prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import string from io import StringIO import time from functools import reduce import itertools import operator import pyspark from pyspark.sql.types import * from pyspark.sql import * from pyspark import SparkConf, SparkContext from pyspark.sql.functions import col import nltk from nltk import RegexpTokenizer from nltk.stem.wordnet import WordNetLemmatizer from nltk.corpus import stopwords as nltkstopwords from nltk.corpus import wordnet from nltk.stem.porter import * from nltk import edit_distance from autocorrect import spell get_ipython().run_line_magic('matplotlib', 'inline') nltk.download('stopwords') nltk.download('wordnet') ##data readin inp_path = 'encounter_notes_12.csv' dat=open(inp_path,errors='ignore',) dat=dat.read() test = StringIO(dat) df = pd.read_csv(test, sep=",",na_values=" ") left_eye ='SLE_L_CORNEA_1020' right_eye ='SLE_R_CORNEA_1013' patid = 'PAT_ID' ## combine left and right eye description df['description'] = df[left_eye].map(str) +' '+ df[right_eye].map(str) ## setting spark environment conf = SparkConf().setAppName("wd_count") sc = SparkContext(conf=conf) sqlCtx = SQLContext(sc) ps_df=sqlCtx.createDataFrame(df[[patid,'description']]) ## from pyspark.df to pyspark rdd, get word frequency Rdd=ps_df.rdd wd_ct=Rdd.map(lambda x: [x[0],x[1].lower().strip().split()]).flatMap(lambda x: [tuple([x[0], x[1][i].strip(string.punctuation)]) for i in range(0,len(x[1]))]).map(lambda x: (x, 1)).reduceByKey(lambda x, y: x + y).sortBy(lambda x: -x[0]).map(lambda x:[x[0][0],x[0][1],x[1]]).toDF() ## print col name wd_ct.printSchema() ## rename cols wd_ct = wd_ct.selectExpr("_1 as PAT_ID","_2 as word", "_3 as cts") ## aggregate words together by summing frequency words=wd_ct.groupBy("word").agg({"cts": "sum"}).sort(col("sum(cts)").desc()) ## transform to pandas df pd_words=words.toPandas().sort_values('word') pd_words.sort_values('word').head(10) #correction('wiht') #start = timeit.timeit() #newlist = list(map(correction, pd_words['word'].tolist())) #end = timeit.timeit() #print(end - start) ## tokenizing tokenizer = RegexpTokenizer(r'[a-zA-Z]+') tokens = tokenizer.tokenize(' '.join(pd_words['word'].tolist())) pd_words=pd_words.loc[pd_words['word'].isin(tokens)] ##spelling correction start = time.time() corrected=list(map(spell, pd_words['word'].tolist())) end = time.time() print(end-start) pd_words['corrected']=pd.Series(corrected,index=pd_words.index) ##remove stopwords nonstopwords = [wd for wd in corrected if wd not in nltkstopwords.words('english')] pd_words=pd_words.loc[pd_words['corrected'].isin(nonstopwords)] ##stemming stemmer = PorterStemmer() words1 = [stemmer.stem(word) for word in pd_words['corrected'].tolist()] pd_words['stemmer']=pd.Series(words1,index=pd_words.index) #lmtzr = WordNetLemmatizer() #words2 = [lmtzr.lemmatize(word) for word in pd_words['corrected'].tolist()] #pd_words['lmtzr']=pd.Series(words2,index=pd_words.index) #nonstopwords = [wd for wd in pd_words.word if wd not in nltkstopwords.words('english')] #pd_words=pd_words.loc[pd_words['corrected'].isin(nonstopwords)] ## aggregate words with same stemmer a=pd_words.groupby('stemmer')['word'].apply(lambda x: ', '.join(x)).to_frame() b=pd_words.groupby('stemmer')['sum(cts)'].sum().to_frame() combined= pd.concat([a, b], axis=1) combined=combined[combined.index.isin(['nan'])==False ] combined=combined.reset_index() def Prob(word, N=sum(pd_words['sum(cts)'])): "Probability of `word`." return pd_words[pd_words.word==word]['sum(cts)'].values/ N def correction(lst_of_word): "Most probable spelling correction for word." return max(lst_of_word, key=Prob) corrected=[] for i in range (0, len(combined)): corrected.append(correction(combined.word.iloc[i].split(', '))) combined['stemmed_corrected']=pd.Series(corrected, index=combined.index) cols=['stemmer','stemmed_corrected','word', 'sum(cts)'] combined = combined[cols] newlist=combined.stemmer.tolist() needed=list() for i in newlist: if len(i)>=2: needed.append(i) combined=combined[combined.stemmer.isin(needed)==True ] def closed_wd(lst): '''find close words using leveinshtein distance''' pairs = [[lst[w1], lst[w2]] for w1 in range(len(lst)) for w2 in range(w1+1,len(lst))] closed_pairs=list() for i in pairs: if edit_distance(i[0], i[1])<max(len(i[0])/5,len(i[1])/5): if i[0][:2]==i[1][:2]: i.sort() closed_pairs.append(i) closed_pairs = [list(x) for x in set(tuple(x) for x in closed_pairs)] LL = set(itertools.chain.from_iterable(closed_pairs)) for each in LL: components = [x for x in closed_pairs if each in x] for i in components: closed_pairs.remove(i) closed_pairs += [list(set(itertools.chain.from_iterable(components)))] closed_pairs = [list(x) for x in set(tuple(x) for x in closed_pairs)] return closed_pairs #closed_wd(combined.stemmed_corrected.tolist()) newlist=combined.stemmed_corrected.tolist() sim=closed_wd(newlist) #newlist=combined.stemmer.tolist() #simil_list3=closed_wd(newlist) sub=combined[combined.stemmed_corrected.isin(reduce(operator.concat, sim))] combined=combined[combined.stemmed_corrected.isin(reduce(operator.concat, sim))==False] ## assign same group to similar words groups=list(['na']*sub.shape[0]) for j in range(0,len(sub)): for i in range(0,len(sim)): if sub.stemmed_corrected.iloc[j] in sim[i]: groups[j]=i sub['groups'] = pd.Series(groups, index=sub.index) ## aggregation a=sub.groupby('groups')['stemmer'].apply(lambda x: ', '.join(x)).to_frame() b=sub.groupby('groups')['word'].apply(lambda x: ', '.join(x)).to_frame() c=sub.groupby('groups')['sum(cts)'].sum().to_frame() d=sub.groupby('groups')['stemmed_corrected'].apply(lambda x: ', '.join(x)).to_frame() grouped_sub= pd.concat([a, b,c,d], axis=1) ## updating corrected word by frequency corrected=[] for i in range (0, len(grouped_sub)): corrected.append(correction(grouped_sub.word.iloc[i].split(', '))) grouped_sub['stemmed_corrected']=
pd.Series(corrected, index=grouped_sub.index)
pandas.Series
import logging from temporal_granularity.src.metrics.metrics import Metrics from pandas.util.testing import assert_frame_equal import pandas as pd import sys from pathlib import Path project_dir = Path("__file__").resolve().parents[1] sys.path.insert(0, '{}/temporal_granularity/'.format(project_dir)) logging.basicConfig(level=logging.DEBUG) class Test_Metrics: def test_all_nrmse(self): original_solar = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "datetime": [1, 2, 3, 4, 5, 6, 7]}) representative_solar = pd.DataFrame({"capacity_factor": [1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8], "datetime": [1, 2, 3, 4, 5, 6, 7]}) original_wind = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "datetime": [1, 2, 3, 4, 5, 6, 7]}) representative_wind = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "datetime": [1, 2, 3, 4, 5, 6, 7]}) original_load = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "datetime": [1, 2, 3, 4, 5, 6, 7]}) representative_load = pd.DataFrame({"capacity_factor": [1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65], "datetime": [1, 2, 3, 4, 5, 6, 7]}) all_nrmse = Metrics(original_solar, representative_solar, original_wind, representative_wind, original_load, representative_load, "dc")._get_nrmse() expected_nrmse = [{'metric': 'nrmse dc', 'series_type': 'solar', 'value': 16.666666666666668}, {'metric': 'nrmse dc', 'series_type': 'wind', 'value': 0.0}, {'metric': 'nrmse dc', 'series_type': 'load', 'value': 8.33333333333334}] assert all_nrmse == expected_nrmse def test_all_rae(self): original_solar = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) representative_solar = pd.DataFrame({"capacity_factor": [1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) original_wind = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) representative_wind = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) original_load = pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) representative_load = pd.DataFrame({"capacity_factor": [1.05, 1.15, 1.25, 1.35, 1.45, 1.55, 1.65], "index_for_year": [1, 2, 3, 4, 5, 6, 7]}) all_nrmse = Metrics(original_solar, representative_solar, original_wind, representative_wind, original_load, representative_load, "dc")._get_rae() expected_nrmse = [{'metric': 'rae dc', 'series_type': 'solar', 'value': 7.142857142857138}, {'metric': 'rae dc', 'series_type': 'wind', 'value': 0.0}, {'metric': 'rae dc', 'series_type': 'load', 'value': 3.5714285714285796}] assert all_nrmse == expected_nrmse def test_all_correlations(self): original_solar =
pd.DataFrame({"capacity_factor": [1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7], "datetime": [1, 2, 3, 4, 5, 6, 7]})
pandas.DataFrame
import multiprocessing as mp import numpy as np import pandas as pd import time import concurrent.futures import time np.random.seed(321) global df, temp_df # ======================== Generate Sample Data ============================= # store names stores = ["store_a", "store_b", "store_c", "store_d", "store_e"] # number of daily sales number_of_sales_per_store = 5 df = pd.DataFrame(columns=["store_name", "sales"], dtype=np.int8) for store in stores: d = pd.DataFrame( dict( store_name=[store for _ in range(number_of_sales_per_store)], sales=[ np.random.randint(100, 1000) for _ in range(number_of_sales_per_store) ], ) ) df = df.append(d) # create a place holder data frame and save it results = pd.DataFrame(columns=["store_name", "average_sales"]) results.to_csv("results.csv", index=False) # create a shared dictionary # if you are using windows, create this dictionary # inside the if __name__ == condition, just above the # with statement global shared_dictionary shared_dictionary = mp.Manager().dict() # target function def target_function(store): df_slice = df[df["store_name"] == store] mean_of_slice = np.mean(df_slice["sales"]) # method 1: save to shared dictionary shared_dictionary[store] = [mean_of_slice] # print(shared_dictionary) # method 2: save to the place holder csv file # first save results to pandas df, then append the results to # the csv place holder we created already temp_df =
pd.DataFrame(columns=["store_name", "average_sales"])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Project: Psychophysics_exps Creator: Miao Create time: 2020-12-19 21:32 IDE: PyCharm Introduction: """ import os import pandas as pd def __get_dataframe_file(data_path: str, filetype: str, filename: str) -> pd.DataFrame: if filetype == ".csv": df = pd.read_csv(data_path + filename) elif filetype == ".xlsx": df = pd.read_excel(data_path + filename) return df def merge_all_file2dataframe(data_path: str, filetype: str, filename_prefix: str) -> pd.DataFrame: # list data files files = os.listdir(data_path) # collect all raw data files filenames_list = [file for file in files if file.startswith(filename_prefix) & file.endswith(filetype)] # read data all_data =
pd.DataFrame()
pandas.DataFrame
''' Utility functions to support trading algorithms Created by <NAME> ''' import numpy as np import pandas as pd from collections import OrderedDict import matplotlib.pyplot as plt import matplotlib.ticker as mtick import matplotlib.dates as mdates from zipline.api import symbols, record, order_target_percent import empyrical as ep # PyPortfolioOpt imports from pypfopt import risk_models, expected_returns from pypfopt.cla import CLA from pypfopt.base_optimizer import portfolio_performance from pypfopt.efficient_frontier import EfficientFrontier from pypfopt.hierarchical_risk_parity import HRPOpt # Pyfolio imports import pyfolio as pf from pyfolio.utils import print_table from pyfolio.timeseries import perf_stats def add_portfolio(all_portfolios, group, subgroup, sym, risk_level): if group in all_portfolios: if subgroup not in all_portfolios[group]: all_portfolios[group][subgroup] = {} else: all_portfolios[group] = {} all_portfolios[group][subgroup] = {} all_portfolios[group][subgroup] = { 'stocks': sym, 'levels': risk_level } def initialize_portfolio(verbose=False): """Initialises pre-assembled fixed basket of ETFs, each with their own predefined risk buckets Currently contains Vanguard ETF strategic model portfolios (https://advisors.vanguard.com/iwe/pdf/FASINVMP.pdf) - CORES_SERIES - CRSP_SERIES - SP_SERIES - RUSSELL_SERIES - INCOME_SERIES - TAX_SERIES Ray Dalio's All-Weather Portfolio Returns: dict containing all added portfolios """ if verbose: print('Initialising portfolio database') all_portfolios = {} # Benchmarks # use [] for single ticker, so that it is iterable to avoid error 'int' object is not iterable add_portfolio(all_portfolios, 'BENCHMARK', 'SPY', symbols('SPY'), {0: [1]}) # 11 SPDR sector ETFs add_portfolio(all_portfolios, 'SPDR', 'ALL_SECTORS', symbols('XLE', 'XLRE', 'XLF', 'XLV', 'XLC', 'XLI', 'XLY', 'XLP', 'XLB', 'XLK', 'XLU'), { 0: tuple(1 for _ in range(11)) }) # <NAME>'s All Weather Portfolio. Rebalancing once a year or more, with the following suggested distributions: # * 30% stocks (eg VTI) # * 40% long-term bonds (eg TLT) # * 15% intermediate-term bonds (eg IEF) # * 7.5% gold (eg GLD) # * 7.5% commodities (eg DBC) add_portfolio(all_portfolios, 'DALIO', 'ALL_WEATHER', symbols('VTI', 'TLT', 'IEF', 'GLD', 'DBC'), { 0: (0.3, 0.4, 0.15, 0.075, 0.075) }) # Vanguard Core Serie add_portfolio(all_portfolios, 'VANGUARD', 'CORE_SERIES', symbols('VTI', 'VXUS', 'BND', 'BNDX'), { 0: (0, 0, 0.686, 0.294), 1: (0.059, 0.039, 0.617, 0.265), 2: (0.118, 0.078, 0.549, 0.235), 3: (0.176, 0.118, 0.480, 0.206), 4: (0.235, 0.157, 0.412, 0.176), 5: (0.294, 0.196, 0.343, 0.147), 6: (0.353, 0.235, 0.274, 0.118), 7: (0.412, 0.274, 0.206, 0.088), 8: (0.470, 0.314, 0.137, 0.059), 9: (0.529, 0.353, 0.069, 0.029), 10: (0.588, 0.392, 0, 0) }) # add_portfolio(all_portfolios, 'VANGUARD', 'CRSP_SERIES', symbols('VUG', 'VTV', 'VB', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), { # 0: (0, 0, 0, 0, 0, 0.273, 0.14, 0.123, 0.15, 0.294), # 1: (0.024, 0.027, 0.008, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265), # 2: (0.048, 0.054, 0.016, 0.061, 0.017, 0.218, 0.112, 0.099, 0.12, 0.235), # 3: (0.072, 0.082, 0.022, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206), # 4: (0.096, 0.109, 0.03, 0.122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176), # 5: (0.120, 0.136, 0.038, 0.152, 0.044, 0.126, 0.07, 0.062, 0.075, 0.147), # 6: (0.143, 0.163, 0.047, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118), # 7: (0.167, 0.190, 0.055, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088), # 8: (0.191, 0.217, 0.062, 0.243, 0.071, 0.055, 0.028, 0.024, 0.030, 0.059), # 9: (0.215, 0.245, 0.069, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029), # 10: (0.239, 0.272, 0.077, 0.304, 0.088, 0, 0, 0, 0, 0) # }) # add_portfolio(all_portfolios, 'VANGUARD', 'SP_SERIES', symbols('VOO', 'VXF', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), { # 0: (0, 0, 0, 0, 0.273, 0.140, 0.123, 0.150, 0.294), # 1: (0.048, 0.011, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265), # 2: (0.097, 0.021, 0.061, 0.017, 0.218, 0.112, 0.099, 0.12, 0.235), # 3: (0.145, 0.031, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206), # 4: (0.194, 0.041, 0.0122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176), # 5: (0.242, 0.052, 0.152, 0.044, 0.136, 0.07, 0.062, 0.075, 0.147), # 6: (0.29, 0.063, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118), # 7: (0.339, 0.073, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088), # 8: (0.387, 0.083, 0.243, 0.071, 0.055, 0.028, 0.024, 0.03, 0.059), # 9: (0.436, 0.093, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029), # 10: (0.484, 0.104, 0.304, 0.088, 0, 0, 0, 0, 0) # }) # add_portfolio(all_portfolios, 'VANGUARD', 'RUSSELL_SERIES', symbols('VONG', 'VONV', 'VTWO', 'VEA', 'VTWO', 'VEA', 'VWO', 'BSV', 'BIV', 'BLV', 'VMBS', 'BNDX'), { # 0: (0, 0, 0, 0, 0, 0.273, 0.14, 0.123, 0.15, 0.294), # 1: (0.028, 0.026, 0.005, 0.03, 0.009, 0.245, 0.126, 0.111, 0.135, 0.265), # 2: (0.056, 0.052, 0.01, 0.061, 0.017, 0.218, 0.112, 0.099, 0.086, 0.105, 0.206), # 3: (0.084, 0.079, 0.013, 0.091, 0.027, 0.191, 0.098, 0.086, 0.105, 0.206), # 4: (0.112, 0.105, 0.018, 0.122, 0.035, 0.164, 0.084, 0.074, 0.09, 0.176, 0.02), # 5: (0.14, 0.131, 0.023, 0.152, 0.044, 0.136, 0.07, 0.062, 0.075, 0.147), # 6: (0.168, 0.157, 0.028, 0.182, 0.053, 0.109, 0.056, 0.049, 0.06, 0.118), # 7: (0.196, 0.184, 0.032, 0.213, 0.061, 0.082, 0.042, 0.037, 0.045, 0.088), # 8: (0.224, 0.210, 0.036, 0.243, 0.071, 0.055, 0.028, 0.024, 0.03, 0.059), # 9: (0.252, 0.236, 0.041, 0.274, 0.079, 0.027, 0.014, 0.013, 0.015, 0.029), # 10: (0.281, 0.262, 0.045, 0.304, 0.088, 0, 0, 0, 0, 0) # }) # add_portfolio(all_portfolios, 'VANGUARD', 'INCOME_SERIES', symbols('VTI', 'VYM', 'VXUS', 'VYMI', 'BND', 'VTC', 'BNDX'), { # 0: (0, 0, 0, 0, 0.171, 0.515, 0.294), # 1: (0.015, 0.044, 0.01, 0.029, 0.154, 0.463, 0.265), # 2: (0.03, 0.088, 0.019, 0.059, 0.137, 0.412, 0.235), # 3: (0.044, 0.132, 0.03, 0.088, 0.12, 0.36, 0.206), # 4: (0.059, 0.176, 0.039, 0.118, 0.103, 0.309, 0.176), # 5: (0.073, 0.221, 0.049, 0.147, 0.086, 0.257, 0.147), # 6: (0.088, 0.265, 0.059, 0.176, 0.068, 0.206, 0.118), # 7: (0.103, 0.309, 0.068, 0.206, 0.052, 0.154, 0.088), # 8: (0.117, 0.353, 0.079, 0.235, 0.034, 0.103, 0.059), # 9: (0.132, 0.397, 0.088, 0.265, 0.018, 0.051, 0.029), # 10: (0.147, 0.441, 0.098, 0.294, 0, 0, 0) # }) # add_portfolio(all_portfolios, 'VANGUARD', 'TAX_SERIES', symbols('VUG', 'VTV', 'VB', 'VEA', 'VWO', 'VTEB'), { # 1: (0.024, 0.027, 0.008, 0.03, 0.009, 0.882), # 2: (0.048, 0.054, 0.016, 0.061, 0.017, 0.784), # 3: (0.072, 0.082, 0.022, 0.091, 0.027, 0.686), # 4: (0.096, 0.109, 0.03, 0.122, 0.035, 0.588), # 5: (0.12, 0.136, 0.038, 0.152, 0.044, 0.49), # 6: (0.143, 0.163, 0.047, 0.182, 0.053, 0.392), # 7: (0.167, 0.190, 0.055, 0.213, 0.061, 0.294), # 8: (0.191, 0.217, 0.062, 0.243, 0.071, 0.196), # 9: (0.215, 0.245, 0.069, 0.274, 0.079, 0.098) # }) return all_portfolios def get_mu_sigma(prices, returns_model='mean_historical_return', risk_model='ledoit_wolf', frequency=252, span=500): """Get mu (returns) and sigma (asset risk) given a expected returns model and risk model prices (pd.DataFrame) – adjusted closing prices of the asset, each row is a date and each column is a ticker/id. returns_model (string, optional) - Model for estimating expected returns of assets, either 'mean_historical_return' or 'ema_historical_return' (default: mean_historical_return) risk_model (string, optional) - Risk model to quantify risk: sample_cov, ledoit_wolf, defaults to ledoit_wolf, as recommended by Quantopian in their lecture series on quantitative finance. frequency (int, optional) – number of time periods in a year, defaults to 252 (the number of trading days in a year) span (int, optional) – Applicable only for 'ema_historical_return' expected returns. The time-span for the EMA, defaults to 500-day EMA) """ CHOICES_EXPECTED_RETURNS = { 'mean_historical_return': expected_returns.mean_historical_return(prices, frequency), 'ema_historical_return': expected_returns.ema_historical_return(prices, frequency, span) } CHOICES_RISK_MODEL = { 'sample_cov': risk_models.sample_cov(prices), 'ledoit_wolf': risk_models.CovarianceShrinkage(prices).ledoit_wolf() } mu = CHOICES_EXPECTED_RETURNS.get(returns_model.lower(), None) S = CHOICES_RISK_MODEL.get(risk_model.lower(), None) if mu is None: raise Exception('Expected returns model %s is not supported. Only mean_historical_return and ema_historical_return are supported currently.' % risk_model) if S is None: raise Exception('Risk model %s is not supported. Only sample_cov and ledoit_wolf are supported currently.' % risk_model) return mu, S def hrp_portfolio(prices): """Solve for Hierarchical risk parity portfolio Arguments: prices (pd.DataFrame) – adjusted (daily) closing prices of the asset, each row is a date and each column is a ticker/id. """ returns = expected_returns.returns_from_prices(prices) hrp = HRPOpt(returns) weights = hrp.hrp_portfolio() return weights def optimal_portfolio(mu, S, objective='max_sharpe', get_entire_frontier=True, **kwargs): """Solve for optimal portfolio. Wrapper for pypfopt functions Arguments: mu (pd.Series) - Expected annual returns S (pd.DataFrame/np.ndarray) - Expected annual volatility objective (string, optional) - Optimise for either 'max_sharpe', or 'min_volatility', defaults to 'max_sharpe' get_entire_frontier (boolean, optional) - Also get the entire efficient frontier, defaults to True """ # if need to efficiently compute the entire efficient frontier for plotting, use CLA # else use standard EfficientFrontier optimiser. # (Note that optimum weights might be slightly different depending on whether CLA or EfficientFrontier was used) Optimiser = CLA if get_entire_frontier else EfficientFrontier op = Optimiser(mu, S) # risk_aversion = kwargs.get("risk_aversion", 1) # only for max quadratic utility if (objective is None): # Get weights for both max_sharpe and min_volatility opt_weights = [] op.max_sharpe() opt_weights.append(op.clean_weights()) op.min_volatility() opt_weights.append(op.clean_weights()) # ef = EfficientFrontier(mu, S) # ef.max_quadratic_utility(risk_aversion) # opt_weights.append(ef.clean_weights()) else: if (objective == 'max_sharpe'): op.max_sharpe() elif ('min_vol' in objective): op.min_volatility() elif (objective == 'efficient_risk'): target_volatility = kwargs.get("target_volatility", None) if target_volatility is None: print("Error: You have to specify the target_volatility!") return None, None, None, None else: try: op.efficient_risk(target_volatility) except ValueError: # could not solve based on target_volatility, we try lookup table instead cla = CLA(mu, S) cla.max_sharpe() ef_returns, ef_risks, ef_weights = cla.efficient_frontier(points=300) lookup_v_w = dict(zip(ef_risks, ef_weights)) lookup_v_w = OrderedDict(sorted(lookup_v_w.items())) w = lookup_v_w[min(lookup_v_w.keys(), key=lambda key: abs(key-target_volatility))] w = [i[0] for i in w] # flatten return w, None, None elif (objective == 'efficient_return'): target_return = kwargs.get("target_return", None) if target_return is None: print("Error: You have to specify the target_return!") return None, None, None, None else: op.efficient_return(target_return) # elif (objective == 'max_quadratic_utility'): # op.max_quadratic_utility(risk_aversion) # # print("Using MAX_QUADRATIC UTILITY") opt_weights = op.clean_weights() if get_entire_frontier: opt_returns, opt_risks, _ = op.efficient_frontier(points=200) return opt_weights, opt_returns, opt_risks else: return opt_weights, None, None def generate_markowitz_bullet(prices, returns_model='mean_historical_return', risk_model='ledoit_wolf', frequency=252, span=500, objective='max_sharpe', num_random=20000, ax=None, plot_individual=True, verbose=True, visualise=True): """Plot the markowitz bullet taking reference for plotting style from https://towardsdatascience.com/efficient-frontier-portfolio-optimisation-in-python-e7844051e7f Arguments: prices (pd.DataFrame) – adjusted closing prices of the asset, each row is a date and each column is a ticker/id. returns_model (string, optional) - Model for estimating expected returns of assets, either 'mean_historical_return' or 'ema_historical_return' (default: mean_historical_return) risk_model (string, optional) - Risk model to quantify risk: sample_cov, ledoit_wolf, defaults to ledoit_wolf, as recommended by Quantopian in their lecture series on quantitative finance. frequency (int, optional) – number of time periods in a year, defaults to 252 (the number of trading days in a year) span (int, optional) – Applicable only for 'ema_historical_return' expected returns. The time-span for the EMA, defaults to 500-day EMA) objective (string, optional) - Optimise for either 'max_sharpe', or 'min_volatility', defaults to 'max_sharpe' num_random (int, optional) - Number of random portfolios to generate for Markowitz Bullet. Set to 0 if not required plot_individual (boolean, optional) - If True, plots individual stocks on chart as well verbose (boolean, optional) - If True, prints out optimum portfolio allocations visualise (boolean, optional) - If True, plots Markowitz bullet Returns: r_volatility, r_returns, opt_volatility, opt_returns where r_volatility - array containing expected annual volatility values for generated random portfolios r_returns - array containg expected annual returns values for generated random portfolios opt_volatility - array containing expected annual volatility values along the efficient frontier opt_returns - array containing expected annual returns values along the efficient frontier """ mu, S = get_mu_sigma(prices, returns_model, risk_model, frequency, span) opt_weights, opt_returns, opt_volatility = optimal_portfolio(mu, S, None, True) if (verbose): print("-"*80 + "\nMaximum Sharpe Ratio Portfolio Allocation\n") max_sharpe_returns, max_sharpe_volatility, max_sharpe_ratio = portfolio_performance(mu, S, opt_weights[0], verbose) if (verbose): print("-"*80 + "\nMinimum Volatility Portfolio Allocation\n") min_vol_returns, min_vol_volatility, min_vol_ratio = portfolio_performance(mu, S, opt_weights[1], verbose) if (visualise): plt.style.use('fivethirtyeight') if (ax is None): fig, ax = plt.subplots(figsize=(12, 8)) # Plot Efficient Frontier (Annualised returns vs annualised volatility) ax.plot(opt_volatility, opt_returns, linestyle='-.', linewidth=1, color='black', label='Efficient frontier') # Plot optimum portfolios ax.plot(max_sharpe_volatility, max_sharpe_returns, 'r*', label='Max Sharpe', markersize=20) ax.plot(min_vol_volatility, min_vol_returns, 'g*', label='Min Volatility', markersize=20) # Plot individual stocks in 'prices' pandas dataframe if plot_individual: stock_names = list(prices.columns) s_returns = [] s_volatility = [] for i in range(len(stock_names)): w = [0] * len(stock_names) w[i] = 1 s_returns, s_volatility, _ = portfolio_performance(mu, S, w) ax.plot(s_volatility, s_returns, 'o', markersize=10) ax.annotate(stock_names[i], (s_volatility, s_returns), xytext=(10, 0), textcoords='offset points') # Generate random portfolios if (num_random > 0): r_returns, r_volatility, r_sharpe = tuple(zip(*[portfolio_performance(mu, S, rand_weights(len(mu))) for _ in range(num_random)])) ax.scatter(r_volatility, r_returns, c=r_sharpe, cmap='YlGnBu', marker='o', s=10, alpha=0.3) # random portfolios, colormap based on sharpe ratio # Set graph's axes ax.set_title('Markowitz Bullet') ax.set_xlabel('annualised volatility') ax.set_ylabel('annualised returns') ax.legend() plt.style.use('default') return r_volatility, r_returns, opt_volatility, opt_returns def rand_weights(n): """Produces n random weights that sum to 1""" k = np.random.rand(n) return k / sum(k) def print_table_from_perf_array(perf, factor_returns=None, show_baseline=False, show_header=True): APPROX_BDAYS_PER_MONTH = 21 # APPROX_BDAYS_PER_YEAR = 252 STAT_FUNCS_PCT = [ 'Annual return', 'Cumulative returns', 'Annual volatility', 'Max drawdown', 'Daily value at risk', 'Daily turnover' ] arr = list(zip(*[(pData[0], pf.utils.extract_rets_pos_txn_from_zipline(pData[1])[0]) for pData in perf])) names_arr = arr[0] returns_arr = arr[1] # get headers if show_header: returns = returns_arr[0] # take first row as representative of all other backtests date_rows = OrderedDict() if len(returns.index) > 0: date_rows['Start date'] = returns.index[0].strftime('%Y-%m-%d') date_rows['End date'] = returns.index[-1].strftime('%Y-%m-%d') date_rows['Total months'] = int(len(returns) / APPROX_BDAYS_PER_MONTH) else: date_rows = None # get peformance stats perf_stats_arr = [] # show baseline as one of the columns if show_baseline: perf_stats_arr.append( perf_stats(factor_returns, factor_returns=factor_returns) ) names_arr = ['Baseline'] + list(names_arr) for i in range(len(returns_arr)): perf_stats_arr.append( perf_stats(returns_arr[i], factor_returns=factor_returns) ) perf_stats_all = pd.concat(perf_stats_arr, axis=1) for column in perf_stats_all.columns: for stat, value in perf_stats_all[column].iteritems(): if stat in STAT_FUNCS_PCT: perf_stats_all.loc[stat, column] = str(np.round(value * 100, 3)) + '%' df = pd.DataFrame(perf_stats_all) df.columns = names_arr # print table print_table(df, float_format='{0:.2f}'.format, header_rows=date_rows) # return performance stats return df def plot_rolling_returns_from_perf_array(perf, factor_returns=None, extra_bm=0): """ Plot cumulative rolling returns, given an array of performance data and benchmark Arguments: ---------- perf (array of tuple of (string, pd.DataFrame)) - Array of tuple of (run_name, performance). Performance is the output of zipline.api.run_algorithm factor_returns (pd.Series, optional) - Daily noncumulative returns of the benchmark factor to which betas are computed. - Usually a benchmark such as market returns. This is in the same style as returns. """ arr = list(zip(*[(pData[0], pf.utils.extract_rets_pos_txn_from_zipline(pData[1])[0]) for pData in perf])) names_arr = arr[0] returns_arr = arr[1] ax = plot_rolling_returns_multiple(returns_arr, factor_returns, names_arr=names_arr, extra_bm=extra_bm) box = ax.get_position() ax.set_position([box.x0, box.y0, box.width * 0.8, box.height]) ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) return ax def plot_rolling_returns_multiple(returns_arr, factor_returns=None, logy=False, ax=None, names_arr=None, extra_bm=0): """ Plots cumulative rolling returns versus some benchmarks'. This is based on https://github.com/quantopian/pyfolio/blob/master/pyfolio/plotting.py, but modified to plot multiple rolling returns on the same graph Arguments ---------- returns_arr : array of pd.Series. Each element contains daily returns of the strategy, noncumulative.t. factor_returns : pd.Series, optional Daily noncumulative returns of the benchmark factor to which betas are computed. Usually a benchmark such as market returns. - This is in the same style as returns. logy : bool, optional Whether to log-scale the y-axis. ax : matplotlib.Axes, optional Axes upon which to plot. names_arr: array of names for the plots, optional extra_bm: number of extra benchmarks. These will be assumed to be at the front of returns_array and will be plotted differently Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() ax.set_xlabel('') ax.set_ylabel('Cumulative returns') ax.set_yscale('log' if logy else 'linear') for i in range(len(returns_arr)): # pData = perfData[i] # returns, positions, transactions = pf.utils.extract_rets_pos_txn_from_zipline(pData) returns = returns_arr[i] returns.name = 'Portfolio %i' % i if names_arr is None else names_arr[i] cum_rets = ep.cum_returns(returns, 1.0) is_cum_returns = cum_rets if (i == 0 and factor_returns is not None): cum_factor_returns = ep.cum_returns(factor_returns[cum_rets.index], 1.0) cum_factor_returns.plot(lw=1, color='gray', label=factor_returns.name, alpha=0.60, ax=ax, style=['-.']) is_cum_returns.plot(lw=1, alpha=0.6, label=returns.name, ax=ax, style=['-.'] if (i < extra_bm) else None) # is_cum_returns.plot(lw=1, alpha=0.6, label=returns.name, ax=ax) years = mdates.YearLocator() # every year months = mdates.MonthLocator() # every month major_fmt = mdates.DateFormatter('%b %Y') ax.yaxis.set_major_formatter(mtick.PercentFormatter(1.0)) ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(major_fmt) ax.xaxis.set_minor_locator(months) return ax def record_social_media(context): # print('recording social media') record(buzz=context.buzz, sentiment=context.sentiment) # def record_allocation(context): # """Record allocation data for use in analysis # """ # # targets = list([(k.symbol, np.asscalar(v)) for k, v in context.target_allocation.items()]) # targets = list([(k.symbol, v) for k, v in context.target_allocation.items()]) # record(allocation=targets, cash=context.portfolio.cash) # # print(type(targets), targets) def record_current_weights(context, data): """Record current weights of portfolio for use in analysis """ weights = [] for stock in context.stocks: current_weight = (data.current(stock, 'close') * context.portfolio.positions[stock].amount) / context.portfolio.portfolio_value weights.append((stock.symbol, current_weight)) targets = list([(k.symbol, v) for k, v in context.target_allocation.items()]) record(allocation=targets, cash=context.portfolio.cash) record(curr_weights=weights) def seriesToDataFrame(recorded_data): m = [] index = [] columns = [l[0] for l in recorded_data[-1]] for k, v in recorded_data.items(): if (type(v) == list): m.append(list(zip(*v))[1]) # m.append((v[0][1], v[1][1], v[2][1], v[3][1])) index.append(k) df = pd.DataFrame(m, columns=columns) df.index = index # by right, can just use allocation.index, but there are some NaN values return df # def rebalance_o(context, data, verbose): # # allocate(context, data) # if verbose: print("-"*30) # # Sell first so that got more cash # for stock in context.stocks: # current_weight = (data.current(stock, 'close') * context.portfolio.positions[stock].amount) / context.portfolio.portfolio_value # target_weight = context.target_allocation[stock] # distance = current_weight - target_weight # if (distance > 0): # amount = -1 * (distance * context.portfolio.portfolio_value) / data.current(stock, 'close') # if (int(amount) == 0): # continue # if verbose: print("Selling " + str(int(amount * -1)) + " shares of " + str(stock)) # print("-"*20) # print("BO ", context.portfolio.cash) # order(stock, int(amount)) # print("AO ", context.portfolio.cash) # # Buy after selling # for stock in context.stocks: # current_weight = (data.current(stock, 'close') * context.portfolio.positions[stock].amount) / context.portfolio.portfolio_value # target_weight = context.target_allocation[stock] # distance = current_weight - target_weight # if (distance < 0): # amount = -1 * (distance * context.portfolio.portfolio_value) / data.current(stock, 'close') # if (int(amount) == 0): # continue # if verbose: print("Buying " + str(int(amount)) + " shares of " + str(stock)) # order(stock, int(amount)) # if verbose: print('-'*30) # # record for use in analysis # # record_allocation(context) def rebalance(context, data, verbose): """Rebalance portfolio If function enters, rebalance is deemed to be necessary, and rebalancing will be done """ # allocate(context, data) if verbose: print("-"*30) # Just use order_target to rebalance? for stock in context.stocks: current_weight = (data.current(stock, 'close') * context.portfolio.positions[stock].amount) / context.portfolio.portfolio_value if stock in context.target_allocation: order_target_percent(stock, context.target_allocation[stock]) if verbose: print("%s: %.5f -> %.5f" % (stock, current_weight, context.target_allocation[stock])) # record for use in analysis # record_allocation(context) def retrieve_social_media(path): social_media =
pd.read_csv(path, usecols=['date', 'buzz', 'finBERT', 'sent12', 'sent26'])
pandas.read_csv
import sys import os import glob import errno from datetime import date, datetime, timedelta import numpy as np from numpy import NaN, Inf, arange, isscalar, asarray, array import pandas as pd #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from pre_processFiles.gauge_reference import gauge_reference def set_user_params(user_params, def_params): for key in def_params.keys(): if key in user_params.keys(): def_params[key] = user_params[key] return def_params def calculate_average_each_column(matrix): average = [] index = 0 for _ in matrix[0]: average.append(np.nanmean(matrix[:, index])) index = index + 1 return average def create_folders(): folders = ['post_processedFiles/Boxplots', 'post_processedFiles/Wateryear_Type', 'post_processedFiles/Supplementary_Metrics', 'post_processedFiles/Class-1', 'post_processedFiles/Class-2', 'post_processedFiles/Class-3', 'post_processedFiles/Class-4', 'post_processedFiles/Class-5', 'post_processedFiles/Class-6', 'post_processedFiles/Class-7', 'post_processedFiles/Class-8', 'post_processedFiles/Class-9'] for folder in folders: try: os.makedirs(folder) except OSError as e: if e.errno != errno.EEXIST: raise def median_of_time(lt): n = len(lt) if n < 1: return None elif n % 2 == 1: return lt[n//2].start_date elif n == 2: first_date = lt[0].start_date second_date = lt[1].start_date return (first_date + second_date) / 2 else: first_date = lt[n//2 - 1].start_date second_date = lt[n//2 + 1].start_date return (first_date + second_date) / 2 def median_of_magnitude(object_array): flow_array = [] for obj in object_array: flow_array= flow_array + obj.flow return np.nanmean(np.array(flow_array, dtype=np.float)) def peak_magnitude(object_array): flow_array = [] for obj in object_array: flow_array= flow_array + obj.flow return np.nanmax(np.array(flow_array, dtype=np.float)) def peakdet(v, delta, x = None): """ Converted from MATLAB script at http://billauer.co.il/peakdet.html """ maxtab = [] mintab = [] if x is None: x = arange(len(v)) v = asarray(v) if len(v) != len(x): sys.exit('Input vectors v and x must have same length') if not isscalar(delta): sys.exit('Input argument delta must be a scalar') if delta <= 0: sys.exit('Input argument delta must be positive') mn, mx = Inf, -Inf mnpos, mxpos = NaN, NaN lookformax = True for i in arange(len(v)): this = v[i] if this > mx: mx = this mxpos = x[i] if this < mn: mn = this mnpos = x[i] if lookformax: if this < mx-delta: maxtab.append((mxpos, mx)) mn = this mnpos = x[i] lookformax = False else: if this > mn+delta: mintab.append((mnpos, mn)) mx = this mxpos = x[i] lookformax = True return array(maxtab), array(mintab) def add_years(d, years): """Return a date that's `years` years after the date (or datetime) object `d`. Return the same calendar date (month and day) in the destination year, if it exists, otherwise use the following day (thus changing February 29 to March 1). Parameter: d for date object, years for added or subtracted years """ try: return d.replace(year=d.year + years) except ValueError: return d + (date(d.year + years, 1, 1) - date(d.year, 1, 1)) def replace_nan(flow_data): for index, flow in enumerate(flow_data): if index == 0 and np.isnan(flow): flow_data[index] = 0 elif np.isnan(flow): flow_data[index] = flow_data[index-1] return flow_data def is_multiple_date_data(df): two_digit_year = '/' in df.iloc[4,0] year_in_front = '-' in df.iloc[4,0] if two_digit_year and len(str(df.iloc[4,0]).split("/")) > 1: return 2 elif year_in_front and len(str(df.iloc[4,0]).split("-")) > 1: return 2 else: print("return 1") return 1 def is_two_digit_year(date): return '/' in date[-3:] def year_in_front(date): return '-' in date[-3:] def get_date_from_offset_julian_date(row_number, year, start_date): start_year = year end_year = year + 1 julian_start_date_start_year = datetime.strptime("{}/{}".format(start_date, start_year), "%m/%d/%Y").timetuple().tm_yday if start_year % 4 == 0: days_in_year_start = 366 else: days_in_year_start = 365 if row_number <= days_in_year_start - julian_start_date_start_year: current_year = start_year date_delta = julian_start_date_start_year + row_number current_date = datetime(current_year, 1, 1) + timedelta(date_delta - 1) else: current_year = end_year date_delta = row_number - days_in_year_start + julian_start_date_start_year - 1 current_date = datetime(current_year, 1, 1) + timedelta(date_delta) return current_date def moving_average(data_array): result_data = [] for index, data in enumerate(data_array): if index < 2: result_data.append(data) elif index > len(data_array) - 3: result_data.append(data) else: result_data.append((data + data_array[index - 1] + data_array[index - 2] + data_array[index + 1] + data_array[index + 2])/5) return result_data def get_nan_fraction_in_array(data_array): length_array = len(data_array) counter = 0 for data in data_array: if
pd.isnull(data)
pandas.isnull
"""Catchall module within the catchall module for really one-off stuff.""" from __future__ import print_function from __future__ import division from future import standard_library standard_library.install_aliases() from builtins import zip from builtins import str from builtins import map from builtins import range from past.builtins import basestring from builtins import object from past.utils import old_div import numpy as np import warnings import matplotlib.mlab as mlab import matplotlib # for spectrogrammer import scipy.signal import os import re import datetime import glob import wwutils import pandas ## Deprecated stuff from wwutils.video import OutOfFrames def frame_dump(*args, **kwargs): warnings.warn("use wwutils.video instead of wwutils.misc", stacklevel=2) return wwutils.video.frame_dump(*args, **kwargs) def frame_dump_pipe(*args, **kwargs): warnings.warn("use wwutils.video instead of wwutils.misc", stacklevel=2) return wwutils.video.get_frame(*args, **kwargs) def process_chunks_of_video(*args, **kwargs): warnings.warn("use wwutils.video instead of wwutils.misc", stacklevel=2) return wwutils.video.process_chunks_of_video(*args, **kwargs) def get_video_aspect(*args, **kwargs): warnings.warn("use wwutils.video instead of wwutils.misc", stacklevel=2) return wwutils.video.get_video_aspect(*args, **kwargs) def get_video_duration(*args, **kwargs): warnings.warn("use wwutils.video instead of wwutils.misc", stacklevel=2) return wwutils.video.get_video_duration(*args, **kwargs) ## def globjoin(dirname, pattern, normalize=True): """Join dirname to pattern, and glob it If normalize: calls os.path.abspath on every result """ res = glob.glob(os.path.join(dirname, pattern)) if normalize: res = list(map(os.path.abspath, res)) return res def time_of_file(filename, fmt='%Y%m%d%H%M%S'): """Return the modification time of the file as a datetime. If fmt is not None: apply strftime(fmt) and return the string """ dt = datetime.datetime.fromtimestamp(os.path.getmtime(filename)) if fmt is None: return dt else: return dt.strftime(fmt) class Spectrogrammer(object): """Turns a waveform into a spectrogram""" def __init__(self, NFFT=256, downsample_ratio=1, new_bin_width_sec=None, max_freq=None, min_freq=None, Fs=1.0, noverlap=None, normalization=0, detrend=mlab.detrend_mean, **kwargs): """Object to turn waveforms into spectrograms. This is a wrapper around mlab.specgram. What this object provides is slightly more intelligent parameter choice, and a nicer way to trade off resolution in frequency and time. It also remembers parameter choices, so that the same object can be used to batch analyze a bunch of waveforms using the `transform` method. Arguments passed to mlab.specgram ---------------------------------- NFFT - number of points used in each segment Determines the number of frequency bins, which will be NFFT / 2 before stripping out those outside min_freq and max_freq noverlap - int, number of samples of overlap between segments Default is NFFT / 2 Fs - sampling rate detrend - detrend each segment before FFT Default is to remove the mean (DC component) **kwargs - anything else you want to pass to mlab.specgram Other arguments --------------- downsample_ratio - int, amount to downsample in time After all other calculations are done, the temporal resolution new_bin_width_sec - float, target temporal resolution The returned spectrogram will have a temporal resolution as close to this as possible. If this is specified, then the downsample_ratio is adjusted as necessary to achieve it. If noverlap is left as default, it will try 50% first and then 0, to achieve the desired resolution. If it is not possible to achieve within a factor of 2 of this resolution, a warning is issued. normalization - the power in each frequency bin is multiplied by the frequency raised to this power. 0 means do nothing. 1 means that 1/f noise becomes white. min_freq, max_freq - discard frequencies outside of this range Returns ------- Pxx - 2d array of power in dB. Shape (n_freq_bins, n_time_bins) May contain -np.inf where the power was exactly zero. freqs - 1d array of frequency bins t - 1d array of times Theory ------ The fundamental tradeoff is between time and frequency resolution and is set by NFFT. For instance, consider a 2-second signal, sampled at 1024Hz, chosen such that the number of samples is 2048 = 2**11. * If NFFT is 2048, you will have 1024 frequency bins (spaced between 0KHz and 0.512KHz) and 1 time bin. This is a simple windowed FFT**2, with the redundant negative frequencies discarded since the waveform is real. Note that the phase information is lost. * If NFFT is 256, you will have 128 frequency bins and 8 time bins. * If NFFT is 16, you will have 8 freqency bins and 128 time bins. In each case the FFT-induced trade-off is: n_freq_bins * n_time_bins_per_s = Fs / 2 n_freq_bins = NFFT / 2 So far, using only NFFT, we have traded off time resolution for frequency resolution. We can achieve greater noise reduction with appropriate choice of noverlap and downsample_ratio. The PSD function achieves this by using overlapping segments, then averaging the FFT of each segment. The use of noverlap in mlab.specgram is a bit of a misnomer, since no temporal averaging occurs there! But this object can reinstate this temporal averaging. For our signal above, if our desired temporal resolution is 64Hz, that is, 128 samples total, and NFFT is 16, we have a choice. * noverlap = 0. Non-overlapping segments. As above, 8 frequency bins and 128 time bins. No averaging * noverlap = 64. 50% overlap. Now we will get 256 time bins. We can then average together each pair of adjacent bins by downsampling, theoretically reducing the noise. Note that this will be a biased estimate since the overlapping windows are not redundant. * noverlap = 127. Maximal overlap. Now we will get about 2048 bins, which we can then downsample by 128 times to get our desired time resolution. The trade-off is now: overlap_factor = (NFFT - overlap) / NFFT n_freq_bins * n_time_bins_per_s * overlap_factor = Fs / downsample_ratio / 2 Since we always do the smoothing in the time domain, n_freq bins = NFFT / 2 and the tradeoff becomes n_time_bins_per_s = Fs / downsample_ratio / (NFFT - overlap) That is, to increase the time resolution, we can: * Decrease the frequency resolution (NFFT) * Increase the overlap, up to a maximum of NFFT - 1 This is a sort of spurious improvement because adjacent windows are highly correlated. * Decrease the downsample_ratio (less averaging) To decrease noise, we can: * Decrease the frequency resolution (NFFT) * Increase the downsample_ratio (more averaging, fewer timepoints) How to choose the overlap, or the downsample ratio? In general, 50% overlap seems good, since we'd like to use some averaging, but we get limited benefit from averaging many redundant samples. This object tries for 50% overlap and adjusts the downsample_ratio (averaging) to achieve the requested temporal resolution. If this is not possible, then no temporal averaging is done (just like mlab.specgram) and the overlap is increased as necessary to achieve the requested temporal resolution. """ self.downsample_ratio = downsample_ratio # until set otherwise # figure out downsample_ratio if new_bin_width_sec is not None: # Set noverlap to default if noverlap is None: # Try to do it with 50% overlap noverlap = old_div(NFFT, 2) # Calculate downsample_ratio to achieve this self.downsample_ratio = \ Fs * new_bin_width_sec / float(NFFT - noverlap) # If this is not achievable, then try again with minimal downsampling if np.rint(self.downsample_ratio).astype(np.int) < 1: self.downsample_ratio = 1 noverlap = np.rint(NFFT - Fs * new_bin_width_sec).astype(np.int) # Convert to nearest int and test if possible self.downsample_ratio = np.rint(self.downsample_ratio).astype(np.int) if self.downsample_ratio == 0: print("requested temporal resolution too high, using maximum") self.downsample_ratio = 1 # Default value for noverlap if still None if noverlap is None: noverlap = old_div(NFFT, 2) self.noverlap = noverlap # store other defaults self.NFFT = NFFT self.max_freq = max_freq self.min_freq = min_freq self.Fs = Fs self.normalization = normalization self.detrend = detrend self.specgram_kwargs = kwargs def transform(self, waveform): """Converts a waveform to a suitable spectrogram. Removes high and low frequencies, rebins in time (via median) to reduce data size. Returned times are the midpoints of the new bins. Returns: Pxx, freqs, t Pxx is an array of dB power of the shape (len(freqs), len(t)). It will be real but may contain -infs due to log10 """ # For now use NFFT of 256 to get appropriately wide freq bands, then # downsample in time Pxx, freqs, t = mlab.specgram(waveform, NFFT=self.NFFT, noverlap=self.noverlap, Fs=self.Fs, detrend=self.detrend, **self.specgram_kwargs) # Apply the normalization Pxx = Pxx * np.tile(freqs[:, np.newaxis] ** self.normalization, (1, Pxx.shape[1])) # strip out unused frequencies if self.max_freq is not None: Pxx = Pxx[freqs < self.max_freq, :] freqs = freqs[freqs < self.max_freq] if self.min_freq is not None: Pxx = Pxx[freqs > self.min_freq, :] freqs = freqs[freqs > self.min_freq] # Rebin in size "downsample_ratio". If last bin is not full, discard. Pxx_rebinned = [] t_rebinned = [] for n in range(0, len(t) - self.downsample_ratio + 1, self.downsample_ratio): Pxx_rebinned.append( np.median(Pxx[:, n:n+self.downsample_ratio], axis=1).flatten()) t_rebinned.append( np.mean(t[n:n+self.downsample_ratio])) # Convert to arrays Pxx_rebinned_a = np.transpose(np.array(Pxx_rebinned)) t_rebinned_a = np.array(t_rebinned) # log it and deal with infs Pxx_rebinned_a_log = -np.inf * np.ones_like(Pxx_rebinned_a) Pxx_rebinned_a_log[np.nonzero(Pxx_rebinned_a)] = \ 10 * np.log10(Pxx_rebinned_a[np.nonzero(Pxx_rebinned_a)]) self.freqs = freqs self.t = t_rebinned_a return Pxx_rebinned_a_log, freqs, t_rebinned_a def fix_pandas_display_width(meth=1, dw=0, max_columns=12): """Various fixes""" import pandas if meth == 0: pandas.set_option('display.width', 0) elif meth == 1: pandas.set_option('display.max_columns', max_columns) pandas.set_option('display.width', None) class UniquenessError(Exception): pass def only_one(l): """Returns the only value in l, or l itself if non-iterable. Compare 'unique_or_error', which allows multiple identical etnries. """ # listify if not hasattr(l, '__len__'): l = [l] # check length if len(l) != 1: raise UniquenessError("must contain exactly one value; instead: %r" % l) # return entry return l[0] def unique_or_error(a): """Asserts that `a` contains only one unique value and returns it Compare 'only_one' which does not allow repeats. """ u = np.unique(np.asarray(a)) if len(u) == 0: raise UniquenessError("no unique values found, should be one") if len(u) > 1: raise UniquenessError("%d unique values found, should be one" % len(u)) else: return u[0] def printnow(s): """Write string to stdout and flush immediately""" import sys sys.stdout.write(str(s) + "\n") sys.stdout.flush() def get_file_time(filename, human=False): import time # Get modification time res = os.path.getmtime(filename) # Convert to human-readable if human: res = time.ctime(res) return res def pickle_load(filename): import pickle with open(filename, 'rb') as fi: res = pickle.load(fi) return res def pickle_dump(obj, filename): import pickle with open(filename, 'wb') as fi: pickle.dump(obj, fi) def invert_linear_poly(p): """Helper function for inverting fit.coeffs""" return old_div(np.array([1, -p[1]]).astype(np.float), p[0]) def apply_and_filter_by_regex(pattern, list_of_strings, sort=True): """Apply regex pattern to each string and return result. Non-matches are ignored. If multiple matches, the first is returned. """ res = [] for s in list_of_strings: m = re.match(pattern, s) if m is None: continue else: res.append(m.groups()[0]) if sort: return sorted(res) else: return res def regex_filter(pattern, list_of_strings): """Apply regex pattern to each string and return those that match. See also regex_capture """ return [s for s in list_of_strings if re.match(pattern, s) is not None] def regex_capture(pattern, list_of_strings, take_index=0): """Apply regex pattern to each string and return a captured group. Same as old apply_and_filter_by_regex, but without the sorting. See also regex_filter. This will match that order. """ # Apply filter to each string res_l = [] for s in list_of_strings: m = re.match(pattern, s) # Append the capture, if any if m is not None: res_l.append(m.groups()[take_index]) return res_l def rint(arr): """Round with rint and cast to int If `arr` contains NaN, casting it to int causes a spuriously negative number, because NaN cannot be an int. In this case we raise ValueError. """ if np.any(np.isnan(np.asarray(arr))): raise ValueError("cannot convert arrays containing NaN to int") return np.rint(arr).astype(np.int) def is_nonstring_iter(val): """Check if the input is iterable, but not a string. Recently changed this to work for Unicode. This should catch a subset of the old way, because previously Unicode strings caused this to return True, but now they should return False. Will print a warning if this is not the case. """ # Old way res1 = hasattr(val, '__len__') and not isinstance(val, str) # New way res2 = hasattr(val, '__len__') and not isinstance(val, basestring) if res2 and not res1: print("warning: check is_nonstring_iter") return res2 def pick(df, isnotnull=None, **kwargs): """Function to pick row indices from DataFrame. Copied from kkpandas This method provides a nicer interface to choose rows from a DataFrame that satisfy specified constraints on the columns. isnotnull : column name, or list of column names, that should not be null. See pandas.isnull for a defintion of null All additional kwargs are interpreted as {column_name: acceptable_values}. For each column_name, acceptable_values in kwargs.items(): The returned indices into column_name must contain one of the items in acceptable_values. If acceptable_values is None, then that test is skipped. Note that this means there is currently no way to select rows that ARE none in some column. If acceptable_values is a single string or value (instead of a list), then the returned rows must contain that single string or value. TODO: add flags for string behavior, AND/OR behavior, error if item not found, return unique, .... """ msk = np.ones(len(df), dtype=np.bool) for key, val in list(kwargs.items()): if val is None: continue elif is_nonstring_iter(val): msk &= df[key].isin(val) else: msk &= (df[key] == val) if isnotnull is not None: # Edge case if not is_nonstring_iter(isnotnull): isnotnull = [isnotnull] # Filter by not null for key in isnotnull: msk &= -
pandas.isnull(df[key])
pandas.isnull
import tensorflow as tf import random as rn import numpy as np import os os.environ['PYTHONHASHSEED'] = '0' np.random.seed(45) # Setting the graph-level random seed. tf.set_random_seed(1337) rn.seed(73) from keras import backend as K session_conf = tf.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1) # Force Tensorflow to use a single thread sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) import math import pandas as pd import keras from keras import backend as K from keras.models import Model from keras.layers import InputLayer, Input, Dropout, Dense, Embedding, LSTM from keras.layers.merge import concatenate from keras.callbacks import TensorBoard, EarlyStopping from keras.optimizers import Adam, Adamax from keras.models import load_model from keras import regularizers import skopt from skopt import gp_minimize, forest_minimize from skopt.space import Real, Categorical, Integer from skopt.plots import plot_convergence from skopt.plots import plot_objective, plot_evaluations from skopt.utils import use_named_args from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer, LabelEncoder from sklearn.metrics import confusion_matrix, classification_report import sys dim_learning_rate = Real(low=1e-4, high=1e-2, prior='log-uniform', name='learning_rate') dim_weight_decay = Real(low=1e-3, high=0.5, prior='log-uniform', name='weight_decay') dim_num_dense_layers = Integer(low=0, high=5, name='num_dense_layers') dim_num_dense_nodes = Integer(low=5, high=1024, name='num_dense_nodes') dim_activation = Categorical(categories=['relu', 'softplus'], name='activation') dim_dropout = Real(low=1e-6, high=0.5, prior='log-uniform', name='dropout') ### DRIVER dim_driver_weight_decay = Real(low=1e-3, high=0.5, prior='log-uniform', name='driver_weight_decay') dim_driver_num_dense_layers = Integer(low=0, high=5, name='driver_num_dense_layers') dim_driver_num_dense_nodes = Integer(low=5, high=1024, name='driver_num_dense_nodes') dim_driver_activation = Categorical(categories=['relu', 'softplus'], name='driver_activation') dim_driver_dropout = Real(low=1e-6, high=0.5, prior='log-uniform', name='driver_dropout') ### MOTIF dim_motif_weight_decay = Real(low=1e-3, high=0.5, prior='log-uniform', name='motif_weight_decay') dim_motif_num_dense_layers = Integer(low=0, high=5, name='motif_num_dense_layers') dim_motif_num_dense_nodes = Integer(low=5, high=1024, name='motif_num_dense_nodes') dim_motif_activation = Categorical(categories=['relu', 'softplus'], name='motif_activation') dim_motif_dropout = Real(low=1e-6, high=0.5, prior='log-uniform', name='motif_dropout') dimensions = [dim_learning_rate, dim_weight_decay, dim_dropout, dim_num_dense_layers, dim_num_dense_nodes, dim_activation, dim_driver_weight_decay, dim_driver_dropout, dim_driver_num_dense_layers, dim_driver_num_dense_nodes, dim_driver_activation, dim_motif_weight_decay, dim_motif_dropout, dim_motif_num_dense_layers, dim_motif_num_dense_nodes, dim_motif_activation] default_paramaters = [1e-4, 1e-3, 1e-6, 0, 100, 'relu', 1e-3, 1e-6, 0, 100, 'relu', 1e-3, 1e-6, 0, 100, 'relu'] def log_dir_name(learning_rate, weight_decay, num_dense_layers, num_dense_nodes, activation): log_dir = "./crossvalidation{}_logs/{}__lr_{}_wd_{}_layers_{}_nodes{}_{}/".format(fold, output_name, learning_rate, weight_decay, num_dense_layers, num_dense_nodes, activation) ## make sure that dir exists if not os.path.exists(log_dir): os.makedirs(log_dir) return log_dir def create_model(learning_rate, weight_decay, dropout, num_dense_layers, num_dense_nodes, activation, driver_weight_decay, driver_dropout, driver_num_dense_layers, driver_num_dense_nodes, driver_activation, motif_weight_decay, motif_dropout, motif_num_dense_layers, motif_num_dense_nodes, motif_activation): ### Define model here main_input = Input(shape=(input_size,), name='main_input') name = 'main_layer_dense_{0}'.format(1) main_branch = Dense(num_dense_nodes, activation=activation, name=name, kernel_regularizer=regularizers.l2(weight_decay))(main_input) main_branch = Dropout(dropout)(main_branch) for i in range(1,num_dense_layers): name = 'main_layer_dense_{0}'.format(i + 1) main_branch = Dense(num_dense_nodes, activation=activation, name=name, kernel_regularizer=regularizers.l2(weight_decay))(main_branch) main_branch = Dropout(dropout)(main_branch) driver_input = Input(shape=(input_driver_size,), name='driver_input') name = 'driver_layer_dense_{0}'.format(1) driver_branch = Dense(driver_num_dense_nodes, activation=driver_activation, name=name, kernel_regularizer=regularizers.l2(driver_weight_decay))(driver_input) driver_branch = Dropout(driver_dropout)(driver_branch) for i in range(1,driver_num_dense_layers): name = 'driver_layer_dense_{0}'.format(i + 1) driver_branch = Dense(driver_num_dense_nodes, activation=driver_activation, name=name, kernel_regularizer=regularizers.l2(driver_weight_decay))(driver_branch) driver_branch = Dropout(driver_dropout)(driver_branch) motif_input = Input(shape=(input_motif_size,), name='motif_input') name = 'motif_layer_dense_{0}'.format(1) motif_branch = Dense(motif_num_dense_nodes, activation=motif_activation, name=name, kernel_regularizer=regularizers.l2(motif_weight_decay))(motif_input) motif_branch = Dropout(motif_dropout)(motif_branch) for i in range(1,motif_num_dense_layers): name = 'motif_layer_dense_{0}'.format(i + 1) motif_branch = Dense(motif_num_dense_nodes, activation=motif_activation, name=name, kernel_regularizer=regularizers.l2(motif_weight_decay))(motif_branch) motif_branch = Dropout(motif_dropout)(motif_branch) x = concatenate([main_branch, driver_branch, motif_branch]) predictions = Dense(num_classes, activation='softmax', name='output')(x) optimizer = Adam(lr=learning_rate) model = Model(inputs=[main_input, driver_input, motif_input], outputs=predictions) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) return model @use_named_args(dimensions=dimensions) def fitness(learning_rate, weight_decay, dropout, num_dense_layers, num_dense_nodes, activation, driver_weight_decay, driver_dropout, driver_num_dense_layers, driver_num_dense_nodes, driver_activation, motif_weight_decay, motif_dropout, motif_num_dense_layers, motif_num_dense_nodes, motif_activation): global best_accuracy # best_accuracy = 0.0 print('learning rate: ', learning_rate) print('weight_decay: ', weight_decay) print('dropout', dropout) print('num_dense_layers: ', num_dense_layers) print('num_dense_nodes: ', num_dense_nodes) print('activation: ', activation) print('driver_weight_decay: ', driver_weight_decay) print('driver_dropout', driver_dropout) print('driver_num_dense_layers: ', driver_num_dense_layers) print('driver_num_dense_nodes: ', driver_num_dense_nodes) print('driver_activation: ', driver_activation) print('motif_weight_decay: ', motif_weight_decay) print('motif_dropout', motif_dropout) print('motif_num_dense_layers: ', motif_num_dense_layers) print('motif_num_dense_nodes: ', motif_num_dense_nodes) print('motif_activation: ', motif_activation) model = create_model(learning_rate=learning_rate, weight_decay=weight_decay, dropout=dropout, num_dense_layers=num_dense_layers, num_dense_nodes=num_dense_nodes, activation=activation, driver_weight_decay=driver_weight_decay, driver_dropout=driver_dropout, driver_num_dense_layers=driver_num_dense_layers, driver_num_dense_nodes=driver_num_dense_nodes, driver_activation=driver_activation, motif_weight_decay=motif_weight_decay, motif_dropout=motif_dropout, motif_num_dense_layers=motif_num_dense_layers, motif_num_dense_nodes=motif_num_dense_nodes, motif_activation=motif_activation) log_dir = log_dir_name(learning_rate, weight_decay, num_dense_layers, num_dense_nodes, activation) callback_log = TensorBoard( log_dir=log_dir, histogram_freq=0, batch_size=32, write_graph=True, write_grads=True, write_images=False) callbacks = [callback_log] ### FIXME model.fit - x_train and y_train history = model.fit(x=[x_train, x_train_driver, x_train_motif], y=y_train, epochs=50, batch_size=32, validation_data=validation_data, callbacks=callbacks) accuracy = history.history['val_acc'][-1] print('Accuracy: {0:.2%}'.format(accuracy)) if accuracy > best_accuracy: model.save(path_best_model) best_accuracy = accuracy del model K.clear_session() return -accuracy def to_table(report): report = report.splitlines() res = [] header = [''] + report[0].split() for row in report[2:-4]: res.append(np.array(row.split())) return np.array(res), header if __name__ == '__main__': fold = int(sys.argv[1]) input_data_filename = sys.argv[2] input_driver_data_filename = sys.argv[3] input_motif_data_filename = sys.argv[4] output_name = sys.argv[5] path_best_model = './{}__crossvalidation{}_best_model.keras'.format(output_name, fold) best_accuracy = 0.0 data = pd.read_csv("./{}.csv".format(input_data_filename), index_col=[0]) driver_data = pd.read_csv("./{}.csv".format(input_driver_data_filename), index_col=[0]) motif_data = pd.read_csv("./{}.csv".format(input_motif_data_filename), index_col=[0]) ### Making training, test, validation data training_samples = pd.read_csv('./training_idx_pcawg.csv', index_col=[0]) training_samples.columns = ['guid', 'split'] training_samples = training_samples[training_samples.split == fold] frames = [] for guid_ in training_samples.guid: frames.append(data[data['guid'].str.contains(guid_)]) training_data = pd.concat(frames) training_data = training_data.sort_values(by=['guid']) print(training_data.head()) validation_samples = pd.read_csv('./validation_idx_pcawg.csv', index_col=[0]) validation_samples.columns = ['guid', 'split'] validation_samples = validation_samples[validation_samples.split == fold] validation_data = data[data['guid'].isin(validation_samples.guid)] validation_data = validation_data.sort_values(by=['guid']) print(validation_data.head()) test_samples = pd.read_csv('./test_idx_pcawg.csv', index_col=[0]) test_samples.columns = ['guid', 'split'] test_samples = test_samples[test_samples.split == fold] test_data = data[data['guid'].isin(test_samples.guid)] test_data = test_data.sort_values(by=['guid']) print(test_data.head()) training_data = training_data.drop(['guid'], axis=1) validation_data = validation_data.drop(['guid'], axis=1) test_data = test_data.drop(['guid'], axis=1) x_train = training_data.values y_train = training_data.index x_val = validation_data.values y_val = validation_data.index x_test = test_data.values y_test = test_data.index ### DRIVER Making training, test, validation data frames = [] for guid_ in training_samples.guid: frames.append(driver_data[driver_data['guid'].str.contains(guid_)]) driver_training_data = pd.concat(frames) driver_training_data = driver_training_data.sort_values(by=['guid']) driver_validation_data = driver_data[driver_data['guid'].isin(validation_samples.guid)] driver_validation_data = driver_validation_data.sort_values(by=['guid']) driver_test_data = driver_data[driver_data['guid'].isin(test_samples.guid)] driver_test_data = driver_test_data.sort_values(by=['guid']) driver_training_data = driver_training_data.drop(['guid'], axis=1) driver_validation_data = driver_validation_data.drop(['guid'], axis=1) driver_test_data = driver_test_data.drop(['guid'], axis=1) x_train_driver = driver_training_data.values y_train_driver = driver_training_data.index x_val_driver = driver_validation_data.values y_val_driver = driver_validation_data.index x_test_driver = driver_test_data.values y_test_driver = driver_test_data.index ### MOTIF Making training, test, validation data frames = [] for guid_ in training_samples.guid: frames.append(motif_data[motif_data['guid'].str.contains(guid_)]) motif_training_data = pd.concat(frames) motif_training_data = motif_training_data.sort_values(by=['guid']) motif_validation_data = motif_data[motif_data['guid'].isin(validation_samples.guid)] motif_validation_data = motif_validation_data.sort_values(by=['guid']) motif_test_data = motif_data[motif_data['guid'].isin(test_samples.guid)] motif_test_data = motif_test_data.sort_values(by=['guid']) motif_training_data = motif_training_data.drop(['guid'], axis=1) motif_validation_data = motif_validation_data.drop(['guid'], axis=1) motif_test_data = motif_test_data.drop(['guid'], axis=1) x_train_motif = motif_training_data.values y_train_motif = motif_training_data.index x_val_motif = motif_validation_data.values y_val_motif = motif_validation_data.index x_test_motif = motif_test_data.values y_test_motif = motif_test_data.index encoder = LabelEncoder() test_labels_names = y_test y_test = encoder.fit_transform(y_test) test_labels = y_test num_of_cancers = len(encoder.classes_) print("Num of cancers: {}".format(num_of_cancers)) y_test = keras.utils.to_categorical(y_test, num_of_cancers) y_train = encoder.fit_transform(y_train) y_train = keras.utils.to_categorical(y_train, num_of_cancers) y_val = encoder.fit_transform(y_val) y_val = keras.utils.to_categorical(y_val, num_of_cancers) ### DRIVER + MOTIF y_train_driver = encoder.fit_transform(y_train_driver) y_train_driver = keras.utils.to_categorical(y_train_driver, num_of_cancers) y_val_driver = encoder.fit_transform(y_val_driver) y_val_driver = keras.utils.to_categorical(y_val_driver, num_of_cancers) y_test_driver = encoder.fit_transform(y_test_driver) y_test_driver = keras.utils.to_categorical(y_test_driver, num_of_cancers) y_train_motif = encoder.fit_transform(y_train_motif) y_train_motif = keras.utils.to_categorical(y_train_motif, num_of_cancers) y_val_motif = encoder.fit_transform(y_val_motif) y_val_motif = keras.utils.to_categorical(y_val_motif, num_of_cancers) y_test_motif = encoder.fit_transform(y_test_motif) y_test_motif = keras.utils.to_categorical(y_test_motif, num_of_cancers) validation_data = ([x_val, x_val_driver, x_val_motif], y_val) input_size = x_train.shape[1] input_driver_size = x_train_driver.shape[1] input_motif_size = x_train_motif.shape[1] num_classes = num_of_cancers ### Run Bayesian optimization search_result = gp_minimize(func=fitness, dimensions=dimensions, acq_func='EI', n_calls=200, x0=default_paramaters, random_state=7, n_jobs=-1) # Save Best Hyperparameters hyps = np.asarray(search_result.x) np.save('./crossvalidation_results/{}__fold{}_hyperparams'.format(output_name, fold), hyps, allow_pickle=False) model = load_model(path_best_model) # Evaluate best model on test data result = model.evaluate(x=[x_test, x_test_driver, x_test_motif], y=y_test) # Save best model model.save('./crossvalidation_results/{}__fold_{}_model.keras'.format(output_name, fold)) Y_pred = model.predict([x_test, x_test_driver, x_test_motif]) y_pred = np.argmax(Y_pred, axis=1) a =
pd.Series(test_labels_names)
pandas.Series
import pandas as pd import os import csv import gdal import numpy as np import re def ad_industry_profiles_dict(dicts): dict_names = ["load_profile_industry_chemicals_and_petrochemicals_yearlong_2018", "load_profile_industry_food_and_tobacco_yearlong_2018", "load_profile_industry_iron_and_steel_yearlong_2018", "load_profile_industry_non_metalic_minerals_yearlong_2018", "load_profile_industry_paper_yearlong_2018"] data = [] for name, dictionary in zip(dict_names, dicts): raw_data = pd.DataFrame(dictionary[name]) raw_data = raw_data.loc[:, ("NUTS0_code", "process", "hour", "load")] raw_data["load"] = pd.to_numeric(raw_data["load"]) raw_data["hour"] = pd.to_numeric(raw_data["hour"]) data.append(raw_data) return data def ad_residential_heating_profile_dict(dictionary): data = pd.DataFrame(dictionary["load_profile_residential_heating_yearlong_2010"]) data = data.loc[:, ("NUTS2_code", "process", "hour", "load")] data["load"] = pd.to_numeric(data["load"]) data["hour"] = pd.to_numeric(data["hour"]) return data def ad_industry_profiles_local(nuts0_ids): """ Loads industry profiles of different subcategories from different csv files. :return: List of dataframes containing the csv files data. :rtype: list [pd.Dataframe, pd.Dataframe, ...]. """ file_names = ("hotmaps_task_2.7_load_profile_industry_chemicals_and_petrochemicals_yearlong_2018.csv", "hotmaps_task_2.7_load_profile_industry_food_and_tobacco_yearlong_2018.csv", "hotmaps_task_2.7_load_profile_industry_iron_and_steel_yearlong_2018.csv", "hotmaps_task_2.7_load_profile_industry_non_metalic_minerals_yearlong_2018.csv", "hotmaps_task_2.7_load_profile_industry_paper_yearlong_2018.csv") path = os.path.dirname( os.path.dirname(os.path.abspath(__file__))) path = os.path.join(path, "data") data = [] for file_name in file_names: sub_path = os.path.join(path, file_name) # determine delimiter of csv file with open(sub_path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter raw_data = pd.read_csv(sub_path, sep=delimiter, usecols=("NUTS0_code", "process", "hour", "load")) raw_data = raw_data[raw_data["NUTS0_code"].isin(nuts0_ids)] data.append(raw_data) return data def ad_residential_heating_profile_local(nuts2_ids): """ Loads residential heating profiles from csv file. :return: Dataframe containing the data of the csv file. :rtype: pandas dataframe. """ path = os.path.dirname( os.path.dirname(os.path.abspath(__file__))) path = os.path.join(path, "data") path1 = os.path.join(path, "hotmaps_task_2.7_load_profile_residential_heating_yearlong_2010_part1.csv") path2 = os.path.join(path, "hotmaps_task_2.7_load_profile_residential_heating_yearlong_2010_part2.csv") path3 = os.path.join(path, "hotmaps_task_2.7_load_profile_tertiary_shw_yearlong_2010_part1.csv") path4 = os.path.join(path, "hotmaps_task_2.7_load_profile_tertiary_shw_yearlong_2010_part2.csv") paths = [path1, path2] # determine delimiter of csv file data = pd.DataFrame(columns=("NUTS2_code", "process", "hour", "load")) for path in paths: with open(path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter dat = pd.read_csv(path, sep=delimiter, usecols=("NUTS2_code", "process", "hour", "load")) data = data.append(dat) data = data[data["NUTS2_code"].isin(nuts2_ids)] paths = [path3, path4] data2 = pd.DataFrame(columns=("NUTS2_code", "process", "hour", "load")) for path in paths: with open(path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter dat = pd.read_csv(path, sep=delimiter, usecols=("NUTS2_code", "process", "hour", "load")) data2 = data2.append(dat) data2 = data2[data2["NUTS2_code"].isin(nuts2_ids)] return data, data2 def ad_tertiary_profile_local(nuts2_ids): """ Loads residential heating profiles from csv file. :return: Dataframe containing the data of the csv file. :rtype: pandas dataframe. """ path = os.path.dirname( os.path.dirname(os.path.abspath(__file__))) path = os.path.join(path, "data") path1 = os.path.join(path, "data_hotmaps_task_2.7_load_profile_tertiary_heating_yearlong_2010_part1.csv") path2 = os.path.join(path, "data_hotmaps_task_2.7_load_profile_tertiary_heating_yearlong_2010_part2.csv") path3 = os.path.join(path, "hotmaps_task_2.7_load_profile_tertiary_shw_yearlong_2010_part1.csv") path4 = os.path.join(path, "hotmaps_task_2.7_load_profile_tertiary_shw_yearlong_2010_part2.csv") paths = [path1, path2] # determine delimiter of csv file data = pd.DataFrame(columns=("NUTS2_code", "process", "hour", "load")) for path in paths: with open(path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter dat = pd.read_csv(path, sep=delimiter, usecols=("NUTS2_code", "process", "hour", "load")) data = data.append(dat) data = data[data["NUTS2_code"].isin(nuts2_ids)] paths = [path3, path4] data2 = pd.DataFrame(columns=("NUTS2_code", "process", "hour", "load")) for path in paths: with open(path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter dat = pd.read_csv(path, sep=delimiter, usecols=("NUTS2_code", "process", "hour", "load")) data2 = data2.append(dat) data2 = data2[data2["NUTS2_code"].isin(nuts2_ids)] return data, data2 def ad_industrial_database_local(nuts2_ids): """ loads data of heat sources given by a csv file. :return: dataframe containing the data of the csv file. :rtype: pandas dataframe. """ country_to_nuts0 = {"Austria": "AT", "Belgium": "BE", "Bulgaria": "BG", "Cyprus": "CY", "Czech Republic": "CZ", "Germany": "DE", "Denmark": "DK", "Estonia": "EE", "Finland": "FI", "France": "FR", "Greece": "EL", "Hungary": "HU", "Croatia": "HR", "Ireland": "IE", "Italy": "IT", "Lithuania": "LT", "Luxembourg": "LU", "Latvia": "LV", "Malta": "MT", "Netherland": "NL", "Netherlands": "Nl", "Poland": "PL", "Portugal": "PT", "Romania": "RO", "Spain": "ES", "Sweden": "SE", "Slovenia": "SI", "Slovakia": "SK", "United Kingdom": "UK", "Albania": "AL", "Montenegro": "ME", "North Macedonia": "MK", "Serbia": "RS", "Turkey": "TR", "Switzerland": "CH", "Iceland": "IS", "Liechtenstein": "LI", "Norway": "NO"} path = os.path.dirname( os.path.dirname(os.path.abspath(__file__))) path = os.path.join(os.path.join(path, "data"), "Industrial_Database.csv") # determine delimiter of csv file with open(path, 'r', encoding='utf-8') as csv_file: delimiter = csv.Sniffer().sniff(csv_file.readline()).delimiter raw_data = pd.read_csv(path, sep=delimiter, usecols=("geom", "Subsector", "Excess_Heat_100-200C", "Excess_Heat_200-500C", "Excess_Heat_500C", "Country", "Nuts2_ID")) raw_data = raw_data[raw_data["Nuts2_ID"].isin(nuts2_ids)] # dataframe for processed data data = pd.DataFrame(columns=("ellipsoid", "Lon", "Lat", "Nuts0_ID", "Subsector", "Excess_heat", "Temperature", "Nuts2_ID")) for i, site in raw_data.iterrows(): # check if site location is available if not pd.isna(site["geom"]): # extract ellipsoid model and (lon, lat) from the "geom" column ellipsoid, coordinate = site["geom"].split(";") m = re.search("[-+]?[0-9]*\.?[0-9]+.[-+]?[0-9]*\.?[0-9]+", coordinate) m = m.group(0) lon, lat = m.split(" ") lon = float(lon) lat = float(lat) nuts0 = country_to_nuts0[site["Country"]] # check if heat at specific temperature range is available # TODO deal with units; hard coded temp ranges? if not pd.isna(site["Excess_Heat_100-200C"]) and site["Excess_Heat_100-200C"] != "" and site["Excess_Heat_100-200C"] != 0: data.loc[data.shape[0]] = (ellipsoid, lon, lat, nuts0, site["Subsector"], site["Excess_Heat_100-200C"] * 1000, 150, site["Nuts2_ID"]) if not pd.isna(site["Excess_Heat_200-500C"]) and site["Excess_Heat_200-500C"] != "" and site["Excess_Heat_200-500C"] != 0: data.loc[data.shape[0]] = (ellipsoid, lon, lat, nuts0, site["Subsector"], site["Excess_Heat_200-500C"] * 1000, 350, site["Nuts2_ID"]) if not
pd.isna(site["Excess_Heat_500C"])
pandas.isna
## 03. Pandas数据结构 """ 1. Series 2. DataFrame 3. 从DataFrame中查询出Series """ import pandas as pd import numpy as np """ ### 1. Series Series是一种类似于一维数组的对象,它由一组数据(不同数据类型)以及一组与之相关的数据标签(即索引)组成。 """ #### 1.1 仅有数据列表即可产生最简单的Series s1 = pd.Series([1,'a',5.2,7]) print(s1.index,s1.values) #### 1.2 创建一个具有标签索引的Series s2 = pd.Series([1, 'a', 5.2, 7], index=['d','b','a','c']) print(s2.index) #### 1.3 使用Python字典创建Series sdata={'Ohio':35000,'Texas':72000,'Oregon':16000,'Utah':5000} s3=
pd.Series(sdata)
pandas.Series
# -*- coding: utf-8 -*- import unittest import pandas as pd import pandas.testing as tm import numpy as np from pandas_xyz import algorithms as algs class TestAlgorithms(unittest.TestCase): def test_displacement(self): """Test out my distance algorithm with hand calcs.""" lon = pd.Series([0.0, 0.0, 0.0]) lon_ew = pd.Series([0.0, 1.0, 2.0]) lat = pd.Series([0.0, 0.0, 0.0]) lat_ns =
pd.Series([0.0, 1.0, 2.0])
pandas.Series
import pandas as pd from .datastore import merge_postcodes from .types import ErrorDefinition from .utils import add_col_to_tables_CONTINUOUSLY_LOOKED_AFTER as add_CLA_column # Check 'Episodes' present before use! def validate_165(): error = ErrorDefinition( code = '165', description = 'Data entry for mother status is invalid.', affected_fields = ['MOTHER', 'SEX', 'ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'Header' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] valid_values = ['0','1'] # prepare to merge oc3.reset_index(inplace=True) header.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['EPS'] = (episodes['DECOM']>=collection_start) & (episodes['DECOM']<=collection_end) episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') merged = episodes.merge(header, on='CHILD', how='left', suffixes=['_eps', '_er']).merge(oc3, on='CHILD', how='left') # Raise error if provided <MOTHER> is not a valid value. value_validity = merged['MOTHER'].notna() & (~merged['MOTHER'].isin(valid_values)) # If not provided female = (merged['SEX']=='1') eps_in_year = (merged['EPS_COUNT']>0) none_provided = (merged['ACTIV'].isna()& merged['ACCOM'].isna()& merged['IN_TOUCH'].isna()) # If provided <MOTHER> must be a valid value. If not provided <MOTHER> then either <GENDER> is male or no episode record for current year and any of <IN_TOUCH>, <ACTIV> or <ACCOM> have been provided mask = value_validity | (merged['MOTHER'].isna() & (female & (eps_in_year | none_provided))) # That is, if value not provided and child is a female with eps in current year or no values of IN_TOUCH, ACTIV and ACCOM, then raise error. error_locs_eps = merged.loc[mask, 'index_eps'] error_locs_header = merged.loc[mask, 'index_er'] error_locs_oc3 = merged.loc[mask, 'index'] return {'Header':error_locs_header.dropna().unique().tolist(), 'OC3':error_locs_oc3.dropna().unique().tolist()} return error, _validate def validate_1014(): error = ErrorDefinition( code='1014', description='UASC information is not required for care leavers', affected_fields=['ACTIV', 'ACCOM', 'IN_TOUCH', 'DECOM'] ) def _validate(dfs): if 'UASC' not in dfs or 'Episodes' not in dfs or 'OC3' not in dfs: return {} else: uasc = dfs['UASC'] episodes = dfs['Episodes'] oc3 = dfs['OC3'] collection_start = dfs['metadata']['collection_start'] collection_end = dfs['metadata']['collection_end'] # prepare to merge oc3.reset_index(inplace=True) uasc.reset_index(inplace=True) episodes.reset_index(inplace=True) collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') date_check = ( ((episodes['DECOM'] >= collection_start) & (episodes['DECOM'] <= collection_end)) | ((episodes['DEC'] >= collection_start) & (episodes['DEC'] <= collection_end)) | ((episodes['DECOM'] <= collection_start) & episodes['DEC'].isna()) ) episodes['EPS'] = date_check episodes['EPS_COUNT'] = episodes.groupby('CHILD')['EPS'].transform('sum') # inner merge to take only episodes of children which are also found on the uasc table merged = episodes.merge(uasc, on='CHILD', how='inner', suffixes=['_eps', '_sc']).merge(oc3, on='CHILD', how='left') # adding suffixes with the secondary merge here does not go so well yet. some_provided = (merged['ACTIV'].notna() | merged['ACCOM'].notna() | merged['IN_TOUCH'].notna()) mask = (merged['EPS_COUNT'] == 0) & some_provided error_locs_uasc = merged.loc[mask, 'index_sc'] error_locs_oc3 = merged.loc[mask, 'index'] return {'UASC': error_locs_uasc.unique().tolist(), 'OC3': error_locs_oc3.unique().tolist()} return error, _validate # !# not sure what this rule is actually supposed to be getting at - description is confusing def validate_197B(): error = ErrorDefinition( code='197B', description="SDQ score or reason for no SDQ should be reported for 4- or 17-year-olds.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( ( (oc2['DOB'] + pd.DateOffset(years=4) == start) # ??? | (oc2['DOB'] + pd.DateOffset(years=17) == start) ) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() & oc2['SDQ_REASON'].isna() ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_157(): error = ErrorDefinition( code='157', description="Child is aged 4 years or over at the beginning of the year or 16 years or under at the end of the " "year and Strengths and Difficulties Questionnaire (SDQ) 1 has been recorded as the reason for no " "Strengths and Difficulties Questionnaire (SDQ) score.", affected_fields=['SDQ_REASON', 'DOB'], ) def _validate(dfs): if 'OC2' not in dfs or 'Episodes' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') start = pd.to_datetime(dfs['metadata']['collection_start'], format='%d/%m/%Y', errors='coerce') endo = pd.to_datetime(dfs['metadata']['collection_end'], format='%d/%m/%Y', errors='coerce') oc2['DOB'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') ERRRR = ( oc2['CONTINUOUSLY_LOOKED_AFTER'] & (oc2['DOB'] + pd.DateOffset(years=4) <= start) & (oc2['DOB'] + pd.DateOffset(years=16) >= endo) & oc2['SDQ_SCORE'].isna() & (oc2['SDQ_REASON'] == 'SDQ1') ) return {'OC2': oc2[ERRRR].index.to_list()} return error, _validate def validate_357(): error = ErrorDefinition( code='357', description='If this is the first episode ever for this child, reason for new episode must be S. ' 'Check whether there is an episode immediately preceding this one, which has been left out. ' 'If not the reason for new episode code must be amended to S.', affected_fields=['RNE'], ) def _validate(dfs): if 'Episodes' not in dfs: return {} eps = dfs['Episodes'] eps['DECOM'] = pd.to_datetime(eps['DECOM'], format='%d/%m/%Y', errors='coerce') eps = eps.loc[eps['DECOM'].notnull()] first_eps = eps.loc[eps.groupby('CHILD')['DECOM'].idxmin()] errs = first_eps[first_eps['RNE'] != 'S'].index.to_list() return {'Episodes': errs} return error, _validate def validate_117(): error = ErrorDefinition( code='117', description='Date of decision that a child should/should no longer be placed for adoption is beyond the current collection year or after the child ceased to be looked after.', affected_fields=['DATE_PLACED_CEASED', 'DATE_PLACED', 'DEC', 'REC', 'DECOM'], ) def _validate(dfs): if 'Episodes' not in dfs or 'PlacedAdoption' not in dfs: return {} else: episodes = dfs['Episodes'] placed_adoption = dfs['PlacedAdoption'] collection_end = dfs['metadata']['collection_end'] # datetime placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED'] = pd.to_datetime(placed_adoption['DATE_PLACED'], format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end, format='%d/%m/%Y', errors='coerce') episodes['DEC'] = pd.to_datetime(episodes['DEC'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') # Drop nans and continuing episodes episodes = episodes.dropna(subset=['DECOM']) episodes = episodes[episodes['REC'] != 'X1'] episodes = episodes.loc[episodes.groupby('CHILD')['DECOM'].idxmax()] # prepare to merge placed_adoption.reset_index(inplace=True) episodes.reset_index(inplace=True) p4a_cols = ['DATE_PLACED', 'DATE_PLACED_CEASED'] # latest episodes merged = episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) mask = ( (merged['DATE_PLACED'] > collection_end) | (merged['DATE_PLACED'] > merged['DEC']) | (merged['DATE_PLACED_CEASED'] > collection_end) | (merged['DATE_PLACED_CEASED'] > merged['DEC']) ) # If provided <DATE_PLACED> and/or <DATE_PLACED_CEASED> must not be > <COLLECTION_END_DATE> or <DEC> of latest episode where <REC> not = 'X1' pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_118(): error = ErrorDefinition( code='118', description='Date of decision that a child should no longer be placed for adoption is before the current collection year or before the date the child started to be looked after.', affected_fields=['DECOM', 'DECOM', 'LS'] ) def _validate(dfs): if ('PlacedAdoption' not in dfs) or ('Episodes' not in dfs): return {} else: placed_adoption = dfs['PlacedAdoption'] episodes = dfs['Episodes'] collection_start = dfs['metadata']['collection_start'] code_list = ['V3', 'V4'] # datetime episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') placed_adoption['DATE_PLACED_CEASED'] = pd.to_datetime(placed_adoption['DATE_PLACED_CEASED'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') # <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' filter_by_ls = episodes[~(episodes['LS'].isin(code_list))] earliest_episode_idxs = filter_by_ls.groupby('CHILD')['DECOM'].idxmin() earliest_episodes = episodes[episodes.index.isin(earliest_episode_idxs)] # prepare to merge placed_adoption.reset_index(inplace=True) earliest_episodes.reset_index(inplace=True) # merge merged = earliest_episodes.merge(placed_adoption, on='CHILD', how='left', suffixes=['_eps', '_pa']) # drop rows where DATE_PLACED_CEASED is not provided merged = merged.dropna(subset=['DATE_PLACED_CEASED']) # If provided <DATE_PLACED_CEASED> must not be prior to <COLLECTION_START_DATE> or <DECOM> of the earliest episode with an <LS> not = 'V3' or 'V4' mask = (merged['DATE_PLACED_CEASED'] < merged['DECOM']) | (merged['DATE_PLACED_CEASED'] < collection_start) # error locations pa_error_locs = merged.loc[mask, 'index_pa'] eps_error_locs = merged.loc[mask, 'index_eps'] return {'Episodes': eps_error_locs.tolist(), 'PlacedAdoption': pa_error_locs.unique().tolist()} return error, _validate def validate_352(): error = ErrorDefinition( code='352', description='Child who started to be looked after was aged 18 or over.', affected_fields=['DECOM', 'RNE'], ) def _validate(dfs): if 'Header' not in dfs: return {} if 'Episodes' not in dfs: return {} else: header = dfs['Header'] episodes = dfs['Episodes'] header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') episodes['DECOM'] = pd.to_datetime(episodes['DECOM'], format='%d/%m/%Y', errors='coerce') header['DOB18'] = header['DOB'] + pd.DateOffset(years=18) episodes_merged = episodes.reset_index().merge(header, how='left', on=['CHILD'], suffixes=('', '_header'), indicator=True).set_index('index') care_start = episodes_merged['RNE'].str.upper().astype(str).isin(['S']) started_over_18 = episodes_merged['DOB18'] <= episodes_merged['DECOM'] error_mask = care_start & started_over_18 error_locations = episodes.index[error_mask] return {'Episodes': error_locations.to_list()} return error, _validate def validate_209(): error = ErrorDefinition( code='209', description='Child looked after is of school age and should not have an unknown Unique Pupil Number (UPN) code of UN1.', affected_fields=['UPN', 'DOB'] ) def _validate(dfs): if 'Header' not in dfs: return {} else: header = dfs['Header'] collection_start = dfs['metadata']['collection_start'] # convert to datetime header['DOB'] = pd.to_datetime(header['DOB'], format='%d/%m/%Y', errors='coerce') collection_start = pd.to_datetime(collection_start, format='%d/%m/%Y', errors='coerce') yr = collection_start.year - 1 reference_date = pd.to_datetime('31/08/' + str(yr), format='%d/%m/%Y', errors='coerce') # If <DOB> >= 4 years prior to 31/08/YYYY then <UPN> should not be 'UN1' Note: YYYY in this instance refers to the year prior to the collection start (for collection year 2019-2020, it would be looking at the 31/08/2018). mask = (reference_date >= (header['DOB'] + pd.offsets.DateOffset(years=4))) & (header['UPN'] == 'UN1') # error locations error_locs_header = header.index[mask] return {'Header': error_locs_header.tolist()} return error, _validate def validate_198(): error = ErrorDefinition( code='198', description="Child has not been looked after continuously for at least 12 months at 31 March but a reason " "for no Strengths and Difficulties (SDQ) score has been completed. ", affected_fields=['SDQ_REASON'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_REASON'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_185(): error = ErrorDefinition( code='185', description="Child has not been looked after continuously for at least 12 months at " + "31 March but a Strengths and Difficulties (SDQ) score has been completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = add_CLA_column(dfs, 'OC2') error_mask = oc2['SDQ_SCORE'].notna() & ~oc2['CONTINUOUSLY_LOOKED_AFTER'] error_locs = oc2.index[error_mask].to_list() return {'OC2': error_locs} return error, _validate def validate_186(): error = ErrorDefinition( code='186', description="Children aged 4 or over at the start of the year and children aged under 17 at the " + "end of the year and who have been looked after for at least 12 months continuously " + "should have a Strengths and Difficulties (SDQ) score completed.", affected_fields=['SDQ_SCORE'], ) def _validate(dfs): if 'Episodes' not in dfs or 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_start_str = dfs['metadata']['collection_start'] collection_end_str = dfs['metadata']['collection_end'] collection_start = pd.to_datetime(collection_start_str, format='%d/%m/%Y', errors='coerce') collection_end = pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce') oc2['DOB_dt'] = pd.to_datetime(oc2['DOB'], format='%d/%m/%Y', errors='coerce') oc2 = add_CLA_column(dfs, 'OC2') oc2['4th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=4) oc2['17th_bday'] = oc2['DOB_dt'] + pd.DateOffset(years=17) error_mask = ( (oc2['4th_bday'] <= collection_start) & (oc2['17th_bday'] > collection_end) & oc2['CONTINUOUSLY_LOOKED_AFTER'] & oc2['SDQ_SCORE'].isna() ) oc2_errors = oc2.loc[error_mask].index.to_list() return {'OC2': oc2_errors} return error, _validate def validate_187(): error = ErrorDefinition( code='187', description="Child cannot be looked after continuously for 12 months at " + "31 March (OC2) and have any of adoption or care leavers returns completed.", affected_fields=['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR', # OC3 'IN_TOUCH', 'ACTIV', 'ACCOM'], # AD1 ) def _validate(dfs): if ( 'OC3' not in dfs or 'AD1' not in dfs or 'Episodes' not in dfs ): return {} # add 'CONTINUOUSLY_LOOKED_AFTER' column ad1, oc3 = add_CLA_column(dfs, ['AD1', 'OC3']) # OC3 should_be_blank = ['IN_TOUCH', 'ACTIV', 'ACCOM'] oc3_mask = oc3['CONTINUOUSLY_LOOKED_AFTER'] & oc3[should_be_blank].notna().any(axis=1) oc3_error_locs = oc3[oc3_mask].index.to_list() # AD1 should_be_blank = ['DATE_INT', 'DATE_MATCH', 'FOSTER_CARE', 'NB_ADOPTR', 'SEX_ADOPTR', 'LS_ADOPTR'] ad1_mask = ad1['CONTINUOUSLY_LOOKED_AFTER'] & ad1[should_be_blank].notna().any(axis=1) ad1_error_locs = ad1[ad1_mask].index.to_list() return {'AD1': ad1_error_locs, 'OC3': oc3_error_locs} return error, _validate def validate_188(): error = ErrorDefinition( code='188', description="Child is aged under 4 years at the end of the year, " "but a Strengths and Difficulties (SDQ) score or a reason " "for no SDQ score has been completed. ", affected_fields=['SDQ_SCORE', 'SDQ_REASON'], ) def _validate(dfs): if 'OC2' not in dfs: return {} oc2 = dfs['OC2'] collection_end_str = dfs['metadata']['collection_end'] collection_end =
pd.to_datetime(collection_end_str, format='%d/%m/%Y', errors='coerce')
pandas.to_datetime
import pandas as pd import Levenshtein from Chapter05.regex import get_emails data_file = "Chapter05/DataScientist.csv" def find_levenshtein(input_string, df): df['distance_to_' + input_string] = df['emails'].apply(lambda x: Levenshtein.distance(input_string, x)) return df def find_jaro(input_string, df): df['distance_to_' + input_string] = df['emails'].apply(lambda x: Levenshtein.jaro(input_string, x)) return df def get_closest_email_lev(df, email): df = find_levenshtein(email, df) column_name = 'distance_to_' + email minimum_value_email_index = df[column_name].idxmin() email = df.loc[minimum_value_email_index]['emails'] return email def get_closest_email_jaro(df, email): df = find_jaro(email, df) column_name = 'distance_to_' + email maximum_value_email_index = df[column_name].idxmax() email = df.loc[maximum_value_email_index]['emails'] return email def main(): df =
pd.read_csv(data_file, encoding='utf-8')
pandas.read_csv
# %% [markdown] # This notebook is a -modified- VSCode notebook version of: # https://www.kaggle.com/sheriytm/brewed-tpot-for-nyc-with-love-lb0-37 # # You could find the train data from: # https://www.kaggle.com/c/nyc-taxi-trip-duration/data # You could find the fastest routes data from: # https://www.kaggle.com/oscarleo/new-york-city-taxi-with-osrm ## All the data files should be in the same directory with this file! #%% # Importing necessary libraries import os import numpy as np import os import pandas as pd from haversine import haversine import datetime as dt #%% # Loading training data train = pd.read_csv('train.csv') #%% # Long and painful future generation part from sklearn.decomposition import PCA from sklearn.cluster import MiniBatchKMeans t0 = dt.datetime.now() train['pickup_datetime'] = pd.to_datetime(train.pickup_datetime) train.loc[:, 'pickup_date'] = train['pickup_datetime'].dt.date train['dropoff_datetime'] = pd.to_datetime(train.dropoff_datetime) train['store_and_fwd_flag'] = 1 * (train.store_and_fwd_flag.values == 'Y') train['check_trip_duration'] = (train['dropoff_datetime'] - train['pickup_datetime']).map(lambda x: x.total_seconds()) duration_difference = train[np.abs(train['check_trip_duration'].values - train['trip_duration'].values) > 1] print('Trip_duration and datetimes are ok.') if len(duration_difference[['pickup_datetime', 'dropoff_datetime', 'trip_duration', 'check_trip_duration']]) == 0 else print('Ooops.') train['trip_duration'].describe() train['log_trip_duration'] = np.log(train['trip_duration'].values + 1) # Feature Extraction coords = np.vstack((train[['pickup_latitude', 'pickup_longitude']].values, train[['dropoff_latitude', 'dropoff_longitude']].values)) pca = PCA().fit(coords) train['pickup_pca0'] = pca.transform(train[['pickup_latitude', 'pickup_longitude']])[:, 0] train['pickup_pca1'] = pca.transform(train[['pickup_latitude', 'pickup_longitude']])[:, 1] train['dropoff_pca0'] = pca.transform(train[['dropoff_latitude', 'dropoff_longitude']])[:, 0] train['dropoff_pca1'] = pca.transform(train[['dropoff_latitude', 'dropoff_longitude']])[:, 1] # Distance def haversine_array(lat1, lng1, lat2, lng2): lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) AVG_EARTH_RADIUS = 6371 # in km lat = lat2 - lat1 lng = lng2 - lng1 d = np.sin(lat * 0.5) ** 2 + np.cos(lat1) * np.cos(lat2) * np.sin(lng * 0.5) ** 2 h = 2 * AVG_EARTH_RADIUS * np.arcsin(np.sqrt(d)) return h def dummy_manhattan_distance(lat1, lng1, lat2, lng2): a = haversine_array(lat1, lng1, lat1, lng2) b = haversine_array(lat1, lng1, lat2, lng1) return a + b def bearing_array(lat1, lng1, lat2, lng2): AVG_EARTH_RADIUS = 6371 # in km lng_delta_rad = np.radians(lng2 - lng1) lat1, lng1, lat2, lng2 = map(np.radians, (lat1, lng1, lat2, lng2)) y = np.sin(lng_delta_rad) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(lng_delta_rad) return np.degrees(np.arctan2(y, x)) train.loc[:, 'distance_haversine'] = haversine_array(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'distance_dummy_manhattan'] = dummy_manhattan_distance(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'direction'] = bearing_array(train['pickup_latitude'].values, train['pickup_longitude'].values, train['dropoff_latitude'].values, train['dropoff_longitude'].values) train.loc[:, 'pca_manhattan'] = np.abs(train['dropoff_pca1'] - train['pickup_pca1']) + np.abs(train['dropoff_pca0'] - train['pickup_pca0']) train.loc[:, 'center_latitude'] = (train['pickup_latitude'].values + train['dropoff_latitude'].values) / 2 train.loc[:, 'center_longitude'] = (train['pickup_longitude'].values + train['dropoff_longitude'].values) / 2 # Datetime features train.loc[:, 'pickup_weekday'] = train['pickup_datetime'].dt.weekday train.loc[:, 'pickup_hour_weekofyear'] = train['pickup_datetime'].dt.weekofyear train.loc[:, 'pickup_hour'] = train['pickup_datetime'].dt.hour train.loc[:, 'pickup_minute'] = train['pickup_datetime'].dt.minute train.loc[:, 'pickup_dt'] = (train['pickup_datetime'] - train['pickup_datetime'].min()).dt.total_seconds() train.loc[:, 'pickup_week_hour'] = train['pickup_weekday'] * 24 + train['pickup_hour'] train.loc[:,'week_delta'] = train['pickup_datetime'].dt.weekday + \ ((train['pickup_datetime'].dt.hour + (train['pickup_datetime'].dt.minute / 60.0)) / 24.0) # Make time features cyclic train.loc[:,'week_delta_sin'] = np.sin((train['week_delta'] / 7) * np.pi)**2 train.loc[:,'hour_sin'] = np.sin((train['pickup_hour'] / 24) * np.pi)**2 # Speed train.loc[:, 'avg_speed_h'] = 1000 * train['distance_haversine'] / train['trip_duration'] train.loc[:, 'avg_speed_m'] = 1000 * train['distance_dummy_manhattan'] / train['trip_duration'] train.loc[:, 'pickup_lat_bin'] = np.round(train['pickup_latitude'], 3) train.loc[:, 'pickup_long_bin'] = np.round(train['pickup_longitude'], 3) # Average speed for regions gby_cols = ['pickup_lat_bin', 'pickup_long_bin'] coord_speed = train.groupby(gby_cols).mean()[['avg_speed_h']].reset_index() coord_count = train.groupby(gby_cols).count()[['id']].reset_index() coord_stats = pd.merge(coord_speed, coord_count, on=gby_cols) coord_stats = coord_stats[coord_stats['id'] > 100] train.loc[:, 'pickup_lat_bin'] = np.round(train['pickup_latitude'], 2) train.loc[:, 'pickup_long_bin'] = np.round(train['pickup_longitude'], 2) train.loc[:, 'center_lat_bin'] = np.round(train['center_latitude'], 2) train.loc[:, 'center_long_bin'] = np.round(train['center_longitude'], 2) train.loc[:, 'pickup_dt_bin'] = (train['pickup_dt'] // (3 * 3600)) # Clustering sample_ind = np.random.permutation(len(coords))[:500000] kmeans = MiniBatchKMeans(n_clusters=100, batch_size=10000).fit(coords[sample_ind]) train.loc[:, 'pickup_cluster'] = kmeans.predict(train[['pickup_latitude', 'pickup_longitude']]) train.loc[:, 'dropoff_cluster'] = kmeans.predict(train[['dropoff_latitude', 'dropoff_longitude']]) t1 = dt.datetime.now() print('Time till clustering: %i seconds' % (t1 - t0).seconds) # Temporal and geospatial aggregation for gby_col in ['pickup_hour', 'pickup_date', 'pickup_dt_bin', 'pickup_week_hour', 'pickup_cluster', 'dropoff_cluster']: gby = train.groupby(gby_col).mean()[['avg_speed_h', 'avg_speed_m', 'log_trip_duration']] gby.columns = ['%s_gby_%s' % (col, gby_col) for col in gby.columns] train = pd.merge(train, gby, how='left', left_on=gby_col, right_index=True) for gby_cols in [['center_lat_bin', 'center_long_bin'], ['pickup_hour', 'center_lat_bin', 'center_long_bin'], ['pickup_hour', 'pickup_cluster'], ['pickup_hour', 'dropoff_cluster'], ['pickup_cluster', 'dropoff_cluster']]: coord_speed = train.groupby(gby_cols).mean()[['avg_speed_h']].reset_index() coord_count = train.groupby(gby_cols).count()[['id']].reset_index() coord_stats = pd.merge(coord_speed, coord_count, on=gby_cols) coord_stats = coord_stats[coord_stats['id'] > 100] coord_stats.columns = gby_cols + ['avg_speed_h_%s' % '_'.join(gby_cols), 'cnt_%s' % '_'.join(gby_cols)] train = pd.merge(train, coord_stats, how='left', on=gby_cols) group_freq = '60min' df_all = train[['id', 'pickup_datetime', 'pickup_cluster', 'dropoff_cluster']] train.loc[:, 'pickup_datetime_group'] = train['pickup_datetime'].dt.round(group_freq) # Count trips over 60min df_counts = df_all.set_index('pickup_datetime')[['id']].sort_index() df_counts['count_60min'] = df_counts.isnull().rolling(group_freq).count()['id'] train = train.merge(df_counts, on='id', how='left') # Count how many trips are going to each cluster over time dropoff_counts = df_all \ .set_index('pickup_datetime') \ .groupby([pd.TimeGrouper(group_freq), 'dropoff_cluster']) \ .agg({'id': 'count'}) \ .reset_index().set_index('pickup_datetime') \ .groupby('dropoff_cluster').rolling('240min').mean() \ .drop('dropoff_cluster', axis=1) \ .reset_index().set_index('pickup_datetime').shift(freq='-120min').reset_index() \ .rename(columns={'pickup_datetime': 'pickup_datetime_group', 'id': 'dropoff_cluster_count'}) train['dropoff_cluster_count'] = train[['pickup_datetime_group', 'dropoff_cluster']].merge(dropoff_counts, on=['pickup_datetime_group', 'dropoff_cluster'], how='left')['dropoff_cluster_count'].fillna(0) # Count how many trips are going from each cluster over time df_all = train[['id', 'pickup_datetime', 'pickup_cluster', 'dropoff_cluster']] pickup_counts = df_all \ .set_index('pickup_datetime') \ .groupby([pd.TimeGrouper(group_freq), 'pickup_cluster']) \ .agg({'id': 'count'}) \ .reset_index().set_index('pickup_datetime') \ .groupby('pickup_cluster').rolling('240min').mean() \ .drop('pickup_cluster', axis=1) \ .reset_index().set_index('pickup_datetime').shift(freq='-120min').reset_index() \ .rename(columns={'pickup_datetime': 'pickup_datetime_group', 'id': 'pickup_cluster_count'}) train['pickup_cluster_count'] = train[['pickup_datetime_group', 'pickup_cluster']].merge(pickup_counts, on=['pickup_datetime_group', 'pickup_cluster'], how='left')['pickup_cluster_count'].fillna(0) # For this particular problem we can add OSRM ([Open Source Routing Machine](http://project-osrm.org/ # "OSRM")) features. This data contains the fastest routes from specific starting points in NY. fr1 = pd.read_csv('fastest_routes_train_part_1.csv', usecols=['id', 'total_distance', 'total_travel_time', 'number_of_steps']) fr2 =
pd.read_csv('fastest_routes_train_part_2.csv', usecols=['id', 'total_distance', 'total_travel_time', 'number_of_steps'])
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable """ tests.test_validator ~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2018 by <NAME>. :license: MIT, see LICENSE for more details. """ import numpy as np from pandas import Series, date_range, to_datetime from dfmapper import ( DateRangeValidator, DtypeValidator, MinValueValidator, MaxValueValidator, MaxLengthValidator, NullableValidator ) def test_date_range_validator(): series_1 = Series(['2018-01-15 12:00:00', '2018-01-15 13:00:00']) series_1 = to_datetime(series_1) date_range_validator_1 = DateRangeValidator(date_range(start='2018-01-01', end='2018-01-30')) assert date_range_validator_1(series_1) == True series_2 = Series(['2018-01-15 12:00:00', '2018-01-15 13:00:00']) series_2 = to_datetime(series_2) date_range_validator_2 = DateRangeValidator(date_range(start='2018-01-20', end='2018-01-30')) assert date_range_validator_2(series_2) == False def test_type_validator(): series_1 = Series([1, 2, 3, 4, 5], dtype='int') dtype_validator_1 = DtypeValidator(dtype=np.int64) assert dtype_validator_1(series_1) == True series_2 = Series([1, 2, 3, 4, None]) dtype_validator_2 = DtypeValidator(dtype=np.float64) assert dtype_validator_2(series_2) == True series_3 = Series([1.0, 2.0, 3.0]) dtype_validator_3 = DtypeValidator(dtype=np.float64) assert dtype_validator_3(series_3) == True series_4 = Series([1.0, 2.0, None]) dtype_validator_4 = DtypeValidator(dtype=np.float64) assert dtype_validator_4(series_4) == True series_5 = Series([True, False]) dtype_validator_5 = DtypeValidator(dtype=np.bool) assert dtype_validator_5(series_5) == True series_6 =
Series([True, False, None])
pandas.Series
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np import json import import_db_assessment def createTransformersVariable(transformerRule): # Convert the JSON fields into variables like dictionaries, lists, string and numbers and return it if str(transformerRule['action_details']['datatype']).upper() == 'DICTIONARY': # For dictionaries return json.loads(str(transformerRule['action_details']['value']).strip()) elif str(transformerRule['action_details']['datatype']).upper() == 'LIST': # For Lists it is expected to be separated by comma return str(transformerRule['action_details']['value']).split(',') elif str(transformerRule['action_details']['datatype']).upper() == 'STRING': # For strings we just need to carry out the content return str(transformerRule['action_details']['value']) elif str(transformerRule['action_details']['datatype']).upper() == 'NUMBER': # For number we are casting it to float return float(transformerRule['action_details']['value']) else: # If the JSON file has any value not expected return None def runRules(transformerRules, dataFrames, singleRule, args, collectionKey, transformersTablesSchema, fileList, rulesAlreadyExecuted, transformersParameters): # Variable to keep track of rules executed and its results and status transformerResults = {} # Variable to keep track and make available all the variables from the JSON file transformersRulesVariables = {} # Standardize Statuses # Executed EXECUTEDSTATUS = 'EXECUTED' FAILEDSTATUS = 'FAILED' if singleRule: # If parameter is set then we will run only 1 rule sorted_keys = [] sorted_keys.append(singleRule) else: # Getting ordered list of keys by priority to iterate over the dictionary sorted_keys = sorted(transformerRules, key=lambda x: (transformerRules[x]['priority'])) # Looping on ALL rules from transformers.json for ruleItem in sorted_keys: stringExpression = getParsedRuleExpr(transformerRules[ruleItem]['expr1']) iferrorExpression = getParsedRuleExpr(transformerRules[ruleItem]['iferror']) if str(transformerRules[ruleItem]['status']).upper() == "ENABLED": if ruleItem not in rulesAlreadyExecuted: print('Processing rule item: "{}"\nPriority: "{}"'.format(ruleItem,transformerRules[ruleItem]['priority'])) if str(transformerRules[ruleItem]['type']).upper() == "VARIABLE" and str(transformerRules[ruleItem]['action']).upper() == "CREATE": # transformers.json asking to create a variable which is a dictionary try: transformerResults[ruleItem] = {'Status': EXECUTEDSTATUS, 'Result Value': createTransformersVariable(transformerRules[ruleItem])} transformersRulesVariables[transformerRules[ruleItem]['action_details']['varname']] = transformerResults[ruleItem]['Result Value'] except: # In case of any issue the rule will be marked as FAILEDSTATUS transformerResults[ruleItem] = {'Status': FAILEDSTATUS, 'Result Value': None} transformersRulesVariables[transformerRules[ruleItem]['action_details']['varname']] = None elif str(transformerRules[ruleItem]['type']).upper() in ("NUMBER","FREESTYLE") and str(transformerRules[ruleItem]['action']).upper() == "ADD_OR_UPDATE_COLUMN": # transformers.json asking to add a column that is type number meaning it can be a calculation and the column to be added is NUMBER too # Where the result of expr1 will be saved initially dfTargetName = transformerRules[ruleItem]['action_details']['dataframe_name'] columnTargetName = transformerRules[ruleItem]['action_details']['column_name'] ruleCondition = True try: ruleConditionString = str(transformerRules[ruleItem]['ifcondition1']) except KeyError: ruleConditionString = None # In case ifcondition1 (transformers.json) is set for the rule if ruleConditionString is not None and ruleConditionString != "": try: ruleCondition = eval (ruleConditionString) print ('ruleCondition = {}'.format(ruleCondition)) except: print ('\n Error processing ifcondition1 "{}" for rule "{}". So, this rule will be skipped.\n'.format(ruleConditionString,ruleItem)) continue if not ruleCondition: print ('WARNING: This rule "{}" will be skipped because of "ifcondition1" from transformers.json is FALSE.'.format(ruleItem)) continue try: dataFrames[str(dfTargetName).upper()][str(columnTargetName).upper()] = execStringExpression(stringExpression,iferrorExpression, dataFrames) df = dataFrames[str(dfTargetName).upper()] except KeyError: print ('\n WARNING: The rule "{}" could not be executed because the variable "{}" used in the transformers.json could not be found.\n'.format(ruleItem, str(dfTargetName).upper())) continue newTableName = str(transformerRules[ruleItem]['action_details']['target_dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(newTableName).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) elif str(transformerRules[ruleItem]['type']).upper() == "FREESTYLE" and str(transformerRules[ruleItem]['action']).upper() == "CREATE_OR_REPLACE_DATAFRAME": # df = execStringExpression(stringExpression,iferrorExpression,dataFrames) if df is None: print('\n WARNING: The rule "{}" could not be executed because the expression "{}" used in the transformers.json could not be executed.\n'.format(ruleItem,stringExpression)) continue newTableName = str(transformerRules[ruleItem]['action_details']['dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(transformerRules[ruleItem]['action_details']['dataframe_name']).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) elif str(transformerRules[ruleItem]['type']).upper() == "FREESTYLE" and str(transformerRules[ruleItem]['action']).upper() == "FREESTYLE": try: eval (stringExpression) except KeyError: print ('\n WARNING: The rule "{}" could not be executed because the expr1 "{}" used in the transformers.json could not be executed.\n'.format(ruleItem, stringExpression)) continue newTableName = str(transformerRules[ruleItem]['action_details']['target_dataframe_name']).lower() fileName = str(getattr(args,'fileslocation')) + '/opdbt__' + newTableName + '__' + collectionKey resCSVCreation, transformersTablesSchema = createCSVFromDataframe(df, transformerRules[ruleItem]['action_details'], args, fileName, transformersTablesSchema, newTableName, False) # Creating the new dataframe dataFrames[str(newTableName).upper()] = df if resCSVCreation: # If CSV creation was successfully then we will add this to the list of files to be imported fileList.append(fileName) return transformerResults, transformersRulesVariables, fileList, dataFrames def execStringExpression(stringExpression,iferrorExpression, dataFrames): try: res = eval (stringExpression) except: try: res = eval (iferrorExpression) except: res = None return res def getParsedRuleExpr(ruleExpr): # Function to get a clean string to be executed in eval function. The input is a string with many components separated by ; coming from transformers.json ruleComponents = [] ruleComponents = str(ruleExpr).split(';') finalExpression = '' for ruleItem in ruleComponents: ruleItem = ruleItem.strip() finalExpression = str(finalExpression) + str(ruleItem) + ' ' return finalExpression def getRulesFromJSON(jsonFileName): # Read JSON file from the OS and turn it into a hash table with open(jsonFileName) as f: transformerRules = json.load(f) return transformerRules def getDataFrameFromCSV(csvFileName,tableName,skipRows,separatorString,transformersTablesSchema): # Read CSV files from OS and turn it into a dataframe paramCleanDFHeaders = False paramGetHeadersFromConfig = True try: if paramGetHeadersFromConfig: if transformersTablesSchema.get(tableName): try: tableHeaders = getDFHeadersFromTransformers(tableName,transformersTablesSchema) tableHeaders = [header.upper() for header in tableHeaders] df = pd.read_csv(csvFileName, skiprows=skipRows+1, header=None, names=tableHeaders) except Exception as dataframeHeaderErr: print ('\nThe filename {} for the table {} could not be imported using the column names {}.\n'.format(csvFileName,tableName,tableHeaders)) paramCleanDFHeaders = True df = pd.read_csv(csvFileName, skiprows=skipRows) else: df =
pd.read_csv(csvFileName, skiprows=skipRows)
pandas.read_csv
""" Plot the kinetic reactions of biomass pyrolysis for the Ranzi 2014 kinetic scheme for biomass pyrolysis. Reference: <NAME>, 2014. Chemical Engineering Science, 110, pp 2-12. """ import numpy as np import pandas as pd # Parameters # ------------------------------------------------------------------------------ # T = 773 # temperature for rate constants, K # weight percent (%) cellulose, hemicellulose, lignin for beech wood # wtcell = 48 # wthemi = 28 # wtlig = 24 # dt = 0.001 # time step, delta t # tmax = 4 # max time, s # t = np.linspace(0, tmax, num=int(tmax/dt)) # time vector # nt = len(t) # total number of time steps # Functions for Ranzi 2014 Kinetic Scheme # ------------------------------------------------------------------------------ def ranzicell(wood, wt, T, dt, nt): """ Cellulose reactions CELL from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood concentration, kg/m^3 wt = weight percent wood as cellulose, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main = mass concentration of main group, (-) prod = mass concentration of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 cell = pw*(wt/100) # initial cellulose conc. in wood g1 = np.zeros(nt) # G1 cella = np.zeros(nt) # CELLA lvg = np.zeros(nt) # LVG g4 = np.zeros(nt) # G4 R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 4e7 * np.exp(-31000 / (R * T)) # CELL -> G1 K2 = 4e13 * np.exp(-45000 / (R * T)) # CELL -> CELLA K3 = 1.8 * T * np.exp(-10000 / (R * T)) # CELLA -> LVG K4 = 0.5e9 * np.exp(-29000 / (R * T)) # CELLA -> G4 # sum of moles in each group, mol sumg1 = 11 # sum of G1 sumg4 = 4.08 # sum of G4 # calculate concentrations for main groups, kg/m^3 for i in range(1, nt): r1 = K1 * cell[i-1] # CELL -> G1 r2 = K2 * cell[i-1] # CELL -> CELLA r3 = K3 * cella[i-1] # CELLA -> LVG r4 = K4 * cella[i-1] # CELLA -> G4 cell[i] = cell[i-1] - (r1+r2)*dt # CELL g1[i] = g1[i-1] + r1*dt # G1 cella[i] = cella[i-1] + r2*dt - (r3+r4)*dt # CELLA lvg[i] = lvg[i-1] + r3*dt # LVG g4[i] = g4[i-1] + r4*dt # G4 # store main groups in array main = np.array([cell, g1, cella, lvg, g4]) # total group concentration per total moles in that group, (kg/m^3) / mol fg1 = g1/sumg1 # fraction of G1 fg4 = g4/sumg4 # fraction of G4 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = 0.16*fg4 # CO prod[1] = 0.21*fg4 # CO2 prod[2] = 0.4*fg4 # CH2O prod[3] = 0.02*fg4 # HCOOH prod[5] = 0.1*fg4 # CH4 prod[6] = 0.2*fg4 # Glyox prod[8] = 0.1*fg4 # C2H4O prod[9] = 0.8*fg4 # HAA prod[11] = 0.3*fg4 # C3H6O prod[14] = 0.25*fg4 # HMFU prod[15] = lvg # LVG prod[18] = 0.1*fg4 # H2 prod[19] = 5*fg1 + 0.83*fg4 # H2O prod[20] = 6*fg1 + 0.61*fg4 # Char # return arrays of main groups and products as mass fraction, (-) return main/wood, prod/wood def ranzihemi(wood, wt, T, dt, nt): """ Hemicellulose reactions HCE from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood density, kg/m^3 wt = weight percent of hemicellulose, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main/wood = mass fraction of main group, (-) prod/wood = mass fraction of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 hce = pw*(wt/100) # initial hemicellulose conc. in wood g1 = np.zeros(nt) # G1 g2 = np.zeros(nt) # G2 g3 = np.zeros(nt) # G3 g4 = np.zeros(nt) # G4 xyl = np.zeros(nt) # Xylan R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 0.33e10 * np.exp(-31000 / (R * T)) # HCE -> G1 K2 = 0.33e10 * np.exp(-33000 / (R * T)) # HCE2 -> G2 K3 = 0.05 * T * np.exp(-8000 / (R * T)) # HCE1 -> G3 K4 = 1e9 * np.exp(-32000 / (R * T)) # HCE1 -> G4 K5 = 0.9 * T * np.exp(-11000 / (R * T)) # HCE1 -> Xylan # sum of moles in each group, mol sumg2 = 4.625 # sum of G2 sumg3 = 4.875 # sum of G3 sumg4 = 4.775 # sum of G4 # calculate concentrations for main groups, kg/m^3 # where HCE1 as 0.4*g1/(0.4+0.6) and HCE2 as 0.6*g1/(0.4+0.6) for i in range(1, nt): r1 = K1 * hce[i-1] # HCE -> G1 r2 = K2 * 0.6*g1[i-1] # HCE2 -> G2 r3 = K3 * 0.4*g1[i-1] # HCE1 -> G3 r4 = K4 * 0.4*g1[i-1] # HCE1 -> G4 r5 = K5 * 0.4*g1[i-1] # HCE1 -> Xylan hce[i] = hce[i-1] - r1*dt # HCE g1[i] = g1[i-1] + r1*dt - (r2+r3+r4+r5)*dt # G1 g2[i] = g2[i-1] + r2*dt # G2 g3[i] = g3[i-1] + r3*dt # G3 g4[i] = g4[i-1] + r4*dt # G4 xyl[i] = xyl[i-1] + r5*dt # Xylan # store main groups in array main = np.array([hce, g1, g2, g3, g4, xyl]) # total group concentration per total moles in that group, (kg/m^3)/mol fg2 = g2/sumg2 # fraction of G2 fg3 = g3/sumg3 # fraction of G3 fg4 = g4/sumg4 # fraction of G4 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = 0.175*fg2 + (0.3 + 0.15)*fg3 + 0.5*fg4 # CO prod[1] = (0.275+0.4)*fg2 + (0.5+0.25)*fg3 + (0.5+0.275)*fg4 # CO2 prod[2] = (0.5+0.925)*fg2 + 1.7*fg3 + (0.8+0.4)*fg4 # CH2O prod[3] = 0.025*fg2 + 0.05*fg3 + 0.025*fg4 # HCOOH prod[4] = 0.3*fg2 + (0.1+0.45)*fg4 # CH3OH prod[5] = 0.25*fg2 + 0.625*fg3 + 0.325*fg4 # CH4 prod[7] = 0.275*fg2 + 0.375*fg3 + 0.25*fg4 # C2H4 prod[9] = 0.2*fg2 # HAA prod[10] = 0.1*fg2 + 0.125*fg4 # C2H5OH prod[12] = xyl # Xylan prod[18] = 0.125*fg4 # H2 prod[19] = 0.2*fg2 + 0.25*fg3 + 0.025*fg4 # H2O prod[20] = 1*fg2 + 0.675*fg3 + 0.875*fg4 # Char # return arrays of main groups and products as mass fraction, (-) return main/wood, prod/wood def ranziligc(wood, wt, T, dt, nt): """ Lignin carbon rich reactions LIG-C from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood density, kg/m^3 wt = weight percent of lignin-c, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main/wood = mass fraction of main group, (-) prod/wood = mass fraction of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 ligc = pw*(wt/100/3) # initial lignin in wood, assume 1/3 of total lignin g1 = np.zeros(nt) g2 = np.zeros(nt) R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 1.33e15 * np.exp(-48500 / (R * T)) # LIG-C -> G1 K2 = 1.6e6 * np.exp(-31500 / (R * T)) # LIG-CC -> G2 # sum of moles in each group, mol sumg1 = 9.49 # sum of G1 sumg2 = 11.35 # sum of G2 # calculate concentrations for main groups, kg/m^3 for i in range(1, nt): r1 = K1 * ligc[i-1] # LIG-C -> G1 r2 = K2 * 0.35*g1[i-1]/sumg1 # LIG-CC -> G2 ligc[i] = ligc[i-1] - r1*dt # LIG-C g1[i] = g1[i-1] + r1*dt - r2*dt # G1 g2[i] = g2[i-1] + r2*dt # G2 # store main groups in array main = np.array([ligc, g1, g2]) # total group concentration per total moles in that group, (kg/m^3)/mol fg1 = g1/sumg1 # fraction of G1 fg2 = g2/sumg2 # fraction of G2 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = 0.32*fg1 + (0.4 + 0.4)*fg2 # CO prod[2] = (0.3 + 0.7)*fg1 + 1*fg2 # CH2O prod[5] = 0.495*fg1 + 0.65*fg2 # CH4 prod[7] = 0.41*fg1 + 0.6*fg2 # C2H4 prod[9] = 0.35*fg2 # HAA prod[13] = 0.08*fg1 + 0.2*fg2 # Phenol prod[16] = 0.1*fg1 + 0.3*fg2 # Coumaryl prod[19] = 1*fg1 + 0.7*fg2 # H2O prod[20] = 5.735*fg1 + 6.75*fg2 # Char # return arrays of main groups and products as mass fractions, (-) return main/wood, prod/wood def ranziligh(wood, wt, T, dt, nt): """ Lignin hydrogen rich reactions LIG-H from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood density, kg/m^3 wt = weight percent of lignin-h, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main/wood = mass fraction of main group, (-) prod/wood = mass fraction of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 ligh = pw*(wt/100/3) # initial lignin in wood, assume 1/3 of total lignin g1 = np.zeros(nt) # G1 g2 = np.zeros(nt) # G2 g3 = np.zeros(nt) # G3 g4 = np.zeros(nt) # G4 g5 = np.zeros(nt) # G4 fe2macr = np.zeros(nt) # FE2MACR R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 0.67e13 * np.exp(-37500 / (R * T)) # LIG-H -> G1 K2 = 33 * np.exp(-15000 / (R * T)) # LIG-OH -> G2 K3 = 0.5e8 * np.exp(-30000 / (R * T)) # LIG-OH -> LIG K4 = 0.083 * T * np.exp(-8000 / (R * T)) # LIG -> G4 K5 = 0.4e9 * np.exp(-30000 / (R * T)) # LIG -> G5 K6 = 2.4 * T * np.exp(-12000 / (R * T)) # LIG -> FE2MACR # sum of moles in each group, mol sumg1 = 2 # sum of G1 sumg2 = 20.7 # sum of G2 sumg3 = 9.85 # sum of G3 sumg4 = 11.1 # sum of G4 sumg5 = 10.7 # sum of G5 # calculate concentrations for main groups, kg/m^3 for i in range(1, nt): r1 = K1 * ligh[i-1] # LIG-H -> G1 r2 = K2 * 1*g1[i-1]/sumg1 # LIG-OH -> G2 r3 = K3 * 1*g1[i-1]/sumg1 # LIG-OH -> LIG r4 = K4 * 1*g3[i-1]/sumg3 # LIG -> G4 r5 = K5 * 1*g3[i-1]/sumg3 # LIG -> G5 r6 = K6 * 1*g3[i-1]/sumg3 # LIG -> FE2MACR ligh[i] = ligh[i-1] - r1*dt # LIG-H g1[i] = g1[i-1] + r1*dt - (r2+r3)*dt # G1 g2[i] = g2[i-1] + r2*dt # G2 g3[i] = g3[i-1] + r3*dt - (r4+r5+r6)*dt # G3 g4[i] = g4[i-1] + r4*dt # G4 g5[i] = g5[i-1] + r5*dt # G5 fe2macr[i] = fe2macr[i-1] + r6*dt # FE2MACR # store main groups in array main = np.array([ligh, g1, g2, g3, g4, g5, fe2macr]) # total group concentration per total moles in that group, (kg/m^3)/mol fg1 = g1/sumg1 # fraction of G1 fg2 = g2/sumg2 # fraction of G2 fg3 = g3/sumg3 # fraction of G3 fg4 = g4/sumg4 # fraction of G4 fg5 = g5/sumg5 # fraction of G5 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = (0.5 + 1.6)*fg2 + (0.3 + 1)*fg3 + (0.4 + 0.2)*fg4 + (1 + 0.45)*fg5 # CO prod[1] = 0.05*fg3 # CO2 prod[2] = 3.9*fg2 + 0.6*fg3 + (2 + 0.4)*fg4 + (0.2 + 0.5)*fg5 # CH2O prod[3] = 0.05*fg3 + 0.05*fg5 # HCOOH prod[4] = 0.5*fg2 + (0.5 + 0.5)*fg3 + 0.4*fg4 + 0.4*fg5 # CH3OH prod[5] = (0.1 + 1.65)*fg2 + (0.1 + 0.35)*fg3 + (0.2 + 0.4)*fg4 + (0.2 + 0.4)*fg5 # CH4 prod[6] = 0 # Glyox prod[7] = 0.3*fg2 + 0.2*fg3 + 0.5*fg4 + 0.65*fg5 # C2H4 prod[8] = 0.2*fg5 # C2H4O prod[9] = 0 # HAA prod[10] = 0 # C2H5OH prod[11] = 1*fg1 + 0.2*fg5 # C3H6O prod[12] = 0 # Xylan prod[13] = 0 # Phenol prod[14] = 0 # HMFU prod[15] = 0 # LVG prod[16] = 0 # Coumaryl prod[17] = fe2macr # FE2MACR prod[18] = 0.5*fg2 + 0.15*fg3 # H2 prod[19] = 1.5*fg2 + 0.9*fg3 + 0.6*fg4 + 0.95*fg5 # H2O prod[20] = 10.15*fg2 + 4.15*fg3 + 6*fg4 + 5.5*fg5 # Char # return arrays of main groups and products as mass fractions, (-) return main/wood, prod/wood def ranziligo(wood, wt, T, dt, nt): """ Lignin oxygen rich reactions LIG-O from Ranzi 2014 paper for biomass pyrolysis. Parameters ---------- wood = wood density, kg/m^3 wt = weight percent of lignin-h, % T = temperature, K dt = time step, s nt = total number of time steps Returns ------- main/wood = mass fraction of main group, (-) prod/wood = mass fraction of product group, (-) """ # vector for initial wood concentration, kg/m^3 pw = np.ones(nt)*wood # vectors to store main product concentrations, kg/m^3 ligo = pw*(wt/100/3) # initial lignin in wood, assume 1/3 of total lignin g1 = np.zeros(nt) # G1 g2 = np.zeros(nt) # G2 g3 = np.zeros(nt) # G3 g4 = np.zeros(nt) # G4 g5 = np.zeros(nt) # G4 fe2macr = np.zeros(nt) # FE2MACR R = 1.987 # universal gas constant, kcal/kmol*K # reaction rate constant for each reaction, 1/s # A = pre-factor (1/s) and E = activation energy (kcal/kmol) K1 = 0.33e9 * np.exp(-25500 / (R * T)) # LIG-O -> G1 K2 = 33 * np.exp(-15000 / (R * T)) # LIG-OH -> G2 K3 = 0.5e8 * np.exp(-30000 / (R * T)) # LIG-OH -> LIG K4 = 0.083 * T * np.exp(-8000 / (R * T)) # LIG -> G4 K5 = 0.4e9 * np.exp(-30000 / (R * T)) # LIG -> G5 K6 = 2.4 * T * np.exp(-12000 / (R * T)) # LIG -> FE2MACR # sum of moles in each group, mol sumg1 = 2 # sum of G1 sumg2 = 20.7 # sum of G2 sumg3 = 9.85 # sum of G3 sumg4 = 11.1 # sum of G4 sumg5 = 10.7 # sum of G5 # calculate concentrations for main groups, kg/m^3 for i in range(1, nt): r1 = K1 * ligo[i-1] # LIG-O -> G1 r2 = K2 * 1*g1[i-1]/sumg1 # LIG-OH -> G2 r3 = K3 * 1*g1[i-1]/sumg1 # LIG-OH -> LIG r4 = K4 * 1*g3[i-1]/sumg3 # LIG -> G4 r5 = K5 * 1*g3[i-1]/sumg3 # LIG -> G5 r6 = K6 * 1*g3[i-1]/sumg3 # LIG -> FE2MACR ligo[i] = ligo[i-1] - r1*dt # LIG-H g1[i] = g1[i-1] + r1*dt - (r2+r3)*dt # G1 g2[i] = g2[i-1] + r2*dt # G2 g3[i] = g3[i-1] + r3*dt - (r4+r5+r6)*dt # G3 g4[i] = g4[i-1] + r4*dt # G4 g5[i] = g5[i-1] + r5*dt # G5 fe2macr[i] = fe2macr[i-1] + r6*dt # FE2MACR # store main groups in array main = np.array([ligo, g1, g2, g3, g4, g5, fe2macr]) # total group concentration per total moles in that group, (kg/m^3)/mol fg1 = g1/sumg1 # fraction of G1 fg2 = g2/sumg2 # fraction of G2 fg3 = g3/sumg3 # fraction of G3 fg4 = g4/sumg4 # fraction of G4 fg5 = g5/sumg5 # fraction of G5 # array to store product concentrations as a density, kg/m^3 prod = np.zeros([21, nt]) prod[0] = (0.5 + 1.6)*fg2 + (0.3 + 1)*fg3 + (0.4 + 0.2)*fg4 + (1 + 0.45)*fg5 # CO prod[1] = 1*fg1 + 0.05*fg3 # CO2 prod[2] = 3.9*fg2 + 0.6*fg3 + (2 + 0.4)*fg4 + (0.2 + 0.5)*fg5 # CH2O prod[3] = 0.05*fg3 + 0.05*fg5 # HCOOH prod[4] = 0.5*fg2 + (0.5 + 0.5)*fg3 + 0.4*fg4 + 0.4*fg5 # CH3OH prod[5] = (0.1 + 1.65)*fg2 + (0.1 + 0.35)*fg3 + (0.2 + 0.4)*fg4 + (0.2 + 0.4)*fg5 # CH4 prod[6] = 0 # Glyox prod[7] = 0.3*fg2 + 0.2*fg3 + 0.5*fg4 + 0.65*fg5 # C2H4 prod[8] = 0.2*fg5 # C2H4O prod[9] = 0 # HAA prod[10] = 0 # C2H5OH prod[11] = 0.2*fg5 # C3H6O prod[12] = 0 # Xylan prod[13] = 0 # Phenol prod[14] = 0 # HMFU prod[15] = 0 # LVG prod[16] = 0 # Coumaryl prod[17] = fe2macr # FE2MACR prod[18] = 0.5*fg2 + 0.15*fg3 # H2 prod[19] = 1.5*fg2 + 0.9*fg3 + 0.6*fg4 + 0.95*fg5 # H2O prod[20] = 10.15*fg2 + 4.15*fg3 + 6*fg4 + 5.5*fg5 # Char # return arrays of main groups and products as mass fractions, (-) return main/wood, prod/wood # Products from Kinetic Scheme # ------------------------------------------------------------------------------ def run_ranzi_2014(wtcell, wthemi, wtlig, temp, tmax): step = 0.001 # time step, delta t # tmax = 4 # max time, s t = np.linspace(0, tmax, num=int(tmax/step)) # time vector tot_step = len(t) # total number of time steps # arrays for Ranzi main groups and products as mass fractions, (-) pmcell, pcell = ranzicell(1, wt=wtcell, T=temp, dt=step, nt=tot_step) # cellulose pmhemi, phemi = ranzihemi(1, wt=wthemi, T=temp, dt=step, nt=tot_step) # hemicellulose pmligc, pligc = ranziligc(1, wt=wtlig, T=temp, dt=step, nt=tot_step) # lignin-c pmligh, pligh = ranziligh(1, wt=wtlig, T=temp, dt=step, nt=tot_step) # lignin-h pmligo, pligo = ranziligo(1, wt=wtlig, T=temp, dt=step, nt=tot_step) # lignin-o # main cellulose groups as mass fraction, (-) cell = pmcell[0] g1cell = pmcell[1] cella = pmcell[2] lvg = pmcell[3] g4cell = pmcell[4] tcell = cell + g1cell + cella + lvg + g4cell # total cellulose cell_main = {'Time (s)': t, 'cell': cell, 'g1cell': g1cell, 'cella': cella, 'lvg': lvg, 'g4cell': g4cell, 'tcell': tcell} df_cell=pd.DataFrame(data=cell_main).set_index('Time (s)') # main hemicellulose groups as mass fraction, (-) hemi = pmhemi[0] g1hemi = pmhemi[1] g2hemi = pmhemi[2] g3hemi = pmhemi[3] g4hemi = pmhemi[4] xyl = pmhemi[5] themi = hemi + g1hemi + g2hemi + g3hemi + g4hemi + xyl # total hemicellulose hemi_main = {'Time (s)': t, 'hemi': hemi, 'g1hemi': g1hemi, 'g2hemi': g2hemi, 'g3hemi': g3hemi, 'g4hemi': g4hemi, 'xyl': xyl, 'themi': themi} df_hemi=pd.DataFrame(data=hemi_main).set_index('Time (s)') # main lignin-c groups as mass fraction, (-) ligc = pmligc[0] g1ligc = pmligc[1] g2ligc = pmligc[2] tligc = ligc + g1ligc + g2ligc # total lignin-c ligc_main = {'Time (s)': t, 'ligc': ligc, 'g1ligc': g1ligc, 'g2ligc': g2ligc, 'tligc': tligc} df_ligc=pd.DataFrame(data=ligc_main).set_index('Time (s)') # main lignin-h groups as mass fraction, (-) ligh = pmligh[0] g1ligh = pmligh[1] g2ligh = pmligh[2] g3ligh = pmligh[3] g4ligh = pmligh[4] g5ligh = pmligh[5] fe2macr1 = pmligh[6] tligh = ligh + g1ligh + g2ligh + g3ligh + g4ligh + g5ligh + fe2macr1 # lignin-h ligh_main = {'Time (s)': t, 'ligh': ligh, 'g1ligh': g1ligh, 'g2ligh': g2ligh, 'g3ligh': g3ligh, 'g4ligh': g4ligh, 'g5ligh': g5ligh, 'fe2marc1': fe2macr1, 'tligh': tligh} df_ligh = pd.DataFrame(data=ligh_main).set_index('Time (s)') # main lignin-o groups as mass fraction, (-) ligo = pmligo[0] g1ligo = pmligo[1] g2ligo = pmligo[2] g3ligo = pmligo[3] g4ligo = pmligo[4] g5ligo = pmligo[5] fe2macr2 = pmligo[6] tligo = ligo + g1ligo + g2ligo + g3ligo + g4ligo + g5ligo + fe2macr2 # lignin-o ligo_main = {'Time (s)': t, 'ligo': ligo, 'g1ligo': g1ligo, 'g2ligo': g2ligo , 'g3ligo': g3ligo , 'g4ligo': g4ligo , 'g5ligo': g5ligo , 'fe2macr2': fe2macr2, 'tligo': tligo} df_ligo = pd.DataFrame(data=ligo_main).set_index('Time (s)') # Gas, Tar, Char from Cellulose, Hemicellulose, Lignin Reactions # ------------------------------------------------------------------------------ # chemical species as mass fraction, (-) co = pcell[0] + phemi[0] + pligc[0] + pligh[0] + pligo[0] # CO co2 = pcell[1] + phemi[1] + pligc[1] + pligh[1] + pligo[1] # CO2 ch2o = pcell[2] + phemi[2] + pligc[2] + pligh[2] + pligo[2] # CH2O hcooh = pcell[3] + phemi[3] + pligc[3] + pligh[3] + pligo[3] # HCOOH ch3oh = pcell[4] + phemi[4] + pligc[4] + pligh[4] + pligo[4] # CH3OH ch4 = pcell[5] + phemi[5] + pligc[5] + pligh[5] + pligo[5] # CH4 glyox = pcell[6] + phemi[6] + pligc[6] + pligh[6] + pligo[6] # Glyox (C2H2O2) c2h4 = pcell[7] + phemi[7] + pligc[7] + pligh[7] + pligo[7] # C2H4 c2h4o = pcell[8] + phemi[8] + pligc[8] + pligh[8] + pligo[8] # C2H4O haa = pcell[9] + phemi[9] + pligc[9] + pligh[9] + pligo[9] # HAA (C2H4O2) c2h5oh = pcell[10] + phemi[10] + pligc[10] + pligh[10] + pligo[10] # C2H5OH c3h6o = pcell[11] + phemi[11] + pligc[11] + pligh[11] + pligo[11] # C3H6O xyl = pcell[12] + phemi[12] + pligc[12] + pligh[12] + pligo[12] # Xylose (C5H10O5) c6h6o = pcell[13] + phemi[13] + pligc[13] + pligh[13] + pligo[13] # C6H6O hmfu = pcell[14] + phemi[14] + pligc[14] + pligh[14] + pligo[14] # HMFU (C6H6O3) lvg = pcell[15] + phemi[15] + pligc[15] + pligh[15] + pligo[15] # LVG (C6H10O2) coum = pcell[16] + phemi[16] + pligc[16] + pligh[16] + pligo[16] # p-Coumaryl (C9H10O2) fe2macr = pcell[17] + phemi[17] + pligc[17] + pligh[17] + pligo[17] # FE2MACR (C11H12O4) h2 = pcell[18] + phemi[18] + pligc[18] + pligh[18] + pligo[18] # H2 h2o = pcell[19] + phemi[19] + pligc[19] + pligh[19] + pligo[19] # H2O char = pcell[20] + phemi[20] + pligc[20] + pligh[20] + pligo[20] # Char # groups for gas and tar as mass fraction, (-) gas = co + co2 + ch4 + c2h4 + h2 tar = ch2o + hcooh + ch3oh + glyox + c2h4o + haa + c2h5oh + c3h6o + xyl + c6h6o + hmfu + lvg + coum + fe2macr gas_products = {'Time (s)': t, 'co': co, 'co2': co2, 'ch4': ch4 , 'c2h4': c2h4, 'h2': h2, 'total': gas} df_gasprod = pd.DataFrame(data=gas_products).set_index('Time (s)') tar_products = {'Time (s)': t, 'ch2o': ch2o , 'hcooh': hcooh , 'ch3oh': ch3oh , 'glyox': glyox , 'c2h4o': c2h4o , 'haa': haa , 'c2h5oh': c2h5oh , 'c3h6o': c3h6o , 'xyl': xyl , 'c6h6o': c6h6o , 'hmfu': hmfu , 'lvg': lvg , 'coum': coum , 'fe2macr': fe2macr, 'total': tar} df_tarprod =
pd.DataFrame(data=tar_products)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Jul 15 07:21:25 2020 @author: Andrei """ # -*- coding: utf-8 -*- """ Created on Thu Jun 18 14:04:52 2020 @author: Andrei """ import pandas as pd from libraries import Logger from libraries import LummetryObject import mysql.connector as mysql from time import time import matplotlib.pyplot as plt import seaborn as sns import os from datetime import datetime class ExportEngine(LummetryObject): def __init__(self, **kwargs): super().__init__(**kwargs) self.SERVER = self.config_data['SERVER'] self.PORT = self.config_data['PORT'] self.USER = self.config_data['USER'] self.PASS = self.config_data['PASS'] self.DB = self.config_data['DB'] self._rep_base = '_get_report_' try: self.connect() except: self.P("WARNING! Couldn't connect to the mysql DB!") return def connect(self): self.db = mysql.connect( host=self.SERVER, port=int(self.PORT), user=self.USER, passwd=self.PASS, database=self.DB ) cursor = self.db.cursor() ## getting all the tables which are present in 'datacamp' database cursor.execute("SHOW TABLES") tables = cursor.fetchall() self.D("Connected to '{}'. Found {} tables".format(self.DB, len(tables))) self._tables = tables return def _load_data(self, table): cursor = self.db.cursor() cursor.execute('SELECT * from '+table) data = cursor.fetchall() cols = cursor.column_names dct_res = {cols[i]:[x[i] for x in data] for i,c in enumerate(cols)} return
pd.DataFrame(dct_res)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Mar 21 16:45:25 2019 This script finds the distance between clusters of position obtained with the Linear Discriminant Analysis. It is applied on csv files that contain the recordings of memory days, and returns an heatmap saved in a folder that has to be specified in the absolute path. The file csv has to follow a specific name convention 'Vmh'+ 'number that identifies the mouse'+ 'a letter (H or M)' + '2 or 1' + '0' + 'a string (dist or loc)' (for example: Vmh19H10loc ). @author: penna """ import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt import os from scipy.spatial import distance import seaborn as sns from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA def reading(file_in, sepfile): """ Function that open and read csv file, calculates z-scored values, and creates a list of three categories that correspond to the position of the mouse during the experiment. :param file_in: file path of csv file containing memory recordings :param sepfile: delimiter of csv file :return: a tupla that contains a dataframe with z-scored values and a list of strings containing the position of the mouse during the experiment """ data_frame = pd.read_csv(file_in, sep=sepfile) data_frame = data_frame.drop('Frames', 1) location_column = data_frame.loc[:, 'Beh'] data_frame = data_frame.drop('Beh', 1) neurons_list = [] for neuron in data_frame: neurons_list.append(neuron) data_frame = pd.DataFrame(StandardScaler().fit_transform(data_frame), columns=neurons_list) for i in range(len(location_column)): location = location_column[i] if location == 'corriHome' or location == 'CorriFar': location_column[i] = 'corridor' return data_frame, location_column def find_distance(df1, df2): """ Function that finds the averaged distance between the elements of two dataframe. :param df1: first dataframe :param df2: second dataframe :return: averaged distance between df1 and df2 """ d = 0 count = 0 distances = [] for i in range(len(df1)): for j in range(len(df2)): try: d = d + distance.euclidean((df1[0][i], df1[1][i]), (df2[0][j], df2[1][j])) except: print("i= " + str(i) + " j= " + str(j) + " An error occurred...\n exiting the program...") exit(1) count = count + 1 d2 = d / count distances.append(d2) d = 0 count = 0 dist = sum(distances) / len(distances) return dist def create_df_for_hm(list_dist, list_column_name): """ Function that creates a dataframe containing the distance between each cluster of position; this dataframe is then used to create the heatmap that allows to visualize the distance between each cluster :param list_dist: list that contains the distances between each cluster of position (home vs corridor, home vs farchamber, farchamber vs corridor) :param list_column_name: columns name for the dataframe (H, C, FC) :return: a df that in each cells contains the distance between each cluster of position, and has the same columns and the same indexes """ df =
pd.DataFrame(index=['H', 'C', 'FC'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Oct 2 15:08:22 2015 @author: <NAME> """ import pandas as pd import glob df = pd.read_csv('source/ConfigFamiliale2009.csv', sep=";") df.columns = ['Communes', 'Codes_Insee', 'NB_Allocataires_2009', 'COUP_0_ENF_2009', 'COUP_1_ENF_2009', 'COUP_2_ENF_2009', 'COUP_3_ENF_2009', 'COUP_4plus_ENF_2009', 'Homme_Isole_2009', 'Femme_Isolee_2009', 'MONO_1_ENF_2009', 'MONO_2_ENF_2009', 'MONO_3_ENF_2009', 'MONO_4plus_ENF_2009'] files = glob.glob('source/ConfigFamiliale*') for path_file in files: year = str(path_file[-8:-4]) if (year != '2009'): df_temp = pd.read_csv(path_file, sep=';') # Rename Col with year year_col = ['Communes', 'Codes_Insee'] features_col = [] for col in df_temp.columns[-12:]: year_col.append(col +"_"+ year) features_col.append(col +"_"+ year) # Adding key for mergeing features_col.append('Codes_Insee') df_temp.columns = year_col df =
pd.merge(df, df_temp[features_col], how='inner', on='Codes_Insee')
pandas.merge
# -*- coding: utf-8 -*- """Functionality that extends on what the base StatsCan api returns in some way TODO ---- Function to delete tables Extend getChangedCubeList with a function that returns all tables updated within a date range """ import os import json import zipfile import h5py import pandas as pd import numpy as np import requests from stats_can.scwds import get_series_info_from_vector from stats_can.scwds import get_data_from_vectors_and_latest_n_periods from stats_can.scwds import get_bulk_vector_data_by_range from stats_can.scwds import get_cube_metadata from stats_can.scwds import get_full_table_download from stats_can.helpers import parse_tables from stats_can.helpers import parse_vectors def get_tables_for_vectors(vectors): """ get a list of dicts mapping vectors to tables Parameters ---------- vectors : list of str or str Vectors to find tables for Returns ------- tables_list: list of dict keys for each vector number return the table, plus a key for 'all_tables' that has a list of unique tables used by vectors """ v_json = get_series_info_from_vector(vectors) vectors = [j["vectorId"] for j in v_json] tables_list = {j["vectorId"]: str(j["productId"]) for j in v_json} tables_list["all_tables"] = [] for vector in vectors: if tables_list[vector] not in tables_list["all_tables"]: tables_list["all_tables"].append(tables_list[vector]) return tables_list def table_subsets_from_vectors(vectors): """get a list of dicts mapping tables to vectors Parameters ---------- vectors : list of str or str Vectors to find tables for Returns ------- tables_dict: list of dict keys for each table used by the vectors, matched to a list of vectors """ start_tables_dict = get_tables_for_vectors(vectors) tables_dict = {t: [] for t in start_tables_dict["all_tables"]} vecs = list(start_tables_dict.keys())[:-1] # all but the all_tables key for vec in vecs: tables_dict[start_tables_dict[vec]].append(vec) return tables_dict def download_tables(tables, path=None, csv=True): """Download a json file and zip of data for a list of tables to path Parameters ---------- tables: list of str tables to be downloaded path: str, default: None (will do current directory) Where to download the table and json csv: boolean, default True download in CSV format, if not download SDMX Returns ------- downloaded: list list of tables that were downloaded """ metas = get_cube_metadata(tables) for meta in metas: product_id = meta["productId"] zip_url = get_full_table_download(product_id, csv=csv) if csv: zip_file = product_id + "-eng.zip" else: zip_file = product_id + ".zip" json_file = product_id + ".json" if path: zip_file = os.path.join(path, zip_file) json_file = os.path.join(path, json_file) # Thanks http://evanhahn.com/python-requests-library-useragent/ response = requests.get(zip_url, stream=True, headers={"user-agent": None}) # Thanks https://bit.ly/2sPYPYw with open(json_file, "w") as outfile: json.dump(meta, outfile) with open(zip_file, "wb") as handle: for chunk in response.iter_content(chunk_size=512): if chunk: # filter out keep-alive new chunks handle.write(chunk) downloaded = [meta["productId"] for meta in metas] return downloaded def zip_update_tables(path=None, csv=True): """check local json, update zips of outdated tables Grabs the json files in path, checks them against the metadata on StatsCan and grabs updated tables where there have been changes There isn't actually a "last modified date" part to the metadata What I'm doing is comparing the latest reference period. Almost all data changes will at least include incremental releases, so this should capture what I want Parameters ---------- path: str, default: None where to look for tables to update csv: boolean, default: True Downloads updates in CSV form by default, SDMX if false Returns ------- update_table_list: list list of the tables that were updated """ local_jsons = list_zipped_tables(path=path) tables = [j["productId"] for j in local_jsons] remote_jsons = get_cube_metadata(tables) update_table_list = [] for local, remote in zip(local_jsons, remote_jsons): if local["cubeEndDate"] != remote["cubeEndDate"]: update_table_list.append(local["productId"]) download_tables(update_table_list, path, csv=csv) return update_table_list def zip_table_to_dataframe(table, path=None): """Reads a StatsCan table into a pandas DataFrame If a zip file of the table does not exist in path, downloads it Parameters ---------- table: str the table to load to dataframe from zipped csv path: str, default: current working directory when module is loaded where to download the tables or load them Returns: df: pandas.DataFrame the table as a dataframe """ # Parse tables returns a list, can only do one table at a time here though table = parse_tables(table)[0] table_zip = table + "-eng.zip" if path: table_zip = os.path.join(path, table_zip) if not os.path.isfile(table_zip): download_tables([table], path) csv_file = table + ".csv" with zipfile.ZipFile(table_zip) as myzip: with myzip.open(csv_file) as myfile: col_names = pd.read_csv(myfile, nrows=0).columns # reopen the file or it misses the first row with myzip.open(csv_file) as myfile: types_dict = {"VALUE": float} types_dict.update({col: str for col in col_names if col not in types_dict}) df = pd.read_csv(myfile, dtype=types_dict) possible_cats = [ "GEO", "DGUID", "STATUS", "SYMBOL", "TERMINATED", "DECIMALS", "UOM", "UOM_ID", "SCALAR_FACTOR", "SCALAR_ID", "VECTOR", "COORDINATE", "Wages", "National Occupational Classification for Statistics (NOC-S)", "Supplementary unemployment rates", "Sex", "Age group", "Labour force characteristics", "Statistics", "Data type", "Job permanency", "Union coverage", "Educational attainment", ] actual_cats = [col for col in possible_cats if col in col_names] df[actual_cats] = df[actual_cats].astype("category") try: df["REF_DATE"] = pd.to_datetime(df["REF_DATE"], format="%Y-%m") except TypeError: df["REF_DATE"] =
pd.to_datetime(df["REF_DATE"])
pandas.to_datetime
import pytest import numpy as np import pandas as pd EXP_IDX = pd.MultiIndex(levels=[['model_a'], ['scen_a', 'scen_b']], codes=[[0, 0], [0, 1]], names=['model', 'scenario']) def test_set_meta_no_name(test_df): idx = pd.MultiIndex(levels=[['a_scenario'], ['a_model'], ['some_region']], codes=[[0], [0], [0]], names=['scenario', 'model', 'region']) s =
pd.Series(data=[0.3], index=idx)
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[10]: import pandas as pd from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) def replaceMonthByNumber(x): x = x.str.replace('*','') meses = { 'Enero': 1, 'Febrero':2, 'Marzo': 3, 'Abril': 4, 'Mayo':5, 'Junio':6, 'Julio':7, 'Agosto':8, 'Septiembre':9, 'Octubre':10, 'Noviembre':11, 'Diciembre':12} for mes in meses: x = x.replace(mes,meses[mes]) return x def fix_data(df, year_col, month_col, join_col=True): if join_col: df.columns = df.columns.map(' - '.join) df["year"] = pd.to_numeric(df[year_col].ffill(), errors='coerce') df["month"] = replaceMonthByNumber(df[month_col]) df["day"] = 1 df["Date"] = pd.to_datetime(df[["year", "month", "day"]], errors="coerce") df = df[df["Date"].notnull()] df = df.set_index("Date") del df["year"] del df["day"] del df["month"] del df[year_col] del df[month_col] return df df_merge = pd.DataFrame() df =
pd.read_excel('https://www.indec.gob.ar/ftp/cuadros/economia/sh_super_mayoristas.xls', sheet_name="Cuadro 1", skiprows=2, header=[0,1])
pandas.read_excel
from warnings import simplefilter import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns import flat_table from epimargin.estimators import analytical_MPVS from epimargin.etl.commons import download_data from epimargin.smoothing import notched_smoothing from epimargin.utils import days, fillna, setup simplefilter("ignore") sns.set(palette="bright", style="darkgrid", font="Helvetica Neue") sns.despine() save_columns = [ "state", "date", "Rt", "Rt_upper", "Rt_lower", "cases", "total_cases", "recovered", "total_recovered", "deceased", "total_deceased", "tested", "total_tested", "active", "total_active", "active_per_mn", "total_active_per_mn", "cfr", "total_cfr", "infection_rate", "total_infection_rate", "recovery_rate", "total_recovery_rate" ] population = { "AN": 0.397, "AP": 52.221, "AR": 1.504, "AS": 34.293, "BR": 119.52, "CH": 1.179, "CT": 28.724, "DN": 0.959, "DL": 19.814, "GA": 1.54, "GJ": 67.936, "HR": 28.672, "HP": 7.3, "JK": 13.203, "JH": 37.403, "KA": 65.798, "KL": 35.125, "LA": 0.293, "LD": 0.064, "MP": 82.232, "MH": 122.153, "MN": 3.103, "ML": 3.224, "MZ": 1.192, "NL": 2.15, "OR": 43.671, "PY": 1.504, "PB": 29.859, "RJ": 77.264, "SK": 0.664, "TN": 75.695, "TG": 37.22, "TR": 3.992, "UP": 224.979, "UT": 11.141, "WB": 96.906, "TT": 1332.83 } # pipeline details, options gamma = 0.2 window = 5 * days CI = 0.95 smooth = notched_smoothing(window) start_date = pd.Timestamp(year = 2020, month = 3, day = 1) time_period = 120 def estimate(time_series: pd.Series) -> pd.DataFrame: estimates = analytical_MPVS(time_series, CI = CI, smoothing = smooth, totals=True) return pd.DataFrame(data = { "date": estimates[0], "Rt": estimates[1], "Rt_upper": estimates[2], "Rt_lower": estimates[3], "total_cases": estimates[-4][2:], "new_cases": estimates[-3], }) data, figs = setup() download_data(data, 'timeseries.json', "https://api.covid19india.org/v3/") download_data(data, 'state_wise.csv', "https://api.covid19india.org/v3/") download_data(data, 'states.csv', "https://api.covid19india.org/v3/") download_data(data, 'districts.csv', "https://api.covid19india.org/v3/") # data prep with (data/'timeseries.json').open("rb") as fp: df = flat_table.normalize(
pd.read_json(fp)
pandas.read_json
import datetime as dt from itertools import product import sys import numpy as np from numpy.random import RandomState from numpy.testing import assert_allclose import pandas as pd from pandas.testing import assert_frame_equal import pytest from arch.data import sp500 from arch.tests.univariate.test_variance_forecasting import preserved_state from arch.univariate import ( APARCH, ARX, EGARCH, FIGARCH, GARCH, HARCH, HARX, ConstantMean, ConstantVariance, EWMAVariance, MIDASHyperbolic, RiskMetrics2006, ZeroMean, arch_model, ) from arch.univariate.mean import _ar_forecast, _ar_to_impulse SP500 = 100 * sp500.load()["Adj Close"].pct_change().dropna() MEAN_MODELS = [ HARX(SP500, lags=[1, 5]), ARX(SP500, lags=2), ConstantMean(SP500), ZeroMean(SP500), ] VOLATILITIES = [ ConstantVariance(), GARCH(), FIGARCH(), EWMAVariance(lam=0.94), MIDASHyperbolic(), HARCH(lags=[1, 5, 22]), RiskMetrics2006(), APARCH(), EGARCH(), ] MODEL_SPECS = list(product(MEAN_MODELS, VOLATILITIES)) IDS = [ f"{str(mean).split('(')[0]}-{str(vol).split('(')[0]}" for mean, vol in MODEL_SPECS ] @pytest.fixture(params=MODEL_SPECS, ids=IDS) def model_spec(request): mean, vol = request.param mean.volatility = vol return mean class TestForecasting(object): @classmethod def setup_class(cls): cls.rng = RandomState(12345) am = arch_model(None, mean="Constant", vol="Constant") data = am.simulate(np.array([0.0, 10.0]), 1000) data.index =
pd.date_range("2000-01-01", periods=data.index.shape[0])
pandas.date_range
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas.compat as compat from pandas.compat import range import pandas as pd from pandas import ( Categorical, DataFrame, Index, NaT, Series, bdate_range, date_range, isna) from pandas.core import ops import pandas.core.nanops as nanops import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal) from .common import TestData class TestSeriesLogicalOps(object): @pytest.mark.parametrize('bool_op', [operator.and_, operator.or_, operator.xor]) def test_bool_operators_with_nas(self, bool_op): # boolean &, |, ^ should work with object arrays and propagate NAs ser = Series(bdate_range('1/1/2000', periods=10), dtype=object) ser[::2] = np.nan mask = ser.isna() filled = ser.fillna(ser[0]) result = bool_op(ser < ser[9], ser > ser[3]) expected = bool_op(filled < filled[9], filled > filled[3]) expected[mask] = False assert_series_equal(result, expected) def test_operators_bitwise(self): # GH#9016: support bitwise op for integer types index = list('bca') s_tft = Series([True, False, True], index=index) s_fff = Series([False, False, False], index=index) s_tff = Series([True, False, False], index=index) s_empty = Series([]) # TODO: unused # s_0101 = Series([0, 1, 0, 1]) s_0123 = Series(range(4), dtype='int64') s_3333 = Series([3] * 4) s_4444 = Series([4] * 4) res = s_tft & s_empty expected = s_fff assert_series_equal(res, expected) res = s_tft | s_empty expected = s_tft assert_series_equal(res, expected) res = s_0123 & s_3333 expected = Series(range(4), dtype='int64') assert_series_equal(res, expected) res = s_0123 | s_4444 expected = Series(range(4, 8), dtype='int64') assert_series_equal(res, expected) s_a0b1c0 = Series([1], list('b')) res = s_tft & s_a0b1c0 expected = s_tff.reindex(list('abc')) assert_series_equal(res, expected) res = s_tft | s_a0b1c0 expected = s_tft.reindex(list('abc')) assert_series_equal(res, expected) n0 = 0 res = s_tft & n0 expected = s_fff assert_series_equal(res, expected) res = s_0123 & n0 expected = Series([0] * 4) assert_series_equal(res, expected) n1 = 1 res = s_tft & n1 expected = s_tft assert_series_equal(res, expected) res = s_0123 & n1 expected = Series([0, 1, 0, 1]) assert_series_equal(res, expected) s_1111 = Series([1] * 4, dtype='int8') res = s_0123 & s_1111 expected = Series([0, 1, 0, 1], dtype='int64') assert_series_equal(res, expected) res = s_0123.astype(np.int16) | s_1111.astype(np.int32) expected = Series([1, 1, 3, 3], dtype='int32') assert_series_equal(res, expected) with pytest.raises(TypeError): s_1111 & 'a' with pytest.raises(TypeError): s_1111 & ['a', 'b', 'c', 'd'] with pytest.raises(TypeError): s_0123 & np.NaN with pytest.raises(TypeError): s_0123 & 3.14 with pytest.raises(TypeError): s_0123 & [0.1, 4, 3.14, 2] # s_0123 will be all false now because of reindexing like s_tft if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=['b', 'c', 'a', 0, 1, 2, 3]) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_tft & s_0123, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_tft & s_0123, exp) # s_tft will be all false now because of reindexing like s_0123 if compat.PY3: # unable to sort incompatible object via .union. exp = Series([False] * 7, index=[0, 1, 2, 3, 'b', 'c', 'a']) with tm.assert_produces_warning(RuntimeWarning): assert_series_equal(s_0123 & s_tft, exp) else: exp = Series([False] * 7, index=[0, 1, 2, 3, 'a', 'b', 'c']) assert_series_equal(s_0123 & s_tft, exp) assert_series_equal(s_0123 & False, Series([False] * 4)) assert_series_equal(s_0123 ^ False, Series([False, True, True, True])) assert_series_equal(s_0123 & [False], Series([False] * 4)) assert_series_equal(s_0123 & (False), Series([False] * 4)) assert_series_equal(s_0123 & Series([False, np.NaN, False, False]), Series([False] * 4)) s_ftft = Series([False, True, False, True]) assert_series_equal(s_0123 & Series([0.1, 4, -3.14, 2]), s_ftft) s_abNd = Series(['a', 'b', np.NaN, 'd']) res = s_0123 & s_abNd expected = s_ftft assert_series_equal(res, expected) def test_scalar_na_logical_ops_corners(self): s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) with pytest.raises(TypeError): s & datetime(2005, 1, 1) s = Series([2, 3, 4, 5, 6, 7, 8, 9, datetime(2005, 1, 1)]) s[::2] = np.nan expected = Series(True, index=s.index) expected[::2] = False result = s & list(s) assert_series_equal(result, expected) d = DataFrame({'A': s}) # TODO: Fix this exception - needs to be fixed! (see GH5035) # (previously this was a TypeError because series returned # NotImplemented # this is an alignment issue; these are equivalent # https://github.com/pandas-dev/pandas/issues/5284 with pytest.raises(TypeError): d.__and__(s, axis='columns') with pytest.raises(TypeError): s & d # this is wrong as its not a boolean result # result = d.__and__(s,axis='index') @pytest.mark.parametrize('op', [ operator.and_, operator.or_, operator.xor, ]) def test_logical_ops_with_index(self, op): # GH#22092, GH#19792 ser = Series([True, True, False, False]) idx1 = Index([True, False, True, False]) idx2 = Index([1, 0, 1, 0]) expected = Series([op(ser[n], idx1[n]) for n in range(len(ser))]) result = op(ser, idx1) assert_series_equal(result, expected) expected = Series([op(ser[n], idx2[n]) for n in range(len(ser))], dtype=bool) result = op(ser, idx2) assert_series_equal(result, expected) @pytest.mark.parametrize("op, expected", [ (ops.rand_, pd.Index([False, True])), (ops.ror_, pd.Index([False, True])), (ops.rxor, pd.Index([])), ]) def test_reverse_ops_with_index(self, op, expected): # https://github.com/pandas-dev/pandas/pull/23628 # multi-set Index ops are buggy, so let's avoid duplicates... ser = Series([True, False]) idx = Index([False, True]) result = op(ser, idx) tm.assert_index_equal(result, expected) def test_logical_ops_label_based(self): # GH#4947 # logical ops should be label based a = Series([True, False, True], list('bca')) b = Series([False, True, False], list('abc')) expected = Series([False, True, False], list('abc')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False], list('abc')) result = a | b assert_series_equal(result, expected) expected = Series([True, False, False], list('abc')) result = a ^ b assert_series_equal(result, expected) # rhs is bigger a = Series([True, False, True], list('bca')) b = Series([False, True, False, True], list('abcd')) expected = Series([False, True, False, False], list('abcd')) result = a & b assert_series_equal(result, expected) expected = Series([True, True, False, False], list('abcd')) result = a | b assert_series_equal(result, expected) # filling # vs empty result = a & Series([]) expected = Series([False, False, False], list('bca')) assert_series_equal(result, expected) result = a | Series([]) expected = Series([True, False, True], list('bca')) assert_series_equal(result, expected) # vs non-matching result = a & Series([1], ['z']) expected = Series([False, False, False, False], list('abcz')) assert_series_equal(result, expected) result = a | Series([1], ['z']) expected = Series([True, True, False, False], list('abcz')) assert_series_equal(result, expected) # identity # we would like s[s|e] == s to hold for any e, whether empty or not for e in [Series([]), Series([1], ['z']), Series(np.nan, b.index),
Series(np.nan, a.index)
pandas.Series
""" test the scalar Timestamp """ import pytz import pytest import dateutil import calendar import locale import numpy as np from dateutil.tz import tzutc from pytz import timezone, utc from datetime import datetime, timedelta import pandas.util.testing as tm import pandas.util._test_decorators as td from pandas.tseries import offsets from pandas._libs.tslibs import conversion from pandas._libs.tslibs.timezones import get_timezone, dateutil_gettz as gettz from pandas.errors import OutOfBoundsDatetime from pandas.compat import long, PY3 from pandas.compat.numpy import np_datetime64_compat from pandas import Timestamp, Period, Timedelta, NaT class TestTimestampProperties(object): def test_properties_business(self): ts = Timestamp('2017-10-01', freq='B') control = Timestamp('2017-10-01') assert ts.dayofweek == 6 assert not ts.is_month_start # not a weekday assert not ts.is_quarter_start # not a weekday # Control case: non-business is month/qtr start assert control.is_month_start assert control.is_quarter_start ts = Timestamp('2017-09-30', freq='B') control = Timestamp('2017-09-30') assert ts.dayofweek == 5 assert not ts.is_month_end # not a weekday assert not ts.is_quarter_end # not a weekday # Control case: non-business is month/qtr start assert control.is_month_end assert control.is_quarter_end def test_fields(self): def check(value, equal): # that we are int/long like assert isinstance(value, (int, long)) assert value == equal # GH 10050 ts = Timestamp('2015-05-10 09:06:03.000100001') check(ts.year, 2015) check(ts.month, 5) check(ts.day, 10) check(ts.hour, 9) check(ts.minute, 6) check(ts.second, 3) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 100) check(ts.nanosecond, 1) check(ts.dayofweek, 6) check(ts.quarter, 2) check(ts.dayofyear, 130) check(ts.week, 19) check(ts.daysinmonth, 31) check(ts.daysinmonth, 31) # GH 13303 ts = Timestamp('2014-12-31 23:59:00-05:00', tz='US/Eastern') check(ts.year, 2014) check(ts.month, 12) check(ts.day, 31) check(ts.hour, 23) check(ts.minute, 59) check(ts.second, 0) pytest.raises(AttributeError, lambda: ts.millisecond) check(ts.microsecond, 0) check(ts.nanosecond, 0) check(ts.dayofweek, 2) check(ts.quarter, 4) check(ts.dayofyear, 365) check(ts.week, 1) check(ts.daysinmonth, 31) ts = Timestamp('2014-01-01 00:00:00+01:00') starts = ['is_month_start', 'is_quarter_start', 'is_year_start'] for start in starts: assert getattr(ts, start) ts = Timestamp('2014-12-31 23:59:59+01:00') ends = ['is_month_end', 'is_year_end', 'is_quarter_end'] for end in ends: assert getattr(ts, end) # GH 12806 @pytest.mark.parametrize('data', [Timestamp('2017-08-28 23:00:00'), Timestamp('2017-08-28 23:00:00', tz='EST')]) @pytest.mark.parametrize('time_locale', [ None] if tm.get_locales() is None else [None] + tm.get_locales()) def test_names(self, data, time_locale): # GH 17354 # Test .weekday_name, .day_name(), .month_name with tm.assert_produces_warning(DeprecationWarning, check_stacklevel=False): assert data.weekday_name == 'Monday' if time_locale is None: expected_day = 'Monday' expected_month = 'August' else: with tm.set_locale(time_locale, locale.LC_TIME): expected_day = calendar.day_name[0].capitalize() expected_month = calendar.month_name[8].capitalize() assert data.day_name(time_locale) == expected_day assert data.month_name(time_locale) == expected_month # Test NaT nan_ts = Timestamp(NaT) assert np.isnan(nan_ts.day_name(time_locale)) assert np.isnan(nan_ts.month_name(time_locale)) @pytest.mark.parametrize('tz', [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']) def test_is_leap_year(self, tz): # GH 13727 dt = Timestamp('2000-01-01 00:00:00', tz=tz) assert dt.is_leap_year assert isinstance(dt.is_leap_year, bool) dt = Timestamp('1999-01-01 00:00:00', tz=tz) assert not dt.is_leap_year dt = Timestamp('2004-01-01 00:00:00', tz=tz) assert dt.is_leap_year dt = Timestamp('2100-01-01 00:00:00', tz=tz) assert not dt.is_leap_year def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013, 12, 31) result = Timestamp(d).week expected = 1 # ISO standard assert result == expected d = datetime(2008, 12, 28) result = Timestamp(d).week expected = 52 # ISO standard assert result == expected d = datetime(2009, 12, 31) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 1) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected d = datetime(2010, 1, 3) result = Timestamp(d).week expected = 53 # ISO standard assert result == expected result = np.array([Timestamp(datetime(*args)).week for args in [(2000, 1, 1), (2000, 1, 2), ( 2005, 1, 1), (2005, 1, 2)]]) assert (result == [52, 52, 53, 53]).all() class TestTimestampConstructors(object): def test_constructor(self): base_str = '2014-07-01 09:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_dt, base_expected), ('2014-07-01 10:00', datetime(2014, 7, 1, 10), base_expected + 3600 * 1000000000), ('2014-07-01 09:00:00.000008000', datetime(2014, 7, 1, 9, 0, 0, 8), base_expected + 8000), ('2014-07-01 09:00:00.000000005', Timestamp('2014-07-01 09:00:00.000000005'), base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, date, expected in tests: for result in [Timestamp(date_str), Timestamp(date)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: for result in [Timestamp(date_str, tz=tz), Timestamp(date, tz=tz)]: expected_tz = expected - offset * 3600 * 1000000000 assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected - offset * 3600 * 1000000000 assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc def test_constructor_with_stringoffset(self): # GH 7833 base_str = '2014-07-01 11:00:00+02:00' base_dt = datetime(2014, 7, 1, 9) base_expected = 1404205200000000000 # confirm base representation is correct import calendar assert (calendar.timegm(base_dt.timetuple()) * 1000000000 == base_expected) tests = [(base_str, base_expected), ('2014-07-01 12:00:00+02:00', base_expected + 3600 * 1000000000), ('2014-07-01 11:00:00.000008000+02:00', base_expected + 8000), ('2014-07-01 11:00:00.000000005+02:00', base_expected + 5)] timezones = [(None, 0), ('UTC', 0), (pytz.utc, 0), ('Asia/Tokyo', 9), ('US/Eastern', -4), ('dateutil/US/Pacific', -7), (pytz.FixedOffset(-180), -3), (dateutil.tz.tzoffset(None, 18000), 5)] for date_str, expected in tests: for result in [Timestamp(date_str)]: # only with timestring assert result.value == expected assert conversion.pydt_to_i8(result) == expected # re-creation shouldn't affect to internal value result = Timestamp(result) assert result.value == expected assert conversion.pydt_to_i8(result) == expected # with timezone for tz, offset in timezones: result = Timestamp(date_str, tz=tz) expected_tz = expected assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should preserve tz result = Timestamp(result) assert result.value == expected_tz assert conversion.pydt_to_i8(result) == expected_tz # should convert to UTC result = Timestamp(result, tz='UTC') expected_utc = expected assert result.value == expected_utc assert conversion.pydt_to_i8(result) == expected_utc # This should be 2013-11-01 05:00 in UTC # converted to Chicago tz result = Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 00:00:00-0500', tz='America/Chicago')" # noqa assert repr(result) == expected assert result == eval(repr(result)) # This should be 2013-11-01 05:00 in UTC # converted to Tokyo tz (+09:00) result = Timestamp('2013-11-01 00:00:00-0500', tz='Asia/Tokyo') assert result.value == Timestamp('2013-11-01 05:00').value expected = "Timestamp('2013-11-01 14:00:00+0900', tz='Asia/Tokyo')" assert repr(result) == expected assert result == eval(repr(result)) # GH11708 # This should be 2015-11-18 10:00 in UTC # converted to Asia/Katmandu result = Timestamp("2015-11-18 15:45:00+05:45", tz="Asia/Katmandu") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:45:00+0545', tz='Asia/Katmandu')" assert repr(result) == expected assert result == eval(repr(result)) # This should be 2015-11-18 10:00 in UTC # converted to Asia/Kolkata result = Timestamp("2015-11-18 15:30:00+05:30", tz="Asia/Kolkata") assert result.value == Timestamp("2015-11-18 10:00").value expected = "Timestamp('2015-11-18 15:30:00+0530', tz='Asia/Kolkata')" assert repr(result) == expected assert result == eval(repr(result)) def test_constructor_invalid(self): with tm.assert_raises_regex(TypeError, 'Cannot convert input'): Timestamp(slice(2)) with tm.assert_raises_regex(ValueError, 'Cannot convert Period'): Timestamp(Period('1000-01-01')) def test_constructor_invalid_tz(self): # GH#17690 with tm.assert_raises_regex(TypeError, 'must be a datetime.tzinfo'): Timestamp('2017-10-22', tzinfo='US/Eastern') with tm.assert_raises_regex(ValueError, 'at most one of'): Timestamp('2017-10-22', tzinfo=utc, tz='UTC') with tm.assert_raises_regex(ValueError, "Invalid frequency:"): # GH#5168 # case where user tries to pass tz as an arg, not kwarg, gets # interpreted as a `freq` Timestamp('2012-01-01', 'US/Pacific') def test_constructor_tz_or_tzinfo(self): # GH#17943, GH#17690, GH#5168 stamps = [Timestamp(year=2017, month=10, day=22, tz='UTC'), Timestamp(year=2017, month=10, day=22, tzinfo=utc), Timestamp(year=2017, month=10, day=22, tz=utc), Timestamp(datetime(2017, 10, 22), tzinfo=utc), Timestamp(datetime(2017, 10, 22), tz='UTC'), Timestamp(datetime(2017, 10, 22), tz=utc)] assert all(ts == stamps[0] for ts in stamps) def test_constructor_positional(self): # see gh-10758 with pytest.raises(TypeError): Timestamp(2000, 1) with pytest.raises(ValueError): Timestamp(2000, 0, 1) with pytest.raises(ValueError): Timestamp(2000, 13, 1) with pytest.raises(ValueError): Timestamp(2000, 1, 0) with pytest.raises(ValueError): Timestamp(2000, 1, 32) # see gh-11630 assert (repr(Timestamp(2015, 11, 12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(2015, 11, 12, 1, 2, 3, 999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_keyword(self): # GH 10758 with pytest.raises(TypeError): Timestamp(year=2000, month=1) with pytest.raises(ValueError): Timestamp(year=2000, month=0, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=13, day=1) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=0) with pytest.raises(ValueError): Timestamp(year=2000, month=1, day=32) assert (repr(Timestamp(year=2015, month=11, day=12)) == repr(Timestamp('20151112'))) assert (repr(Timestamp(year=2015, month=11, day=12, hour=1, minute=2, second=3, microsecond=999999)) == repr(Timestamp('2015-11-12 01:02:03.999999'))) def test_constructor_fromordinal(self): base = datetime(2000, 1, 1) ts = Timestamp.fromordinal(base.toordinal(), freq='D') assert base == ts assert ts.freq == 'D' assert base.toordinal() == ts.toordinal() ts = Timestamp.fromordinal(base.toordinal(), tz='US/Eastern') assert
Timestamp('2000-01-01', tz='US/Eastern')
pandas.Timestamp
import os #import dill import numpy as np import pandas as pd from Bio import SeqIO, Seq import scipy.stats as st import deepak.globals import deepak.utilities from deepak.library import MutationLibrary from deepak.plot import replace_wt, all_correlations, make_heatmaps, make_fig_dir pad = 948 target_T3 = ":917*ag" target_G3 = ":932*ag" target_T5 = ":50*ag" target_G5 = ":41*ag" # MAYBE: calculate common mutations, place in separate data structure class Quantification: """ Class used to turn the Valid.csv output file into a pandas data frame suitable for plotting with sfmap or other inspection. The resultant data frame has rows corresponding to integer positions in the sequence and columns corresponding to amino acids. """ def __init__(self, config_file, lib_fn, reference_fn, pos): self.config_file = config_file self.library = MutationLibrary() self.library.add_reference_fasta(reference_fn) self.reference_AA = Seq.translate(self.library.reference) self.library.construct(lib_fn, pos) # get library info to create shape of DF self.counts = None self.edits = None def configure(self, config_file): with open(config_file) as config: for line in config: attribute, value = line.split() def create_df(self): lib_members = [translate_codon(item, self.library.reference) for item in self.library.keys() if item != "wt"] start = min(lib_members, key=lambda x: x[0])[0] end = max(lib_members, key=lambda x: x[0])[0] self.counts = pd.DataFrame(np.zeros((1+end-start, 20)), index=range(start, end+1), columns=deepak.globals.AA_LIST) self.edits = self.counts.copy() def count_csv(self, csv, target): data = pd.read_csv(csv, header=0, index_col=0) wt_counts = 0 wt_edits = 0 for i, row in data.iterrows(): identity = row["lib_identity"] if identity == "wt": wt_counts += 1 if search_snp_paf(row["cs_tag"], target): wt_edits += 1 else: position, aa = translate_codon(identity, self.library.reference) self.counts.loc[position, aa] += 1 if search_snp_paf(row["cs_tag"], target): self.edits.loc[position, aa] += 1 self.tally_wt(wt_counts, wt_edits) return def tally_wt(self, counts, edits): for i in self.counts.index: aa = self.reference_AA[i] self.counts.loc[i, aa] = counts self.edits.loc[i, aa] = edits return def translate_codon(cs, reference): """ Translates a cs string into a tuple in the form (position, amino_acid) """ fields = deepak.utilities.chunk_paf(cs) position = int(fields[0][1:]) idx = position // 3 pad = position % 3 wt_codon = reference[3 * idx:3 * idx + 3] codon = wt_codon for item in fields[1:]: if item[0] == ":": pad += int(item[1]) continue elif item[0] == "*": assert wt_codon[pad] == item[1].upper() codon = codon[:pad] + item[2].upper() + codon[1 + pad:] pad += 1 else: raise Exception("Invalid cs string") return idx, Seq.translate(codon) def load_pickled_data(fn): with open(fn, mode="rb") as infile: analysis = dill.load(infile) return analysis def search_snp_paf(paf_record, target): target_fields = deepak.utilities.chunk_paf(target) assert len(target_fields) == 2 # Should be ":n*{ref}{var}" target_loc = int(target_fields[0][1:]) location = 0 fields = deepak.utilities.chunk_paf(paf_record) for i, item in enumerate(fields): if location == target_loc and item == target_fields[1]: return True elif item[0] == ":": location += int(item[1:]) elif item[0] == "*": location += 1 else: raise Exception("Disallowed character in CS string, could be indel") return False def detect_edits(item, target): """ Count reads in item which contain target mutation. Returns the number of reads containing the target mutation and the total number of reads *item* is a length 2 tuple comprising a library entry in the form (*name*, *list of PafRecords or cs strings*) *target* is a cs string specifying the target mutation to search for """ name = item[0] edits = list(map(search_snp_paf, item[1], [target] * len(item[1]))) return np.sum(edits), len(edits) def decode_paf(paf_str): global reference_fn, pad ref = SeqIO.read(reference_fn, "fasta") fields = deepak.utilities.chunk_paf(paf_str) dna_loc = int(fields[0][1:]) pos = (dna_loc + pad) // 3 result_dna = ref[:dna_loc] for mut in fields[1:]: if mut.startswith("*"): result_dna += mut[2] dna_loc += 1 else: n = int(mut[1:]) result_dna += ref[dna_loc:dna_loc + n] dna_loc += n if dna_loc < len(ref): result_dna += ref[dna_loc:] aa = result_dna.translate()[pos - (pad // 3)] return int(pos), aa def add_seq_info(data_frame): positions, amino_acids = list(zip(*map(decode_paf, data_frame["name"]))) data_frame["position"] = positions data_frame["amino_acid"] = amino_acids return data_frame def read_analysis(analysis_obj, target_mutation): data = {"name": [], "edited_counts": [], "counts": []} for member in analysis_obj.library.items(): edited, counts = detect_edits(member, target_mutation) data["name"].append(member[0]) data["edited_counts"].append(edited) data["counts"].append(counts) df = pd.DataFrame(data) wt = df.loc[df.name == "wt"] df = df.loc[df.name != "wt"] return df, wt def z(p, n, wt_rate, wt_n, pooled=True, size=1): if n < size: return np.nan if pooled: combined_p = (wt_rate * wt_n + n * p) / (n + wt_n) return (p - wt_rate) / np.sqrt(combined_p * (1 - combined_p) * ((1 / n) + (1 / wt_n))) return (p - wt_rate) / np.sqrt((wt_rate * (1 - wt_rate) / wt_n) + (p * (1 - p) / n)) def add_stats(df, wt_rate, wt_n): n = 0 while True: if "rep"+str(n)+"_counts" not in df.columns: break n += 1 x_bar = 1 for i in range(1, n): rep = "rep"+str(i)+"_" # Zero total counts results in NaN p = df[rep+"counts"]/df["counts"] # Members with zero counts in one replicate default to rate of other replicate, i.e. NaN ** 0 == 1 r = (df[rep+"edited_counts"]/df[rep+"counts"]).fillna(0) x_bar *= np.power(r, p) df["geom_editing_rate"] = x_bar df["editing_rate"] = df["edited_counts"] / df["counts"] df["z-score"] = list(map(z, df["editing_rate"], df["counts"], [wt_rate] * len(df.index), [wt_n] * len(df.index))) df["p-value"] = st.norm.sf(np.abs(df["z-score"])) * 2 # two-tailed test combined_p = (wt_rate * wt_n + df["editing_rate"] * df["counts"]) / (df["counts"] + wt_n) df["std_error"] = np.sqrt(combined_p * (1 - combined_p) * ((1 / df["counts"]) + (1 / wt_n))) return df def reference_aa(df, reference): start = df["position"].min() end = df["position"].max() ref = SeqIO.read(reference, "fasta") wt_aa_seq = str(ref.translate()[int(start - pad // 3):int(end - pad // 3) + 1].seq) return wt_aa_seq def fill_aa_seq(df_seq, wt_aa_seq): x = set(df_seq["position"]) least = min(x) y = set(range(least, least+len(wt_aa_seq))) z = x.difference(y) while len(z) > 0: item = z.pop() new_row = pd.DataFrame({"position": [item]*20, "amino_acid": deepak.globals.AA_LIST}) df_seq = pd.concat([df_seq, new_row], sort=False, ignore_index=True) return df_seq def get_plotting_frame(df, values): x = df.pivot(index="position", columns="amino_acid", values=values) if values == "counts": x.fillna(value=0) return x[deepak.globals.AA_LIST] def read_data_set(obj_fn, target): analysis = load_pickled_data(obj_fn) df, wt = read_analysis(analysis, target) print("Loaded pickled data from {}".format(obj_fn)) return df, wt def aggregate_data(base, sample, n_replicates, target, append=""): obj_fns = [base.format(sample+str(i)+append) for i in range(1, n_replicates+1)] data_sets = list(map(read_data_set, obj_fns, [target]*n_replicates)) return data_sets def combine_replicates(data_sets): df = data_sets[0][0].copy() wt = data_sets[0][1].copy() for i, d in enumerate(data_sets): if i >= 1: # Keeps columns that are in df but not d[0] unlike df += d[0] df = df.combine(d[0], lambda x, y: x+y if np.issubdtype(x.dtype, np.number) else x, overwrite=False) wt += d[1] # Does not have any disjoint columns for new_col in ("edited_counts", "counts"): name = "rep"+str(i)+"_"+new_col df[name] = d[0][new_col] wt[name] = d[1][new_col] return df, wt def load_replicate_data(sample, base_dir, n_reps, reference, append): global reference_fn reference_fn = reference if not base_dir.endswith("/"): base_dir += "/" base = base_dir+"Pafparser-{}_aln/workspace.pyobj" if "T" in sample: if "3" in sample: target = target_T3 else: # 5 target = target_T5 else: # G if "3" in sample: target = target_G3 else: # 5 target = target_G5 # Load data (2 replicates) data_sets = aggregate_data(base, sample, n_reps, target, append=append) df, wt = combine_replicates(data_sets) return df, wt, data_sets def calculate(df, wt, reference): df = add_seq_info(df) wt_n = int(wt["counts"]) wt_rate = float(wt["edited_counts"] / wt_n) wt_aa_seq = reference_aa(df, reference) df = add_stats(df, wt_rate, wt_n) density = replace_wt(get_plotting_frame(df, "counts"), wt_aa_seq, wt_n) log_pad = 0.000001 geom = get_plotting_frame(df, "geom_editing_rate") geom_norm = replace_wt(geom / wt_rate, wt_aa_seq, 1) geom_fold_change = np.log2(geom_norm + log_pad) rates = get_plotting_frame(df, "editing_rate") normalized_rates = replace_wt(rates / wt_rate, wt_aa_seq, 1) log2_fold_change = np.log2(normalized_rates + log_pad) z_scores = replace_wt(get_plotting_frame(df, "z-score"), wt_aa_seq, 0) std_err = replace_wt(get_plotting_frame(df, "std_error"), wt_aa_seq, np.nan) return wt_aa_seq, density, geom_fold_change, log2_fold_change, z_scores, std_err def pafparser_to_csv(sample, base_dir, n_reps, reference, append): df, wt, data_sets = load_replicate_data(sample, base_dir, n_reps, reference, append) for i in range(2): for item in ("counts", "edited_counts"): wt["rep{}_{}".format(i, item)] = data_sets[i][1][item] df_seq = add_seq_info(df) wt_aa_seq = reference_aa(df, reference) df_seq = fill_aa_seq(df_seq, wt_aa_seq) full =
pd.concat([df_seq, wt], sort=False, ignore_index=True)
pandas.concat
""" I/O functions of the aecg package: tools for annotated ECG HL7 XML files This module implements helper functions to parse and read annotated electrocardiogram (ECG) stored in XML files following HL7 specification. See authors, license and disclaimer at the top level directory of this project. """ # Imports ===================================================================== from typing import Dict, Tuple from lxml import etree from aecg import validate_xpath, new_validation_row, VALICOLS, \ TIME_CODES, SEQUENCE_CODES, \ Aecg, AecgLead, AecgAnnotationSet import copy import logging import pandas as pd import re import zipfile # Python logging ============================================================== logger = logging.getLogger(__name__) def parse_annotations(xml_filename: str, zip_filename: str, aecg_doc: etree._ElementTree, aecgannset: AecgAnnotationSet, path_prefix: str, annsset_xmlnode_path: str, valgroup: str = "RHYTHM", log_validation: bool = False) -> Tuple[ AecgAnnotationSet, pd.DataFrame]: """Parses `aecg_doc` XML document and extracts annotations Args: xml_filename (str): Filename of the aECG XML file. zip_filename (str): Filename of zip file containint the aECG XML file. If '', then xml file is not stored in a zip file. aecg_doc (etree._ElementTree): XML document of the aECG XML file. aecgannset (AecgAnnotationSet): Annotation set to which append found annotations. path_prefix (str): Prefix of xml path from which start searching for annotations. annsset_xmlnode_path (str): Path to xml node of the annotation set containing the annotations. valgroup (str, optional): Indicates whether to search annotations in rhythm or derived waveform. Defaults to "RHYTHM". log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Tuple[AecgAnnotationSet, pd.DataFrame]: Annotation set updated with found annotations and dataframe with results of validation. """ anngrpid = 0 # Annotations stored within a beat beatnodes = aecg_doc.xpath(( path_prefix + "/component/annotation/code[@code=\'MDC_ECG_BEAT\']").replace( '/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) beatnum = 0 valpd = pd.DataFrame() if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {len(beatnodes)} annotated beats found') for beatnode in beatnodes: for rel_path in ["../component/annotation/" "code[contains(@code, \"MDC_ECG_\")]"]: annsnodes = beatnode.xpath(rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotation code valrow2 = validate_xpath( annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame( [valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] # Annotations type valrow2 = validate_xpath( annsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path + \ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) subannsnodes = annsnode.xpath( rel_path.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] else: subannsnodes += [annsnode] # Exclude annotations reporting interval values only subannsnodes = [ sa for sa in subannsnodes if not sa.get("code").startswith("MDC_ECG_TIME_PD_")] for subannsnode in subannsnodes: # Annotations type valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(subannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI rel_path3 = "../support/supportingROI/component/"\ "boundary/value" for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/"\ "boundary/code" roinodes = subannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath( roinode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: # Annotations type valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_BEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + rel_path +\ "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["beatnum"] = beatnum ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath(annsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used # by value and supporting ROI rel_path4 = "../support/supportingROI/component/" \ "boundary/code" roinodes = annsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, ".", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_BEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/" + \ rel_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) else: if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) anngrpid = anngrpid + 1 beatnum = beatnum + 1 if len(beatnodes) > 0: logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {beatnum} annotated beats and {anngrpid} ' f'annotations groups found') anngrpid_from_beats = anngrpid # Annotations stored without an associated beat for codetype_path in ["/component/annotation/code[" "(contains(@code, \"MDC_ECG_\") and" " not (@code=\'MDC_ECG_BEAT\'))]"]: annsnodes = aecg_doc.xpath( (path_prefix + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) rel_path2 = "../value" for annsnode in annsnodes: ann = {"anngrpid": anngrpid, "beatnum": "", "code": "", "codetype": "", "wavecomponent": "", "wavecomponent2": "", "timecode": "", "value": "", "value_unit": "", "low": "", "low_unit": "", "high": "", "high_unit": "", "lead": ""} # Annotations code valrow2 = validate_xpath(annsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["code"] = valrow2["VALUE"] # Annotation type from top level value valrow2 = validate_xpath(annsnode, "../value", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/value" if log_validation: valpd = valpd.append(pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) if valrow2["VALIOUT"] == "PASSED": ann["codetype"] = valrow2["VALUE"] subannsnodes = annsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) if len(subannsnodes) == 0: subannsnodes = [annsnode] for subannsnode in subannsnodes: subsubannsnodes = subannsnode.xpath( (".." + codetype_path).replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) tmpnodes = [subannsnode] if len(subsubannsnodes) > 0: tmpnodes = tmpnodes + subsubannsnodes for subsubannsnode in tmpnodes: ann["wavecomponent"] = "" ann["wavecomponent2"] = "" ann["timecode"] = "" ann["value"] = "" ann["value_unit"] = "" ann["low"] = "" ann["low_unit"] = "" ann["high"] = "" ann["high_unit"] = "" roi_base = "../support/supportingROI/component/boundary" rel_path3 = roi_base + "/value" valrow2 = validate_xpath( subsubannsnode, ".", "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/code" if valrow2["VALIOUT"] == "PASSED": if not ann["codetype"].endswith("WAVE"): ann["codetype"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations type valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "code", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent"] = valrow2["VALUE"] # if ann["wavecomponent"] == "": # ann["wavecomponent"] = valrow2["VALUE"] # else: # ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value as attribute valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # Annotations value units valrow2 = validate_xpath( subsubannsnode, rel_path2, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path2 if valrow2["VALIOUT"] == "PASSED": ann["value_unit"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotations info from supporting ROI for n in ["", "low", "high"]: if n != "": rp = rel_path3 + "/" + n else: rp = rel_path3 valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT_" "ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] else: roi_base = "../component/annotation/support/"\ "supportingROI/component/boundary" # Annotations type valrow2 = validate_xpath(subsubannsnode, "../component/annotation/" "value", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow2["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + \ "../component/annotation/value" if valrow2["VALIOUT"] == "PASSED": ann["wavecomponent2"] = valrow2["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow2], columns=VALICOLS), ignore_index=True) # annotation values if n != "": rp = roi_base + "/value/" + n else: rp = roi_base + "/value" valrow3 = validate_xpath(subsubannsnode, rp, "urn:hl7-org:v3", "value", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n] = valrow3["VALUE"] else: ann["value"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) valrow3 = validate_xpath( subsubannsnode, rp, "urn:hl7-org:v3", "unit", new_validation_row(xml_filename, valgroup, "ANNSET_NOBEAT" "_ANNS"), failcat="WARNING") valrow3["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rp if valrow3["VALIOUT"] == "PASSED": if n != "": ann[n + "_unit"] = valrow3["VALUE"] else: ann["value_unit"] = valrow3["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow3], columns=VALICOLS), ignore_index=True) # annotations time encoding, lead and other info used by # value and supporting ROI for rel_path4 in ["../support/supportingROI/component/" "boundary", "../component/annotation/support/" "supportingROI/component/boundary"]: roinodes = subsubannsnode.xpath( rel_path4.replace('/', '/ns:'), namespaces={'ns': 'urn:hl7-org:v3'}) for roinode in roinodes: valrow4 = validate_xpath(roinode, "./code", "urn:hl7-org:v3", "code", new_validation_row( xml_filename, valgroup, "ANNSET_NOBEAT_ANNS"), failcat="WARNING") valrow4["XPATH"] = annsset_xmlnode_path + "/.." + \ codetype_path + "/" + rel_path4 if valrow4["VALIOUT"] == "PASSED": if valrow4["VALUE"] in ["TIME_ABSOLUTE", "TIME_RELATIVE"]: ann["timecode"] = valrow4["VALUE"] else: ann["lead"] = valrow4["VALUE"] if log_validation: valpd = valpd.append( pd.DataFrame([valrow4], columns=VALICOLS), ignore_index=True) aecgannset.anns.append(copy.deepcopy(ann)) anngrpid = anngrpid + 1 logger.info( f'{xml_filename},{zip_filename},' f'{valgroup} {anngrpid-anngrpid_from_beats} annotations groups' f' without an associated beat found') return aecgannset, valpd def parse_generalinfo(aecg_doc: etree._ElementTree, aecg: Aecg, log_validation: bool = False) -> Aecg: """Parses `aecg_doc` XML document and extracts general information This function parses the `aecg_doc` xml document searching for general information that includes in the returned `Aecg`: unique identifier (UUID), ECG date and time of collection (EGDTC), and device information. Args: aecg_doc (etree._ElementTree): aECG XML document aecg (Aecg): The aECG object to update log_validation (bool, optional): Indicates whether to maintain the validation results in `aecg.validatorResults`. Defaults to False. Returns: Aecg: `aecg` updated with the information found in the xml document. """ # ======================================= # UUID # ======================================= valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "root", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID found: {valrow["VALUE"]}') aecg.UUID = valrow["VALUE"] else: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'UUID not found') valrow = validate_xpath(aecg_doc, "./*[local-name() = \"id\"]", "", "extension", new_validation_row(aecg.filename, "GENERAL", "UUID")) if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if valrow["VALIOUT"] == "PASSED": logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension found: {valrow["VALUE"]}') aecg.UUID += valrow["VALUE"] logger.info( f'{aecg.filename},{aecg.zipContainer},' f'UUID updated to: {aecg.UUID}') else: logger.debug( f'{aecg.filename},{aecg.zipContainer},' f'UUID extension not found') # ======================================= # EGDTC # ======================================= valpd = pd.DataFrame() egdtc_found = False for n in ["low", "center", "high"]: valrow = validate_xpath(aecg_doc, "./*[local-name() = \"effectiveTime\"]/" "*[local-name() = \"" + n + "\"]", "", "value", new_validation_row(aecg.filename, "GENERAL", "EGDTC_" + n), "WARNING") if valrow["VALIOUT"] == "PASSED": egdtc_found = True logger.info( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC {n} found: {valrow["VALUE"]}') aecg.EGDTC[n] = valrow["VALUE"] if log_validation: valpd = valpd.append(pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) if not egdtc_found: logger.critical( f'{aecg.filename},{aecg.zipContainer},' f'EGDTC not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(valpd, ignore_index=True) # ======================================= # DEVICE # ======================================= # DEVICE = {"manufacturer": "", "model": "", "software": ""} valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturerOrganization/name", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_manufacturer"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer found: {tmp}') aecg.DEVICE["manufacturer"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE manufacturer not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "manufacturerModelName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_model"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model found: {tmp}') aecg.DEVICE["model"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE model not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append( pd.DataFrame([valrow], columns=VALICOLS), ignore_index=True) valrow = validate_xpath(aecg_doc, "./component/series/author/" "seriesAuthor/manufacturedSeriesDevice/" "softwareName", "urn:hl7-org:v3", "", new_validation_row(aecg.filename, "GENERAL", "DEVICE_software"), "WARNING") if valrow["VALIOUT"] == "PASSED": tmp = valrow["VALUE"].replace("\n", "|") logger.info( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software found: {tmp}') aecg.DEVICE["software"] = valrow["VALUE"] else: logger.warning( f'{aecg.filename},{aecg.zipContainer},' f'DEVICE software not found') if log_validation: aecg.validatorResults = aecg.validatorResults.append(
pd.DataFrame([valrow], columns=VALICOLS)
pandas.DataFrame
import pandas as pd import numpy as np class Stats(object): ''' Produces stats given a schedule ''' def __init__(self, games, agg_method, date_col, h_col, a_col, outcome_col, seg_vars = []): self.games = games self.agg_method = agg_method self.date_col = date_col self.h_col = h_col self.a_col = a_col self.outcome_col = outcome_col self.seg_vars = seg_vars # Inputs: number of past games, team id, date of current game # Output: list of most recent n games def get_last_n_games(self, n, team_id, curr_dt): #Filter to get past games games = self.games[self.games[self.date_col]<curr_dt] #Filters to get past home and away games a_games = games[games[self.a_col]==team_id] h_games = games[games[self.h_col] == team_id] all_games = a_games.append(h_games) all_games['temp_days'] = [(
pd.to_datetime(curr_dt)
pandas.to_datetime
# @author <NAME> (<EMAIL>) # @time 2021/5/31 9:40 # @desc [script description] """ tmc2gmns This script aims to transform tmc file into gmns format. Then after map-matching program of MapMatching4GMNS, the link file generated from tmc file is matched to the underlying network (here is gmns format of osm map). In the end, the link performance file of underlying network is generated with tmc file and the corresponding reading file. """ #!/usr/bin/python # coding:utf-8 import os import datetime import numpy as np import pandas as pd import os.path import MapMatching4GMNS '''step 1 Convert TMC Data into GMNS Format Convert TMC Data into GMNS Format ''' def create_folder(path): if not os.path.exists(path): os.makedirs(path) def Convert_TMC(tmc_path): '''build node_tmc.csv''' print('reading tmc data...') files= os.listdir(tmc_path) for file in files: if file[:18] == 'TMC_Identification': tmc = pd.read_csv(tmc_path + os.sep + file) break '''build node.csv''' print('converting tmc data into gmns format...') node_tmc = pd.DataFrame() node_tmc['name'] = None node_tmc['x_coord'] = None node_tmc['y_coord'] = None node_tmc['z_coord'] = None node_tmc['node_type'] = None node_tmc['ctrl_type'] = None node_tmc['zone_id'] = None node_tmc['parent_node_id'] = None node_tmc['geometry'] = None for i in range(0,len(tmc)-1): if tmc.loc[i+1,'road_order'] > tmc.loc[i,'road_order']: node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc'],\ 'x_coord': tmc.loc[i,'start_longitude'], \ 'y_coord': tmc.loc[i,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) +")"}, ignore_index=True) else: node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc'],\ 'x_coord': tmc.loc[i,'start_longitude'], \ 'y_coord': tmc.loc[i,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i,'tmc']+'END',\ 'x_coord': tmc.loc[i,'end_longitude'], \ 'y_coord': tmc.loc[i,'end_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_end',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i,'end_longitude'].astype(str) + " " + tmc.loc[i,'end_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i+1,'tmc'],\ 'x_coord': tmc.loc[i+1,'start_longitude'], \ 'y_coord': tmc.loc[i+1,'start_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_start',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i+1,'start_longitude'].astype(str) + " " + tmc.loc[i+1,'start_latitude'].astype(str) +")"}, ignore_index=True) node_tmc = node_tmc.append({'name': tmc.loc[i+1,'tmc']+'END',\ 'x_coord': tmc.loc[i+1,'end_longitude'], \ 'y_coord': tmc.loc[i+1,'end_latitude'],\ 'z_coord': None,\ 'node_type': 'tmc_end',\ 'ctrl_type': None,\ 'zone_id': None,\ 'parent_node_id': None,\ 'geometry': "POINT (" + tmc.loc[i+1,'end_longitude'].astype(str) + " " + tmc.loc[i+1,'end_latitude'].astype(str) +")"}, ignore_index=True) node_tmc.index.name = 'node_id' node_tmc.index += 100000001 #index from 0 node_tmc.to_csv(tmc_path + os.sep + '/node_tmc.csv') print('node_tmc.csv generated!') '''build link_tmc.csv''' link_tmc = pd.DataFrame() link_tmc['name'] = None link_tmc['corridor_id'] = None link_tmc['corridor_link_order'] = None link_tmc['from_node_id'] = None link_tmc['to_node_id'] = None link_tmc['directed'] = None link_tmc['geometry_id'] = None link_tmc['geometry'] = None link_tmc['dir_flag'] = None link_tmc['parent_link_id'] = None link_tmc['length'] = None link_tmc['grade'] = None link_tmc['facility_type'] = None link_tmc['capacity'] = None link_tmc['free_speed'] = None link_tmc['lanes'] = None for i in range(0,len(tmc)): link_tmc = link_tmc.append({'name': tmc.loc[i,'tmc'],\ 'corridor_id': tmc.loc[i,'road']+'_'+tmc.loc[i,'direction'],\ 'corridor_link_order' : tmc.loc[i,'road_order'],\ 'from_node_id': node_tmc[(node_tmc['x_coord']==tmc.loc[i,'start_longitude']) & (node_tmc['y_coord']==tmc.loc[i,'start_latitude'])].index.values[0], \ 'to_node_id': node_tmc[(node_tmc['x_coord']==tmc.loc[i,'end_longitude']) & (node_tmc['y_coord']==tmc.loc[i,'end_latitude'])].index.values[0],\ 'directed': 1,\ 'geometry_id': None,\ 'geometry': "LINESTRING (" + tmc.loc[i,'start_longitude'].astype(str) + " " + tmc.loc[i,'start_latitude'].astype(str) + "," +\ tmc.loc[i,'end_longitude'].astype(str) +" "+ tmc.loc[i,'end_latitude'].astype(str) + ")",\ 'dir_flag': 1,\ 'parent_link_id': None,\ 'length': tmc.loc[i,'miles'],\ 'grade': None,\ 'facility_type': 'interstate' if tmc.loc[i,'road'][0] == 'I'else None ,\ 'capacity':None,\ 'free_speed':None,\ 'lanes': None}, ignore_index=True) link_tmc.index.name = 'link_id' link_tmc.index += 100000001 link_tmc.to_csv(tmc_path + os.sep + '/link_tmc.csv') print('link_tmc.csv generated!') '''build link_performance_tmc.csv''' reading = pd.read_csv(tmc_path + os.sep + 'Reading_VA.csv') # reading = reading[pd.to_datetime(reading['measurement_tstamp'], format='%Y-%m-%d %H:%M:%S')<datetime.datetime.strptime('2015-04-01 02:00:00', '%Y-%m-%d %H:%M:%S')] reading = reading.loc[0:2000] link_performance_tmc = pd.DataFrame() link_performance_tmc['name'] = None link_performance_tmc['corridor_id'] = None link_performance_tmc['corridor_link_order'] = None link_performance_tmc['from_node_id'] = None link_performance_tmc['to_node_id'] = None link_performance_tmc['timestamp'] = None link_performance_tmc['volume'] = None link_performance_tmc['travel_time'] = None link_performance_tmc['speed'] = None link_performance_tmc['reference_speed'] = None link_performance_tmc['density'] = None link_performance_tmc['queue'] = None link_performance_tmc['notes'] = None gp = reading.groupby('measurement_tstamp') for key, form in gp: # print(key) for i in link_tmc.index: form_selected = form[form['_vatmc_code']==link_tmc['name'][i]] if len(form_selected)>0: # break link_performance_tmc = link_performance_tmc.append({'name': link_tmc['name'][i],\ 'corridor_id': link_tmc['corridor_id'][i],\ 'corridor_link_order' : link_tmc['corridor_link_order'][i],\ 'from_node_id': link_tmc.loc[i,'from_node_id'], \ 'to_node_id': link_tmc.loc[i,'to_node_id'], \ 'timestamp': form_selected['measurement_tstamp'].values[0][0:10]+'T'+form_selected['measurement_tstamp'].values[0][11:13]+':'+form_selected['measurement_tstamp'].values[0][14:16],\ 'volume': None,\ 'travel_time': link_tmc['length'][i]/form_selected['speed'].values[0],\ 'speed': form_selected['speed'].values[0],\ 'reference_speed': form_selected['reference_speed'].values[0],\ 'density': None,\ 'queue': None,\ 'notes': None }, ignore_index=True) else: link_performance_tmc = link_performance_tmc.append({'name': link_tmc['name'][i],\ 'corridor_id': link_tmc['corridor_id'][i],\ 'corridor_link_order' : link_tmc['corridor_link_order'][i],\ 'from_node_id': link_tmc.loc[i,'from_node_id'], \ 'to_node_id': link_tmc.loc[i,'to_node_id'], \ 'timestamp': None,\ 'volume': None,\ 'travel_time': None,\ 'speed': None,\ 'reference_speed': None,\ 'density': None,\ 'queue': None,\ 'notes': None }, ignore_index=True) link_performance_tmc.to_csv(tmc_path + os.sep +'/link_performance_tmc.csv',index = False) print('link_performance_tmc.csv generated!') '''build trace.csv''' '''trace_id is numeric''' trace =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from scipy.stats import ttest_ind, chisquare, f_oneway, contingency from scipy import stats from ..findings import TTestFindings, DependenceFindings, ChiSquaredFindings, TestResult, FindingsList, AnovaFindings import math import itertools def _anova(data, num_col, group_col, groups): group_samples = [] for i in groups: group_samples.append(data[data[group_col] == i][num_col]) test_result = f_oneway(*group_samples) effect_size = _compute_eta_squared(*group_samples) return test_result, effect_size def _compute_eta_squared(*args): # args refer to the samples for each all_data = np.asarray(list(itertools.chain(*args))) group_mean = [i.mean() for i in args] group_mean = np.array(group_mean) return group_mean.var() / all_data.var() def _t_test(data, num_col, group_col, group_1=None, group_2=None, **kwargs): if group_1 is None and group_2 is None: groups = data[group_col].value_counts() if len(groups) != 2: raise ValueError(f"Column {group_col} has more than 2 groups") else: group_1 = groups.index[0] group_2 = groups.index[1] elif not (group_1 is not None and group_2 is not None): raise ValueError("Please specify both group_1 and group_2") first_sample = data[data[group_col] == group_1][num_col] second_sample = data[data[group_col] == group_2][num_col] test_result = ttest_ind(a = first_sample, b = second_sample, **kwargs) effect_size = _compute_cohen_es(first_sample, second_sample) return test_result, effect_size def _compute_cohen_es(sample_1, sample_2): cohen_es = abs(sample_1.mean() - sample_2.mean()) / sample_1.std() return cohen_es def _compute_phi_es(chi2, n): return math.sqrt(chi2 / n) def _chi_squared(data, col_1, expected=None): # If expected is None, assuming it is about testing for equality. obs = data[col_1].value_counts().values test_result = chisquare(obs, expected) effect_size = _compute_phi_es(test_result.chisq, len(data[col_1])) return test_result, effect_size def _chi_squared_dependence(data, col_1, col_2, groups_1, groups_2, min_sample): if groups_1 is None: filtered, ignored = _filter_sparse_group(data, col_1, min_sample) if len(filtered) < 2: raise ValueError(f"Only one group for {col_1}") groups_1 = filtered if groups_2 is None: filtered, ignored = _filter_sparse_group(data, col_2, min_sample) if len(filtered) < 2: raise ValueError(f"Only one group for {col_2}") groups_2 = filtered group_1 = data[col_1] group_1 = group_1[group_1.isin([groups_1]).index] group_2 = data[col_2] group_2 = group_2[group_2.isin([groups_2]).index] vals, count = contingency.crosstab(group_1.values, group_2.values) test_result = contingency.chi2_contingency(count) test_result = TestResult(name='chi2 contigency', statistic=test_result[0], pvalue=test_result[1], dof=test_result[2], expected=test_result[3], ) effect_size = _compute_phi_es(test_result.statistic, len(data[col_1])) return test_result, effect_size def _compare_group(data, col_1, col_2, p_value=0.05, phi_es=0.2, min_sample=20): groups_1, ignored_1 = _filter_sparse_group(data, col_1, min_sample) groups_2, ignored_2 = _filter_sparse_group(data, col_2, min_sample) if len(groups_1) <= 1 or len(groups_2) <= 1: pass else: test_result, effect_size = _chi_squared_dependence(data, col_1, col_2, groups_1, groups_2, min_sample) if test_result.pvalue <= p_value and effect_size >= phi_es: return DependenceFindings(data=data, col_1=col_1, col_2=col_2, groups_1=groups_1, groups_2=groups_2, test_result=test_result ) return None def _compare_mean(data, num_col, group_col, *, cohen_es=0.2, eta=0.06, p_value=0.05, min_sample=20): groups, ignored = _filter_sparse_group(data, group_col, min_sample) if not ignored.empty: print(f"Ignoring groups {list(ignored)} when comparing {num_col} and {group_col}") if len(groups) == 1: print(f"Skipping comparing {num_col} and {group_col}, only one group available") elif len(groups) == 2: group_1 = groups[0] group_2 = groups[1] test_result, effect_size = _t_test(data, num_col, group_col, group_1, group_2) if test_result.pvalue <= p_value and effect_size >= cohen_es: return TTestFindings(data=data, group_col=group_col, num_col=num_col, group_1=group_1, group_2=group_2, test_result=test_result) else: test_result, effect_size = _anova(data, num_col, group_col, groups) if test_result.pvalue <= p_value and effect_size >= eta: return AnovaFindings(data=data, group_col=group_col, groups=groups, num_col=num_col, test_result=test_result ) return None def _filter_sparse_group(data, group_col, min_sample): group_count = data[group_col].value_counts() ignored = group_count[(group_count < min_sample)] result = group_count.drop(ignored.index) return result.index, ignored.index def _auto_detect(data, num_col, cat_col, cohen_es=0.2, eta=0.06, phi_es=0.2, p_value=0.05, min_sample=20, ignore_list=None): findings_list = [] ignore_list = [] if ignore_list is None else ignore_list # Compare mean for n_col, c_col in itertools.product(num_col, cat_col): # TODO: Check if this is inefficient. if ((n_col, c_col) in ignore_list) or ((c_col, n_col) in ignore_list): continue else: findings = _compare_mean(data, n_col, c_col, cohen_es=cohen_es, eta=eta, p_value=p_value, min_sample=min_sample) if findings is not None: findings_list.append(findings) # Compare dependency of two cat_col for col_1, col_2 in itertools.combinations(cat_col, r=2): # TODO: Check if this is inefficient. if ((col_1, col_2) in ignore_list) or ((col_2, col_1) in ignore_list): continue else: findings = _compare_group(data, col_1, col_2, p_value=p_value, phi_es=phi_es, min_sample=min_sample) if findings is not None: findings_list.append(findings) return FindingsList(findings_list) def _diff_group(data, group_col, num_col): df_group = data.groupby(group_col)[num_col].mean().T result = pd.DataFrame(index=df_group.index) for i in itertools.combinations(df_group.columns, 2): result[f"{i[0]} - {i[1]}"] = df_group[i[0]] - df_group[i[1]] return result def _diff(data, *args): # TODO: Check the len of each args sample. result = pd.DataFrame(index=pd.RangeIndex(len(args[0]))) for i in itertools.combinations(df_group.columns, 2): result[f"{i[0]} - {i[1]}"] = df_group[i[0]] - df_group[i[1]] return result def _t_test_group(data, group_col, num_col, **kwargs): test_result = dict() for i in itertools.combinations(data[group_col].value_counts().index, r=2): test_result[f"{i[0]} vs {i[1]}"] = ttest_ind(a = df[df[group_col] == i[0]][num_col], b = df[df[group_col] == i[1]][num_col], **kwargs) return test_result def _locate_outlier_zscore(data, columns, zscore_threshold, any=True, exclude=False): ''' Locate outliers from numerical columns. Arguments: data: pandas DataFrame columns: A list of column's names for checking outliers. Must be numerical columns zscore_threshold: Threshold for classifying outliers. any: If True, classify the data point as outlier if value from one of the column is a outlier. exclude: If True, return non-outliers. If False, return outliers. Returns pandas DataFrame. ''' mean = data[columns].mean(axis=0) std = data[columns].std(axis=0) lower_bound = (std * zscore_threshold - mean).rename("Lower_bound") upper_bound = (std * zscore_threshold + mean).rename("Upper_bound") outlier_range = pd.concat([lower_bound, upper_bound], axis=1) # TODO: Make this more efficient # The above workflow is equivalent to below, at 3 decimal points mask_include = np.abs(stats.zscore(data[columns])) > zscore_threshold mask_exclude = np.abs(stats.zscore(data[columns])) < zscore_threshold if any: if exclude: return data[mask_exclude.any(axis=1)] else: data = data[mask_include.any(axis=1)] outlier_field = pd.DataFrame(mask_include, columns=columns) outlier_field = outlier_field.apply(lambda x: x.replace(True, x.name).replace(False, "")) outlier_field = outlier_field.apply(lambda x: x.str.cat(sep=''), axis=1) outlier_field = outlier_field.replace("", np.nan).dropna() outlier_field.rename("Outlier_field", inplace=True) assert data.index.equals(outlier_field.index) return (pd.concat([data, outlier_field], axis=1), outlier_range) else: if exclude: return data[mask_exclude.all(axis=1)] else: data = data[mask_include.all(axis=1)] outlier_field = pd.DataFrame(mask_include, columns=columns) outlier_field = outlier_field.apply(lambda x: x.replace(True, x.name).replace(False, "")) outlier_field = outlier_field.apply(lambda x: x.str.cat(sep=''), axis=1) outlier_field = outlier_field.replace("", np.nan).dropna() outlier_field.rename("Outlier_field", inplace=True) assert data.index.equals(outlier_field.index) return (
pd.concat([data, outlier_field], axis=1)
pandas.concat
# #-- -- -- -- Merging DataFrames with pandas # # Used for Data Scientist Training Path # #FYI it's a compilation of how to work # #with different commands. # ### -------------------------------------------------------- # # # # ------>>>> Reading DataFrames from multiple files # Import pandas import pandas as pd # Read 'Bronze.csv' into a DataFrame: bronze bronze = pd.read_csv('Bronze.csv') # Read 'Silver.csv' into a DataFrame: silver silver = pd.read_csv('Silver.csv') # Read 'Gold.csv' into a DataFrame: gold gold = pd.read_csv('Gold.csv') # Print the first five rows of gold print(gold.head()) # ### -------------------------------------------------------- # # # # ------>>>> Reading DataFrames from multiple files in a loop # Import pandas import pandas as pd # Create the list of file names: filenames filenames = ['Gold.csv', 'Silver.csv', 'Bronze.csv'] # Create the list of three DataFrames: dataframes dataframes = [] for filename in filenames: dataframes.append(pd.read_csv(filename)) # Print top 5 rows of 1st DataFrame in dataframes print(dataframes[0].head()) # ### -------------------------------------------------------- # # # # ------>>>> Combining DataFrames from multiple data files # Import pandas import pandas as pd # Make a copy of gold: medals medals = gold.copy() # Create list of new column labels: new_labels new_labels = ['NOC', 'Country', 'Gold'] # Rename the columns of medals using new_labels medals.columns = new_labels # Add columns 'Silver' & 'Bronze' to medals medals['Silver'] = silver['Total'] medals['Bronze'] = bronze['Total'] # Print the head of medals print(medals.head()) # ### -------------------------------------------------------- # # # # ------>>>> Sorting DataFrame with the Index & columns # Import pandas import pandas as pd # Read 'monthly_max_temp.csv' into a DataFrame: weather1 weather1 = pd.read_csv('monthly_max_temp.csv', index_col='Month') # Print the head of weather1 print(weather1.head()) # Sort the index of weather1 in alphabetical order: weather2 weather2 = weather1.sort_index() # Print the head of weather2 print(weather2.head()) # Sort the index of weather1 in reverse alphabetical order: weather3 weather3 = weather1.sort_index(ascending=False) # Print the head of weather3 print(weather3.head()) # Sort weather1 numerically using the values of 'Max TemperatureF': weather4 weather4 = weather1.sort_values('Max TemperatureF') # Print the head of weather4 print(weather4.head()) # ### -------------------------------------------------------- # # # # ------>>>> Reindexing DataFrame from a list # Import pandas import pandas as pd # Reindex weather1 using the list year: weather2 weather2 = weather1.reindex(year) # Print weather2 print(weather2) # Reindex weather1 using the list year with forward-fill: weather3 weather3 = weather1.reindex(year).ffill() # Print weather3 print(weather3) # ### -------------------------------------------------------- # # # # ------>>>> Reindexing using another DataFrame Index # Import pandas import pandas as pd # Reindex names_1981 with index of names_1881: common_names common_names = names_1981.reindex(names_1881.index) # Print shape of common_names print(common_names.shape) # Drop rows with null counts: common_names common_names = common_names.dropna() # Print shape of new common_names print(common_names.shape) # ### -------------------------------------------------------- # # # # ------>>>>Adding unaligned DataFrames # The DataFrames january and february, which have # been printed in the IPython Shell, represent the # sales a company made in the corresponding months. # The Indexes in both DataFrames are called Company, # identifying which company bought that quantity of # units. The column Units is the number of units sold. # If you were to add these two DataFrames by # executing the command total = january + february, # how many rows would the resulting DataFrame have? # Try this in the IPython Shell and find out for yourself. total = january + february total # R/ 6 rows. # ### -------------------------------------------------------- # # # # ------>>>> Broadcasting in arithmetic formulas # Extract selected columns from weather as new DataFrame: temps_f temps_f = weather[['Min TemperatureF', 'Mean TemperatureF', 'Max TemperatureF']] # Convert temps_f to celsius: temps_c temps_c = (temps_f - 32) * 5/9 # Rename 'F' in column names with 'C': temps_c.columns temps_c.columns = temps_c.columns.str.replace('F', 'C') # Print first 5 rows of temps_c print(temps_c.head()) # ### -------------------------------------------------------- # # # # ------>>>> Computing percentage growth of GDP import pandas as pd # Read 'GDP.csv' into a DataFrame: gdp gdp = pd.read_csv('GDP.csv', parse_dates=True, index_col='DATE') # Slice all the gdp data from 2008 onward: post2008 post2008 = gdp.loc['2008':] # Print the last 8 rows of post2008 print(post2008.tail(8)) # Resample post2008 by year, keeping last(): yearly yearly = post2008.resample('A').last() # Print yearly print(yearly) # Compute percentage growth of yearly: yearly['growth'] yearly['growth'] = yearly.pct_change() * 100 # Print yearly again print(yearly) # ### -------------------------------------------------------- # # # # ------>>>> Converting currency of stocks # Import pandas import pandas as pd # Read 'sp500.csv' into a DataFrame: sp500 sp500 =
pd.read_csv('sp500.csv', parse_dates=True, index_col='Date')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; version 2 # of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA # 02110-1301, USA. # pylint: disable=invalid-name,line-too-long,too-many-locals,consider-using-sys-exit import operator import re import time import argparse import sys import os import itertools import pandas as pd import pickle import sklearn import sklearn.svm import sklearn.tree from sklearn.preprocessing import StandardScaler import numpy as np import sklearn.metrics import matplotlib.pyplot as plt import sklearn.ensemble import sklearn.linear_model import helper import xgboost as xgb import ast import functools import crystalcodegen as ccg try: import mlflow except ImportError: mlflow_avail = False else: mlflow_avail = True ver = sklearn.__version__.split(".") if int(ver[1]) < 20: from sklearn.cross_validation import train_test_split else: from sklearn.model_selection import train_test_split MISSING=np.nan def check_long_short(): if options.tier is None: print("ERROR: You must give option '--tier' as short/long/forever") assert False exit(-1) class Learner: def __init__(self, df, tier): self.df = df self.tier = tier def count_bad_ok(self, df): files = df[["x.class", "rdb0.dump_no"]].groupby("x.class").count() if files["rdb0.dump_no"].index[0] == 0: bad = files["rdb0.dump_no"][0] ok = files["rdb0.dump_no"][1] else: bad = files["rdb0.dump_no"][1] ok = files["rdb0.dump_no"][0] assert bad > 0, "No need to train, data only contains BAD(0)" assert ok > 0, "No need to train, data only contains OK(1)" return bad, ok def filter_percentile(self, df, features, perc): low = df.quantile(perc, axis=0) high = df.quantile(1.0-perc, axis=0) df2 = df.copy() for i in features: df2 = df2[(df2[i] >= low[i]) & (df2[i] <= high[i])] print("Filtered to %f on %-30s, shape now: %s" % (perc, i, df2.shape)) print("Original size:", df.shape) print("New size:", df2.shape) return df2 def filtered_conf_matrixes(self, dump_no, data, features, to_predict, clf, toprint, highlight=False): # filter test data if dump_no is not None: print("\nCalculating confusion matrix -- dump_no == %s" % dump_no) toprint += " dump no %d" % dump_no data2 = data[data["rdb0.dump_no"] == dump_no] else: print("\nCalculating confusion matrix -- ALL dump_no") data2 = data if False: return helper.conf_matrixes(data2, features, to_predict, clf, toprint, highlight=highlight) else: return helper.calc_regression_error(data2, features, to_predict, clf, toprint, highlight=highlight) @staticmethod def fix_feat_name(x): x = re.sub(r"dump_no", r"dump_no", x) x = re.sub(r"^cl_", r"", x) x = re.sub(r"^rdb0_", r"", x) if x == "dump_no": pass elif x == "last_touched_diff": pass elif x == "act_ranking_top_10": pass elif x == "act_ranking_rel": pass elif x == "time_inside_solver": pass elif x == "size": x = "cl->" + x + "()" else: x = "cl->stats." + x return x def importance_XGB(self, clf, features): impdf = [] #print("clf:", clf) #print("clf-booster:", clf.feature_importances_) for i in range(len(clf.feature_importances_)): score = clf.feature_importances_[i] ft = features[i] impdf.append({'feature': ft, 'importance': score}) impdf = pd.DataFrame(impdf) impdf = impdf.sort_values(by='importance', ascending=False).reset_index(drop=True) impdf['importance'] /= impdf['importance'].sum() pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
pandas.set_option
import numpy as np import requests import json import pandas as pd import warnings from ._utils import convert_to_entrez, get_top_genes, check_data, check_params class ToppFunAnalysis(object): """ Provide tools for running Toppfun enrichment analysis for different metagenes. Parameters ---------- data : If ``pre_selected = False`` : pandas.DataFrame , shape (n_metagenes , n_genes) or pandas.Series, shape (n_genes) The column names (or the index keys for a serie) should be valid gene IDs. If ``pre_selected = True`` : pandas.Series , shape (n_metagenes) For each metagene the serie contains a list of the IDs of the extreme expressed genes. input_type : string, optional. Type of input gene IDs. Common types are 'entrezgene' , 'symbol' , 'uniprot' , 'ensembl.gene' , 'refseq'... For the complete list of available types, see https://docs.mygene.info/en/latest/doc/query_service.html#available_fields . If ``input_type is None``, conversion will not be possible and input IDs will be assumed to be Entrez IDs. The default is None. pre_selected : boolean , optional. Indicate whether the extreme genes have already been selected (see above). The default is False. threshold : numeric or array-like of two numerics , optional See sica.annotate._utils.get_top_genes. The default is 3. method : {'quantile' , 'std'} , optional See sica.annotate._utils.get_top_genes. The default is 'std'. tail : {'left' , 'right' , 'both' , 'heaviest'} , optional See sica.annotate._utils.get_top_genes. The default is 'heaviest'. Attributes ---------- top_genes_ : pandas.DataFrame, shape (n_metagenes , 3) For each metagene the 'inputs' column contains a list of the IDs of the extreme expressed genes. References ---------- For more details, please refer to the ToppGene API (see https://toppgene.cchmc.org/API/enrich. ). Examples -------- >>> from sica.annotate import toppfun >>> annotations = toppfun.ToppFunAnalysis(data = Metagenes) >>> metagene7_annot = annotations.get_analysis(metagene = 'metagene 7') >>> metagene7_annot.head() """ def __init__( self, data, input_type=None, pre_selected=False, threshold=3, method="std", tail="heaviest", ): # Check data check_data(data, pre_selected) self.input_type = input_type if self.input_type is None: warnings.warn( "If input_type is None the conversion of input IDs to Entrez ids will not be possible. ToppFunAnalysis will assume that the inputs are already Entrez IDs." ) # Initialization of selt.top_genes_ attribute self.top_genes_ = pd.DataFrame( {"inputs": None, "entrezgene": None, "notfound": None}, index=data.index ) if pre_selected: self.top_genes_["inputs"] = data.copy() else: threshold = check_params(threshold, method, tail) self.top_genes_["inputs"] = data.apply( get_top_genes, threshold=threshold, method=method, tail=tail, axis=1 ) def convert_metagenes(self, idx): """ Convert the IDs of the most expressed genes contained in ``top_genes_``. Parameters ---------- idx : {"all" , string , list of strings} If ``idx = "all"`` all the metagenes will be converted. Otherwise, only the metagenes associated with ``idx`` will be converted. In that case, ``idx`` must correspond to valid indexes of the input data. Returns ------- None """ if self.input_type is None: raise ValueError("Conversion is not possible with self.input_type = None.") # Define the function that will be applied to the rows of self.top_genes_ dataframe def fun(row): if row["entrezgene"] is None: return convert_to_entrez(row["inputs"], self.input_type)[:2] else: return row["entrezgene"], row["notfound"] # Apply func to the rows of self.top_genes_ associated with the metagenes parameter if idx == "all": warnings.warn( "idx = 'all' : this operation can take quite some time depending on the number of metagenes and the number of most expressed genes." ) self.top_genes_[["entrezgene", "notfound"]] = self.top_genes_.apply( fun, axis=1, result_type="expand" ) elif isinstance(idx, list): warnings.warn( "metagenes is a list : this operation can take quite some time depending on the number of metagenes and the number of most expressed genes." ) self.top_genes_.loc[idx, ["entrezgene", "notfound"]] = ( self.top_genes_.loc[idx].apply(fun, axis=1, result_type="expand") ).values else: self.top_genes_.loc[idx, ["entrezgene", "notfound"]] = np.array( fun(self.top_genes_.loc[idx]), dtype="object" ) return def get_analysis( self, metagene, type_list=None, p_value=0.05, min_entities=10, max_entities=500, maxres=10, correct="FDR", ): """ Return the ToppFun enrichment analysis of a given metagene. Parameters ---------- metagene : object It must correspond to a valid index of the input data. type_list: list of strings, optional List of features to perform enrichment tests. If None, all the available features will be used (see sica.annotate.toppfun._get_analysis). The default is None. p_value: float in (0 , 1), optional P-value maximal threshold to accept enrichments. The default is 0.05 min_entities: int, optional Minimal number of gene hits to accept in feature categories. The default is 10. max_entities: int, optional Maximal number of gene hits to accept in feature categories. The default is 500. maxres: int, optional Number of top enrichments to show for each feature. The default is 10. correct: str {'none', 'FDR', 'Bonferroni'}, optional P-value correction methods. FDR refers to the Benjamini and Hochberg method. The default is 'FDR'. Returns ------- pandas.DataFrame Results of the Toppfun enrichment analysis for the given metagene. """ if self.input_type is None: entrez_dict = { "Genes": [int(id) for id in self.top_genes_.loc[metagene, "inputs"]] } else: self.convert_metagenes(idx=metagene) entrez_dict = { "Genes": [int(id) for id in self.top_genes_.loc[metagene, "entrezgene"]] } results = [] annotations = _get_analysis( entrez_dict, type_list, p_value, min_entities, max_entities, maxres, correct ).json()["Annotations"] for element in annotations: gene_symbol_list = [gene["Symbol"] for gene in element["Genes"]] element["Gene_Symbol"] = ",".join(gene_symbol_list) element.pop("Genes", None) results.append(element) return
pd.DataFrame(results)
pandas.DataFrame
# -*- coding: utf-8 -*- """Structures data in ML-friendly ways.""" import re import copy import datetime as dt import random import numpy as np import pandas as pd from sklearn.preprocessing import StandardScaler from avaml import Error, setenvironment as se, _NONE, CSV_VERSION, REGIONS, merge, REGION_ELEV from avaml.aggregatedata.download import _get_varsom_obs, _get_weather_obs, _get_regobs_obs, REG_ENG, PROBLEMS from avaml.aggregatedata.time_parameters import to_time_parameters from varsomdata import getforecastapi as gf from varsomdata import getmisc as gm __author__ = 'arwi' LABEL_PROBLEM_PRIMARY = { "ext_attr": [ "avalanche_problem_type_id", "avalanche_problem_type_name", "avalanche_type_id", "avalanche_type_name", "avalanche_ext_id", "avalanche_ext_name" ], "values": { _NONE: [0, "", 0, "", 0, ""], "new-loose": [3, "Nysnø (løssnøskred)", 20, "Løssnøskred", 10, "Tørre løssnøskred"], "wet-loose": [5, "Våt snø (løssnøskred)", 20, "Løssnøskred", 15, "Våte løssnøskred"], "new-slab": [7, "Nysnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "drift-slab": [10, "Fokksnø (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "pwl-slab": [30, "Vedvarende svakt lag (flakskred)", 10, "Flakskred", 20, "Tørre flakskred"], "wet-slab": [45, "Våt snø (flakskred)", 10, "Flakskred", 25, "Våte flakskred"], "glide": [50, "Glideskred", 10, "Flakskred", 25, "Våte flakskred"] } } LABEL_PROBLEM = { "cause": { "ext_attr": ["aval_cause_id", "aval_cause_name"], "values": { "0": [0, ""], "new-snow": [10, "Nedføyket svakt lag med nysnø"], "hoar": [11, "Nedsnødd eller nedføyket overflaterim"], "facet": [13, "Nedsnødd eller nedføyket kantkornet snø"], "crust": [14, "Dårlig binding mellom glatt skare og overliggende snø"], "snowdrift": [15, "Dårlig binding mellom lag i fokksnøen"], "ground-facet": [16, "Kantkornet snø ved bakken"], "crust-above-facet": [18, "Kantkornet snø over skarelag"], "crust-below-facet": [19, "Kantkornet snø under skarelag"], "ground-water": [20, "Vann ved bakken/smelting fra bakken"], "water-layers": [22, "Opphopning av vann i/over lag i snødekket"], "loose": [24, "Ubunden snø"] } }, "dsize": { "ext_attr": ["destructive_size_ext_id", "destructive_size_ext_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "1 - Små"], '2': [2, "2 - Middels"], '3': [3, "3 - Store"], '4': [4, "4 - Svært store"], '5': [5, "5 - Ekstremt store"] } }, "prob": { "ext_attr": ["aval_probability_id", "aval_probability_name"], "values": { '0': [0, "Ikke gitt"], '2': [2, "Lite sannsynlig"], '3': [3, "Mulig"], '5': [5, "Sannsynlig"], } }, "trig": { "ext_attr": ["aval_trigger_simple_id", "aval_trigger_simple_name"], "values": { '0': [0, "Ikke gitt"], '10': [10, "Stor tilleggsbelastning"], '21': [21, "Liten tilleggsbelastning"], '22': [22, "Naturlig utløst"] } }, "dist": { "ext_attr": ["aval_distribution_id", "aval_distribution_name"], "values": { '0': [0, "Ikke gitt"], '1': [1, "Få bratte heng"], '2': [2, "Noen bratte heng"], '3': [3, "Mange bratte heng"], '4': [4, "De fleste bratte heng"] } }, "lev_fill": { "ext_attr": ["exposed_height_fill"], "values": { '0': [0], '1': [1], '2': [2], '3': [3], '4': [4], } } } LABEL_PROBLEM_MULTI = { "aspect": { "ext_attr": "valid_expositions", } } LABEL_PROBLEM_REAL = { "lev_max": { "ext_attr": "exposed_height_1", }, "lev_min": { "ext_attr": "exposed_height_2", } } LABEL_GLOBAL = { "danger_level": { "ext_attr": ["danger_level", "danger_level_name"], "values": { '1': [1, "1 liten"], '2': [2, "2 Moderat"], '3': [3, "3 Betydelig"], '4': [4, "4 Stor"], '5': [5, "5 Meget stor"] } }, "emergency_warning": { "ext_attr": ["emergency_warning"], "values": { "Ikke gitt": ["Ikke gitt"], "Naturlig utløste skred": ["Naturlig utløste skred"], } } } COMPETENCE = [0, 110, 115, 120, 130, 150] class ForecastDataset: def __init__(self, regobs_types, seasons=('2017-18', '2018-19', '2019-20'), max_file_age=23): """ Object contains aggregated data used to generate labeled datasets. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param seasons: Tuple/list of string representations of avalanche seasons to fetch. """ self.seasons = sorted(list(set(seasons))) self.date = None self.regobs_types = regobs_types self.weather = {} self.regobs = {} self.varsom = {} self.labels = {} self.use_label = True for season in seasons: varsom, labels = _get_varsom_obs(year=season, max_file_age=max_file_age) self.varsom = merge(self.varsom, varsom) self.labels = merge(self.labels, labels) regobs = _get_regobs_obs(season, regobs_types, max_file_age=max_file_age) self.regobs = merge(self.regobs, regobs) weather = _get_weather_obs(season, max_file_age=max_file_age) self.weather = merge(self.weather, weather) @staticmethod def date(regobs_types, date: dt.date, days, use_label=True): """ Create a dataset containing just a given day's data. :param regobs_types: Tuple/list of string names for RegObs observation types to fetch. :param date: Date to fetch and create dataset for. :param days: How many days to fetch before date. This will be max for .label()'s days parameter. """ self = ForecastDataset(regobs_types, []) self.date = date self.use_label = use_label self.regobs = _get_regobs_obs(None, regobs_types, date=date, days=days) self.varsom, labels = _get_varsom_obs(None, date=date, days=days-1 if days > 0 else 1) self.weather = _get_weather_obs(None, date=date, days=days-2 if days > 2 else 1) self.labels = {} for label_keys, label in labels.items(): if label_keys not in self.labels: self.labels[label_keys] = {} for (label_date, label_region), label_data in label.items(): if label_date == date.isoformat(): subkey = (label_date, label_region) self.labels[label_keys][subkey] = label_data return self def label(self, days, with_varsom=True): """Creates a LabeledData containing relevant label and features formatted either in a flat structure or as a time series. :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param with_varsom: Whether to include previous avalanche bulletins into the indata. :return: LabeledData """ table = {} row_weight = {} df = None df_weight = None df_label = pd.DataFrame(self.labels, dtype="U") days_w = {0: 1, 1: 1, 2: 1}.get(days, days - 1) days_v = {0: 1, 1: 2, 2: 2}.get(days, days) days_r = days + 1 varsom_index = pd.DataFrame(self.varsom).index weather_index = pd.DataFrame(self.weather).index if len(df_label.index) == 0 and self.use_label: raise NoBulletinWithinRangeError() if self.date and not self.use_label: season = gm.get_season_from_date(self.date) regions = gm.get_forecast_regions(year=season, get_b_regions=True) date_region = [(self.date.isoformat(), region) for region in regions] else: date_region = df_label.index for monotonic_idx, entry_idx in enumerate(date_region): date, region_id = dt.date.fromisoformat(entry_idx[0]), entry_idx[1] def prev_key(day_dist): return (date - dt.timedelta(days=day_dist)).isoformat(), region_id # Just check that we can use this entry. try: if with_varsom: for n in range(1, days_v): if prev_key(n) not in varsom_index: raise KeyError() for n in range(0, days_w): if prev_key(n) not in weather_index: raise KeyError() add_row = True # We don't check for RegObs as it is more of the good to have type of data except KeyError: add_row = False if add_row: row = {} for region in REGIONS: row[(f"region_id_{region}", "0")] = float(region == region_id) if with_varsom: for column in self.varsom.keys(): for n in range(1, days_v): # We try/except an extra time since single dates may run without a forecast. row[(column, str(n))] = self.varsom[column][prev_key(n)] for column in self.weather.keys(): for n in range(0, days_w): try: row[(column, str(n))] = self.weather[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 for column in self.regobs.keys(): for n in range(2, days_r): try: row[(column, str(n))] = self.regobs[column][prev_key(n)] except KeyError: row[(column, str(n))] = 0 try: weight_sum = self.regobs['accuracy'][prev_key(0)] if weight_sum < 0: row_weight[entry_idx] = 1 / 2 elif weight_sum == 0: row_weight[entry_idx] = 1 elif weight_sum > 0: row_weight[entry_idx] = 2 except KeyError: row_weight[entry_idx] = 1 # Some restructuring to make DataFrame parse the dict correctly for key in row.keys(): if key not in table: table[key] = {} table[key][entry_idx] = row[key] # Build DataFrame iteratively to preserve system memory (floats in dicts are apparently expensive). if (monotonic_idx > 0 and monotonic_idx % 1000 == 0) or monotonic_idx == len(date_region) - 1: df_new = pd.DataFrame(table, dtype=np.float32).fillna(0) df_weight_new = pd.Series(row_weight) df = df_new if df is None else pd.concat([df, df_new]) df_weight = df_weight_new if df is None else pd.concat([df_weight, df_weight_new]) table = {} row_weight = {} if df is None or len(df.index) == 0: raise NoDataFoundError() if self.use_label: df_label = df_label.loc[df.index] df_label.sort_index(axis=0, inplace=True) df_label.sort_index(axis=1, inplace=True) df.sort_index(axis=0, inplace=True) df_weight.sort_index(axis=0, inplace=True) else: df_label = None return LabeledData(df, df_label, df_weight, days, self.regobs_types, with_varsom, self.seasons) class LabeledData: is_normalized = False with_regions = True elevation_class = (False, False) scaler = StandardScaler() def __init__(self, data, label, row_weight, days, regobs_types, with_varsom, seasons=False): """Holds labels and features. :param data: A DataFrame containing the features of the dataset. :param label: DataFrame of labels. :param row_weight: Series containing row weights :param days: How far back in time values should data be included. If 0, only weather data for the forecast day is evaluated. If 1, day 0 is used for weather, 1 for Varsom. If 2, day 0 is used for weather, 1 for Varsom, 2 for RegObs. If 3, days 0-1 is used for weather, 1-2 for Varsom, 2-3 for RegObs. If 5, days 0-3 is used for weather, 1-4 for Varsom, 2-5 for RegObs. The reason for this is to make sure that each kind of data contain the same number of data points, if we want to use some time series frameworks that are picky about such things. :param regobs_types: A tuple/list of strings of types of observations to fetch from RegObs., e.g., `("Faretegn")`. :param with_varsom: Whether to include previous avalanche bulletins into the indata. """ self.data = data self.row_weight = row_weight if label is not None: self.label = label self.label = self.label.replace(_NONE, 0) self.label = self.label.replace(np.nan, 0) try: self.label['CLASS', _NONE] = self.label['CLASS', _NONE].replace(0, _NONE).values except KeyError: pass try: self.label['MULTI'] = self.label['MULTI'].replace(0, "0").values except KeyError: pass try: self.label['REAL'] = self.label['REAL'].astype(np.float) except KeyError: pass self.pred = label.copy() for col in self.pred.columns: self.pred[col].values[:] = 0 try: self.pred['CLASS', _NONE] = _NONE except KeyError: pass try: self.pred['MULTI'] = "0" except KeyError: pass else: self.label = None self.pred = None self.days = days self.with_varsom = with_varsom self.regobs_types = regobs_types if self.data is not None: self.scaler.fit(self.data.values) self.single = not seasons self.seasons = sorted(list(set(seasons if seasons else []))) def normalize(self, by=None): """Normalize the data feature-wise using MinMax. :return: Normalized copy of LabeledData """ by = by if by is not None else self if not self.is_normalized: ld = self.copy() data = by.scaler.transform(self.data.values) ld.data = pd.DataFrame(data=data, index=self.data.index, columns=self.data.columns) ld.is_normalized = by return ld elif self.is_normalized != by: return self.denormalize().normalize(by=by) else: return self.copy() def denormalize(self): """Denormalize the data feature-wise using MinMax. :return: Denormalized copy of LabeledData """ if self.is_normalized: ld = self.copy() data = self.is_normalized.scaler.inverse_transform(self.data.values) ld.data = pd.DataFrame(data=data, index=self.data.index, columns=self.data.columns) ld.is_normalized = False return ld else: return self.copy() def drop_regions(self): """Remove regions from input data""" if self.with_regions: ld = self.copy() region_columns = list(filter(lambda x: re.match(r'^region_id', x[0]), ld.data.columns)) ld.data.drop(region_columns, axis=1, inplace=True) ld.with_regions = False ld.scaler.fit(ld.data.values) return ld else: return self.copy() def stretch_temperatures(self): """Stretch out temperatures near zero""" ld = self.copy() if self.data is not None: temp_cols = [bool(re.match(r"^temp_(max|min)$", title)) for title in ld.data.columns.get_level_values(0)] ld.data.loc[:, temp_cols] = np.sign(ld.data.loc[:, temp_cols]) * np.sqrt(np.abs(ld.data.loc[:, temp_cols])) ld.scaler.fit(ld.data.values) return ld def problem_graph(self): label = pd.Series(self.label["CLASS", _NONE, "problem_1"], name="label") pred1 = pd.Series(self.pred["CLASS", _NONE, "problem_1"], name="problem_1") pred2 = pd.Series(self.pred["CLASS", _NONE, "problem_2"], name="problem_2") groups = pd.concat([label, pred1, pred2], axis=1).groupby(["label", "problem_1"], dropna=False) count = groups.count()["problem_2"].rename("count") p2 = groups["problem_2"].apply(lambda x: pd.Series.mode(x)[0]).replace(0, np.nan) return pd.concat([count, p2], axis=1) def statham(self): """Make a danger level in the same manner as Statham et al., 2018.""" if self.pred is None: raise NotPredictedError label = self.label[("CLASS", _NONE, "danger_level")].apply(np.int) pred = self.pred[("CLASS", _NONE, "danger_level")].apply(np.int) ones = pd.Series(np.ones(pred.shape), index=pred.index) cols = ["label", "diff", "n"] df = pd.DataFrame(pd.concat([label, label - pred, ones], axis=1).values, columns=cols) bias = df.groupby(cols[:-1]).count().unstack().droplevel(0, axis=1) n = df.groupby(cols[0]).count()["n"] share = bias.divide(n, axis=0) return pd.concat([n, share], axis=1) def adam(self): if self.pred is None: raise NotPredictedError touch = pd.DataFrame({ 1: {(2, 10): "A", (3, 10): "A", (3, 21): "B", (5, 21): "B", (3, 22): "B", (5, 22): "B"}, 2: {(2, 10): "A", (3, 10): "B", (3, 21): "C", (5, 21): "D", (3, 22): "C", (5, 22): "D"}, 3: {(2, 10): "B", (3, 10): "C", (3, 21): "D", (5, 21): "E", (3, 22): "D", (5, 22): "E"}, 4: {(2, 10): "B", (3, 10): "C", (3, 21): "D", (5, 21): "E", (3, 22): "D", (5, 22): "E"} }) danger = pd.DataFrame({ 1: {"A": 1, "B": 1, "C": 1, "D": 2, "E": 3}, 2: {"A": 1, "B": 2, "C": 2, "D": 3, "E": 4}, 3: {"A": 2, "B": 2, "C": 3, "D": 3, "E": 4}, 4: {"A": 2, "B": 3, "C": 4, "D": 4, "E": 5}, 5: {"A": 2, "B": 3, "C": 4, "D": 4, "E": 5} }) def get_danger(series): p1 = series["CLASS", _NONE, "problem_1"] p2 = series["CLASS", _NONE, "problem_2"] p3 = series["CLASS", _NONE, "problem_2"] dl = ("CLASS", _NONE, "danger_level") ew = ("CLASS", _NONE, "emergency_warning") if p1 == _NONE: series[dl] = "1" series[ew] = "Ikke gitt" else: p1 = series["CLASS", p1][["prob", "trig", "dist", "dsize"]].apply(np.int) try: dl1 = str(danger.loc[touch.loc[(p1["prob"], p1["trig"]), p1["dist"]], p1["dsize"]]) except KeyError: dl1 = 0 if p2 != _NONE: p2 = series["CLASS", p2][["prob", "trig", "dist", "dsize"]].apply(np.int) try: dl1 = str(danger.loc[touch.loc[(p1["prob"], p1["trig"]), p1["dist"]], p1["dsize"]]) except KeyError: series[dl] = "2" series[ew] = "Ikke gitt" try: if p1["trig"] == 22 and p1["dsize"] >= 3: series[ew] = "Naturlig utløste skred" except KeyError: pass return series ld = self.copy() ld.pred = ld.pred.apply(get_danger, axis=1) return ld def to_elev_class(self, exclude_label=False): """Convert all elevations to classes""" if self.elevation_class == (True, exclude_label): return self.copy() elif self.elevation_class == (True, not exclude_label): return self.from_elev_class().to_elev_class(exclude_label) MAX_ELEV = 2500 def round_min(series): region = int(series.name[1]) elev = float(series.values[0]) tl = REGION_ELEV[region][0] return 0 if abs(elev - 0) <= abs(elev - tl) else 1 def round_max(series): region = int(series.name[1]) elev = float(series.values[0]) tl = REGION_ELEV[region][1] return 0 if abs(elev - MAX_ELEV) <= abs(elev - tl) else 1 def convert_label(df): problems = df.columns.get_level_values(1).unique().to_series().replace(_NONE, np.nan).dropna() for problem in problems: df["CLASS", problem, "lev_min"] = df[[("REAL", problem, "lev_min")]].apply(round_min, axis=1).apply(str) df["CLASS", problem, "lev_max"] = df[[("REAL", problem, "lev_max")]].apply(round_max, axis=1).apply(str) df.drop([ ("CLASS", problem, "lev_fill"), ("REAL", problem, "lev_min"), ("REAL", problem, "lev_max") ], axis=1, inplace=True) df.sort_index(inplace=True, axis=1) def convert_data(df): prefixes = set(map(lambda y: (y[0][:-7], y[1]), filter(lambda x: re.search(r"lev_fill", x[0]), df.columns))) for prefix in prefixes: df[f"{prefix[0]}_min", prefix[1]] = df[[(f"{prefix[0]}_min", prefix[1])]].apply(round_min, axis=1) df[f"{prefix[0]}_max", prefix[1]] = df[[(f"{prefix[0]}_max", prefix[1])]].apply(round_max, axis=1) df.drop([ (f"{prefix[0]}_fill_1", prefix[1]), (f"{prefix[0]}_fill_2", prefix[1]), (f"{prefix[0]}_fill_3", prefix[1]), (f"{prefix[0]}_fill_4", prefix[1]), ], axis=1, inplace=True) range_ld = self.copy().denormalize() range_ld = range_ld.to_elevation_fmt_4(exclude_label) if self.label is not None and not exclude_label: convert_label(range_ld.label) if self.pred is not None: convert_label(range_ld.pred) if self.data is not None: convert_data(range_ld.data) range_ld.scaler.fit(range_ld.data) range_ld.elevation_class = (True, exclude_label) if self.is_normalized: return range_ld.normalize() else: return range_ld def from_elev_class(self): """Convert all elevation classes to elevations""" if not self.elevation_class[0]: return self.copy() exclude_label = self.elevation_class[1] MAX_ELEV = 2500 def find_min(series): region = int(series.name[1]) is_middle = bool(float(series.values[0])) tl = REGION_ELEV[region][0] return tl if is_middle else 0 def find_max(series): region = int(series.name[1]) is_middle = bool(float(series.values[0])) tl = REGION_ELEV[region][1] return tl if is_middle else MAX_ELEV def convert_label(df): problems = df.columns.get_level_values(1).unique().to_series().replace(_NONE, np.nan).dropna() for problem in problems: df["REAL", problem, "lev_min"] = df[[("CLASS", problem, "lev_min")]].apply(find_min, axis=1).apply(str) df["REAL", problem, "lev_max"] = df[[("CLASS", problem, "lev_max")]].apply(find_max, axis=1).apply(str) df["CLASS", problem, "lev_fill"] = "4" df.drop([ ("CLASS", problem, "lev_min"), ("CLASS", problem, "lev_max"), ], axis=1, inplace=True) df.sort_index(inplace=True, axis=1) def convert_data(df): prefixes = set(map(lambda y: (y[0][:-7], y[1]), filter(lambda x: re.search(r"lev_fill", x[0]), df.columns))) for prefix in prefixes: df[f"{prefix[0]}_min", prefix[1]] = df[[(f"{prefix[0]}_min", prefix[1])]].apply(find_min, axis=1) df[f"{prefix[0]}_max", prefix[1]] = df[[(f"{prefix[0]}_max", prefix[1])]].apply(find_max, axis=1) df[f"{prefix[0]}_fill_1", prefix[1]] = 0 df[f"{prefix[0]}_fill_2", prefix[1]] = 0 df[f"{prefix[0]}_fill_3", prefix[1]] = 0 df[f"{prefix[0]}_fill_4", prefix[1]] = 1 df.sort_index(inplace=True, axis=1) range_ld = self.copy().denormalize() if self.label is not None and not exclude_label: convert_label(range_ld.label) if self.pred is not None: convert_label(range_ld.pred) if self.data is not None: convert_data(range_ld.data) range_ld.scaler.fit(range_ld.data) range_ld.elevation_class = (False, False) if self.is_normalized: return range_ld.normalize() else: return range_ld def to_elevation_fmt_1(self, exclude_label=False): """Convert all elevations to format 1""" MAX_ELEV = 2500 def convert_label(df): problems = df.columns.get_level_values(1).unique().to_series().replace(_NONE, np.nan).dropna() for problem in problems: fill = df["CLASS", problem, "lev_fill"].apply(str) twos = fill == "2" threes = fill == "3" fours = fill == "4" df.loc[np.logical_or(twos, threes), ("REAL", problem, "lev_max")] = 0 df.loc[np.logical_or(twos, threes), ("REAL", problem, "lev_min")] = 0 df.loc[np.logical_or(twos, threes), ("CLASS", problem, "lev_fill")] = "1" df.loc[fours, ("REAL", problem, "lev_max")] = df.loc[fours, ("REAL", problem, "lev_min")] df.loc[fours, ("REAL", problem, "lev_min")] = 0 df.loc[fours, ("CLASS", problem, "lev_fill")] = "1" def convert_data(df): prefixes = set(map(lambda y: (y[0][:-7], y[1]), filter(lambda x: re.search(r"lev_fill", x[0]), df.columns))) for prefix in prefixes: ones = df[(f"{prefix[0]}_fill_1", prefix[1])].apply(np.bool) twos = df[(f"{prefix[0]}_fill_2", prefix[1])].apply(np.bool) threes = df[(f"{prefix[0]}_fill_3", prefix[1])].apply(np.bool) fours = df[(f"{prefix[0]}_fill_4", prefix[1])].apply(np.bool) df.loc[np.logical_or(twos, threes), (f"{prefix[0]}_min", prefix[1])] = 0 df.loc[np.logical_or(twos, threes), (f"{prefix[0]}_max", prefix[1])] = 0 df.loc[np.logical_or(twos, threes), (f"{prefix[0]}_fill_1", prefix[1])] = 1 df[(f"{prefix[0]}_fill_2", prefix[1])] = np.zeros(twos.shape) df[(f"{prefix[0]}_fill_3", prefix[1])] = np.zeros(threes.shape) df.loc[fours, (f"{prefix[0]}_max", prefix[1])] = df.loc[fours, (f"{prefix[0]}_min", prefix[1])] df.loc[fours, (f"{prefix[0]}_min", prefix[1])] = 0 df.loc[threes == True, (f"{prefix[0]}_fill_4", prefix[1])] = 1 df[(f"{prefix[0]}_fill_3", prefix[1])] = np.zeros(threes.shape) ld = self.copy().denormalize() if self.label is not None and not exclude_label: convert_label(ld.label) if self.pred is not None: convert_label(ld.pred) if self.data is not None: convert_data(ld.data) ld.scaler.fit(ld.data) if self.is_normalized: return ld.normalize() else: return ld def to_elevation_fmt_4(self, exclude_label=False): """Convert all elevations to ranges""" MAX_ELEV = 2500 def convert_label(df): problems = df.columns.get_level_values(1).unique().to_series().replace(_NONE, np.nan).dropna() for problem in problems: fill = df["CLASS", problem, "lev_fill"].apply(str) ones = fill == "1" twos = fill == "2" threes = fill == "3" df.loc[ones, ("REAL", problem, "lev_min")] = df.loc[ones, ("REAL", problem, "lev_max")] df.loc[ones, ("REAL", problem, "lev_max")] = MAX_ELEV df.loc[ones, ("CLASS", problem, "lev_fill")] = "4" df.loc[twos, ("REAL", problem, "lev_min")] = 0 df.loc[twos, ("CLASS", problem, "lev_fill")] = "4" df.loc[threes, ("REAL", problem, "lev_min")] = 0 df.loc[threes, ("REAL", problem, "lev_max")] = MAX_ELEV df.loc[threes, ("CLASS", problem, "lev_fill")] = "4" def convert_data(df): prefixes = set(map(lambda y: (y[0][:-7], y[1]), filter(lambda x: re.search(r"lev_fill", x[0]), df.columns))) for prefix in prefixes: ones = df[(f"{prefix[0]}_fill_1", prefix[1])].apply(np.bool) twos = df[(f"{prefix[0]}_fill_2", prefix[1])].apply(np.bool) threes = df[(f"{prefix[0]}_fill_3", prefix[1])].apply(np.bool) fours = df[(f"{prefix[0]}_fill_4", prefix[1])].apply(np.bool) df.loc[ones, (f"{prefix[0]}_min", prefix[1])] = df.loc[ones, (f"{prefix[0]}_max", prefix[1])] df.loc[ones, (f"{prefix[0]}_max", prefix[1])] = MAX_ELEV df.loc[ones == True, (f"{prefix[0]}_fill_4", prefix[1])] = 1 df[(f"{prefix[0]}_fill_1", prefix[1])] = np.zeros(ones.shape) df.loc[twos, (f"{prefix[0]}_min", prefix[1])] = 0 df.loc[twos == True, (f"{prefix[0]}_fill_4", prefix[1])] = 1 df[(f"{prefix[0]}_fill_2", prefix[1])] = np.zeros(twos.shape) df.loc[threes, (f"{prefix[0]}_min", prefix[1])] = 0 df.loc[threes, (f"{prefix[0]}_max", prefix[1])] = MAX_ELEV df.loc[threes == True, (f"{prefix[0]}_fill_4", prefix[1])] = 1 df[(f"{prefix[0]}_fill_3", prefix[1])] = np.zeros(threes.shape) ld = self.copy().denormalize() if self.label is not None and not exclude_label: convert_label(ld.label) if self.pred is not None: convert_label(ld.pred) if self.data is not None: convert_data(ld.data) ld.scaler.fit(ld.data) if self.is_normalized: return ld.normalize() else: return ld def valid_pred(self): """Makes the bulletins internally coherent. E.g., removes problem 3 if problem 2 is blank.""" if self.pred is None: raise NotPredictedError ld = self.copy() if self.elevation_class: ld = ld.from_elev_class() # Handle Problem 1-3 prob_cols = [] for n in range(1, 4): if f"problem_{n}" in list(ld.pred["CLASS", _NONE].columns): prob_cols.append(("CLASS", _NONE, f"problem_{n}")) prev_eq = np.zeros((ld.pred.shape[0], len(prob_cols)), dtype=bool) for n, col in enumerate(prob_cols): for mcol in prob_cols[0:n]: # If equal to problem_n-1/2, set to _NONE. prev_eq[:, n] = np.logical_or( prev_eq[:, n], np.equal(ld.pred[mcol], ld.pred[col]) ) # Set to None if problem_n-1/2 was _NONE. prev_eq[:, n] = np.logical_or( prev_eq[:, n], ld.pred[mcol] == _NONE ) ld.pred.loc[prev_eq[:, n], col] = _NONE # Delete subproblem solutions that are irrelevant for subprob in PROBLEMS.values(): rows = np.any(np.char.equal(ld.pred.loc[:, prob_cols].values.astype("U"), subprob), axis=1) == False columns = [name == subprob for name in ld.pred.columns.get_level_values(1)] ld.pred.loc[rows, columns] = _NONE # Set problem_amount to the right number ld.pred['CLASS', _NONE, 'problem_amount'] = np.sum(ld.pred.loc[:, prob_cols] != _NONE, axis=1).astype(str) # If lev_fill is "3" or "4", lev_min is always "0" for subprob in PROBLEMS.values(): if "lev_fill" in ld.pred["CLASS", subprob].columns: fill = ld.pred.astype(str)["CLASS", subprob, "lev_fill"] if "lev_min" in ld.pred["REAL", subprob]: ld.pred.loc[np.logical_or(fill == "1", fill == "2"), ("REAL", subprob, "lev_min")] = "0" if "lev_min" in ld.pred["REAL", subprob] and "lev_max" in ld.pred["REAL", subprob]: real = ld.pred["REAL", subprob].replace("", np.nan).astype(np.float) reversed_idx = real["lev_min"] > real["lev_max"] average = real.loc[reversed_idx, "lev_min"] + real.loc[reversed_idx, "lev_max"] / 2 ld.pred.loc[reversed_idx, ("REAL", subprob, "lev_min")] = average ld.pred.loc[reversed_idx, ("REAL", subprob, "lev_max")] = average ld.pred.loc[:, ["CLASS", "MULTI"]] = ld.pred.loc[:, ["CLASS", "MULTI"]].astype(str) ld.pred["REAL"] = ld.pred["REAL"].replace("", np.nan).astype(np.float) return ld def split(self, rounds=3, seed="<PASSWORD>"): """Returns a split of the object into a training set, a test set and a validation set. Parameters rounds and seed are not used any more. Use as: for test, train, eval in ld.split(): model.fit(test) model.predict(train) model.predict(eval) """ train_regions = [3007, 3012, 3010, 3009, 3013, 3017, 3014, 3032, 3027, 3029, 3022, 3031, 3023, 3037, 3024, 3028] test_regions = [3011, 3016, 3035] eval_regions = [3006, 3015, 3034] split = [] for regions in [train_regions, test_regions, eval_regions]: ld = self.copy() ld.data = ld.data.iloc[[region in regions for region in ld.data.index.get_level_values(1)]] ld.label = ld.label.iloc[[region in regions for region in ld.label.index.get_level_values(1)]] ld.pred = ld.pred.iloc[[region in regions for region in ld.pred.index.get_level_values(1)]] ld.row_weight = ld.row_weight.iloc[[region in regions for region in ld.row_weight.index.get_level_values(1)]] split.append(ld) return [tuple(split)] def f1(self): """Get F1, precision, recall and RMSE of all labels. :return: Series with scores of all possible labels and values. """ if self.label is None or self.pred is None: raise DatasetMissingLabel() dummies = self.to_dummies() old_settings = np.seterr(divide='ignore', invalid='ignore') df_idx =
pd.MultiIndex.from_arrays([[], [], [], []])
pandas.MultiIndex.from_arrays
# -------------------------------------------------------------------------------------------------------------------- # # standard distribution imports # ----------------------------- import importlib import logging import random import time import datetime # import traceback from abc import abstractmethod from tqdm import tqdm import typing as tp from pathlib import Path from multiprocessing import Manager from src.python_plots.plot_classes import PyPlot # additional module imports (> requirements) # ------------------------------------------ import pandas as pd import numpy as np # from IPython import embed # src imports # ----------- from src.misc.init_modules import load_fleet_control_module, load_routing_engine from src.demand.demand import Demand, SlaveDemand from src.routing.NetworkBase import return_position_str from src.simulation.Vehicles import SimulationVehicle if tp.TYPE_CHECKING: from src.fleetctrl.FleetControlBase import FleetControlBase from src.routing.NetworkBase import NetworkBase # -------------------------------------------------------------------------------------------------------------------- # # global variables # ---------------- # set log level to logging.DEBUG or logging.INFO for single simulations from src.misc.globals import * DEFAULT_LOG_LEVEL = logging.INFO LOG = logging.getLogger(__name__) BUFFER_SIZE = 10 PROGRESS_LOOP = "demand" PROGRESS_LOOP_VEHICLE_STATUS = [VRL_STATES.IDLE,VRL_STATES.CHARGING,VRL_STATES.REPOSITION] # check for computation on LRZ cluster if os.environ.get('SLURM_PROCID'): PROGRESS_LOOP = "off" # -------------------------------------------------------------------------------------------------------------------- # # functions # --------- def create_or_empty_dir(dirname): if os.path.isdir(dirname): "Removes all files from top" if(dirname == '/' or dirname == "\\"): return else: for root, dirs, files in os.walk(dirname, topdown=False): for name in files: try: os.remove(os.path.join(root, name)) except Exception as err: print(err) for name in dirs: try: os.rmdir(os.path.join(root, name)) except Exception as err: print(err) else: os.makedirs(dirname) def build_operator_attribute_dicts(parameters, n_op, prefix="op_"): """ Extracts elements of parameters dict whose keys begin with prefix and generates a list of dicts. The values of the relevant elements of parameters must be either single values or a list of length n_op, or else an exception will be raised. :param parameters: dict (or dict-like config object) containing a superset of operator parameters :type parameters: dict :param n_op: number of operators expected :type n_op: int :param prefix: prefix by which to filter out operator parameters :type prefix: str """ list_op_dicts = [dict() for i in range(n_op)] # initialize list of empty dicts for k in [x for x in parameters if x.startswith(prefix)]: # if only a single value is given, use it for all operators if type(parameters[k]) in [str, int, float, bool, type(None), dict]: for di in list_op_dicts: di[k] = parameters[k] # if a list of values is given and the length matches the number of operators, use them respectively elif len(parameters[k]) == n_op: for i, op in enumerate(list_op_dicts): op[k] = parameters[k][i] elif k == G_OP_REPO_TH_DEF: # TODO # lists as inputs for op for di in list_op_dicts: di[k] = parameters[k] # if parameter has invalid number of values, raise exception else: raise ValueError("Number of values for parameter", k, "equals neither n_op nor 1.", type(parameters[k])) return list_op_dicts # -------------------------------------------------------------------------------------------------------------------- # # main # ---- class FleetSimulationBase: def __init__(self, scenario_parameters: dict): self.t_init_start = time.perf_counter() # config self.scenario_name = scenario_parameters[G_SCENARIO_NAME] print("-"*80 + f"\nSimulation of scenario {self.scenario_name}") LOG.info(f"General initialization of scenario {self.scenario_name}...") self.dir_names = self.get_directory_dict(scenario_parameters) self.scenario_parameters: dict = scenario_parameters # check whether simulation already has been conducted -> use final_state.csv to check final_state_f = os.path.join(self.dir_names[G_DIR_OUTPUT], "final_state.csv") if self.scenario_parameters.get("keep_old", False) and os.path.isfile(final_state_f): prt_str = f"Simulation {self.scenario_name} results available and keep_old flag is True!" \ f" Not starting the simulation!" print(prt_str) LOG.info(prt_str) self._started = True return else: self._started = False # general parameters self.start_time = self.scenario_parameters[G_SIM_START_TIME] self.end_time = self.scenario_parameters[G_SIM_END_TIME] self.time_step = self.scenario_parameters.get(G_SIM_TIME_STEP, 1) self.check_sim_env_spec_inputs(self.scenario_parameters) self.n_op = self.scenario_parameters[G_NR_OPERATORS] self._manager: tp.Optional[Manager] = None self._shared_dict: dict = {} self._plot_class_instance: tp.Optional[PyPlot] = None self.realtime_plot_flag = self.scenario_parameters.get(G_SIM_REALTIME_PLOT_FLAG, 0) # build list of operator dictionaries # TODO: this could be eliminated with a new YAML-based config system self.list_op_dicts: tp.Dict[str,str] = build_operator_attribute_dicts(scenario_parameters, self.n_op, prefix="op_") # take care of random seeds at beginning of simulations random.seed(self.scenario_parameters[G_RANDOM_SEED]) np.random.seed(self.scenario_parameters[G_RANDOM_SEED]) # empty output directory create_or_empty_dir(self.dir_names[G_DIR_OUTPUT]) # write scenario config file in output directory self.save_scenario_inputs() # remove old log handlers (otherwise sequential simulations only log to first simulation) for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) # start new log file logging.VERBOSE = 5 logging.addLevelName(logging.VERBOSE, "VERBOSE") logging.Logger.verbose = lambda inst, msg, *args, **kwargs: inst.log(logging.VERBOSE, msg, *args, **kwargs) logging.LoggerAdapter.verbose = lambda inst, msg, *args, **kwargs: inst.log(logging.VERBOSE, msg, *args, **kwargs) logging.verbose = lambda msg, *args, **kwargs: logging.log(logging.VERBOSE, msg, *args, **kwargs) if self.scenario_parameters.get("log_level", "info"): level_str = self.scenario_parameters["log_level"] if level_str == "verbose": log_level = logging.VERBOSE elif level_str == "debug": log_level = logging.DEBUG elif level_str == "info": log_level = logging.INFO elif level_str == "warning": log_level = logging.WARNING else: log_level = DEFAULT_LOG_LEVEL else: log_level = DEFAULT_LOG_LEVEL pd.set_option("mode.chained_assignment", None) self.log_file = os.path.join(self.dir_names[G_DIR_OUTPUT], f"00_simulation.log") if log_level < logging.INFO: streams = [logging.FileHandler(self.log_file), logging.StreamHandler()] else: print("Only minimum output to console -> see log-file") streams = [logging.FileHandler(self.log_file)] # TODO # log of subsequent simulations is saved in first simulation log logging.basicConfig(handlers=streams, level=log_level, format='%(process)d-%(name)s-%(levelname)s-%(message)s') # set up output files self.user_stat_f = os.path.join(self.dir_names[G_DIR_OUTPUT], f"1_user-stats.csv") self.network_stat_f = os.path.join(self.dir_names[G_DIR_OUTPUT], f"3_network-stats.csv") self.pt_stat_f = os.path.join(self.dir_names[G_DIR_OUTPUT], "4_pt_stats.csv") # init modules # ------------ # zone system # TODO # after ISTTT: enable multiple zone systems # TODO # after ISTTT: bring init of modules in extra function (-> parallel processing) self.zones = None if self.dir_names.get(G_DIR_ZONES, None) is not None: if self.scenario_parameters.get(G_FC_TYPE) and self.scenario_parameters[G_FC_TYPE] == "perfect": from src.infra.PerfectForecastZoning import PerfectForecastZoneSystem self.zones = PerfectForecastZoneSystem(self.dir_names[G_DIR_ZONES], self.scenario_parameters, self.dir_names) else: from src.infra.Zoning import ZoneSystem self.zones = ZoneSystem(self.dir_names[G_DIR_ZONES], self.scenario_parameters, self.dir_names) # routing engine LOG.info("Initialization of network and routing engine...") network_type = self.scenario_parameters[G_NETWORK_TYPE] network_dynamics_file = self.scenario_parameters.get(G_NW_DYNAMIC_F, None) # TODO # check consistency of scenario inputs / another way to refactor add_init_data ? self.routing_engine: NetworkBase = load_routing_engine(network_type, self.dir_names[G_DIR_NETWORK], network_dynamics_file_name=network_dynamics_file) if network_type == "NetworkDynamicNFDClusters": self.routing_engine.add_init_data(self.start_time, self.time_step, self.scenario_parameters[G_NW_DENSITY_T_BIN_SIZE], self.scenario_parameters[G_NW_DENSITY_AVG_DURATION], self.zones, self.network_stat_f) # public transportation module LOG.info("Initialization of line-based public transportation...") pt_type = self.scenario_parameters.get(G_PT_TYPE) self.gtfs_data_dir = self.dir_names.get(G_DIR_PT) if pt_type is None or self.gtfs_data_dir is None: self.pt = None elif pt_type == "PTMatrixCrowding": pt_module = importlib.import_module("src.pubtrans.PtTTMatrixCrowding") self.pt = pt_module.PublicTransportTravelTimeMatrixWithCrowding(self.gtfs_data_dir, self.pt_stat_f, self.scenario_parameters, self.routing_engine, self.zones) elif pt_type == "PtCrowding": pt_module = importlib.import_module("src.pubtrans.PtCrowding") self.pt = pt_module.PublicTransportWithCrowding(self.gtfs_data_dir, self.pt_stat_f, self.scenario_parameters, self.routing_engine, self.zones) else: raise IOError(f"Public transport module {pt_type} not defined for current simulation environment.") # attribute for demand, charging and zone module self.demand = None self.cdp = None self._load_demand_module() self._load_charging_modules() # take care of charging stations, depots and initially inactive vehicles if self.dir_names.get(G_DIR_INFRA): depot_fname = self.scenario_parameters.get(G_INFRA_DEP) if depot_fname is not None: depot_f = os.path.join(self.dir_names[G_DIR_INFRA], depot_fname) else: depot_f = os.path.join(self.dir_names[G_DIR_INFRA], "depots.csv") pub_cs_fname = self.scenario_parameters.get(G_INFRA_PBCS) if pub_cs_fname is not None: pub_cs_f = os.path.join(self.dir_names[G_DIR_INFRA], pub_cs_fname) else: pub_cs_f = os.path.join(self.dir_names[G_DIR_INFRA], "public_charging_stations.csv") from src.infra.ChargingStation import ChargingAndDepotManagement self.cdp = ChargingAndDepotManagement(depot_f, pub_cs_f, self.routing_engine, self.scenario_parameters, self.list_op_dicts) LOG.info("charging stations and depots initialzied!") else: self.cdp = None # attributes for fleet controller and vehicles self.sim_vehicles: tp.Dict[tp.Tuple[int, int], SimulationVehicle] = {} self.sorted_sim_vehicle_keys: tp.List[tp.Tuple[int, int]] = sorted(self.sim_vehicles.keys()) self.operators: tp.List[FleetControlBase] = [] self.op_output = {} self._load_fleetctr_vehicles() # call additional simulation environment specific init LOG.info("Simulation environment specific initializations...") self.init_blocking = True self.add_init(self.scenario_parameters) # load initial state depending on init_blocking attribute # HINT: it is important that this is done at the end of initialization! LOG.info("Creating or loading initial vehicle states...") np.random.seed(self.scenario_parameters[G_RANDOM_SEED]) self.load_initial_state() LOG.info(f"Initialization of scenario {self.scenario_name} successful.") # self.routing_engine.checkNetwork() def _load_demand_module(self): """ Loads some demand modules """ # demand module LOG.info("Initialization of travelers...") if self.scenario_parameters[G_SIM_ENV] != "MobiTopp": self.demand = Demand(self.scenario_parameters, self.user_stat_f, self.routing_engine, self.zones) self.demand.load_demand_file(self.scenario_parameters[G_SIM_START_TIME], self.scenario_parameters[G_SIM_END_TIME], self.dir_names[G_DIR_DEMAND], self.scenario_parameters[G_RQ_FILE], self.scenario_parameters[G_RANDOM_SEED], self.scenario_parameters.get(G_RQ_TYP1, None), self.scenario_parameters.get(G_RQ_TYP2, {}), self.scenario_parameters.get(G_RQ_TYP3, {}), simulation_time_step=self.time_step) if self.scenario_parameters.get(G_PA_RQ_FILE) is not None: self.demand.load_parcel_demand_file(self.scenario_parameters[G_SIM_START_TIME], self.scenario_parameters[G_SIM_END_TIME], self.dir_names[G_DIR_DEMAND], self.scenario_parameters[G_PA_RQ_FILE], self.scenario_parameters[G_RANDOM_SEED], self.scenario_parameters.get(G_PA_RQ_TYP1, None), self.scenario_parameters.get(G_PA_RQ_TYP2, {}), self.scenario_parameters.get(G_PA_RQ_TYP3, {}), simulation_time_step=self.time_step) else: self.demand = SlaveDemand(self.scenario_parameters, self.user_stat_f) if self.zones is not None: self.zones.register_demand_ref(self.demand) def _load_charging_modules(self): """ Loads necessary modules for charging """ # take care of charging stations, depots and initially inactive vehicles if self.dir_names.get(G_DIR_INFRA): depot_fname = self.scenario_parameters.get(G_INFRA_DEP) if depot_fname is not None: depot_f = os.path.join(self.dir_names[G_DIR_INFRA], depot_fname) else: depot_f = os.path.join(self.dir_names[G_DIR_INFRA], "depots.csv") pub_cs_fname = self.scenario_parameters.get(G_INFRA_PBCS) if pub_cs_fname is not None: pub_cs_f = os.path.join(self.dir_names[G_DIR_INFRA], pub_cs_fname) else: pub_cs_f = os.path.join(self.dir_names[G_DIR_INFRA], "public_charging_stations.csv") from src.infra.ChargingStation import ChargingAndDepotManagement self.cdp = ChargingAndDepotManagement(depot_f, pub_cs_f, self.routing_engine, self.scenario_parameters, self.list_op_dicts) LOG.info("charging stations and depots initialzied!") else: self.cdp = None def _load_fleetctr_vehicles(self): """ Loads the fleet controller and vehicles """ # simulation vehicles and fleet control modules LOG.info("Initialization of MoD fleets...") route_output_flag = self.scenario_parameters.get(G_SIM_ROUTE_OUT_FLAG, True) replay_flag = self.scenario_parameters.get(G_SIM_REPLAY_FLAG, False) veh_type_list = [] for op_id in range(self.n_op): operator_attributes = self.list_op_dicts[op_id] operator_module_name = operator_attributes[G_OP_MODULE] self.op_output[op_id] = [] # shared list among vehicles if not operator_module_name == "PtFleetControl": fleet_composition_dict = operator_attributes[G_OP_FLEET] list_vehicles = [] vid = 0 for veh_type, nr_veh in fleet_composition_dict.items(): for _ in range(nr_veh): veh_type_list.append([op_id, vid, veh_type]) tmp_veh_obj = SimulationVehicle(op_id, vid, self.dir_names[G_DIR_VEH], veh_type, self.routing_engine, self.demand.rq_db, self.op_output[op_id], route_output_flag, replay_flag) list_vehicles.append(tmp_veh_obj) self.sim_vehicles[(op_id, vid)] = tmp_veh_obj vid += 1 OpClass = load_fleet_control_module(operator_module_name) self.operators.append(OpClass(op_id, operator_attributes, list_vehicles, self.routing_engine, self.zones, self.scenario_parameters, self.dir_names, self.cdp)) else: from src.pubtrans.PtFleetControl import PtFleetControl OpClass = PtFleetControl(op_id, self.gtfs_data_dir, self.routing_engine, self.zones, self.scenario_parameters, self.dir_names, charging_management=self.cdp) init_vids = OpClass.return_vehicles_to_initialize() list_vehicles = [] for vid, veh_type in init_vids.items(): tmp_veh_obj = SimulationVehicle(op_id, vid, self.dir_names[G_DIR_VEH], veh_type, self.routing_engine, self.demand.rq_db, self.op_output[op_id], route_output_flag, replay_flag) list_vehicles.append(tmp_veh_obj) self.sim_vehicles[(op_id, vid)] = tmp_veh_obj OpClass.continue_init(list_vehicles, self.start_time) self.operators.append(OpClass) veh_type_f = os.path.join(self.dir_names[G_DIR_OUTPUT], "2_vehicle_types.csv") veh_type_df = pd.DataFrame(veh_type_list, columns=[G_V_OP_ID, G_V_VID, G_V_TYPE]) veh_type_df.to_csv(veh_type_f, index=False) @staticmethod def get_directory_dict(scenario_parameters): """ This function provides the correct paths to certain data according to the specified data directory structure. :param scenario_parameters: simulation input (pandas series) :return: dictionary with paths to the respective data directories """ return get_directory_dict(scenario_parameters) def save_scenario_inputs(self): config_f = os.path.join(self.dir_names[G_DIR_OUTPUT], G_SC_INP_F) config = {"scenario_parameters": self.scenario_parameters, "list_operator_attributes": self.list_op_dicts, "directories": self.dir_names} with open(config_f, "w") as fh_config: json.dump(config, fh_config, indent=4) def evaluate(self): """Runs standard and simulation environment specific evaluations over simulation results.""" output_dir = self.dir_names[G_DIR_OUTPUT] # standard evaluation from src.evaluation.standard import standard_evaluation standard_evaluation(output_dir) self.add_evaluate() def initialize_operators_and_vehicles(self): """ this function loads and initialzie all operator classes and its vehicle objects and sets corresponding outputs""" veh_type_list = [] route_output_flag = self.scenario_parameters.get(G_SIM_ROUTE_OUT_FLAG, True) replay_flag = self.scenario_parameters.get(G_SIM_REPLAY_FLAG, False) for op_id in range(self.n_op): self.op_output[op_id] = [] # shared list among vehicles operator_attributes = self.list_op_dicts[op_id] operator_module_name = operator_attributes[G_OP_MODULE] fleet_composition_dict = operator_attributes[G_OP_FLEET] list_vehicles = [] vid = 0 for veh_type, nr_veh in fleet_composition_dict.items(): for _ in range(nr_veh): veh_type_list.append([op_id, vid, veh_type]) tmp_veh_obj = SimulationVehicle(op_id, vid, self.dir_names[G_DIR_VEH], veh_type, self.routing_engine, self.demand.rq_db, self.op_output[op_id], route_output_flag, replay_flag) list_vehicles.append(tmp_veh_obj) self.sim_vehicles[(op_id, vid)] = tmp_veh_obj vid += 1 OpClass = load_fleet_control_module(operator_module_name) self.operators.append(OpClass(op_id, operator_attributes, list_vehicles, self.routing_engine, self.zones, self.scenario_parameters, self.dir_names, self.cdp)) veh_type_f = os.path.join(self.dir_names[G_DIR_OUTPUT], "2_vehicle_types.csv") veh_type_df =
pd.DataFrame(veh_type_list, columns=[G_V_OP_ID, G_V_VID, G_V_TYPE])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Mar 19 23:34:57 2019 @author: reynaldo.espana.rey Web scrapping algorithm to build data set for text generator source: https://towardsdatascience.com/how-to-web-scrape-with-python-in-4-minutes-bc49186a8460 """ # ============================================================================= # Libraries # ============================================================================= import numpy as np import pandas as pd import requests import re import time import os from bs4 import BeautifulSoup import string # ============================================================================= # Functions # ============================================================================= # request page and make it BeautifulSoup def get_page(url, verbose=0): # get page response = requests.get(url) if verbose: print('Successful:', str(response) =='<Response [200]>') if str(response) =='<Response [200]>': # BeautifulSoup data structure soup = BeautifulSoup(response.text, 'html.parser') return soup return str(response) # function to retrieve links from inspector gadget pluggin def get_href(url, attr): # get page soup = get_page(url) # get data links data = soup.select(attr) links = np.unique([x['href'] for x in data]) return links def get_text(url, attr): # get page soup = get_page(url) # get data links data = soup.select(attr) return data # valid file name def valid_name(value): value = re.sub('[^\w\s-]', '', value).strip().lower() value = re.sub('[-\s]+', '-', value) return value # funtion to remove chars def remove_chars(doc, chars_2remove=None): if chars_2remove is None: # list of character not UTF-8 to be remove from doc chars_2remove = ['\x85', '\x91', '\x92', '\x93', '\x94', '\x96', '\x97', '\xa0'] # as reggex expression chars_2remove = '[' + ''.join(chars_2remove) + ']' # erase doc = re.sub(chars_2remove, ' ', doc) doc = re.sub(' +', ' ', doc).strip() return doc # ============================================================================= # Spanish poems # ============================================================================= #### Spanish poems web page source # root source url_root = 'https://www.poemas-del-alma.com/' ## Path to use ## Retrieve poems and save it in .txt path_poems = '../data/DB/spanish poems/' # save list of poems links path_poems_links = '../data/DB/poems_list.csv' # ============================================================================= # Poems # ============================================================================= ##### POETS ##### # poems by author in alphabetial order alphabet = [x for x in string.ascii_uppercase] # get list of poets poets = pd.DataFrame() for letter in alphabet: print(letter) links = get_href(url_root + letter + '.html', attr='#content li a') authors = pd.DataFrame({'author': [x.split('/')[-1].split('.')[0] for x in links], 'link': links}) poets = poets.append(authors) time.sleep(.5) poets = poets.reset_index(drop=True) print('Poests found:', len(poets)) ##### POEMS ##### # go throgh all the poems in poets # run only for poems not already in folder poems = pd.read_csv(path_poems_links) # filter poets to scrap poets['in_disk'] = poets['author'].isin(poems['author']) # filter songs df print ('Files in disk already:', poets.groupby(['in_disk']).size()) # loop to remaining poets poets_2scrap = poets[poets['in_disk']==False] # shuffle, else all errors will be first poets_2scrap = poets_2scrap.sample(frac=1).reset_index(drop=True) # loop for each poet link for index, row in poets_2scrap.iterrows(): if (index % 25 == 0): print('\n\n- Progress %:', index/len(poets_2scrap), '- Total poems:', len(poems)) time.sleep(5) try: # get page with poems links links = get_href(row['link'], attr='#block-poems a') time.sleep(.5) links =
pd.DataFrame({'poem': links})
pandas.DataFrame
import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import warnings import gc import os warnings.filterwarnings('ignore') from datetime import datetime from sklearn.feature_selection import VarianceThreshold from sklearn.model_selection import StratifiedKFold, RandomizedSearchCV from sklearn.model_selection import train_test_split, cross_val_score from sklearn.model_selection import KFold, GridSearchCV from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.utils import class_weight, resample from keras.models import Sequential from keras.layers import Dense, Dropout, GaussianNoise, Conv1D from keras.layers import LSTM from keras.layers import Conv1D, MaxPooling1D, TimeDistributed from keras.layers import Conv2D, MaxPooling2D from keras.layers import Dense, Dropout, BatchNormalization from keras.layers import Flatten, Reshape from keras.layers import Embedding, Input from keras.models import Sequential from keras.models import load_model from keras import optimizers from keras.regularizers import L1L2 from keras.callbacks import ModelCheckpoint from keras.utils import to_categorical, np_utils from keras.callbacks import Callback, EarlyStopping from keras.initializers import RandomUniform import keras.backend as K import tensorflow as tf from xgboost import XGBClassifier scaler = StandardScaler() def plot_new_feature_distribution(df1, df2, label1, label2, features): i = 0 sns.set_style('whitegrid') plt.figure() fig, ax = plt.subplots(2,4,figsize=(18,8)) for feature in features: i += 1 plt.subplot(2,4,i) sns.kdeplot(df1[feature], bw=0.5,label=label1) sns.kdeplot(df2[feature], bw=0.5,label=label2) plt.xlabel(feature, fontsize=11) locs, labels = plt.xticks() plt.tick_params(axis='x', which='major', labelsize=8) plt.tick_params(axis='y', which='major', labelsize=8) plt.show(); # define roc_callback, inspired by https://github.com/keras-team/keras/issues/6050#issuecomment-329996505 def auc_roc(y_true, y_pred): # any tensorflow metric value, update_op = tf.contrib.metrics.streaming_auc(y_pred, y_true) # find all variables created for this metric metric_vars = [i for i in tf.local_variables() if 'auc_roc' in i.name.split('/')[1]] # Add metric variables to GLOBAL_VARIABLES collection. # They will be initialized for new session. for v in metric_vars: tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v) # force to update metric values with tf.control_dependencies([update_op]): value = tf.identity(value) return value def resampling(df_train, ratio): train_freq = df_train['target'].value_counts() print(train_freq) train_freq_mean = train_freq[1] # Under & Over Sampling store_nbr df_list = [] target_max = 2 multiple = ratio for i in range(0, target_max): df_list.append(df_train[df_train['target']==i]) for i in range(0, target_max): if i==0: df_list[i] = df_list[i].sample(n=int(train_freq_mean*multiple), random_state=123, replace=True) else: df_list[i] = df_list[i].sample(n=train_freq_mean, random_state=123, replace=True) df_sampling_train = pd.concat(df_list) train_freq = df_sampling_train['target'].value_counts() return pd.DataFrame(df_sampling_train) def CNN1D(train, test): X_train = train.drop(['ID_code', 'target'], axis=1) gc.collect() X_columns = X_train.columns Y_columns = ['target'] Y_train = train['target'] X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.10, stratify=Y_train, random_state=123, shuffle=True) X_train = pd.DataFrame(X_train, columns=X_columns) Y_train = pd.DataFrame(Y_train, columns=Y_columns) print(X_train.describe()) X_train = pd.concat([X_train, Y_train], axis=1) print(X_train.describe()) #X_train = resampling(X_train, 1) Y_train = X_train['target'] X_train = X_train.drop('target', axis=1) print(Y_train.value_counts()) X_train = scaler.fit_transform(X_train) X_valid = scaler.fit_transform(X_valid) y_integers = Y_train #print(y_integers) class_weights = class_weight.compute_class_weight(None, np.unique(y_integers), y_integers) print(class_weights) d_class_weights = dict(enumerate(class_weights)) d_class_weights = {0:1.0, 1:1.0} X_train = X_train.reshape(X_train.shape[0], X_train.shape[1], 1) X_valid = X_valid.reshape(X_valid.shape[0], X_valid.shape[1], 1) #hyperparameters input_dimension = 226 learning_rate = 0.0025 momentum = 0.85 hidden_initializer = RandomUniform(seed=123) dropout_rate = 0.3 optimizer=optimizers.Adam() # create model model = Sequential() model.add(Conv1D(nb_filter=32, filter_length=3, input_shape=X_train.shape[1:3], activation='relu')) model.add(Conv1D(nb_filter=16, filter_length=1, activation='relu')) model.add(Flatten()) model.add(Dropout(dropout_rate)) model.add(Dense(128, input_dim=input_dimension, kernel_initializer=hidden_initializer, activation='relu')) model.add(Dense(64, kernel_initializer=hidden_initializer, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, kernel_initializer=hidden_initializer, activation='sigmoid')) model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy', auc_roc]) model.summary() history = model.fit(X_train, Y_train, batch_size=1000, epochs=10, verbose=1, class_weight = d_class_weights, validation_data=(X_valid, Y_valid), shuffle=True) train_loss = history.history['loss'] val_loss = history.history['val_loss'] x_epochs = range(1, len(train_loss) + 1) plt.plot(x_epochs, train_loss, 'b', label='Training loss') plt.plot(x_epochs, val_loss, 'r', label='Validation loss') plt.title('Loss') plt.legend() plt.show() score = model.evaluate(X_valid, Y_valid, batch_size=100) print(score) Y_pred = model.predict(X_valid) Y_pred = np.where(Y_pred > 0.5, 1, 0) #Y_pred = np.argmax(Y_pred, axis=1).reshape(-1,1) #Y_test = np.argmax(Y_test, axis=1).reshape(-1,1) print(confusion_matrix(Y_valid, Y_pred)) print(classification_report(Y_valid, Y_pred, labels=[0, 1])) ID_test = test['ID_code'].values test = test.drop('ID_code', axis=1) test = scaler.transform(test) test = test.reshape(test.shape[0], test.shape[1], 1) pred = model.predict(test) result = pd.DataFrame({"ID_code": ID_test}) result["target"] = pred result.to_csv("submission.csv", index=False) return result['target'] def CNN2D(train, test): X_train = train.drop(['ID_code', 'target'], axis=1) gc.collect() X_columns = X_train.columns Y_columns = ['target'] Y_train = train['target'] X_train, X_valid, Y_train, Y_valid = train_test_split(X_train, Y_train, test_size=0.10, stratify=Y_train, random_state=123, shuffle=True) X_train = pd.DataFrame(X_train, columns=X_columns) Y_train = pd.DataFrame(Y_train, columns=Y_columns) print(X_train.describe()) X_train = pd.concat([X_train, Y_train], axis=1) print(X_train.describe()) #X_train = resampling(X_train, 1) Y_train = X_train['target'] X_train = X_train.drop('target', axis=1) print(Y_train.value_counts()) X_train = scaler.fit_transform(X_train) X_valid = scaler.fit_transform(X_valid) y_integers = Y_train #print(y_integers) class_weights = class_weight.compute_class_weight(None, np.unique(y_integers), y_integers) print(class_weights) d_class_weights = dict(enumerate(class_weights)) d_class_weights = {0:1.0, 1:1.0} X_train = X_train.reshape(X_train.shape[0], 104, 6, 1) X_valid = X_valid.reshape(X_valid.shape[0], 104, 6, 1) #hyperparameters input_dimension = 226 learning_rate = 0.0025 momentum = 0.85 hidden_initializer = RandomUniform(seed=123) dropout_rate = 0.3 kernel_size = (3, 3) strides = (1, 1) optimizer=optimizers.Adam() # create model model = Sequential() model.add(Conv2D(nb_filter=32, kernel_size = kernel_size, strides = strides, input_shape=X_train.shape[1:4], activation='relu')) model.add(Conv2D(nb_filter=16, kernel_size = kernel_size, strides = strides, activation='relu')) model.add(Flatten()) model.add(Dropout(dropout_rate)) model.add(Dense(128, input_dim=input_dimension, kernel_initializer=hidden_initializer, activation='relu')) model.add(Dense(64, kernel_initializer=hidden_initializer, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, kernel_initializer=hidden_initializer, activation='sigmoid')) model.compile(optimizer=optimizer, loss='binary_crossentropy', metrics=['accuracy', auc_roc]) model.summary() history = model.fit(X_train, Y_train, batch_size=1000, epochs=10, verbose=1, class_weight = d_class_weights, validation_data=(X_valid, Y_valid), shuffle=True) train_loss = history.history['loss'] val_loss = history.history['val_loss'] x_epochs = range(1, len(train_loss) + 1) plt.plot(x_epochs, train_loss, 'b', label='Training loss') plt.plot(x_epochs, val_loss, 'r', label='Validation loss') plt.title('Loss') plt.legend() plt.show() score = model.evaluate(X_valid, Y_valid, batch_size=100) print(score) Y_pred = model.predict(X_valid) Y_pred = np.where(Y_pred > 0.5, 1, 0) #Y_pred = np.argmax(Y_pred, axis=1).reshape(-1,1) #Y_test = np.argmax(Y_test, axis=1).reshape(-1,1) print(confusion_matrix(Y_valid, Y_pred)) print(classification_report(Y_valid, Y_pred, labels=[0, 1])) ID_test = test['ID_code'].values test = test.drop('ID_code', axis=1) test = scaler.transform(test) test = test.reshape(test.shape[0], 104, 6, 1) pred = model.predict(test) result = pd.DataFrame({"ID_code": ID_test}) result["target"] = pred result.to_csv("submission.csv", index=False) return result['target'] def XGBBest(train, test): X = train.drop(['ID_code', 'target'], axis=1) y = train.target.values test_df = test test = test.drop('ID_code', axis=1) xgb = XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6, early_stopping_rounds=70, gamma=2, learning_rate=0.03, max_delta_step=0, max_depth=7, min_child_weight=10, missing=None, n_estimator=500, n_estimators=100, n_jobs=1, nthread=1, num_boost_round=500, objective='binary:logistic', predictor='gpu_predictor', random_state=0, reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None, silent=True, subsample=0.8, tree_method='gpu_hist', verbosity=1) xgb.fit(X, y) y_test = xgb.predict_proba(test) results_df = pd.DataFrame(data={'ID_code':test_df['ID_code'], 'target':y_test[:,1]}) results_df.to_csv('submission.csv', index=False) return results_df['target'] if __name__ == '__main__': df_train = pd.read_csv("data/train.csv", engine='c') df_test = pd.read_csv("data/test.csv", engine='c') print("train shape: ", df_train.shape) print("test shape: ", df_test.shape) print("df_train is null: ", df_train.isnull().sum().sum()) print("df_test is null: ", df_test.isnull().sum().sum()) # Feature Engineering # Correlation features = df_train.columns.values[2:202] correlations = df_train[features].corr().abs().unstack().sort_values(kind="quicksort").reset_index() correlations = correlations[correlations['level_0'] != correlations['level_1']] print(correlations.head(10)) print(correlations.tail(10)) # Duplicate check features = df_train.columns.values[2:202] unique_max_train = [] unique_max_test = [] for feature in features: values = df_train[feature].value_counts() unique_max_train.append([feature, values.max(), values.idxmax()]) values = df_test[feature].value_counts() unique_max_test.append([feature, values.max(), values.idxmax()]) dup_train = np.transpose((pd.DataFrame(unique_max_train, columns=['Feature', 'Max duplicates', 'Value'])). sort_values(by = 'Max duplicates', ascending=False).head(15)) dup_test = np.transpose((
pd.DataFrame(unique_max_test, columns=['Feature', 'Max duplicates', 'Value'])
pandas.DataFrame
import pandas as pd import logging from pandas.api.types import is_string_dtype from pandas.api.types import is_numeric_dtype from sklearn.cluster import dbscan from requests.exceptions import HTTPError from .modules.constants import FASTKRAKEN2_NAMES from .modules.parse_utils import ( proportions, run_pca, parse_taxa_report, group_taxa_report, ) from .data_utils import sample_module_field logger = logging.getLogger(__name__) def sample_has_modules(sample): has_all = True for module_name, field, _, _, _ in [FASTKRAKEN2_NAMES]: try: sample_module_field(sample, module_name, field) except KeyError: has_all = False return has_all def pc1_median(samples, taxa_matrix): pc1 = run_pca(taxa_matrix, n_comp=1)['C0'] for sample in samples: pcval = 'Not Found in PC1' if pc1[sample.name] >= pc1.median(): pcval = 'Above PC1 Median' elif pc1[sample.name] < pc1.median(): pcval = 'Below PC1 Median' sample.mgs_metadata['MGS - PC1'] = pcval def pca_dbscan(samples, taxa_matrix): pca = run_pca(taxa_matrix, n_comp=min(10, taxa_matrix.shape[1])) _, cluster_labels = dbscan(pca, eps=0.1, min_samples=3) for i, sample in enumerate(samples): label_val = cluster_labels[i] label = f'Cluster {label_val}' if label_val < 0: label = f'Noise' sample.mgs_metadata['MGS - PCA-DBSCAN'] = label def add_taxa_auto_metadata(samples, grp): samples = [sample for sample in samples if sample_has_modules(sample)] try: taxa_matrix = group_taxa_report( grp, module_name='cap2::capalyzer::kraken2_taxa', field_name='read_counts', )(samples) except HTTPError: taxa_matrix = group_taxa_report( grp, module_name='cap2::capalyzer::fast_kraken2_taxa', field_name='report', )(samples) parsed_sample_names = set(taxa_matrix.index.to_list()) samples = [sample for sample in samples if sample.name in parsed_sample_names] logger.info('Adding PCA median variable...') pc1_median(samples, taxa_matrix) logger.info('done.') logger.info('Adding PCA DBSCAN variable...') pca_dbscan(samples, taxa_matrix) logger.info('done.') def regularize_metadata(samples): logger.info('Regularizing metadata...') meta = pd.DataFrame.from_dict( {sample.name: sample.metadata for sample in samples}, orient='index' ) def regularize_numeric(col): try: col = pd.qcut(col, 3, labels=["low", "medium", "high"], duplicates='drop') except ValueError: pass col = col.astype(str) col = col.map(lambda x: 'Unknown' if x.lower() == 'nan' else x) col = col.fillna('Unknown') return col def regularize_categorical(col): col = col.fillna('Unknown') min_size = max(2, col.shape[0] // 100) counts = col.value_counts() others = list(counts[counts < min_size].index) col = col.map(lambda el: 'Other' if el in others else el) return col def regularize_col(col): if is_numeric_dtype(col): return regularize_numeric(col) if
is_string_dtype(col)
pandas.api.types.is_string_dtype
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN":
pandas.StringDtype()
pandas.StringDtype
# -*- coding:utf-8 -*- """ 宏观经济数据类 Created on 2019/01/09 @author: TabQ @group : gugu @contact: <EMAIL> """ import pandas as pd import numpy as np import re import json import time from gugu.utility import Utility from gugu.base import Base, cf import sys class Macro(Base): def gdpYear(self, retry=3, pause=0.001): """ 获取年度国内生产总值数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'year':, 'gdp':, ...}, ...] year :统计年度 gdp :国内生产总值(亿元) pc_gdp :人均国内生产总值(元) gnp :国民生产总值(亿元) pi :第一产业(亿元) si :第二产业(亿元) industry :工业(亿元) cons_industry :建筑业(亿元) ti :第三产业(亿元) trans_industry :交通运输仓储邮电通信业(亿元) lbdy :批发零售贸易及餐饮业(亿元) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK4224641560861/MacPage_Service.get_pagedata?cate=nation&event=0&from=0&num=70&condition=&_=4224641560861 datastr = self.__parsePage('nation', 0, 70, retry, pause) datastr = datastr.replace('"', '').replace('null', '0') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.GDP_YEAR_COLS) self._data[self._data==0] = np.NaN return self._result() def gdpQuarter(self, retry=3, pause=0.001): """ 获取季度国内生产总值数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'quarter':, 'gdp':, ...}, ...] quarter :季度 gdp :国内生产总值(亿元) gdp_yoy :国内生产总值同比增长(%) pi :第一产业增加值(亿元) pi_yoy:第一产业增加值同比增长(%) si :第二产业增加值(亿元) si_yoy :第二产业增加值同比增长(%) ti :第三产业增加值(亿元) ti_yoy :第三产业增加值同比增长(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK3935140379887/MacPage_Service.get_pagedata?cate=nation&event=1&from=0&num=250&condition=&_=3935140379887 datastr = self.__parsePage('nation', 1, 250, retry, pause) datastr = datastr.replace('"', '').replace('null', '0') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.GDP_QUARTER_COLS) self._data['quarter'] = self._data['quarter'].astype(object) self._data[self._data==0] = np.NaN return self._result() def demandsToGdp(self, retry=3, pause=0.001): """ 获取三大需求对GDP贡献数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'year':, 'cons_to':, ...}, ...] year :统计年度 cons_to :最终消费支出贡献率(%) cons_rate :最终消费支出拉动(百分点) asset_to :资本形成总额贡献率(%) asset_rate:资本形成总额拉动(百分点) goods_to :货物和服务净出口贡献率(%) goods_rate :货物和服务净出口拉动(百分点) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK3153587567694/MacPage_Service.get_pagedata?cate=nation&event=4&from=0&num=80&condition=&_=3153587567694 datastr = self.__parsePage('nation', 4, 80, retry, pause) datastr = datastr.replace('"','').replace('null','0') js = json.loads(datastr) self._data = pd.DataFrame(js,columns=cf.GDP_FOR_COLS) self._data[self._data==0] = np.NaN return self._result() def idsPullToGdp(self, retry=3, pause=0.001): """ 获取三大产业对GDP拉动数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'year':, 'gdp_yoy':, ...}, ...] year :统计年度 gdp_yoy :国内生产总值同比增长(%) pi :第一产业拉动率(%) si :第二产业拉动率(%) industry:其中工业拉动(%) ti :第三产业拉动率(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK1083239038283/MacPage_Service.get_pagedata?cate=nation&event=5&from=0&num=60&condition=&_=1083239038283 datastr = self.__parsePage('nation', 5, 60, retry, pause) datastr = datastr.replace('"', '').replace('null', '0') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.GDP_PULL_COLS) self._data[self._data==0] = np.NaN return self._result() def idsCtbToGdp(self, retry=3, pause=0.001): """ 获取三大产业贡献率数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'year':, 'gdp_yoy':, ...}, ...] year :统计年度 gdp_yoy :国内生产总值 pi :第一产业献率(%) si :第二产业献率(%) industry:其中工业献率(%) ti :第三产业献率(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK4658347026358/MacPage_Service.get_pagedata?cate=nation&event=6&from=0&num=60&condition=&_=4658347026358 datastr = self.__parsePage('nation', 6, 60, retry, pause) datastr = datastr.replace('"', '').replace('null', '0') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.GDP_CONTRIB_COLS) self._data[self._data==0] = np.NaN return self._result() def cpi(self, retry=3, pause=0.001): """ 获取居民消费价格指数数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'month':, 'cpi':,}, ...] month :统计月份 cpi :价格指数 """ self._data = pd.DataFrame() datastr = self.__parsePage('price', 0, 600, retry, pause) js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.CPI_COLS) self._data['cpi'] = self._data['cpi'].astype(float) return self._result() def ppi(self, retry=3, pause=0.001): """ 获取工业品出厂价格指数数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'month':, 'ppiip':, ...}, ...] month :统计月份 ppiip :工业品出厂价格指数 ppi :生产资料价格指数 qm:采掘工业价格指数 rmi:原材料工业价格指数 pi:加工工业价格指数 cg:生活资料价格指数 food:食品类价格指数 clothing:衣着类价格指数 roeu:一般日用品价格指数 dcg:耐用消费品价格指数 """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK6734345383111/MacPage_Service.get_pagedata?cate=price&event=3&from=0&num=600&condition=&_=6734345383111 datastr = self.__parsePage('price', 3, 600, retry, pause) js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.PPI_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, np.NaN, x)) if i != 'month': self._data[i] = self._data[i].astype(float) return self._result() def depositRate(self, retry=3, pause=0.001): """ 获取存款利率数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'date':, 'deposit_type':, ...}, ...] date :变动日期 deposit_type :存款种类 rate:利率(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK1250640915421/MacPage_Service.get_pagedata?cate=fininfo&event=2&from=0&num=600&condition=&_=1250640915421 datastr = self.__parsePage('fininfo', 2, 600, retry, pause) js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.DEPOSIT_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, '--', x)) return self._result() def loanRate(self, retry=3, pause=0.001): """ 获取贷款利率数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'date':, 'loan_type':, ...}, ...] date :执行日期 loan_type :存款种类 rate:利率(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK7542659823280/MacPage_Service.get_pagedata?cate=fininfo&event=3&from=0&num=800&condition=&_=7542659823280 datastr = self.__parsePage('fininfo', 3, 800, retry, pause) js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.LOAN_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, '--', x)) return self._result() def rrr(self, retry=3, pause=0.001): """ 获取存款准备金率数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'date':, 'before':, ...}, ...] date :变动日期 before :调整前存款准备金率(%) now:调整后存款准备金率(%) changed:调整幅度(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK8028217046046/MacPage_Service.get_pagedata?cate=fininfo&event=4&from=0&num=100&condition=&_=8028217046046 datastr = self.__parsePage('fininfo', 4, 100, retry, pause) datastr = datastr if self._PY3 else datastr.decode('gbk') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.RRR_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, '--', x)) return self._result() def moneySupply(self, retry=3, pause=0.001): """ 获取货币供应量数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'month':, 'm2':, ...}, ...] month :统计时间 m2 :货币和准货币(广义货币M2)(亿元) m2_yoy:货币和准货币(广义货币M2)同比增长(%) m1:货币(狭义货币M1)(亿元) m1_yoy:货币(狭义货币M1)同比增长(%) m0:流通中现金(M0)(亿元) m0_yoy:流通中现金(M0)同比增长(%) cd:活期存款(亿元) cd_yoy:活期存款同比增长(%) qm:准货币(亿元) qm_yoy:准货币同比增长(%) ftd:定期存款(亿元) ftd_yoy:定期存款同比增长(%) sd:储蓄存款(亿元) sd_yoy:储蓄存款同比增长(%) rests:其他存款(亿元) rests_yoy:其他存款同比增长(%) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK9019314616219/MacPage_Service.get_pagedata?cate=fininfo&event=1&from=0&num=600&condition=&_=9019314616219 datastr = self.__parsePage('fininfo', 1, 600, retry, pause) datastr = datastr if self._PY3 else datastr.decode('gbk') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.MONEY_SUPPLY_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, '--', x)) return self._result() def moneySupplyBal(self, retry=3, pause=0.001): """ 获取货币供应量(年底余额)数据 Parameters -------- retry : int, 默认 3 如遇网络等问题重复执行的次数 pause : int, 默认 0.001 重复请求数据过程中暂停的秒数,防止请求间隔时间太短出现的问题 Return -------- DataFrame or List: [{'year':, 'm2':, ...}, ...] year :统计年度 m2 :货币和准货币(亿元) m1:货币(亿元) m0:流通中现金(亿元) cd:活期存款(亿元) qm:准货币(亿元) ftd:定期存款(亿元) sd:储蓄存款(亿元) rests:其他存款(亿元) """ self._data = pd.DataFrame() # http://money.finance.sina.com.cn/mac/api/jsonp.php/SINAREMOTECALLCALLBACK3430820865181/MacPage_Service.get_pagedata?cate=fininfo&event=0&from=0&num=200&condition=&_=3430820865181 datastr = self.__parsePage('fininfo', 0, 200, retry, pause) datastr = datastr if self._PY3 else datastr.decode('gbk') js = json.loads(datastr) self._data = pd.DataFrame(js, columns=cf.MONEY_SUPPLY_BLA_COLS) for i in self._data.columns: self._data[i] = self._data[i].apply(lambda x:np.where(x is None, '--', x)) return self._result() def __parsePage(self, cate='', event=0, num=0, retry=3, pause=0.001): for _ in range(retry): time.sleep(pause) try: rdInt = Utility.random() request = self._session.get( cf.MACRO_URL % (rdInt, cate, event, num, rdInt), timeout=10 ) if self._PY3: request.encoding = 'gbk' regSym = re.compile(r'\,count:(.*?)\}') datastr = regSym.findall(request.text) datastr = datastr[0] datastr = datastr.split('data:')[1] except Exception as e: print(e) else: return datastr raise IOError(cf.NETWORK_URL_ERROR_MSG) def shibor(self, year=None): """ 获取上海银行间同业拆放利率 Parameters ------ year:年份(int) Return ------ DataFrame or List: [{'date':, 'ON':, ...}, ...] date:日期 ON:隔夜拆放利率 1W:1周拆放利率 2W:2周拆放利率 1M:1个月拆放利率 3M:3个月拆放利率 6M:6个月拆放利率 9M:9个月拆放利率 1Y:1年拆放利率 """ self._data = pd.DataFrame() lab = cf.SHIBOR_TYPE['Shibor'] # http://www.shibor.org/shibor/web/html/downLoad.html?nameNew=Historical_Shibor_Data_2018.xls&downLoadPath=data&nameOld=Shibor数据2018.xls&shiborSrc=http://www.shibor.org/shibor/ self._data = self.__parseExcel(year, 'Shibor', lab, cf.SHIBOR_COLS) return self._result() def shiborQuote(self, year=None): """ 获取Shibor银行报价数据 Parameters ------ year:年份(int) Return ------ DataFrame or List: [{'date':, 'bank':, ...}, ...] date:日期 bank:报价银行名称 ON:隔夜拆放利率 1W:1周拆放利率 2W:2周拆放利率 1M:1个月拆放利率 3M:3个月拆放利率 6M:6个月拆放利率 9M:9个月拆放利率 1Y:1年拆放利率 """ self._data = pd.DataFrame() lab = cf.SHIBOR_TYPE['Quote'] # http://www.shibor.org/shibor/web/html/downLoad.html?nameNew=Historical_Quote_Data_2018.xls&downLoadPath=data&nameOld=报价数据2018.xls&shiborSrc=http://www.shibor.org/shibor/ self._data = self.__parseExcel(year, 'Quote', lab, cf.QUOTE_COLS) return self._result() def shiborMa(self, year=None): """ 获取Shibor均值数据 Parameters ------ year:年份(int) Return ------ DataFrame or List: [{'date':, 'ON_5':, ...}, ...] date:日期 其它分别为各周期5、10、20均价 """ self._data =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from decisionengine.framework.modules import Source PRODUCES = ["provisioner_resource_spot_prices"] class AWSSpotPrice(Source.Source): def __init__(self, *args, **kwargs): pass def produces(self, schema_id_list): return PRODUCES # The DataBlock given to the source is t=0 def acquire(self): resource_list = [ {"ResourceName": "AWS1", "SpotPrice": 1.}, {"ResourceName": "AWS2", "SpotPrice": 2.}, {"ResourceName": "AWS3", "SpotPrice": 2.}, {"ResourceName": "AWS4", "SpotPrice": 1.}, {"ResourceName": "AWS5", "SpotPrice": 2.} ] resource_keys = resource_list[0].keys() pandas_data = {} for key in resource_keys: pandas_data[key] = pd.Series([d[key] for d in resource_list]) return {"provisioner_resource_spot_prices":
pd.DataFrame(pandas_data)
pandas.DataFrame
# Loading Python libraries import numpy as np import pandas as pd import scipy.stats as stats import statsmodels.api as sm import statsmodels.stats.multicomp as multi from statsmodels.formula.api import ols from IPython.display import Markdown #%matplotlib inline import matplotlib.pyplot as plt import seaborn as sns #sns.set() #pd.options.display.float_format = '{:.3f}'.format #np.set_printoptions(precision=3, suppress=True) # Statistics functions def parammct(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return parammct_df = pd.DataFrame() for value in pd.unique(data[independent]): mean = data[dependent][data[independent]==value].mean() stdev = data[dependent][data[independent]==value].std() n = data[dependent][data[independent]==value].count() sdemean = stdev/np.sqrt(n) ci = 1.96*sdemean lowerboundci = mean-ci upperboundci = mean+ci parammct_df[value] = pd.Series([mean, stdev, n, sdemean, lowerboundci, upperboundci], index = ['Mean','SD','n','SEM','Lower bound CI', 'Upper bound CI']) return parammct_df def non_parammct(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return non_parammct_df = pd.DataFrame() for value in pd.unique(data[independent]): median = data[dependent][data[independent]==value].median() minimum = data[dependent][data[independent]==value].quantile(0) q25 = data[dependent][data[independent]==value].quantile(0.25) q75 = data[dependent][data[independent]==value].quantile(0.75) maximum = data[dependent][data[independent]==value].quantile(1) n = data[dependent][data[independent]==value].count() non_parammct_df[value] = pd.Series([median, minimum, q25,q75, maximum, n], index = ['Median', 'Minimum', 'Lower bound IQR', 'Upper bound IQR', 'Maximum', 'n']) return non_parammct_df def histograms(data=None, independent=None, dependent=None): independent = str(independent) dependent = str(dependent) if input_check_numerical_categorical(data, independent, dependent): return for value in pd.unique(data[independent]): sns.distplot(data[dependent][data[independent]==value], fit=stats.norm, kde=False) plt.title(dependent + ' by ' + independent + '(' + str(value).lower() + ')', fontweight='bold', fontsize=16) plt.ylabel('Frequency', fontsize=14) plt.xlabel(dependent, fontsize=14) plt.show() return def t_test(data=None, independent=None, dependent=None): pd.set_eng_float_format(accuracy=3, use_eng_prefix=False) independent_groups = pd.unique(data[independent]) if len(independent_groups)>2: print('There are more than 2 groups in the independent variable') print('t-test is not the correct statistical test to run in that circumstance,') print('consider running an ANOVA') return mct = parammct(data=data, independent=independent, dependent=dependent) t_test_value, p_value = stats.ttest_ind(data[dependent][data[independent] == independent_groups[0]], data[dependent][data[independent] == independent_groups[1]]) difference_mean = np.abs(mct.loc['Mean'][0] - mct.loc['Mean'][1]) pooled_sd = np.sqrt( ( ((mct.loc['n'][0]-1)*mct.loc['SD'][0]**2) + ((mct.loc['n'][1]-1)*mct.loc['SD'][1]**2) ) / (mct.loc['n'][0] + mct.loc['n'][1] - 2) ) sedifference = pooled_sd * np.sqrt( (1/mct.loc['n'][0]) + (1/mct.loc['n'][1]) ) difference_mean_ci1 = difference_mean + (t_test_value * sedifference) difference_mean_ci2 = difference_mean - (t_test_value * sedifference) if difference_mean_ci1>difference_mean_ci2: difference_mean_cilower = difference_mean_ci2 difference_mean_ciupper = difference_mean_ci1 else: difference_mean_cilower = difference_mean_ci1 difference_mean_ciupper = difference_mean_ci2 cohend = difference_mean / pooled_sd t_test_result= pd.DataFrame ([difference_mean, sedifference, t_test_value, p_value, difference_mean_cilower, difference_mean_ciupper, cohend], index = ['Difference between means', 'SE difference', 't-test', 'p-value', 'Lower bound difference CI', 'Upper bound difference CI', 'Cohen\'s d'], columns=['Value']) return t_test_result def anova(data=None, independent=None, dependent=None):
pd.set_eng_float_format(accuracy=3, use_eng_prefix=False)
pandas.set_eng_float_format
#!/usr/bin/env python # coding: utf-8 # In[ ]: # In[ ]: ### Install Requirement get_ipython().system("pip install -r requirements.txt") # In[98]: get_ipython().run_line_magic("load_ext", "autoreload") get_ipython().run_line_magic("autoreload", "") get_ipython().run_line_magic("matplotlib", "inline") get_ipython().run_line_magic("config", "IPCompleter.greedy=True") import gc import logging import os import warnings from datetime import datetime import numpy as np import pandas as pd #### CatbOost import catboost as cb import lightgbm as lgb import matplotlib.pyplot as plt ### Pandas Profiling for features # !pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip import pandas_profiling as pp import seaborn as sns import shap from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import mean_squared_error, roc_auc_score, roc_curve from sklearn.model_selection import KFold, StratifiedKFold ### MLP Classifier from sklearn.neural_network import MLPClassifier from sklearn.svm import SVC from tqdm import tqdm_notebook from util_feature import * from util_model import * warnings.filterwarnings("ignore") # In[64]: print("ok") # # Data Loading, basic profiling # In[3]: folder = os.getcwd() + "/" # In[4]: df = pd.read_csv(folder + "/data/address_matching_data.csv") df.head(5) # In[5]: df.describe() # In[6]: df.columns, df.dtypes # In[7]: profile = df.profile_report(title="Pandas Profiling Report") profile.to_file(output_file="output.html") colexclude = profile.get_rejected_variables(threshold=0.98) colexclude # In[8]: # In[ ]: # # Column selection by type # In[11]: colid = "id" colnum = [ "name_levenshtein_simple", "name_trigram_simple", "name_levenshtein_term", "name_trigram_term", "city_levenshtein_simple", "city_trigram_simple", "city_levenshtein_term", "city_trigram_term", "zip_levenshtein_simple", "zip_trigram_simple", "zip_levenshtein_term", "zip_trigram_term", "street_levenshtein_simple", "street_trigram_simple", "street_levenshtein_term", "street_trigram_term", "website_levenshtein_simple", "website_trigram_simple", "website_levenshtein_term", "website_trigram_term", "phone_levenshtein", "phone_trigram", "fax_levenshtein", "fax_trigram", "street_number_levenshtein", "street_number_trigram", ] colcat = ["phone_equality", "fax_equality", "street_number_equality"] coltext = [] coldate = [] coly = "is_match" colall = colnum + colcat + coltext """ dfnum, dfcat, dfnum_bin, dfnum_binhot, dfcat_hot colnum, colcat, coltext, colnum_bin, colnum_binhot, """ print(colall) # In[ ]: # In[ ]: # # Data type normalization, Encoding process (numerics, category) # In[28]: # Normalize to NA, NA Handling df = df.replace("?", np.nan) # In[29]: ### colnum procesing for x in colnum: df[x] = df[x].astype("float32") print(df.dtypes) # In[30]: ##### Colcat processing colcat_map = pd_colcat_mapping(df, colcat) for col in colcat: df[col] = df[col].apply(lambda x: colcat_map["cat_map"][col].get(x)) print(df[colcat].dtypes, colcat_map) # In[74]: # # Data Distribution after encoding/ data type normalization # In[31]: #### ColTarget Distribution coly_stat = pd_stat_distribution(df[["id", coly]], subsample_ratio=1.0) coly_stat # In[ ]: # In[ ]: # In[32]: #### Col numerics distribution colnum_stat = pd_stat_distribution(df[colnum], subsample_ratio=0.6) colnum_stat # In[ ]: # In[33]: #### Col stats distribution colcat_stat = pd_stat_distribution(df[colcat], subsample_ratio=0.3) colcat_stat # In[ ]: # In[ ]: # # Feature processing (strategy 1) # In[16]: ### BAcKUP data before Pre-processing dfref = copy.deepcopy(df) print(dfref.shape) # In[27]: df = copy.deepcopy(dfref) # In[22]: ## Map numerics to Category bin dfnum, colnum_map = pd_colnum_tocat( df, colname=colnum, colexclude=None, colbinmap=None, bins=5, suffix="_bin", method="" ) print(colnum_map) # In[37]: colnum_bin = [x + "_bin" for x in list(colnum_map.keys())] print(colnum_bin) # In[38]: dfnum[colnum_bin].head(7) # In[39]: ### numerics bin to One Hot dfnum_hot = pd_col_to_onehot(dfnum[colnum_bin], colname=colnum_bin, returncol=0) colnum_hot = list(dfnum_hot.columns) dfnum_hot.head(10) # In[202]: # In[40]: dfcat_hot = pd_col_to_onehot(df[colcat], colname=colcat, returncol=0) colcat_hot = list(dfcat_hot.columns) dfcat_hot.head(5) # In[ ]: # In[ ]: # In[ ]: # # # Train data preparation # In[67]: #### Train data preparation dfX = pd.concat((dfnum_hot, dfcat_hot), axis=1) colX = list(dfX.columns) X = dfX.values yy = df[coly].values Xtrain, Xtest, ytrain, ytest = train_test_split(X, yy, random_state=42, test_size=0.5, shuffle=True) print(Xtrain.shape, Xtest.shape, colX) # In[ ]: # In[203]: 0 # # Model evaluation # In[ ]: # In[42]: ### Baseline : L2 penalty to reduce overfitting clf_log = sk.linear_model.LogisticRegression(penalty="l2", class_weight="balanced") # In[43]: clf_log, dd = sk_model_eval_classification(clf_log, 1, Xtrain, ytrain, Xtest, ytest) # In[92]: sk_model_eval_classification_cv(clf_log, X, yy, test_size=0.5, ncv=3) # In[44]: clf_log_feat = sk_feature_impt_logis(clf_log, colX) clf_log_feat # In[208]: # In[44]: 1 # In[96]: ### Light GBM clf_lgb = lgb.LGBMClassifier( learning_rate=0.125, metric="l2", max_depth=15, n_estimators=50, objective="binary", num_leaves=38, njobs=-1, ) # In[97]: clf_lgb, dd_lgb = sk_model_eval_classification(clf_lgb, 1, Xtrain, ytrain, Xtest, ytest) # In[98]: shap.initjs() dftest = pd.DataFrame(columns=colall, data=Xtest) explainer = shap.TreeExplainer(clf_lgb) shap_values = explainer.shap_values(dftest) # visualize the first prediction's explanation (use matplotlib=True to avoid Javascript) shap.force_plot(explainer.expected_value, shap_values[0, :], dftest.iloc[0, :]) # In[ ]: # visualize the training set predictions # shap.force_plot(explainer.expected_value, shap_values, dftest) # Plot summary_plot as barplot: # shap.summary_plot(shap_values, Xtest, plot_type='bar') # In[112]: lgb_feature_imp = pd.DataFrame( sorted(zip(clf_lgb.feature_importances_, colall)), columns=["value", "feature"] ) lgb_feature_imp = lgb_feature_imp.sort_values("value", ascending=0) print(lgb_feature_imp) plotbar( lgb_feature_imp.iloc[:10, :], colname=["value", "feature"], title="feature importance", savefile="lgb_feature_imp.png", ) # In[118]: kf = StratifiedKFold(n_splits=3, shuffle=True) # partially based on https://www.kaggle.com/c0conuts/xgb-k-folds-fastai-pca clf_list = [] for itrain, itest in kf.split(X, yy): print("###") Xtrain, Xval = X[itrain], X[itest] ytrain, yval = yy[itrain], yy[itest] clf_lgb.fit(Xtrain, ytrain, eval_set=[(Xval, yval)], early_stopping_rounds=20) clf_list.append(clf_lgb) # In[122]: for i, clfi in enumerate(clf_list): print(i) clf_lgbi, dd_lgbi = sk_model_eval_classification(clfi, 0, Xtrain, ytrain, Xtest, ytest) # In[4]: def np_find_indice(v, x): for i, j in enumerate(v): if j == x: return i return -1 def col_getnumpy_indice(colall, colcat): return [np_find_indice(colall, x) for x in colcat] # In[7]: colcat_idx = col_getnumpy_indice(colall, colcat) clf_cb = cb.CatBoostClassifier( iterations=1000, depth=8, learning_rate=0.02, loss_function="Logloss", eval_metric="AUC", random_seed=42, rsm=0.2, # features subsample od_type="Iter", # early stopping odwait = 100, # early stopping verbose=100, l2_leaf_reg=20, # regularisation ) # In[8]: # clf_cb, dd_cb = sk_model_eval_classification(clf_cb, 1, # Xtrain, ytrain, Xtest, ytest) clf_cb.fit( Xtrain, ytrain, eval_set=(Xtest, ytest), cat_features=np.arange(0, Xtrain.shape[1]), use_best_model=True, ) # In[ ]: # In[ ]: # In[123]: # Fitting a SVM clf_svc = SVC(C=1.0, probability=True) # since we need probabilities clf_svc, dd_svc = sk_model_eval_classification(clf_svc, 1, Xtrain, ytrain, Xtest, ytest) # In[228]: # In[231]: # In[ ]: # In[ ]: # In[ ]: # In[54]: clf_nn = MLPClassifier( hidden_layer_sizes=(50,), max_iter=80, alpha=1e-4, activation="relu", solver="adam", verbose=10, tol=1e-4, random_state=1, learning_rate_init=0.1, early_stopping=True, validation_fraction=0.2, ) # In[55]: clf_nn, dd_nn = sk_model_eval_classification(clf_nn, 1, Xtrain, ytrain, Xtest, ytest) # # Feature selection # # In[ ]: ### Feature Selection (reduce over-fitting) # Pre model feature selection (sometimes some features are useful even with low variance....) # Post model feature selection # In[59]: ### Model independant Selection colX_kbest = sk_model_eval_feature( clf_nn, method="f_classif", colname=colX, kbest=50, Xtrain=Xtrain, ytrain=ytrain ) print(colX_kbest) # In[99]: clf_log_feat # In[80]: clf_log.fit(dfX[colX].values, df[coly].values) # In[100]: feat_eval = sk_feature_evaluation( clf_log, dfX, 30, colname_best=clf_log_feat.feature.values, dfy=df[coly] ) # In[95]: feat_eval # # Ensembling # In[ ]: # In[54]: clf_list = [] clf_list.append(("clf_log", clf_log)) clf_list.append(("clf_lgb", clf_lgb)) clf_list.append(("clf_svc", clf_svc)) clf_ens1 = VotingClassifier(clf_list, voting="soft") # Soft is required print(clf_ens1) # In[55]: sk_model_eval_classification(clf_ens1, 1, Xtrain, ytrain, Xtest, ytest) # In[ ]: # In[ ]: # In[ ]: # # Predict values # In[129]: dft =
pd.read_csv(folder + "/data/address_matching_data.csv")
pandas.read_csv
''' Open Power System Data Time series Datapackage read.py : read time series files ''' import pytz import yaml import os import sys import numpy as np import pandas as pd import logging from datetime import datetime, date, time, timedelta import xlrd from xml.sax import ContentHandler, parse from .excel_parser import ExcelHandler logger = logging.getLogger(__name__) logger.setLevel('DEBUG') def read_entso_e_transparency( areas, filepath, dataset_name, headers, cols, stacked, unstacked, append_headers, **kwargs): ''' Read a .csv file from ENTSO-E TRansparency into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read dataset_name : str Name of variable, e.g. ``solar`` url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe cols : dict A mapping of of columnnames to use from input file and a new name to rename them to. The new name is the header level whose corresponding values are specified in that column stacked : list List of strings indicating the header levels that are reported column-wise in the input files unstacked One strings indicating the header level that is reported row-wise in the input files append_headers: dict Map of header levels and values to append to Multiindex kwargs: dict placeholder for further named function arguments Returns ---------- df: pandas.DataFrame The content of one file from ENTSO-E Transparency ''' df_raw = pd.read_csv( filepath, sep='\t', encoding='utf-16', header=0, index_col='timestamp', parse_dates={'timestamp': ['DateTime']}, date_parser=None, dayfirst=False, decimal='.', thousands=None, usecols=cols.keys(), ) # rename columns to comply with other data df_raw.rename(columns=cols, inplace=True) if dataset_name == 'Actual Generation per Production Type': # keep only renewables columns renewables = { 'Solar': 'solar', 'Wind Onshore': 'wind_onshore', 'Wind Offshore': 'wind_offshore' } df_raw = df_raw[df_raw['variable'].isin(renewables.keys())] df_raw.replace({'variable': renewables}, inplace=True) if dataset_name == 'Day-ahead Prices': # Omit polish price data reported in EUR (keeping PLN prices) # (Before 2017-03-02, the data is very messy) no_polish_euro = ~( (df_raw['region'] == 'PSE SA BZ') & (df_raw.index < pd.to_datetime('2017-03-02 00:00:00'))) df_raw = df_raw.loc[no_polish_euro] if dataset_name in ['Actual Total Load', 'Day-ahead Total Load Forecast']: # Zero load is highly unlikely. Such occurences are actually NaNs df_raw['load'].replace(0, np.nan, inplace=True) # keep only entries for selected geographic entities as specified in # areas.csv area_filter = areas['primary AreaName ENTSO-E'].dropna() df_raw = df_raw.loc[df_raw['region'].isin(area_filter)] # based on the AreaName column, map the area names used throughout OPSD lookup = areas.set_index('primary AreaName ENTSO-E')['area ID'].dropna() lookup = lookup[~lookup.index.duplicated()] df_raw['region'] = df_raw['region'].map(lookup) dfs = {} for res in ['15', '30', '60']: df = (df_raw.loc[df_raw['resolution'] == 'PT' + res + 'M', :] .copy().sort_index(axis='columns')) df = df.drop(columns=['resolution']) # DST-handling # Hours 2-3 of the DST-day in March are both labelled 3:00, with no possibility # to distinguish them. We have to delete both dst_transitions_spring = [d.replace(hour=3, minute=m) for d in pytz.timezone('Europe/Paris')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3 for m in [0, 15, 30, 45]] df = df.loc[~df.index.isin(dst_transitions_spring)] # juggle the index and columns df.set_index(stacked, append=True, inplace=True) # at this point, only the values we are intereseted in are left as # columns df.columns.rename(unstacked, inplace=True) df = df.unstack(stacked) # keep only columns that have at least some nonzero values df = df.loc[:, (df > 0).any(axis=0)] # add source, url and unit to the column names. # Note: pd.concat inserts new MultiIndex values infront of the old ones df = pd.concat([df], keys=[tuple(append_headers.values())], names=append_headers.keys(), axis='columns') # reorder and sort columns df = df.reorder_levels(headers, axis=1) dfs[res + 'min'] = df return dfs def read_pse(filepath): ''' Read a .csv file from PSE into a DataFrame. Parameters ---------- filepath : str Directory path of file to be read url : str URL linking to the source website where this data comes from headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe Returns ---------- df: pandas.DataFrame The content of one file from PSE ''' df = pd.read_csv( filepath, sep=';', encoding='cp1250', header=0, index_col=None, parse_dates=None, date_parser=None, dayfirst=False, decimal=',', thousands=None, # hours are indicated by their ending time. During fall DST, # UTC 23:00-00:00 = CEST 1:00-2:00 is indicated by '02', # UTC 00:00-01:00 = CEST 2:00-3:00 is indicated by '02A', # UTC 01:00-02:00 = CET 2:00-3:00 is indicated by '03'. # regular hours require backshifting by 1 period converters={ 'Time': lambda x: '2:00' if x == '2A' else str(int(x) - 1) + ':00' } ) # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2) for d in pytz.timezone('Europe/Warsaw')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3] # Account for an error where an hour is jumped in the data, incrementing # the hour by one #time_int = df['Time'].str[:-3].astype(int) # if (time_int time_int.shift(1) - 1). # if (time_int == 24).any(): # logger.info(filepath) # df = df[time_int != 24] if df['Date'][0] == 20130324: df['Time'] = [str(num) + ':00' for num in range(24)] # The hour from 01:00 - 02:00 (CET) should by PSE's logic be indexed # by "02:00" (the endpoint), but at DST day in spring they use "03:00" in # the files. Our routine requires it to be "01:00" (the start point). df['proto_timestamp'] = pd.to_datetime( df['Date'].astype(str) + ' ' + df['Time']) slicer = df['proto_timestamp'].isin(dst_transitions_spring) df.loc[slicer, 'Time'] = '1:00' # create the actual timestamp from the corrected "Date"-column df.index = pd.to_datetime(df['Date'].astype(str) + ' ' + df['Time']) # DST-handling # 'ambiguous' refers to how the October dst-transition hour is handled. # 'infer' will attempt to infer dst-transition hours based on order. df.index = df.index.tz_localize('Europe/Warsaw', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_ceps(filepath): '''Read a file from CEPS into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=2, parse_dates=True, dayfirst=True, skiprows=None, index_col=0, usecols=[0, 1, 2] ) # DST-handling df.index = df.index.tz_localize('Europe/Prague', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_elia(filepath): '''Read a file from Elia into a DataFrame''' df = pd.read_excel( io=filepath, header=3, parse_dates={'timestamp': ['DateTime']}, dayfirst=True, index_col='timestamp', usecols=None ) # DST handling df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_energinet_dk(filepath): '''Read a file from energinet.dk into a DataFrame''' df = pd.read_excel( io=filepath, header=2, # the column headers are taken from 3rd row. # 2nd row also contains header info like in a multiindex, # i.e. wether the colums are price or generation data. # However, we will make our own columnnames below. # Row 3 is enough to unambiguously identify the columns skiprows=None, index_col=None, parse_dates=True, dayfirst=False, usecols=None, # None means: parse all columns thousands=',', # hours in 2nd column run from 1-24, we need 0-23: # (converters seem not to work in combination with parse_dates) converters={1: lambda x: x - 1} ) # Create the timestamp column and set as index df.index = df.iloc[:, 0] + pd.to_timedelta(df.iloc[:, 1], unit='h') # DST-handling # Create a list of spring-daylight savings time (DST)-transitions dst_transitions_spring = [ d.replace(hour=2) for d in pytz.timezone('Europe/Copenhagen')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3] # Drop 3rd hour for (spring) DST-transition from df. df = df[~df.index.isin(dst_transitions_spring)] # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.ones(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Copenhagen', ambiguous=dst_arr) df.index = df.index.tz_convert(None) return df def read_entso_e_statistics(filepath,): '''Read a file from ENTSO-E into a DataFrame''' df = pd.read_excel( io=filepath, header=18, usecols='A, B, G, K, L, N, P:AU' ) # rename columns # According to the specific national considerations, GB data reflects the # whole UK including Northern Ireland since 2016 renamer = {df.columns[0]: 'date', df.columns[1]: 'time', 'GB': 'GB_UKM'} df.rename(columns=renamer, inplace=True) # Zero load is highly unlikely. Such occurences are actually NaNs df.replace(0, np.nan, inplace=True) # Construct the index and set timezone # for some reason, the 'date' column has already been parsed to datetime df['date'] = df['date'].fillna(method='ffill').dt.strftime('%Y-%m-%d') df.index = pd.to_datetime(df.pop('date') + ' ' + df.pop('time').str[:5]) # DST-handling df.index = df.index.tz_localize('Europe/Brussels', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_entso_e_portal(filepath): '''Read a file from the old ENTSO-E Data Portal into a DataFrame''' df = pd.read_excel( io=filepath, header=3, # 0 indexed, so the column names are actually in the 4th row skiprows=None, # create MultiIndex from first 2 columns ['date', 'Country'] index_col=[0, 1], parse_dates={'date': ['Year', 'Month', 'Day']}, dayfirst=False, usecols=None, # None means: parse all columns ) # The "Coverage ratio"-column specifies for some countries scaling factor # with which we should upscale the reported values df = df.divide(df.pop('Coverage ratio'), axis='index') * 100 # The original data has days and countries in the rows and hours in the # columns. This rearranges the table, mapping hours on the rows and # countries on the columns. df.columns.names = ['hour'] df = df.stack(level='hour').unstack(level='Country').reset_index() # Create the timestamp column and set as index df.index = df.pop('date') + pd.to_timedelta(df.pop('hour'), unit='h') # DST-handling # Delete values in DK and FR that should not exist df = df.loc[df.index != '2015-03-29 02:00', :] # Delete values in DK that are obviously twice as high as they should be df.loc[df.index.isin(['2014-10-26 02:00:00', '2015-10-25 02:00:00']), 'DK'] = np.nan # Delete values in UK that are all zero except for one day df.loc[(df.index.year == 2010) & (df.index.month == 1), 'GB'] = np.nan # Delete values in CY that are mostly zero but not always df.loc[(df.index.year < 2013), 'CY'] = np.nan # Zero load is highly unlikely. Such occurences are actually NaNs df.replace(0, np.nan, inplace=True) # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.ones(len(df.index), dtype=bool) df.index = df.index.tz_localize('CET', ambiguous=dst_arr) df.index = df.index.tz_convert(None) # Rename regions to comply with naming conventions renamer = {'DK_W': 'DK_1', 'UA_W': 'UA_west', 'NI': 'GB_NIR', 'GB': 'GB_GBN'} df.rename(columns=renamer, inplace=True) # Calculate load for whole UK from Great Britain and Northern Ireland data df['GB_UKM'] = df['GB_GBN'].add(df['GB_NIR']) return df def read_hertz(filepath, dataset_name): '''Read a file from 50Hertz into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=3, index_col='timestamp', parse_dates={'timestamp': ['Datum', 'Von']}, date_parser=None, dayfirst=True, decimal=',', thousands='.', # truncate values in 'time' column after 5th character converters={'Von': lambda x: x[:5]}, ) # Wind onshore if dataset_name == 'wind generation_actual pre-offshore': df['wind_onshore'] = df['MW'] # Until 2006, and in 2015 (except for wind_generation_pre-offshore), # during the fall dst-transistion, only the # wintertime hour (marked by a B in the data) is reported, the summertime # hour, (marked by an A) is missing in the data. # dst_arr is a boolean array consisting only of "False" entries, telling # python to treat the hour from 2:00 to 2:59 as wintertime. # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=2) # Conform index to UTC if (pd.to_datetime(df.index.values[0]).year not in [2005, 2006, 2015] or (dataset_name == 'wind generation_actual pre-offshore' and pd.to_datetime(df.index.values[0]).year == 2015)): check_dst(df.index, autumn_expect=2) df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') else: dst_arr = np.zeros(len(df.index), dtype=bool) check_dst(df.index, autumn_expect=1) df.index = df.index.tz_localize('Europe/Berlin', ambiguous=dst_arr) df.index = df.index.tz_convert(None) variable, attribute = dataset_name.split(' ')[:2] # Since 2016, wind data has an aditional column for offshore. # Baltic 1 has been producing since 2011-05-02 and Baltic2 since # early 2015 (source: Wikipedia) so it is probably not correct that # 50Hertz-Wind data pre-2016 is only onshore. Maybe we can ask at # 50Hertz directly. return df def read_amprion(filepath, dataset_name): '''Read a file from Amprion into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=0, index_col='timestamp', parse_dates={'timestamp': ['Datum', 'Uhrzeit']}, date_parser=None, dayfirst=True, decimal=',', thousands=None, # Truncate values in 'time' column after 5th character. converters={'Uhrzeit': lambda x: x[:5]}, ) # Wind onshore if dataset_name == 'wind': df['wind_onshore'] = df['Online Hochrechnung [MW]'] # DST-Handling: # In the years after 2009, during the fall dst-transistion, only the # summertime hour is reported, the wintertime hour is missing in the data. # dst_arr is a boolean array consisting only of "True" entries, telling # python to treat the hour from 2:00 to 2:59 as summertime. # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=0) index1 = df.index[df.index.year >= 2018] index1 = index1.tz_localize('Europe/Berlin', ambiguous='infer') index2 = df.index[df.index.year < 2018] dst_arr = np.ones(len(index2), dtype=bool) index2 = index2.tz_localize('Europe/Berlin', ambiguous=dst_arr) df.index = index2.append(index1) df.index = df.index.tz_convert(None) return df def read_tennet(filepath, dataset_name): '''Read a file from TenneT into a DataFrame''' df = pd.read_csv( filepath, sep=';', encoding='latin_1', header=3, index_col=False, parse_dates=False, date_parser=None, dayfirst=True, thousands=None, converters=None, ) # Wind onshore if dataset_name == 'wind': # Calculate onshore wind-generation df['wind_onshore'] = df['tatsächlich [MW]'].sub( df['Anteil Offshore [MW]']) # Construct the datetime-inex renamer = {'Datum': 'date', 'Position': 'pos'} df.rename(columns=renamer, inplace=True) df['date'].fillna(method='ffill', limit=100, inplace=True) # Check the rows for irregularities for i, row in df.iterrows(): # there must not be more than 100 quarter-hours in a day if row['pos'] > 100: logger.warning('%s th quarter-hour at %s, position %s', row['pos'], row['date'], i) # On the day in March when summertime begins, shift the data forward by # 1 hour, beginning with the 9th quarter-hour, so the index runs again # up to 96 elif (row['pos'] == 92 and ( (i == len(df.index) - 1) or (df['pos'][i + 1] == 1))): slicer = df[(df['date'] == row['date']) & (df['pos'] >= 9)].index df.loc[slicer, 'pos'] = df['pos'] + 4 # Instead of having the quarter-hours' index run up to 100, we want # to have it set back by 1 hour beginning from the 13th # quarter-hour, ending at 96 elif row['pos'] == 100: # True when summertime ends in October slicer = df[(df['date'] == row['date']) & (df['pos'] >= 13)].index df.loc[slicer, 'pos'] = df['pos'] - 4 # Compute timestamp from position and generate datetime-index df['hour'] = (np.trunc((df['pos'] - 1) / 4)).astype(int).astype(str) df['minute'] = (((df['pos'] - 1) % 4) * 15).astype(int).astype(str) df.index = pd.to_datetime( df['date'] + ' ' + df['hour'] + ':' + df['minute'], dayfirst=True) # DST-handling df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_transnetbw(filepath, dataset_name): '''Read a file from TransnetBW into a DataFrame''' df = pd.read_csv( filepath, sep=';', header=0, index_col=None, parse_dates=None, # {'timestamp': ['Datum von', 'Uhrzeit von']}, date_parser=None, dayfirst=True, decimal=',', thousands=None, converters=None, ) # Wind onshore if dataset_name == 'wind': df['wind_onshore'] = df['Ist-Wert (MW)'] # rename columns renamer = {'Datum von': 'date', 'Uhrzeit von': 'time'} df.rename(columns=renamer, inplace=True) # DST-handling # timestamp 01:45 just before spring DST transistion has been falsely set to # 3:45, which we correct here slicer = (df['time'] == '03:45') & (df['time'].shift(periods=1) == '01:30') df.loc[slicer, 'time'] = '01:45' df.index = pd.to_datetime(df['date'] + ' ' + df['time'], dayfirst=True) dst_arr = np.zeros(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Berlin', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_opsd(filepath, param_dict, headers): '''Read a file from OPSD into a DataFrame''' df = pd.read_csv( filepath, sep=',', header=0, index_col='timestamp', parse_dates={'timestamp': ['day']}, date_parser=None, dayfirst=False, decimal='.', thousands=None, converters=None, ) # Split the colname after the first "_" cols = [(col_name.split('_')[0], '_'.join(col_name.split('_')[1:-1])) for col_name in df.columns] df.columns = pd.MultiIndex.from_tuples(cols) # Keep only wind and solar keep = ['wind', 'wind_onshore', 'wind_offshore', 'solar'] df = df.loc[:, (slice(None), keep)] # The capacities data only has one entry per day, which pandas # interprets as 00:00h. We will broadcast the dayly data for # all quarter-hours of the day until the next given data point. # For this, we we expand the index so it reaches to 23:59 of # the last day, not only 00:00. last = pd.to_datetime([df.index[-1]]) + timedelta(days=1, minutes=59) until_last = df.index.append(last).rename('timestamp') df = df.reindex(index=until_last, method='ffill') df = df.loc[(2005 <= df.index.year) & (df.index.year <= 2019)] dfs = {} for timezone, res, ddf in [ ('CET', '15min', df.loc[:, ['DE']]), ('WET', '30min', df.loc[:, ['GB-UKM', 'GB-GBN', 'GB-NIR']]), ('CET', '60min', df.loc[:, ['CH', 'DK', 'SE']])]: # DST-handling ddf.index = ddf.index.tz_localize(timezone).tz_convert(None) ddf = ddf.resample(res).ffill().round(0) # Create the MultiIndex cols = [tuple(param_dict['colmap'][col_name[0]][level] .format(variable=col_name[1].lower()) for level in headers) for col_name in ddf.columns] ddf.columns = pd.MultiIndex.from_tuples(cols, names=headers) dfs[res] = ddf return dfs def read_svenska_kraftnaet(filepath, dataset_name): '''Read a file from Svenska Kraftnät into a DataFrame''' if dataset_name in ['wind_solar_1', 'wind_solar_2']: skip = 4 cols = {0: 'date', 1: 'hour', 2: 'load', 3: 'wind'} else: if dataset_name == 'wind_solar_4': skip = 5 else: skip = 7 cols = {0: 'timestamp', 1: 'load', 2: 'wind', 8: 'solar'} df = pd.read_excel( io=filepath, # read the last sheet (in some years, # there are hidden sheets that would cause errors) sheet_name=-1, header=None, skiprows=skip, index_col=None, usecols=cols.keys(), names=cols.values() ) if dataset_name in ['wind_solar_1', 'wind_solar_2']: # in 2009 there is a row below the table for the sums that we don't # want to read in df = df[df['date'].notnull()] df.index = pd.to_datetime( df['date'].astype(int).astype(str) + ' ' + df['hour'].astype(int).astype(str).str.replace('00', '') + ':00', dayfirst=False, infer_datetime_format=True) else: # in 2011 there is a row below the table for the sums that we don't # want to read in df = df[((df['timestamp'].notnull()) & (df['timestamp'].astype(str) != 'Tot summa GWh'))] df.index = pd.to_datetime(df['timestamp'], dayfirst=True) # The timestamp ("Tid" in the original) gives the time without # daylight savings time adjustments (normaltid). To convert to UTC, # one hour has to be deducted df.index = df.index - timedelta(hours=1) # + pd.offsets.Hour(-1) return df def read_apg(filepath): '''Read a file from APG into a DataFrame''' df = pd.read_csv( filepath, sep=';', encoding='latin_1', header=0, index_col='timestamp', parse_dates={'timestamp': ['Von']}, dayfirst=True, decimal=',', thousands='.', # Format of the raw_hour-column is normally is 01:00:00, 02:00:00 etc. # throughout the year, but 3A:00:00, 3B:00:00 for the (possibly # DST-transgressing) 3rd hour of every day in October, we truncate the # hours column after 2 characters and replace letters which are there to # indicate the order during fall DST-transition. converters={'Von': lambda x: str(x).replace('A', '').replace('B', '')} ) # Correct column names df.rename(columns=lambda x: x.replace(' ', ' '), inplace=True) # DST-handling df.index = df.index.tz_localize('Europe/Vienna', ambiguous='infer') df.index = df.index.tz_convert(None) return df def read_rte(filepath): '''Read a file from RTE into a DataFrame''' cols = ['Date', 'Heure', 'Consommation (MW)', 'Prévision J-1 (MW)', 'Eolien (MW)', 'Solaire (MW)'] df = pd.read_csv( filepath, sep=';', encoding='utf-8', header=0, index_col='timestamp', # there eis also a column with UTC but it is incorrect parse_dates={'timestamp': ['Date', 'Heure']}, dayfirst=True, usecols=cols ) # filter out quarter-hourly oberservations and sort the index df = df.loc[df.index.minute.isin([0, 30]), :] df.sort_index(axis='index', inplace=True) # DST handling # drop 1 hour after spring dst as it contains inconsistent data (copy of # hour before). The 1 hour will later be interpolated dst_transitions_spring = [ dd for d in pytz.timezone('Europe/Paris')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 3 for dd in (d.replace(hour=2, minute=0), d.replace(hour=2, minute=30))] df = df.loc[~df.index.isin(dst_transitions_spring)] # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=1) # Conform index to UTC dst_arr = np.zeros(len(df.index), dtype=bool) df.index = df.index.tz_localize('Europe/Paris', ambiguous=dst_arr) df.index = df.index.tz_convert(None) return df def read_GB(filepath): '''Read a file from National Grid or Elexon into a DataFrame''' time_cols = { '#Settlement Date': 'date', # Elexon 'Settlement Period': 'pos', # Elexon 'SETTLEMENT_DATE': 'date', # National Grid 'SETTLEMENT_PERIOD': 'pos' # National Grid } df = pd.read_csv( filepath, header=0, usecols=None, dayfirst=True ) df.rename(columns=time_cols, inplace=True) for i, row in df.iterrows(): # there must not be more than 50 half-hours in a day if row['pos'] > 50: logger.warning('%s th half-hour at %s, position %s', row['pos'], row['date'], i) # On the day in March when summertime begins, shift the data forward by # 1 hour, beginning with the 5th half-hour, so the index runs again # up to 48 elif (row['pos'] == 46 and ( (i == len(df.index) - 1) or (df['pos'][i + 1] == 1))): slicer = df[(df['date'] == row['date']) & (df['pos'] >= 3)].index df.loc[slicer, 'pos'] = df['pos'] + 2 # Instead of having the half-hours' index run up to 50, we want # to have it set back by 1 hour beginning from the 5th # half-hour, ending at 48 elif row['pos'] == 50: # True when summertime ends in October slicer = df[(df['date'] == row['date']) & (df['pos'] >= 5)].index df.loc[slicer, 'pos'] = df['pos'] - 2 # Compute timestamp from position and generate datetime-index df['hour'] = (np.trunc((df['pos'] - 1) / 2)).astype(int).astype(str) df['minute'] = (((df['pos'] - 1) % 2) * 30).astype(int).astype(str) df.index = pd.to_datetime( df['date'] + ' ' + df['hour'] + ':' + df['minute'], dayfirst=True) # DST-handling df.index = df.index.tz_localize('Europe/London', ambiguous='infer') df.index = df.index.tz_convert(None) return df def terna_file_to_initial_dataframe(filepath): ''' Parse the xml or read excel directly, returning the data from the file in a simple-index dataframe. Some files are formated as xml, some are pure excel files. This function handles both cases. Parameters: ---------- filepath: str The path of the file to process Returns: ---------- df: pandas.DataFrame A pandas dataframe containing the data from the specified file. ''' # First, we'll try to parse the file as if it is xml. try: excelHandler = ExcelHandler() parse(filepath, excelHandler) # Create the dataframe from the parsed data df = pd.DataFrame(excelHandler.tables[0][2:], columns=excelHandler.tables[0][1]) # Convert the "Generation [MWh]"-column to numeric df['Generation [MWh]'] = pd.to_numeric(df['Generation [MWh]']) except: # In the case of an exception, treat the file as excel. try: df = pd.read_excel(filepath, header=1) except xlrd.XLRDError: df = pd.DataFrame() return df def read_terna(filepath, filedate, param_dict, headers): ''' Read a file from Terna into a dataframe Parameters: ---------- filepath: str The path of the file to read. url: The url of the Terna page. headers: Levels for the MultiIndex. Returns: ---------- df: pandas.DataFrame A pandas multi-index dataframe containing the data from the specified file. ''' # Reading the file into a pandas dataframe df = terna_file_to_initial_dataframe(filepath) if df.empty: return df # Rename columns to match conventions renamer = { 'Date/Hour': 'timestamp', 'Bidding Area': 'region', 'Type': 'variable', 'Generation [MWh]': 'values' } df.rename(columns=renamer, inplace=True) # Casting the timestamp column to datetime and set it as index df.index = pd.to_datetime(df['timestamp']) # Some files contain data for different date than they should, in which # case the link to the file had a different date than what we see after # opening the file. So for the day they are supposed to represent there is # no data and for the day they contain there is duplicate data. # We skip these files alltogether. if not (df.index.date == filedate).all(): return pd.DataFrame() # Renaming the bidding area names to conform to the codes from areas.csv df['region'] = 'IT_' + df['region'] # Renaming and filtering out wind and solar # "PV Estimated" are solar panels connected to the distribution grid # "PV Measured" are those connected to transmission grid renewables = { 'Wind': ('wind_onshore', 'generation_actual'), 'Photovoltaic Estimated': ('solar', 'generation_actual_tso'), 'Photovoltaic Measured': ('solar', 'generation_actual_dso') } df = df.loc[df['variable'].isin(renewables.keys()), :] for k, v in renewables.items(): df.loc[df['variable'] == k, 'attribute'] = v[1] df.loc[df['variable'] == k, 'variable'] = v[0] # Reshaping the data so that each combination of a bidding area and type # is represented as a column of its own. stacked = ['region', 'variable', 'attribute'] df.set_index(stacked, append=True, inplace=True) df = df['values'].unstack(stacked) # DST-handling # Verify that daylight savings time transitions are handled as expected check_dst(df.index, autumn_expect=2) # drop autumn dst hours as they contain inconsistent data # (apparently 2:00 and 3:00 are added up and reported as value for 2:00). # The 2 hours will later be interpolated dst_transitions_autumn = [ d.replace(hour=2) for d in pytz.timezone('Europe/Rome')._utc_transition_times if 2000 <= d.year <= datetime.today().year and d.month == 10] df = df.loc[~df.index.isin(dst_transitions_autumn)] # Covert to UTC df.index = df.index.tz_localize('Europe/Rome') df.index = df.index.tz_convert(None) # Create the MultiIndex cols = [tuple(param_dict['colmap'][level] .format(region=col_name[0], variable=col_name[1], attribute=col_name[2]) for level in headers) for col_name in df.columns] df.columns = pd.MultiIndex.from_tuples(cols, names=headers) # # add source and url to the columns. # append_headers = {'source': 'Terna', 'unit': 'MW'} # # Note: pd.concat inserts new MultiIndex values infront of the old ones # df = pd.concat([df], # keys=[tuple([*append_headers.values(), url])], # names=[*append_headers.keys(), 'web'], # axis='columns') # # reorder and sort columns # df = df.reorder_levels(headers, axis=1) # df.sort_index(axis='columns', inplace=True) # # Common headers for calculated colmns # c_h = ('own calculation from Terna', url, 'MW') # # Italian bidding zones # bz_it = ['IT_CNOR', 'IT_CSUD', 'IT_NORD', 'IT_SARD', 'IT_SICI', 'IT_SUD'] # # Aggregate DSO and TSO level measurements for solar # for region in bz_it: # #import pdb; pdb.set_trace() # df[(region, 'solar', 'generation_actual', *c_h)] = ( # df[(region, 'solar', 'generation_actual_dso')] + # df[(region, 'solar', 'generation_actual_tso')]) # # Aggregate all regions # for variable in ['solar', 'wind_onshore']: # #for attribute in # df[('IT', variable, 'generation_actual', *c_h)] = ( # df.loc[:, (bz_it, variable, 'generation_actual')] # .sum(axis='columns', skipna=True)) return df def read( sources, data_path, parsed_path, areas, headers, start_from_user, end_from_user, testmode=False): # For each source in the source dictionary for source_name, source_dict in sources.items(): # For each dataset from source_name for dataset_name, param_dict in source_dict.items(): if source_name == '<NAME>': param_dict['colmap'] = source_dict['wind_solar_1']['colmap'] read_dataset( source_name, dataset_name, param_dict, data_path, parsed_path, areas, headers, start_from_user=start_from_user, end_from_user=end_from_user, testmode=testmode) return def read_dataset( source_name, dataset_name, param_dict, data_path, parsed_path, areas, headers, start_from_user=None, end_from_user=None, testmode=False): ''' For the sources specified in the sources.yml file, pass each downloaded file to the correct read function. Parameters ---------- source_name : str Name of source to read files from dataset_name : str Indicator for subset of data available together in the same files param_dict : dict Dictionary of further parameters, i.e. the URL of the Source to be placed in the column-MultiIndex headers : list List of strings indicating the level names of the pandas.MultiIndex for the columns of the dataframe data_path : str, default: 'original_data' Base download directory in which to save all downloaded files parsed_path : str Directory where to store parsed data as pickle files areas : pandas.DataFrame Contains mapping of available geographical areas showing how countries, bidding zones, control areas relate to each other start_from_user : datetime.date, default None Start of period for which to read the data end_from_user : datetime.date, default None End of period for which to read the data testmode : bool If True, only read one file per source. Use for testing purposes. Returns ---------- data_set: pandas.DataFrame A DataFrame containing the combined data for dataset_name ''' # The cumulated dict will store parsed data from all files from one dataset cumulated = {'15min': pd.DataFrame(), '30min':
pd.DataFrame()
pandas.DataFrame
# %% [markdown] # pip install -r pykrx # %% from datetime import datetime, timedelta import FinanceDataReader as fdr import yfinance as yf import numpy as np import pandas as pd from pykrx import stock import time import bt import warnings # from tqdm import tqdm warnings.filterwarnings(action='ignore') # pd.options.display.float_format = '{:.4f}'.format # %matplotlib inline from IPython.display import display, HTML #하나의 cell에서 multiple output을 출력을 가능하게 하는 코드 from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" # Pandas Dataframe의 사이즈가 큰 경우, 어떻게 화면에 출력을 할지를 세팅하는 코드 pd.set_option('display.float_format', lambda x: '%.3f' % x) pd.set_option('max_columns', None) # %% #from strategy import* #from utils import * # %% def 장중이냐(now): return (9 <= now.hour <= 14) or (now.hour == 15 and (now.minute <= 30)) # %% def AMS(x): ''' x : Series (DataFrame의 컬럼) x[-1] : 기준일. x의 현재값 (오늘날짜/과거날짜 - 1) > 0 보다 크면 1, 아니면 0 => 오늘날짜/과거날짜 > 1 => 오늘날짜 > 과거날짜 => x[-1] > x ''' # print(f"{list(np.where(x[-1]>x, 1, 0)[:-1])}, {len(np.where(x[-1]>x, 1, 0)[:-1])}") return np.mean(np.where(x[-1]>x, 1, 0)[:-1]) # 당일 날짜 비교는 제외해준다 [:-1] # %% # get_data # code_list is tickers['code'] # start : before_13months # end : baseday def get_data(code_list, start, end): df = pd.DataFrame() tot = len(code_list) count = 0 for code in code_list: # tqdm(code_list) count += 1 print(f"{count}/{tot} : {code}") t = fdr.DataReader(code, start, end)['Close'].rename(code) # t = stock.get_market_ohlcv_by_date(start, end, code)['종가'].rename(code) df = bt.merge(df, t) time.sleep(0.75) # 맨마지막 값이 NaN인 컬럼을 삭제한다. for c in df.columns: if pd.isna(df.iloc[-1][c]): print(f"drop : {c}") df.drop(c, axis=1, inplace=True) return df # %% def 종목명(code, df): """ 사용예) 종목명('A153130', tickers) or 종목명('153130', tickers) """ if code.startswith('A'): return df[df['종목코드'] == code]['종목명'].values[0] else: return df[df['code'] == code]['종목명'].values[0] def 종목코드(name, df): """ A를 제외한 종목코드를 반환한다. FinanceDataReader에서 사용 사용예: 종목코드("KODEX달러선물레버리지", tickers) """ _df = df.copy() _df['종목명'] = _df['종목명'].str.replace(' ', '') return _df[_df['종목명'] == name.replace(' ', '')]['code'].values[0] # %% def pickup(df, 제외직전개월수=1): """df에서 모멘텀이 가장 좋은 3종목을 선택한다. Args : - df : 가격 데이터프레임 - 제외직전개월수 : df에서 제외할 데이터 개월 수 - now : 가격 데이터프레임의 가장 아래 시간 """ t0 = df.index[-1] 제외 = t0 - pd.DateOffset(months=제외직전개월수) m6 = t0 -
pd.DateOffset(months=6)
pandas.DateOffset
import seaborn as sns import matplotlib.pyplot as plt import pandas as pd import numpy as np from util.utils import create_userids, print_list from util.normalization import normalize_rows from sklearn import metrics import util.settings as st import warnings from sklearn.preprocessing import LabelEncoder warnings.filterwarnings("ignore") def plot_scores(positive_scores, negative_scores, filename='scores.png', title='Score distribution'): set_style() plt.clf() df = pd.DataFrame([positive_scores, negative_scores]) BINS = np.linspace(df.min(), df.max(), 31) sns.distplot(positive_scores, norm_hist=True, color='green', bins=31) sns.distplot(negative_scores, norm_hist=True, color='red', bins=31) # plt.legend(loc='upper left') plt.legend(['Genuine', 'Impostor'], loc='best') plt.xlabel('Score') plt.title(title) plt.show() # plt.savefig(filename + '.png') def set_style(): # This sets reasonable defaults for font size for # a figure that will go in a paper sns.set_context("paper", font_scale = 2) # Set the font to be serif, rather than sans sns.set(font='serif') # Make the background white, and specify the # specific font family sns.set_style("white", { "font.family": "serif", "font.serif": ["Times", "Palatino", "serif"] }) sns.set_style("ticks") sns.set_style("whitegrid") def plot_ROC_single(ee_file, title = 'ROC curve'): set_style() ee_data = pd.read_csv(ee_file) auc_ee = metrics.auc(ee_data['FPR'], ee_data['TPR']) plt.clf() plt.title(title) plt.xlabel('False Positive Rate') plt.ylabel('True Positive rate') plt.plot(ee_data['FPR'], ee_data['TPR'], '-', label = 'AUC_EE = %0.2f' % auc_ee) label_ee = 'AUC = %0.2f' % auc_ee legend_str = [label_ee] plt.legend(legend_str) plt.show() # create a boxplot from a dataframe # def csv2boxplot(df, columns, title, ylabel, outputfilename): myFig = plt.figure() res = df.boxplot(column=columns, return_type='axes') plt.title(title) plt.xlabel('Type of features') plt.ylabel(ylabel) myFig.savefig('output_png/boxplot_sapimouse.png', format = 'png') myFig.savefig(outputfilename + '.png', format='png') # myFig.savefig(outputfilename + '.eps', format='eps') # plt.show(res) def plot_ROC_filelist(filelist, title = 'ROC curve', outputfilename='roc.png'): set_style() plt.clf() counter = 1 labels = [] for file in filelist: data =
pd.read_csv(file)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Mon Oct 16 09:04:46 2017 @author: <NAME> pygemfxns_plotting.py produces figures of simulation results """ # Built-in Libraries import os import collections # External Libraries import numpy as np import pandas as pd #import netCDF4 as nc import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.lines import Line2D from matplotlib.ticker import MaxNLocator import matplotlib.patches as mpatches import scipy from scipy import stats from scipy.ndimage import uniform_filter import cartopy #import geopandas import xarray as xr from osgeo import gdal, ogr, osr import pickle # Local Libraries import pygem_input as input import pygemfxns_modelsetup as modelsetup import pygemfxns_massbalance as massbalance import pygemfxns_gcmbiasadj as gcmbiasadj import class_mbdata import class_climate #import run_simulation # Script options option_plot_cmip5_normalizedchange = 1 option_plot_cmip5_runoffcomponents = 0 option_plot_cmip5_map = 0 option_output_tables = 0 option_subset_GRACE = 0 option_plot_modelparam = 0 option_plot_era_normalizedchange = 1 option_compare_GCMwCal = 0 option_plot_mcmc_errors = 0 option_plot_maxloss_issues = 0 option_plot_individual_glaciers = 0 option_plot_degrees = 0 option_plot_pies = 0 option_plot_individual_gcms = 0 #%% ===== Input data ===== netcdf_fp_cmip5 = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/simulations/spc/' netcdf_fp_era = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/simulations/ERA-Interim/ERA-Interim_1980_2017_nochg' #mcmc_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/cal_opt2_allglac_1ch_tn_20190108/' #mcmc_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/cal_opt2_spc_20190222_adjp10/' mcmc_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/cal_opt2_spc_20190308_adjp12/cal_opt2/' figure_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/figures/cmip5/' csv_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/csv/cmip5/' cal_fp = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/Output/cal_opt2_spc_20190308_adjp12/cal_opt2/' # Regions rgi_regions = [13, 14, 15] #rgi_regions = [13] # Shapefiles rgiO1_shp_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/RGI/rgi60/00_rgi60_regions/00_rgi60_O1Regions.shp' watershed_shp_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/HMA_basins_20181018_4plot.shp' kaab_shp_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/kaab2015_regions.shp' srtm_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/SRTM_HMA.tif' srtm_contour_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/SRTM_HMA_countours_2km_gt3000m_smooth.shp' rgi_glac_shp_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/rgi60_HMA.shp' #kaab_dict_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/rgi60_HMA_w_watersheds_kaab.csv' #kaab_csv = pd.read_csv(kaab_dict_fn) #kaab_dict = dict(zip(kaab_csv.RGIId, kaab_csv.kaab)) # GCMs and RCP scenarios #gcm_names = ['CanESM2', 'CCSM4', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'GFDL-CM3', 'GFDL-ESM2M', 'GISS-E2-R', 'IPSL-CM5A-LR', # 'IPSL-CM5A-MR', 'MIROC5', 'MRI-CGCM3', 'NorESM1-M'] gcm_names = ['CanESM2'] #gcm_names = ['CanESM2', 'CCSM4', 'CNRM-CM5', 'CSIRO-Mk3-6-0', 'GFDL-CM3', 'GFDL-ESM2M', 'GISS-E2-R', 'IPSL-CM5A-LR', # 'MPI-ESM-LR', 'NorESM1-M'] rcps = ['rcp26', 'rcp45', 'rcp85'] #rcps = ['rcp26'] # Grouping grouping = 'all' #grouping = 'rgi_region' #grouping = 'watershed' #grouping = 'kaab' # Variable name vn = 'mass_change' #vn = 'volume_norm' #vn = 'peakwater' # Group dictionaries watershed_dict_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/rgi60_HMA_dict_watershed.csv' watershed_csv = pd.read_csv(watershed_dict_fn) watershed_dict = dict(zip(watershed_csv.RGIId, watershed_csv.watershed)) kaab_dict_fn = '/Users/davidrounce/Documents/Dave_Rounce/HiMAT/qgis_himat/rgi60_HMA_dict_kaab.csv' kaab_csv = pd.read_csv(kaab_dict_fn) kaab_dict = dict(zip(kaab_csv.RGIId, kaab_csv.kaab_name)) # GRACE mascons mascon_fp = input.main_directory + '/../GRACE/GSFC.glb.200301_201607_v02.4/' mascon_fn = 'mascon.txt' mascon_cns = ['CenLat', 'CenLon', 'LatWidth', 'LonWidth', 'Area_arcdeg', 'Area_km2', 'location', 'basin', 'elevation_flag'] mascon_df = pd.read_csv(mascon_fp + mascon_fn, header=None, names=mascon_cns, skiprows=14, delim_whitespace=True) mascon_df = mascon_df.sort_values(by=['CenLat', 'CenLon']) mascon_df.reset_index(drop=True, inplace=True) degree_size = 0.25 peakwater_Nyears = 10 # Plot label dictionaries title_dict = {'Amu_Darya': 'Amu Darya', 'Brahmaputra': 'Brahmaputra', 'Ganges': 'Ganges', 'Ili': 'Ili', 'Indus': 'Indus', 'Inner_Tibetan_Plateau': 'Inner TP', 'Inner_Tibetan_Plateau_extended': 'Inner TP ext', 'Irrawaddy': 'Irrawaddy', 'Mekong': 'Mekong', 'Salween': 'Salween', 'Syr_Darya': 'Syr Darya', 'Tarim': 'Tarim', 'Yangtze': 'Yangtze', 'inner_TP': 'Inner TP', 'Karakoram': 'Karakoram', 'Yigong': 'Yigong', 'Yellow': 'Yellow', 'Bhutan': 'Bhutan', 'Everest': 'Everest', 'West Nepal': 'West Nepal', 'Spiti Lahaul': 'Spiti Lahaul', 'tien_shan': 'Tien Shan', 'Pamir': 'Pamir', 'pamir_alai': 'Pamir Alai', 'Kunlun': 'Kunlun', 'Hindu Kush': 'Hindu Kush', 13: 'Central Asia', 14: 'South Asia West', 15: 'South Asia East', 'all': 'HMA' } title_location = {'Syr_Darya': [68, 46.1], 'Ili': [83.6, 45.5], 'Amu_Darya': [64.6, 36.9], 'Tarim': [83.0, 39.2], 'Inner_Tibetan_Plateau_extended': [100, 40], 'Indus': [70.7, 31.9], 'Inner_Tibetan_Plateau': [85, 32.4], 'Yangtze': [106.0, 29.8], 'Ganges': [81.3, 26.6], 'Brahmaputra': [92.0, 26], 'Irrawaddy': [96.2, 23.8], 'Salween': [98.5, 20.8], 'Mekong': [103.8, 17.5], 'Yellow': [106.0, 36], 13: [83,39], 14: [70.8, 30], 15: [81,26.8], 'inner_TP': [89, 33.5], 'Karakoram': [68.7, 33.5], 'Yigong': [97.5, 26.2], 'Bhutan': [92.1, 26], 'Everest': [85, 26.3], 'West Nepal': [76.5, 28], 'Spiti Lahaul': [72, 31.9], 'tien_shan': [80, 42], 'Pamir': [67.3, 36.5], 'pamir_alai': [65.2, 40.2], 'Kunlun': [79, 37.5], 'Hindu Kush': [65.3, 35] } vn_dict = {'volume_glac_annual': 'Normalized Volume [-]', 'volume_norm': 'Normalized Volume Remaining [-]', 'runoff_glac_annual': 'Normalized Runoff [-]', 'peakwater': 'Peak Water [yr]', 'temp_glac_annual': 'Temperature [$^\circ$C]', 'prec_glac_annual': 'Precipitation [m]', 'precfactor': 'Precipitation Factor [-]', 'tempchange': 'Temperature bias [$^\circ$C]', 'ddfsnow': 'DDFsnow [mm w.e. d$^{-1}$ $^\circ$C$^{-1}$]'} rcp_dict = {'rcp26': '2.6', 'rcp45': '4.5', 'rcp60': '6.0', 'rcp85': '8.5'} # Colors list colors_rgb = [(0.00, 0.57, 0.57), (0.71, 0.43, 1.00), (0.86, 0.82, 0.00), (0.00, 0.29, 0.29), (0.00, 0.43, 0.86), (0.57, 0.29, 0.00), (1.00, 0.43, 0.71), (0.43, 0.71, 1.00), (0.14, 1.00, 0.14), (1.00, 0.71, 0.47), (0.29, 0.00, 0.57), (0.57, 0.00, 0.00), (0.71, 0.47, 1.00), (1.00, 1.00, 0.47)] gcm_colordict = dict(zip(gcm_names, colors_rgb[0:len(gcm_names)])) rcp_colordict = {'rcp26':'b', 'rcp45':'k', 'rcp60':'m', 'rcp85':'r'} rcp_styledict = {'rcp26':':', 'rcp45':'--', 'rcp85':'-.'} east = 60 west = 110 south = 15 north = 50 xtick = 5 ytick = 5 xlabel = 'Longitude [$^\circ$]' ylabel = 'Latitude [$^\circ$]' #%% FUNCTIONS def select_groups(grouping, main_glac_rgi_all): """ Select groups based on grouping """ if grouping == 'rgi_region': groups = main_glac_rgi_all.O1Region.unique().tolist() group_cn = 'O1Region' elif grouping == 'watershed': groups = main_glac_rgi_all.watershed.unique().tolist() group_cn = 'watershed' elif grouping == 'kaab': groups = main_glac_rgi_all.kaab.unique().tolist() group_cn = 'kaab' groups = [x for x in groups if str(x) != 'nan'] elif grouping == 'degree': groups = main_glac_rgi_all.deg_id.unique().tolist() group_cn = 'deg_id' elif grouping == 'mascon': groups = main_glac_rgi_all.mascon_idx.unique().tolist() groups = [int(x) for x in groups] group_cn = 'mascon_idx' else: groups = ['all'] group_cn = 'all_group' try: groups = sorted(groups, key=str.lower) except: groups = sorted(groups) return groups, group_cn def partition_multimodel_groups(gcm_names, grouping, vn, main_glac_rgi_all, rcp=None): """Partition multimodel data by each group for all GCMs for a given variable Parameters ---------- gcm_names : list list of GCM names grouping : str name of grouping to use vn : str variable name main_glac_rgi_all : pd.DataFrame glacier table rcp : str rcp name Output ------ time_values : np.array time values that accompany the multimodel data ds_group : list of lists dataset containing the multimodel data for a given variable for all the GCMs ds_glac : np.array dataset containing the variable of interest for each gcm and glacier """ # Groups groups, group_cn = select_groups(grouping, main_glac_rgi_all) # variable name if vn == 'volume_norm' or vn == 'mass_change': vn_adj = 'volume_glac_annual' elif vn == 'peakwater': vn_adj = 'runoff_glac_annual' else: vn_adj = vn ds_group = [[] for group in groups] for ngcm, gcm_name in enumerate(gcm_names): for region in rgi_regions: # Load datasets if gcm_name == 'ERA-Interim': netcdf_fp = netcdf_fp_era ds_fn = 'R' + str(region) + '_ERA-Interim_c2_ba1_100sets_1980_2017.nc' else: netcdf_fp = netcdf_fp_cmip5 + vn_adj + '/' ds_fn = ('R' + str(region) + '_' + gcm_name + '_' + rcp + '_c2_ba' + str(input.option_bias_adjustment) + '_100sets_2000_2100--' + vn_adj + '.nc') # Bypass GCMs that are missing a rcp scenario try: ds = xr.open_dataset(netcdf_fp + ds_fn) except: continue # Extract time variable if 'annual' in vn_adj: try: time_values = ds[vn_adj].coords['year_plus1'].values except: time_values = ds[vn_adj].coords['year'].values elif 'monthly' in vn_adj: time_values = ds[vn_adj].coords['time'].values # Merge datasets if region == rgi_regions[0]: vn_glac_all = ds[vn_adj].values[:,:,0] vn_glac_std_all = ds[vn_adj].values[:,:,1] else: vn_glac_all = np.concatenate((vn_glac_all, ds[vn_adj].values[:,:,0]), axis=0) vn_glac_std_all = np.concatenate((vn_glac_std_all, ds[vn_adj].values[:,:,1]), axis=0) try: ds.close() except: continue if ngcm == 0: ds_glac = vn_glac_all[np.newaxis,:,:] else: ds_glac = np.concatenate((ds_glac, vn_glac_all[np.newaxis,:,:]), axis=0) # Cycle through groups for ngroup, group in enumerate(groups): # Select subset of data main_glac_rgi = main_glac_rgi_all.loc[main_glac_rgi_all[group_cn] == group] vn_glac = vn_glac_all[main_glac_rgi.index.values.tolist(),:] # vn_glac_std = vn_glac_std_all[main_glac_rgi.index.values.tolist(),:] # vn_glac_var = vn_glac_std **2 # Regional sum vn_reg = vn_glac.sum(axis=0) # Record data for multi-model stats if ngcm == 0: ds_group[ngroup] = [group, vn_reg] else: ds_group[ngroup][1] = np.vstack((ds_group[ngroup][1], vn_reg)) return groups, time_values, ds_group, ds_glac def partition_era_groups(grouping, vn, main_glac_rgi_all): """Partition multimodel data by each group for all GCMs for a given variable Parameters ---------- grouping : str name of grouping to use vn : str variable name main_glac_rgi_all : pd.DataFrame glacier table Output ------ time_values : np.array time values that accompany the multimodel data ds_group : list of lists dataset containing the multimodel data for a given variable for all the GCMs ds_glac : np.array dataset containing the variable of interest for each gcm and glacier """ # Groups groups, group_cn = select_groups(grouping, main_glac_rgi_all) # variable name if vn == 'volume_norm' or vn == 'mass_change': vn_adj = 'volume_glac_annual' elif vn == 'peakwater': vn_adj = 'runoff_glac_annual' else: vn_adj = vn ds_group = [[] for group in groups] for region in rgi_regions: # Load datasets ds_fn = 'R' + str(region) + '_ERA-Interim_c2_ba1_100sets_1980_2017.nc' ds = xr.open_dataset(netcdf_fp_era + ds_fn) # Extract time variable if 'annual' in vn_adj: try: time_values = ds[vn_adj].coords['year_plus1'].values except: time_values = ds[vn_adj].coords['year'].values elif 'monthly' in vn_adj: time_values = ds[vn_adj].coords['time'].values # Merge datasets if region == rgi_regions[0]: vn_glac_all = ds[vn_adj].values[:,:,0] vn_glac_std_all = ds[vn_adj].values[:,:,1] else: vn_glac_all = np.concatenate((vn_glac_all, ds[vn_adj].values[:,:,0]), axis=0) vn_glac_std_all = np.concatenate((vn_glac_std_all, ds[vn_adj].values[:,:,1]), axis=0) # Close dataset ds.close() ds_glac = [vn_glac_all, vn_glac_std_all] # Cycle through groups for ngroup, group in enumerate(groups): # Select subset of data main_glac_rgi = main_glac_rgi_all.loc[main_glac_rgi_all[group_cn] == group] vn_glac = vn_glac_all[main_glac_rgi.index.values.tolist(),:] vn_glac_std = vn_glac_std_all[main_glac_rgi.index.values.tolist(),:] vn_glac_var = vn_glac_std **2 # Regional mean, standard deviation, and variance # mean: E(X+Y) = E(X) + E(Y) # var: Var(X+Y) = Var(X) + Var(Y) + 2*Cov(X,Y) # assuming X and Y are indepdent, then Cov(X,Y)=0, so Var(X+Y) = Var(X) + Var(Y) # std: std(X+Y) = (Var(X+Y))**0.5 # Regional sum vn_reg = vn_glac.sum(axis=0) vn_reg_var = vn_glac_var.sum(axis=0) # vn_reg_std = vn_glac_var**0.5 # Record data for multi-model stats ds_group[ngroup] = [group, vn_reg, vn_reg_var] return groups, time_values, ds_group, ds_glac def partition_modelparams_groups(grouping, vn, main_glac_rgi_all): """Partition model parameters by each group Parameters ---------- grouping : str name of grouping to use vn : str variable name main_glac_rgi_all : pd.DataFrame glacier table Output ------ groups : list list of group names ds_group : list of lists dataset containing the multimodel data for a given variable for all the GCMs """ # Groups groups, group_cn = select_groups(grouping, main_glac_rgi_all) ds_group = [[] for group in groups] # Cycle through groups for ngroup, group in enumerate(groups): # Select subset of data main_glac_rgi = main_glac_rgi_all.loc[main_glac_rgi_all[group_cn] == group] vn_glac = main_glac_rgi_all[vn].values[main_glac_rgi.index.values.tolist()] # Regional sum vn_reg = vn_glac.mean(axis=0) # Record data for each group ds_group[ngroup] = [group, vn_reg] return groups, ds_group def vn_multimodel_mean_processed(vn, ds, idx, time_values, every_glacier=0): """ Calculate multi-model mean for a given variable of interest Parameters ---------- vn : str variable/parameter name ds : list dataset containing groups group_idx : int group index time_values : np.array array of years every_glacier : int switch to work with groups or work with concatenated dataframe Output ------ """ # Multi-model mean if every_glacier == 0: vn_multimodel_mean = ds[idx][1].mean(axis=0) else: vn_multimodel_mean = ds[:,idx,:].mean(axis=0) # Normalized volume based on initial volume if vn == 'volume_norm': if vn_multimodel_mean[0] > 0: output_multimodel_mean = vn_multimodel_mean / vn_multimodel_mean[0] else: output_multimodel_mean = np.zeros(vn_multimodel_mean.shape) # Peak water based on 10-yr running average elif vn == 'peakwater': vn_runningmean = uniform_filter(vn_multimodel_mean, peakwater_Nyears) output_multimodel_mean = time_values[np.where(vn_runningmean == vn_runningmean.max())[-1][0]] return output_multimodel_mean def peakwater(runoff, time_values, nyears): """Compute peak water based on the running mean of N years Parameters ---------- runoff : np.array one-dimensional array of runoff for each timestep time_values : np.array time associated with each timestep nyears : int number of years to compute running mean used to smooth peakwater variations Output ------ peakwater_yr : int peakwater year peakwater_chg : float percent change of peak water compared to first timestep (running means used) runoff_chg : float percent change in runoff at the last timestep compared to the first timestep (running means used) """ runningmean = uniform_filter(runoff, size=(nyears)) peakwater_idx = np.where(runningmean == runningmean.max())[-1][0] peakwater_yr = time_values[peakwater_idx] peakwater_chg = (runningmean[peakwater_idx] - runningmean[0]) / runningmean[0] * 100 runoff_chg = (runningmean[-1] - runningmean[0]) / runningmean[0] * 100 return peakwater_yr, peakwater_chg, runoff_chg def size_thresholds(variable, cutoffs, sizes): """Loop through size thresholds for a given variable to plot Parameters ---------- variable : np.array data associated with glacier characteristic cutoffs : list values used as minimums for thresholds (ex. 100 would give you greater than 100) sizes : list size values for the plot Output ------ output : np.array plot size for each glacier """ output = np.zeros(variable.shape) for i, cutoff in enumerate(cutoffs): output[(variable>cutoff) & (output==0)] = sizes[i] output[output==0] = 2 return output def select_region_climatedata(gcm_name, rcp, main_glac_rgi): """ Get the regional temperature and precipitation for a given dataset. Extracts all nearest neighbor temperature and precipitation data for a given set of glaciers. The mean temperature and precipitation of the group of glaciers is returned. If two glaciers have the same temp/prec data, that data is only used once in the mean calculations. Additionally, one would not expect for different GCMs to be similar because they all have different resolutions, so this mean calculations will have different numbers of pixels. Parameters ---------- gcm_name : str GCM name rcp : str rcp scenario (ex. rcp26) main_glac_rgi : pd.DataFrame glacier dataset used to select the nearest neighbor climate data """ # Date tables print('select_region_climatedata fxn dates supplied manually') dates_table_ref = modelsetup.datesmodelrun(startyear=2000, endyear=2100, spinupyears=0, option_wateryear=1) dates_table = modelsetup.datesmodelrun(startyear=2000, endyear=2100, spinupyears=0, option_wateryear=1) # Load gcm lat/lons gcm = class_climate.GCM(name=gcm_name, rcp_scenario=rcp) # Select lat/lon from GCM ds_elev = xr.open_dataset(gcm.fx_fp + gcm.elev_fn) gcm_lat_values_all = ds_elev.lat.values gcm_lon_values_all = ds_elev.lon.values ds_elev.close() # Lat/lon dictionary to convert gcm_lat_dict = dict(zip(range(gcm_lat_values_all.shape[0]), list(gcm_lat_values_all))) gcm_lon_dict = dict(zip(range(gcm_lon_values_all.shape[0]), list(gcm_lon_values_all))) # Find nearest neighbors for glaciers that have pixles latlon_nearidx = pd.DataFrame(np.zeros((main_glac_rgi.shape[0],2)), columns=['CenLat','CenLon']) latlon_nearidx.iloc[:,0] = (np.abs(main_glac_rgi.CenLat.values[:,np.newaxis] - gcm_lat_values_all).argmin(axis=1)) latlon_nearidx.iloc[:,1] = (np.abs(main_glac_rgi.CenLon.values[:,np.newaxis] - gcm_lon_values_all).argmin(axis=1)) latlon_nearidx = latlon_nearidx.drop_duplicates().sort_values(['CenLat', 'CenLon']) latlon_nearidx.reset_index(drop=True, inplace=True) latlon_reg = latlon_nearidx.copy() latlon_reg.CenLat.replace(gcm_lat_dict, inplace=True) latlon_reg.CenLon.replace(gcm_lon_dict, inplace=True) # ===== LOAD CLIMATE DATA ===== # Reference climate data ref_gcm = class_climate.GCM(name=input.ref_gcm_name) # Air temperature [degC], Precipitation [m], Elevation [masl], Lapse rate [K m-1] ref_temp, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.temp_fn, ref_gcm.temp_vn, latlon_reg, dates_table_ref) ref_prec, ref_dates = ref_gcm.importGCMvarnearestneighbor_xarray(ref_gcm.prec_fn, ref_gcm.prec_vn, latlon_reg, dates_table_ref) # ref_elev = ref_gcm.importGCMfxnearestneighbor_xarray(ref_gcm.elev_fn, ref_gcm.elev_vn, latlon_reg) # GCM climate data gcm_temp_all, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.temp_fn, gcm.temp_vn, latlon_reg, dates_table) gcm_prec_all, gcm_dates = gcm.importGCMvarnearestneighbor_xarray(gcm.prec_fn, gcm.prec_vn, latlon_reg, dates_table) # gcm_elev = gcm.importGCMfxnearestneighbor_xarray(gcm.elev_fn, gcm.elev_vn, latlon_reg) # GCM subset to agree with reference time period to calculate bias corrections gcm_subset_idx_start = np.where(dates_table.date.values == dates_table_ref.date.values[0])[0][0] gcm_subset_idx_end = np.where(dates_table.date.values == dates_table_ref.date.values[-1])[0][0] gcm_temp = gcm_temp_all[:,gcm_subset_idx_start:gcm_subset_idx_end+1] gcm_prec = gcm_prec_all[:,gcm_subset_idx_start:gcm_subset_idx_end+1] ## ===== BIAS ADJUSTMENTS ===== # OPTION 2: Adjust temp and prec according to Huss and Hock (2015) accounts for means and interannual variability if input.option_bias_adjustment == 2: # TEMPERATURE BIAS CORRECTIONS # Mean monthly temperature ref_temp_monthly_avg = (ref_temp.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) gcm_temp_monthly_avg = (gcm_temp.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) # Monthly bias adjustment gcm_temp_monthly_adj = ref_temp_monthly_avg - gcm_temp_monthly_avg # Monthly temperature bias adjusted according to monthly average t_mt = gcm_temp_all + np.tile(gcm_temp_monthly_adj, int(gcm_temp_all.shape[1]/12)) # Mean monthly temperature bias adjusted according to monthly average t_m25avg = np.tile(gcm_temp_monthly_avg + gcm_temp_monthly_adj, int(gcm_temp_all.shape[1]/12)) # Calculate monthly standard deviation of temperature ref_temp_monthly_std = (ref_temp.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).std(1).reshape(12,-1).transpose()) gcm_temp_monthly_std = (gcm_temp.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).std(1).reshape(12,-1).transpose()) variability_monthly_std = ref_temp_monthly_std / gcm_temp_monthly_std # Bias adjusted temperature accounting for monthly mean and variability gcm_temp_bias_adj = t_m25avg + (t_mt - t_m25avg) * np.tile(variability_monthly_std, int(gcm_temp_all.shape[1]/12)) # PRECIPITATION BIAS CORRECTIONS # Calculate monthly mean precipitation ref_prec_monthly_avg = (ref_prec.reshape(-1,12).transpose() .reshape(-1,int(ref_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) gcm_prec_monthly_avg = (gcm_prec.reshape(-1,12).transpose() .reshape(-1,int(gcm_temp.shape[1]/12)).mean(1).reshape(12,-1).transpose()) bias_adj_prec = ref_prec_monthly_avg / gcm_prec_monthly_avg # Bias adjusted precipitation accounting for differences in monthly mean gcm_prec_bias_adj = gcm_prec_all * np.tile(bias_adj_prec, int(gcm_temp_all.shape[1]/12)) # Regional means reg_mean_temp_biasadj = gcm_temp_bias_adj.mean(axis=0) reg_mean_prec_biasadj = gcm_prec_bias_adj.mean(axis=0) return reg_mean_temp_biasadj, reg_mean_prec_biasadj #%% LOAD ALL GLACIERS # Load all glaciers for rgi_region in rgi_regions: # Data on all glaciers main_glac_rgi_region = modelsetup.selectglaciersrgitable(rgi_regionsO1=[rgi_region], rgi_regionsO2 = 'all', rgi_glac_number='all') # Glacier hypsometry [km**2] main_glac_hyps_region = modelsetup.import_Husstable(main_glac_rgi_region, input.hyps_filepath, input.hyps_filedict, input.hyps_colsdrop) # Ice thickness [m], average main_glac_icethickness_region= modelsetup.import_Husstable(main_glac_rgi_region, input.thickness_filepath, input.thickness_filedict, input.thickness_colsdrop) if rgi_region == rgi_regions[0]: main_glac_rgi_all = main_glac_rgi_region main_glac_hyps_all = main_glac_hyps_region main_glac_icethickness_all = main_glac_icethickness_region else: main_glac_rgi_all = pd.concat([main_glac_rgi_all, main_glac_rgi_region], sort=False) main_glac_hyps_all = pd.concat([main_glac_hyps_all, main_glac_hyps_region], sort=False) main_glac_icethickness_all =
pd.concat([main_glac_icethickness_all, main_glac_icethickness_region], sort=False)
pandas.concat
import matplotlib.pyplot as plt import requests import os import skimage import random import json import webbrowser import pandas as pd import numpy as np import time from PIL import Image, ImageDraw from ast import literal_eval as make_tuple global population global api_calls global stop global MUTATION_RATE population = [] lastEvaluatedPopulation = [] api_calls = 0 stop = False MUTATION_RATE = 10 # initial random generation of an image def generateImage(): # set image format img = Image.new('RGB', (64, 64), color='black') draw = ImageDraw.Draw(img) # draw four rectangles with random colors positions = [ ((0, 0), (32, 32)), ((32, 0), (64, 32)), ((0, 32), (32, 64)), ((32, 32), (64, 64)), ] colors = [] for position in positions: color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) draw.rectangle(position, fill=color) colors.append(color) return {"image": img, "confidence": 0, "colors": colors, "class": ""} # eval fitness for each individual def evalFitness(): global api_calls global stop for individual in population: name = 'toEval.png' image = individual["image"] image.save(name) payload= {'key': 'Engeibei1uok4xaecahChug6eihos0wo'} r = requests.post('https://phinau.de/trasi', data=payload, files={'image': open(name, 'rb')}) api_calls += 1 try: individual["confidence"] = r.json()[0]["confidence"] individual["class"] = r.json()[0]["class"] except ValueError: print("Decoding JSON failed -> hit API rate :(") stop = True break # create initial population def initPopulation(count): for i in range(count): population.append(generateImageOneRect()) # select best individuals from population def selection(bestCount): population.sort(key=lambda individual: individual["confidence"], reverse=True) del population[bestCount:] # crossover between individuals in the population def crossover(): # cross rectangles, generate new images for j in range(len(population)-1): colorsFirst = population[0 + j]["colors"] colorsSecond = population[1 + j]["colors"] img = Image.new('RGB', (64, 64), color='black') draw = ImageDraw.Draw(img) positions = [ ((0, 0), (32, 32)), ((32, 0), (64, 32)), ((0, 32), (32, 64)), ((32, 32), (64, 64)), ] colors = [colorsFirst[0], colorsFirst[1], colorsSecond[2], colorsSecond[3]] for i in range(4): draw.rectangle(positions[i], fill=colors[i]) population.append({"image": img, "confidence": 0, "colors": colors, "class": ""}) # mutate each individual in the population and delete old population def mutate(confidence): # mutate colors of random rectangle population_size = len(population) for j in range(len(population)): img = Image.new('RGB', (64, 64), color='black') draw = ImageDraw.Draw(img) positions = [ ((0, 0), (32, 32)), ((32, 0), (64, 32)), ((0, 32), (32, 64)), ((32, 32), (64, 64)), ] colors = population[j]["colors"] if(population[j]["confidence"] < confidence): # change the color of a random square rect = random.randint(0, 3) colors[rect] = ( colors[rect][0] + 1 + random.randint(-10, 10) * MUTATION_RATE, colors[rect][1] + 1 + random.randint(-10, 10) * MUTATION_RATE, colors[rect][2] + 1 + random.randint(-10, 10) * MUTATION_RATE) for i in range(4): draw.rectangle(positions[i], fill=colors[i]) population.append({"image": img, "confidence": 0, "colors": colors, "class": ""}) # delete old del population[:population_size] def printResults(): for individual in population: print("confidence: ", individual["confidence"], " class: ", individual["class"]) print("..") def getBestResult(): best = 0 for individual in population: if(individual["confidence"] > best): best = individual["confidence"] return best # get the count of images that match the confidence def getCountThatMatch(confidence): count = 0 for individual in population: if(individual["confidence"] >= confidence): count += 1 return count # init parameters INITIAL_POPULATION = 5 # EXPERIMENT SELECTED_COUNT = 5 # specification DESIRED_CONFIDENCE = 0.20 # specification # run evolutionary algorithm (init -> selection -> loop(crossover-> mutate -> selection) until confidence matches all images) def runEvoAlgorithm(): initPopulation(INITIAL_POPULATION) evalFitness() selection(SELECTED_COUNT) printResults() while getCountThatMatch(DESIRED_CONFIDENCE) < SELECTED_COUNT and stop == False and api_calls < 50: #crossover() mutate(DESIRED_CONFIDENCE) evalFitness() selection(SELECTED_COUNT) if (stop == False): printResults() # save generated images with desired confidence def saveImages(): for i in range(len(population)): if(population[i]["confidence"] > 0.05): image = population[i]["image"] name = "img" + \ str(i) + "_" + str(population[i]["confidence"] ) + "_" + str(population[i]["class"]) + ".png" image.save(name) webbrowser.open(name) # make request with 1000 single color images and save results to CSV file def getApiResultsForSingleColors(): # set image format color = (0, 0, 0) img = Image.new('RGB', (64, 64), color=color) for i in range(10): for j in range(10): for k in range(10): color = (i*25, j*25, k*25) img = Image.new('RGB', (64, 64), color=color) individual = {"image": img, "confidence": 0, "color": color, "class": ""} # eval name = 'toEval.png' image = img image.save(name) payload= {'key': 'Engeibei1uok4xaecahChug6eihos0wo'} r = requests.post('https://phinau.de/trasi', data=payload, files={'image': open(name, 'rb')}) time.sleep(1) try: individual["confidence"] = r.json()[0]["confidence"] individual["class"] = r.json()[0]["class"] population.append(individual) df =
pd.DataFrame(population, columns=["class", "confidence", "color"])
pandas.DataFrame
# Purpose: combine two tabs in a registrar-data file, and then add the selected instructor info (the output file of instructor_info.py) # To run this script in Anaconda: python registrar_data_modify.py --input_file1=summer2017_registrar.xlsx --input_file2=instructor_selected_info.csv --output_file=modified_registrar_data.xlsx import argparse import csv import pandas from pandas import DataFrame #Define the arguments sent to the script parser = argparse.ArgumentParser(description='Create merged spreadsheet') parser.add_argument('--input_file1', action='store',dest='input_file1',default='') parser.add_argument('--input_file2',action='store',dest='input_file2',default='') parser.add_argument('--output_file', action='store',dest='output_file',default='') args = parser.parse_args() #create a function to combine tabs in a registrar file, for example summer2017_registrar.xlsx def combine_tabs(filename): if '.xlsx' in filename or '.xls' in filename: print("Opening file" + filename) Data = pandas.ExcelFile(filename) Mastertab = pandas.read_excel(Data,0) # mastertab is the first tab in an excel file Scoretab = pandas.read_excel(Data,1) # scoretab is the second tav in an excel file Scoretab_Dict = Scoretab.set_index('ID').T.to_dict() # for each ID in the ID column in the mastertab, if a ID matches the key in Scoretab_Dict, then add values of the Scoretab_Dict to new columns in the mastertab for ID in Mastertab['ID']: if ID in Scoretab_Dict: #print('match:',ID) # add values to the a new column is the master tab one by one Mastertab['A01 - ACT English'] = [Scoretab_Dict[ID]['A01 - ACT English'] for ID in Mastertab['ID']] Mastertab['A02 - ACT Math'] = [Scoretab_Dict[ID]['A02 - ACT Math'] for ID in Mastertab['ID']] Mastertab['A03 - ACT Reading'] = [Scoretab_Dict[ID]['A03 - ACT Reading'] for ID in Mastertab['ID']] Mastertab['A04 - ACT Science Reasoning'] = [Scoretab_Dict[ID]['A04 - ACT Science Reasoning'] for ID in Mastertab['ID']] Mastertab['A07 - ACT Combined English/Writing'] = [Scoretab_Dict[ID]['A07 - ACT Combined English/Writing'] for ID in Mastertab['ID']] Mastertab['A05 - ACT Composite'] = [Scoretab_Dict[ID]['A05 - ACT Composite'] for ID in Mastertab['ID']] Mastertab['S01 - SAT Critical Reading'] = [Scoretab_Dict[ID]['S01 - SAT Critical Reading'] for ID in Mastertab['ID']] Mastertab['S02 - SAT Mathematics'] = [Scoretab_Dict[ID]['S02 - SAT Mathematics'] for ID in Mastertab['ID']] Mastertab['S07 - SAT Writing'] = [Scoretab_Dict[ID]['S07 - SAT Writing'] for ID in Mastertab['ID']] Mastertab['TIBL - TOEFL IBT Listening Score'] = [Scoretab_Dict[ID]['TIBL - TOEFL IBT Listening Score'] for ID in Mastertab['ID']] Mastertab['TIBR - TOEFL IBT Reading Score'] = [Scoretab_Dict[ID]['TIBR - TOEFL IBT Reading Score'] for ID in Mastertab['ID']] Mastertab['TIBS - TOEFL IBT Speaking Score'] = [Scoretab_Dict[ID]['TIBS - TOEFL IBT Speaking Score'] for ID in Mastertab['ID']] Mastertab['TIBW - TOEFL IBT Writing Score'] = [Scoretab_Dict[ID]['TIBW - TOEFL IBT Writing Score'] for ID in Mastertab['ID']] Mastertab['TIBT - TOEFL IBT Total Score'] = [Scoretab_Dict[ID]['TIBT - TOEFL IBT Total Score'] for ID in Mastertab['ID']] Mastertab['ILT1 - IELTS Listening'] = [Scoretab_Dict[ID]['ILT1 - IELTS Listening'] for ID in Mastertab['ID']] Mastertab['ILT2 - IELTS Overall'] = [Scoretab_Dict[ID]['ILT2 - IELTS Overall'] for ID in Mastertab['ID']] Mastertab['ILT3 - IELTS Reading'] = [Scoretab_Dict[ID]['ILT3 - IELTS Reading'] for ID in Mastertab['ID']] Mastertab['ILT4 - IELTS Speaking'] = [Scoretab_Dict[ID]['ILT4 - IELTS Speaking'] for ID in Mastertab['ID']] Mastertab['ILT5 - IELTS Writing'] = [Scoretab_Dict[ID]['ILT5 - IELTS Writing'] for ID in Mastertab['ID']] # If IDs between the two tabs do not match then print NA else: Mastertab['A01 - ACT English'] = 'NA' Mastertab['A02 - ACT Math'] = 'NA' Mastertab['A03 - ACT Reading'] = 'NA' Mastertab['A04 - ACT Science Reasoning'] = 'NA' Mastertab['A07 - ACT Combined English/Writing'] = 'NA' Mastertab['A05 - ACT Composite'] = 'NA' Mastertab['S01 - SAT Critical Reading'] = 'NA' Mastertab['S02 - SAT Mathematics'] = 'NA' Mastertab['S07 - SAT Writing'] = 'NA' Mastertab['TIBL - TOEFL IBT Listening Score'] = 'NA' Mastertab['TIBR - TOEFL IBT Reading Score'] = 'NA' Mastertab['TIBS - TOEFL IBT Speaking Score'] = 'NA' Mastertab['TIBW - TOEFL IBT Writing Score'] = 'NA' Mastertab['TIBT - TOEFL IBT Total Score'] = 'NA' Mastertab['ILT1 - IELTS Listening'] = 'NA' Mastertab['ILT2 - IELTS Overall'] = 'NA' Mastertab['ILT3 - IELTS Reading'] = 'NA' Mastertab['ILT4 - IELTS Speaking'] = 'NA' Mastertab['ILT5 - IELTS Writing'] = 'NA' return (Mastertab) # Create a function to build data frame def build_data_frame (filename): File = filename Data =
pandas.read_csv(File)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ridge regression ''' ''' a technique for analysing multiple regression data that suffer from multi-colinearity ''' import numpy as np import pandas as pd from sklearn import linear_model import random import matplotlib.pyplot as plt ''' multi variable linear equation ''' ''' t = 12x -0.5y + 9z + 24 ''' constant = 24 error_induce = 0.01 def fx(x): res = (12.0 * x) error = 0.0 error = res * random.uniform(-error_induce, error_induce) return res + error def fy(y): res = (-05.0 * y) error = 0.0 error = res * random.uniform(-error_induce, error_induce) return res + error def fz(z): res = (09.0 * z) error = 0.0 error = res * random.uniform(-error_induce, error_induce) return res + error ''' data preparation ''' max_sample_value = 50 total_samples = 2500 train_sample_cnt = int((total_samples * 30.0 / 100.0)) test_sample_cnt = total_samples - train_sample_cnt random_array = np.random.randint ( max_sample_value, size=total_samples).astype(float) x_samples = fx(random_array) y_samples = fy(random_array) z_samples = fz(random_array) t_samples = x_samples + y_samples + z_samples t_samples = t_samples + constant ''' splitting samples into train data and test data ''' x_samples_train, x_samples_test = np.split( x_samples, [train_sample_cnt,]) y_samples_train, y_samples_test = np.split( y_samples, [train_sample_cnt,]) z_samples_train, z_samples_test = np.split( z_samples, [train_sample_cnt,]) t_samples_train, t_samples_test = np.split( t_samples, [train_sample_cnt,]) ''' combining all variables in column structure ''' xyz_samples_train = {'colx': x_samples_train, 'coly': y_samples_train, 'colz': z_samples_train} dfxyz_samples_train = pd.DataFrame(data=xyz_samples_train) dft_samples_train =
pd.DataFrame(data=t_samples_train)
pandas.DataFrame
from unittest import TestCase import numpy as np import pandas as pd import pandas.util.testing as tm import ts_charting.figure as figure from ts_charting.figure import process_series class Testprocess_data(TestCase): def __init__(self, *args, **kwargs): TestCase.__init__(self, *args, **kwargs) def runTest(self): pass def setUp(self): pass def test_already_aligned(self): plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) plot_series = process_series(series, plot_index) tm.assert_almost_equal(series, plot_series) tm.assert_almost_equal(plot_series.index, plot_index) def test_partial_plot(self): """ Test plotting series that is a subset of plot_index. Should align and fill with nans """ plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) series = series[:50] # only first 50 plot_series = process_series(series, plot_index) # have same index tm.assert_almost_equal(plot_series.index, plot_index) assert plot_series.count() == 50 assert np.all(plot_series[50:].isnull()) # method=None so fill with nan assert np.all(plot_series[:50] == series[:50]) def test_unaligned_indexes(self): """ Test when series.index and plot_index have no common datetimes """ plot_index = pd.date_range(start="2000", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) # move days to 11 PM the night before shift_series = series.tshift(-1, '1h') plot_series = process_series(shift_series, plot_index) # without method, data doesn't align and we nothing but nans tm.assert_almost_equal(plot_series.index, plot_index) # index aligh properly assert np.all(plot_series.isnull()) # no data # method = 'ffill' plot_series = process_series(shift_series, plot_index, method='ffill') # without method, data doesn't align and we nothing but nans tm.assert_almost_equal(plot_series.index, plot_index) # index align # since we're forward filling a series we tshifted into past # plot_series should just equal the original series tm.assert_almost_equal(plot_series, series) def test_different_freqs(self): """ Tests indexes of differeing frequencies. This is more of repeat test of test_partial_plot but with many holes instead of one half missing value. """ plot_index = pd.date_range(start="2000-01-01", freq="D", periods=100) series = pd.Series(range(100), index=plot_index) grouped_series = series.resample('MS', 'max') plot_series = process_series(grouped_series, plot_index) tm.assert_almost_equal(plot_series.index, plot_index) # index align # method=None, dropna should give back same series tm.assert_almost_equal(plot_series.dropna(), grouped_series) plot_series = process_series(grouped_series, plot_index, method='ffill') tm.assert_almost_equal(plot_series.index, plot_index) # index align assert plot_series.isnull().sum() == 0 month_ind = plot_series.index.month - 1 # assert that each value corresponds to its month in grouped_series assert np.all(grouped_series[month_ind] == plot_series) def test_scalar(self): """ Test the various ways we handle scalars. """ plot_index = pd.date_range(start="2000-01-01", freq="D", periods=100) plot_series = process_series(5, plot_index) tm.assert_almost_equal(plot_series.index, plot_index) # index align assert np.all(plot_series == 5) # explicitly pass in the series index. Should have a plot_series with only iloc[10:20] # equal to the scalar 5. plot_series = process_series(5, plot_index, series_index=plot_index[10:20]) tm.assert_almost_equal(plot_series.index, plot_index) # index align assert np.all(plot_series[10:20] == 5) assert plot_series.isnull().sum() == 90 # no plot_index. This still works because we're passing in series_index plot_series = process_series(5, None, series_index=plot_index[10:20]) correct = pd.Series(5, index=plot_index[10:20]) tm.assert_almost_equal(correct, plot_series) # without any index, a scalar will error. Cannot plot a scalar on an # empty plot without passing in an index try: plot_series = process_series(5, None) except: pass else: assert False, "scalar should fail without plot_index or series_index" def test_iterable(self): """ Non pd.Series iterables require an equal length series_index or plot_index. """ try: plot_series = process_series(range(10), None) except: pass else: assert False, "iterable should fail without plot_index or series_index" plot_index = pd.date_range(start="2000-01-01", freq="D", periods=100) try: plot_series = process_series(range(10), plot_index) except: pass else: assert False, "iterable requires an index of same length" # equal length, good times plot_series = process_series(range(10), plot_index[:10]) correct = pd.Series(range(10), index=plot_index[:10])
tm.assert_almost_equal(correct, plot_series)
pandas.util.testing.assert_almost_equal
""" Experimental Mapping the maps keys using a switch_case structure. Development paused while waiting for 3.10's pattern matching that may subsume this. >>> from i2.switch_case_tree import * >>> from collections import Counter >>> >>> special_featurizer = { ... 'len': len, ... 'cols': lambda df: df.columns, ... 'sum': lambda df: df.sum().sum(), ... } >>> special_comparison = { ... 'alleq': lambda x, y: all(x == y), ... 'isin': lambda x, y: x in y, ... 'eq': operator.eq, ... } >>> featurizer = ChainMap( ... special_featurizer, ... special_comparison, ... {'some_local_func': lambda x: list(map(str, x))} ... ) >>> >>> >>> comparison = ChainMap( ... special_comparison, AttrMap(operator, is_valid_val=is_valid_comparision), ... ) >>> >>> assert comparison['contains'] == operator.contains >>> Let's have a look at the "featurizers" (where we purposely injected 3 functions that were in fact not featurizers! >>> sorted(featurizer) # doctest: +NORMALIZE_WHITESPACE ['alleq', 'cols', 'eq', 'isin', 'len', 'some_local_func', 'sum'] >>> Counter(map(is_valid_featurizer, featurizer.values())) Counter({True: 4, False: 3}) >>> Counter(map(is_valid_comparision, featurizer.values())) Counter({False: 4, True: 3}) Let's have a look at the comparison functions... >>> Counter(map(is_valid_comparision, comparison.values())) Counter({True: 81}) >>> Counter(map(is_valid_featurizer, comparison.values())) Counter({False: 80, True: 1}) What's that single comparison function that's also a featurizer? >>> next(filter(is_valid_featurizer, comparison.values())).__name__ 'length_hint' >>> from contextlib import suppress >>> >>> with suppress(ModuleNotFoundError, ImportError): ... import pandas as pd ... from collections import namedtuple ... Condition = namedtuple('Condition', ['feat', 'comp']) ... condition = { ... feat + '_' + comp: Condition(featurizer[feat], comparison[comp]) ... for feat, comp in [('len', 'lt'), ('cols', 'isin'), ('cols', 'contains'),] ... } ... assert all( ... is_valid_feat_and_comp(feat, comp) for feat, comp in condition.values() ... ) ... ... df = pd.DataFrame({'a': [1, 2, 3], 'b': [10, 20, 30]}) ... filt = mk_filt(df, *condition['len_lt']) ... result = list(filter(filt, [2, 3, 4, 5])) ... assert result == [4, 5] """ from collections import ChainMap from collections.abc import Mapping import operator import inspect class AsIsMap: def __init__(self, is_valid_key=None): if is_valid_key is None: def is_valid_key(x): return True self._is_valid_key = is_valid_key def _validate_key(self, k): if not self._is_valid_key(k): raise KeyError(f"{k} wasn't a valid key") def __getitem__(self, k): self._validate_key(k) return k class AttrMap(Mapping): def __init__(self, obj, is_valid_val=None): self._obj = obj if is_valid_val is None: def is_valid_val(x): return True self._is_valid_val = is_valid_val @classmethod def _validate_key(cls, k): if not isinstance(k, str): raise KeyError('key should be a string') def _validate_val(self, v): if not self._is_valid_val(v): raise ValueError("key was valid and value found, but value wasn't valid") def _getitem(self, k): return getattr(self._obj, k) def _val_of_key_is_valid(self, k): return self._is_valid_val(self._getitem(k)) def __getitem__(self, k): self._validate_key(k) v = self._getitem(k) self._validate_val(v) return v def __contains__(self, k): self._validate_key(k) return hasattr(self._obj, k) and self._val_of_key_is_valid(k) def __iter__(self): return filter(self._val_of_key_is_valid, dir(self._obj)) def __len__(self): c = 0 for _ in self.__iter__(): c += 1 return c def n_args_and_n_args_with_no_defaults(func): try: args = inspect.signature(func).parameters.values() except ValueError: # happens because some builtins don't have signatures (!?!?) return 0, 0 return len(args), len(list(filter(lambda x: x.default == x.empty, args))) def is_valid_featurizer(func): if not callable(func): return False n_args, n_no_dflt_args = n_args_and_n_args_with_no_defaults(func) return (n_args >= 1) and (n_no_dflt_args <= 1) def is_valid_comparision(func): if not callable(func): return False n_args, n_no_dflt_args = n_args_and_n_args_with_no_defaults(func) return (n_args >= 2) and (n_no_dflt_args <= 2) def is_valid_feat_and_comp(feat, comp): return is_valid_featurizer(feat) and is_valid_comparision(comp) def values_are_valid_feat_and_comp(d): return all(is_valid_feat_and_comp(feat, comp) for feat, comp in d.values()) def mk_filt(obj, featurizer, comparison): feature = featurizer(obj) def filt(x): return comparison(feature, x) return filt def test_switch_case_tree(): from collections import Counter special_featurizer = { 'len': len, 'cols': lambda df: df.columns, 'sum': lambda df: df.sum().sum(), } some_local_func = lambda x: list(map(str, x)) featurizer = ChainMap( special_featurizer, { k: v for k, v in locals().items() if is_valid_featurizer(v) and getattr(v, '__module__', '').startswith('i2.') }, ) special_comparison = { 'alleq': lambda x, y: all(x == y), 'isin': lambda x, y: x in y, 'eq': operator.eq, } comparison = ChainMap( special_comparison, AttrMap(operator, is_valid_val=is_valid_comparision), ) assert comparison['contains'] == operator.contains assert Counter(map(is_valid_featurizer, featurizer.values())) == Counter({True: 3}) assert Counter(map(is_valid_comparision, featurizer.values())) == Counter( {False: 3} ) assert Counter(map(is_valid_featurizer, comparison.values())) == Counter( {False: 80, True: 1} ) assert Counter(map(is_valid_comparision, comparison.values())) == Counter( {True: 81} ) featurizer_kvs = {k: v.__name__ for k, v in featurizer.items()} assert featurizer_kvs == {'len': 'len', 'cols': '<lambda>', 'sum': '<lambda>'} from contextlib import suppress with suppress(ModuleNotFoundError, ImportError): import pandas as pd from collections import namedtuple Condition = namedtuple('Condition', ['feat', 'comp']) condition = { feat + '_' + comp: Condition(featurizer[feat], comparison[comp]) for feat, comp in [('len', 'lt'), ('cols', 'isin'), ('cols', 'contains'),] } assert all( is_valid_feat_and_comp(feat, comp) for feat, comp in condition.values() ) df =
pd.DataFrame({'a': [1, 2, 3], 'b': [10, 20, 30]})
pandas.DataFrame
#!/usr/bin/env python3 #Author: <NAME> #Contact: <EMAIL> from __future__ import print_function from . import SigProfilerMatrixGenerator as matGen import os import SigProfilerMatrixGenerator as sig import re import sys import pandas as pd import datetime from SigProfilerMatrixGenerator.scripts import convert_input_to_simple_files as convertIn import uuid import shutil import time import numpy as np import platform import itertools import statsmodels import matplotlib as plt from pathlib import Path import sigProfilerPlotting as sigPlt import scipy def perm(n, seq): ''' Generates a list of all available permutations of n-mers. Parameters: n -> length of the desired permutation string seq -> list of all possible string values Returns: permus -> list of all available permutations ''' permus = [] for p in itertools.product(seq, repeat=n): permus.append("".join(p)) return(permus) def SigProfilerMatrixGeneratorFunc (project, genome, vcfFiles, exome=False, bed_file=None, chrom_based=False, plot=False, tsb_stat=False, seqInfo=False, cushion=100, gs=False): ''' Allows for the import of the sigProfilerMatrixGenerator.py function. Returns a dictionary with each context serving as the first level of keys. Parameters: project -> unique name given to the current samples genome -> reference genome vcfFiles -> path where the input vcf files are located. exome -> flag to use only the exome or not bed_file -> BED file that contains a list of ranges to be used in generating the matrices chrom_based -> flag to create the matrices on a per chromosome basis plot -> flag to generate the plots for each context tsb_stat -> performs a transcriptional strand bias test for the 24, 384, and 6144 contexts. The output is saved into the output/TSB directory gs -> flag that performs a gene strand bias test Returns: matrices -> dictionary (nested) of the matrices for each context example: matrices = {'96': {'PD1001a':{'A[A>C]A':23, 'A[A>G]A':10,...}, 'PD1202a':{'A[A>C]A':23, 'A[A>G]A':10,...},...}, '192':{'PD1001a':{'T:A[A>C]A':23, 'T:A[A>G]A':10,...}, 'PD1202a':{'T:A[A>C]A':23, 'T:A[A>G]A':10,...},...},...} ''' # Instantiates all of the required variables and references if gs: print("The Gene Strand Bias is not yet supported! Continuing with the matrix generation.") gs = False functionFlag = True bed = False bed_ranges = None limited_indel = True exome = exome plot = plot # Instantiates the final output matrix matrices = {'96':None, '1536':None, '384':None, '6144':None, 'DINUC':None, '6':None, '24':None, 'INDEL':None} # Provides a chromosome conversion from NCBI notation ncbi_chrom = {'NC_000067.6':'1', 'NC_000068.7':'2', 'NC_000069.6':'3', 'NC_000070.6':'4', 'NC_000071.6':'5', 'NC_000072.6':'6', 'NC_000073.6':'7', 'NC_000074.6':'8', 'NC_000075.6':'9', 'NC_000076.6':'10', 'NC_000077.6':'11', 'NC_000078.6':'12', 'NC_000079.6':'13', 'NC_000080.6':'14', 'NC_000081.6':'15', 'NC_000082.6':'16', 'NC_000083.6':'17', 'NC_000084.6':'18', 'NC_000085.6':'19', 'NC_000086.7':'X', 'NC_000087.7':'Y'} # Provides the reference file conversion from binary to base information tsb_ref = {0:['N','A'], 1:['N','C'], 2:['N','G'], 3:['N','T'], 4:['T','A'], 5:['T','C'], 6:['T','G'], 7:['T','T'], 8:['U','A'], 9:['U','C'], 10:['U','G'], 11:['U','T'], 12:['B','A'], 13:['B','C'], 14:['B','G'], 15:['B','T'], 16:['N','N'], 17:['T','N'], 18:['U','N'], 19:['B','N']} bias_sort = {'T':0,'U':1,'N':3,'B':2, 'Q':4} tsb = ['T','U','N','B'] tsb_I = ['T','U','N','B','Q'] bases = ['A','C','G','T'] mutation_types = ['CC>AA','CC>AG','CC>AT','CC>GA','CC>GG','CC>GT','CC>TA','CC>TG','CC>TT', 'CT>AA','CT>AC','CT>AG','CT>GA','CT>GC','CT>GG','CT>TA','CT>TC','CT>TG', 'TC>AA','TC>AG','TC>AT','TC>CA','TC>CG','TC>CT','TC>GA','TC>GG','TC>GT', 'TT>AA','TT>AC','TT>AG','TT>CA','TT>CC','TT>CG','TT>GA','TT>GC','TT>GG'] mutation_types_non_tsb = ['AC>CA','AC>CG','AC>CT','AC>GA','AC>GG','AC>GT','AC>TA','AC>TG','AC>TT', 'AT>CA','AT>CC','AT>CG','AT>GA','AT>GC','AT>TA', 'CG>AT','CG>GC','CG>GT','CG>TA','CG>TC','CG>TT', 'GC>AA','GC>AG','GC>AT','GC>CA','GC>CG','GC>TA', 'TA>AT','TA>CG','TA>CT','TA>GC','TA>GG','TA>GT', 'TG>AA','TG>AC','TG>AT','TG>CA','TG>CC','TG>CT','TG>GA','TG>GC','TG>GT'] indels_seq_types = [ # Single-sequences 'C', 'T', # Di-sequences 'AC','AT','CA','CC','CG','CT','GC','TA','TC','TT', # Tri-sequences 'ACC', 'ACT', 'ATC', 'ATT', 'CAC', 'CAT', 'CCA', 'CCC', 'CCG', 'CCT', 'CGC', 'CGT', 'CTA', 'CTC', 'CTG', 'CTT', 'GCC', 'GCT', 'GTC', 'GTT', 'TAC', 'TAT', 'TCA', 'TCC', 'TCG', 'TCT', 'TGC', 'TGT', 'TTA', 'TTC', 'TTG', 'TTT', # Tetra-sequences 'AACC', 'AACT', 'AATC', 'AATT', 'ACAC', 'ACAT', 'ACCA', 'ACCC', 'ACCG', 'ACCT', 'ACGC', 'ACGT', 'ACTA', 'ACTC', 'ACTG', 'ACTT', 'AGCC', 'AGCT', 'AGTC', 'AGTT', 'ATAC', 'ATAT', 'ATCA', 'ATCC', 'ATCG', 'ATCT', 'ATGC', 'ATGT', 'ATTA', 'ATTC', 'ATTG', 'ATTT', 'CAAC', 'CAAT', 'CACA', 'CACC', 'CACG', 'CACT', 'CAGC', 'CAGT', 'CATA', 'CATC', 'CATG', 'CATT', 'CCAA', 'CCAC', 'CCAG', 'CCAT', 'CCCA', 'CCCC', 'CCCG', 'CCCT', 'CCGA', 'CCGC', 'CCGG', 'CCGT', 'CCTA', 'CCTC', 'CCTG', 'CCTT', 'CGAC', 'CGAT', 'CGCA', 'CGCC', 'CGCG', 'CGCT', 'CGGC', 'CGTA', 'CGTC', 'CGTG', 'CGTT', 'CTAA', 'CTAC', 'CTAG', 'CTAT', 'CTCA', 'CTCC', 'CTCG', 'CTCT', 'CTGA', 'CTGC', 'CTGG', 'CTGT', 'CTTA', 'CTTC', 'CTTG', 'CTTT', 'GACC', 'GATC', 'GCAC', 'GCCA', 'GCCC', 'GCCG', 'GCCT', 'GCGC', 'GCTA', 'GCTC', 'GCTG', 'GCTT', 'GGCC', 'GGTC', 'GTAC', 'GTCA', 'GTCC', 'GTCG', 'GTCT', 'GTGC', 'GTTA', 'GTTC', 'GTTG', 'GTTT', 'TAAC', 'TACA', 'TACC', 'TACG', 'TACT', 'TAGC', 'TATA', 'TATC', 'TATG', 'TATT', 'TCAA', 'TCAC', 'TCAG', 'TCAT', 'TCCA', 'TCCC', 'TCCG', 'TCCT', 'TCGA', 'TCGC', 'TCGG', 'TCGT', 'TCTA', 'TCTC', 'TCTG', 'TCTT', 'TGAC', 'TGCA', 'TGCC', 'TGCG', 'TGCT', 'TGTA', 'TGTC', 'TGTG', 'TGTT', 'TTAA', 'TTAC', 'TTAG', 'TTAT', 'TTCA', 'TTCC', 'TTCG', 'TTCT', 'TTGA', 'TTGC', 'TTGG', 'TTGT', 'TTTA', 'TTTC', 'TTTG', 'TTTT', # Penta-sequences 'AACCC', 'AACCT', 'AACTC', 'AACTT', 'AATCC', 'AATCT', 'AATTC', 'AATTT', 'ACACC', 'ACACT', 'ACATC', 'ACATT', 'ACCAC', 'ACCAT', 'ACCCA', 'ACCCC', 'ACCCG', 'ACCCT', 'ACCGC', 'ACCGT', 'ACCTA', 'ACCTC', 'ACCTG', 'ACCTT', 'ACGCC', 'ACGCT', 'ACGTC', 'ACGTT', 'ACTAC', 'ACTAT', 'ACTCA', 'ACTCC', 'ACTCG', 'ACTCT', 'ACTGC', 'ACTGT', 'ACTTA', 'ACTTC', 'ACTTG', 'ACTTT', 'AGCCC', 'AGCCT', 'AGCTC', 'AGCTT', 'AGTCC', 'AGTCT', 'AGTTC', 'AGTTT', 'ATACC', 'ATACT', 'ATATC', 'ATATT', 'ATCAC', 'ATCAT', 'ATCCA', 'ATCCC', 'ATCCG', 'ATCCT', 'ATCGC', 'ATCGT', 'ATCTA', 'ATCTC', 'ATCTG', 'ATCTT', 'ATGCC', 'ATGCT', 'ATGTC', 'ATGTT', 'ATTAC', 'ATTAT', 'ATTCA', 'ATTCC', 'ATTCG', 'ATTCT', 'ATTGC', 'ATTGT', 'ATTTA', 'ATTTC', 'ATTTG', 'ATTTT', 'CAACC', 'CAACT', 'CAATC', 'CAATT', 'CACAC', 'CACAT', 'CACCA', 'CACCC', 'CACCG', 'CACCT', 'CACGC', 'CACGT', 'CACTA', 'CACTC', 'CACTG', 'CACTT', 'CAGCC', 'CAGCT', 'CAGTC', 'CAGTT', 'CATAC', 'CATAT', 'CATCA', 'CATCC', 'CATCG', 'CATCT', 'CATGC', 'CATGT', 'CATTA', 'CATTC', 'CATTG', 'CATTT', 'CCAAC', 'CCAAT', 'CCACA', 'CCACC', 'CCACG', 'CCACT', 'CCAGC', 'CCAGT', 'CCATA', 'CCATC', 'CCATG', 'CCATT', 'CCCAA', 'CCCAC', 'CCCAG', 'CCCAT', 'CCCCA', 'CCCCC', 'CCCCG', 'CCCCT', 'CCCGA', 'CCCGC', 'CCCGG', 'CCCGT', 'CCCTA', 'CCCTC', 'CCCTG', 'CCCTT', 'CCGAC', 'CCGAT', 'CCGCA', 'CCGCC', 'CCGCG', 'CCGCT', 'CCGGC', 'CCGGT', 'CCGTA', 'CCGTC', 'CCGTG', 'CCGTT', 'CCTAA', 'CCTAC', 'CCTAG', 'CCTAT', 'CCTCA', 'CCTCC', 'CCTCG', 'CCTCT', 'CCTGA', 'CCTGC', 'CCTGG', 'CCTGT', 'CCTTA', 'CCTTC', 'CCTTG', 'CCTTT', 'CGACC', 'CGACT', 'CGATC', 'CGATT', 'CGCAC', 'CGCAT', 'CGCCA', 'CGCCC', 'CGCCG', 'CGCCT', 'CGCGC', 'CGCGT', 'CGCTA', 'CGCTC', 'CGCTG', 'CGCTT', 'CGGCC', 'CGGCT', 'CGGTC', 'CGGTT', 'CGTAC', 'CGTAT', 'CGTCA', 'CGTCC', 'CGTCG', 'CGTCT', 'CGTGC', 'CGTGT', 'CGTTA', 'CGTTC', 'CGTTG', 'CGTTT', 'CTAAC', 'CTAAT', 'CTACA', 'CTACC', 'CTACG', 'CTACT', 'CTAGC', 'CTAGT', 'CTATA', 'CTATC', 'CTATG', 'CTATT', 'CTCAA', 'CTCAC', 'CTCAG', 'CTCAT', 'CTCCA', 'CTCCC', 'CTCCG', 'CTCCT', 'CTCGA', 'CTCGC', 'CTCGG', 'CTCGT', 'CTCTA', 'CTCTC', 'CTCTG', 'CTCTT', 'CTGAC', 'CTGAT', 'CTGCA', 'CTGCC', 'CTGCG', 'CTGCT', 'CTGGC', 'CTGGT', 'CTGTA', 'CTGTC', 'CTGTG', 'CTGTT', 'CTTAA', 'CTTAC', 'CTTAG', 'CTTAT', 'CTTCA', 'CTTCC', 'CTTCG', 'CTTCT', 'CTTGA', 'CTTGC', 'CTTGG', 'CTTGT', 'CTTTA', 'CTTTC', 'CTTTG', 'CTTTT', 'GACCC', 'GACCT', 'GACTC', 'GACTT', 'GATCC', 'GATCT', 'GATTC', 'GATTT', 'GCACC', 'GCACT', 'GCATC', 'GCATT', 'GCCAC', 'GCCAT', 'GCCCA', 'GCCCC', 'GCCCG', 'GCCCT', 'GCCGC', 'GCCGT', 'GCCTA', 'GCCTC', 'GCCTG', 'GCCTT', 'GCGCC', 'GCGCT', 'GCGTC', 'GCGTT', 'GCTAC', 'GCTAT', 'GCTCA', 'GCTCC', 'GCTCG', 'GCTCT', 'GCTGC', 'GCTGT', 'GCTTA', 'GCTTC', 'GCTTG', 'GCTTT', 'GGCCC', 'GGCCT', 'GGCTC', 'GGCTT', 'GGTCC', 'GGTCT', 'GGTTC', 'GGTTT', 'GTACC', 'GTACT', 'GTATC', 'GTATT', 'GTCAC', 'GTCAT', 'GTCCA', 'GTCCC', 'GTCCG', 'GTCCT', 'GTCGC', 'GTCGT', 'GTCTA', 'GTCTC', 'GTCTG', 'GTCTT', 'GTGCC', 'GTGCT', 'GTGTC', 'GTGTT', 'GTTAC', 'GTTAT', 'GTTCA', 'GTTCC', 'GTTCG', 'GTTCT', 'GTTGC', 'GTTGT', 'GTTTA', 'GTTTC', 'GTTTG', 'GTTTT', 'TAACC', 'TAACT', 'TAATC', 'TAATT', 'TACAC', 'TACAT', 'TACCA', 'TACCC', 'TACCG', 'TACCT', 'TACGC', 'TACGT', 'TACTA', 'TACTC', 'TACTG', 'TACTT', 'TAGCC', 'TAGCT', 'TAGTC', 'TAGTT', 'TATAC', 'TATAT', 'TATCA', 'TATCC', 'TATCG', 'TATCT', 'TATGC', 'TATGT', 'TATTA', 'TATTC', 'TATTG', 'TATTT', 'TCAAC', 'TCAAT', 'TCACA', 'TCACC', 'TCACG', 'TCACT', 'TCAGC', 'TCAGT', 'TCATA', 'TCATC', 'TCATG', 'TCATT', 'TCCAA', 'TCCAC', 'TCCAG', 'TCCAT', 'TCCCA', 'TCCCC', 'TCCCG', 'TCCCT', 'TCCGA', 'TCCGC', 'TCCGG', 'TCCGT', 'TCCTA', 'TCCTC', 'TCCTG', 'TCCTT', 'TCGAC', 'TCGAT', 'TCGCA', 'TCGCC', 'TCGCG', 'TCGCT', 'TCGGC', 'TCGGT', 'TCGTA', 'TCGTC', 'TCGTG', 'TCGTT', 'TCTAA', 'TCTAC', 'TCTAG', 'TCTAT', 'TCTCA', 'TCTCC', 'TCTCG', 'TCTCT', 'TCTGA', 'TCTGC', 'TCTGG', 'TCTGT', 'TCTTA', 'TCTTC', 'TCTTG', 'TCTTT', 'TGACC', 'TGACT', 'TGATC', 'TGATT', 'TGCAC', 'TGCAT', 'TGCCA', 'TGCCC', 'TGCCG', 'TGCCT', 'TGCGC', 'TGCGT', 'TGCTA', 'TGCTC', 'TGCTG', 'TGCTT', 'TGGCC', 'TGGCT', 'TGGTC', 'TGGTT', 'TGTAC', 'TGTAT', 'TGTCA', 'TGTCC', 'TGTCG', 'TGTCT', 'TGTGC', 'TGTGT', 'TGTTA', 'TGTTC', 'TGTTG', 'TGTTT', 'TTAAC', 'TTAAT', 'TTACA', 'TTACC', 'TTACG', 'TTACT', 'TTAGC', 'TTAGT', 'TTATA', 'TTATC', 'TTATG', 'TTATT', 'TTCAA', 'TTCAC', 'TTCAG', 'TTCAT', 'TTCCA', 'TTCCC', 'TTCCG', 'TTCCT', 'TTCGA', 'TTCGC', 'TTCGG', 'TTCGT', 'TTCTA', 'TTCTC', 'TTCTG', 'TTCTT', 'TTGAC', 'TTGAT', 'TTGCA', 'TTGCC', 'TTGCG', 'TTGCT', 'TTGGC', 'TTGGT', 'TTGTA', 'TTGTC', 'TTGTG', 'TTGTT', 'TTTAA', 'TTTAC', 'TTTAG', 'TTTAT', 'TTTCA', 'TTTCC', 'TTTCG', 'TTTCT', 'TTTGA', 'TTTGC', 'TTTGG', 'TTTGT', 'TTTTA', 'TTTTC', 'TTTTG', 'TTTTT'] # Pre-fills the mutation types variable size = 5 mut_types_initial = perm(size, "ACGT") mut_types = [] for tsbs in tsb: for mut in mut_types_initial: current_base = mut[int(size/2)] if current_base == 'C' or current_base == 'T': for base in bases: if base != current_base: mut_types.append(tsbs+":"+mut[0:int(size/2)] + "[" + current_base+">"+ base+"]"+mut[int(size/2)+1:]) # Organizes all of the mutation types for DINUCs mutation_types_tsb_context = [] for base in bases: for mut in mutation_types: for base2 in bases: for base3 in tsb: mutation_types_tsb_context.append(''.join([base3,":",base,"[",mut,"]",base2])) for base in bases: for mut in mutation_types_non_tsb: for base2 in bases: mutation_types_tsb_context.append(''.join(['Q:', base, "[", mut, "]", base2])) indel_types_tsb = [] indel_types_simple = [] indel_complete = [] indel_cat = ['Del', 'Ins'] indel_types = ['1:Del:C:0', '1:Del:C:1', '1:Del:C:2', '1:Del:C:3', '1:Del:C:4', '1:Del:C:5', '1:Del:T:0', '1:Del:T:1', '1:Del:T:2', '1:Del:T:3', '1:Del:T:4', '1:Del:T:5', '1:Ins:C:0', '1:Ins:C:1', '1:Ins:C:2', '1:Ins:C:3', '1:Ins:C:4', '1:Ins:C:5', '1:Ins:T:0', '1:Ins:T:1', '1:Ins:T:2', '1:Ins:T:3', '1:Ins:T:4', '1:Ins:T:5', # >1bp INDELS '2:Del:R:0', '2:Del:R:1', '2:Del:R:2', '2:Del:R:3', '2:Del:R:4', '2:Del:R:5', '3:Del:R:0', '3:Del:R:1', '3:Del:R:2', '3:Del:R:3', '3:Del:R:4', '3:Del:R:5', '4:Del:R:0', '4:Del:R:1', '4:Del:R:2', '4:Del:R:3', '4:Del:R:4', '4:Del:R:5', '5:Del:R:0', '5:Del:R:1', '5:Del:R:2', '5:Del:R:3', '5:Del:R:4', '5:Del:R:5', '2:Ins:R:0', '2:Ins:R:1', '2:Ins:R:2', '2:Ins:R:3', '2:Ins:R:4', '2:Ins:R:5', '3:Ins:R:0', '3:Ins:R:1', '3:Ins:R:2', '3:Ins:R:3', '3:Ins:R:4', '3:Ins:R:5', '4:Ins:R:0', '4:Ins:R:1', '4:Ins:R:2', '4:Ins:R:3', '4:Ins:R:4', '4:Ins:R:5', '5:Ins:R:0', '5:Ins:R:1', '5:Ins:R:2', '5:Ins:R:3', '5:Ins:R:4', '5:Ins:R:5', #MicroHomology INDELS '2:Del:M:1', '3:Del:M:1', '3:Del:M:2', '4:Del:M:1', '4:Del:M:2', '4:Del:M:3', '5:Del:M:1', '5:Del:M:2', '5:Del:M:3', '5:Del:M:4', '5:Del:M:5', '2:Ins:M:1', '3:Ins:M:1', '3:Ins:M:2', '4:Ins:M:1', '4:Ins:M:2', '4:Ins:M:3', '5:Ins:M:1', '5:Ins:M:2', '5:Ins:M:3', '5:Ins:M:4', '5:Ins:M:5', 'complex', 'non_matching'] for indels in indel_types[:-13]: for tsbs in tsb_I: indel_types_tsb.append(tsbs + ":" + indels) for indels in indels_seq_types: repeat = str(len(indels)) for id_cat in indel_cat: for l in range(0, 6, 1): indel_complete.append(":".join([repeat, id_cat, indels, str(l)])) for id_cat in indel_cat: for i in range(0, 6, 1): indel_complete.append(":".join(['5',id_cat, '5',str(i)])) indel_types_simple = indel_types[:24] indel_types_simple.append('long_Del') indel_types_simple.append('long_Ins') indel_types_simple.append('MH') indel_types_simple.append('complex') # Instantiates the initial contexts to generate matrices for contexts = ['6144'] # Organizes all of the reference directories for later reference: ref_dir, tail = os.path.split(os.path.dirname(os.path.abspath(__file__))) chrom_path =ref_dir + '/references/chromosomes/tsb/' + genome + "/" transcript_path = ref_dir + '/references/chromosomes/transcripts/' + genome + "/" # Terminates the code if the genome reference files have not been created/installed if not os.path.exists(chrom_path): print("The specified genome: " + genome + " has not been installed\nRun the following command to install the genome:\n\tpython sigProfilerMatrixGenerator/install.py -g " + genome) sys.exit() # Organizes all of the input and output directories: if vcfFiles[-1] != "/": vcfFiles += "/" vcf_path = vcfFiles + "input/" vcf_path_original = vcf_path if not os.path.exists(vcf_path) or len(os.listdir(vcf_path)) < 1: os.makedirs(vcf_path, exist_ok=True) input_files = os.listdir(vcfFiles) if os.path.exists(vcfFiles + "input/"): input_files.remove("input") if os.path.exists(vcfFiles + "logs/"): input_files.remove("logs") if ".DS_Store" in input_files: input_files.remove(".DS_Store") if "__init__.py" in input_files: input_files.remove("__init__.py") if "__pycache__" in input_files: input_files.remove("__pycache__") if os.path.exists(vcfFiles + "output/"): input_files.remove("output") for files in input_files: shutil.copy(vcfFiles + files, vcf_path + files) output_matrix = vcfFiles + "output/" if not os.path.exists(output_matrix): os.makedirs(output_matrix) # Organizes the error and log files time_stamp = datetime.date.today() output_log_path = vcfFiles + "logs/" if not os.path.exists(output_log_path): os.makedirs(output_log_path) error_file = output_log_path + 'SigProfilerMatrixGenerator_' + project + "_" + genome + str(time_stamp) + ".err" log_file = output_log_path + 'SigProfilerMatrixGenerator_' + project + "_" + genome + str(time_stamp) + ".out" if os.path.exists(error_file): os.remove(error_file) if os.path.exists(log_file): os.remove(log_file) sys.stderr = open(error_file, 'w') log_out = open(log_file, 'w') log_out.write("THIS FILE CONTAINS THE METADATA ABOUT SYSTEM AND RUNTIME\n\n\n") log_out.write("-------System Info-------\n") log_out.write("Operating System Name: "+ platform.uname()[0]+"\n"+"Nodename: "+ platform.uname()[1]+"\n"+"Release: "+ platform.uname()[2]+"\n"+"Version: "+ platform.uname()[3]+"\n") log_out.write("\n-------Python and Package Versions------- \n") log_out.write("Python Version: "+str(platform.sys.version_info.major)+"."+str(platform.sys.version_info.minor)+"."+str(platform.sys.version_info.micro)+"\n") log_out.write("SigProfilerMatrixGenerator Version: "+sig.__version__+"\n") log_out.write("SigProfilerPlotting version: "+sigPlt.__version__+"\n") log_out.write("matplotlib version: "+plt.__version__+"\n") log_out.write("statsmodels version: "+statsmodels.__version__+"\n") log_out.write("scipy version: "+scipy.__version__+"\n") log_out.write("pandas version: "+pd.__version__+"\n") log_out.write("numpy version: "+np.__version__+"\n") log_out.write("\n-------Vital Parameters Used for the execution -------\n") log_out.write("Project: {}\nGenome: {}\nInput File Path: {}\nexome: {}\nbed_file: {}\nchrom_based: {}\nplot: {}\ntsb_stat: {}\nseqInfo: {}\n".format(project, genome, vcfFiles, str(exome), str(bed_file), str(chrom_based), str(plot), str(tsb_stat), str(seqInfo))) log_out.write("\n-------Date and Time Data------- \n") tic = datetime.datetime.now() log_out.write("Date and Clock time when the execution started: "+str(tic)+"\n\n\n") log_out.write("-------Runtime Checkpoints------- \n") log_out.close() # Gathers all of the vcf files: vcf_files_temp = os.listdir(vcf_path) vcf_files = [] first_extenstion = True for file in vcf_files_temp: # Skips hidden files if file[0:3] == '.DS' or file[0:2] == '__': pass else: vcf_files.append(file) # Creates a temporary folder for sorting and generating the matrices file_name = vcf_files[0].split(".") file_extension = file_name[-1] unique_folder = project + "_"+ str(uuid.uuid4()) output_path = output_matrix + "temp/" + unique_folder + "/" if os.path.exists(output_path): shutil.rmtree(output_path) os.makedirs(output_path) skipped_muts = 0 # Converts the input files to standard text in the temporary folder if file_extension == 'genome': snv, indel, skipped, samples = convertIn.convertTxt(project, vcf_path, genome, output_path) else: if file_extension == 'txt': snv, indel, skipped, samples = convertIn.convertTxt(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'vcf': snv, indel, skipped, samples = convertIn.convertVCF(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'maf': snv, indel, skipped, samples = convertIn.convertMAF(project, vcf_path, genome, output_path, ncbi_chrom, log_file) elif file_extension == 'tsv': snv, indel, skipped, samples = convertIn.convertICGC(project, vcf_path, genome, output_path, ncbi_chrom, log_file) else: print("File format not supported") skipped_muts += skipped # Instantiates variables for final output statistics analyzed_muts = [0, 0, 0] sample_count_high = 0 # Begins matrix generation for all possible contexts for i in range(0, 2, 1): if i == 0 and snv: mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) mutation_dinuc_pd_all = pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples) output_path_snv = output_path + "SNV/" vcf_files = os.listdir(output_path_snv) vcf_path = output_path_snv print("Starting matrix generation for SNVs and DINUCs...", end='', flush=True) start = time.time() # Skips SNVs if none are present elif i == 0 and not snv: continue elif i == 1 and indel: mutation_ID = {} mutation_ID['ID'] = pd.DataFrame(0, index=indel_types, columns=samples) mutation_ID['simple'] = pd.DataFrame(0, index=indel_types_simple, columns=samples) mutation_ID['tsb'] = pd.DataFrame(0, index=indel_types_tsb, columns=samples) mutation_ID['complete'] = pd.DataFrame(0, index=indel_complete, columns=samples) contexts = ['INDEL'] output_path_indel = output_path + "INDEL/" vcf_files = os.listdir(output_path_indel) vcf_path = output_path_indel print("Starting matrix generation for INDELs...", end='', flush=True) start = time.time() # Skips INDELs if none are present and deletes the temp folder elif i ==1 and not indel: shutil.rmtree(output_matrix + "temp/") continue # Removes hidden files generated in macos if ".DS_Store" in vcf_files: vcf_files.remove(".DS_Store") # Generates the bed regions if a bed file was provided if bed_file != None: bed = True bed_file_path = bed_file bed_ranges = matGen.BED_filtering(bed_file_path) else: bed_file_path = None # Sorts files based on chromosome, sample, and start position if not chrom_based: chrom_start = None if i != 1: for file in vcf_files: chrom = file.split("_")[0] with open(vcf_path + file) as f: lines = [line.strip().split() for line in f] lines = sorted(lines, key = lambda x: (x[0], int(x[2]))) context = '6144' mutation_pd, skipped_mut, total, total_DINUC, mutation_dinuc_pd_all = matGen.catalogue_generator_single (lines, chrom, mutation_pd, mutation_dinuc_pd_all, mutation_types_tsb_context, vcf_path, vcf_path_original, vcf_files, bed_file_path, chrom_path, project, output_matrix, context, exome, genome, ncbi_chrom, functionFlag, bed, bed_ranges, chrom_based, plot, tsb_ref, transcript_path, tsb_stat, seqInfo, gs, log_file) if chrom_based and not exome and not bed: matrices = matGen.matrix_generator (context, output_matrix, project, samples, bias_sort, mutation_pd, exome, mut_types, bed, chrom, functionFlag, plot, tsb_stat) mutation_pd = {} mutation_pd['6144'] = pd.DataFrame(0, index=mut_types, columns=samples) dinuc_mat = matGen.matrix_generator_DINUC (output_matrix, samples, bias_sort, mutation_dinuc_pd_all, mutation_types_tsb_context, project, exome, bed, chrom, plot) mutation_dinuc_pd_all =
pd.DataFrame(0, index=mutation_types_tsb_context, columns=samples)
pandas.DataFrame
import numpy as np from pandas import DataFrame from sklearn.cluster import DBSCAN from GoMapClustering.AngularClustering import DBACAN from GoMapClustering.base import GoMapClusterMixin class AngleMetricDBSCAN(GoMapClusterMixin): def __init__( self, max_distance: float, max_angle: float, min_samples: int ) -> None: self.__dbscan = DBSCAN(eps=max_distance, min_samples=min_samples) self.__dbacan = DBACAN(eps=max_angle, min_samples=min_samples) def fit_predict(self, X, y=None): ''' # Parameters - X (List[Tuple[float, float, float]]): Tuples of the format (x, y, angle) - y (None): Not used, only for compatability reasons ''' X =
DataFrame(X, columns=['x', 'y', 'angle'])
pandas.DataFrame
import os import tqdm import pandas as pd def load_records(path, results_fname='results', depth=1): assert results_fname in ['results', 'meters'] records = [] def add_record(results_path): try: df =
pd.read_pickle(results_path)
pandas.read_pickle
import pandas as pd import matplotlib.pyplot as plt import numpy as np import matplotlib from matplotlib.ticker import ScalarFormatter import matplotlib.dates as mdates inf_df = pd.read_excel('SNB_data.xlsx', sheet_name="Inf", header=0) fig = plt.subplot() plt.plot(inf_df['Date'], inf_df['Real Inflation']) plt.plot(inf_df['Date'], inf_df.iloc[:, 2:], ':', alpha=0.7) plt.ylabel('Inflation') # set the ticks so they don't overlap fig.set_xticks(np.arange(0, len(inf_df['Date'])+1, 10)) plt.xticks(rotation=30) #fig.set_yticks(np.arange(0, max(inf_df['Real Inflation']), 3)) for i1, col in enumerate(inf_df.iloc[:, 2:].columns): col1 = col if (col == '20015-Q4'): col1 = '2015-Q4' i = inf_df.index[inf_df['Date'] == col1].tolist()[0] y_pos = inf_df.iloc[:, 2:].notna()[::-1].idxmax() df2 = inf_df.iloc[:, 2:].copy(deep=False) y = df2.iloc[y_pos[i1], i1] i = min(i, 64-i1) plt.annotate(col, xy=(i + 12, y), size=4) plt.savefig('output/inflation_forecasts.png', dpi=300) ##### Figure 2: FX vs M0 df2 = pd.read_excel('yolan.xlsx', sheet_name="FXvsM0", header=0) df2['Date'] = pd.to_datetime(df2['Date']) fig1, ax = plt.subplots(1,1) df2.plot(x="Date", y=['FX', 'M0'], ax=ax) labels=["Foreign Currency Reserve", "Monetary Base"] plt.legend(labels) plt.yscale('log') ax.yaxis.set_major_formatter(ScalarFormatter()) ax.ticklabel_format(style='plain', axis='y') ax.get_yaxis().set_major_formatter( matplotlib.ticker.FuncFormatter(lambda x, p: format(int(x), ','))) plt.ylabel('mil. CHF') #plt.legend() plt.savefig('output/fx.png', dpi=300) ## Figure 3: FX df3 = pd.read_excel('yolan.xlsx', sheet_name="FX", header=0) fig2, ax1 = plt.subplots(1,1) df3['Date'] =
pd.to_datetime(df3['Date'], format='%Y')
pandas.to_datetime
from sklearn.covariance import EmpiricalCovariance, LedoitWolf, OAS from sklearn.model_selection import GroupShuffleSplit from scipy.spatial.distance import mahalanobis import numpy as np import pandas as pd from multiprocessing import Pool from contextlib import closing from functools import partial def similarity(X, y, group=None, n_splits = 1000, class_order=None, return_raw=False, return_distance=False, normalize=False, split_size=None, distance='mahalanobis', cov_estimator='oas', cov_method='shared_split', n_jobs=1): """ Calculates similarity between points of each class. Parameters ---------- X, y: arrays of same shape[0] Respectively the features and labels. group : array of shape equal to y, optional Half of groups will make each split. If None, y is used instead. n_splits : int, default 100 How many times to repeat the separatioon and calculation of distances. class_order : list, optional Class ordering. If None, np.unique(y) is used split_size : int, optional size of each set on each split. if None, half of the groups are used in each (floor rounded) distance : {'mahalanobis', 'euclidean'} How to measure distance between split means. cov_estimator : {'oas', 'lw', 'ml'} Which method will decide regularization strength Ignored if distance is 'euclidean' cov_method : {'shared_split','shared_single', 'class_single', 'class_split'} shared_single - only one covariance for whole dataset shared_split - one covariance, recalculated in each split class_single - one covariance per class class_split - one covariance per class per split Ignored if distance is 'euclidean' """ assert cov_method in ['shared_split','shared_single', 'class_split', 'class_single'] assert y.shape[1]==1 y = y.ravel() classes = np.unique(y) if class_order is None else class_order groups = classes if group is None else np.unique(group) split_size = len(groups)//2 if split_size is None else split_size # sh = GroupShuffleSplit(n_splits, split_size, split_size) if distance is 'mahalanobis': clf = MahalanobisClassifier(classes=classes, estimator=cov_estimator, shared_cov= ('shared' in cov_method), assume_centered=False) if 'split' not in cov_method: clf.fit_cov(X, y) elif distance is 'euclidean': clf = EuclideanClassifier() raise NotImplementedError else: raise NotImplementedError with closing(Pool(n_jobs)) as p: func = partial(one_split, clf=clf, split_size=split_size, X=X, y=y, group=group, classes=classes, cov_method=cov_method) res = p.map(func, np.arange(n_splits)) results = pd.concat(res) if normalize: results[classes] = results[classes]/results[classes].values.max() if return_distance: pass else: results[classes] = 1/(1+results[classes]) if return_raw: return results else: results = results.reset_index().groupby('Real Time').mean().drop(['split','cv'],axis=1) if 'class' in cov_method: results = (results+results.T)/2 return results def one_split(cv_i, clf, split_size, X, y, group, classes, cov_method): sh = GroupShuffleSplit(1, split_size, split_size,random_state=cv_i) (idx_1, idx_2) = next(sh.split(X, y, group)) X_1, X_2, y_1, y_2 = X[idx_1], X[idx_2], y[idx_1], y[idx_2] mean_1 = [X_1[(y_1==yi).ravel()].mean(axis=0) for yi in classes] mean_2 = [X_2[(y_2==yi).ravel()].mean(axis=0) for yi in classes] if 'split' in cov_method: clf.fit_cov((X_1, X_2), (y_1, y_2), is_tuple=True) dists_1 = clf.fit(X_1, y_1).transform(mean_2) dists_2 = clf.fit(X_2, y_2).transform(mean_1) local_res = pd.DataFrame(np.vstack((dists_1,dists_2)), index=pd.Index(np.hstack((classes, classes)), name='Real Time'), columns=
pd.Index(classes, name='Target time')
pandas.Index
# -*- coding: utf-8 -*- # pylint: disable=E1101,E1103,W0232 import os import sys from datetime import datetime from distutils.version import LooseVersion import numpy as np import pandas as pd import pandas.compat as compat import pandas.core.common as com import pandas.util.testing as tm from pandas import (Categorical, Index, Series, DataFrame, PeriodIndex, Timestamp, CategoricalIndex) from pandas.compat import range, lrange, u, PY3 from pandas.core.config import option_context # GH 12066 # flake8: noqa class TestCategorical(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): self.factor = Categorical.from_array(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) def test_getitem(self): self.assertEqual(self.factor[0], 'a') self.assertEqual(self.factor[-1], 'c') subf = self.factor[[0, 1, 2]] tm.assert_almost_equal(subf._codes, [0, 1, 1]) subf = self.factor[np.asarray(self.factor) == 'c'] tm.assert_almost_equal(subf._codes, [2, 2, 2]) def test_getitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype(np.int8)) result = c.codes[np.array([100000]).astype(np.int64)] expected = c[np.array([100000]).astype(np.int64)].codes self.assert_numpy_array_equal(result, expected) def test_setitem(self): # int/positional c = self.factor.copy() c[0] = 'b' self.assertEqual(c[0], 'b') c[-1] = 'a' self.assertEqual(c[-1], 'a') # boolean c = self.factor.copy() indexer = np.zeros(len(c), dtype='bool') indexer[0] = True indexer[-1] = True c[indexer] = 'c' expected = Categorical.from_array(['c', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assert_categorical_equal(c, expected) def test_setitem_listlike(self): # GH 9469 # properly coerce the input indexers np.random.seed(1) c = Categorical(np.random.randint(0, 5, size=150000).astype( np.int8)).add_categories([-1000]) indexer = np.array([100000]).astype(np.int64) c[indexer] = -1000 # we are asserting the code result here # which maps to the -1000 category result = c.codes[np.array([100000]).astype(np.int64)] self.assertEqual(result, np.array([5], dtype='int8')) def test_constructor_unsortable(self): # it works! arr = np.array([1, 2, 3, datetime.now()], dtype='O') factor = Categorical.from_array(arr, ordered=False) self.assertFalse(factor.ordered) if compat.PY3: self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: # this however will raise as cannot be sorted (on PY3 or older # numpies) if LooseVersion(np.__version__) < "1.10": self.assertRaises( TypeError, lambda: Categorical.from_array(arr, ordered=True)) else: Categorical.from_array(arr, ordered=True) def test_is_equal_dtype(self): # test dtype comparisons between cats c1 = Categorical(list('aabca'), categories=list('abc'), ordered=False) c2 = Categorical(list('aabca'), categories=list('cab'), ordered=False) c3 = Categorical(list('aabca'), categories=list('cab'), ordered=True) self.assertTrue(c1.is_dtype_equal(c1)) self.assertTrue(c2.is_dtype_equal(c2)) self.assertTrue(c3.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(c2)) self.assertFalse(c1.is_dtype_equal(c3)) self.assertFalse(c1.is_dtype_equal(Index(list('aabca')))) self.assertFalse(c1.is_dtype_equal(c1.astype(object))) self.assertTrue(c1.is_dtype_equal(CategoricalIndex(c1))) self.assertFalse(c1.is_dtype_equal( CategoricalIndex(c1, categories=list('cab')))) self.assertFalse(c1.is_dtype_equal(CategoricalIndex(c1, ordered=True))) def test_constructor(self): exp_arr = np.array(["a", "b", "c", "a", "b", "c"]) c1 = Categorical(exp_arr) self.assert_numpy_array_equal(c1.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) c2 = Categorical(exp_arr, categories=["c", "b", "a"]) self.assert_numpy_array_equal(c2.__array__(), exp_arr) # categories must be unique def f(): Categorical([1, 2], [1, 2, 2]) self.assertRaises(ValueError, f) def f(): Categorical(["a", "b"], ["a", "b", "b"]) self.assertRaises(ValueError, f) def f(): with tm.assert_produces_warning(FutureWarning): Categorical([1, 2], [1, 2, np.nan, np.nan]) self.assertRaises(ValueError, f) # The default should be unordered c1 = Categorical(["a", "b", "c", "a"]) self.assertFalse(c1.ordered) # Categorical as input c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(c1, categories=["a", "b", "c"]) self.assert_numpy_array_equal(c1.__array__(), c2.__array__()) self.assert_numpy_array_equal(c2.categories, np.array(["a", "b", "c"])) # Series of dtype category c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "c", "b"]) c2 = Categorical(Series(c1)) self.assertTrue(c1.equals(c2)) # Series c1 = Categorical(["a", "b", "c", "a"]) c2 = Categorical(Series(["a", "b", "c", "a"])) self.assertTrue(c1.equals(c2)) c1 = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"]) c2 = Categorical( Series(["a", "b", "c", "a"]), categories=["a", "b", "c", "d"]) self.assertTrue(c1.equals(c2)) # This should result in integer categories, not float! cat = pd.Categorical([1, 2, 3, np.nan], categories=[1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # https://github.com/pydata/pandas/issues/3678 cat = pd.Categorical([np.nan, 1, 2, 3]) self.assertTrue(com.is_integer_dtype(cat.categories)) # this should result in floats cat = pd.Categorical([np.nan, 1, 2., 3]) self.assertTrue(com.is_float_dtype(cat.categories)) cat = pd.Categorical([np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # Deprecating NaNs in categoires (GH #10748) # preserve int as far as possible by converting to object if NaN is in # categories with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1, 2, 3], categories=[np.nan, 1, 2, 3]) self.assertTrue(com.is_object_dtype(cat.categories)) # This doesn't work -> this would probably need some kind of "remember # the original type" feature to try to cast the array interface result # to... # vals = np.asarray(cat[cat.notnull()]) # self.assertTrue(com.is_integer_dtype(vals)) with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, "a", "b", "c"], categories=[np.nan, "a", "b", "c"]) self.assertTrue(com.is_object_dtype(cat.categories)) # but don't do it for floats with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical([np.nan, 1., 2., 3.], categories=[np.nan, 1., 2., 3.]) self.assertTrue(com.is_float_dtype(cat.categories)) # corner cases cat = pd.Categorical([1]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical(["a"]) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == "a") self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Scalars should be converted to lists cat = pd.Categorical(1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) cat = pd.Categorical([1], categories=1) self.assertTrue(len(cat.categories) == 1) self.assertTrue(cat.categories[0] == 1) self.assertTrue(len(cat.codes) == 1) self.assertTrue(cat.codes[0] == 0) # Catch old style constructor useage: two arrays, codes + categories # We can only catch two cases: # - when the first is an integer dtype and the second is not # - when the resulting codes are all -1/NaN with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], categories=["a", "b", "c"]) # noqa with tm.assert_produces_warning(RuntimeWarning): c_old = Categorical([0, 1, 2, 0, 1, 2], # noqa categories=[3, 4, 5]) # the next one are from the old docs, but unfortunately these don't # trigger :-( with tm.assert_produces_warning(None): c_old2 = Categorical([0, 1, 2, 0, 1, 2], [1, 2, 3]) # noqa cat = Categorical([1, 2], categories=[1, 2, 3]) # this is a legitimate constructor with tm.assert_produces_warning(None): c = Categorical(np.array([], dtype='int64'), # noqa categories=[3, 2, 1], ordered=True) def test_constructor_with_index(self): ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical(ci))) ci = CategoricalIndex(list('aabbca'), categories=list('cab')) self.assertTrue(ci.values.equals(Categorical( ci.astype(object), categories=ci.categories))) def test_constructor_with_generator(self): # This was raising an Error in isnull(single_val).any() because isnull # returned a scalar for a generator xrange = range exp = Categorical([0, 1, 2]) cat = Categorical((x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = Categorical(xrange(3)) self.assertTrue(cat.equals(exp)) # This uses xrange internally from pandas.core.index import MultiIndex MultiIndex.from_product([range(5), ['a', 'b', 'c']]) # check that categories accept generators and sequences cat = pd.Categorical([0, 1, 2], categories=(x for x in [0, 1, 2])) self.assertTrue(cat.equals(exp)) cat = pd.Categorical([0, 1, 2], categories=xrange(3)) self.assertTrue(cat.equals(exp)) def test_from_codes(self): # too few categories def f(): Categorical.from_codes([1, 2], [1, 2]) self.assertRaises(ValueError, f) # no int codes def f(): Categorical.from_codes(["a"], [1, 2]) self.assertRaises(ValueError, f) # no unique categories def f(): Categorical.from_codes([0, 1, 2], ["a", "a", "b"]) self.assertRaises(ValueError, f) # too negative def f(): Categorical.from_codes([-2, 1, 2], ["a", "b", "c"]) self.assertRaises(ValueError, f) exp = Categorical(["a", "b", "c"], ordered=False) res = Categorical.from_codes([0, 1, 2], ["a", "b", "c"]) self.assertTrue(exp.equals(res)) # Not available in earlier numpy versions if hasattr(np.random, "choice"): codes = np.random.choice([0, 1], 5, p=[0.9, 0.1]) pd.Categorical.from_codes(codes, categories=["train", "test"]) def test_comparisons(self): result = self.factor[self.factor == 'a'] expected = self.factor[np.asarray(self.factor) == 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor != 'a'] expected = self.factor[np.asarray(self.factor) != 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor < 'c'] expected = self.factor[np.asarray(self.factor) < 'c'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor > 'a'] expected = self.factor[np.asarray(self.factor) > 'a'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor >= 'b'] expected = self.factor[np.asarray(self.factor) >= 'b'] self.assertTrue(result.equals(expected)) result = self.factor[self.factor <= 'b'] expected = self.factor[np.asarray(self.factor) <= 'b'] self.assertTrue(result.equals(expected)) n = len(self.factor) other = self.factor[np.random.permutation(n)] result = self.factor == other expected = np.asarray(self.factor) == np.asarray(other) self.assert_numpy_array_equal(result, expected) result = self.factor == 'd' expected = np.repeat(False, len(self.factor)) self.assert_numpy_array_equal(result, expected) # comparisons with categoricals cat_rev = pd.Categorical(["a", "b", "c"], categories=["c", "b", "a"], ordered=True) cat_rev_base = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a"], ordered=True) cat = pd.Categorical(["a", "b", "c"], ordered=True) cat_base = pd.Categorical(["b", "b", "b"], categories=cat.categories, ordered=True) # comparisons need to take categories ordering into account res_rev = cat_rev > cat_rev_base exp_rev = np.array([True, False, False]) self.assert_numpy_array_equal(res_rev, exp_rev) res_rev = cat_rev < cat_rev_base exp_rev = np.array([False, False, True]) self.assert_numpy_array_equal(res_rev, exp_rev) res = cat > cat_base exp = np.array([False, False, True]) self.assert_numpy_array_equal(res, exp) # Only categories with same categories can be compared def f(): cat > cat_rev self.assertRaises(TypeError, f) cat_rev_base2 = pd.Categorical( ["b", "b", "b"], categories=["c", "b", "a", "d"]) def f(): cat_rev > cat_rev_base2 self.assertRaises(TypeError, f) # Only categories with same ordering information can be compared cat_unorderd = cat.set_ordered(False) self.assertFalse((cat > cat).any()) def f(): cat > cat_unorderd self.assertRaises(TypeError, f) # comparison (in both directions) with Series will raise s = Series(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > s) self.assertRaises(TypeError, lambda: cat_rev > s) self.assertRaises(TypeError, lambda: s < cat) self.assertRaises(TypeError, lambda: s < cat_rev) # comparison with numpy.array will raise in both direction, but only on # newer numpy versions a = np.array(["b", "b", "b"]) self.assertRaises(TypeError, lambda: cat > a) self.assertRaises(TypeError, lambda: cat_rev > a) # The following work via '__array_priority__ = 1000' # works only on numpy >= 1.7.1 if LooseVersion(np.__version__) > "1.7.1": self.assertRaises(TypeError, lambda: a < cat) self.assertRaises(TypeError, lambda: a < cat_rev) # Make sure that unequal comparison take the categories order in # account cat_rev = pd.Categorical( list("abc"), categories=list("cba"), ordered=True) exp = np.array([True, False, False]) res = cat_rev > "b" self.assert_numpy_array_equal(res, exp) def test_na_flags_int_categories(self): # #1457 categories = lrange(10) labels = np.random.randint(0, 10, 20) labels[::5] = -1 cat = Categorical(labels, categories, fastpath=True) repr(cat) self.assert_numpy_array_equal(com.isnull(cat), labels == -1) def test_categories_none(self): factor = Categorical(['a', 'b', 'b', 'a', 'a', 'c', 'c', 'c'], ordered=True) self.assertTrue(factor.equals(self.factor)) def test_describe(self): # string type desc = self.factor.describe() expected = DataFrame({'counts': [3, 2, 3], 'freqs': [3 / 8., 2 / 8., 3 / 8.]}, index=pd.CategoricalIndex(['a', 'b', 'c'], name='categories')) tm.assert_frame_equal(desc, expected) # check unused categories cat = self.factor.copy() cat.set_categories(["a", "b", "c", "d"], inplace=True) desc = cat.describe() expected = DataFrame({'counts': [3, 2, 3, 0], 'freqs': [3 / 8., 2 / 8., 3 / 8., 0]}, index=pd.CategoricalIndex(['a', 'b', 'c', 'd'], name='categories')) tm.assert_frame_equal(desc, expected) # check an integer one desc = Categorical([1, 2, 3, 1, 2, 3, 3, 2, 1, 1, 1]).describe() expected = DataFrame({'counts': [5, 3, 3], 'freqs': [5 / 11., 3 / 11., 3 / 11.]}, index=pd.CategoricalIndex([1, 2, 3], name='categories')) tm.assert_frame_equal(desc, expected) # https://github.com/pydata/pandas/issues/3678 # describe should work with NaN cat = pd.Categorical([np.nan, 1, 2, 2]) desc = cat.describe() expected = DataFrame({'counts': [1, 2, 1], 'freqs': [1 / 4., 2 / 4., 1 / 4.]}, index=pd.CategoricalIndex([1, 2, np.nan], categories=[1, 2], name='categories')) tm.assert_frame_equal(desc, expected) # NA as a category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c", np.nan], categories=["b", "a", "c", np.nan]) result = cat.describe() expected = DataFrame([[0, 0], [1, 0.25], [2, 0.5], [1, 0.25]], columns=['counts', 'freqs'], index=pd.CategoricalIndex(['b', 'a', 'c', np.nan], name='categories')) tm.assert_frame_equal(result, expected) # NA as an unused category with tm.assert_produces_warning(FutureWarning): cat = pd.Categorical(["a", "c", "c"], categories=["b", "a", "c", np.nan]) result = cat.describe() exp_idx = pd.CategoricalIndex( ['b', 'a', 'c', np.nan], name='categories') expected = DataFrame([[0, 0], [1, 1 / 3.], [2, 2 / 3.], [0, 0]], columns=['counts', 'freqs'], index=exp_idx) tm.assert_frame_equal(result, expected) def test_print(self): expected = ["[a, b, b, a, a, c, c, c]", "Categories (3, object): [a < b < c]"] expected = "\n".join(expected) actual = repr(self.factor) self.assertEqual(actual, expected) def test_big_print(self): factor = Categorical([0, 1, 2, 0, 1, 2] * 100, ['a', 'b', 'c'], name='cat', fastpath=True) expected = ["[a, b, c, a, b, ..., b, c, a, b, c]", "Length: 600", "Categories (3, object): [a, b, c]"] expected = "\n".join(expected) actual = repr(factor) self.assertEqual(actual, expected) def test_empty_print(self): factor = Categorical([], ["a", "b", "c"]) expected = ("[], Categories (3, object): [a, b, c]") # hack because array_repr changed in numpy > 1.6.x actual = repr(factor) self.assertEqual(actual, expected) self.assertEqual(expected, actual) factor = Categorical([], ["a", "b", "c"], ordered=True) expected = ("[], Categories (3, object): [a < b < c]") actual = repr(factor) self.assertEqual(expected, actual) factor = Categorical([], []) expected = ("[], Categories (0, object): []") self.assertEqual(expected, repr(factor)) def test_print_none_width(self): # GH10087 a = pd.Series(pd.Categorical([1, 2, 3, 4])) exp = u("0 1\n1 2\n2 3\n3 4\n" + "dtype: category\nCategories (4, int64): [1, 2, 3, 4]") with option_context("display.width", None): self.assertEqual(exp, repr(a)) def test_unicode_print(self): if PY3: _rep = repr else: _rep = unicode # noqa c = pd.Categorical(['aaaaa', 'bb', 'cccc'] * 20) expected = u"""\ [aaaaa, bb, cccc, aaaaa, bb, ..., bb, cccc, aaaaa, bb, cccc] Length: 60 Categories (3, object): [aaaaa, bb, cccc]""" self.assertEqual(_rep(c), expected) c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""\ [ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) # unicode option should not affect to Categorical, as it doesn't care # the repr width with option_context('display.unicode.east_asian_width', True): c = pd.Categorical([u'ああああ', u'いいいいい', u'ううううううう'] * 20) expected = u"""[ああああ, いいいいい, ううううううう, ああああ, いいいいい, ..., いいいいい, ううううううう, ああああ, いいいいい, ううううううう] Length: 60 Categories (3, object): [ああああ, いいいいい, ううううううう]""" # noqa self.assertEqual(_rep(c), expected) def test_periodindex(self): idx1 = PeriodIndex(['2014-01', '2014-01', '2014-02', '2014-02', '2014-03', '2014-03'], freq='M') cat1 = Categorical.from_array(idx1) str(cat1) exp_arr = np.array([0, 0, 1, 1, 2, 2], dtype='int64') exp_idx = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat1._codes, exp_arr) self.assertTrue(cat1.categories.equals(exp_idx)) idx2 = PeriodIndex(['2014-03', '2014-03', '2014-02', '2014-01', '2014-03', '2014-01'], freq='M') cat2 = Categorical.from_array(idx2, ordered=True) str(cat2) exp_arr = np.array([2, 2, 1, 0, 2, 0], dtype='int64') exp_idx2 = PeriodIndex(['2014-01', '2014-02', '2014-03'], freq='M') self.assert_numpy_array_equal(cat2._codes, exp_arr) self.assertTrue(cat2.categories.equals(exp_idx2)) idx3 = PeriodIndex(['2013-12', '2013-11', '2013-10', '2013-09', '2013-08', '2013-07', '2013-05'], freq='M') cat3 = Categorical.from_array(idx3, ordered=True) exp_arr = np.array([6, 5, 4, 3, 2, 1, 0], dtype='int64') exp_idx = PeriodIndex(['2013-05', '2013-07', '2013-08', '2013-09', '2013-10', '2013-11', '2013-12'], freq='M') self.assert_numpy_array_equal(cat3._codes, exp_arr) self.assertTrue(cat3.categories.equals(exp_idx)) def test_categories_assigments(self): s = pd.Categorical(["a", "b", "c", "a"]) exp = np.array([1, 2, 3, 1]) s.categories = [1, 2, 3] self.assert_numpy_array_equal(s.__array__(), exp) self.assert_numpy_array_equal(s.categories, np.array([1, 2, 3])) # lengthen def f(): s.categories = [1, 2, 3, 4] self.assertRaises(ValueError, f) # shorten def f(): s.categories = [1, 2] self.assertRaises(ValueError, f) def test_construction_with_ordered(self): # GH 9347, 9190 cat = Categorical([0, 1, 2]) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=False) self.assertFalse(cat.ordered) cat = Categorical([0, 1, 2], ordered=True) self.assertTrue(cat.ordered) def test_ordered_api(self): # GH 9347 cat1 = pd.Categorical(["a", "c", "b"], ordered=False) self.assertTrue(cat1.categories.equals(Index(['a', 'b', 'c']))) self.assertFalse(cat1.ordered) cat2 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=False) self.assertTrue(cat2.categories.equals(Index(['b', 'c', 'a']))) self.assertFalse(cat2.ordered) cat3 = pd.Categorical(["a", "c", "b"], ordered=True) self.assertTrue(cat3.categories.equals(Index(['a', 'b', 'c']))) self.assertTrue(cat3.ordered) cat4 = pd.Categorical(["a", "c", "b"], categories=['b', 'c', 'a'], ordered=True) self.assertTrue(cat4.categories.equals(Index(['b', 'c', 'a']))) self.assertTrue(cat4.ordered) def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() self.assertFalse(cat2.ordered) cat2 = cat.as_ordered() self.assertTrue(cat2.ordered) cat2.as_unordered(inplace=True) self.assertFalse(cat2.ordered) cat2.as_ordered(inplace=True) self.assertTrue(cat2.ordered) self.assertTrue(cat2.set_ordered(True).ordered) self.assertFalse(cat2.set_ordered(False).ordered) cat2.set_ordered(True, inplace=True) self.assertTrue(cat2.ordered) cat2.set_ordered(False, inplace=True) self.assertFalse(cat2.ordered) # deperecated in v0.16.0 with tm.assert_produces_warning(FutureWarning): cat.ordered = False self.assertFalse(cat.ordered) with tm.assert_produces_warning(FutureWarning): cat.ordered = True self.assertTrue(cat.ordered) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = np.array(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"]) res = cat.set_categories(["c", "b", "a"], inplace=True) self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) self.assertIsNone(res) res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before self.assert_numpy_array_equal(cat.categories, exp_categories) self.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = np.array(["a", "b", "c"]) self.assert_numpy_array_equal(res.categories, exp_categories_back) self.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) self.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0])) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) self.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0])) self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0])) self.assert_numpy_array_equal(c.categories, np.array([1, 2, 3, 4])) self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1])) c = c.set_categories( [4, 3, 2, 1 ]) # all "pointers" to '4' must be changed from 3 to 0,... self.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3]) ) # positions are changed self.assert_numpy_array_equal(c.categories, np.array([4, 3, 2, 1]) ) # categories are now in new order self.assert_numpy_array_equal(c.get_values(), np.array([1, 2, 3, 4, 1]) ) # output is the same self.assertTrue(c.min(), 4) self.assertTrue(c.max(), 1) # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) self.assertFalse(c2.ordered) self.assert_numpy_array_equal(c.get_values(), c2.get_values()) def test_rename_categories(self): cat = pd.Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) self.assert_numpy_array_equal(res.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(res.categories, np.array([1, 2, 3])) self.assert_numpy_array_equal(cat.__array__(), np.array(["a", "b", "c", "a"])) self.assert_numpy_array_equal(cat.categories, np.array(["a", "b", "c"])) res = cat.rename_categories([1, 2, 3], inplace=True) # and now inplace self.assertIsNone(res) self.assert_numpy_array_equal(cat.__array__(), np.array([1, 2, 3, 1])) self.assert_numpy_array_equal(cat.categories, np.array([1, 2, 3])) # lengthen def f(): cat.rename_categories([1, 2, 3, 4]) self.assertRaises(ValueError, f) # shorten def f(): cat.rename_categories([1, 2]) self.assertRaises(ValueError, f) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before self.assert_categorical_equal(cat, old) # only res is changed self.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) self.assertIsNone(res) self.assert_categorical_equal(cat, new) # not all "old" included in "new" cat = Categorical(["a", "b", "c", "a"], ordered=True) def f(): cat.reorder_categories(["a"]) self.assertRaises(ValueError, f) # still not all "old" in "new" def f(): cat.reorder_categories(["a", "b", "d"]) self.assertRaises(ValueError, f) # all "old" included in "new", but too long def f(): cat.reorder_categories(["a", "b", "c", "d"]) self.assertRaises(ValueError, f) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True) # first inplace == False res = cat.add_categories("d") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # new is in old categories def f(): cat.add_categories(["d"]) self.assertRaises(ValueError, f) # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical( list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) self.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) self.assert_categorical_equal(res, expected) def test_remove_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical(["a", "b", np.nan, "a"], categories=["a", "b"], ordered=True) # first inplace == False res = cat.remove_categories("c") self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) res = cat.remove_categories(["c"]) self.assert_categorical_equal(cat, old) self.assert_categorical_equal(res, new) # inplace == True res = cat.remove_categories("c", inplace=True) self.assert_categorical_equal(cat, new) self.assertIsNone(res) # removal is not in categories def f(): cat.remove_categories(["c"]) self.assertRaises(ValueError, f) def test_remove_unused_categories(self): c = Categorical(["a", "b", "c", "d", "a"], categories=["a", "b", "c", "d", "e"]) exp_categories_all = np.array(["a", "b", "c", "d", "e"]) exp_categories_dropped = np.array(["a", "b", "c", "d"]) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, exp_categories_dropped) self.assert_numpy_array_equal(c.categories, exp_categories_all) res = c.remove_unused_categories(inplace=True) self.assert_numpy_array_equal(c.categories, exp_categories_dropped) self.assertIsNone(res) # with NaN values (GH11599) c = Categorical(["a", "b", "c", np.nan], categories=["a", "b", "c", "d", "e"]) res = c.remove_unused_categories() self.assert_numpy_array_equal(res.categories, np.array(["a", "b", "c"])) self.assert_numpy_array_equal(c.categories, exp_categories_all) val = ['F', np.nan, 'D', 'B', 'D', 'F', np.nan] cat = pd.Categorical(values=val, categories=list('ABCDEFG')) out = cat.remove_unused_categories() self.assert_numpy_array_equal(out.categories, ['B', 'D', 'F']) self.assert_numpy_array_equal(out.codes, [2, -1, 1, 0, 1, 2, -1]) self.assertEqual(out.get_values().tolist(), val) alpha = list('abcdefghijklmnopqrstuvwxyz') val = np.random.choice(alpha[::2], 10000).astype('object') val[np.random.choice(len(val), 100)] = np.nan cat = pd.Categorical(values=val, categories=alpha) out = cat.remove_unused_categories() self.assertEqual(out.get_values().tolist(), val.tolist()) def test_nan_handling(self): # Nans are represented as -1 in codes c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, -1, -1, 0])) # If categories have nan included, the code should point to that # instead with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan, "a"], categories=["a", "b", np.nan]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, 2, 0])) # Changing categories should also make the replaced category np.nan c = Categorical(["a", "b", "c", "a"]) with tm.assert_produces_warning(FutureWarning): c.categories = ["a", "b", np.nan] # noqa self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 0])) # Adding nan to categories should make assigned nan point to the # category! c = Categorical(["a", "b", np.nan, "a"]) self.assert_numpy_array_equal(c.categories, np.array(["a", "b"])) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 1, -1, 0])) c[1] = np.nan self.assert_numpy_array_equal(c.categories, np.array(["a", "b", np.nan], dtype=np.object_)) self.assert_numpy_array_equal(c._codes, np.array([0, 2, -1, 0])) # Remove null categories (GH 10156) cases = [ ([1.0, 2.0, np.nan], [1.0, 2.0]), (['a', 'b', None], ['a', 'b']), ([pd.Timestamp('2012-05-01'), pd.NaT], [pd.Timestamp('2012-05-01')]) ] null_values = [np.nan, None, pd.NaT] for with_null, without in cases: with tm.assert_produces_warning(FutureWarning): base = Categorical([], with_null) expected = Categorical([], without) for nullval in null_values: result = base.remove_categories(nullval) self.assert_categorical_equal(result, expected) # Different null values are indistinguishable for i, j in [(0, 1), (0, 2), (1, 2)]: nulls = [null_values[i], null_values[j]] def f(): with tm.assert_produces_warning(FutureWarning): Categorical([], categories=nulls) self.assertRaises(ValueError, f) def test_isnull(self): exp = np.array([False, False, True]) c = Categorical(["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) with tm.assert_produces_warning(FutureWarning): c = Categorical(["a", "b", np.nan], categories=["a", "b", np.nan]) res = c.isnull() self.assert_numpy_array_equal(res, exp) # test both nan in categories and as -1 exp = np.array([True, False, True]) c = Categorical(["a", "b", np.nan]) with tm.assert_produces_warning(FutureWarning): c.set_categories(["a", "b", np.nan], rename=True, inplace=True) c[0] = np.nan res = c.isnull() self.assert_numpy_array_equal(res, exp) def test_codes_immutable(self): # Codes should be read only c = Categorical(["a", "b", "c", "a", np.nan]) exp = np.array([0, 1, 2, 0, -1], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) # Assignments to codes should raise def f(): c.codes = np.array([0, 1, 2, 0, 1], dtype='int8') self.assertRaises(ValueError, f) # changes in the codes array should raise # np 1.6.1 raises RuntimeError rather than ValueError codes = c.codes def f(): codes[4] = 1 self.assertRaises(ValueError, f) # But even after getting the codes, the original array should still be # writeable! c[4] = "a" exp = np.array([0, 1, 2, 0, 0], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) c._codes[4] = 2 exp = np.array([0, 1, 2, 0, 2], dtype='int8') self.assert_numpy_array_equal(c.codes, exp) def test_min_max(self): # unordered cats have no min/max cat = Categorical(["a", "b", "c", "d"], ordered=False) self.assertRaises(TypeError, lambda: cat.min()) self.assertRaises(TypeError, lambda: cat.max()) cat = Categorical(["a", "b", "c", "d"], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "a") self.assertEqual(_max, "d") cat = Categorical(["a", "b", "c", "d"], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertEqual(_min, "d") self.assertEqual(_max, "a") cat = Categorical([np.nan, "b", "c", np.nan], categories=['d', 'c', 'b', 'a'], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, "b") _min = cat.min(numeric_only=True) self.assertEqual(_min, "c") _max = cat.max(numeric_only=True) self.assertEqual(_max, "b") cat = Categorical([np.nan, 1, 2, np.nan], categories=[5, 4, 3, 2, 1], ordered=True) _min = cat.min() _max = cat.max() self.assertTrue(np.isnan(_min)) self.assertEqual(_max, 1) _min = cat.min(numeric_only=True) self.assertEqual(_min, 2) _max = cat.max(numeric_only=True) self.assertEqual(_max, 1) def test_unique(self): # categories are reordered based on value when ordered=False cat = Categorical(["a", "b"]) exp = np.asarray(["a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) cat = Categorical(["a", "b", "a", "a"], categories=["a", "b", "c"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical(exp)) cat = Categorical(["c", "a", "b", "a", "a"], categories=["a", "b", "c"]) exp = np.asarray(["c", "a", "b"]) res = cat.unique() self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( exp, categories=['c', 'a', 'b'])) # nan must be removed cat = Categorical(["b", np.nan, "b", np.nan, "a"], categories=["a", "b", "c"]) res = cat.unique() exp = np.asarray(["b", np.nan, "a"], dtype=object) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, Categorical( ["b", np.nan, "a"], categories=["b", "a"])) def test_unique_ordered(self): # keep categories order when ordered=True cat = Categorical(['b', 'a', 'b'], categories=['a', 'b'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['c', 'b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['c', 'b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b', 'c'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'a', 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', 'a']) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) cat = Categorical(['b', 'b', np.nan, 'a'], categories=['a', 'b', 'c'], ordered=True) res = cat.unique() exp = np.asarray(['b', np.nan, 'a'], dtype=object) exp_cat = Categorical(exp, categories=['a', 'b'], ordered=True) self.assert_numpy_array_equal(res, exp) tm.assert_categorical_equal(res, exp_cat) def test_mode(self): s = Categorical([1, 1, 2, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 1, 1, 4, 5, 5, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([5, 1], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) s = Categorical([1, 2, 3, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp = Categorical([], categories=[5, 4, 3, 2, 1], ordered=True) self.assertTrue(res.equals(exp)) # NaN should not become the mode! s = Categorical([np.nan, np.nan, np.nan, 4, 5], categories=[5, 4, 3, 2, 1], ordered=True) res = s.mode() exp =
Categorical([], categories=[5, 4, 3, 2, 1], ordered=True)
pandas.Categorical
"""Utils for the command line tool.""" # Standard library import datetime as dt import logging import os import pickle import sys from pathlib import Path # Third-party import matplotlib.path as mpath import matplotlib.pyplot as plt import numpy as np import pandas as pd import xarray as xr # from ipdb import set_trace def count_to_log_level(count: int) -> int: """Map occurrence of the command line option verbose to the log level.""" if count == 0: return logging.ERROR elif count == 1: return logging.WARNING elif count == 2: return logging.INFO else: return logging.DEBUG def extract_tqc(grib_file, out_dir, date_str, lt): """Extract tqc from model file using fieldextra. Args: grib_file (str): Grib file out_dir (str): Output directory date_str (str): date lt (int): leadtime """ logging.debug(f"Apply fxfilter to: {grib_file}.") # new filename new_name = Path(out_dir, f"tqc_{date_str}_{lt:03}.grb2") logging.info(f"Creating: {str(new_name)}.") # check whether filtered file already exists if new_name.is_file(): logging.info(f" ...exists already!") return # apply fxfilter cmd = f"fxfilter -o {new_name} -s TQC {grib_file}" logging.debug(f"Will run: {cmd}") os.system(cmd) return def retrieve_cosmo_files(start, end, interval, out_dir, max_lt): """Retrieve COSMO files. Args: start (datetime): start end (datetime): end interval (int): interval between simulations out_dir (str): output directory for tqc-files max_lt (int): maximum leadtime """ cosmo_dir = f"/store/s83/osm/COSMO-1E/" # FCST{start.strftime('%y')}" logging.info(f"Retrieving COSMO-files from {cosmo_dir}") # create output directory Path(out_dir).mkdir(parents=True, exist_ok=True) # list of ini-dates of simulations dates = pd.date_range(start, end, freq=f"{interval}H") # loop over simulations for date in dates: # string of date for directories date_str = date.strftime("%y%m%d%H") # collect grib files for lt in range(0, max_lt + 1, 1): model_file = list( Path(cosmo_dir, f"FCST{date.strftime('%y')}").glob( f"{date_str}_???/grib/c1effsurf{lt:03}_000" ) ) if len(model_file) == 0: logging.warning(f"No file found for {date_str}: +{lt}h.") elif len(model_file) > 1: print(f"Model file description ambiguous.") sys.exit(1) else: # apply fxfilter extract_tqc(model_file[0], out_dir, date_str, lt) def get_fls_fractions(in_dir): """Retrieve dataframe containing FLS fractions. Args: in_dir (str): input directory """ pass def get_ml_mask(lats, lons): """Retrieve mask of Swiss Plateau (Mittelland). Args: lats (array): latitudes lons (array): longitudes Returns: mask (array with True and False) """ # polygon points ll_corner = (46.12, 5.89) p1 = (46.06, 6.10) p2 = (46.33, 6.78) p3 = (46.55, 7.01) p4 = (46.64, 7.31) p5 = (46.65, 7.65) p6 = (46.62, 7.79) p7 = (46.81, 8.33) p8 = (47.09, 9.78) p9 = (47.82, 10.02) p10 = (47.81, 8.34) p11 = (47.38, 7.87) p12 = (47.29, 7.68) p13 = (47.25, 7.45) p14 = (47.13, 7.06) p15 = (47.07, 6.87) p16 = (46.73, 6.36) p17 = (46.59, 6.30) p18 = (46.18, 5.86) # create polygon Path = mpath.Path path_data = [ (Path.MOVETO, ll_corner), (Path.LINETO, p1), (Path.LINETO, p2), (Path.LINETO, p3), (Path.LINETO, p4), (Path.LINETO, p5), (Path.LINETO, p6), (Path.LINETO, p7), (Path.LINETO, p8), (Path.LINETO, p9), (Path.LINETO, p10), (Path.LINETO, p11), (Path.LINETO, p12), (Path.LINETO, p13), (Path.LINETO, p14), (Path.LINETO, p15), (Path.LINETO, p16), (Path.LINETO, p17), (Path.LINETO, p18), (Path.CLOSEPOLY, ll_corner), ] codes, verts = zip(*path_data) path = mpath.Path(verts, codes) # store original shape shape = lats.shape # path.contains_points checks whether points are within polygon # however, this function can only handle vectors # -> ravel and unravel latlon = [[lat, lon] for lat, lon in zip(lats.ravel(), lons.ravel())] mask = np.reshape(path.contains_points(latlon), shape) return mask def save_as_pickle(obj, path): """Save object as pickled object. Args: obj (python object): usually dataframe path (str): full path """ # create parent if not existing yet print(path.parents[0]) path.parents[0].mkdir(parents=True, exist_ok=True) # dump object pickle.dump(obj, open(path, "wb")) logging.info(f"Saved {path}") return def calc_fls_fractions( start, end, interval, in_dir_obs, in_dir_model, out_dir_fls, max_lt, extend_previous, threshold, ): """Calculate FLS fractions in Swiss Plateau for OBS and FCST. Args: start (datetime): start end (datetime): end interval (int): interval between simulations in_dir_obs (str): dir with sat data in_dir_model (str): dir with model data out_dir_fls (str): dir with fls fractions max_lt (int): maximum leadtime extend_previous (bool): load previous obs and fcst dataframes threshold (float): threshold for low stratus confidence level Returns: obs (dataframe) fcst (dataframe) """ # determine init and valid timestamps ini_times = pd.date_range(start=start, end=end, freq=f"{interval}H") valid_times = pd.date_range( start=start, end=end + dt.timedelta(hours=max_lt), freq="1H" ) # retrieve OBS dataframe obs_path = Path(out_dir_fls, "obs.p") if obs_path.is_file() and extend_previous: obs = pickle.load(open(obs_path, "rb")) logging.info("Loaded obs from pickled object.") else: # create dataframe obs =
pd.DataFrame(columns=["fls_frac", "high_clouds"], index=valid_times)
pandas.DataFrame
from html.parser import HTMLParser from bs4 import BeautifulSoup import glob, os import pandas as pd import string import nltk import re from nltk.corpus import stopwords from nltk.stem.snowball import RussianStemmer import matplotlib.pyplot as plt import seaborn as sns sns.set_style('whitegrid') def parse(dir): files = [] for file in glob.glob(f'{dir}/messages*'): files.append(file) fid = 0 messages = [] for file in files: fid += 1 print('parsing', fid, len(files)) doc = BeautifulSoup(open(file), 'html.parser') doc_messages = doc.find_all('div', ['message default clearfix', 'message default clearfix joined']) messages.extend(doc_messages) data = {} id = 0 for raw_message in messages: id += 1 if id % 100 == 0: print('processing', id, len(messages)) author = raw_message.find('div', class_='initials') author_name = raw_message.find('div', class_='from_name') if author is not None: last_author = author last_author_name = author_name message = raw_message.find('div', class_='text') date = raw_message.find('div', class_='pull_right date details') if message is not None: author_data = last_author.text.strip() author_name_data = last_author_name.text.strip() timestamp_data = pd.to_datetime(date['title'], dayfirst=True) text_data = message.text.strip() data[id] = (author_data, author_name_data, timestamp_data, text_data) df = pd.DataFrame.from_dict(data, orient='index', columns=['author_initials', 'author_name', 'timestamp', 'text']) df.to_csv('crab_data.csv', encoding='utf-8') def plot_general_activity(): df =
pd.read_csv('crab_data.csv')
pandas.read_csv
import geopandas as gpd import matplotlib.pyplot as plt import numpy as np from pathlib import Path import pandas as pd import os import h5py from shapely.geometry import point,polygon import icepyx as ipd from datetime import date from dateutil.relativedelta import relativedelta from mpl_toolkits.axes_grid1 import make_axes_locatable from playsound import playsound def get_data(bbox,date_range,path) : try: os.mkdir(path+'/'+date_range[0]+'--'+date_range[1]) except: None path = path+'/'+date_range[0]+'--'+date_range[1] #creating the icepyx object region = ipd.Query('ATL06',bbox,date_range) print(region.avail_granules()) region.granules.avail #logging into earthdata earthdata_uid = input("Enter your Earthdata username:") email = input("Enter your Eathdata email:") region.earthdata_login(earthdata_uid,email) #creating a default variable list region.order_vars.append(defaults=True) #print(region.order_vars.wanted,sep='/n') region.order_vars.remove(all=True) #modifying the default variable list #print(region.order_vars.wanted) region.order_vars.append(var_list=['latitude']) region.order_vars.append(var_list=['longitude']) region.order_vars.append(var_list=['h_li']) region.order_vars.append(var_list=['x_atc']) region.order_vars.append(var_list=['atl06_quality_summary']) print("The requested data is:") print(region.order_vars.wanted) region.subsetparams(Coverage=region.order_vars.wanted) region.reqparams['page_size']=int(input("Enter desired number of granules per order:")) #ordering data email=input("Do you want an email containing information of your order requests(y/n)") email=True if email=='y' else False region.order_granules(email=email) #downloading data region.download_granules(path) def data_to_csv(path_in): group = ['gt1l','gt1r','gt2l','gt2r','gt3l','gt3r'] try: os.mkdir(path_in+'/CSV') except: None path_out = path_in+'/CSV' a=os.listdir(path_in) try: a.remove('.ipynb_checkpoints') except: None for g in group: beam = pd.DataFrame() beam['lat']=[] beam['lon']=[] beam['h_li']=[] beam['x_atc']=[] beam['q_flag']=[] for fname in a: df =
pd.DataFrame()
pandas.DataFrame
#Download 10 years historical data of stocks from yahoo finance wrapper by 'https://github.com/ranaroussi/yfinance' #Process historical data for "adj close" prices and find percentage change #Headline news data from 'https://www.kaggle.com/miguelaenlle/massive-stock-news-analysis-db-for-nlpbacktests?select=analyst_ratings_processed.csv' #Map price percentage change to date and stock for headline news #Imports import concurrent.futures import pandas as pd import numpy as np import yfinance as yf #Yahoo Finance wrapper from tqdm.auto import tqdm #Load headline data df_hl =
pd.read_csv('analyst_ratings_processed.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function import pytest import operator from collections import OrderedDict from datetime import datetime from itertools import chain import warnings import numpy as np from pandas import (notna, DataFrame, Series, MultiIndex, date_range, Timestamp, compat) import pandas as pd from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.apply import frame_apply from pandas.util.testing import (assert_series_equal, assert_frame_equal) import pandas.util.testing as tm from pandas.conftest import _get_cython_table_params from pandas.tests.frame.common import TestData class TestDataFrameApply(TestData): def test_apply(self): with np.errstate(all='ignore'): # ufunc applied = self.frame.apply(np.sqrt) tm.assert_series_equal(np.sqrt(self.frame['A']), applied['A']) # aggregator applied = self.frame.apply(np.mean) assert applied['A'] == np.mean(self.frame['A']) d = self.frame.index[0] applied = self.frame.apply(np.mean, axis=1) assert applied[d] == np.mean(self.frame.xs(d)) assert applied.index is self.frame.index # want this # invalid axis df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) pytest.raises(ValueError, df.apply, lambda x: x, 2) # see gh-9573 df = DataFrame({'c0': ['A', 'A', 'B', 'B'], 'c1': ['C', 'C', 'D', 'D']}) df = df.apply(lambda ts: ts.astype('category')) assert df.shape == (4, 2) assert isinstance(df['c0'].dtype, CategoricalDtype) assert isinstance(df['c1'].dtype, CategoricalDtype) def test_apply_mixed_datetimelike(self): # mixed datetimelike # GH 7778 df = DataFrame({'A': date_range('20130101', periods=3), 'B': pd.to_timedelta(np.arange(3), unit='s')}) result = df.apply(lambda x: x, axis=1) assert_frame_equal(result, df) def test_apply_empty(self): # empty applied = self.empty.apply(np.sqrt) assert applied.empty applied = self.empty.apply(np.mean) assert applied.empty no_rows = self.frame[:0] result = no_rows.apply(lambda x: x.mean()) expected = Series(np.nan, index=self.frame.columns) assert_series_equal(result, expected) no_cols = self.frame.loc[:, []] result = no_cols.apply(lambda x: x.mean(), axis=1) expected = Series(np.nan, index=self.frame.index) assert_series_equal(result, expected) # 2476 xp = DataFrame(index=['a']) rs = xp.apply(lambda x: x['a'], axis=1) assert_frame_equal(xp, rs) def test_apply_with_reduce_empty(self): # reduce with an empty DataFrame x = [] result = self.empty.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, self.empty) result = self.empty.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) empty_with_cols = DataFrame(columns=['a', 'b', 'c']) result = empty_with_cols.apply(x.append, axis=1, result_type='expand') assert_frame_equal(result, empty_with_cols) result = empty_with_cols.apply(x.append, axis=1, result_type='reduce') assert_series_equal(result, Series( [], index=pd.Index([], dtype=object))) # Ensure that x.append hasn't been called assert x == [] def test_apply_deprecate_reduce(self): with warnings.catch_warnings(record=True): x = [] self.empty.apply(x.append, axis=1, result_type='reduce') def test_apply_standard_nonunique(self): df = DataFrame( [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=['a', 'a', 'c']) rs = df.apply(lambda s: s[0], axis=1) xp = Series([1, 4, 7], ['a', 'a', 'c']) assert_series_equal(rs, xp) rs = df.T.apply(lambda s: s[0], axis=0) assert_series_equal(rs, xp) def test_with_string_args(self): for arg in ['sum', 'mean', 'min', 'max', 'std']: result = self.frame.apply(arg) expected = getattr(self.frame, arg)() tm.assert_series_equal(result, expected) result = self.frame.apply(arg, axis=1) expected = getattr(self.frame, arg)(axis=1) tm.assert_series_equal(result, expected) def test_apply_broadcast_deprecated(self): with tm.assert_produces_warning(FutureWarning): self.frame.apply(np.mean, broadcast=True) def test_apply_broadcast(self): # scalars result = self.frame.apply(np.mean, result_type='broadcast') expected = DataFrame([self.frame.mean()], index=self.frame.index) tm.assert_frame_equal(result, expected) result = self.frame.apply(np.mean, axis=1, result_type='broadcast') m = self.frame.mean(axis=1) expected = DataFrame({c: m for c in self.frame.columns}) tm.assert_frame_equal(result, expected) # lists result = self.frame.apply( lambda x: list(range(len(self.frame.columns))), axis=1, result_type='broadcast') m = list(range(len(self.frame.columns))) expected = DataFrame([m] * len(self.frame.index), dtype='float64', index=self.frame.index, columns=self.frame.columns) tm.assert_frame_equal(result, expected) result = self.frame.apply(lambda x: list(range(len(self.frame.index))), result_type='broadcast') m = list(range(len(self.frame.index))) expected = DataFrame({c: m for c in self.frame.columns}, dtype='float64', index=self.frame.index) tm.assert_frame_equal(result, expected) # preserve columns df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: [1, 2, 3], axis=1, result_type='broadcast') tm.assert_frame_equal(result, df) df = DataFrame(np.tile(np.arange(3), 6).reshape(6, -1) + 1, columns=list('ABC')) result = df.apply(lambda x: Series([1, 2, 3], index=list('abc')), axis=1, result_type='broadcast') expected = df.copy() tm.assert_frame_equal(result, expected) def test_apply_broadcast_error(self): df = DataFrame( np.tile(np.arange(3, dtype='int64'), 6).reshape(6, -1) + 1, columns=['A', 'B', 'C']) # > 1 ndim with pytest.raises(ValueError): df.apply(lambda x: np.array([1, 2]).reshape(-1, 2), axis=1, result_type='broadcast') # cannot broadcast with pytest.raises(ValueError): df.apply(lambda x: [1, 2], axis=1, result_type='broadcast') with pytest.raises(ValueError): df.apply(lambda x: Series([1, 2]), axis=1, result_type='broadcast') def test_apply_raw(self): result0 = self.frame.apply(np.mean, raw=True) result1 = self.frame.apply(np.mean, axis=1, raw=True) expected0 = self.frame.apply(lambda x: x.values.mean()) expected1 = self.frame.apply(lambda x: x.values.mean(), axis=1) assert_series_equal(result0, expected0) assert_series_equal(result1, expected1) # no reduction result = self.frame.apply(lambda x: x * 2, raw=True) expected = self.frame * 2 assert_frame_equal(result, expected) def test_apply_axis1(self): d = self.frame.index[0] tapplied = self.frame.apply(np.mean, axis=1) assert tapplied[d] == np.mean(self.frame.xs(d)) def test_apply_ignore_failures(self): result = frame_apply(self.mixed_frame, np.mean, 0, ignore_failures=True).apply_standard() expected = self.mixed_frame._get_numeric_data().apply(np.mean) assert_series_equal(result, expected) def test_apply_mixed_dtype_corner(self): df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df[:0].apply(np.mean, axis=1) # the result here is actually kind of ambiguous, should it be a Series # or a DataFrame? expected = Series(np.nan, index=pd.Index([], dtype='int64')) assert_series_equal(result, expected) df = DataFrame({'A': ['foo'], 'B': [1.]}) result = df.apply(lambda x: x['A'], axis=1) expected = Series(['foo'], index=[0]) assert_series_equal(result, expected) result = df.apply(lambda x: x['B'], axis=1) expected = Series([1.], index=[0]) assert_series_equal(result, expected) def test_apply_empty_infer_type(self): no_cols = DataFrame(index=['a', 'b', 'c']) no_index = DataFrame(columns=['a', 'b', 'c']) def _check(df, f): with warnings.catch_warnings(record=True): test_res = f(np.array([], dtype='f8')) is_reduction = not isinstance(test_res, np.ndarray) def _checkit(axis=0, raw=False): res = df.apply(f, axis=axis, raw=raw) if is_reduction: agg_axis = df._get_agg_axis(axis) assert isinstance(res, Series) assert res.index is agg_axis else: assert isinstance(res, DataFrame) _checkit() _checkit(axis=1) _checkit(raw=True) _checkit(axis=0, raw=True) with np.errstate(all='ignore'): _check(no_cols, lambda x: x) _check(no_cols, lambda x: x.mean()) _check(no_index, lambda x: x) _check(no_index, lambda x: x.mean()) result = no_cols.apply(lambda x: x.mean(), result_type='broadcast') assert isinstance(result, DataFrame) def test_apply_with_args_kwds(self): def add_some(x, howmuch=0): return x + howmuch def agg_and_add(x, howmuch=0): return x.mean() + howmuch def subtract_and_divide(x, sub, divide=1): return (x - sub) / divide result = self.frame.apply(add_some, howmuch=2) exp = self.frame.apply(lambda x: x + 2) assert_frame_equal(result, exp) result = self.frame.apply(agg_and_add, howmuch=2) exp = self.frame.apply(lambda x: x.mean() + 2) assert_series_equal(result, exp) res = self.frame.apply(subtract_and_divide, args=(2,), divide=2) exp = self.frame.apply(lambda x: (x - 2.) / 2.) assert_frame_equal(res, exp) def test_apply_yield_list(self): result = self.frame.apply(list) assert_frame_equal(result, self.frame) def test_apply_reduce_Series(self): self.frame.loc[::2, 'A'] = np.nan expected = self.frame.mean(1) result = self.frame.apply(np.mean, axis=1) assert_series_equal(result, expected) def test_apply_differently_indexed(self): df = DataFrame(np.random.randn(20, 10)) result0 = df.apply(Series.describe, axis=0) expected0 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df)), columns=df.columns) assert_frame_equal(result0, expected0) result1 = df.apply(Series.describe, axis=1) expected1 = DataFrame(dict((i, v.describe()) for i, v in compat.iteritems(df.T)), columns=df.index).T assert_frame_equal(result1, expected1) def test_apply_modify_traceback(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) data.loc[4, 'C'] = np.nan def transform(row): if row['C'].startswith('shin') and row['A'] == 'foo': row['D'] = 7 return row def transform2(row): if (notna(row['C']) and row['C'].startswith('shin') and row['A'] == 'foo'): row['D'] = 7 return row try: data.apply(transform, axis=1) except AttributeError as e: assert len(e.args) == 2 assert e.args[1] == 'occurred at index 4' assert e.args[0] == "'float' object has no attribute 'startswith'" def test_apply_bug(self): # GH 6125 positions = pd.DataFrame([[1, 'ABC0', 50], [1, 'YUM0', 20], [1, 'DEF0', 20], [2, 'ABC1', 50], [2, 'YUM1', 20], [2, 'DEF1', 20]], columns=['a', 'market', 'position']) def f(r): return r['market'] expected = positions.apply(f, axis=1) positions = DataFrame([[datetime(2013, 1, 1), 'ABC0', 50], [datetime(2013, 1, 2), 'YUM0', 20], [datetime(2013, 1, 3), 'DEF0', 20], [datetime(2013, 1, 4), 'ABC1', 50], [datetime(2013, 1, 5), 'YUM1', 20], [datetime(2013, 1, 6), 'DEF1', 20]], columns=['a', 'market', 'position']) result = positions.apply(f, axis=1) assert_series_equal(result, expected) def test_apply_convert_objects(self): data = DataFrame({'A': ['foo', 'foo', 'foo', 'foo', 'bar', 'bar', 'bar', 'bar', 'foo', 'foo', 'foo'], 'B': ['one', 'one', 'one', 'two', 'one', 'one', 'one', 'two', 'two', 'two', 'one'], 'C': ['dull', 'dull', 'shiny', 'dull', 'dull', 'shiny', 'shiny', 'dull', 'shiny', 'shiny', 'shiny'], 'D': np.random.randn(11), 'E': np.random.randn(11), 'F': np.random.randn(11)}) result = data.apply(lambda x: x, axis=1) assert_frame_equal(result._convert(datetime=True), data) def test_apply_attach_name(self): result = self.frame.apply(lambda x: x.name) expected = Series(self.frame.columns, index=self.frame.columns) assert_series_equal(result, expected) result = self.frame.apply(lambda x: x.name, axis=1) expected = Series(self.frame.index, index=self.frame.index) assert_series_equal(result, expected) # non-reductions result = self.frame.apply(lambda x: np.repeat(x.name, len(x))) expected = DataFrame(np.tile(self.frame.columns, (len(self.frame.index), 1)), index=self.frame.index, columns=self.frame.columns) assert_frame_equal(result, expected) result = self.frame.apply(lambda x: np.repeat(x.name, len(x)), axis=1) expected = Series(np.repeat(t[0], len(self.frame.columns)) for t in self.frame.itertuples()) expected.index = self.frame.index assert_series_equal(result, expected) def test_apply_multi_index(self): index = MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'd']]) s = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['col1', 'col2']) result = s.apply( lambda x: Series({'min': min(x), 'max': max(x)}), 1) expected = DataFrame([[1, 2], [3, 4], [5, 6]], index=index, columns=['min', 'max']) assert_frame_equal(result, expected, check_like=True) def test_apply_dict(self): # GH 8735 A =
DataFrame([['foo', 'bar'], ['spam', 'eggs']])
pandas.DataFrame
""" calculates particle geometric properties """ import cocpit.config as config import cocpit.pic as pic # isort: split import multiprocessing import time from functools import partial import numpy as np import pandas as pd def get_attributes(filename, open_dir): image = pic.Image(open_dir, filename) # image.resize_stretch(desired_size) image.find_contours() if len(image.contours) != 0: image.calculate_largest_contour() image.calculate_area() if image.area != 0.0: image.calculate_perim() image.calculate_hull_area() image.morph_contours() # image.mask_background() count_edge_px = np.count_nonzero(image.edges()) std = np.std(np.nonzero(image.edges())) if count_edge_px > 0 else 0 lapl = image.laplacian() contours = len(image.contours) edges = count_edge_px contrast = image.contrast() cnt_area = image.area solidity = image.solidity() complexity = image.complexity() equiv_d = image.equiv_d() convex_perim = image.convex_perim(True) hull_area = image.hull_area perim = image.perim phi = image.phi() circularity = image.circularity() perim_area_ratio = image.perim_area_ratio() roundness = image.roundness() filled_circular_area_ratio = image.filled_circular_area_ratio() extreme_points = image.extreme_points() else: lapl = -999 contours = -999 edges = -999 contrast = -999 cnt_area = -999 solidity = -999 complexity = -999 equiv_d = -999 convex_perim = -999 hull_area = -999 perim = -999 phi = -999 circularity = -999 perim_area_ratio = -999 roundness = -999 filled_circular_area_ratio = -999 extreme_points = -999 std = -999 keys = [ "blur", "contours", "edges", "std", "cnt_area", "contrast", "circularity", "solidity", "complexity", "equiv_d", "convex_perim", "hull_area", "perim", "phi", "extreme_points", "filled_circular_area_ratio", "roundness", "perim_area_ratio", ] values = [ lapl, contours, edges, std, cnt_area, contrast, circularity, solidity, complexity, equiv_d, convex_perim, hull_area, perim, phi, extreme_points, filled_circular_area_ratio, roundness, perim_area_ratio, ] properties = {key: val for key, val in zip(keys, values)} # turn dictionary into dataframe properties = pd.DataFrame(properties, index=[0]) return properties def main(df, open_dir): """ reads in dataframe for a campaign after ice classification and calculates particle geometric properties using the cocpit.pic module returns ------- df (pd.DataFrame): dataframe with image attributes appended """ files = df['filename'] start = time.time() with multiprocessing.Pool(config.NUM_CPUS) as p: properties = p.map(partial(get_attributes, open_dir=open_dir), files) p.close() # properties = Parallel(n_jobs=num_cpus)( # delayed(get_attributes)(open_dir, filename) for filename in files # ) # append new properties dictionary to existing dataframe properties = pd.concat(properties, ignore_index=True) df =
pd.concat([df, properties], axis=1)
pandas.concat
from unittest.mock import patch import numpy as np import pandas as pd import pytest from evalml.automl.automl_search import AutoMLSearch from evalml.automl.engine import EngineBase from evalml.objectives import F1, LogLossBinary from evalml.preprocessing import split_data @patch('evalml.pipelines.BinaryClassificationPipeline.score') @patch('evalml.pipelines.BinaryClassificationPipeline.fit') def test_train_and_score_pipelines(mock_fit, mock_score, dummy_binary_pipeline_class, X_y_binary): X, y = X_y_binary mock_score.return_value = {'Log Loss Binary': 0.42} automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', max_time=1, max_batches=1, allowed_pipelines=[dummy_binary_pipeline_class]) pipeline = dummy_binary_pipeline_class({}) evaluation_result = EngineBase.train_and_score_pipeline(pipeline, automl, automl.X_train, automl.y_train) assert mock_fit.call_count == automl.data_splitter.get_n_splits() assert mock_score.call_count == automl.data_splitter.get_n_splits() assert evaluation_result.get('training_time') is not None assert evaluation_result.get('cv_score_mean') == 0.42 pd.testing.assert_series_equal(evaluation_result.get('cv_scores'), pd.Series([0.42] * 3)) for i in range(automl.data_splitter.get_n_splits()): assert evaluation_result['cv_data'][i]['all_objective_scores']['Log Loss Binary'] == 0.42 @patch('evalml.pipelines.BinaryClassificationPipeline.score') @patch('evalml.pipelines.BinaryClassificationPipeline.fit') def test_train_and_score_pipelines_error(mock_fit, mock_score, dummy_binary_pipeline_class, X_y_binary, caplog): X, y = X_y_binary mock_score.side_effect = Exception('yeet') automl = AutoMLSearch(X_train=X, y_train=y, problem_type='binary', max_time=1, max_batches=1, allowed_pipelines=[dummy_binary_pipeline_class]) pipeline = dummy_binary_pipeline_class({}) evaluation_result = EngineBase.train_and_score_pipeline(pipeline, automl, automl.X_train, automl.y_train) assert mock_fit.call_count == automl.data_splitter.get_n_splits() assert mock_score.call_count == automl.data_splitter.get_n_splits() assert evaluation_result.get('training_time') is not None assert np.isnan(evaluation_result.get('cv_score_mean')) pd.testing.assert_series_equal(evaluation_result.get('cv_scores'),
pd.Series([np.nan] * 3)
pandas.Series
import pytest import numpy as np import pandas as pd from datetime import datetime from pandas.util import testing as tm from pandas import DataFrame, MultiIndex, compat, Series, bdate_range, Index def test_apply_issues(): # GH 5788 s = """2011.05.16,00:00,1.40893 2011.05.16,01:00,1.40760 2011.05.16,02:00,1.40750 2011.05.16,03:00,1.40649 2011.05.17,02:00,1.40893 2011.05.17,03:00,1.40760 2011.05.17,04:00,1.40750 2011.05.17,05:00,1.40649 2011.05.18,02:00,1.40893 2011.05.18,03:00,1.40760 2011.05.18,04:00,1.40750 2011.05.18,05:00,1.40649""" df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value'], parse_dates=[['date', 'time']]) df = df.set_index('date_time') expected = df.groupby(df.index.date).idxmax() result = df.groupby(df.index.date).apply(lambda x: x.idxmax()) tm.assert_frame_equal(result, expected) # GH 5789 # don't auto coerce dates df = pd.read_csv( compat.StringIO(s), header=None, names=['date', 'time', 'value']) exp_idx = pd.Index( ['2011.05.16', '2011.05.17', '2011.05.18' ], dtype=object, name='date') expected = Series(['00:00', '02:00', '02:00'], index=exp_idx) result = df.groupby('date').apply( lambda x: x['time'][x['value'].idxmax()]) tm.assert_series_equal(result, expected) def test_apply_trivial(): # GH 20066 # trivial apply: ignore input and return a constant dataframe. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df.iloc[1:], df.iloc[1:]], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df.iloc[1:]) tm.assert_frame_equal(result, expected) @pytest.mark.xfail(reason="GH#20066; function passed into apply " "returns a DataFrame with the same index " "as the one to create GroupBy object.", strict=True) def test_apply_trivial_fail(): # GH 20066 # trivial apply fails if the constant dataframe has the same index # with the one used to create GroupBy object. df = pd.DataFrame({'key': ['a', 'a', 'b', 'b', 'a'], 'data': [1.0, 2.0, 3.0, 4.0, 5.0]}, columns=['key', 'data']) expected = pd.concat([df, df], axis=1, keys=['float64', 'object']) result = df.groupby([str(x) for x in df.dtypes], axis=1).apply(lambda x: df) tm.assert_frame_equal(result, expected) def test_fast_apply(): # make sure that fast apply is correctly called # rather than raising any kind of error # otherwise the python path will be callsed # which slows things down N = 1000 labels = np.random.randint(0, 2000, size=N) labels2 = np.random.randint(0, 3, size=N) df = DataFrame({'key': labels, 'key2': labels2, 'value1': np.random.randn(N), 'value2': ['foo', 'bar', 'baz', 'qux'] * (N // 4)}) def f(g): return 1 g = df.groupby(['key', 'key2']) grouper = g.grouper splitter = grouper._get_splitter(g._selected_obj, axis=g.axis) group_keys = grouper._get_group_keys() values, mutated = splitter.fast_apply(f, group_keys) assert not mutated def test_apply_with_mixed_dtype(): # GH3480, apply with mixed dtype on axis=1 breaks in 0.11 df = DataFrame({'foo1': np.random.randn(6), 'foo2': ['one', 'two', 'two', 'three', 'one', 'two']}) result = df.apply(lambda x: x, axis=1) tm.assert_series_equal(df.get_dtype_counts(), result.get_dtype_counts()) # GH 3610 incorrect dtype conversion with as_index=False df = DataFrame({"c1": [1, 2, 6, 6, 8]}) df["c2"] = df.c1 / 2.0 result1 = df.groupby("c2").mean().reset_index().c2 result2 = df.groupby("c2", as_index=False).mean().c2 tm.assert_series_equal(result1, result2) def test_groupby_as_index_apply(df): # GH #4648 and #3417 df = DataFrame({'item_id': ['b', 'b', 'a', 'c', 'a', 'b'], 'user_id': [1, 2, 1, 1, 3, 1], 'time': range(6)}) g_as = df.groupby('user_id', as_index=True) g_not_as = df.groupby('user_id', as_index=False) res_as = g_as.head(2).index res_not_as = g_not_as.head(2).index exp = Index([0, 1, 2, 4]) tm.assert_index_equal(res_as, exp) tm.assert_index_equal(res_not_as, exp) res_as_apply = g_as.apply(lambda x: x.head(2)).index res_not_as_apply = g_not_as.apply(lambda x: x.head(2)).index # apply doesn't maintain the original ordering # changed in GH5610 as the as_index=False returns a MI here exp_not_as_apply = MultiIndex.from_tuples([(0, 0), (0, 2), (1, 1), ( 2, 4)]) tp = [(1, 0), (1, 2), (2, 1), (3, 4)] exp_as_apply = MultiIndex.from_tuples(tp, names=['user_id', None]) tm.assert_index_equal(res_as_apply, exp_as_apply) tm.assert_index_equal(res_not_as_apply, exp_not_as_apply) ind = Index(list('abcde')) df = DataFrame([[1, 2], [2, 3], [1, 4], [1, 5], [2, 6]], index=ind) res = df.groupby(0, as_index=False).apply(lambda x: x).index tm.assert_index_equal(res, ind) def test_apply_concat_preserve_names(three_group): grouped = three_group.groupby(['A', 'B']) def desc(group): result = group.describe() result.index.name = 'stat' return result def desc2(group): result = group.describe() result.index.name = 'stat' result = result[:len(group)] # weirdo return result def desc3(group): result = group.describe() # names are different result.index.name = 'stat_%d' % len(group) result = result[:len(group)] # weirdo return result result = grouped.apply(desc) assert result.index.names == ('A', 'B', 'stat') result2 = grouped.apply(desc2) assert result2.index.names == ('A', 'B', 'stat') result3 = grouped.apply(desc3) assert result3.index.names == ('A', 'B', None) def test_apply_series_to_frame(): def f(piece): with np.errstate(invalid='ignore'): logged = np.log(piece) return DataFrame({'value': piece, 'demeaned': piece - piece.mean(), 'logged': logged}) dr = bdate_range('1/1/2000', periods=100) ts = Series(np.random.randn(100), index=dr) grouped = ts.groupby(lambda x: x.month) result = grouped.apply(f) assert isinstance(result, DataFrame) tm.assert_index_equal(result.index, ts.index) def test_apply_series_yield_constant(df): result = df.groupby(['A', 'B'])['C'].apply(len) assert result.index.names[:2] == ('A', 'B') def test_apply_frame_yield_constant(df): # GH13568 result = df.groupby(['A', 'B']).apply(len) assert isinstance(result, Series) assert result.name is None result = df.groupby(['A', 'B'])[['C', 'D']].apply(len) assert isinstance(result, Series) assert result.name is None def test_apply_frame_to_series(df): grouped = df.groupby(['A', 'B']) result = grouped.apply(len) expected = grouped.count()['C'] tm.assert_index_equal(result.index, expected.index) tm.assert_numpy_array_equal(result.values, expected.values) def test_apply_frame_concat_series(): def trans(group): return group.groupby('B')['C'].sum().sort_values()[:2] def trans2(group): grouped = group.groupby(df.reindex(group.index)['B']) return grouped.sum().sort_values()[:2] df = DataFrame({'A': np.random.randint(0, 5, 1000), 'B': np.random.randint(0, 5, 1000), 'C': np.random.randn(1000)}) result = df.groupby('A').apply(trans) exp = df.groupby('A')['C'].apply(trans2) tm.assert_series_equal(result, exp, check_names=False) assert result.name == 'C' def test_apply_transform(ts): grouped = ts.groupby(lambda x: x.month) result = grouped.apply(lambda x: x * 2) expected = grouped.transform(lambda x: x * 2) tm.assert_series_equal(result, expected) def test_apply_multikey_corner(tsframe): grouped = tsframe.groupby([lambda x: x.year, lambda x: x.month]) def f(group): return group.sort_values('A')[-5:] result = grouped.apply(f) for key, group in grouped: tm.assert_frame_equal(result.loc[key], f(group)) def test_apply_chunk_view(): # Low level tinkering could be unsafe, make sure not df = DataFrame({'key': [1, 1, 1, 2, 2, 2, 3, 3, 3], 'value': compat.lrange(9)}) # return view f = lambda x: x[:2] result = df.groupby('key', group_keys=False).apply(f) expected = df.take([0, 1, 3, 4, 6, 7]) tm.assert_frame_equal(result, expected) def test_apply_no_name_column_conflict(): df = DataFrame({'name': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2], 'name2': [0, 0, 0, 1, 1, 1, 0, 0, 1, 1], 'value':
compat.lrange(10)
pandas.compat.lrange
import copy import datetime as dt import pickle import typing from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd # import shap import statsmodels.graphics.tsaplots as tpl import tqdm from bokeh.io import export_png, export_svgs from bokeh.models import DatetimeTickFormatter, Range1d from bokeh.plotting import figure from statsmodels.tsa.tsatools import detrend from xgboost import XGBRegressor from mise import data from mise.constants import SEOUL_STATIONS, SEOULTZ HOURLY_DATA_PATH = "/input/python/input_seoul_imputed_hourly_pandas.csv" DAILY_DATA_PATH = "/input/python/input_seoul_imputed_daily_pandas.csv" def dl_xgboost(station_name="종로구"): """Run XGBoost model data.load_imputed([1], filepath=HOURLY_DATA_PATH) data.load_imputed([1], filepath=HOURLY_DATA_PATH) Args: station_name (str, optional): station name. Defaults to "종로구". Returns: None """ print("Start Multivariate XGBoost", flush=True) _df_h = data.load_imputed([1], filepath=HOURLY_DATA_PATH) df_h = _df_h.query('stationCode == "' + str(SEOUL_STATIONS[station_name]) + '"') if ( station_name == "종로구" and not Path("/input/python/input_jongno_imputed_hourly_pandas.csv").is_file() ): # load imputed result df_h.to_csv("/input/python/input_jongno_imputed_hourly_pandas.csv") print("Data loading complete", flush=True) targets = ["PM10", "PM25"] features = [ "SO2", "CO", "O3", "NO2", "PM10", "PM25", "temp", "wind_spd", "wind_cdir", "wind_sdir", "pres", "humid", "prep", ] features_periodic = [ "SO2", "CO", "O3", "NO2", "PM10", "PM25", "temp", "wind_spd", "wind_cdir", "wind_sdir", "pres", "humid", ] features_nonperiodic = ["prep"] # use one step input sample_size = 1 output_size = 24 train_fdate = dt.datetime(2008, 1, 3, 0).astimezone(SEOULTZ) train_tdate = dt.datetime(2018, 12, 31, 23).astimezone(SEOULTZ) test_fdate = dt.datetime(2019, 1, 1, 0).astimezone(SEOULTZ) test_tdate = dt.datetime(2020, 10, 31, 23).astimezone(SEOULTZ) # consective dates between train and test assert train_tdate + dt.timedelta(hours=1) == test_fdate # check date range assumption assert test_tdate > train_fdate assert test_fdate > train_tdate for target in targets: train_set = data.MultivariateMeanSeasonalityDataset( station_name=station_name, target=target, filepath=HOURLY_DATA_PATH, features=features, features_1=features_nonperiodic, features_2=features_periodic, fdate=train_fdate, tdate=train_tdate, sample_size=sample_size, output_size=output_size, train_valid_ratio=0.8, ) train_set.preprocess() # set fdate=test_fdate, test_set = data.MultivariateMeanSeasonalityDataset( station_name=station_name, target=target, filepath=HOURLY_DATA_PATH, features=features, features_1=features_nonperiodic, features_2=features_periodic, fdate=test_fdate, tdate=test_tdate, sample_size=sample_size, output_size=output_size, scaler_X=train_set.scaler_X, scaler_Y=train_set.scaler_Y, ) test_set.transform() df_test_org = test_set.ys_raw.loc[test_fdate:test_tdate, :].copy() # for lag in range(23, 24): input_lag = 0 output_dir = Path("/mnt/data/XGBoost/" + station_name + "/" + target + "/") png_dir = output_dir / Path("png/") svg_dir = output_dir / Path("svg/") data_dir = output_dir / Path("csv/") Path.mkdir(data_dir, parents=True, exist_ok=True) Path.mkdir(png_dir, parents=True, exist_ok=True) Path.mkdir(svg_dir, parents=True, exist_ok=True) # prepare dataset print("Dataset conversion start..", flush=True) X_train, Y_train, _ = dataset2svinput(train_set, lag=input_lag) X_test, Y_test, _ = dataset2svinput(test_set, lag=input_lag) print("Dataset conversion complete..", flush=True) print("XGBoost " + target + "...", flush=True) df_obs = mw_df(df_test_org, output_size, input_lag, test_fdate, test_tdate) dates = df_obs.index # prediction df_sim = sim_xgboost( X_train.copy(), Y_train, X_test.copy(), Y_test, dates, copy.deepcopy(features), target, output_size, test_set.scaler_Y, data_dir, png_dir, svg_dir, ) assert df_obs.shape == df_sim.shape # join df plot_xgboost( df_sim, df_obs, target, data_dir, png_dir, svg_dir, test_fdate, test_tdate, output_size, ) # save to csv csv_fname = "df_test_obs.csv" df_obs.to_csv(data_dir / csv_fname) csv_fname = "df_test_sim.csv" df_sim.to_csv(data_dir / csv_fname) def dataset2svinput(dataset, lag=0): """Iterate dataset then separate it to X and Y X: single-step input Y: lagged multi-step output if lag == 0, X + 1 hour => 1st item of Y Args: dataset (Dataset): Dataset lag (int, optional): output horizon. Defaults to 0. Returns: [type]: [description] """ # single step _Xset = [dataset[i][0] for i in range(len(dataset)) if i + lag < len(dataset)] # lagged multi step _Yset = [dataset[i + lag][2] for i in range(len(dataset)) if i + lag < len(dataset)] # index of single step -> 1 step x_dates = [ dataset.xs.index[i] for i in range(len(dataset)) if i + lag < len(dataset) ] # starting index of multi step -> 1 step # dataset[i + lag][3] : total dates of prediction result of single step y_dates = [ dataset[i + lag][4][0] for i in range(len(dataset)) if i + lag < len(dataset) ] ycols = range(len(_Yset[0])) # 1D inputs -> total time steps x features DataFrame Xset =
pd.DataFrame(data=_Xset, index=x_dates, columns=dataset.xs.columns)
pandas.DataFrame
import pandas as pd # ------------------- # # inputs # ------------------- # results_file = 'uncertainty_results_all.csv' formations = ['LK1', 'MK1-3', 'UJ1'] # needs to be present in the sheet_name column of the results_file ocean_data_files = ['LK1_ocean_data.xls', 'MK1_3_ocean_data.xls', 'UJ1_ocean_data.xls'] sizing_file = 'study_results.csv' # ------------------- # # begin program # ------------------- # # read-in results df_results = pd.read_csv(results_file) df_sizing =
pd.read_csv(sizing_file)
pandas.read_csv
from sklearn import datasets import pandas as pd from sklearn.model_selection import train_test_split class DataUtility: def __init__(self): iris = datasets.load_iris() df_multi_class = pd.DataFrame(data=iris.data, columns=iris.feature_names) df_multi_class['Species'] = iris.target features_multi = iris.feature_names df_bin_class = pd.read_csv("nyoka/tests/titanic_train.csv") features_bin = [name for name in df_bin_class.columns if name != 'Survived'] df_reg =
pd.read_csv('nyoka/tests/auto-mpg.csv')
pandas.read_csv
from datetime import datetime, timedelta import warnings import operator from textwrap import dedent import numpy as np from pandas._libs import (lib, index as libindex, tslib as libts, algos as libalgos, join as libjoin, Timedelta) from pandas._libs.lib import is_datetime_array from pandas.compat import range, u, set_function_name from pandas.compat.numpy import function as nv from pandas import compat from pandas.core.accessor import CachedAccessor from pandas.core.arrays import ExtensionArray from pandas.core.dtypes.generic import ( ABCSeries, ABCDataFrame, ABCMultiIndex, ABCPeriodIndex, ABCTimedeltaIndex, ABCDateOffset) from pandas.core.dtypes.missing import isna, array_equivalent from pandas.core.dtypes.common import ( _ensure_int64, _ensure_object, _ensure_categorical, _ensure_platform_int, is_integer, is_float, is_dtype_equal, is_dtype_union_equal, is_object_dtype, is_categorical, is_categorical_dtype, is_interval_dtype, is_period_dtype, is_bool, is_bool_dtype, is_signed_integer_dtype, is_unsigned_integer_dtype, is_integer_dtype, is_float_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_timedelta64_dtype, is_hashable, needs_i8_conversion, is_iterator, is_list_like, is_scalar) from pandas.core.base import PandasObject, IndexOpsMixin import pandas.core.common as com from pandas.core import ops from pandas.util._decorators import ( Appender, Substitution, cache_readonly, deprecate_kwarg) from pandas.core.indexes.frozen import FrozenList import pandas.core.dtypes.concat as _concat import pandas.core.missing as missing import pandas.core.algorithms as algos import pandas.core.sorting as sorting from pandas.io.formats.printing import ( pprint_thing, default_pprint, format_object_summary, format_object_attrs) from pandas.core.ops import make_invalid_op from pandas.core.strings import StringMethods __all__ = ['Index'] _unsortable_types = frozenset(('mixed', 'mixed-integer')) _index_doc_kwargs = dict(klass='Index', inplace='', target_klass='Index', unique='Index', duplicated='np.ndarray') _index_shared_docs = dict() def _try_get_item(x): try: return x.item() except AttributeError: return x def _make_comparison_op(op, cls): def cmp_method(self, other): if isinstance(other, (np.ndarray, Index, ABCSeries)): if other.ndim > 0 and len(self) != len(other): raise ValueError('Lengths must match to compare') # we may need to directly compare underlying # representations if needs_i8_conversion(self) and needs_i8_conversion(other): return self._evaluate_compare(other, op) if is_object_dtype(self) and self.nlevels == 1: # don't pass MultiIndex with np.errstate(all='ignore'): result = ops._comp_method_OBJECT_ARRAY(op, self.values, other) else: # numpy will show a DeprecationWarning on invalid elementwise # comparisons, this will raise in the future with warnings.catch_warnings(record=True): with np.errstate(all='ignore'): result = op(self.values, np.asarray(other)) # technically we could support bool dtyped Index # for now just return the indexing array directly if is_bool_dtype(result): return result try: return Index(result) except TypeError: return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(cmp_method, name, cls) def _make_arithmetic_op(op, cls): def index_arithmetic_method(self, other): if isinstance(other, (ABCSeries, ABCDataFrame)): return NotImplemented elif isinstance(other, ABCTimedeltaIndex): # Defer to subclass implementation return NotImplemented other = self._validate_for_numeric_binop(other, op) # handle time-based others if isinstance(other, (ABCDateOffset, np.timedelta64, timedelta)): return self._evaluate_with_timedelta_like(other, op) elif isinstance(other, (datetime, np.datetime64)): return self._evaluate_with_datetime_like(other, op) values = self.values with np.errstate(all='ignore'): result = op(values, other) result = missing.dispatch_missing(op, values, other, result) attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) if op is divmod: result = (Index(result[0], **attrs), Index(result[1], **attrs)) else: result = Index(result, **attrs) return result name = '__{name}__'.format(name=op.__name__) # TODO: docstring? return set_function_name(index_arithmetic_method, name, cls) class InvalidIndexError(Exception): pass _o_dtype = np.dtype(object) _Identity = object def _new_Index(cls, d): """ This is called upon unpickling, rather than the default which doesn't have arguments and breaks __new__ """ # required for backward compat, because PI can't be instantiated with # ordinals through __new__ GH #13277 if issubclass(cls, ABCPeriodIndex): from pandas.core.indexes.period import _new_PeriodIndex return _new_PeriodIndex(cls, **d) return cls.__new__(cls, **d) class Index(IndexOpsMixin, PandasObject): """ Immutable ndarray implementing an ordered, sliceable set. The basic object storing axis labels for all pandas objects Parameters ---------- data : array-like (1-dimensional) dtype : NumPy dtype (default: object) If dtype is None, we find the dtype that best fits the data. If an actual dtype is provided, we coerce to that dtype if it's safe. Otherwise, an error will be raised. copy : bool Make a copy of input ndarray name : object Name to be stored in the index tupleize_cols : bool (default: True) When True, attempt to create a MultiIndex if possible Notes ----- An Index instance can **only** contain hashable objects Examples -------- >>> pd.Index([1, 2, 3]) Int64Index([1, 2, 3], dtype='int64') >>> pd.Index(list('abc')) Index(['a', 'b', 'c'], dtype='object') See Also --------- RangeIndex : Index implementing a monotonic integer range CategoricalIndex : Index of :class:`Categorical` s. MultiIndex : A multi-level, or hierarchical, Index IntervalIndex : an Index of :class:`Interval` s. DatetimeIndex, TimedeltaIndex, PeriodIndex Int64Index, UInt64Index, Float64Index """ # To hand over control to subclasses _join_precedence = 1 # Cython methods _left_indexer_unique = libjoin.left_join_indexer_unique_object _left_indexer = libjoin.left_join_indexer_object _inner_indexer = libjoin.inner_join_indexer_object _outer_indexer = libjoin.outer_join_indexer_object _typ = 'index' _data = None _id = None name = None asi8 = None _comparables = ['name'] _attributes = ['name'] _is_numeric_dtype = False _can_hold_na = True # would we like our indexing holder to defer to us _defer_to_indexing = False # prioritize current class for _shallow_copy_with_infer, # used to infer integers as datetime-likes _infer_as_myclass = False _engine_type = libindex.ObjectEngine _accessors = set(['str']) str = CachedAccessor("str", StringMethods) def __new__(cls, data=None, dtype=None, copy=False, name=None, fastpath=False, tupleize_cols=True, **kwargs): if name is None and hasattr(data, 'name'): name = data.name if fastpath: return cls._simple_new(data, name) from .range import RangeIndex # range if isinstance(data, RangeIndex): return RangeIndex(start=data, copy=copy, dtype=dtype, name=name) elif isinstance(data, range): return RangeIndex.from_range(data, copy=copy, dtype=dtype, name=name) # categorical if is_categorical_dtype(data) or is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(data, dtype=dtype, copy=copy, name=name, **kwargs) # interval if is_interval_dtype(data) or is_interval_dtype(dtype): from .interval import IntervalIndex closed = kwargs.get('closed', None) return IntervalIndex(data, dtype=dtype, name=name, copy=copy, closed=closed) # index-like elif isinstance(data, (np.ndarray, Index, ABCSeries)): if (is_datetime64_any_dtype(data) or (dtype is not None and is_datetime64_any_dtype(dtype)) or 'tz' in kwargs): from pandas.core.indexes.datetimes import DatetimeIndex result = DatetimeIndex(data, copy=copy, name=name, dtype=dtype, **kwargs) if dtype is not None and is_dtype_equal(_o_dtype, dtype): return Index(result.to_pydatetime(), dtype=_o_dtype) else: return result elif (is_timedelta64_dtype(data) or (dtype is not None and is_timedelta64_dtype(dtype))): from pandas.core.indexes.timedeltas import TimedeltaIndex result = TimedeltaIndex(data, copy=copy, name=name, **kwargs) if dtype is not None and _o_dtype == dtype: return Index(result.to_pytimedelta(), dtype=_o_dtype) else: return result if dtype is not None: try: # we need to avoid having numpy coerce # things that look like ints/floats to ints unless # they are actually ints, e.g. '0' and 0.0 # should not be coerced # GH 11836 if is_integer_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'integer': try: data = np.array(data, copy=copy, dtype=dtype) except OverflowError: # gh-15823: a more user-friendly error message raise OverflowError( "the elements provided in the data cannot " "all be casted to the dtype {dtype}" .format(dtype=dtype)) elif inferred in ['floating', 'mixed-integer-float']: if isna(data).any(): raise ValueError('cannot convert float ' 'NaN to integer') # If we are actually all equal to integers, # then coerce to integer. try: return cls._try_convert_to_int_index( data, copy, name, dtype) except ValueError: pass # Return an actual float index. from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif inferred == 'string': pass else: data = data.astype(dtype) elif is_float_dtype(dtype): inferred = lib.infer_dtype(data) if inferred == 'string': pass else: data = data.astype(dtype) else: data = np.array(data, dtype=dtype, copy=copy) except (TypeError, ValueError) as e: msg = str(e) if 'cannot convert float' in msg: raise # maybe coerce to a sub-class from pandas.core.indexes.period import ( PeriodIndex, IncompatibleFrequency) if isinstance(data, PeriodIndex): return PeriodIndex(data, copy=copy, name=name, **kwargs) if is_signed_integer_dtype(data.dtype): from .numeric import Int64Index return Int64Index(data, copy=copy, dtype=dtype, name=name) elif is_unsigned_integer_dtype(data.dtype): from .numeric import UInt64Index return UInt64Index(data, copy=copy, dtype=dtype, name=name) elif is_float_dtype(data.dtype): from .numeric import Float64Index return Float64Index(data, copy=copy, dtype=dtype, name=name) elif issubclass(data.dtype.type, np.bool) or is_bool_dtype(data): subarr = data.astype('object') else: subarr = com._asarray_tuplesafe(data, dtype=object) # _asarray_tuplesafe does not always copy underlying data, # so need to make sure that this happens if copy: subarr = subarr.copy() if dtype is None: inferred = lib.infer_dtype(subarr) if inferred == 'integer': try: return cls._try_convert_to_int_index( subarr, copy, name, dtype) except ValueError: pass return Index(subarr, copy=copy, dtype=object, name=name) elif inferred in ['floating', 'mixed-integer-float']: from .numeric import Float64Index return Float64Index(subarr, copy=copy, name=name) elif inferred == 'interval': from .interval import IntervalIndex return IntervalIndex(subarr, name=name, copy=copy) elif inferred == 'boolean': # don't support boolean explicitly ATM pass elif inferred != 'string': if inferred.startswith('datetime'): if (lib.is_datetime_with_singletz_array(subarr) or 'tz' in kwargs): # only when subarr has the same tz from pandas.core.indexes.datetimes import ( DatetimeIndex) try: return DatetimeIndex(subarr, copy=copy, name=name, **kwargs) except libts.OutOfBoundsDatetime: pass elif inferred.startswith('timedelta'): from pandas.core.indexes.timedeltas import ( TimedeltaIndex) return TimedeltaIndex(subarr, copy=copy, name=name, **kwargs) elif inferred == 'period': try: return PeriodIndex(subarr, name=name, **kwargs) except IncompatibleFrequency: pass return cls._simple_new(subarr, name) elif hasattr(data, '__array__'): return Index(np.asarray(data), dtype=dtype, copy=copy, name=name, **kwargs) elif data is None or is_scalar(data): cls._scalar_data_error(data) else: if tupleize_cols and is_list_like(data) and data: if is_iterator(data): data = list(data) # we must be all tuples, otherwise don't construct # 10697 if all(isinstance(e, tuple) for e in data): from .multi import MultiIndex return MultiIndex.from_tuples( data, names=name or kwargs.get('names')) # other iterable of some kind subarr = com._asarray_tuplesafe(data, dtype=object) return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs) """ NOTE for new Index creation: - _simple_new: It returns new Index with the same type as the caller. All metadata (such as name) must be provided by caller's responsibility. Using _shallow_copy is recommended because it fills these metadata otherwise specified. - _shallow_copy: It returns new Index with the same type (using _simple_new), but fills caller's metadata otherwise specified. Passed kwargs will overwrite corresponding metadata. - _shallow_copy_with_infer: It returns new Index inferring its type from passed values. It fills caller's metadata otherwise specified as the same as _shallow_copy. See each method's docstring. """ @classmethod def _simple_new(cls, values, name=None, dtype=None, **kwargs): """ we require the we have a dtype compat for the values if we are passed a non-dtype compat, then coerce using the constructor Must be careful not to recurse. """ if not hasattr(values, 'dtype'): if (values is None or not len(values)) and dtype is not None: values = np.empty(0, dtype=dtype) else: values = np.array(values, copy=False) if is_object_dtype(values): values = cls(values, name=name, dtype=dtype, **kwargs)._ndarray_values result = object.__new__(cls) result._data = values result.name = name for k, v in compat.iteritems(kwargs): setattr(result, k, v) return result._reset_identity() _index_shared_docs['_shallow_copy'] = """ create a new Index with the same class as the caller, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ @Appender(_index_shared_docs['_shallow_copy']) def _shallow_copy(self, values=None, **kwargs): if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype return self._simple_new(values, **attributes) def _shallow_copy_with_infer(self, values=None, **kwargs): """ create a new Index inferring the class with passed value, don't copy the data, use the same object attributes with passed in attributes taking precedence *this is an internal non-public method* Parameters ---------- values : the values to create the new Index, optional kwargs : updates the default attributes for this Index """ if values is None: values = self.values attributes = self._get_attributes_dict() attributes.update(kwargs) attributes['copy'] = False if not len(values) and 'dtype' not in kwargs: attributes['dtype'] = self.dtype if self._infer_as_myclass: try: return self._constructor(values, **attributes) except (TypeError, ValueError): pass return Index(values, **attributes) def _deepcopy_if_needed(self, orig, copy=False): """ .. versionadded:: 0.19.0 Make a copy of self if data coincides (in memory) with orig. Subclasses should override this if self._base is not an ndarray. Parameters ---------- orig : ndarray other ndarray to compare self._data against copy : boolean, default False when False, do not run any check, just return self Returns ------- A copy of self if needed, otherwise self : Index """ if copy: # Retrieve the "base objects", i.e. the original memory allocations if not isinstance(orig, np.ndarray): # orig is a DatetimeIndex orig = orig.values orig = orig if orig.base is None else orig.base new = self._data if self._data.base is None else self._data.base if orig is new: return self.copy(deep=True) return self def _update_inplace(self, result, **kwargs): # guard when called from IndexOpsMixin raise TypeError("Index can't be updated inplace") def _sort_levels_monotonic(self): """ compat with MultiIndex """ return self _index_shared_docs['_get_grouper_for_level'] = """ Get index grouper corresponding to an index level Parameters ---------- mapper: Group mapping function or None Function mapping index values to groups level : int or None Index level Returns ------- grouper : Index Index of values to group on labels : ndarray of int or None Array of locations in level_index uniques : Index or None Index of unique values for level """ @Appender(_index_shared_docs['_get_grouper_for_level']) def _get_grouper_for_level(self, mapper, level=None): assert level is None or level == 0 if mapper is None: grouper = self else: grouper = self.map(mapper) return grouper, None, None def is_(self, other): """ More flexible, faster check like ``is`` but that works through views Note: this is *not* the same as ``Index.identical()``, which checks that metadata is also the same. Parameters ---------- other : object other object to compare against. Returns ------- True if both have same underlying data, False otherwise : bool """ # use something other than None to be clearer return self._id is getattr( other, '_id', Ellipsis) and self._id is not None def _reset_identity(self): """Initializes or resets ``_id`` attribute with new object""" self._id = _Identity() return self # ndarray compat def __len__(self): """ return the length of the Index """ return len(self._data) def __array__(self, dtype=None): """ the array interface, return my values """ return self._data.view(np.ndarray) def __array_wrap__(self, result, context=None): """ Gets called after a ufunc """ if is_bool_dtype(result): return result attrs = self._get_attributes_dict() attrs = self._maybe_update_attributes(attrs) return Index(result, **attrs) @cache_readonly def dtype(self): """ return the dtype object of the underlying data """ return self._data.dtype @cache_readonly def dtype_str(self): """ return the dtype str of the underlying data """ return str(self.dtype) @property def values(self): """ return the underlying data as an ndarray """ return self._data.view(np.ndarray) @property def _values(self): # type: () -> Union[ExtensionArray, Index] # TODO(EA): remove index types as they become extension arrays """The best array representation. This is an ndarray, ExtensionArray, or Index subclass. This differs from ``_ndarray_values``, which always returns an ndarray. Both ``_values`` and ``_ndarray_values`` are consistent between ``Series`` and ``Index``. It may differ from the public '.values' method. index | values | _values | _ndarray_values | ----------------- | -------------- -| ----------- | --------------- | CategoricalIndex | Categorical | Categorical | codes | DatetimeIndex[tz] | ndarray[M8ns] | DTI[tz] | ndarray[M8ns] | For the following, the ``._values`` is currently ``ndarray[object]``, but will soon be an ``ExtensionArray`` index | values | _values | _ndarray_values | ----------------- | --------------- | ------------ | --------------- | PeriodIndex | ndarray[object] | ndarray[obj] | ndarray[int] | IntervalIndex | ndarray[object] | ndarray[obj] | ndarray[object] | See Also -------- values _ndarray_values """ return self.values def get_values(self): """ Return `Index` data as an `numpy.ndarray`. Returns ------- numpy.ndarray A one-dimensional numpy array of the `Index` values. See Also -------- Index.values : The attribute that get_values wraps. Examples -------- Getting the `Index` values of a `DataFrame`: >>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6], [7, 8, 9]], ... index=['a', 'b', 'c'], columns=['A', 'B', 'C']) >>> df A B C a 1 2 3 b 4 5 6 c 7 8 9 >>> df.index.get_values() array(['a', 'b', 'c'], dtype=object) Standalone `Index` values: >>> idx = pd.Index(['1', '2', '3']) >>> idx.get_values() array(['1', '2', '3'], dtype=object) `MultiIndex` arrays also have only one dimension: >>> midx = pd.MultiIndex.from_arrays([[1, 2, 3], ['a', 'b', 'c']], ... names=('number', 'letter')) >>> midx.get_values() array([(1, 'a'), (2, 'b'), (3, 'c')], dtype=object) >>> midx.get_values().ndim 1 """ return self.values @Appender(IndexOpsMixin.memory_usage.__doc__) def memory_usage(self, deep=False): result = super(Index, self).memory_usage(deep=deep) # include our engine hashtable result += self._engine.sizeof(deep=deep) return result # ops compat @deprecate_kwarg(old_arg_name='n', new_arg_name='repeats') def repeat(self, repeats, *args, **kwargs): """ Repeat elements of an Index. Returns a new index where each element of the current index is repeated consecutively a given number of times. Parameters ---------- repeats : int The number of repetitions for each element. **kwargs Additional keywords have no effect but might be accepted for compatibility with numpy. Returns ------- pandas.Index Newly created Index with repeated elements. See Also -------- Series.repeat : Equivalent function for Series numpy.repeat : Underlying implementation Examples -------- >>> idx = pd.Index([1, 2, 3]) >>> idx Int64Index([1, 2, 3], dtype='int64') >>> idx.repeat(2) Int64Index([1, 1, 2, 2, 3, 3], dtype='int64') >>> idx.repeat(3) Int64Index([1, 1, 1, 2, 2, 2, 3, 3, 3], dtype='int64') """ nv.validate_repeat(args, kwargs) return self._shallow_copy(self._values.repeat(repeats)) _index_shared_docs['where'] = """ .. versionadded:: 0.19.0 Return an Index of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. Parameters ---------- cond : boolean array-like with the same length as self other : scalar, or array-like """ @Appender(_index_shared_docs['where']) def where(self, cond, other=None): if other is None: other = self._na_value dtype = self.dtype values = self.values if is_bool(other) or is_bool_dtype(other): # bools force casting values = values.astype(object) dtype = None values = np.where(cond, values, other) if self._is_numeric_dtype and np.any(isna(values)): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return self._shallow_copy_with_infer(values, dtype=dtype) def ravel(self, order='C'): """ return an ndarray of the flattened values of the underlying data See also -------- numpy.ndarray.ravel """ return self._ndarray_values.ravel(order=order) # construction helpers @classmethod def _try_convert_to_int_index(cls, data, copy, name, dtype): """ Attempt to convert an array of data into an integer index. Parameters ---------- data : The data to convert. copy : Whether to copy the data or not. name : The name of the index returned. Returns ------- int_index : data converted to either an Int64Index or a UInt64Index Raises ------ ValueError if the conversion was not successful. """ from .numeric import Int64Index, UInt64Index if not is_unsigned_integer_dtype(dtype): # skip int64 conversion attempt if uint-like dtype is passed, as # this could return Int64Index when UInt64Index is what's desrired try: res = data.astype('i8', copy=False) if (res == data).all(): return Int64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass # Conversion to int64 failed (possibly due to overflow) or was skipped, # so let's try now with uint64. try: res = data.astype('u8', copy=False) if (res == data).all(): return UInt64Index(res, copy=copy, name=name) except (OverflowError, TypeError, ValueError): pass raise ValueError @classmethod def _scalar_data_error(cls, data): raise TypeError('{0}(...) must be called with a collection of some ' 'kind, {1} was passed'.format(cls.__name__, repr(data))) @classmethod def _string_data_error(cls, data): raise TypeError('String dtype not supported, you may need ' 'to explicitly cast to a numeric type') @classmethod def _coerce_to_ndarray(cls, data): """coerces data to ndarray, raises on scalar data. Converts other iterables to list first and then to array. Does not touch ndarrays. """ if not isinstance(data, (np.ndarray, Index)): if data is None or is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (ABCSeries, list, tuple)): data = list(data) data = np.asarray(data) return data def _get_attributes_dict(self): """ return an attributes dict for my class """ return {k: getattr(self, k, None) for k in self._attributes} def view(self, cls=None): # we need to see if we are subclassing an # index type here if cls is not None and not hasattr(cls, '_typ'): result = self._data.view(cls) else: result = self._shallow_copy() if isinstance(result, Index): result._id = self._id return result def _coerce_scalar_to_index(self, item): """ we need to coerce a scalar to a compat for our index type Parameters ---------- item : scalar item to coerce """ dtype = self.dtype if self._is_numeric_dtype and isna(item): # We can't coerce to the numeric dtype of "self" (unless # it's float) if there are NaN values in our output. dtype = None return Index([item], dtype=dtype, **self._get_attributes_dict()) _index_shared_docs['copy'] = """ Make a copy of this object. Name and dtype sets those attributes on the new object. Parameters ---------- name : string, optional deep : boolean, default False dtype : numpy dtype or pandas type Returns ------- copy : Index Notes ----- In most cases, there should be no functional difference from using ``deep``, but if ``deep`` is passed it will attempt to deepcopy. """ @Appender(_index_shared_docs['copy']) def copy(self, name=None, deep=False, dtype=None, **kwargs): if deep: new_index = self._shallow_copy(self._data.copy()) else: new_index = self._shallow_copy() names = kwargs.get('names') names = self._validate_names(name=name, names=names, deep=deep) new_index = new_index.set_names(names) if dtype: new_index = new_index.astype(dtype) return new_index def __copy__(self, **kwargs): return self.copy(**kwargs) def __deepcopy__(self, memo=None): if memo is None: memo = {} return self.copy(deep=True) def _validate_names(self, name=None, names=None, deep=False): """ Handles the quirks of having a singular 'name' parameter for general Index and plural 'names' parameter for MultiIndex. """ from copy import deepcopy if names is not None and name is not None: raise TypeError("Can only provide one of `names` and `name`") elif names is None and name is None: return deepcopy(self.names) if deep else self.names elif names is not None: if not is_list_like(names): raise TypeError("Must pass list-like as `names`.") return names else: if not is_list_like(name): return [name] return name def __unicode__(self): """ Return a string representation for this object. Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ klass = self.__class__.__name__ data = self._format_data() attrs = self._format_attrs() space = self._format_space() prepr = (u(",%s") % space).join(u("%s=%s") % (k, v) for k, v in attrs) # no data provided, just attributes if data is None: data = '' res = u("%s(%s%s)") % (klass, data, prepr) return res def _format_space(self): # using space here controls if the attributes # are line separated or not (the default) # max_seq_items = get_option('display.max_seq_items') # if len(self) > max_seq_items: # space = "\n%s" % (' ' * (len(klass) + 1)) return " " @property def _formatter_func(self): """ Return the formatter function """ return default_pprint def _format_data(self, name=None): """ Return the formatted data as a unicode string """ # do we want to justify (only do so for non-objects) is_justify = not (self.inferred_type in ('string', 'unicode') or (self.inferred_type == 'categorical' and is_object_dtype(self.categories))) return format_object_summary(self, self._formatter_func, is_justify=is_justify, name=name) def _format_attrs(self): """ Return a list of tuples of the (attr,formatted_value) """ return format_object_attrs(self) def to_series(self, index=None, name=None): """ Create a Series with both index and values equal to the index keys useful with map for returning an indexer based on an index Parameters ---------- index : Index, optional index of resulting Series. If None, defaults to original index name : string, optional name of resulting Series. If None, defaults to name of original index Returns ------- Series : dtype will be based on the type of the Index values. """ from pandas import Series if index is None: index = self._shallow_copy() if name is None: name = self.name return Series(self._to_embed(), index=index, name=name) def to_frame(self, index=True): """ Create a DataFrame with a column containing the Index. .. versionadded:: 0.21.0 Parameters ---------- index : boolean, default True Set the index of the returned DataFrame as the original Index. Returns ------- DataFrame DataFrame containing the original Index data. See Also -------- Index.to_series : Convert an Index to a Series. Series.to_frame : Convert Series to DataFrame. Examples -------- >>> idx = pd.Index(['Ant', 'Bear', 'Cow'], name='animal') >>> idx.to_frame() animal animal Ant Ant Bear Bear Cow Cow By default, the original Index is reused. To enforce a new Index: >>> idx.to_frame(index=False) animal 0 Ant 1 Bear 2 Cow """ from pandas import DataFrame result = DataFrame(self._shallow_copy(), columns=[self.name or 0]) if index: result.index = self return result def _to_embed(self, keep_tz=False, dtype=None): """ *this is an internal non-public method* return an array repr of this object, potentially casting to object """ if dtype is not None: return self.astype(dtype)._to_embed(keep_tz=keep_tz) return self.values.copy() _index_shared_docs['astype'] = """ Create an Index with values cast to dtypes. The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised. Parameters ---------- dtype : numpy dtype or pandas type copy : bool, default True By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned. .. versionadded:: 0.19.0 """ @Appender(_index_shared_docs['astype']) def astype(self, dtype, copy=True): if is_dtype_equal(self.dtype, dtype): return self.copy() if copy else self elif is_categorical_dtype(dtype): from .category import CategoricalIndex return CategoricalIndex(self.values, name=self.name, dtype=dtype, copy=copy) try: return Index(self.values.astype(dtype, copy=copy), name=self.name, dtype=dtype) except (TypeError, ValueError): msg = 'Cannot cast {name} to dtype {dtype}' raise TypeError(msg.format(name=type(self).__name__, dtype=dtype)) def _to_safe_for_reshape(self): """ convert to object if we are a categorical """ return self def _assert_can_do_setop(self, other): if not is_list_like(other): raise TypeError('Input must be Index or array-like') return True def _convert_can_do_setop(self, other): if not isinstance(other, Index): other = Index(other, name=self.name) result_name = self.name else: result_name = self.name if self.name == other.name else None return other, result_name def _convert_for_op(self, value): """ Convert value to be insertable to ndarray """ return value def _assert_can_do_op(self, value): """ Check value is valid for scalar op """ if not is_scalar(value): msg = "'value' must be a scalar, passed: {0}" raise TypeError(msg.format(type(value).__name__)) @property def nlevels(self): return 1 def _get_names(self): return FrozenList((self.name, )) def _set_names(self, values, level=None): """ Set new names on index. Each name has to be a hashable type. Parameters ---------- values : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None Raises ------ TypeError if each name is not hashable. """ if not is_list_like(values): raise ValueError('Names must be a list-like') if len(values) != 1: raise ValueError('Length of new names must be 1, got %d' % len(values)) # GH 20527 # All items in 'name' need to be hashable: for name in values: if not is_hashable(name): raise TypeError('{}.name must be a hashable type' .format(self.__class__.__name__)) self.name = values[0] names = property(fset=_set_names, fget=_get_names) def set_names(self, names, level=None, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- names : str or sequence name(s) to set level : int, level name, or sequence of int/level names (default None) If the index is a MultiIndex (hierarchical), level(s) to set (None for all levels). Otherwise level must be None inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] Examples -------- >>> Index([1, 2, 3, 4]).set_names('foo') Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> Index([1, 2, 3, 4]).set_names(['foo']) Int64Index([1, 2, 3, 4], dtype='int64', name='foo') >>> idx = MultiIndex.from_tuples([(1, u'one'), (1, u'two'), (2, u'one'), (2, u'two')], names=['foo', 'bar']) >>> idx.set_names(['baz', 'quz']) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'quz']) >>> idx.set_names('baz', level=0) MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[u'baz', u'bar']) """ from .multi import MultiIndex if level is not None and not isinstance(self, MultiIndex): raise ValueError('Level must be None for non-MultiIndex') if level is not None and not is_list_like(level) and is_list_like( names): raise TypeError("Names must be a string") if not is_list_like(names) and level is None and self.nlevels > 1: raise TypeError("Must pass list-like as `names`.") if not is_list_like(names): names = [names] if level is not None and not is_list_like(level): level = [level] if inplace: idx = self else: idx = self._shallow_copy() idx._set_names(names, level=level) if not inplace: return idx def rename(self, name, inplace=False): """ Set new names on index. Defaults to returning new index. Parameters ---------- name : str or list name to set inplace : bool if True, mutates in place Returns ------- new index (of same type and class...etc) [if inplace, returns None] """ return self.set_names([name], inplace=inplace) @property def _has_complex_internals(self): # to disable groupby tricks in MultiIndex return False def _summary(self, name=None): """ Return a summarized representation Parameters ---------- name : str name to use in the summary representation Returns ------- String with a summarized representation of the index """ if len(self) > 0: head = self[0] if (hasattr(head, 'format') and not isinstance(head, compat.string_types)): head = head.format() tail = self[-1] if (hasattr(tail, 'format') and not isinstance(tail, compat.string_types)): tail = tail.format() index_summary = ', %s to %s' % (pprint_thing(head), pprint_thing(tail)) else: index_summary = '' if name is None: name = type(self).__name__ return '%s: %s entries%s' % (name, len(self), index_summary) def summary(self, name=None): """ Return a summarized representation .. deprecated:: 0.23.0 """ warnings.warn("'summary' is deprecated and will be removed in a " "future version.", FutureWarning, stacklevel=2) return self._summary(name) def _mpl_repr(self): # how to represent ourselves to matplotlib return self.values _na_value = np.nan """The expected NA value to use with this index.""" # introspection @property def is_monotonic(self): """ alias for is_monotonic_increasing (deprecated) """ return self.is_monotonic_increasing @property def is_monotonic_increasing(self): """ return if the index is monotonic increasing (only equal or increasing) values. Examples -------- >>> Index([1, 2, 3]).is_monotonic_increasing True >>> Index([1, 2, 2]).is_monotonic_increasing True >>> Index([1, 3, 2]).is_monotonic_increasing False """ return self._engine.is_monotonic_increasing @property def is_monotonic_decreasing(self): """ return if the index is monotonic decreasing (only equal or decreasing) values. Examples -------- >>> Index([3, 2, 1]).is_monotonic_decreasing True >>> Index([3, 2, 2]).is_monotonic_decreasing True >>> Index([3, 1, 2]).is_monotonic_decreasing False """ return self._engine.is_monotonic_decreasing @property def _is_strictly_monotonic_increasing(self): """return if the index is strictly monotonic increasing (only increasing) values Examples -------- >>> Index([1, 2, 3])._is_strictly_monotonic_increasing True >>> Index([1, 2, 2])._is_strictly_monotonic_increasing False >>> Index([1, 3, 2])._is_strictly_monotonic_increasing False """ return self.is_unique and self.is_monotonic_increasing @property def _is_strictly_monotonic_decreasing(self): """return if the index is strictly monotonic decreasing (only decreasing) values Examples -------- >>> Index([3, 2, 1])._is_strictly_monotonic_decreasing True >>> Index([3, 2, 2])._is_strictly_monotonic_decreasing False >>> Index([3, 1, 2])._is_strictly_monotonic_decreasing False """ return self.is_unique and self.is_monotonic_decreasing def is_lexsorted_for_tuple(self, tup): return True @cache_readonly def is_unique(self): """ return if the index has unique values """ return self._engine.is_unique @property def has_duplicates(self): return not self.is_unique def is_boolean(self): return self.inferred_type in ['boolean'] def is_integer(self): return self.inferred_type in ['integer'] def is_floating(self): return self.inferred_type in ['floating', 'mixed-integer-float'] def is_numeric(self): return self.inferred_type in ['integer', 'floating'] def is_object(self): return is_object_dtype(self.dtype) def is_categorical(self): """ Check if the Index holds categorical data. Returns ------- boolean True if the Index is categorical. See Also -------- CategoricalIndex : Index for categorical data. Examples -------- >>> idx = pd.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = pd.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = pd.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False """ return self.inferred_type in ['categorical'] def is_interval(self): return self.inferred_type in ['interval'] def is_mixed(self): return self.inferred_type in ['mixed'] def holds_integer(self): return self.inferred_type in ['integer', 'mixed-integer'] _index_shared_docs['_convert_scalar_indexer'] = """ Convert a scalar indexer. Parameters ---------- key : label of the slice bound kind : {'ix', 'loc', 'getitem', 'iloc'} or None """ @Appender(_index_shared_docs['_convert_scalar_indexer']) def _convert_scalar_indexer(self, key, kind=None): assert kind in ['ix', 'loc', 'getitem', 'iloc', None] if kind == 'iloc': return self._validate_indexer('positional', key, kind) if len(self) and not isinstance(self, ABCMultiIndex,): # we can raise here if we are definitive that this # is positional indexing (eg. .ix on with a float) # or label indexing if we are using a type able # to be represented in the index if kind in ['getitem', 'ix'] and
is_float(key)
pandas.core.dtypes.common.is_float
import os import glob import pathlib import re import base64 import pandas as pd from datetime import datetime, timedelta # https://www.pythonanywhere.com/forums/topic/29390/ for measuring the RAM usage on pythonanywhere class defichainAnalyticsModelClass: def __init__(self): workDir = os.path.abspath(os.getcwd()) self.dataPath = workDir[:-9] + '/data/' # data for controller/views self.dailyData = pd.DataFrame() self.hourlyData = pd.DataFrame() self.minutelyData = pd.DataFrame() self.lastRichlist = None self.snapshotData = None self.changelogData = None # last update of csv-files self.updated_nodehubIO = None self.updated_allnodes = None self.updated_extractedRichlist = None self.updated_tradingData = None self.updated_blocktime = None self.updated_dexHourly = None self.update_dexMinutely = None self.updated_daa = None self.updated_LastRichlist = None self.updated_dexVolume = None self.updated_tokenCryptos = None self.updated_twitterData = None self.updated_twitterFollower = None self.update_snapshotData = None self.update_changelogData = None self.update_incomeVisits = None self.update_portfolioDownloads = None self.update_promoDatabase = None self.update_analyticsVisits = None self.updated_hourlyDEXTrades = None self.update_MNmonitor = None self.updated_dfx = None self.update_DFIsignal = None # background image for figures with open(workDir + "/assets/analyticsLandscapeGrey2.png", "rb") as image_file: encoded_string = base64.b64encode(image_file.read()).decode() self.figBackgroundImage = "data:image/png;base64," + encoded_string # Add the prefix that plotly will want when using the string as source #### DAILY DATA ##### def loadDailyData(self): self.loadHourlyDEXdata() self.loadDEXVolume() self.loadDailyTradingData() self.loadExtractedRichlistData() self.calcOverallTVLdata() self.loadDailyBlocktimeData() self.loadDAAData() self.loadTwitterData() self.loadTwitterFollowerData() self.loadIncomeVisitsData() self.loadPortfolioDownloads() self.loadPromoDatabase() self.loadMNMonitorDatabase() self.loadAnalyticsVisitsData() self.loadDFIsignalDatabase() def loadMNnodehub(self): print('>>>> Start update nodehub.IO data ... <<<<') filePath = self.dataPath + 'mnNodehub.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_nodehubIO: nodehubData = pd.read_csv(filePath, index_col=0) nodehubData.rename(columns={"amount": "nbMNNodehub"}, inplace=True) ind2Delete = self.dailyData.columns.intersection(nodehubData.columns) self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(nodehubData['nbMNNodehub'], how='outer', left_index=True, right_index=True) self.updated_nodehubIO = fileInfo.stat() print('>>>> nodehub data loaded from csv-file <<<<') def loadMNAllnodes(self): print('>>>> Start update allnodes data ... <<<<') filePath = self.dataPath + 'mnAllnodes.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_allnodes: allnodesData = pd.read_csv(filePath, index_col=0) allnodesData.set_index('date', inplace=True) ind2Delete = self.dailyData.columns.intersection(allnodesData.columns) self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(allnodesData['nbMNAllnode'], how='outer', left_index=True, right_index=True) self.updated_allnodes = fileInfo.stat() print('>>>> allnodes data loaded from csv-file <<<<') def loadExtractedRichlistData(self): self.loadMNnodehub() # number masternode hosted by nodehub must be load here to ensure correct values for other and relative representation self.loadMNAllnodes() # number masternode hosted by Allnodes must be load here to ensure correct values for other and relative representation print('>>>> Start update extracted richlist data ... <<<<') filePath = self.dataPath + 'extractedDFIdata.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_extractedRichlist: extractedRichlist = pd.read_csv(filePath, index_col=0) ind2Delete = self.dailyData.columns.intersection(extractedRichlist.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(extractedRichlist, how='outer', left_index=True, right_index=True) # add new columns to daily table self.dailyData['nbMNOther'] = self.dailyData['nbMnId']-self.dailyData['nbMnCakeId']-self.dailyData['nbMydefichainId']-self.dailyData['nbMNNodehub'].fillna(0)-self.dailyData['nbMNAllnode'].fillna(0) self.dailyData['nbMNnonCake'] = self.dailyData['nbMnId']-self.dailyData['nbMnCakeId'] self.dailyData['nbMnCakeIdRelative'] = self.dailyData['nbMnCakeId']/self.dailyData['nbMnId']*100 self.dailyData['nbMNOtherRelative'] = self.dailyData['nbMNOther'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMydefichainRelative'] = self.dailyData['nbMydefichainId'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNNodehubRelative'] = self.dailyData['nbMNNodehub'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNAllnodeRelative'] = self.dailyData['nbMNAllnode'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNlocked10Relative'] = self.dailyData['nbMNlocked10'] / self.dailyData['nbMnId'] * 100 self.dailyData['nbMNlocked5Relative'] = self.dailyData['nbMNlocked5'] / self.dailyData['nbMnId'] * 100 # extracting DFI in Liquidity-Mining lmCoins = pd.DataFrame(index=self.dailyData.index) lmCoins['BTC_pool'] = self.hourlyData.groupby('Date')['BTC-DFI_reserveB'].first() lmCoins['ETH_pool'] = self.hourlyData.groupby('Date')['ETH-DFI_reserveB'].first() lmCoins['USDT_pool'] = self.hourlyData.groupby('Date')['USDT-DFI_reserveB'].first() lmCoins['DOGE_pool'] = self.hourlyData.groupby('Date')['DOGE-DFI_reserveB'].first() lmCoins['LTC_pool'] = self.hourlyData.groupby('Date')['LTC-DFI_reserveB'].first() lmCoins['USDC_pool'] = self.hourlyData.groupby('Date')['USDC-DFI_reserveB'].first() lmCoins['overall'] = lmCoins['BTC_pool'] + lmCoins['ETH_pool'] + lmCoins['USDT_pool'] + lmCoins['DOGE_pool'].fillna(0) + lmCoins['LTC_pool'].fillna(0) + lmCoins['USDC_pool'] .fillna(0) self.dailyData['lmDFI'] = lmCoins['overall'] # sum of addresses and DFI self.dailyData['nbOverall'] = self.dailyData['nbMnId'] + self.dailyData['nbOtherId'] self.dailyData['circDFI'] = self.dailyData['mnDFI'] + self.dailyData['otherDFI'] \ + self.dailyData['tokenDFI'].fillna(0) + self.dailyData['lmDFI'].fillna(0) + self.dailyData['erc20DFI'].fillna(0) \ - (self.dailyData['nbMNlocked10']+self.dailyData['nbMNlocked5']).fillna(0)*20000 self.dailyData['totalDFI'] = self.dailyData['circDFI'] + self.dailyData['fundDFI'] + self.dailyData['foundationDFI'].fillna(0) \ + self.dailyData['burnedDFI'].fillna(method="ffill") + (self.dailyData['nbMNlocked10']+self.dailyData['nbMNlocked5']).fillna(0)*20000 # calc market cap data in USD and BTC print('>>>>>>>> Update market cap in loadExtractedRichlistData... <<<<<<<<') self.dailyData['marketCapUSD'] = self.dailyData['circDFI']*self.dailyData['DFIPriceUSD'] self.dailyData['marketCapBTC'] = self.dailyData['marketCapUSD'] / self.dailyData['BTCPriceUSD'] # calculate daily change in addresses and DFI amount self.dailyData['diffDate'] = pd.to_datetime(self.dailyData.index).to_series().diff().values self.dailyData['diffDate'] = self.dailyData['diffDate'].fillna(pd.Timedelta(seconds=0)) # set nan-entry to timedelta 0 self.dailyData['diffDate'] = self.dailyData['diffDate'].apply(lambda x: float(x.days)) self.dailyData['diffNbOther'] = self.dailyData['nbOtherId'].diff() / self.dailyData['diffDate'] self.dailyData['diffNbMN'] = self.dailyData['nbMnId'].diff() / self.dailyData['diffDate'] self.dailyData['diffNbNone'] = None self.dailyData['diffotherDFI'] = self.dailyData['otherDFI'].diff() / self.dailyData['diffDate'] self.dailyData['diffmnDFI'] = self.dailyData['mnDFI'].diff() / self.dailyData['diffDate'] self.dailyData['difffundDFI'] = self.dailyData['fundDFI'].diff() / self.dailyData['diffDate'] self.dailyData['difffoundationDFI'] = self.dailyData['foundationDFI'].diff() / self.dailyData['diffDate'] self.dailyData['diffLMDFI'] = self.dailyData['lmDFI'].diff() / self.dailyData['diffDate'] self.updated_extractedRichlist = fileInfo.stat() print('>>>> Richlist data loaded from csv-file <<<<') def calcOverallTVLdata(self): self.dailyData['tvlMNDFI'] = self.dailyData['nbMnId'] * ((pd.to_datetime(self.dailyData.index)<pd.Timestamp('2021-03-02')) * 1 * 1000000 + \ (pd.to_datetime(self.dailyData.index)>=pd.Timestamp('2021-03-02')) * 1 * 20000) dexLockedDFI = (self.hourlyData['BTC-DFI_lockedDFI']+self.hourlyData['ETH-DFI_lockedDFI']+self.hourlyData['USDT-DFI_lockedDFI'] + self.hourlyData['DOGE-DFI_lockedDFI'].fillna(0)+self.hourlyData['LTC-DFI_lockedDFI'].fillna(0) + self.hourlyData['BCH-DFI_lockedDFI'].fillna(0) + self.hourlyData['USDC-DFI_lockedDFI'].fillna(0)) dexLockedDFI.index = dexLockedDFI.index.floor('D').astype(str) # remove time information, only date is needed self.dailyData['tvlDEXDFI'] = dexLockedDFI.groupby(level=0).first() def loadDailyTradingData(self): print('>>>> Start update trading data ... <<<<') filePath = self.dataPath + 'dailyTradingResultsDEX.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_tradingData: dailyTradingResults = pd.read_csv(self.dataPath+'dailyTradingResultsDEX.csv',index_col=0) ind2Delete = self.dailyData.columns.intersection(dailyTradingResults.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyTradingResults, how='outer', left_index=True, right_index=True) # add new columns to daily table # calc market cap data in USD and BTC (same as in loadExtractedRichlistData to get updated price information if 'circDFI' in self.dailyData.columns: print('>>>>>>>> Update market cap in loadDailyTradingData... <<<<<<<<') self.dailyData['marketCapUSD'] = self.dailyData['circDFI']*self.dailyData['DFIPriceUSD'] self.dailyData['marketCapBTC'] = self.dailyData['marketCapUSD'] / self.dailyData['BTCPriceUSD'] self.updated_tradingData = fileInfo.stat() print('>>>> Trading data loaded from csv-file <<<<') def loadDailyBlocktimeData(self): print('>>>> Start update blocktime data ... <<<<') filePath = self.dataPath + 'BlockListStatistics.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_blocktime: dailyBlocktimeData = pd.read_csv(filePath, index_col=0) dailyBlocktimeData['tps'] = dailyBlocktimeData['txCount'] / (24 * 60 * 60) ind2Delete = self.dailyData.columns.intersection(dailyBlocktimeData.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyBlocktimeData, how='outer', left_index=True,right_index=True) # add new columns to daily table self.updated_blocktime = fileInfo.stat() print('>>>> Blocktime data loaded from csv-file <<<<') def loadDAAData(self): print('>>>> Start update DAA data ... <<<<') filePath = self.dataPath + 'analyzedDataDAA.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_daa: dailyDAAData = pd.read_csv(filePath, index_col=0) ind2Delete = self.dailyData.columns.intersection(dailyDAAData.columns) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dailyDAAData, how='outer', left_index=True, right_on='Date') # add new columns to daily table self.dailyData.set_index('Date', inplace=True) self.dailyData.sort_index(inplace=True) self.updated_daa = fileInfo.stat() print('>>>> DAA data loaded from csv-file <<<<') def loadTwitterData(self): print('>>>> Start update twitter data ... <<<<') filePath = self.dataPath + 'analyzedTwitterData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_twitterData: twitterData = pd.read_csv(filePath, index_col=0) columns2update = ['overall_Activity', 'defichain_Activity', 'dfi_Activity', 'overall_Likes', 'overall_UniqueUserOverall', 'overall_UniqueUserTweet', 'overall_UniqueUserReply', 'overall_UniqueUserRetweet'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(twitterData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.updated_twitterData = fileInfo.stat() print('>>>> Twitter data loaded from csv-file <<<<') def loadTwitterFollowerData(self): print('>>>> Start update twitter follower data ... <<<<') filePath = self.dataPath + 'TwitterData_follower.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.updated_twitterFollower: twitterFollowData = pd.read_csv(filePath, index_col=0) twitterFollowData.set_index('Date',inplace=True) columns2update = ['Follower', 'followedToday', 'unfollowedToday'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(twitterFollowData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.updated_twitterFollower = fileInfo.stat() print('>>>> Twitter data loaded from csv-file <<<<') def loadIncomeVisitsData(self): print('>>>> Start update income visits data ... <<<<') filePath = self.dataPath + 'dataVisitsIncome.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_incomeVisits: incomeVisitsData = pd.read_csv(filePath, index_col=0) incomeVisitsData.rename(columns={'0': 'incomeVisits'}, inplace=True) incomeVisitsData.set_index(incomeVisitsData.index.str[:10], inplace=True) # just use date information without hh:mm columns2update = ['incomeVisits'] # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(incomeVisitsData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_incomeVisits = fileInfo.stat() print('>>>> Income visits data loaded from csv-file <<<<') def loadPortfolioDownloads(self): print('>>>> Start update portfolio downloads data ... <<<<') filePath = self.dataPath + 'dataPortfolioDownloads.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_portfolioDownloads: portfolioRawData = pd.read_csv(filePath) columns2update = ['PortfolioWindows', 'PortfolioMac', 'PortfolioLinux'] dfPortfolioData = pd.DataFrame(index=portfolioRawData['DateCaptured'].unique(), columns=columns2update) dfPortfolioData['PortfolioWindows'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Windows.sum() dfPortfolioData['PortfolioMac'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Mac.sum() dfPortfolioData['PortfolioLinux'] = portfolioRawData.groupby(portfolioRawData.DateCaptured).Linux.sum() # delete existing information and add new one ind2Delete = self.dailyData.columns.intersection(columns2update) # check if columns exist self.dailyData.drop(columns=ind2Delete, inplace=True) # delete existing columns to add new ones self.dailyData = self.dailyData.merge(dfPortfolioData[columns2update], how='outer', left_index=True, right_index=True) # add new columns to daily table self.update_portfolioDownloads = fileInfo.stat() print('>>>> Portfolio downloads data loaded from csv-file <<<<') def loadPromoDatabase(self): print('>>>> Start update DefiChain promo database ... <<<<') filePath = self.dataPath + 'defichainPromoData.csv' fileInfo = pathlib.Path(filePath) if fileInfo.stat() != self.update_promoDatabase: promoRawData =
pd.read_csv(filePath, index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Created on Fri Sep 6 15:41:19 2019 @Author: <NAME>, <NAME> @Institution: CBDD Group, Xiangya School of Pharmaceutical Science, CSU, China @Homepage: http://www.scbdd.com @Mail: <EMAIL>; <EMAIL> @Blog: https://blog.moyule.me ♥I love <NAME> forever♥ """ import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn.metrics import auc from load import load class Enrichment(object): def __init__(self, loadfile, label_col, score_col, savefile=None): self.loadfile = loadfile self.savefile = savefile self.df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import math import matplotlib.pyplot as plt import seaborn as sn import matplotlib.patches as mpatches from matplotlib import rcParams #from brokenaxes import brokenaxes from natsort import index_natsorted, order_by_index #sn.set_context("paper", font_scale = 2) #AUX FUNC def Vm_groupby(df, group_by, aggr): df = df.groupby(group_by) df = df.agg(aggr) df = df.reset_index() df = df.reindex(index=order_by_index(df.index, index_natsorted(df['TripID'], reverse=False))) return df #### #Loop VM - Single Plot + Compare Plot (BAR/BOXPLOT) def prep_n_mig_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'Mig_ID':'count', 'tripdistance': 'first'}) dfaux.rename(columns={'TripID':'TripID', 'VmID':'VmID', 'Mig_ID':'Number of Migrations', 'tripdistance': 'tripdistance'},inplace=True) #dfaux = Vm_groupby(dfaux, ['TripID'], {'Number of Migrations':'mean'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat = pd.concat(df_aux_list) return dfconcat def n_mig_LoopVM(df): fig, ax = plt.subplots() #BOXPLOT #ax.set_title("Number of Migrations by Trip " + title) #sn.boxplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) #BAR ax.set_title("Number of Migrations by Trip") sn.barplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 25) ax.set_xlabel('Trips') ax.set_ylabel('Number of migrations') return 1 def normalized_n_mig_LoopVM(df): df["n_mig_km"] = "" for i in range(df['TripID'].count()): tripdistance = df['tripdistance'].values[i] n_mig = df['Number of Migrations'].values[i] normalized = n_mig / tripdistance df['n_mig_km'].values[i] = normalized #print(df) fig, ax = plt.subplots() #BOXPLOT #ax.set_title("Number of Migrations by Trip " + title) #sn.boxplot(x='TripID', y='Number of Migrations', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data = df, ax=ax) #BAR ax.set_title("Number of Migrations / km - by Trip") sn.barplot(x='TripID', y='n_mig_km', hue='Class', palette=['C0', 'C1','C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], data=df, ax=ax) ax.get_legend().remove() ax.legend(loc='upper right') ax.set_ylim(0, 1.4) ax.set_xlabel('Trips') ax.set_ylabel('Number of migrations / KM') return 1 #### #### #Loop VM - Single Plot + Compare Plot def prep_migtime_LoopVM(plot_dict, df_lst_files): df_aux_list = list() for Class, df in zip(plot_dict['Classes'], df_lst_files): dfaux = Vm_groupby(df, ['TripID', 'VmID'], {'Mt_real':'sum', 'triptime': 'first'}) dfaux.insert(0, 'Class', Class) df_aux_list.append(dfaux) dfconcat =
pd.concat(df_aux_list)
pandas.concat
# -*- coding: utf-8 -*- # @Time : 2020/10/08 20:09:56 # @Author : RegiusQuant <<EMAIL>> # @Project : Regius-AI # @File : preprocessing.py # @Description: 数据预处理 import pickle import pandas as pd from sklearn.preprocessing import StandardScaler, LabelEncoder def generate_scaler_and_encoder(file_path_list, pkl_path): temp_data_list = [] for file_path in file_path_list: temp_data = pd.read_csv(file_path) temp_data_list.append(temp_data) all_data = pd.concat(temp_data_list) cont_data = all_data.filter(regex="X_*") standard_scaler = StandardScaler() standard_scaler.fit(cont_data) cate_data = all_data.filter(regex="C_*") label_encoders = [] for col in cate_data.columns: label_encoder = LabelEncoder() label_encoder.fit(cate_data[col]) label_encoders.append(label_encoder) # for col, label_encoder in zip(cate_data.columns, label_encoders): # print(col, label_encoder.classes_) pkl_dict = {"StandardScaler": standard_scaler, "LabelEncoders": label_encoders} with open(pkl_path, "wb") as f: pickle.dump(pkl_dict, f) def load_processed_data(file_path_list, pkl_path): temp_data_list = [] for file_path in file_path_list: temp_data =
pd.read_csv(file_path)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(
StringIO(data)
pandas.compat.StringIO
# coding: utf-8 from __future__ import absolute_import, division, \ print_function, unicode_literals import six.moves as sm import numpy as np import pandas as pd from scipy import stats from matplotlib import pyplot as plt from magellan_ai.ml.mag_util import mag_metrics EPS = 1e-7 def show_func(): """ 可视化函数 """ print("+---------------------------------------+") print("|analyse methods |") print("+---------------------------------------+") print("|feature_coverage_in_diff_people |") print("|single_enum_feat_eval_diff_people |") print("|single_continuity_feat_eval_diff_people|") print("+---------------------------------------+") def feature_coverage_in_diff_people( df_, group_col, group_dict={}, col_no_cover_dict={}, col_handler_dict={}, cols_skip=[], is_sorted=True): """calculate feature coverage for 2 groups Parameters ----------- df_ : DataFrame Input file. group_col : list, ndarray, Series or DataFrame The column about group. group_dict : dict, optional Alias of group's name,default is equal to itself. col_no_cover_dict : dict, optional A custom feature specifies a non overriding value for the data type. default = {'int64': [-1], 'float64': [-1.0], str': ["-1", "unknown"], 'object': ["-1", "unknown"], 'bool': []} col_handler_dict : dict, optional Dictionary of no-covered features. cols_skip : List, optional Ignore feature names for which feature coverage is calculated. is_sorted : bool, optional Whether to sort feature coverage Returns ---------- feat_coverage_df : DataFrame The coverage of features and the corresponding data types Example ----------- >>> df = pd.read_csv("./car.csv", header=0) >>> print(feature_coverage_in_diff_people(df,"car4",group_dict={ 0:"ins", 1:"water"})) feature coverage_0 coverage_1 feat_type 0 Unnamed: 0 1.000000 1.000000 int64 1 car_did 1.000000 1.000000 int64 2 car1 1.000000 0.987156 float64 3 car2 1.000000 1.000000 int64 4 car3 1.000000 1.000000 int64 5 car4 1.000000 1.000000 int64 6 car5 0.190126 0.262093 float64 7 own_car 0.190126 0.262093 float64 Notes ------- There must be two valid tags in column group_df_col """ # Default non overlay label if not col_no_cover_dict: col_no_cover_dict = {'int64': [-1], 'float64': [-1.0], 'str': ["-1", "unknown"], 'object': ["-1", "unknown"], 'bool': []} # Take out the characteristic information of the two groups groups = df_.groupby(group_col) group_dfs, indexs = [], [] for index, group_df in groups: if index in col_no_cover_dict[str(df_[group_col].dtype)]: continue indexs.append(index) group_dfs.append(group_df) # If the number of population types is not 2, throw an exception try: if len(group_dfs) != 2: raise Exception("人群种类数不为 2") except Exception as err: print(err) # Generate datafraame df1 = mag_metrics.cal_feature_coverage( group_dfs[0], col_no_cover_dict, col_handler_dict, cols_skip, is_sorted) df2 = mag_metrics.cal_feature_coverage( group_dfs[1], col_no_cover_dict, col_handler_dict, cols_skip, is_sorted) # Modify two coverage column information df1.columns = ['feature', 'coverage_%s' % indexs[0], 'feat_type'] df2.columns = ['feature', 'coverage_%s' % indexs[1], 'feat_type'] del df1['feat_type'] # Merge DataFrame res_df = pd.merge(df1, df2, how="inner", on="feature") return res_df def single_enum_feat_eval_diff_people( group_df_col, feature_df_col, group_dict={}, feature_dict={}, col_no_cover_dict={}, draw_pics=False): """ 1. The differences between the two groups in the characteristics of single enumeration class were analyzed. Examples of features: gender, occupation, favorite app 2. Chi square test was performed when the characteristic values were 2, the PSI value was calculated when the characteristics were more than 2. Other statistical methods can be added later. Parameters: ------------ group_df_col : Series The column about group. feature_df_col : Series The column in which the feature to be analyzed is located group_dict : dict, optional Alias of group's name,default is equal to itself. feature_dict : dict, optional Alias of feature's name,default is equal to itself. col_no_cover_dict : dict, optional dictionary of no-covered features. draw_pics : bool, optional Whether need to draw pictures, default is equal to false. Returns: ----------- report : dict "DataFrame" : DataFrame Proportion of population features. "chi2" :float64 when the number of features is equal to 2, calculate chi2-square. "psi" : float64 If the feature number is greater than 2, calculate psi. "result" : str Conclusion of difference. Examples ------------ >>> df = pd.read_csv('car.csv', header = 0) >>> dic = single_enum_feat_eval_diff_people( df['car4'], df['own_car'], group_dict={ 0: "ins", 1: "water"}, feature_dict={ 0: "not own car", 1: "own car"}, draw_pics=True) features ins 人数 ins 比例 water 人数 water 比例 0 not own car 6458 0.520471 102194 0.679617 1 own car 5950 0.479529 48176 0.320383 >>> print("chi2=%s, result=%s" % (dic["chi2"], dic["result"])) chi2=1308.0008370237344, result=根据卡方检验,两人群分布有明显差异 >>> df = pd.read_csv("./t3.csv", header=0) >>> dic = dic = single_enum_feat_eval_diff_people( df['t3_4'], df['career'], group_dict={ 0: "ins", 1: "water"}, draw_pics=True) >>> print(dic['DataFrame']) feat_value ins water psi 0 gongwuyuan 0.036647 0.172391 0.210191 1 blue_collar 0.794946 0.687720 0.015536 2 courier 0.029653 0.013666 0.012385 3 it 0.022939 0.011836 0.007346 4 individual_business 0.108635 0.106713 0.000034 5 finance 0.007180 0.007674 0.000033 >>> print("psi=%s, result=%s" % (dic["psi"], dic["result"])) psi=0.2455246396939325, result=有一定差异 Notes: ---------- 1. group_df_col must have two valid tags, featute_ Df_ Col must have at least two valid tags, otherwise an exception is thrown. 2. If the number of feature type is equal to 2, calculate chi square, else if the number of feature type is greater than 2, psi will be calculated 3. If the number of feature type is greater than 25, the pie chart will not be drawn. 4. In Chi square test, H0: π1 = π2, H1: π1 ≠ π2, 5. Chi square test degree of freedom is 1, chi square value > = 3.841, p-value < = 0.05, which can be considered as significant difference. 6. Psi related information: < 0.1: the difference is small 0.1 ~ 0.25: average difference >= 0.25: very different """ # default no_cover features if not col_no_cover_dict: col_no_cover_dict = {'int64': [-1], 'float64': [-1.0], 'str': ["-1", "unknown"], 'object': ["-1", "unknown"], 'bool': []} # merge group_df_col, featutre_df_col, delete rows # where no-cover feature locate at group_list, feature_list = [], [] for group, feature in zip(group_df_col, feature_df_col): # Keep the information that the group and feature are valid # at the same time if group not in col_no_cover_dict[str( group_df_col.dtype)] and feature not in col_no_cover_dict[ str(feature_df_col.dtype)]: group_list.append(group) feature_list.append(feature) # Set the tag alias of the absent dict to itself if group not in group_dict: group_dict[group] = group if feature not in feature_dict: feature_dict[feature] = feature df =
pd.DataFrame({'group': group_list, 'feature': feature_list})
pandas.DataFrame
import pandas as pd from pandas import ( DataFrame, Index, Series, Timestamp, date_range, ) import pandas._testing as tm class TestDatetimeIndex: def test_indexing_with_datetime_tz(self): # GH#8260 # support datetime64 with tz idx = Index(date_range("20130101", periods=3, tz="US/Eastern"), name="foo") dr = date_range("20130110", periods=3) df =
DataFrame({"A": idx, "B": dr})
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Aug 12 11:43:06 2021 @author: student """ import pandas as pd import numpy as np import argparse import os import random import matplotlib.pyplot as plt from stellargraph.mapper import PaddedGraphGenerator from stellargraph.layer import DeepGraphCNN, GCNSupervisedGraphClassification from stellargraph import StellarGraph from sklearn import model_selection import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.layers import Dense, Conv1D, MaxPooling1D, MaxPooling2D, Dropout, Flatten, BatchNormalization from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping import pickle from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score from tensorflow.keras.utils import to_categorical # results directory RES_DIR = 'results/gcn' if not os.path.exists(RES_DIR): os.makedirs(RES_DIR) MODEL_DIR = 'models/gcn/' os.makedirs(MODEL_DIR, exist_ok=True) SEED = 5000 np.random.seed(SEED) random.seed(SEED) tf.random.set_seed(SEED) def _info(s): print('---') print(s) print('---') def threshold_proportional(W, p, copy=True): """ Convert values less than the threshold value to 0 Parameters ---------- W : 2D array, connevtivity matrix to be thresholded. p : float value between 0 and 1, Cell Value less than threshold value will be set to 0. copy : boolean, optional, The default is True. Raises ------ ValueError, If the threshold is not within 0 and 1. Returns ------- W : Thresholded 2D array, A matrix that does not contains negative values. """ if p >= 1 or p <= 0: raise ValueError("Threshold value should be between 0 and 1") if copy: W = W.copy() n = len(W) # number of nodes np.fill_diagonal(W, 0) # clear diagonal if np.all(W == W.T): # if symmetric matrix W[np.tril_indices(n)] = 0 # ensure symmetry is preserved ud = 2 # halve number of removed links else: ud = 1 ind = np.where(W) # find all links I = np.argsort(W[ind])[::-1] # sort indices by magnitude # number of links to be preserved en = round((n * n - n) * p / ud) W[(ind[0][I][en:], ind[1][I][en:])] = 0 # apply threshold if ud == 2: # if symmetric matrix W[:, :] = W + W.T # reconstruct symmetry W[W>0.9999] = 1 # make sure the highest correlation coeff is 1 return W def conv2list(adj_m): """ converts adjacency matrix to adj list to load into stellargraph Parameters ---------- adj_m : 2D array to be converted to adjacency list. Raises ------ ValueError if connectivity matrix has length 0. Returns ------- d : DataFrame. """ # find non-zero elements in adj_mat if (len(adj_m) == 0): raise ValueError("Invalid adjacency matrix") indices = np.argwhere(adj_m) src, dsts = indices[:,0].reshape(-1, 1),indices[:,1].reshape(-1, 1) v = adj_m[src,dsts].reshape(-1, 1) final = np.concatenate((src, dsts, v), axis=1) d =
pd.DataFrame(final)
pandas.DataFrame
import datetime import os import pandas as pd from tqdm import tqdm from clean_data import cleaned_columns, country_to_cca3, dict_countries_to_cca3 from high_level_fetch import get_cleaned_month final_column_names = ['Day', 'EventCode', 'Source_CountryCode', 'Target_CountryCode', 'Target_Lat', 'Target_Long', 'Target_GeoType', 'IsRootEvent', 'QuadClass', 'GoldsteinScale', 'AvgTone', 'NumMentions', 'NumSources', 'NumArticles'] def load_data(): """This function loads all the data cleaned from 03/01/201 to 12/12/2017. In most cases, only this function should be called """ if not os.path.isfile('../data/final_data.csv'): # fetching print( "If you see this and you are not expecting to download and clean all the data, please verify you have the file final_data.csv in the folder data") print("Fetching and cleaning GDELT 2.0 Translingual data...") start_date = datetime.datetime(2015, 3, 1) end_date = datetime.datetime(2017, 12, 1) n_months = (end_date - start_date).days * 12 // 365 df =
pd.DataFrame(columns=cleaned_columns)
pandas.DataFrame
# -*- coding: utf-8 -*- """Tests for Regression Diagnostics and Specification Tests Created on Thu Feb 09 13:19:47 2012 Author: <NAME> License: BSD-3 currently all tests are against R """ import os import json import pandas as pd import numpy as np from numpy.testing import assert_almost_equal, assert_allclose import pytest from sm2.regression.linear_model import OLS from sm2.tools.tools import add_constant from sm2.datasets import macrodata import sm2.stats.sandwich_covariance as sw from sm2.stats import diagnostic # import sm2.stats.outliers_influence as oi oi = None # dummy to prevent flake8 warnings cur_dir = os.path.abspath(os.path.dirname(__file__)) def compare_t_est(sp, sp_dict, decimal=(14, 14)): assert_allclose(sp[0], sp_dict['statistic'], atol=10**-decimal[0], rtol=10**-decimal[0]) assert_allclose(sp[1], sp_dict['pvalue'], atol=10**-decimal[1], rtol=10**-decimal[0]) @pytest.mark.not_vetted class TestDiagnosticG(object): @classmethod def setup_class(cls): d = macrodata.load_pandas().data # growth rates gs_l_realinv = 400 * np.diff(np.log(d['realinv'].values)) gs_l_realgdp = 400 * np.diff(np.log(d['realgdp'].values)) lint = d['realint'][:-1].values tbilrate = d['tbilrate'][:-1].values endogg = gs_l_realinv exogg = add_constant(np.c_[gs_l_realgdp, lint]) exogg2 = add_constant(np.c_[gs_l_realgdp, tbilrate]) exogg3 = add_constant(np.c_[gs_l_realgdp]) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() res_ols3 = OLS(endogg, exogg3).fit() cls.res = res_ols cls.res2 = res_ols2 cls.res3 = res_ols3 cls.endog = cls.res.model.endog cls.exog = cls.res.model.exog def test_basic(self): # mainly to check I got the right regression # > mkarray(fm$coefficients, "params") params = np.array([-9.48167277465485, 4.3742216647032, -0.613996969478989]) assert_almost_equal(self.res.params, params, decimal=12) def test_hac(self): res = self.res # > nw = NeweyWest(fm, lag = 4, prewhite = FALSE, verbose=TRUE) # > nw2 = NeweyWest(fm, lag=10, prewhite = FALSE, verbose=TRUE) # > mkarray(nw, "cov_hac_4") cov_hac_4 = np.array([1.385551290884014, -0.3133096102522685, -0.0597207976835705, -0.3133096102522685, 0.1081011690351306, 0.000389440793564336, -0.0597207976835705, 0.000389440793564339, 0.0862118527405036]).reshape(3, 3, order='F') # > mkarray(nw2, "cov_hac_10") cov_hac_10 = np.array([1.257386180080192, -0.2871560199899846, -0.03958300024627573, -0.2871560199899845, 0.1049107028987101, 0.0003896205316866944, -0.03958300024627578, 0.0003896205316866961, 0.0985539340694839]).reshape(3, 3, order='F') cov = sw.cov_hac_simple(res, nlags=4, use_correction=False) bse_hac = sw.se_cov(cov) assert_almost_equal(cov, cov_hac_4, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) cov = sw.cov_hac_simple(res, nlags=10, use_correction=False) bse_hac = sw.se_cov(cov) assert_almost_equal(cov, cov_hac_10, decimal=14) assert_almost_equal(bse_hac, np.sqrt(np.diag(cov)), decimal=14) @pytest.mark.skip(reason="het_goldfeldquandt not ported from upstream") def test_het_goldfeldquandt(self): # TODO: test options missing # > gq = gqtest(fm, alternative='greater') # > mkhtest_f(gq, 'het_gq_greater', 'f') het_gq_greater = dict(statistic=0.5313259064778423, pvalue=0.9990217851193723, parameters=(98, 98), distr='f') # > gq = gqtest(fm, alternative='less') # > mkhtest_f(gq, 'het_gq_less', 'f') het_gq_less = dict(statistic=0.5313259064778423, pvalue=0.000978214880627621, parameters=(98, 98), distr='f') # > gq = gqtest(fm, alternative='two.sided') # > mkhtest_f(gq, 'het_gq_two_sided', 'f') het_gq_two_sided = dict(statistic=0.5313259064778423, pvalue=0.001956429761255241, parameters=(98, 98), distr='f') # > gq = gqtest(fm, fraction=0.1, alternative='two.sided') # > mkhtest_f(gq, 'het_gq_two_sided_01', 'f') het_gq_two_sided_01 = dict(statistic=0.5006976835928314, pvalue=0.001387126702579789, parameters=(88, 87), distr='f') # > gq = gqtest(fm, fraction=0.5, alternative='two.sided') # > mkhtest_f(gq, 'het_gq_two_sided_05', 'f') het_gq_two_sided_05 = dict(statistic=0.434815645134117, pvalue=0.004799321242905568, parameters=(48, 47), distr='f') endogg, exogg = self.endog, self.exog # tests gq = diagnostic.het_goldfeldquandt(endogg, exogg, split=0.5) compare_t_est(gq, het_gq_greater, decimal=(14, 14)) assert gq[-1] == 'increasing' gq = diagnostic.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='decreasing') compare_t_est(gq, het_gq_less, decimal=(14, 14)) assert gq[-1] == 'decreasing' gq = diagnostic.het_goldfeldquandt(endogg, exogg, split=0.5, alternative='two-sided') compare_t_est(gq, het_gq_two_sided, decimal=(14, 14)) assert gq[-1] == 'two-sided' # TODO: forcing the same split as R 202-90-90-1=21 gq = diagnostic.het_goldfeldquandt(endogg, exogg, split=90, drop=21, alternative='two-sided') compare_t_est(gq, het_gq_two_sided_01, decimal=(14, 14)) assert gq[-1] == 'two-sided' # TODO other options ??? def test_het_breusch_pagan(self): res = self.res bptest = dict(statistic=0.709924388395087, pvalue=0.701199952134347, parameters=(2,), distr='f') bp = diagnostic.het_breuschpagan(res.resid, res.model.exog) compare_t_est(bp, bptest, decimal=(12, 12)) def test_het_white(self): res = self.res # TODO: regressiontest, compare with Greene or Gretl or Stata hw = diagnostic.het_white(res.resid, res.model.exog) hw_values = (33.503722896538441, 2.9887960597830259e-06, 7.7945101228430946, 1.0354575277704231e-06) assert_almost_equal(hw, hw_values) def test_het_arch(self): # test het_arch and indirectly het_lm against R # > library(FinTS) # > at = ArchTest(residuals(fm), lags=4) # > mkhtest(at, 'archtest_4', 'chi2') archtest_4 = dict(statistic=3.43473400836259, pvalue=0.487871315392619, parameters=(4,), distr='chi2') # > at = ArchTest(residuals(fm), lags=12) # > mkhtest(at, 'archtest_12', 'chi2') archtest_12 = dict(statistic=8.648320999014171, pvalue=0.732638635007718, parameters=(12,), distr='chi2') at4 = diagnostic.het_arch(self.res.resid, maxlag=4) at12 = diagnostic.het_arch(self.res.resid, maxlag=12) compare_t_est(at4[:2], archtest_4, decimal=(12, 13)) compare_t_est(at12[:2], archtest_12, decimal=(12, 13)) def test_het_arch2(self): # test autolag options, this also test het_lm # unfortunately optimal lag=1 for this data resid = self.res.resid res1 = diagnostic.het_arch(resid, maxlag=1, autolag=None, store=True) rs1 = res1[-1] res2 = diagnostic.het_arch(resid, maxlag=5, autolag='aic', store=True) rs2 = res2[-1] assert_almost_equal(rs2.resols.params, rs1.resols.params, decimal=13) assert_almost_equal(res2[:4], res1[:4], decimal=13) # test that smallest lag, maxlag=1 works res3 = diagnostic.het_arch(resid, maxlag=1, autolag='aic') assert_almost_equal(res3[:4], res1[:4], decimal=13) @pytest.mark.skip(reason="acorr_breusch_godfrey not ported from upstream") def test_acorr_breusch_godfrey(self): res = self.res #> bgf = bgtest(fm, order=4, type="F") breuschgodfrey_f = dict(statistic=1.179280833676792, pvalue=0.321197487261203, parameters=(4, 195,), distr='f') # > bgc = bgtest(fm, order = 4, type="Chisq") # > mkhtest(bgc, "breuschpagan_c", "chi2") breuschgodfrey_c = dict(statistic=4.771042651230007, pvalue=0.3116067133066697, parameters=(4,), distr='chi2') bg = diagnostic.acorr_breusch_godfrey(res, nlags=4) bg_r = [breuschgodfrey_c['statistic'], breuschgodfrey_c['pvalue'], breuschgodfrey_f['statistic'], breuschgodfrey_f['pvalue']] assert_almost_equal(bg, bg_r, decimal=13) # check that lag choice works bg2 = diagnostic.acorr_breusch_godfrey(res, nlags=None) bg3 = diagnostic.acorr_breusch_godfrey(res, nlags=14) assert_almost_equal(bg2, bg3, decimal=13) def test_acorr_ljung_box(self): # unit-test which may be useful later # ddof correction for fitted parameters in ARMA(p, q) fitdf=p+q # > bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box", fitdf=2) # > mkhtest(bt, "ljung_box_4df2", "chi2") # ljung_box_4df2 = dict(statistic=5.23587172795227, # pvalue=0.0729532930400377, # parameters=(2,), distr='chi2') # > bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce", fitdf=2) # > mkhtest(bt, "ljung_box_bp_4df2", "chi2") # ljung_box_bp_4df2 = dict(statistic=5.12462932741681, # pvalue=0.0771260128929921, # parameters=(2,), distr='chi2') res = self.res # general test # > bt = Box.test(residuals(fm), lag=4, type = "Ljung-Box") # > mkhtest(bt, "ljung_box_4", "chi2") ljung_box_4 = dict(statistic=5.23587172795227, pvalue=0.263940335284713, parameters=(4,), distr='chi2') # > bt = Box.test(residuals(fm), lag=4, type = "Box-Pierce") # > mkhtest(bt, "ljung_box_bp_4", "chi2") ljung_box_bp_4 = dict(statistic=5.12462932741681, pvalue=0.2747471266820692, parameters=(4,), distr='chi2') lb, lbpval, bp, bppval = diagnostic.acorr_ljungbox(res.resid, 4, boxpierce=True) compare_t_est([lb[-1], lbpval[-1]], ljung_box_4, decimal=(13, 13)) compare_t_est([bp[-1], bppval[-1]], ljung_box_bp_4, decimal=(13, 13)) def test_acorr_ljung_box_big_default(self): res = self.res # test with big dataset and default lag # > bt = Box.test(residuals(fm), type = "Ljung-Box") # > mkhtest(bt, "ljung_box_none", "chi2") ljung_box_none = dict(statistic=51.03724531797195, pvalue=0.11334744923390, distr='chi2') # > bt = Box.test(residuals(fm), type = "Box-Pierce") # > mkhtest(bt, "ljung_box_bp_none", "chi2") ljung_box_bp_none = dict(statistic=45.12238537034000, pvalue=0.26638168491464, distr='chi2') lb, lbpval, bp, bppval = diagnostic.acorr_ljungbox(res.resid, boxpierce=True) compare_t_est([lb[-1], lbpval[-1]], ljung_box_none, decimal=(13, 13)) compare_t_est([bp[-1], bppval[-1]], ljung_box_bp_none, decimal=(13, 13)) def test_acorr_ljung_box_small_default(self): res = self.res # test with small dataset and default lag # > bt = Box.test(residuals(fm), type = "Ljung-Box") # > mkhtest(bt, "ljung_box_small", "chi2") ljung_box_small = dict(statistic=9.61503968281915, pvalue=0.72507000996945, parameters=(0,), distr='chi2') # > bt = Box.test(residuals(fm), type = "Box-Pierce") # > mkhtest(bt, "ljung_box_bp_small", "chi2") ljung_box_bp_small = dict(statistic=7.41692150864936, pvalue=0.87940785887006, parameters=(0,), distr='chi2') lb, lbpval, bp, bppval = diagnostic.acorr_ljungbox(res.resid[:30], boxpierce=True) compare_t_est([lb[-1], lbpval[-1]], ljung_box_small, decimal=(13, 13)) compare_t_est([bp[-1], bppval[-1]], ljung_box_bp_small, decimal=(13, 13)) @pytest.mark.skip(reason="linear_harvey_collier not ported from upstream") def test_harvey_collier(self): # > hc = harvtest(fm, order.by = NULL, data = list()) # > mkhtest_f(hc, 'harvey_collier', 't') harvey_collier = dict(statistic=0.494432160939874, pvalue=0.6215491310408242, parameters=(198), distr='t') # > hc2 = harvtest(fm, order.by=ggdp, data = list()) # > mkhtest_f(hc2, 'harvey_collier_2', 't') harvey_collier_2 = dict(statistic=1.42104628340473, pvalue=0.1568762892441689, parameters=(198), distr='t') hc = diagnostic.linear_harvey_collier(self.res) compare_t_est(hc, harvey_collier, decimal=(12, 12)) @pytest.mark.skip(reason="linear_rainbow not ported from upstream") def test_rainbow(self): # rainbow test # > rt = raintest(fm) # > mkhtest_f(rt, 'raintest', 'f') raintest = dict(statistic=0.6809600116739604, pvalue=0.971832843583418, parameters=(101, 98), distr='f') # > rt = raintest(fm, center=0.4) # > mkhtest_f(rt, 'raintest_center_04', 'f') raintest_center_04 = dict(statistic=0.682635074191527, pvalue=0.971040230422121, parameters=(101, 98), distr='f') # > rt = raintest(fm, fraction=0.4) # > mkhtest_f(rt, 'raintest_fraction_04', 'f') raintest_fraction_04 = dict(statistic=0.565551237772662, pvalue=0.997592305968473, parameters=(122, 77), distr='f') # > rt = raintest(fm, order.by=ggdp) # Warning message: # In if (order.by == "mahalanobis") { : # the condition has length > 1 and only the first element will be used # > mkhtest_f(rt, 'raintest_order_gdp', 'f') raintest_order_gdp = dict(statistic=1.749346160513353, pvalue=0.002896131042494884, parameters=(101, 98), distr='f') rb = diagnostic.linear_rainbow(self.res) compare_t_est(rb, raintest, decimal=(13, 14)) rb = diagnostic.linear_rainbow(self.res, frac=0.4) compare_t_est(rb, raintest_fraction_04, decimal=(13, 14)) def test_compare_lr(self): res = self.res res3 = self.res3 # nested within res # lrtest # lrt = lrtest(fm, fm2) # Model 1: ginv ~ ggdp + lint # Model 2: ginv ~ ggdp lrtest = dict(loglike1=-763.9752181602237, loglike2=-766.3091902020184, chi2value=4.66794408358942, pvalue=0.03073069384028677, df=(4, 3, 1)) lrt = res.compare_lr_test(res3) assert_almost_equal(lrt[0], lrtest['chi2value'], decimal=11) assert_almost_equal(lrt[1], lrtest['pvalue'], decimal=11) waldtest = dict(fvalue=4.65216373312492, pvalue=0.03221346195239025, df=(199, 200, 1)) wt = res.compare_f_test(res3) assert_almost_equal(wt[0], waldtest['fvalue'], decimal=11) assert_almost_equal(wt[1], waldtest['pvalue'], decimal=11) @pytest.mark.skip(reason="compare_cox, compare_j not ported from upstream") def test_compare_nonnested(self): res = self.res res2 = self.res2 # jt = jtest(fm, lm(ginv ~ ggdp + tbilrate)) # Estimate Std. Error t value Pr(>|t|) jtest = [('M1 + fitted(M2)', 1.591505670785873, 0.7384552861695823, 2.155182176352370, 0.032354572525314450, '*'), ('M2 + fitted(M1)', 1.305687653016899, 0.4808385176653064, 2.715438978051544, 0.007203854534057954, '**')] jt1 = diagnostic.compare_j(res2, res) assert_almost_equal(jt1, jtest[0][3:5], decimal=13) jt2 = diagnostic.compare_j(res, res2) assert_almost_equal(jt2, jtest[1][3:5], decimal=14) # Estimate Std. Error z value Pr(>|z|) coxtest = [('fitted(M1) ~ M2', -0.782030488930356, 0.599696502782265, -1.304043770977755, 1.922186587840554e-01, ' '), ('fitted(M2) ~ M1', -2.248817107408537, 0.392656854330139, -5.727181590258883, 1.021128495098556e-08, '***')] ct1 = diagnostic.compare_cox(res, res2) assert_almost_equal(ct1, coxtest[0][3:5], decimal=13) ct2 = diagnostic.compare_cox(res2, res) assert_almost_equal(ct2, coxtest[1][3:5], decimal=12) # TODO: should be approx # Res.Df Df F Pr(>F) encomptest = [('M1 vs. ME', 198, -1, 4.644810213266983, 0.032354572525313666, '*'), ('M2 vs. ME', 198, -1, 7.373608843521585, 0.007203854534058054, '**')] # Estimate Std. Error t value petest = [('M1 + log(fit(M1))-fit(M2)', -229.281878354594596, 44.5087822087058598, -5.15139, 6.201281252449979e-07), ('M2 + fit(M1)-exp(fit(M2))', 0.000634664704814, 0.0000462387010349, 13.72583, 1.319536115230356e-30)] @pytest.mark.skip(reason="breaks_cusumolsresid not ported from upstream") def test_cusum_ols(self): # R library(strucchange) # > sc = sctest(ginv ~ ggdp + lint, type="OLS-CUSUM") # > mkhtest(sc, 'cusum_ols', 'BB') cusum_ols = dict(statistic=1.055750610401214, pvalue=0.2149567397376543, parameters=(), distr='BB') # Brownian Bridge k_vars = 3 cs_ols = diagnostic.breaks_cusumolsresid(self.res.resid, ddof=k_vars) compare_t_est(cs_ols, cusum_ols, decimal=(12, 12)) @pytest.mark.skip(reason="breaks_hansen not ported from upstream") def test_breaks_hansen(self): # > sc = sctest(ginv ~ ggdp + lint, type="Nyblom-Hansen") # > mkhtest(sc, 'breaks_nyblom_hansen', 'BB') breaks_nyblom_hansen = dict(statistic=1.0300792740544484, pvalue=0.1136087530212015, parameters=(), distr='BB') bh = diagnostic.breaks_hansen(self.res) assert_almost_equal(bh[0], breaks_nyblom_hansen['statistic'], decimal=13) # TODO: breaks_hansen doesn't return pvalues @pytest.mark.skip(reason="recursive_olsresiduals not ported from upstream") def test_recursive_residuals(self): reccumres_standardize = np.array([ -2.151, -3.748, -3.114, -3.096, -1.865, -2.230, -1.194, -3.500, -3.638, -4.447, -4.602, -4.631, -3.999, -4.830, -5.429, -5.435, -6.554, -8.093, -8.567, -7.532, -7.079, -8.468, -9.320, -12.256, -11.932, -11.454, -11.690, -11.318, -12.665, -12.842, -11.693, -10.803, -12.113, -12.109, -13.002, -11.897, -10.787, -10.159, -9.038, -9.007, -8.634, -7.552, -7.153, -6.447, -5.183, -3.794, -3.511, -3.979, -3.236, -3.793, -3.699, -5.056, -5.724, -4.888, -4.309, -3.688, -3.918, -3.735, -3.452, -2.086, -6.520, -7.959, -6.760, -6.855, -6.032, -4.405, -4.123, -4.075, -3.235, -3.115, -3.131, -2.986, -1.813, -4.824, -4.424, -4.796, -4.000, -3.390, -4.485, -4.669, -4.560, -3.834, -5.507, -3.792, -2.427, -1.756, -0.354, 1.150, 0.586, 0.643, 1.773, -0.830, -0.388, 0.517, 0.819, 2.240, 3.791, 3.187, 3.409, 2.431, 0.668, 0.957, -0.928, 0.327, -0.285, -0.625, -2.316, -1.986, -0.744, -1.396, -1.728, -0.646, -2.602, -2.741, -2.289, -2.897, -1.934, -2.532, -3.175, -2.806, -3.099, -2.658, -2.487, -2.515, -2.224, -2.416, -1.141, 0.650, -0.947, 0.725, 0.439, 0.885, 2.419, 2.642, 2.745, 3.506, 4.491, 5.377, 4.624, 5.523, 6.488, 6.097, 5.390, 6.299, 6.656, 6.735, 8.151, 7.260, 7.846, 8.771, 8.400, 8.717, 9.916, 9.008, 8.910, 8.294, 8.982, 8.540, 8.395, 7.782, 7.794, 8.142, 8.362, 8.400, 7.850, 7.643, 8.228, 6.408, 7.218, 7.699, 7.895, 8.725, 8.938, 8.781, 8.350, 9.136, 9.056, 10.365, 10.495, 10.704, 10.784, 10.275, 10.389, 11.586, 11.033, 11.335, 11.661, 10.522, 10.392, 10.521, 10.126, 9.428, 9.734, 8.954, 9.949, 10.595, 8.016, 6.636, 6.975]) rr = diagnostic.recursive_olsresiduals(self.res, skip=3, alpha=0.95) np.testing.assert_equal(np.round(rr[5][1:], 3), reccumres_standardize) # extra zero in front assert_almost_equal(rr[3][4:], np.diff(reccumres_standardize), 3) assert_almost_equal(rr[4][3:].std(ddof=1), 10.7242, decimal=4) # regression number, visually checked with graph from gretl ub0 = np.array([13.37318571, 13.50758959, 13.64199346, 13.77639734, 13.91080121]) ub1 = np.array([39.44753774, 39.58194162, 39.7163455, 39.85074937, 39.98515325]) lb, ub = rr[6] assert_almost_equal(ub[:5], ub0, decimal=7) assert_almost_equal(lb[:5], -ub0, decimal=7) assert_almost_equal(ub[-5:], ub1, decimal=7) assert_almost_equal(lb[-5:], -ub1, decimal=7) # test a few values with explicit OLS endog = self.res.model.endog exog = self.res.model.exog params = [] ypred = [] for i in range(3, 10): resi = OLS(endog[:i], exog[:i]).fit() ypred.append(resi.model.predict(resi.params, exog[i])) params.append(resi.params) assert_almost_equal(rr[2][3:10], ypred, decimal=12) assert_almost_equal(rr[0][3:10], endog[3:10] - ypred, decimal=12) assert_almost_equal(rr[1][2:9], params, decimal=12) def test_lilliefors(self): res = self.res # TODO: Separate this lilliefors stuff into its own test # TODO: this should be a separate test # > library(nortest) # Lilliefors (Kolmogorov-Smirnov) normality test # > lt = lillie.test(residuals(fm)) # > mkhtest(lt, "lilliefors", "-") lilliefors1 = dict(statistic=0.0723390908786589, pvalue=0.01204113540102896, parameters=(), distr='-') # > lt = lillie.test(residuals(fm)**2) # > mkhtest(lt, "lilliefors", "-") lilliefors2 = dict(statistic=0.301311621898024, pvalue=1.004305736618051e-51, parameters=(), distr='-') # > lt = lillie.test(residuals(fm)[1:20]) # > mkhtest(lt, "lilliefors", "-") lilliefors3 = dict(statistic=0.1333956004203103, pvalue=0.20, parameters=(), distr='-') lf1 = diagnostic.lilliefors(res.resid) lf2 = diagnostic.lilliefors(res.resid**2) lf3 = diagnostic.lilliefors(res.resid[:20]) compare_t_est(lf1, lilliefors1, decimal=(14, 14)) compare_t_est(lf2, lilliefors2, decimal=(14, 14)) # pvalue very small assert_allclose(lf2[1], lilliefors2['pvalue'], rtol=1e-10) compare_t_est(lf3, lilliefors3, decimal=(14, 1)) # R uses different approximation for pvalue in last case def test_normality(self): res = self.res # > ad = ad.test(residuals(fm)) # > mkhtest(ad, "ad3", "-") adr1 = dict(statistic=1.602209621518313, pvalue=0.0003937979149362316, parameters=(), distr='-') # > ad = ad.test(residuals(fm)**2) # > mkhtest(ad, "ad3", "-") adr2 = dict(statistic=np.inf, pvalue=np.nan, parameters=(), distr='-') # TODO: do something with this? # > ad = ad.test(residuals(fm)[1:20]) # > mkhtest(ad, "ad3", "-") adr3 = dict(statistic=0.3017073732210775, pvalue=0.5443499281265933, parameters=(), distr='-') ad1 = diagnostic.normal_ad(res.resid) compare_t_est(ad1, adr1, decimal=(11, 13)) ad2 = diagnostic.normal_ad(res.resid**2) assert np.isinf(ad2[0]) ad3 = diagnostic.normal_ad(res.resid[:20]) compare_t_est(ad3, adr3, decimal=(11, 12)) @pytest.mark.skip(reason="outliers_influence not ported from upstream") def test_influence(self): res = self.res # this test is slow infl = oi.OLSInfluence(res) # TODO: is this file ported? path = os.path.join(cur_dir, "results/influence_lsdiag_R.json") with open(path, 'r') as fp: lsdiag = json.load(fp) # basic assert_almost_equal(np.array(lsdiag['cov.scaled']).reshape(3, 3), res.cov_params(), decimal=14) assert_almost_equal(np.array(lsdiag['cov.unscaled']).reshape(3, 3), res.normalized_cov_params, decimal=14) c0, c1 = infl.cooks_distance # TODO: what's c1 assert_almost_equal(c0, lsdiag['cooks'], decimal=14) assert_almost_equal(infl.hat_matrix_diag, lsdiag['hat'], decimal=14) assert_almost_equal(infl.resid_studentized_internal, lsdiag['std.res'], decimal=14) # slow: #infl._get_all_obs() # slow, nobs estimation loop, called implicitly dffits, dffth = infl.dffits assert_almost_equal(dffits, lsdiag['dfits'], decimal=14) assert_almost_equal(infl.resid_studentized_external, lsdiag['stud.res'], decimal=14) # TODO: are these files ported? fn = os.path.join(cur_dir, "results", "influence_measures_R.csv") infl_r = pd.read_csv(fn, index_col=0) # not used yet: # fn = os.path.join(cur_dir, "results", "influence_measures_bool_R.csv") # conv = lambda s: 1 if s == 'TRUE' else 0 # converters = dict(zip(lrange(7), [conv] * 7)) #infl_bool_r = pd.read_csv(fn, index_col=0, converters=converters) infl_r2 = np.asarray(infl_r) assert_almost_equal(infl.dfbetas, infl_r2[:, :3], decimal=13) assert_almost_equal(infl.cov_ratio, infl_r2[:, 4], decimal=14) # duplicates assert_almost_equal(dffits, infl_r2[:, 3], decimal=14) assert_almost_equal(c0, infl_r2[:, 5], decimal=14) assert_almost_equal(infl.hat_matrix_diag, infl_r2[:, 6], decimal=14) # Note: for dffits, R uses a threshold # around 0.36, mine: dffits[1]=0.24373 # TODO: finish and check thresholds and pvalues """ R has >>> np.nonzero(np.asarray(infl_bool_r["dffit"]))[0] array([6, 26, 63, 76, 90, 199]) >>> np.nonzero(np.asarray(infl_bool_r["cov.r"]))[0] array([4, 26, 59, 61, 63, 72, 76, 84, 91, 92, 94, 95, 108, 197, 198]) >>> np.nonzero(np.asarray(infl_bool_r["hat"]))[0] array([62, 76, 84, 90, 91, 92, 95, 108, 197, 199]) """ @pytest.mark.not_vetted class TestDiagnosticGPandas(TestDiagnosticG): @classmethod def setup_class(cls): d = macrodata.load_pandas().data # growth rates d['gs_l_realinv'] = 400 * np.log(d['realinv']).diff() d['gs_l_realgdp'] = 400 * np.log(d['realgdp']).diff() d['lint'] = d['realint'].shift(1) d['tbilrate'] = d['tbilrate'].shift(1) d = d.dropna() cls.d = d endogg = d['gs_l_realinv'] exogg = add_constant(d[['gs_l_realgdp', 'lint']]) exogg2 = add_constant(d[['gs_l_realgdp', 'tbilrate']]) exogg3 = add_constant(d[['gs_l_realgdp']]) res_ols = OLS(endogg, exogg).fit() res_ols2 = OLS(endogg, exogg2).fit() res_ols3 = OLS(endogg, exogg3).fit() cls.res = res_ols cls.res2 = res_ols2 cls.res3 = res_ols3 cls.endog = cls.res.model.endog cls.exog = cls.res.model.exog @pytest.mark.skip(reason="outliers_influence not ported from upstream") @pytest.mark.smoke @pytest.mark.not_vetted def test_outlier_influence_funcs(reset_randomstate): x = add_constant(np.random.randn(10, 2)) y = x.sum(1) + np.random.randn(10) res = OLS(y, x).fit() out_05 = oi.summary_table(res) # GH#3344 : Check alpha has an effect out_01 = oi.summary_table(res, alpha=0.01) assert np.all(out_01[1][:, 6] <= out_05[1][:, 6]) assert np.all(out_01[1][:, 7] >= out_05[1][:, 7]) res2 = OLS(y, x[:, 0]).fit() oi.summary_table(res2, alpha=0.05) infl = res2.get_influence() infl.summary_table() @pytest.mark.skip(reason="outliers_influence not ported from upstream") @pytest.mark.not_vetted def test_influence_wrapped(): d = macrodata.load_pandas().data # growth rates gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna() gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna() lint = d['realint'][:-1] # re-index these because they won't conform to lint gs_l_realgdp.index = lint.index gs_l_realinv.index = lint.index data = dict(const=np.ones_like(lint), lint=lint, lrealgdp=gs_l_realgdp) # order is important exog = pd.DataFrame(data, columns=['const', 'lrealgdp', 'lint']) res = OLS(gs_l_realinv, exog).fit() # basic # already tested # cov.scaled and cov.unscaled have already been tested # TODO: check that above is correct; # comment is (roughly) copied from upstream infl = oi.OLSInfluence(res) # smoke test just to make sure it works, results separately tested df = infl.summary_frame() assert isinstance(df, pd.DataFrame) # this test is slow path = os.path.join(cur_dir, "results", "influence_lsdiag_R.json") with open(path, 'r') as fp: lsdiag = json.load(fp) c0, c1 = infl.cooks_distance # TODO: what's c1, it's pvalues? -ss # NOTE: we get a hard-cored 5 decimals with pandas testing assert_almost_equal(c0, lsdiag['cooks'], 14) assert_almost_equal(infl.hat_matrix_diag, (lsdiag['hat']), 14) assert_almost_equal(infl.resid_studentized_internal, lsdiag['std.res'], 14) # slow dffits, dffth = infl.dffits assert_almost_equal(dffits, lsdiag['dfits'], 14) assert_almost_equal(infl.resid_studentized_external, lsdiag['stud.res'], 14) fn = os.path.join(cur_dir, "results", "influence_measures_R.csv") infl_r =
pd.read_csv(fn, index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- ''' データの読み込みと確認 ''' # ライブラリのインポート import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # ランダムシードの設定 import random np.random.seed(1234) random.seed(1234) # データの読み込み train =
pd.read_csv('./data/train.csv')
pandas.read_csv
import numpy as np import pandas as pd import matplotlib from importlib import reload import matplotlib.pyplot as plt import elements elements = reload(elements) from elements.event import Event import os from scipy.fft import fft, fftfreq, ifft #%% #meta data meta_event =
pd.read_csv('data/meta_data.csv')
pandas.read_csv
import numpy as np import pandas as pd from tqdm import tqdm from bs4 import BeautifulSoup import argparse, requests, glob, os, re def main(args, url='http://archive.stsci.edu/tess/bulk_downloads/bulk_downloads_ffi-tp-lc-dv.html', cadences=['short','fast'], columns=['files','sectors'],): """ Main function call to run the `ticguide` search Parameters ---------- args : argparse.Namespace the command line arguments url : str link to MAST bulk downloads page -> this should NOT need to be changed for any reason cadences : List(str) dlfkajd columns: List(str) dfjlda """ args.cadences, args.columns, args.url = cadences, columns, url # Check that the input is correct first if check_input(args): # Retrieve massive table of observed TESS targets df_all = check_table(args) # Filter based on the TIC (or TICs) provided get_info(df_all, args) def check_input(args): """ Checks input arguments and returns `True` if the pipeline has enough information to run. If an input csv is provided, this function will load in the csv and save the list of targets to args.stars Parameters ---------- args : argparse.Namespace command-line arguments args.fname : str path to targets with updated observing information Returns ------- bool """ if not os.path.isfile(args.input): args.input = os.path.join(args.path,args.input) if not os.path.isfile(args.output): args.output = os.path.join(args.path,args.output) args.fname = os.path.join(args.path,'my_observed_tics.csv') # If no targets are provided via CLI, check for todo file if args.stars is None: if os.path.exists(args.input): if args.input.split('/')[-1].split('.')[-1] == 'csv' or args.input.split('/')[-1].split('.')[-1] == 'txt': with open (args.input, "r") as f: args.stars = [int(line.strip()) for line in f.readlines() if line[0].isnumeric()] else: print('\nERROR: Did not understand input file type. Please try again.\n') else: print('\nERROR: No targets were provided') print('*** please either provide entries via command line \n or an input csv file with a list of TICs (via todo.csv) ***\n') return False return True def check_table(args): """ Before crossmatching the observed TESS target list with personal targets of interest, this function checks that the observed target list exists and is up-to-date (but there is still work that needs to be done for this). The goal is to update this so that it will: 1) create and save the observed TESS targets if the file does not already exist, 2) otherwise it will check MAST for the current TESS sector and check if the column exists, and 3) add the new observing sector information if not already available. (TODO!!) Parameters ---------- args : argparse.Namespace command-line arguments args.output : str path to csv file for all observed TESS targets Returns ------- df : pandas.DataFrame pandas dataframe containing all targets observed in TESS short- and fast-cadence by 'tic' id """ # If the table does not already exist, it will make a new one # note: it asks this because it will take a little while to make # ** you can dl the table from my github repo to skip this ** if not os.path.exists(args.output): if args.verbose: if args.progress: print('\nCreating full observed target list:') else: print('\nCreating master list of all observed TESS targets\n *note: this will take a couple minutes if running for the first time') df = make_table(args) # If there is a local copy, it will first check if it is up-to-date, # which is done by getting the latest sector from MAST and seeing if # there is a column for the current sector -> STILL TODO else: # sector = get_current_sector() df = pd.read_csv(args.output) # filter_col = [col for col in df if not col.endswith('T')] # cols = list(set([int(column[1:]) for column in filter_col])) # if sector not in cols: # update_table(args) return df def make_table(args): """ Creates a large dataframe for all targets observed by TESS in short- and fast-cadence data. Given the success of TESS, we fortunately have many sectors so this step takes a few minutes if creating the table from scratch. By default, it will save the table as a csv file (which is currently ~150 Mb). """ # Get observed targets get_observed_sectors(args) # Combine them into one large dataframe df = combine_sectors(args) # Fill nan values df = df.fillna(False) if args.save: df.index.name = 'tic' df.to_csv(args.output) df.reset_index(inplace=True) return df def get_observed_sectors(args, links=[]): """ Downloads bulk downloads scripts from MAST and iterates through these files to create a complete list of observed TESS targets for a given sector and cadence. It will delete the bash scripts when finished. """ # Start request session to webscrape s = requests.session() r = s.get(args.url, headers=dict(Referer=args.url)) soup = BeautifulSoup(r.content, 'html.parser') # Iterate through links on website and append relevant ones to list for l in soup.find_all("a", href=re.compile('lc.sh')): links.append('%s%s'%('/'.join(args.url.split('/')[:3]),l.get('href'))) links = list(set(links)) # Save shell scripts to local directory (path) for link in links: response = s.get(link) with open('%s/%s'%(args.path,link.split('/')[-1]), "wb") as file: file.write(response.content) # Open files to save observed targets, which will remove the script after the text file is saved files = glob.glob('%s/*%s'%(args.path,'lc.sh')) for file in files: fn = '%s/sector_%s'%(args.path,file.split('/')[-1].split('_')[-2]) if 'fast' in file: fn+='_fast' fn += '.txt' with open(file, "r") as sh: lines = sh.readlines() lines = lines[1:] # Iterate through lines and save the tics to text text='' for line in lines: text += '%d\n'%int(line.split()[5].split('-')[2]) with open(fn, "w") as f: f.write(text) # Remove file once completed os.remove(file) def combine_sectors(args, observed={}, cols=[], all_tic=[],): """ Combines observed target lists by sectors and cadences into one large list/table. For now, it iterates by file so it does not open up multiple files for each target. I am unsure if this is the most efficient way to do this (so TBD). Parameters ---------- args : argparse.Namespace command-line arguments observed : dict observed TESS target list container cols : List(str) array of column names for the final observed table all_tic : List(int) complete list of observed tics over all cadences -> which become the indices for the final observed table """ # Make dictionary to save file information for all current sectors+cadences for cadence in args.cadences: observed[cadence]={} for column in args.columns: observed[cadence][column]=[] files = glob.glob('%s/*.txt'%args.path) for file in files: if 'fast' in file: idx='fast' else: idx='short' observed[idx]['files'].append(file) observed[idx]['sectors'].append(int(file.split('/')[-1].split('.')[0].split('_')[1])) # Iterate through files and add up n_sectors per tic per cadence for cadence in observed: cols += ['%s%03d'%(cadence[0].upper(),sector) for sector in sorted(observed[cadence]['sectors'])] series={} for file in observed[cadence]['files']: with open(file,"r") as f: lines = f.readlines() tics = [int(line.strip()) for line in lines] for tic in tics: if tic not in series: series[tic]=1 else: series[tic]+=1 # Make csv with totals for each cadence s = pd.Series(series, name='n_sectors') s.index.name = 'tic' s.sort_values(ascending=False, inplace=True) if args.save and args.total: s.to_csv('%s/totals_%s.csv'%(args.path,cadence)) all_tic += s.index.values.tolist() # Make large csv with all observed targets per sector per cadence tics = sorted(list(set(all_tic))) df = pd.DataFrame(index=tics, columns=cols) # I think easiest way for now is to search by file, so we aren't opening 20+ files per target entry (but TBD) files = glob.glob('%s/*.txt'%args.path) if args.verbose and args.progress: pbar = tqdm(total=len(files)) for file in files: sector=int(file.split('/')[-1].split('.')[0].split('_')[1]) if 'fast' in file: cadence='fast' else: cadence='short' column = '%s%03d'%(cadence[0].upper(),sector) with open(file,"r") as f: lines = f.readlines() tics = [int(line.strip()) for line in lines] for tic in tics: df.loc[tic,column]=True os.remove(file) if args.verbose and args.progress: pbar.update(1) if args.verbose and args.progress: pbar.close() return df def add_target_totals(df, args, reorder=[], d={}): """ Adds """ # add total number of sectors per target per cadence # add part to double check this with the other csvs for cadence in args.cadences: d.update({'%sTOT'%cadence[0].upper():'int64'}) filter_col = [col for col in df if col.startswith(cadence[0].upper())] filter_df = df[filter_col] for index in df.index.values.tolist(): df.loc[index,'%sTOT'%cadence[0].upper()] = int(filter_df.loc[index].sum()) # reorder columns so that cadences are displayed together filter_col = [col for col in df if col.startswith(cadence[0].upper())] df_temp = df[filter_col] reorder += sorted(df_temp.columns.values.tolist()) # reorder columns of final dataframe df_final =
pd.DataFrame(columns=reorder)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Thu Apr 11 20:46:16 2019 @author: xiazizhe """ import pandas as pd import numpy as np from itertools import product from functools import partial from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score, mean_squared_error from pathlib import Path import multiprocessing import environment def regression(df, indeps, deps): m = LinearRegression() X = df[indeps].values y = df[deps].values m.fit(X,y) pred = m.predict(X) mse = mean_squared_error(pred, y) return [m.coef_, m.intercept_, mse, m.score(X,y)] def get_manhatten_distance(df, birthplace): df['manhatten_distance'] = (df['pickup_longitude_bin'] - birthplace[0]).apply(np.abs)\ + (df['pickup_latitude_bin'] - birthplace[1]).apply(np.abs) return df def backride_reg(file, birthplace): dtypes = {'reward':float, 'trip_distance':float, 'trip_time_in_secs':int, 'passenger_count':int, 'month':int, 'day':int, 'time':int, 'pickup_longitude_bin':int, 'pickup_latitude_bin':int, 'dropoff_longitude_bin':int, 'dropoff_latitude_bin':int} df = pd.read_csv(file,dtype=dtypes) df = get_manhatten_distance(df, birthplace) reg_time = regression(df, ['manhatten_distance'], ['trip_time_in_secs']) reg_distance = regression(df, ['manhatten_distance'], ['trip_distance']) return reg_time, reg_distance def backride_analysis(data_dir, birthplace): regs_time, regs_distance = [], [] for f in Path(data_dir).glob('*'): reg_time, reg_distance = backride_reg(f, birthplace) regs_time.append(reg_time) regs_distance.append(reg_distance) regs_time = pd.DataFrame(regs_time, columns=['coef_mdist','intercept','mse','r2']) regs_distance = pd.DataFrame(regs_distance, columns=['coef_mdist','intercept','mse','r2']) return regs_time, regs_distance def get_traffic_at_times(location, agent): agent._location = location _ = agent.reset() traffic_at_times = agent.get_traffic_at_times() return traffic_at_times if __name__ == '__main__': output_dir = './../output/' data_dir = './../input/' ##### Predict back ride time and distance # birthplace = (165,1356) # regs_time, regs_distance = backride_analysis(data_dir, birthplace) # regs_time.to_csv(output_dir+'time_on_mdist.csv', index=False) # regs_distance.to_csv(output_dir+'distance_on_mdist.csv', index=False) ##### check location / time traffic status driver = environment.NYCTaxiEnv() ### traffic at all times at some location locations = [(165,1356)] + [(100*(i-1), 900+100*i) for i,j in product(range(10),range(10))] traffic = [] # Single process # for location in locations: # driver._location = location # _ = driver.reset() # traffic_at_times = driver.get_traffic_at_times() # traffic.append(traffic_at_times) # traffic_df = pd.concat(traffic, axis=1) # Multi process p = multiprocessing.Pool(processes=12) f = partial(get_traffic_at_times, agent=driver) traffic = p.map(f, locations) traffic_df =
pd.concat(traffic, axis=1)
pandas.concat
import pandas as pd import numpy as np import requests from fake_useragent import UserAgent import io import os import time import json import demjson from datetime import datetime import ssl ssl._create_default_https_context = ssl._create_unverified_context # Main Economic Indicators: https://alfred.stlouisfed.org/release?rid=205 url = { "fred_econ": "https://fred.stlouisfed.org/graph/fredgraph.csv?", "philfed": "https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/", "chicagofed": "https://www.chicagofed.org/~/media/publications/", "OECD": "https://stats.oecd.org/sdmx-json/data/DP_LIVE/" } def date_transform(df, format_origin, format_after): return_list = [] for i in range(0, len(df)): return_list.append(datetime.strptime(df[i], format_origin).strftime(format_after)) return return_list def gdp_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: <NAME>omestic Product Description: Billions of Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDP", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "GDP"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["GDP"] = df["GDP"].astype(float) return df def gdpc1_quarterly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "GDPC1", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def oecd_gdp_monthly(startdate="1947-01-01", enddate="2021-01-01"): """ Full Name: Real Gross Domestic Product Description: Billions of Chained 2012 Dollars, Quarterly, Seasonally Adjusted Annual Rate Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "USALORSGPNOSTSAM", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) return df def payems_monthly(startdate="1939-01-01", enddate="2021-01-01"): """ Full Name: All Employees, Total Nonfarm Description: Thousands of Persons,Seasonally Adjusted, Monthly Return: pd.DataFrame """ tmp_url = url["fred_econ"] ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} request_params = { "id": "PAYEMS", "cosd": "{}".format(startdate), "coed": "{}".format(enddate) } r = requests.get(tmp_url, params=request_params, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df.columns = ["Date", "Payems"] df["Date"] = pd.to_datetime(df["Date"], format = "%Y-%m-%d") df["Payems"] = df["Payems"].astype(float) return df def ppi(): tmp_url = url["fred_econ"] + "bgcolor=%23e1e9f0&chart_type=line&drp=0&fo=open%20sans&graph_bgcolor=%23ffffff&height=450&mode=fred&recession_bars=on&txtcolor=%23444444&ts=12&tts=12&width=968&nt=0&thu=0&trc=0&show_legend=yes&show_axis_titles=yes&show_tooltip=yes&id=PPIACO,PCUOMFGOMFG&scale=left,left&cosd=1913-01-01,1984-12-01&coed=2021-04-01,2021-04-01&line_color=%234572a7,%23aa4643&link_values=false,false&line_style=solid,solid&mark_type=none,none&mw=3,3&lw=2,2&ost=-99999,-99999&oet=99999,99999&mma=0,0&fml=a,a&fq=Monthly,Monthly&fam=avg,avg&fgst=lin,lin&fgsnd=2020-02-01,2020-02-01&line_index=1,2&transformation=lin,lin&vintage_date=2021-06-10,2021-06-10&revision_date=2021-06-10,2021-06-10&nd=1913-01-01,1984-12-01" ua = UserAgent(verify_ssl=False) request_header = {"User-Agent": ua.random} r = requests.get(tmp_url, headers=request_header) data_text = r.content df = pd.read_csv(io.StringIO(data_text.decode('utf-8'))) df["DATE"] =
pd.to_datetime(df["DATE"], format="%Y-%m-%d")
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ data_proc.py Calculate and plot analyzed data from centrifugation experiment Handles the primary functions """ import sys import argparse import numpy as np import pandas as pd import matplotlib.pyplot as plt import os SUCCESS = 0 INVALID_DATA = 1 IO_ERROR = 2 DEF_CSV_FILE = 'data.csv' DEF_EXCEL_FILE = 'data.xlsx' def warning(*objs): """Writes a message to stderr.""" print("WARNING: ", *objs, file=sys.stderr) def csv_data_analysis(csv_data_file): """ Calculates solvent concentration. Finds aging time and g dried cake/g oil for each row Parameters ---------- csv_data_file : excel file containing array of experiment data first row: solution information second row and below: each row contains data from a run of centrifugation (see README.md for more detailed description) Returns ------- cent_data : numpy array first row: solvent concentration second row and below: each row contains columns of aging time (h), aging time (s), dried cake concentration (g/g oil) """ data_array = pd.read_csv(csv_data_file, comment='#', header=None) # calculate solvent concentration solvent_conc = np.divide(np.subtract(data_array.loc[[0], [3]], data_array.loc[[0], [2]]), np.subtract(data_array.loc[[0], [3]], data_array.loc[[0], [1]])) # find the start time of the experiment start_time = data_array.loc[[0], [0]].values # gather centrifugation data into separate arrays expt_array = data_array[[1, 2, 3]].iloc[1:] cent_time = data_array[[0]].iloc[1:] # assign variables to each column of expt_array empty_tube = expt_array[1] tube_liquid = expt_array[2] tube_dried_cake = expt_array[3] # calculate mass of tube contents mass_liquid = tube_liquid - empty_tube mass_dried_cake = tube_dried_cake - empty_tube mass_oil = (1-solvent_conc.iloc[0][3])*mass_liquid # calculate solution aging time at each centrifugation aging_time = [ pd.to_datetime(cent_time.values[i, 0])-pd.to_datetime(start_time[0, 0]) for i in range(len(cent_time.values)) ] aging_time_sec = pd.Series(aging_time).dt.total_seconds() aging_time_hrs = aging_time_sec/3600 # calculate dried cake concentration conc_dried_cake = mass_dried_cake/mass_oil cent_data = pd.concat([aging_time_hrs, aging_time_sec, conc_dried_cake.reset_index(drop=True)], axis=1) return cent_data def excel_data_analysis(excel_data_file): """ Calculates solvent concentration. Finds aging time in hrs and seconds, and g dried cake/g oil for each row. Works for excel file with multiple sheets Parameters ---------- excel_data_file : excel file containing array of experiment data first row: solution information second row and below: each row contains data from a run of centrifugation (see README.md for more detailed description) data from an experiment in each sheet Returns ------- cent_data : pandas DataFrame first row: solvent concentration second row and below: each row contains columns of aging time (h), aging time (s), dried cake concentration (g/g oil) """ i = 0 frame = None # Concatenate analyzed data from each sheet in excel file while i >= 0: try: calc_data = calcAndConc(excel_data_file, i) frame = pd.concat([frame, calc_data], axis=1) i = i + 1 except: break cent_data = frame return cent_data def calcAndConc(excel_data_file, i): """ Calculates solvent concentration. Finds aging time in hrs and seconds, and g dried cake/g oil for each row. :param excel_data_file: excel file to read data from :param i: sheet number of excel file data will be pulled from :return: pandas DataFrame of aging time (hrs), aging time (sec), and dried cake conc (g/g oil) from data set of sheet i """ all_data = pd.read_excel(excel_data_file, sheet_name=i) # Separate solvent addition data solvent_add_data = all_data.iloc[[0], [0, 1, 2, 3]] # Separate centrifugation data data_array = all_data.iloc[:, 4:8].dropna(0) # Calculate solvent concentration solvent_conc = np.divide(np.subtract(solvent_add_data.values[0, 3], solvent_add_data.values[0, 2]), np.subtract(solvent_add_data.values[0, 3], solvent_add_data.values[0, 1])) # find the start time of the experiment start_time = solvent_add_data.values[0, 0] # gather centrifugation data into separate arrays expt_array = data_array.iloc[:, 1:4] cent_time = data_array.iloc[:, 0] # assign variables to each column of expt_array empty_tube = expt_array.values[:, 0] tube_liquid = expt_array.values[:, 1] tube_dried_cake = expt_array.values[:, 2] # calculate mass of tube contents mass_liquid = tube_liquid - empty_tube mass_dried_cake = tube_dried_cake - empty_tube mass_oil = (1-solvent_conc)*mass_liquid # calculate solution aging time at each centrifugation aging_time = cent_time - start_time aging_time_sec = pd.Series(aging_time).dt.total_seconds() aging_time_hrs = aging_time_sec/3600 # calculate dried cake concentration conc_dried_cake = pd.Series(mass_dried_cake/mass_oil) cent_data = pd.concat([aging_time_hrs, aging_time_sec, conc_dried_cake], axis=1) cent_data.columns = [0, 1, 2] return cent_data def parse_cmdline(argv): """ Returns the parsed argument list and return code. `argv` is a list of arguments, or `None` for ``sys.argv[1:]``. """ if argv is None: argv = sys.argv[1:] # initialize the parser object: parser = argparse.ArgumentParser() # add csv file as argument parser.add_argument("-c", "--csv_data_file", help="Location of csv file with data " "from a single experiment to be analyzed", default=DEF_CSV_FILE) parser.add_argument("-e", "--excel_data_file", help="Location of excel file with data " "from multiple experiments to be analyzed", default=DEF_EXCEL_FILE) args = parser.parse_args(argv) if args.excel_data_file == DEF_EXCEL_FILE: try: args.csv_data =
pd.read_csv(args.csv_data_file)
pandas.read_csv
# -*- coding: utf-8 -*- from datetime import datetime, timedelta, date, time import numpy as np import pandas as pd import pandas.lib as lib import pandas.util.testing as tm from pandas import Index from pandas.compat import long, u, PY2 class TestInference(tm.TestCase): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') self.assertEqual(pd.lib.infer_dtype(arr), compare) # object array of bytes arr = arr.astype(object) self.assertEqual(pd.lib.infer_dtype(arr), compare) def test_isinf_scalar(self): # GH 11352 self.assertTrue(lib.isposinf_scalar(float('inf'))) self.assertTrue(lib.isposinf_scalar(np.inf)) self.assertFalse(lib.isposinf_scalar(-np.inf)) self.assertFalse(lib.isposinf_scalar(1)) self.assertFalse(lib.isposinf_scalar('a')) self.assertTrue(lib.isneginf_scalar(float('-inf'))) self.assertTrue(lib.isneginf_scalar(-np.inf)) self.assertFalse(lib.isneginf_scalar(np.inf)) self.assertFalse(lib.isneginf_scalar(1)) self.assertFalse(lib.isneginf_scalar('a')) def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = set(['', 'NULL', 'nan']) pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with tm.assertRaisesRegexp(ValueError, msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = set([-999, -999.0]) for coerce_type in (True, False): out = lib.maybe_convert_numeric(data, nan_values, coerce_type) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) self.assertTrue(result.dtype == np.float64) arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) self.assertTrue(result.dtype == np.float64) def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) self.assertTrue(np.all(np.isnan(result))) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) class TestTypeInference(tm.TestCase): _multiprocess_can_split_ = True def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) self.assertEqual(result, 'integer') result = lib.infer_dtype([]) self.assertEqual(result, 'empty') def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'integer') arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed-integer') arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) self.assertEqual(result, 'integer') def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed') arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed-integer') arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') def test_string(self): pass def test_unicode(self): pass def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) self.assertEqual(index.inferred_type, 'datetime64') def test_date(self): dates = [date(2012, 1, x) for x in range(1, 20)] index = Index(dates) self.assertEqual(index.inferred_type, 'date') def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out = lib.to_object_array(rows) tm.assert_numpy_array_equal(out, expected) expected = np.array(rows, dtype=object) out = lib.to_object_array(rows, min_width=1) tm.assert_numpy_array_equal(out, expected) expected = np.array([[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object) out = lib.to_object_array(rows, min_width=5) tm.assert_numpy_array_equal(out, expected) def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed') def test_categorical(self): # GH 8974 from pandas import Categorical, Series arr = Categorical(list('abc')) result = lib.infer_dtype(arr) self.assertEqual(result, 'categorical') result = lib.infer_dtype(Series(arr)) self.assertEqual(result, 'categorical') arr = Categorical(list('abc'), categories=['cegfab'], ordered=True) result = lib.infer_dtype(arr) self.assertEqual(result, 'categorical') result = lib.infer_dtype(Series(arr)) self.assertEqual(result, 'categorical') class TestConvert(tm.TestCase): def test_convert_objects(self): arr = np.array(['a', 'b', np.nan, np.nan, 'd', 'e', 'f'], dtype='O') result = lib.maybe_convert_objects(arr) self.assertTrue(result.dtype == np.object_) def test_convert_objects_ints(self): # test that we can detect many kinds of integers dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8'] for dtype_str in dtypes: arr = np.array(list(np.arange(20, dtype=dtype_str)), dtype='O') self.assertTrue(arr[0].dtype == np.dtype(dtype_str)) result = lib.maybe_convert_objects(arr) self.assertTrue(issubclass(result.dtype.type, np.integer)) def test_convert_objects_complex_number(self): for dtype in np.sctypes['complex']: arr = np.array(list(1j * np.arange(20, dtype=dtype)), dtype='O') self.assertTrue(arr[0].dtype == np.dtype(dtype)) result = lib.maybe_convert_objects(arr) self.assertTrue(issubclass(result.dtype.type, np.complexfloating)) class Testisscalar(tm.TestCase): def test_isscalar_builtin_scalars(self): self.assertTrue(lib.isscalar(None)) self.assertTrue(lib.isscalar(True)) self.assertTrue(lib.isscalar(False)) self.assertTrue(lib.isscalar(0.)) self.assertTrue(lib.isscalar(np.nan)) self.assertTrue(lib.isscalar('foobar')) self.assertTrue(lib.isscalar(b'foobar')) self.assertTrue(lib.isscalar(u('efoobar'))) self.assertTrue(lib.isscalar(datetime(2014, 1, 1))) self.assertTrue(lib.isscalar(date(2014, 1, 1))) self.assertTrue(lib.isscalar(time(12, 0))) self.assertTrue(lib.isscalar(timedelta(hours=1))) self.assertTrue(lib.isscalar(pd.NaT)) def test_isscalar_builtin_nonscalars(self): self.assertFalse(lib.isscalar({})) self.assertFalse(lib.isscalar([])) self.assertFalse(lib.isscalar([1])) self.assertFalse(lib.isscalar(())) self.assertFalse(lib.isscalar((1, ))) self.assertFalse(lib.isscalar(slice(None))) self.assertFalse(lib.isscalar(Ellipsis)) def test_isscalar_numpy_array_scalars(self): self.assertTrue(lib.isscalar(np.int64(1))) self.assertTrue(lib.isscalar(np.float64(1.))) self.assertTrue(lib.isscalar(np.int32(1))) self.assertTrue(lib.isscalar(np.object_('foobar'))) self.assertTrue(lib.isscalar(np.str_('foobar'))) self.assertTrue(lib.isscalar(np.unicode_(u('foobar')))) self.assertTrue(lib.isscalar(np.bytes_(b'foobar'))) self.assertTrue(lib.isscalar(np.datetime64('2014-01-01'))) self.assertTrue(lib.isscalar(np.timedelta64(1, 'h'))) def test_isscalar_numpy_zerodim_arrays(self): for zerodim in [np.array(1), np.array('foobar'), np.array(np.datetime64('2014-01-01')), np.array(np.timedelta64(1, 'h')), np.array(np.datetime64('NaT'))]: self.assertFalse(lib.isscalar(zerodim)) self.assertTrue(lib.isscalar(lib.item_from_zerodim(zerodim))) def test_isscalar_numpy_arrays(self): self.assertFalse(lib.isscalar(np.array([]))) self.assertFalse(lib.isscalar(np.array([[]]))) self.assertFalse(lib.isscalar(np.matrix('1; 2'))) def test_isscalar_pandas_scalars(self): self.assertTrue(lib.isscalar(pd.Timestamp('2014-01-01'))) self.assertTrue(lib.isscalar(pd.Timedelta(hours=1))) self.assertTrue(lib.isscalar(pd.Period('2014-01-01'))) def test_lisscalar_pandas_containers(self): self.assertFalse(lib.isscalar(pd.Series())) self.assertFalse(lib.isscalar(
pd.Series([1])
pandas.Series
import pandas as pd import numpy as np # from pandas.core.tools.datetimes import normalize_date from pandas._libs import tslib from backend.robinhood_api import RobinhoodAPI class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafile ---------- Parameters: datafile : location of h5 datafile """ def __init__(self, datafile): self.datafile = datafile def _login(self, user, password): self.client = RobinhoodAPI() # try import the module with passwords try: _temp = __import__('auth') self.client.login(_temp.local_user, _temp.local_password) except: self.client.login(username=user, password=password) return self # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df = pd.DataFrame(dividends) if df.shape[0] > 0: df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='paid_at', inplace=True) df.reset_index(inplace=True, drop=True) df_div = self._delete_sensitive_fields(df) else: df_div = pd.DataFrame(columns=['symbol', 'amount', 'position', 'rate', 'paid_at', 'payable_date']) return df_div # process orders def _process_orders(self, df_ord): # assign to df and reduce the number of fields df = df_ord.copy() fields = [ 'created_at', 'average_price', 'cumulative_quantity', 'fees', 'symbol', 'side'] df = df[fields] # convert types for field in ['average_price', 'cumulative_quantity', 'fees']: df[field] =
pd.to_numeric(df[field])
pandas.to_numeric
from collections import defaultdict from ..apps.clashfilter import df_ideal_ala, rel_coords_dict, Clash, ClashVDM, make_pose_df, \ backbone_str, Contact, make_df_corr, VdmReps import pickle import numpy as np import pandas as pd from ..apps.transformation import get_rot_trans from prody import calcPhi, calcPsi, writePDB, AtomGroup from sklearn.neighbors import NearestNeighbors from ..apps.convex_hull import AlphaHull from numba import jit import time import os import copy import random import itertools from scipy.spatial.distance import cdist coords = ['c_x', 'c_y', 'c_z', 'c_D_x', 'c_D_y', 'c_D_z', 'c_H1_x', 'c_H1_y', 'c_H1_z', 'c_H2_x', 'c_H2_y', 'c_H2_z', 'c_H3_x', 'c_H3_y', 'c_H3_z', 'c_H4_x', 'c_H4_y', 'c_H4_z', 'c_A1_x', 'c_A1_y', 'c_A1_z', 'c_A2_x', 'c_A2_y', 'c_A2_z'] class Template: def __init__(self, pdb): self.pdb = pdb # pdb should be prody object poly-gly with CA hydrogens for design. self.dataframe = make_pose_df(self.pdb) self.alpha_hull = None @staticmethod def get_bb_sel(pdb): return pdb.select(backbone_str).copy() def get_phi_psi(self, seg, chain, resnum): res = self.pdb[seg, chain, resnum] try: phi = calcPhi(res) except ValueError: phi = None try: psi = calcPsi(res) except ValueError: psi = None return phi, psi def set_alpha_hull(self, pdb_w_CB, alpha=9): self.pdb_w_CB = pdb_w_CB self.alpha_hull = AlphaHull(alpha) self.alpha_hull.set_coords(pdb_w_CB) self.alpha_hull.calc_hull() class Load: """Doesn't yet deal with terminal residues (although phi/psi does)""" def __init__(self, **kwargs): self.name = kwargs.get('name') self.path = kwargs.get('path', './') # path to sig reps self.sequence_csts = kwargs.get('sequence_csts') # keys1 are tuples (seq, ch, #), keys2 are label, # vals are allowed residue names (three letter code). self.dataframe = pd.DataFrame() self.dataframe_grouped = None self._rot = defaultdict(dict) self._mobile_com = defaultdict(dict) self._target_com = defaultdict(dict) self._sig_reps = defaultdict(dict) self._ideal_ala_df = defaultdict(dict) self._nonclashing = list() self.remove_from_df = kwargs.get('remove_from_df') # e.g. {1: {'chain': 'Y', 'name': 'CB', 'resname': 'ASN'}, # 2: {'chain': 'Y', 'name': 'CG', 'resname': 'GLN'}} @staticmethod def _get_targ_coords(template, label, seg, chain, resnum): sel_str = 'segment ' + seg + ' chain ' + chain + ' resnum ' + str(resnum) + ' name ' cs = [] for n in rel_coords_dict[label]: try: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) except AttributeError: try: cs = [] for n in ['N', '1H', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) except AttributeError: try: cs = [] for n in ['N', 'H1', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) except AttributeError: sel_str = 'chain ' + chain + ' resnum ' + str(resnum) + ' name ' cs = [] for n in rel_coords_dict[label]: try: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) except AttributeError: cs = [] for n in ['N', '1H', 'CA']: cs.append(template.pdb.select(sel_str + n).getCoords()[0]) return np.stack(cs) return np.stack(cs) return np.stack(cs) @staticmethod def _get_mob_coords(df, label): return np.stack(df[df['name'] == n][['c_x', 'c_y', 'c_z']].values.flatten() for n in rel_coords_dict[label]) def set_rot_trans(self, template): for seg, chain, resnum in self.sequence_csts.keys(): for label, df in df_ideal_ala.items(): mob_coords = self._get_mob_coords(df, label) targ_coords = self._get_targ_coords(template, label, seg, chain, resnum) R, m_com, t_com = get_rot_trans(mob_coords, targ_coords) self._rot[label][(seg, chain, resnum)] = R self._mobile_com[label][(seg, chain, resnum)] = m_com self._target_com[label][(seg, chain, resnum)] = t_com df_ = df.copy() df_[['c_x', 'c_y', 'c_z']] = np.dot(df_[['c_x', 'c_y', 'c_z']] - m_com, R) + t_com self._ideal_ala_df[label][(seg, chain, resnum)] = df_ def _import_sig_reps(self): labels_resns = defaultdict(set) for tup in self.sequence_csts.keys(): for label in self.sequence_csts[tup].keys(): labels_resns[label] |= set(self.sequence_csts[tup][label]) for label in labels_resns.keys(): for resn in labels_resns[label]: try: with open(self.path + label + '/' + resn + '.pkl', 'rb') as infile: self._sig_reps[label][resn] = pickle.load(infile) except FileNotFoundError: pass @staticmethod def _get_phi_psi_df(df, phi, psi, phipsi_width=60): if phi is not None: phi_high = df['phi'] < (phi + (phipsi_width / 2)) phi_low = df['phi'] > (phi - (phipsi_width / 2)) else: phi_high = np.array([True] * len(df)) phi_low = phi_high if psi is not None: psi_high = df['psi'] < (psi + (phipsi_width / 2)) psi_low = df['psi'] > (psi - (phipsi_width / 2)) else: psi_high = np.array([True] * len(df)) psi_low = psi_high return df[phi_high & phi_low & psi_high & psi_low] @staticmethod def chunk_df(df_gr, gr_chunk_size=100): grs = list() for i, (n, gr) in enumerate(df_gr): grs.append(gr) if (i + 1) % gr_chunk_size == 0: yield
pd.concat(grs)
pandas.concat
import operator import os import networkx as nx import numpy as np import pandas as pd from tqdm.auto import tqdm from .constants import NUMBER_OF_BINS from .largest_connected_component import largest_weakly_connected_component from .logger import logger def get_travel_times(portcalls: pd.DataFrame) -> np.ndarray: """Return an array containing all travel times in seconds for all ships.""" cols = ('ship', 'arrival', 'departure') assert all([col in portcalls.columns for col in cols]) return ( portcalls .groupby('ship') .apply(lambda x: (x.arrival - x.departure.shift(1)).dt.seconds // 60) .dropna() .values ) def get_port_stays(portcalls: pd.DataFrame) -> np.ndarray: """Return an array containing for each portcall how long the ship was in the port.""" df = ((portcalls['departure'] - portcalls['arrival']).dt.seconds // 60) return df.values def hist(x: np.ndarray, bins: int) -> np.ndarray: """Return the values of the histogram.""" return np.histogram(x, bins)[0] def get_features( portcalls_network: pd.DataFrame, portcalls_classification: pd.DataFrame, network: nx.DiGraph, number_of_bins: int = NUMBER_OF_BINS) -> pd.DataFrame: """Do the entire feature engineering. These features serve as input for the fair random forest classifier. It models behaviour of the ships, which is derived from the portcall data. """ def div(x, y): """Same as x / y, except that it handles the division by zero.""" large_int = 2000 # Largest encountered value is 1184 if isinstance(x, pd.Series): return (x / y).replace({np.inf: large_int, np.nan: 0}) else: if x == 0: return 0 elif y != 0: return x / y else: return large_int # Get the following node measures: # - degree # - in-degree # - out-degree # - strength # - in-strength # - out-strength # - closeness centrality (weighted and unweighted) # - betweenness centrality (weighted and unweighted) # - eigenvector centrality (weighted and unweighted) network = largest_weakly_connected_component(network) node_dict = dict(network.nodes(data=True)) node_measures =
pd.DataFrame.from_dict(node_dict, orient='index')
pandas.DataFrame.from_dict
import argparse from datetime import datetime import pandas as pd import re import os from tabulate import tabulate from ast import literal_eval import numpy as np def init_data( ) -> pd.DataFrame: """ Return ------- Plan: pd.DataFrame. Item of the planner Notes ------- Reads the plan from the file in "pwd/../data/data.csv" and initialise it into the plan pandas DataFrame. If either "data" folder or "data.csv" or both of them do not exist, it creates this file. """ # Features of the plan features = ["title", "note", "date", "tags"] # Initialise the plan as dataframe object plan =
pd.DataFrame(columns=features)
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import timedelta from numpy import nan import numpy as np import pandas as pd from pandas import (Series, isnull, date_range, MultiIndex, Index) from pandas.tseries.index import Timestamp from pandas.compat import range from pandas.util.testing import assert_series_equal import pandas.util.testing as tm from .common import TestData def _skip_if_no_pchip(): try: from scipy.interpolate import pchip_interpolate # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.pchip missing') def _skip_if_no_akima(): try: from scipy.interpolate import Akima1DInterpolator # noqa except ImportError: import nose raise nose.SkipTest('scipy.interpolate.Akima1DInterpolator missing') class TestSeriesMissingData(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_timedelta_fillna(self): # GH 3371 s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) td = s.diff() # reg fillna result = td.fillna(0) expected = Series([timedelta(0), timedelta(0), timedelta(1), timedelta( days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) # interprested as seconds result = td.fillna(1) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(timedelta(days=1, seconds=1)) expected = Series([timedelta(days=1, seconds=1), timedelta( 0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) result = td.fillna(np.timedelta64(int(1e9))) expected = Series([timedelta(seconds=1), timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)]) assert_series_equal(result, expected) from pandas import tslib result = td.fillna(tslib.NaT) expected = Series([tslib.NaT, timedelta(0), timedelta(1), timedelta(days=1, seconds=9 * 3600 + 60 + 1)], dtype='m8[ns]') assert_series_equal(result, expected) # ffill td[2] = np.nan result = td.ffill() expected = td.fillna(0) expected[0] = np.nan assert_series_equal(result, expected) # bfill td[2] = np.nan result = td.bfill() expected = td.fillna(0) expected[2] = timedelta(days=1, seconds=9 * 3600 + 60 + 1) assert_series_equal(result, expected) def test_datetime64_fillna(self): s = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp( '20130102'), Timestamp('20130103 9:01:01')]) s[2] = np.nan # reg fillna result = s.fillna(Timestamp('20130104')) expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130104'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) from pandas import tslib result = s.fillna(tslib.NaT) expected = s assert_series_equal(result, expected) # ffill result = s.ffill() expected = Series([Timestamp('20130101'), Timestamp( '20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01')]) assert_series_equal(result, expected) # bfill result = s.bfill() expected = Series([Timestamp('20130101'), Timestamp('20130101'), Timestamp('20130103 9:01:01'), Timestamp( '20130103 9:01:01')]) assert_series_equal(result, expected) # GH 6587 # make sure that we are treating as integer when filling # this also tests inference of a datetime-like with NaT's s = Series([pd.NaT, pd.NaT, '2013-08-05 15:30:00.000001']) expected = Series( ['2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001', '2013-08-05 15:30:00.000001'], dtype='M8[ns]') result = s.fillna(method='backfill') assert_series_equal(result, expected) def test_datetime64_tz_fillna(self): for tz in ['US/Eastern', 'Asia/Tokyo']: # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-02 10:00', tz=tz)]) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00'), 'AAA', Timestamp('2011-01-03 10:00'), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp('2011-01-03 10:00'), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00'), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00'), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00'), Timestamp( '2011-01-04 10:00')]) self.assert_series_equal(expected, result) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz=tz) s = pd.Series(idx) result = s.fillna(pd.Timestamp('2011-01-02 10:00')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2011-01-02 10:00')]) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp('2011-01-02 10:00', tz=tz)) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna(pd.Timestamp( '2011-01-02 10:00', tz=tz).to_pydatetime()) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-02 10:00', '2011-01-03 10:00', '2011-01-02 10:00'], tz=tz) expected = Series(idx) self.assert_series_equal(expected, result) result = s.fillna('AAA') expected = Series([Timestamp('2011-01-01 10:00', tz=tz), 'AAA', Timestamp('2011-01-03 10:00', tz=tz), 'AAA'], dtype=object) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00')}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00')]) self.assert_series_equal(expected, result) result = s.fillna({1: pd.Timestamp('2011-01-02 10:00', tz=tz), 3: pd.Timestamp('2011-01-04 10:00', tz=tz)}) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2011-01-02 10:00', tz=tz), Timestamp( '2011-01-03 10:00', tz=tz), Timestamp('2011-01-04 10:00', tz=tz)]) self.assert_series_equal(expected, result) # filling with a naive/other zone, coerce to object result = s.fillna(Timestamp('20130101')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp( '2013-01-01'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp( '2013-01-01')]) self.assert_series_equal(expected, result) result = s.fillna(Timestamp('20130101', tz='US/Pacific')) expected = Series([Timestamp('2011-01-01 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific'), Timestamp('2011-01-03 10:00', tz=tz), Timestamp('2013-01-01', tz='US/Pacific')]) self.assert_series_equal(expected, result) def test_fillna_int(self): s = Series(np.random.randint(-100, 100, 50)) s.fillna(method='ffill', inplace=True) assert_series_equal(s.fillna(method='ffill', inplace=False), s) def test_fillna_raise(self): s = Series(np.random.randint(-100, 100, 50)) self.assertRaises(TypeError, s.fillna, [1, 2]) self.assertRaises(TypeError, s.fillna, (1, 2)) def test_isnull_for_inf(self): s = Series(['a', np.inf, np.nan, 1.0]) with pd.option_context('mode.use_inf_as_null', True): r = s.isnull() dr = s.dropna() e = Series([False, True, True, False]) de = Series(['a', 1.0], index=[0, 3]) tm.assert_series_equal(r, e) tm.assert_series_equal(dr, de) def test_fillna(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) self.assert_series_equal(ts, ts.fillna(method='ffill')) ts[2] = np.NaN exp = Series([0., 1., 1., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='ffill'), exp) exp = Series([0., 1., 3., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(method='backfill'), exp) exp = Series([0., 1., 5., 3., 4.], index=ts.index) self.assert_series_equal(ts.fillna(value=5), exp) self.assertRaises(ValueError, ts.fillna) self.assertRaises(ValueError, self.ts.fillna, value=0, method='ffill') # GH 5703 s1 = Series([np.nan]) s2 = Series([1]) result = s1.fillna(s2) expected = Series([1.]) assert_series_equal(result, expected) result = s1.fillna({}) assert_series_equal(result, s1) result = s1.fillna(Series(())) assert_series_equal(result, s1) result = s2.fillna(s1) assert_series_equal(result, s2) result = s1.fillna({0: 1}) assert_series_equal(result, expected) result = s1.fillna({1: 1}) assert_series_equal(result, Series([np.nan])) result = s1.fillna({0: 1, 1: 1}) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1})) assert_series_equal(result, expected) result = s1.fillna(Series({0: 1, 1: 1}, index=[4, 5])) assert_series_equal(result, s1) s1 = Series([0, 1, 2], list('abc')) s2 = Series([0, np.nan, 2], list('bac')) result = s2.fillna(s1) expected = Series([0, 0, 2.], list('bac')) assert_series_equal(result, expected) # limit s = Series(np.nan, index=[0, 1, 2]) result = s.fillna(999, limit=1) expected = Series([999, np.nan, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) result = s.fillna(999, limit=2) expected = Series([999, 999, np.nan], index=[0, 1, 2]) assert_series_equal(result, expected) # GH 9043 # make sure a string representation of int/float values can be filled # correctly without raising errors or being converted vals = ['0', '1.5', '-0.3'] for val in vals: s = Series([0, 1, np.nan, np.nan, 4], dtype='float64') result = s.fillna(val) expected = Series([0, 1, val, val, 4], dtype='object') assert_series_equal(result, expected) def test_fillna_bug(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) filled = x.fillna(method='ffill') expected = Series([nan, 1., 1., 3., 3.], x.index) assert_series_equal(filled, expected) filled = x.fillna(method='bfill') expected = Series([1., 1., 3., 3., nan], x.index) assert_series_equal(filled, expected) def test_fillna_inplace(self): x = Series([nan, 1., nan, 3., nan], ['z', 'a', 'b', 'c', 'd']) y = x.copy() y.fillna(value=0, inplace=True) expected = x.fillna(value=0) assert_series_equal(y, expected) def test_fillna_invalid_method(self): try: self.ts.fillna(method='ffil') except ValueError as inst: self.assertIn('ffil', str(inst)) def test_ffill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.ffill(), ts.fillna(method='ffill')) def test_bfill(self): ts = Series([0., 1., 2., 3., 4.], index=tm.makeDateIndex(5)) ts[2] = np.NaN assert_series_equal(ts.bfill(), ts.fillna(method='bfill')) def test_timedelta64_nan(self): from pandas import tslib td = Series([timedelta(days=i) for i in range(10)]) # nan ops on timedeltas td1 = td.copy() td1[0] = np.nan self.assertTrue(isnull(td1[0])) self.assertEqual(td1[0].value, tslib.iNaT) td1[0] = td[0] self.assertFalse(isnull(td1[0])) td1[1] = tslib.iNaT self.assertTrue(isnull(td1[1])) self.assertEqual(td1[1].value, tslib.iNaT) td1[1] = td[1] self.assertFalse(isnull(td1[1])) td1[2] = tslib.NaT self.assertTrue(isnull(td1[2])) self.assertEqual(td1[2].value, tslib.iNaT) td1[2] = td[2] self.assertFalse(isnull(td1[2])) # boolean setting # this doesn't work, not sure numpy even supports it # result = td[(td>np.timedelta64(timedelta(days=3))) & # td<np.timedelta64(timedelta(days=7)))] = np.nan # self.assertEqual(isnull(result).sum(), 7) # NumPy limitiation =( # def test_logical_range_select(self): # np.random.seed(12345) # selector = -0.5 <= self.ts <= 0.5 # expected = (self.ts >= -0.5) & (self.ts <= 0.5) # assert_series_equal(selector, expected) def test_dropna_empty(self): s = Series([]) self.assertEqual(len(s.dropna()), 0) s.dropna(inplace=True) self.assertEqual(len(s), 0) # invalid axis self.assertRaises(ValueError, s.dropna, axis=1) def test_datetime64_tz_dropna(self): # DatetimeBlock s = Series([Timestamp('2011-01-01 10:00'), pd.NaT, Timestamp( '2011-01-03 10:00'), pd.NaT]) result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00'), Timestamp('2011-01-03 10:00')], index=[0, 2]) self.assert_series_equal(result, expected) # DatetimeBlockTZ idx = pd.DatetimeIndex(['2011-01-01 10:00', pd.NaT, '2011-01-03 10:00', pd.NaT], tz='Asia/Tokyo') s = pd.Series(idx) self.assertEqual(s.dtype, 'datetime64[ns, Asia/Tokyo]') result = s.dropna() expected = Series([Timestamp('2011-01-01 10:00', tz='Asia/Tokyo'), Timestamp('2011-01-03 10:00', tz='Asia/Tokyo')], index=[0, 2]) self.assertEqual(result.dtype, 'datetime64[ns, Asia/Tokyo]') self.assert_series_equal(result, expected) def test_dropna_no_nan(self): for s in [Series([1, 2, 3], name='x'), Series( [False, True, False], name='x')]: result = s.dropna() self.assert_series_equal(result, s) self.assertFalse(result is s) s2 = s.copy() s2.dropna(inplace=True) self.assert_series_equal(s2, s) def test_valid(self): ts = self.ts.copy() ts[::2] = np.NaN result = ts.valid() self.assertEqual(len(result), ts.count()) tm.assert_series_equal(result, ts[1::2]) tm.assert_series_equal(result, ts[pd.notnull(ts)]) def test_isnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.isnull(), Series([False, False, False, True, False]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.isnull(), Series([False, False, True]).values) def test_notnull(self): ser = Series([0, 5.4, 3, nan, -0.001]) np.array_equal(ser.notnull(), Series([True, True, True, False, True]).values) ser = Series(["hi", "", nan]) np.array_equal(ser.notnull(), Series([True, True, False]).values) def test_pad_nan(self): x = Series([np.nan, 1., np.nan, 3., np.nan], ['z', 'a', 'b', 'c', 'd'], dtype=float) x.fillna(method='pad', inplace=True) expected = Series([np.nan, 1.0, 1.0, 3.0, 3.0], ['z', 'a', 'b', 'c', 'd'], dtype=float) assert_series_equal(x[1:], expected[1:]) self.assertTrue(np.isnan(x[0]), np.isnan(expected[0])) def test_dropna_preserve_name(self): self.ts[:5] = np.nan result = self.ts.dropna() self.assertEqual(result.name, self.ts.name) name = self.ts.name ts = self.ts.copy() ts.dropna(inplace=True) self.assertEqual(ts.name, name) def test_fill_value_when_combine_const(self): # GH12723 s = Series([0, 1, np.nan, 3, 4, 5]) exp = s.fillna(0).add(2) res = s.add(2, fill_value=0) assert_series_equal(res, exp) class TestSeriesInterpolateData(TestData, tm.TestCase): def test_interpolate(self): ts = Series(np.arange(len(self.ts), dtype=float), self.ts.index) ts_copy = ts.copy() ts_copy[5:10] = np.NaN linear_interp = ts_copy.interpolate(method='linear') self.assert_series_equal(linear_interp, ts) ord_ts = Series([d.toordinal() for d in self.ts.index], index=self.ts.index).astype(float) ord_ts_copy = ord_ts.copy() ord_ts_copy[5:10] = np.NaN time_interp = ord_ts_copy.interpolate(method='time') self.assert_series_equal(time_interp, ord_ts) # try time interpolation on a non-TimeSeries # Only raises ValueError if there are NaNs. non_ts = self.series.copy() non_ts[0] = np.NaN self.assertRaises(ValueError, non_ts.interpolate, method='time') def test_interpolate_pchip(self): tm._skip_if_no_scipy() _skip_if_no_pchip() ser = Series(np.sort(np.random.uniform(size=100))) # interpolate at new_index new_index = ser.index.union(Index([49.25, 49.5, 49.75, 50.25, 50.5, 50.75])) interp_s = ser.reindex(new_index).interpolate(method='pchip') # does not blow up, GH5977 interp_s[49:51] def test_interpolate_akima(self): tm._skip_if_no_scipy() _skip_if_no_akima() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate(method='akima') assert_series_equal(interp_s[1:3], expected) def test_interpolate_piecewise_polynomial(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate( method='piecewise_polynomial') assert_series_equal(interp_s[1:3], expected) def test_interpolate_from_derivatives(self): tm._skip_if_no_scipy() ser = Series([10, 11, 12, 13]) expected = Series([11.00, 11.25, 11.50, 11.75, 12.00, 12.25, 12.50, 12.75, 13.00], index=Index([1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0])) # interpolate at new_index new_index = ser.index.union(Index([1.25, 1.5, 1.75, 2.25, 2.5, 2.75])) interp_s = ser.reindex(new_index).interpolate( method='from_derivatives') assert_series_equal(interp_s[1:3], expected) def test_interpolate_corners(self): s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(), s) tm._skip_if_no_scipy() s = Series([np.nan, np.nan]) assert_series_equal(s.interpolate(method='polynomial', order=1), s) s = Series([]).interpolate() assert_series_equal(s.interpolate(method='polynomial', order=1), s) def test_interpolate_index_values(self): s = Series(np.nan, index=np.sort(np.random.rand(30))) s[::3] = np.random.randn(10) vals = s.index.values.astype(float) result = s.interpolate(method='index') expected = s.copy() bad = isnull(expected.values) good = ~bad expected = Series(np.interp(vals[bad], vals[good], s.values[good]), index=s.index[bad]) assert_series_equal(result[bad], expected) # 'values' is synonymous with 'index' for the method kwarg other_result = s.interpolate(method='values') assert_series_equal(other_result, result) assert_series_equal(other_result[bad], expected) def test_interpolate_non_ts(self): s = Series([1, 3, np.nan, np.nan, np.nan, 11]) with tm.assertRaises(ValueError): s.interpolate(method='time') # New interpolation tests def test_nan_interpolate(self): s = Series([0, 1, np.nan, 3]) result = s.interpolate() expected = Series([0., 1., 2., 3.]) assert_series_equal(result, expected) tm._skip_if_no_scipy() result = s.interpolate(method='polynomial', order=1) assert_series_equal(result, expected) def test_nan_irregular_index(self): s = Series([1, 2, np.nan, 4], index=[1, 3, 5, 9]) result = s.interpolate() expected = Series([1., 2., 3., 4.], index=[1, 3, 5, 9]) assert_series_equal(result, expected) def test_nan_str_index(self): s = Series([0, 1, 2, np.nan], index=list('abcd')) result = s.interpolate() expected = Series([0., 1., 2., 2.], index=list('abcd')) assert_series_equal(result, expected) def test_interp_quad(self): tm._skip_if_no_scipy() sq = Series([1, 4, np.nan, 16], index=[1, 2, 3, 4]) result = sq.interpolate(method='quadratic') expected = Series([1., 4., 9., 16.], index=[1, 2, 3, 4]) assert_series_equal(result, expected) def test_interp_scipy_basic(self): tm._skip_if_no_scipy() s = Series([1, 3, np.nan, 12, np.nan, 25]) # slinear expected = Series([1., 3., 7.5, 12., 18.5, 25.]) result = s.interpolate(method='slinear') assert_series_equal(result, expected) result = s.interpolate(method='slinear', downcast='infer') assert_series_equal(result, expected) # nearest expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='nearest') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='nearest', downcast='infer') assert_series_equal(result, expected) # zero expected = Series([1, 3, 3, 12, 12, 25]) result = s.interpolate(method='zero') assert_series_equal(result, expected.astype('float')) result = s.interpolate(method='zero', downcast='infer') assert_series_equal(result, expected) # quadratic expected =
Series([1, 3., 6.769231, 12., 18.230769, 25.])
pandas.Series
from Modules.FileManager import FileManager, ProjectFileManager from PIL import Image from PIL import ImageEnhance import matplotlib.pyplot as plt # These disable some of the default key strokes that we will use plt.rcParams['keymap.all_axes'] = '' # a plt.rcParams['keymap.back'] = ['left', 'backspace', 'MouseButton.BACK'] # c plt.rcParams['keymap.pan'] = '' # p plt.rcParams['keymap.quit'] = ['ctrl+w', 'cmd+w'] # Import buttons that we will use to make this interactive from matplotlib.widgets import Button from matplotlib.widgets import RadioButtons from matplotlib.widgets import RectangleSelector from matplotlib.widgets import Slider # Import some patches that we will use to display the annotations from matplotlib.patches import Rectangle from matplotlib.colors import Normalize import pdb, datetime, os, subprocess, argparse, random import pandas as pd class Annotation: def __init__(self, other): self.other = other self.sex = '' self.coords = () self.poses = () self.rectangle = None def addRectangle(self): if self.rectangle is None: self.rectangle = Rectangle((self.coords[0], self.coords[1]), self.coords[2], self.coords[3], fill=False, edgecolor='green', linewidth=1.4, figure=self.other.fig) self.other.ax_image.add_patch(self.rectangle) self.other.cur_text.set_text('BB: ' + str(self.coords)) else: self.other.error_text.set_text('Error: Rectangle already exists') def removePatches(self): if self.lastRectangle is None: self.other.error_text.set_text('Cant remove annotation. Reset frame instead') self.other.fig.canvas.draw() return False try: self.other.ax_image.patches.remove(self.lastRectangle) except ValueError: pass return True def retRow(self): if self.coords == (): return 'Must create bounding box before saving an annotation' return [self.other.pid, self.other.frames[self.other.frame_index], self.sex, self.coords, self.other.user, self.other.now] def reset(self): self.sex = '' self.coords = () self.poses = () self.lastRectangle = self.rectangle self.rectangle = None class Annotator: def __init__(self, project_file_manager: ProjectFileManager, number=10, dry=False): self.pfm = project_file_manager self.image_dir = self.pfm.local_paths['image_dir'] self.labeled_frames_csv = self.pfm.local_paths['labeled_frames_csv'] self.boxed_fish_csv = self.pfm.local_paths['boxed_fish_csv'] self.number = number self.pid = self.pfm.pid self.dry = dry self.frames = sorted([x for x in os.listdir(self.image_dir) if '.jpg' in x and '._' not in x]) random.Random(4).shuffle(self.frames) # self.frames = sorted([x for x in os.listdir(self.frameDirectory) if '.jpg' in x and '._' not in x]) # remove annoying mac OSX files assert len(self.frames) > 0 # Keep track of the frame we are on and how many we have annotated self.frame_index = 0 self.annotated_frames = [] # Intialize lists to hold annotated objects self.coords = () # Create dataframe to hold annotations if os.path.exists(self.labeled_frames_csv): self.dt = pd.read_csv(self.labeled_frames_csv, index_col=0) else: self.dt = pd.DataFrame(columns=['ProjectID', 'Framefile', 'Nfish', 'Sex', 'Box', 'User', 'DateTime']) self.f_dt = pd.DataFrame(columns=['ProjectID', 'Framefile', 'Sex', 'Box', 'User', 'DateTime']) # Get user and current time self.user = os.getenv('USER') self.now = datetime.datetime.now() # Create Annotation object self.annotation = Annotation(self) # self.annotation_text = '' # Start figure self._createFigure() # if not a dry run, upload results if not dry: self._upload_results() def _upload_results(self): labeled_frames_df =
pd.read_csv(self.labeled_frames_csv, index_col=0)
pandas.read_csv
import pandas as pd import sqlalchemy as db import configparser import logging from logging.config import fileConfig # Configs config = configparser.ConfigParser() config.read('conf/.env') fileConfig('conf/logging_config.ini') logger = logging.getLogger() # Database connection URI db_engine = db.create_engine( "mysql+pymysql://{}:{}@{}:{}/{}".format(config['database']['user'], config['database']['password'], config['database']['host'], config['database']['port'], config['database']['db'])) # Data warehouse connection URI dw_engine = db.create_engine( "mysql+pymysql://{}:{}@{}:{}/{}".format(config['data-warehouse']['user'], config['data-warehouse']['password'], config['data-warehouse']['host'], config['data-warehouse']['port'], config['data-warehouse']['db'])) def get_factSales_last_id(db_engine): """Function to get last sales_key from fact table `factSales`""" query = "SELECT max(sales_key) AS last_id FROM factSales" tdf =
pd.read_sql(query, db_engine)
pandas.read_sql
#!/usr/bin/env python3 # Author: <NAME> (<EMAIL>) # License: BSD-3-Clause import multiprocessing import time import os import sys import re import logging import argparse import tarfile from ztflc import forcephotometry from ztflc.io import LOCALDATA import numpy as np import ztfquery import pandas as pd from astropy.time import Time from astropy.coordinates import SkyCoord from astropy import units as u from astropy.utils.console import ProgressBar import requests.exceptions from ztffps import database, credentials from ztffps.thumbnails import generate_thumbnails from ztffps.utils import calculate_magnitudes try: ZTFDATA = os.getenv("ZTFDATA") FORCEPHOTODATA = os.path.join(ZTFDATA, "forcephotometry") except (TypeError, NameError): print( "You have to export the environment variable ZTFDATA in your bash profile; e.g. export ZTFDATA='ABSOLUTE/PATH/TO/ZTFDATA/'\nNote the trailing slash is important!" ) # Define servers MAILSERVER = "smtp-auth.desy.de" MAILPORT = 587 # Define and create directories METADATA = os.path.join(FORCEPHOTODATA, "meta") COSMODATA = os.path.join(ZTFDATA, "cosmology") MARSHALDATA = os.path.join(ZTFDATA, "marshal") SALTDATA = os.path.join(FORCEPHOTODATA, "salt") PLOTDATA = os.path.join(FORCEPHOTODATA, "plots") PLOT_DATAFRAMES = os.path.join(PLOTDATA, "dataframes") THUMBNAILS = os.path.join(PLOTDATA, "thumbnails") for path in [ METADATA, COSMODATA, MARSHALDATA, SALTDATA, PLOTDATA, PLOT_DATAFRAMES, THUMBNAILS, ]: if not os.path.exists(path): os.makedirs(path) class ForcedPhotometryPipeline: """ """ def __init__( self, file_or_name=None, daysago=None, daysuntil=None, jdmin=None, jdmax=None, snt=5.0, mag_range=None, flux_range=None, ra=None, dec=None, nprocess=4, reprocess=False, sciimg=False, update_enforce=False, update_disable=False, ampel=False, download_newest=True, filecheck=False, verbose=False, logger=None, ): self.startime = time.time() if logger is None: self.logger = logging.getLogger("pipeline") else: self.logger = logger # check for IRSA credentials _, _ = credentials.get_user_and_password("<PASSWORD>") if file_or_name is None: self.logger.error( "You have to initialize this class with at least one name of a ZTF object for which to perform forced photometry a textfile containing one ZTF name per line or an arbitrary name if the -radec option is chosen." ) else: self.file_or_name = file_or_name if not self.logger.hasHandlers(): logFormatter = logging.Formatter( "%(asctime)s [%(threadName)-12.12s] [%(levelname)-5.5s] %(message)s" ) fileHandler = logging.FileHandler("./log") fileHandler.setFormatter(logFormatter) self.logger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(logFormatter) self.logger.addHandler(consoleHandler) self.logger.setLevel(logging.INFO) self.daysago = daysago self.daysuntil = daysuntil self.jdmin = jdmin self.jdmax = jdmax self.snt = snt self.mag_range = mag_range self.flux_range = flux_range self.reprocess = reprocess self.nprocess = nprocess self.sciimg = sciimg self.update_enforce = update_enforce self.update_disable = update_disable self.ampel = ampel self.download_newest = download_newest self.verbose = verbose self.filecheck = filecheck if self.jdmin or self.jdmax: self.convert_jd_to_days() else: self.convert_daysago_to_jd() # parse different formats of ra and dec if ra is not None and dec is not None: if str(ra)[2] == ":" or str(ra)[2] == "h": coords = SkyCoord(f"{ra} {dec}", unit=(u.hourangle, u.deg)) else: coords = SkyCoord(f"{ra} {dec}", unit=u.deg) self.ra = np.float( coords.ra.to_string(decimal=True, unit=u.deg, precision=8) ) self.dec = np.float( coords.dec.to_string(decimal=True, unit=u.deg, precision=8) ) if isinstance(self.file_or_name, list): self.object_list = self.file_or_name else: self.object_list = [self.file_or_name] self.update_database_with_given_radec() elif (ra is None and dec is not None) or (ra is not None and dec is None): self.logger.info("Either both set ra and dec or none.") raise ValueError else: self.ra = None self.dec = None if isinstance(self.file_or_name, str): self.use_if_ztf() elif isinstance(self.file_or_name, list): self.object_list = self.file_or_name else: raise TypeError self.check_for_duplicates() if not self.update_disable: self.get_position_and_timerange() self.check_if_present_in_metadata() def is_ztf_name(self, name): """ Checks if a string adheres to the ZTF naming scheme """ return re.match("^ZTF[1-2]\d[a-z]{7}$", name) def convert_daysago_to_jd(self): """ Converts days since now and daysuntil to Julian dates """ now = Time(time.time(), format="unix", scale="utc").jd if self.daysago is None: self.jdmin = 2458100 else: self.jdmin = now - self.daysago if self.daysuntil is None: self.jdmax = now else: self.jdmax = now - self.daysuntil def convert_jd_to_days(self): """ Converts jdmin and jdmax to integers (daysfromnow and daysuntil) """ now = Time(time.time(), format="unix", scale="utc").jd if self.jdmin: self.daysago = now - self.jdmin else: self.daysago = now - 2458100 if self.jdmax: self.daysuntil = now - self.jdmax else: self.jdmax = now def use_if_ztf(self): """ Checks if name argument is a ZTF name (must fit ZTF naming convention), an ascii file containing ZTF names (1 per line) in the program directory or an arbitrary name if -radec argument to the pipeline class """ errormessage = "\nYou have to provide a either a ZTF name (a string adhering to the ZTF naming scheme), an ascii file containing ZTF names (1 per line) in the same directory or an arbitrary name if using the radec option.\n" if self.is_ztf_name(self.file_or_name): self.object_list = [self.file_or_name] else: self.object_list = [] try: file = open(f"{self.file_or_name}", "r") self.lines = file.read().splitlines() for line in self.lines: if self.is_ztf_name(line): self.object_list.append(line) except FileNotFoundError as error: self.logger.error(errormessage) raise error assert ( self.object_list[0][:3] == "ZTF" and len(self.object_list[0]) == 12 ), errormessage # Grammar check if len(self.object_list) == 1: self.logger.info( f"Doing forced photometry for {len(self.object_list)} transient" ) else: self.logger.info( f"Doing forced photometry for {len(self.object_list)} transients" ) self.logger.info("Logs are stored in log") def check_for_duplicates(self): """ Removes duplicates from the list of ZTF objects """ self.object_list = list(dict.fromkeys(self.object_list)) def update_database_with_given_radec(self): """ Updates the MongoDB entry of the first entry in the object list with -radec passed to pipeline class """ name = self.object_list[0] database.update_database( name, { "name": name, "ra": self.ra, "dec": self.dec, "jdmin": self.jdmin, "jdmax": self.jdmax, "entries": 0, "coords_per_filter": [np.nan, np.nan, np.nan], }, ) def get_position_and_timerange(self): """ Check for entry in Mongo database and update it via AMPEL or Marshal """ self.logger.info("\nChecking database.") progress_bar = ProgressBar(len(self.object_list)) needs_external_database = [] if self.update_enforce: self.logger.info("\nForced update of alert data data from AMPEL/Fritz.") query = database.read_database(self.object_list, ["_id", "entries", "ra"]) for index, name in enumerate(self.object_list): if ( query["entries"][index] == None or query["entries"][index] < 10 or self.update_enforce or np.isnan(query["ra"][index]) ): needs_external_database.append(name) progress_bar.update(index) progress_bar.update(len(self.object_list)) if not self.ampel: self.logger.info("\nConnecting to Marshal (or AMPEL if Marshal is down).") else: self.logger.info("\nConnecting to AMPEL.") from ztffps import connectors marshal_failed = True ampel_failed = True if not self.ampel: try: connector = connectors.MarshalInfo(needs_external_database, nprocess=32) marshal_failed = False except ( ConnectionError, requests.exceptions.ConnectionError, ValueError, ): marshal_failed = True if marshal_failed or self.ampel: # try: connector = connectors.AmpelInfo( ztf_names=needs_external_database, logger=self.logger ) ampel_failed = False # except: # ampel_failed = True if marshal_failed and ampel_failed: self.logger.error( "\nConnection to Marshal and AMPEL failed. Temporary outages for the\n" "Marshal are frequent. Problems with AMPEL are most likely due to a \n" "problem with your .ssh/config.\nProceeding with local database.\n" "CAUTION: Data could be missing or not be up-to-date!!!" ) if self.jdmin is None: if self.daysago is None: self.logger.info( "\nNo 'daysago' given, full timerange since ZTF operations used." ) else: if self.daysuntil is None: self.logger.info( f"\nData from {self.daysago:.2f} days ago till today is used." ) else: self.logger.info( f"\nData from {self.daysago:.2f} days ago till {self.daysuntil:.2f} days ago is used." ) now = Time(time.time(), format="unix", scale="utc").jd if not (marshal_failed and ampel_failed): self.logger.info("\nUpdating local database.") progress_bar = ProgressBar(len(connector.queryresult)) for index, result in enumerate(connector.queryresult): if result is not None: database.update_database( result[0], { "_id": result[0], "ra": result[1], "dec": result[2], "jdmin": self.jdmin, "jdmax": self.jdmax, "entries": result[3], "lastobs": result[10], "jdobs_alert": result[4], "mag_alert": result[5], "magerr_alert": result[6], "maglim_alert": result[7], "fid_alert": result[8], "magzp_alert": result[11], "magzp_err_alert": result[12], "coords_per_filter": result[13], }, ) progress_bar.update(index) progress_bar.update(len(connector.queryresult)) def check_if_present_in_metadata(self): """ Check for which objects there are infos available Delete from object-list if no info is available """ self.logger.info("\nChecking if alert data is present in the local database.") query = database.read_database(self.object_list, ["name", "entries"]) not_found = [] del_indices = [] for index, entry in enumerate(query["entries"]): if entry == None: not_found.append(self.object_list[index]) del_indices.append(index) if not_found: for index in sorted(del_indices, reverse=True): del self.object_list[index] self.logger.info( f"\nThese could not be found in meta database. Will not be downloaded or fit: {not_found}" ) def download(self): """ Download the requested objects in self.object_list from IPAC using ztfquery """ number_of_objects = len(self.object_list) download_requested = [] query = database.read_database(self.object_list, ["ra", "dec", "last_download"]) last_download = query["last_download"] # In case no_new_downloads option is passed (download_newest = False): Download only if it has never been downloaded before (useful for bulk downloads which repeatedly fail because IPAC is unstable) Else: try to download everything. if self.download_newest is False: for index, name in enumerate(self.object_list): if last_download[index] is None: download_requested.append(name) else: download_requested = self.object_list # Check with IRSA how many images are present for each object. Only if this number is bigger than the local number of images, download will start. download_needed = [] query = database.read_database( download_requested, ["ra", "dec", "local_filecount"] ) ras = query["ra"] decs = query["dec"] local_filecounts = query["local_filecount"] from ztffps.connectors import get_irsa_filecount self.logger.info(f"\nObtaining information on available images at IRSA.") irsa_filecounts = get_irsa_filecount( ztf_names=download_requested, ras=ras, decs=decs, jdmin=self.jdmin, jdmax=self.jdmax, nprocess=16, ) for index, name in enumerate(download_requested): if local_filecounts[index] is None: local_filecounts[index] = 0 if local_filecounts[index] < irsa_filecounts[name]: download_needed.append(name) self.logger.info( f"\n{len(download_needed)} of {len(self.object_list)} objects have additional images available at IRSA.\nThese will be downloaded now." ) for i, name in enumerate(download_needed): query = database.read_database( name, ["ra", "dec", "jdmin", "jdmax", "local_filecount"] ) ra = query["ra"][0] dec = query["dec"][0] jdmin = self.jdmin jdmax = self.jdmax fp = forcephotometry.ForcePhotometry.from_coords( ra=ra, dec=dec, jdmin=jdmin, jdmax=jdmax, name=name ) self.logger.info( f"\n{name} ({i+1} of {len(download_needed)}) Downloading data." ) if not os.path.exists( os.path.join(MARSHALDATA, "Cosmology_target_sources.csv") ): fp.io.update_marshal() fp.load_metadata() if self.sciimg: fp.io.download_data( nprocess=32, overwrite=False, show_progress=True, verbose=self.verbose, ignore_warnings=True, which=[ "scimrefdiffimg.fits.fz", "diffimgpsf.fits", "sciimg.fits", ], ) else: fp.io.download_data( nprocess=32, overwrite=False, show_progress=True, verbose=self.verbose, ignore_warnings=True, ) last_download = Time(time.time(), format="unix", scale="utc").jd local_filecount = irsa_filecounts[name] database.update_database( name, { "lastdownload": last_download, "local_filecount": local_filecount, }, ) def check_if_psf_data_exists(self): """ Checks if a csv file containing PSF fit results exists for each element in self.cleaned_object_list """ self.cleaned_object_list = [] for name in self.object_list: try: pd.read_csv(os.path.join(LOCALDATA, f"{name}.csv")) self.cleaned_object_list.append(name) except FileNotFoundError: pass def psffit(self, nprocess=None, force_refit=False): """ Perform the PSF fit using ztflc """ if nprocess is None: nprocess = self.nprocess query = database.read_database( self.object_list, [ "ra", "dec", "jdmin", "jdmax", "lastobs", "lastfit", "coords_per_filter", "fitted_datapoints", ], ) for i, name in enumerate(self.object_list): objects_total = len(self.object_list) ra = query["ra"][i] dec = query["dec"][i] jdmin = self.jdmin jdmax = self.jdmax lastobs = query["lastobs"][i] lastfit = query["lastfit"][i] coords_per_filter = query["coords_per_filter"][i] fitted_datapoints = query["fitted_datapoints"][i] # Check if there are different centroids for the # different filters # If a filter is missing, replace with total (all filters) # median ra/dec coords_per_filter[0] = np.nan_to_num( x=coords_per_filter[0], nan=ra ).tolist() coords_per_filter[1] = np.nan_to_num( x=coords_per_filter[1], nan=dec ).tolist() fp = forcephotometry.ForcePhotometry.from_coords( ra=coords_per_filter[0], dec=coords_per_filter[1], jdmin=jdmin, jdmax=jdmax, name=name, ) self.logger.info(f"\n{name} ({i+1} of {objects_total}) loading metadata.") fp.load_metadata() self.logger.info(f"\n{name} ({i+1} of {objects_total}) metadata loaded.") self.logger.info( f"\n{name} ({i+1} of {objects_total}) loading paths to files." ) fp.load_filepathes(filecheck=self.filecheck) self.logger.info( f"\n{name} ({i+1} of {objects_total}) paths to files loaded." ) # Check how many forced photometry datapoints # there SHOULD exist for this object number_of_fitted_datapoints_expected = len(fp.filepathes) if fitted_datapoints is None: fitted_datapoints = 0 # Compare to number of fitted datapoints from database if number_of_fitted_datapoints_expected > fitted_datapoints or force_refit: self.logger.info(f"\n{name} ({i+1} of {objects_total}): Fitting PSF.") fp.run_forcefit( verbose=self.verbose, nprocess=nprocess, store=True, force_refit=force_refit, no_badsub=False, ) fp.store() lastfit = Time(time.time(), format="unix", scale="utc").jd database.update_database( name, { "lastfit": lastfit, "fitted_datapoints": number_of_fitted_datapoints_expected, }, ) else: self.logger.info( f"\n{name} ({i+1} of {objects_total}) No new images to fit, skipping PSF fit." ) def plot(self, nprocess=4, progress=True, plot_flux=False): """ Plots the lightcurve (uses PSF fitted datapoints if available and checks for alert photometry otherwise) """ self.logger.info(f"\nPlotting") object_count = len(self.object_list) snt = [self.snt] * object_count daysago = [self.daysago] * object_count daysuntil = [self.daysuntil] * object_count mag_range = [self.mag_range] * object_count flux_range = [self.flux_range] * object_count plot_flux = [plot_flux] * object_count if progress: progress_bar = ProgressBar(object_count) else: progress_bar = None with multiprocessing.Pool(nprocess) as p: for j, result in enumerate( p.imap_unordered( self._plot_multiprocessing_, zip( self.object_list, snt, daysago, daysuntil, mag_range, flux_range, plot_flux, ), ) ): if progress_bar is not None: progress_bar.update(j) if progress_bar is not None: progress_bar.update(object_count) def global_filecheck(self): """ Check if each image downloaded from IPAC with ztfquery can be opened """ self.logger.info( "Running filecheck. This can take several hours, depending on the size of your $ZTDFATA folder." ) badfiles = ztfquery.io.run_full_filecheck( erasebad=True, nprocess=self.nprocess, redownload=True ) self.logger.info(f"BADFILES:\n{badfiles}") @staticmethod def _plot_multiprocessing_(args): """ Plots with multiprocessing """ name, snt, daysago, daysuntil, mag_range, flux_range, plot_flux = args from ztffps.plot import plot_lightcurve plot_lightcurve( name, snt=snt, daysago=daysago, daysuntil=daysuntil, mag_range=mag_range, flux_range=flux_range, plot_flux=plot_flux, ) print(f"\n{name} plotted") def saltfit(self, snt=5, quality_checks=False, progress=True, alertfit=False): """ Performs a saltfit """ self.check_if_psf_data_exists() import sfdmap from astropy.utils.console import ProgressBar from saltfit import fit_salt # Read info from metadata databse and update it with mwebv query = database.read_database(self.cleaned_object_list, ["ra", "dec", "mwebv"]) dustmap = sfdmap.SFDMap() objectcount = len(self.cleaned_object_list) progress_bar = ProgressBar(objectcount) self.logger.info( "\nChecking if the mwebv Milky Way dust map value is present and compute it if not." ) for index, name in enumerate(self.cleaned_object_list): ra = query["ra"][index] dec = query["dec"][index] if query["mwebv"][index] is None: mwebv = dustmap.ebv( ra, dec, ) database.update_database(name, {"mwebv": mwebv}) progress_bar.update(index) progress_bar.update(objectcount) object_count = len(self.cleaned_object_list) if progress: progress_bar = ProgressBar(object_count) else: progress_bar = None fitresults = [] fitted_models = [] fitresult_df = pd.DataFrame( columns=[ "name", "chisquare", "ndof", "red_chisq", "z", "t0", "x0", "x1", "c", "t0_err", "x0_err", "x1_err", "c_err", "peak_mag", "peak_abs_mag", "peak_abs_mag_for_comparison", "peak_abs_mag_corrected", "peak_abs_mag_corrected_error", "z_spectro", "z_precision", "g_obs", "r_obs", "i_obs", "nr_filters", "obs_total", ] ) for index, name in enumerate(self.cleaned_object_list): if alertfit: self.logger.info(f"\n{name} performing SALT fit for alert photometry.") else: self.logger.info(f"\n{name} performing SALT fit for forced photometry.") try: fitresult, fitted_model = fit_salt( name=name, snt=snt, mwebv=database.read_database(name, ["mwebv"])["mwebv"][0], quality_checks=quality_checks, alertfit=alertfit, ) if progress_bar is not None: progress_bar.update(index) fitresults.append(fitresult) fitted_models.append(fitted_model) except: self.logger.info(f"\n{name} Error while fitting.") if progress_bar is not None: progress_bar.update(index) if progress_bar is not None: progress_bar.update(object_count) for fitresult in fitresults: if fitresult is not None: results =
pd.Series(fitresult, index=fitresult_df.columns)
pandas.Series
#Sentiment analysis of Airline tweets # Preprocessing of tweets, perform stemming on the tokens of a tweets #Using Textblob compute the sentiment of tweets #Visualization such as plot sentiment, mean of sentiment per week, number of tweets per week, mean of positive and negative polarities #Column chart of mean of positive and negative polarities, top 10 positive words plot using bar chart import re import pandas as pd import numpy as np import matplotlib.pyplot as plt import nltk import warnings import os from textblob import TextBlob from nltk.stem import PorterStemmer warnings.filterwarnings("ignore", category=DeprecationWarning) #os.chdir('Specify current directory') brand='easyjet' porter=PorterStemmer() #preprocess the tweets def preprocess_tweet(tweet): return ' '.join(re.sub("(@[A-Za-z0-9]+)|([^0-9A-Za-z \t])|(\w+:\/\/\S+)", " ", tweet).split()) #obtain the sentiment of a tweet def get_sentiment(tweet): ana=TextBlob(tweet) return(ana.sentiment) #read easyjet.txt into a data frame data=pd.read_csv('easyjet.txt', sep=';' , header=None) data.drop(data.index[0],axis=0,inplace=True) data.drop(data.columns[2],axis=1,inplace=True) data.columns=['date','tweet'] print(preprocess_tweet(data.iloc[0]['tweet'])) data['sentiment']=np.nan data['cleanT']=data['tweet'].apply(preprocess_tweet) print(get_sentiment(data.iloc[0]['cleanT'])) data['sentiment']=data['cleanT'].map(get_sentiment) data['tokens']=data['cleanT'].apply(lambda x:x.split()) data['stemmed']=data['tokens'].apply(lambda x: [porter.stem(i) for i in x]) data['cleanStemmedT']=data['stemmed'].apply(lambda x:' '.join(i for i in x)) data['polarity']=data['sentiment'].apply(lambda x: x.polarity) print(data[['tweet','polarity']].head()) #sentiment for each tweet displayed in a plot fig=plt.figure() ax=plt.axes() ax.plot(data['polarity']) plt.xlabel('Tweets') plt.ylabel('Polarity') plt.show() #Mean sentiment per week in a plot data['date']=
pd.to_datetime(data['date'])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Pipeline-GUI for Analysis with MNE-Python @author: <NAME> @email: <EMAIL> @github: https://github.com/marsipu/mne_pipeline_hd License: BSD (3-clause) Written on top of MNE-Python Copyright © 2011-2020, authors of MNE-Python (https://doi.org/10.3389/fnins.2013.00267) inspired by <NAME>. (2018) (https://doi.org/10.3389/fnins.2018.00006) """ import inspect import os import shutil from ast import literal_eval from functools import partial from importlib import util from os import mkdir from os.path import isdir, isfile, join from pathlib import Path from types import FunctionType import pandas as pd from PyQt5.QtCore import QSize, Qt from PyQt5.QtGui import QFont from PyQt5.QtWidgets import (QButtonGroup, QComboBox, QDialog, QFileDialog, QFormLayout, QGroupBox, QHBoxLayout, QLabel, QLineEdit, QListView, QListWidget, QListWidgetItem, QMessageBox, QPushButton, QSizePolicy, QStyle, QTabWidget, QVBoxLayout, QGridLayout, QProgressBar, QCheckBox) from mne_pipeline_hd import QS from mne_pipeline_hd.gui import parameter_widgets from mne_pipeline_hd.gui.base_widgets import CheckDictList, CheckList, EditDict, EditList, SimpleDialog, SimpleList from mne_pipeline_hd.gui.gui_utils import CodeEditor, ErrorDialog, center, get_exception_tuple, set_ratio_geometry, \ get_std_icon, MainConsoleWidget from mne_pipeline_hd.gui.models import CustomFunctionModel, RunModel from mne_pipeline_hd.pipeline_functions.function_utils import QRunController class RunDialog(QDialog): def __init__(self, main_win): super().__init__(main_win) self.mw = main_win self.init_controller() self.init_ui() set_ratio_geometry(0.6, self) self.show() self.start() def init_controller(self): self.rc = QRunController(run_dialog=self, controller=self.mw.ct, pool=self.mw.mp_pool) def init_ui(self): layout = QVBoxLayout() view_layout = QGridLayout() view_layout.addWidget(QLabel('Objects: '), 0, 0) self.object_view = QListView() self.object_model = RunModel(self.rc.all_objects, mode='object') self.object_view.setModel(self.object_model) self.object_view.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) view_layout.addWidget(self.object_view, 1, 0) view_layout.addWidget(QLabel('Functions: '), 0, 1) self.func_view = QListView() self.func_model = RunModel(self.rc.current_all_funcs, mode='func') self.func_view.setModel(self.func_model) self.func_view.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) view_layout.addWidget(self.func_view, 1, 1) view_layout.addWidget(QLabel('Errors: '), 0, 2) self.error_widget = SimpleList(list()) self.error_widget.setSizePolicy(QSizePolicy.Preferred, QSizePolicy.Maximum) # Connect Signal from error_widget to function to enable inspecting the errors self.error_widget.currentChanged.connect(self.show_error) view_layout.addWidget(self.error_widget, 1, 2) layout.addLayout(view_layout) self.console_widget = MainConsoleWidget() layout.addWidget(self.console_widget) self.pgbar = QProgressBar() self.pgbar.setValue(0) self.pgbar.setMaximum(len(self.rc.all_steps)) layout.addWidget(self.pgbar) bt_layout = QHBoxLayout() self.continue_bt = QPushButton('Continue') self.continue_bt.setFont(QFont('AnyStyle', 14)) self.continue_bt.setIcon(get_std_icon('SP_MediaPlay')) self.continue_bt.clicked.connect(self.start) bt_layout.addWidget(self.continue_bt) self.pause_bt = QPushButton('Pause') self.pause_bt.setFont(QFont('AnyStyle', 14)) self.pause_bt.setIcon(get_std_icon('SP_MediaPause')) self.pause_bt.clicked.connect(self.pause_funcs) bt_layout.addWidget(self.pause_bt) self.restart_bt = QPushButton('Restart') self.restart_bt.setFont(QFont('AnyStyle', 14)) self.restart_bt.setIcon(get_std_icon('SP_BrowserReload')) self.restart_bt.clicked.connect(self.restart) bt_layout.addWidget(self.restart_bt) if QS().value('use_qthread'): self.reload_chbx = None else: self.reload_chbx = QCheckBox('Reload Modules') bt_layout.addWidget(self.reload_chbx) self.autoscroll_bt = QPushButton('Auto-Scroll') self.autoscroll_bt.setCheckable(True) self.autoscroll_bt.setChecked(True) self.autoscroll_bt.setIcon(get_std_icon('SP_DialogOkButton')) self.autoscroll_bt.clicked.connect(self.toggle_autoscroll) bt_layout.addWidget(self.autoscroll_bt) self.close_bt = QPushButton('Close') self.close_bt.setFont(QFont('AnyStyle', 14)) self.close_bt.setIcon(get_std_icon('SP_MediaStop')) self.close_bt.clicked.connect(self.close) bt_layout.addWidget(self.close_bt) layout.addLayout(bt_layout) self.setLayout(layout) def start(self): # Set paused to false self.rc.paused = False # Enable/Disable Buttons self.continue_bt.setEnabled(False) self.pause_bt.setEnabled(True) self.restart_bt.setEnabled(False) self.close_bt.setEnabled(False) self.rc.start() def pause_funcs(self): self.rc.paused = True self.console_widget.write_html('<br><b>Finishing last function...</b><br>') def restart(self): # Reinitialize controller self.init_controller() if self.reload_chbx and self.reload_chbx.isChecked(): self.mw.init_mp_pool() # Clear Console-Widget self.console_widget.clear() # Redo References to display-widgets self.object_model._data = self.rc.all_objects self.object_model.layoutChanged.emit() self.func_model._data = self.rc.current_all_funcs self.func_model.layoutChanged.emit() self.error_widget.replace_data(list(self.rc.errors.keys())) # Reset Progress-Bar self.pgbar.setValue(0) # Restart self.start() def toggle_autoscroll(self, state): if state: self.console_widget.set_autoscroll(True) else: self.console_widget.set_autoscroll(False) def show_error(self, current, _): self.console_widget.set_autoscroll(False) self.autoscroll_bt.setChecked(False) self.console_widget.scrollToAnchor(str(self.rc.errors[current][1])) def closeEvent(self, event): self.mw.pipeline_running = False event.accept() class EditGuiArgsDlg(QDialog): def __init__(self, cf_dialog): super().__init__(cf_dialog) self.cf = cf_dialog self.gui_args = dict() self.default_gui_args = dict() if self.cf.current_parameter: covered_params = ['data', 'param_name', 'param_alias', 'default', 'param_unit', 'description'] # Get possible default GUI-Args additional to those covered by the Main-GUI gui_type = self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_type'] if pd.notna(gui_type): gui_handle = getattr(parameter_widgets, gui_type) psig = inspect.signature(gui_handle).parameters self.default_gui_args = {p: psig[p].default for p in psig if p not in covered_params} # Get current GUI-Args loaded_gui_args = self.cf.add_pd_params.loc[self.cf.current_parameter, 'gui_args'] if pd.notna(loaded_gui_args): self.gui_args = literal_eval(loaded_gui_args) else: self.gui_args = dict() # Fill in all possible Options, which are not already changed for arg_key in [ak for ak in self.default_gui_args if ak not in self.gui_args]: self.gui_args[arg_key] = self.default_gui_args[arg_key] if len(self.gui_args) > 0: self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() layout.addWidget(EditDict(data=self.gui_args, ui_buttons=False)) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setLayout(layout) def closeEvent(self, event): # Remove all options which don't differ from the default for arg_key in [ak for ak in self.gui_args if self.gui_args[ak] == self.default_gui_args[ak]]: self.gui_args.pop(arg_key) if len(self.gui_args) > 0: self.cf.pguiargs_changed(self.gui_args) event.accept() class ChooseOptions(QDialog): def __init__(self, cf_dialog, gui_type, options): super().__init__(cf_dialog) self.cf = cf_dialog self.gui_type = gui_type self.options = options self.init_ui() # If open(), execution doesn't stop after the dialog self.exec() def init_ui(self): layout = QVBoxLayout() layout.addWidget(QLabel(f'For {self.gui_type}, you need to specify the options to choose from')) layout.addWidget(EditList(data=self.options)) close_bt = QPushButton('Close') close_bt.clicked.connect(self.close) layout.addWidget(close_bt) self.setLayout(layout) # ToDo: # Bug1: After saving a new function, the parameters stay in the table-view, # Bug2: When editing existing functions, the proprietary parameters can not be edited (they land in exising_params) # Bug3: When hitting Enter, the focus still lies on the AddFunc/EditFunc-Buttons which can disrupt setup class CustomFunctionImport(QDialog): def __init__(self, main_win): super().__init__(main_win) self.mw = main_win self.ct = main_win.ct self.file_path = None self.pkg_name = None self.current_function = None self.current_parameter = None self.oblig_func = ['target', 'tab', 'group', 'matplotlib', 'mayavi'] self.oblig_params = ['default', 'gui_type'] self.exst_functions = list(self.ct.pd_funcs.index) self.exst_parameters = ['mw', 'pr', 'meeg', 'fsmri', 'group'] self.exst_parameters += list(self.ct.settings.keys()) self.exst_parameters += list(QS().childKeys()) self.exst_parameters += list(self.ct.pr.parameters[self.ct.pr.p_preset].keys()) self.param_exst_dict = dict() self.code_editor = None self.code_dict = dict() # Get available parameter-guis self.available_param_guis = [pg for pg in dir(parameter_widgets) if 'Gui' in pg and pg != 'QtGui'] self.add_pd_funcs = pd.DataFrame(columns=['alias', 'target', 'tab', 'group', 'matplotlib', 'mayavi', 'dependencies', 'module', 'func_args', 'ready']) self.add_pd_params = pd.DataFrame(columns=['alias', 'group', 'default', 'unit', 'description', 'gui_type', 'gui_args', 'functions', 'ready']) self.yes_icon = get_std_icon('SP_DialogApplyButton') self.no_icon = get_std_icon('SP_DialogCancelButton') self.setWindowTitle('Custom-Functions-Setup') self.init_ui() self.open() def init_ui(self): layout = QVBoxLayout() # Import Button and Combobox add_bt_layout = QHBoxLayout() addfn_bt = QPushButton('Load Function/s') addfn_bt.setFont(QFont(QS().value('app_font'), 12)) addfn_bt.clicked.connect(self.get_functions) add_bt_layout.addWidget(addfn_bt) editfn_bt = QPushButton('Edit Function/s') editfn_bt.setFont(QFont(QS().value('app_font'), 12)) editfn_bt.clicked.connect(self.edit_functions) add_bt_layout.addWidget(editfn_bt) layout.addLayout(add_bt_layout) # Function-ComboBox func_cmbx_layout = QHBoxLayout() self.func_cmbx = QComboBox() self.func_cmbx.currentTextChanged.connect(self.func_item_selected) func_cmbx_layout.addWidget(self.func_cmbx) self.func_chkl = QLabel() self.func_chkl.setPixmap(self.no_icon.pixmap(16, 16)) self.func_chkl.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) func_cmbx_layout.addWidget(self.func_chkl) layout.addLayout(func_cmbx_layout) # Hint for obligatory items # There may be a better way to center the labels instead of with the space-labels obl_hint_layout = QHBoxLayout() space_label1 = QLabel('') obl_hint_layout.addWidget(space_label1) obl_hint_label1 = QLabel() obl_hint_label1.setPixmap(self.no_icon.pixmap(16, 16)) obl_hint_label1.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label1) obl_hint_label2 = QLabel() obl_hint_label2.setPixmap(get_std_icon('SP_ArrowForward').pixmap(16, 16)) obl_hint_label2.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label2) obl_hint_label3 = QLabel() obl_hint_label3.setPixmap(self.yes_icon.pixmap(16, 16)) obl_hint_label3.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label3) obl_hint_label4 = QLabel('(= The items marked are obligatory)') obl_hint_label4.setSizePolicy(QSizePolicy.Maximum, QSizePolicy.Maximum) obl_hint_layout.addWidget(obl_hint_label4) space_label2 = QLabel('') obl_hint_layout.addWidget(space_label2) layout.addLayout(obl_hint_layout) setup_layout = QHBoxLayout() # The Function-Setup-Groupbox func_setup_gbox = QGroupBox('Function-Setup') func_setup_gbox.setAlignment(Qt.AlignHCenter) func_setup_formlayout = QFormLayout() self.falias_le = QLineEdit() self.falias_le.setToolTip('Set a name if you want something other than the functions-name') self.falias_le.textEdited.connect(self.falias_changed) func_setup_formlayout.addRow('Alias', self.falias_le) target_layout = QHBoxLayout() self.target_cmbx = QComboBox() self.target_cmbx.setToolTip('Set the target on which the function shall operate') self.target_cmbx.setEditable(False) self.target_cmbx.activated.connect(self.target_cmbx_changed) target_layout.addWidget(self.target_cmbx) self.target_chkl = QLabel() target_layout.addWidget(self.target_chkl) func_setup_formlayout.addRow('Target', target_layout) tab_layout = QHBoxLayout() self.tab_cmbx = QComboBox() self.tab_cmbx.setToolTip('Choose the Tab for the function (Compute/Plot/...)') self.tab_cmbx.setEditable(True) self.tab_cmbx.activated.connect(self.tab_cmbx_changed) self.tab_cmbx.editTextChanged.connect(self.tab_cmbx_edited) tab_layout.addWidget(self.tab_cmbx) self.tab_chkl = QLabel() tab_layout.addWidget(self.tab_chkl) func_setup_formlayout.addRow('Tab', tab_layout) group_layout = QHBoxLayout() self.group_cmbx = QComboBox() self.group_cmbx.setToolTip('Choose the function-group for the function or create a new one') self.group_cmbx.setEditable(True) self.group_cmbx.activated.connect(self.group_cmbx_changed) self.group_cmbx.editTextChanged.connect(self.group_cmbx_edited) group_layout.addWidget(self.group_cmbx) self.group_chkl = QLabel() group_layout.addWidget(self.group_chkl) func_setup_formlayout.addRow('Group', group_layout) mtpl_layout = QHBoxLayout() self.mtpl_bts = QButtonGroup(self) self.mtpl_yesbt = QPushButton('Yes') self.mtpl_yesbt.setCheckable(True) self.mtpl_nobt = QPushButton('No') self.mtpl_nobt.setCheckable(True) self.mtpl_void = QPushButton('') self.mtpl_void.setCheckable(True) self.mtpl_bts.addButton(self.mtpl_yesbt) self.mtpl_bts.addButton(self.mtpl_nobt) self.mtpl_bts.addButton(self.mtpl_void) mtpl_layout.addWidget(self.mtpl_yesbt) mtpl_layout.addWidget(self.mtpl_nobt) self.mtpl_yesbt.setToolTip('Choose, if the function contains an interactive Matplotlib-Plot') self.mtpl_nobt.setToolTip('Choose, if the function contains no interactive Matplotlib-Plot') self.mtpl_bts.buttonToggled.connect(self.mtpl_changed) self.mtpl_chkl = QLabel() mtpl_layout.addWidget(self.mtpl_chkl) func_setup_formlayout.addRow('Matplotlib?', mtpl_layout) myv_layout = QHBoxLayout() self.myv_bts = QButtonGroup(self) self.myv_yesbt = QPushButton('Yes') self.myv_yesbt.setCheckable(True) self.myv_nobt = QPushButton('No') self.myv_nobt.setCheckable(True) self.myv_void = QPushButton('') self.myv_void.setCheckable(True) self.myv_bts.addButton(self.myv_yesbt) self.myv_bts.addButton(self.myv_nobt) self.myv_bts.addButton(self.myv_void) myv_layout.addWidget(self.myv_yesbt) myv_layout.addWidget(self.myv_nobt) self.myv_yesbt.setToolTip('Choose, if the function contains a Pyvista/Mayavi-Plot') self.myv_nobt.setToolTip('Choose, if the function contains a Pyvista/Mayavi-Plot') self.myv_bts.buttonToggled.connect(self.myv_changed) self.myv_chkl = QLabel() myv_layout.addWidget(self.myv_chkl) func_setup_formlayout.addRow('Pyvista/Mayavi?', myv_layout) self.dpd_bt = QPushButton('Set Dependencies') self.dpd_bt.setToolTip('Set the functions that must be activated before or the files that must be present ' 'for this function to work') self.dpd_bt.clicked.connect(partial(SelectDependencies, self)) func_setup_formlayout.addRow('Dependencies', self.dpd_bt) func_setup_gbox.setLayout(func_setup_formlayout) setup_layout.addWidget(func_setup_gbox) # The Parameter-Setup-Group-Box self.param_setup_gbox = QGroupBox('Parameter-Setup') self.param_setup_gbox.setAlignment(Qt.AlignHCenter) param_setup_layout = QVBoxLayout() self.exstparam_l = QLabel() self.exstparam_l.setWordWrap(True) self.exstparam_l.hide() param_setup_layout.addWidget(self.exstparam_l) self.param_view = QListView() self.param_model = CustomFunctionModel(self.add_pd_params) self.param_view.setModel(self.param_model) self.param_view.selectionModel().currentChanged.connect(self.param_item_selected) param_setup_layout.addWidget(self.param_view) param_setup_formlayout = QFormLayout() self.palias_le = QLineEdit() self.palias_le.setToolTip('Set a name if you want something other than the parameters-name') self.palias_le.textEdited.connect(self.palias_changed) param_setup_formlayout.addRow('Alias', self.palias_le) default_layout = QHBoxLayout() self.default_le = QLineEdit() self.default_le.setToolTip('Set the default for the parameter (it has to fit the gui-type!)') self.default_le.textEdited.connect(self.pdefault_changed) default_layout.addWidget(self.default_le) self.default_chkl = QLabel() default_layout.addWidget(self.default_chkl) param_setup_formlayout.addRow('Default', default_layout) self.unit_le = QLineEdit() self.unit_le.setToolTip('Set the unit for the parameter (optional)') self.unit_le.textEdited.connect(self.punit_changed) param_setup_formlayout.addRow('Unit', self.unit_le) self.description_le = QLineEdit() self.description_le.setToolTip('Short description of the parameter (optional)') self.description_le.textEdited.connect(self.pdescription_changed) param_setup_formlayout.addRow('Description', self.description_le) guitype_layout = QHBoxLayout() self.guitype_cmbx = QComboBox() self.guitype_cmbx.setToolTip('Choose the GUI from the available GUIs') self.guitype_cmbx.activated.connect(self.guitype_cmbx_changed) guitype_layout.addWidget(self.guitype_cmbx) test_bt = QPushButton('Test') test_bt.clicked.connect(self.show_param_gui) guitype_layout.addWidget(test_bt) self.guitype_chkl = QLabel() guitype_layout.addWidget(self.guitype_chkl) param_setup_formlayout.addRow('GUI-Type', guitype_layout) self.guiargs_bt = QPushButton('Edit') self.guiargs_bt.clicked.connect(partial(EditGuiArgsDlg, self)) self.guiargs_bt.setToolTip('Set Arguments for the GUI in a dict (optional)') param_setup_formlayout.addRow('Additional Options', self.guiargs_bt) param_setup_layout.addLayout(param_setup_formlayout) self.param_setup_gbox.setLayout(param_setup_layout) setup_layout.addWidget(self.param_setup_gbox) layout.addLayout(setup_layout) bt_layout = QHBoxLayout() save_bt = QPushButton('Save') save_bt.setFont(QFont(QS().value('app_font'), 16)) save_bt.clicked.connect(self.save_pkg) bt_layout.addWidget(save_bt) src_bt = QPushButton('Show Code') src_bt.setFont(QFont(QS().value('app_font'), 16)) src_bt.clicked.connect(self.show_code) bt_layout.addWidget(src_bt) close_bt = QPushButton('Quit') close_bt.setFont(QFont(QS().value('app_font'), 16)) close_bt.clicked.connect(self.close) bt_layout.addWidget(close_bt) layout.addLayout(bt_layout) self.setLayout(layout) self.populate_target_cmbx() self.populate_tab_cmbx() self.populate_group_cmbx() self.populate_guitype_cmbx() def update_func_cmbx(self): self.func_cmbx.clear() self.func_cmbx.insertItems(0, self.add_pd_funcs.index) try: current_index = list(self.add_pd_funcs.index).index(self.current_function) except ValueError: current_index = 0 self.func_cmbx.setCurrentIndex(current_index) def clear_func_items(self): self.falias_le.clear() self.target_cmbx.setCurrentIndex(-1) self.target_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.tab_cmbx.setCurrentIndex(-1) self.tab_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.group_cmbx.setCurrentIndex(-1) self.group_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.mtpl_yesbt.setChecked(False) self.mtpl_nobt.setChecked(False) self.mtpl_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.myv_nobt.setChecked(False) self.myv_nobt.setChecked(False) self.myv_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) def clear_param_items(self): self.update_param_view() self.palias_le.clear() self.default_le.clear() self.default_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) self.unit_le.clear() self.guitype_cmbx.setCurrentIndex(-1) self.guitype_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) self.param_setup_gbox.setEnabled(False) def func_item_selected(self, text): if text: self.current_function = text self.update_code_editor() self.update_func_setup() if any([self.current_function in str(x) for x in self.add_pd_params['functions']]): self.param_setup_gbox.setEnabled(True) self.update_param_view() self.current_parameter = \ self.add_pd_params.loc[ [self.current_function in str(x) for x in self.add_pd_params['functions']]].index[0] self.update_exst_param_label() self.update_param_setup() else: self.update_exst_param_label() # Clear existing entries self.clear_param_items() def param_item_selected(self, current): self.current_parameter = self.param_model.getData(current) self.update_param_setup() self.update_code_editor() def update_func_setup(self): if pd.notna(self.add_pd_funcs.loc[self.current_function, 'alias']): self.falias_le.setText(self.add_pd_funcs.loc[self.current_function, 'alias']) else: self.falias_le.clear() if pd.notna(self.add_pd_funcs.loc[self.current_function, 'target']): self.target_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'target']) self.target_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.target_cmbx.setCurrentIndex(-1) self.target_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'tab']): self.tab_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'tab']) self.tab_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.tab_cmbx.setCurrentIndex(-1) self.tab_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'group']): self.group_cmbx.setCurrentText(self.add_pd_funcs.loc[self.current_function, 'group']) self.group_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.group_cmbx.setCurrentIndex(-1) self.group_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'matplotlib']): if self.add_pd_funcs.loc[self.current_function, 'matplotlib']: self.mtpl_yesbt.setChecked(True) else: self.mtpl_nobt.setChecked(True) self.mtpl_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.mtpl_void.setChecked(True) self.mtpl_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_funcs.loc[self.current_function, 'mayavi']): if self.add_pd_funcs.loc[self.current_function, 'mayavi']: self.myv_yesbt.setChecked(True) else: self.myv_nobt.setChecked(True) self.myv_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.myv_void.setChecked(True) self.myv_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) def update_exst_param_label(self): if self.current_function: if len(self.param_exst_dict[self.current_function]) > 0: self.exstparam_l.setText(f'Already existing Parameters: {self.param_exst_dict[self.current_function]}') self.exstparam_l.show() else: self.exstparam_l.hide() def update_param_setup(self): if pd.notna(self.add_pd_params.loc[self.current_parameter, 'alias']): self.palias_le.setText(self.add_pd_params.loc[self.current_parameter, 'alias']) else: self.palias_le.clear() if pd.notna(self.add_pd_params.loc[self.current_parameter, 'default']): self.default_le.setText(self.add_pd_params.loc[self.current_parameter, 'default']) self.default_chkl.setPixmap(self.yes_icon.pixmap(QSize(16, 16))) else: self.default_le.clear() self.default_chkl.setPixmap(self.no_icon.pixmap(QSize(16, 16))) if pd.notna(self.add_pd_params.loc[self.current_parameter, 'unit']): self.unit_le.setText(self.add_pd_params.loc[self.current_parameter, 'unit']) else: self.unit_le.clear() if
pd.notna(self.add_pd_params.loc[self.current_parameter, 'description'])
pandas.notna
import pandas as pd from pyecharts.charts import Bar, Pie, Geo, Liquid, Page from pyecharts import options as opts from pyecharts.commons.utils import JsCode from pyecharts.globals import ChartType, SymbolType # csv文件处理 df =
pd.read_csv("college_data.csv")
pandas.read_csv