0.33, random_state=123) self.test = (Xte, yte) self.clf = PMMLTreeClassifier(path.join(BASE_DIR, '../models/digits.pmml')) self.ref = DecisionTreeClassifier(random_state=1).fit(X, y) def test_predict(self): Xte, _ = self.test assert np.array_equal( self.ref.predict(Xte), self.clf.predict(Xte[self.columns]).astype(np.int64) ) def test_predict_proba(self): Xte, _ = self.test assert np.array_equal( self.ref.predict_proba(Xte), self.clf.predict_proba(Xte[self.columns]) ) def test_score(self): Xte, yte = self.test assert self.ref.score(Xte, yte) == self.clf.score(Xte[self.columns], yte) class TestCategoricalTreeIntegration(TestCase): def setUp(self): self.clf = PMMLTreeClassifier(path.join(BASE_DIR, '../models/cat.pmml')) def test_predict(self): Xte = np.array([[0], [1], [2]]) assert np.array_equal( np.array(['class1', 'class2', 'class3']), self.clf.predict(Xte) ) class TestCategoricalPimaTreeIntegration(TestCase): def setUp(self): df = pd.read_csv(path.join(BASE_DIR, '../models/categorical-test.csv')) cats = np.unique(df['age']) df['age'] =
pd.Categorical(df['age'], categories=cats)
pandas.Categorical
# Copyright (C) 2019-2022, Pyronear. # This program is licensed under the Apache License version 2. # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0.txt> for full license details. import ipywidgets as widgets import pathlib import pandas as pd from datetime import datetime from IPython.display import display def getImageWidget(imgFile, width=300): try: with open(imgFile, 'rb') as file: return widgets.Image(value=file.read(), width=300) except FileNotFoundError: print(f'Skipping {imgFile}') return widgets.HBox() # FIXME: find a better solution ? class AnnotationChecker: """ Check movie annotations in jupyter notebook Display one accordion widget per movie file containing one tab per sequence with fixed state (fire, confident, ...). In each tab, the first and last frames of the sequence are shown together with radio buttons containing the annotations. The user can change the annotations and update them by clicking on the "Save" button that creates a new csv file (checkedLabels.csv) Args: - inputdir: directory containing image files and csv files (*.labels.csv) with the summary of movie annotations: * fBase: the original movie file * stateStart: the first frame of a sequence with fixed state * stateStart: the last frame of a sequence with fixed state * state definitions: exploitable, fire, clf_confidence, loc_confidence * imgFile: image file name - labels: csv file with labels. By default uses all files in inputdir """ def __init__(self, inputdir, labels=None): self.inputdir = pathlib.Path(inputdir) assert self.inputdir.is_dir(), 'Invalid path {self.inputdir}' self.outputfile = self.inputdir / 'checkedLabels.csv' if labels is None: csvFiles = self.inputdir.glob('*.labels.csv') self.labels = pd.concat(map(pd.read_csv, csvFiles)) else: self.labels = pd.read_csv(labels) self.menus =
pd.Series(index=self.labels.index)
pandas.Series